Introduction Graphes d'intervalles Domination romaine et domination romaine quasi totale Conclusion

Problèmes et variantes de domination romaine dans les graphes d'intervalles

Nicolas Schivre

23 juin 2023

Contexte

La LIFO:

- Laboratoire Fondamentale d'Informatique d'Orléans
- 5 équipes de recherche
- 45 chercheurs et 30 (post) doctorants

L'équipe GAMoC:

- Graphes, Algorithmies et Modèles de Calcul
- 7 chercheurs et 6 (post) doctorants
- Algorithmique des graphes
- Modèles de calcul

Sommaire

- Introduction
 - Problèmes de graphe
 - P, NP, NP-complétude et NP-difficulté
- ② Graphes d'intervalles
 - Représentation
 - Limites de la classe
 - Modèle d'intervalles normalisés
- Oomination romaine et domination romaine quasi totale
 - Définitions et notations
 - Exemple d'application
 - Domination romaine quasi totale
 - Définition et notations
 - Exemple d'application
 - Un algorithme par programmation dynamique
 - Exemple d'exécution
- Conclusion

Principe

Chercher un cycle hamiltonien de moindre poids dans le graphe.

Principe

Chercher un cycle hamiltonien de moindre poids dans le graphe.

Definition

Cycle hamiltonien : Cycle passant par tous les sommets du graphe.

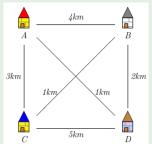
Principe

Chercher un cycle hamiltonien de moindre poids dans le graphe.

Definition

Cycle hamiltonien: Cycle passant par tous les sommets du graphe.

Exemple: Wikipédia



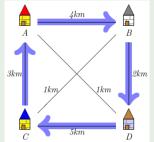
Principe

Chercher un cycle hamiltonien de moindre poids dans le graphe.

Definition

Cycle hamiltonien: Cycle passant par tous les sommets du graphe.

Exemple: une solution pas optimale



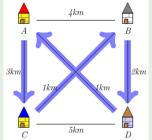
Principe

Chercher un cycle hamiltonien de moindre poids dans le graphe.

Definition

Cycle hamiltonien: Cycle passant par tous les sommets du graphe.

Exemple: une solution optimale



Problème de coloration

Principe

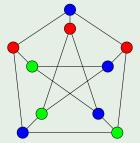
Attribuer une couleur à chaque sommet telle que pour chaque paire de sommets voisins, les sommets aient des couleurs différentes.

Problème de coloration

Principe

Attribuer une couleur à chaque sommet telle que pour chaque paire de sommets voisins, les sommets aient des couleurs différentes.

Exemple : coloration du graphe de Petersen



Problème de domination

Principe

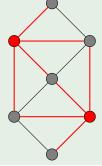
Calculer un ensemble de sommets tel que chaque sommet appartient à cet ensemble ou a un voisin dans l'ensemble.

Problème de domination

Principe

Calculer un ensemble de sommets tel que chaque sommet appartient à cet ensemble ou a un voisin dans l'ensemble.

Exemple : domination d'un graphe



Problèmes de graphe P, NP, NP-complétude et NP-difficulté

Réduction polynomiale

Réduire des problèmes

Soit X et Y deux problèmes.

Problèmes de graphe P, NP, NP-complétude et NP-difficulté

Réduction polynomiale

Réduire des problèmes

Soit X et Y deux problèmes.

Y est réductible polynomialement à X si :

Réduction polynomiale

Réduire des problèmes

Soit X et Y deux problèmes.

Y est réductible polynomialement à X si :

Considérant une boite noire résolvant X en une étape polynomiale Y est résolvable avec un nombre polynomial d'appels à la boite noire plus un nombre polynomiale d'opérations de base.

Réduction polynomiale

Réduire des problèmes

Soit X et Y deux problèmes.

Y est réductible polynomialement à X si :

Considérant une boite noire résolvant X en une étape polynomiale Y est résolvable avec un nombre polynomial d'appels à la boite noire plus un nombre polynomiale d'opérations de base.

Une notation simple

 $Y \leq_p X$ signifie que Y est polynomialement réductible à X.

Des classes de complexité

P pour *Polynomial time*.

NP pour Nondeterministic Polynomial time.

Des classes de complexité

P pour Polynomial time.

NP pour Nondeterministic Polynomial time.

Toute solution à un problème appartenant à NP est vérifiable en temps polynomial.

Des classes de complexité

P pour Polynomial time.

NP pour Nondeterministic Polynomial time.

Toute solution à un problème appartenant à NP est vérifiable en temps polynomial.

Un problème X est NP-complet si :

- X appartient à la classe NP.
- \forall problèmes $Y \in \mathbb{NP}$ on a $Y \leq_p X$.

Des classes de complexité

P pour Polynomial time.

NP pour Nondeterministic Polynomial time.

Toute solution à un problème appartenant à NP est vérifiable en temps polynomial.

Un problème X est NP-complet si :

- X appartient à la classe NP.
- \forall problèmes $Y \in NP$ on a $Y \leq_p X$.

Les problèmes NP-difficiles

2^{eme} propriété de NP-complet uniquement.

Problèmes de graphe P, NP, NP-complétude et NP-difficulté

Enjeux et intérêts

Un problème du millénaire

P = NP?

Enjeux et intérêts

Un problème du millénaire

$$P = NP$$
?

Si P = NP

Résoudre tous les problèmes de NP en temps polynomial.

Enjeux et intérêts

Un problème du millénaire

$$P = NP$$
?

Si P = NP

Résoudre tous les problèmes de NP en temps polynomial.

Si $P \neq NP$

Aucun problème NP-complet ne serait résoluble en temps polynomial.

Enjeux et intérêts

Un problème du millénaire

P = NP?

Si P = NP

Résoudre tous les problèmes de NP en temps polynomial.

Si P \neq NP

Aucun problème NP-complet ne serait résoluble en temps polynomial.

Domination, un problème NP-complet

On va donc se restreindre à une certaine classe de graphes pour le résoudre.

Une représentation par des intervalles de la droite réelle

Un début et une fin

Un intervalle i est représenté par un début d(i) et une fin f(i), aussi appelé gauche l(i) (left) et droite r(i) (right).

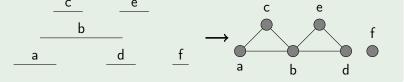
début fin

Une représentation par des intervalles de la droite réelle

Un graphe d'intersection

Graphe d'intersection d'un ensemble d'intervalles de la droite réelle.

Un ensemble d'intervalles et son graphe d'intersections



Limites de la classe

Des graphes impossible

Impossible de construire un cycle induit de longueur ≥ 4 .

Definition

Cycle induit: Cycle sans corde.

Definition

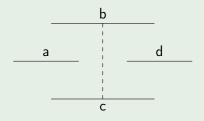
Corde : Arrête reliant deux sommets non adjacent d'un cycle.

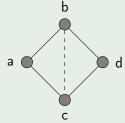
Limites de la classe

Definition

C₄: Cycle de taille 4.

Exemple : Pas de C₄ dans les graphes d'intervalles





Une représentation normalisée

Représentation des n intervalles sur un axe indexé de 1 à 2n.

Chaque indice représente soit le début, soit la fin d'un intervalle.

Une représentation normalisée

Représentation des n intervalles sur un axe indexé de 1 à 2n.

Chaque indice représente soit le début, soit la fin d'un intervalle.

Facilités algorithmique

Facilite le parcours du graphe d'intervalles et la conception d'algorithmes.

Une représentation normalisée

Représentation des n intervalles sur un axe indexé de 1 à 2n.

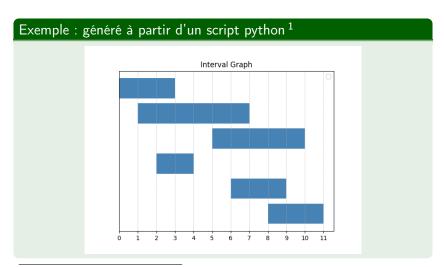
Chaque indice représente soit le début, soit la fin d'un intervalle.

Facilités algorithmique

Facilite le parcours du graphe d'intervalles et la conception d'algorithmes.

Algorithmes linéaire

Rend le tri efficace (linéaire) grâce l'utilisation du tri par dénombrement.



1. Script hébergé à l'adresse : https://github.com/Itasuka/roman-domination

Un sous-problème de domination

Deux ensembles de sommets dominant différents : V1 et V2.

Les sommets non dominant font partis de l'ensemble V0.

Un sous-problème de domination

Deux ensembles de sommets dominant différents : V1 et V2.

Les sommets non dominant font partis de l'ensemble V0.

Definition

V1 : Ensemble des sommets se dominant uniquement eux-même.

Un sous-problème de domination

Deux ensembles de sommets dominant différents : V1 et V2.

Les sommets non dominant font partis de l'ensemble V0.

Definition

V1: Ensemble des sommets se dominant uniquement eux-même.

Definition

V2: Ensemble des sommets se dominant eux-même ainsi que leurs voisins.

Un sous-problème de domination

Deux ensembles de sommets dominant différents : V1 et V2.

Les sommets non dominant font partis de l'ensemble V0.

Definition

V1: Ensemble des sommets se dominant uniquement eux-même.

Definition

V2: Ensemble des sommets se dominant eux-même ainsi que leurs voisins.

Un coût particulier

Le coût d'une solution est $\gamma_R(G) = |V1| + 2 * |V2|$.

Exemple d'application

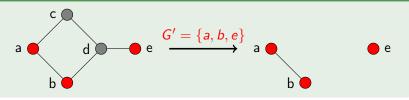
Exemple: une solution optimal	e de domination romaine
	<i>V</i> 0
<u>V1</u>	V2
V0	

$$\gamma_R(G) = 3$$

Définition : sous-graphe induit

G' est un sous-graphe induit d'un graphe G = (V, E) si pour tout couple $(u, v) \in V$, u et v sont connectés dans G' = (V', E') si et seulement si ils sont connectés dans G.

Exemple: Sous-graphe induit



Une variante de domination romaine

Une contrainte supplémentaire :

Un sommet de type V2 ne peut être isolé dans le sous-graphe induit par l'ensemble $V1 \cup V2$.

Une variante de domination romaine

Une contrainte supplémentaire :

Un sommet de type V2 ne peut être isolé dans le sous-graphe induit par l'ensemble $V1 \cup V2$.

Autrement dit

S'il existe un sommet isolé dans le sous-graphe induit par l'ensemble solution $V1 \cup V2$ alors ce sommet est de type V1.

Une variante de domination romaine

Une contrainte supplémentaire :

Un sommet de type V2 ne peut être isolé dans le sous-graphe induit par l'ensemble $V1 \cup V2$.

Autrement dit

S'il existe un sommet isolé dans le sous-graphe induit par l'ensemble solution $V1 \cup V2$ alors ce sommet est de type V1.

Coût d'une solution

Identique à la domination romaine, $\gamma_{QTRD}(G) = |V1| + 2 * |V2|$.

Exemple d'application

$$\gamma_{QTRD}(G) = 4$$

Définitions et notations Exemple d'application Domination romaine quasi totale

Un algorithme par disjonction de cas

Inspiré de précédents résultats

Adaptation d'un algorithme par programmation dynamique pour la domination romaine de M. Liedloff et d'autres chercheurs dans l'article « Efficient algorithms for roman domination on some classes of graphs » (Discr. Appl. Math., 2008)

Un algorithme par disjonction de cas

Inspiré de précédents résultats

Adaptation d'un algorithme par programmation dynamique pour la domination romaine de M. Liedloff et d'autres chercheurs dans l'article « Efficient algorithms for roman domination on some classes of graphs » (Discr. Appl. Math., 2008)

Utilisation de la programmation dynamique :

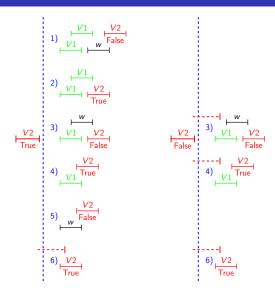
Structure d'une sous-solution

Une sous-solution opt[i, Bool] est une solution considérant les i premiers intervalles, pour laquelle :

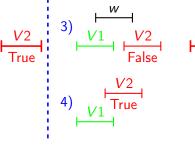
- i est un sommet de type V2, et
- tel que i n'est pas isolé dans la solution ssi Bool est True.

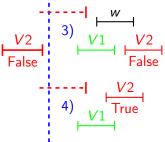
Les intervalles du modèle sont triés par date de fin croissante.

Les différents cas d'une extension d'une sous-solution



Exemple de l'extension 3-4





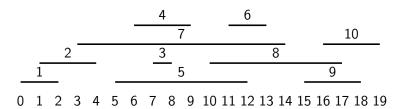
Une procédure

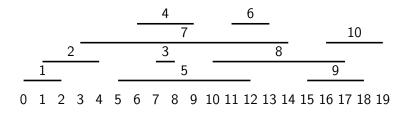
end

```
Data: Un sommet v d'un graphe G=(V,E) ayant déjà une sous-solution (V_1^{\vee}, V_2^{\vee}).
Result: Une extension de (V_1^{\vee}, V_2^{\vee}) selon le 1^{er} et 2^{eme} cas à partir d'une sous-solution.
i_1 \leftarrow \min(droite(x)), x \in V, droite(v) < gauche(x)
if i_1 \neq Nil then
       i_1' \leftarrow \min(droite(x)), x \in V \setminus \{i_1\}, droite(v) < gauche(x)
       if i_1' \neq Nil then
               w \leftarrow \min(droite(x)), x \in V \setminus \{i_1, i'_1\}, droite(v) < gauche(x)
              if w \neq Nil then
                      i_2 \leftarrow \max(droite(x)), x \in N[w]
                      if i_2 \notin N[i_1] then
                             if i₂ ∉ N[i₁¹] then
                                     opt[i_2, False] \leftarrow min(opt[i_2, False], opt[v, prop] + 4)
                             end
                             else
                                     opt[i_2, True] \leftarrow min(opt[i_2, True], opt[v, prop] + 4)
                             end
                      end
                      i_{22} \leftarrow \max(droite(x)), x \in N[i'_1]
                      if i_{22} \neq i'_1 and i_{22} \notin N[i_1] then
                             opt[i_{22}, True] \leftarrow min(opt[i_{22}, True], opt[v, prop] + 4)
                      end
               end
               else
                      n \leftarrow -\max(droite(x)), x \in V
                      opt[n, True] \leftarrow min(opt[n, True], opt[v, prop] + 2)
               end
       end
```

L'algorithme résolvant QTRD

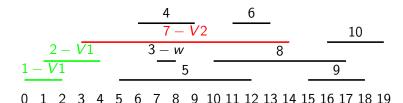
```
Data: Un Graphe d'intervalles G=(V,E) construit selon un modèle normalisé.
Result: Une valeur minimale de QTRD dans G \gamma_{OTRD}(G).
maxValue \longleftarrow 2 * |V|
initialValue \longleftarrow (-1, -1)
opt[initialValue, True] \leftarrow 0
for v \in V do
      opt[v, True] \longleftarrow maxValue
      opt[v, False] ← maxValue
end
Solution1-2(initialValue)
Solution3-4(initialValue, True)
Solution5-6(initialValue, True)
Trierlegraphepardatedefincroissante for v \in V do
      if opt[v, True] \neq maxValue then
             Solution 1-2(v)
             Solution3-4(v, True)
             Solution5-6(v. True)
      end
      if opt[v, False] \neq maxValue then
             Solution3-4(v. False)
             Solution5-6(v, False)
      end
end
n \longleftarrow \max(droite(x)), x \in V
return \gamma_{QTRD}(G) = opt[n, True]
```





i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	20	20	20	20	20	20	20	20	20
False	20	20	20	20	20	20	20	20	20	20	20

Table – Opt - Initialisation



i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	20	20	20	20	20	4	20	20	20
False	20	20	20	20	20	20	20	20	20	20	20

Table - Opt - Cas de base 1

i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	20	20	20	20	20	4	20	20	20
False	20	20	20	20	20	20	20	20	20	20	20

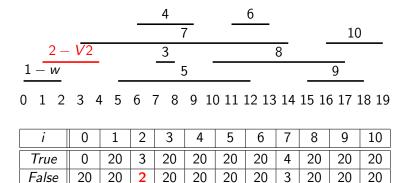
Table – Opt - Cas de base 2

i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	20	20	20	20	20	4	20	20	20
False	20	20	20	20	20	20	20	3	20	20	20

Table – Opt - Cas de base 3

i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	3	20	20	20	20	4	20	20	20
False	20	20	20	20	20	20	20	3	20	20	20

Table – Opt - Cas de base 4



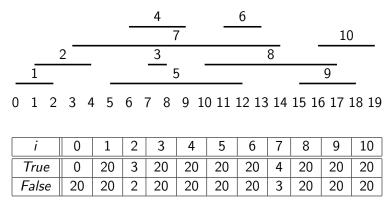
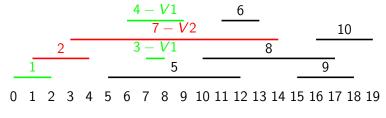


Table - Opt - Cas de base 6

 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19$

i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	3	20	20	20	20	4	20	20	20
False	20	20	2	20	20	20	20	3	7	20	20

Table –
$$Opt$$
 - Itération $i = 2$ - Cas 1 - True



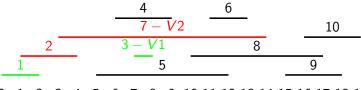
i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	3	20	20	20	20	4	20	20	20
False	20	20	2	20	20	20	20	3	7	20	20

Table –
$$Opt$$
 - Itération $i = 2$ - Cas 2 - True

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	3	20	20	20	20	4	20	20	20
False	20	20	2	20	20	20	20	3	7	20	20

Table –
$$Opt$$
 - Itération $i = 2$ - Cas 3 - True



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	3	20	20	20	20	4	20	20	20
False	20	20	2	20	20	20	20	3	7	20	20

Table – Opt - Itération
$$i = 2$$
 - Cas 4 - True

3

20

20

20

Exemple d'exécution

False

20

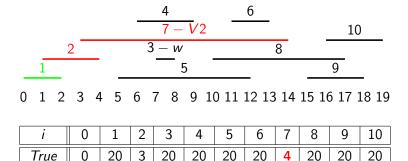


Table – Opt - Itération
$$i = 2$$
 - Cas 5 - True

20

20

2

20

20

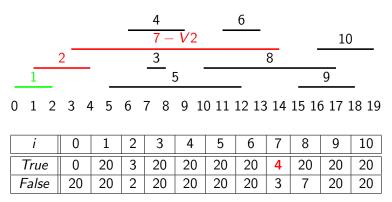
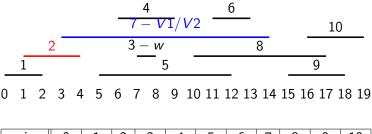


Table – Opt - Itération i = 2 - Cas 6 - True



i	0	1	2	3	4	5	6	7	8	9	10
True	0	20	3	20	20	20	20	4	20	20	20
False	20	20	2	20	20	20	20	3	7	20	20

Table –
$$Opt$$
 - Itération $i = 2$ - Cas 3 - False

L'intervalle 7 ne peut être à la fois dans V1 et V2.

True

False

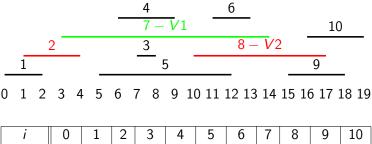


Table –
$$Opt$$
 - Itération $i = 2$ - Cas 4 - False

L'intervalle 8 n'est pas voisin avec le premier intervalle non dominé.

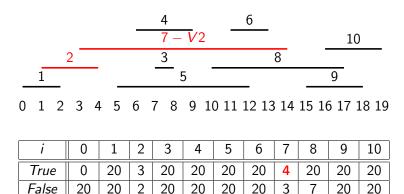


Table –
$$Opt$$
 - Itération $i = 2$ - Cas 6 - False

Un peu plus vite...

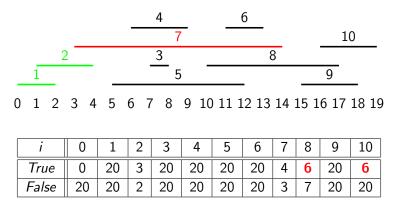


Table – Opt - Itération i = 7 - True

Un peu plus vite...

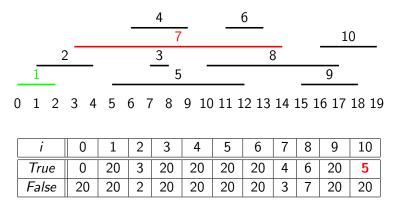


Table – Opt - Itération i = 7 - False

Un peu plus vite...

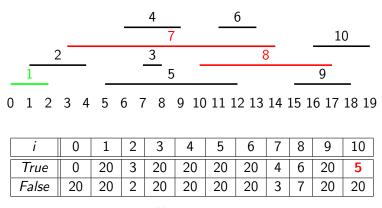


Table - Opt - Fin

On obtient une solution optimale de coût 5.

Introduction Graphes d'intervalles Domination romaine et domination romaine quasi totale **Conclusio**n

Conclusion

Une complexité linéaire?

L'étude de la complexité de cet algorithme polynomial reste encore à faire...

Conclusion

Une complexité linéaire?

L'étude de la complexité de cet algorithme polynomial reste encore à faire...

D'autres problèmes à étudier

- Domination romaine totale
- Domination romaine indépendante
- Domination romaine signée

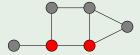
Merci de votre attention!

Domination romaine totale

Un chemin dominant

Aucun sommet de l'ensemble $V1 \cup V2$ n'est isolés dans le sous-graphe induit par la solution.

Exemple: Domination romaine totale



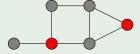
$$\gamma_{TRD}(G) = 4$$

Domination romaine indépendante

Une domination solitaire

Tous les sommets de l'ensemble $V1 \cup V2$ sont isolés dans le sous-graphe induit par la solution.

Exemple : Domination romaine indépendante



$$\gamma_{IRD}(G) = 4$$

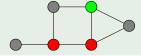
Domination romaine signée

Un entourage calculé

Une valeur pour chaque sommet est désormais définis comme suit :

- V0 = -1
- V1 = 1
- V2 = 2
- Chaque voisinage fermé d'un sommet doit posséder une valeur au moins égale à 1.
- Chaque sommet de type V0 doit avoir un voisin de type V2.

Exemple : Domination romaine signée



$$\gamma_{SRD}(G) = 5$$