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Introduction

In computer science, there are plenty of fields to explore. Between those fields, there
is one that catches my interest : graph theory. First, its eponymous famous tool
is a well studied combinatorial structure. Graphs are mostly represented by nodes
called vertices linked by lines called edges. They can be seen as a multitudes of
objects linked between them depending of some binary relation. Regardless of their
simplicity, graphs are used in a wide scope of real-life domains as a way of model-
ing situations. Indeed, it has applications in chemistry for analysing the molecules
structures, in biology for phylogenetic networks, in operational research for schedul-
ing... The typical goal of this kind of modelling is to represent a situation which
presents a difficult problem in order to find an efficient way of solving it.

For the purpose of illustrating this point, please see the Figure 1 that represents
one of the most famous application of graph for a real life problem. Indeed, this
image represents the famous city of Königsberg which was the inspiration for one of
the first problem introduced in the graph theory field. It is due to Leonhard Euler
who published in 1736 one of the first article which mentions graph theory [15]. The
question Euler asked was the following : How can someone travel across all the
seven bridges of Königsberg without crossing any bridge twice ? Indeed this problem
can be seen as a graph problem. Let us replace all the different lands separated by
the river by a node and two lands are linked together if there is a bridge between
them. There can be multiple edges between a pair of nodes if there is multiple
bridges between them. Nowadays, this kind of graph is known to be a multigraph
and the path searched by Euler now have an eponymous name : the eulerian path.
With the actual knowledge about graph theory, we can easily say that there is no
such path for the Königsberg city graph.

As an example of the application of graphs in other fields of research, Figure 2 is
an example of graph modelling of a biological situation from [29] where the authors
were working on mapping the protein-protein interactions with human body proteins
and more precisely analysing the interaction of some disease-associated proteins. In
this graph, the green nodes are the disease-associated proteins and the yellow nodes
are the proteins with no disease association. There is a red or blue edge between
two proteins in order to represent different kind of interactions between them.

The great popularity of this data structure probably comes from its incredible
versatility. Indeed, as shown above, graphs can be used in almost all fields. Even
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Figure 1: Königsberg city in the XVIII’s century and it’s famous seven bridges
crossing Pregel river

if the classical graph does not fit in a problem, there are various classes to use
depending on the situation. Actually, there is an online database called Graph
Classes (ISGCI [14]) which classify more than 1600 classes of graphs.

In graph theory, there is plenty of ways to use graphs. Some analyse their
structure to better understand their structural properties while others use those
structural results to solve problems. This latter is well studied because of the exis-
tence of many difficult problems. The most popular kind of problems graphs theory
researcher are trying to solve are optimization problems. Here are few examples of
a typical optimization problem : What is the shortest path between two points on
a map ? What is the minimum path to pass by all letterboxes of a city without
passing by the same letterbox twice ? What is the maximum or minimum set of
vertices that hold a certain property ? Those problems can be easily figured out in
some specific situation, but in the general case most of them are hard.

The goal of this field is to conceive clever and efficient algorithms as a way to
find a solution to these problems. However, as said in the previous paragraph, most
of those useful problems are hard. In fact, for some, there is no algorithm to solve
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Figure 2: Interaction network of disease-associated proteins

them efficiently, and, in fact, it is believed that those problem cannot be solved
efficiently. Some complexity classes were made to classify the problems depending
on their hardness. The two main classes are the ”easy” problems in P and the
”hard” problems in NP-complete. Studying these classes is one of the most active
field of research as a famous question involving these two remains opens since the
last century : Is P = NP ? Answering positively to this question will have a major
outcome on the society as for example a lot a cryptography protocol are made with
problem which come from NP. If these two classes were identical, then it will ensure
that a efficient algorithm solving these problems exists. In reality, most of researcher
are assuming that P ̸= NP as a result of the hardness of solving NP problems.

Sometimes, as finding an optimal solution is not enough for a given application,
a field of algorithm conception consists in working on enumerating all the good
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solutions. Actually, they tackle the enumeration version of the problem. The
goal of this kind of problem is to produce the solutions exactly once and with the
best total time and space complexity. In this field of study, there is two trends :
the input sensitive and the output sensitive. The first will give an algorithm
depending on the size of the input only while the other give an algorithm with
complexity measured with the input and the output sizes. There are multiple pros
and cons to both type of algorithm based on the need.

In some problems, there is a number of solutions which can be exponentially
large in the input size. For example, in melon graphs, there is an exponential num-
ber (3n/3) of minimal separators [17]. In this case, we cannot expect a complexity
less than exponential. Therefore, with the classical algorithm evaluation, all enu-
meration algorithms will not be considered as efficient. However, if the number of
solutions for some specific instances is ”small” (i.e. polynomial in the graph size),
a polynomial delay algorithm will compute all the solutions in polynomial total
time on these instances. In order to analyse enumeration algorithms complexity,
another kind of algorithm complexity need to exist. For the input sensitive algo-
rithms, the complexity is of the form an where n is the size of the output and the
goal is to lower a as minimum as possible. For the output sensitive approach, it
is completely different as the complexity depends on the output size. Indeed, in
output sensitive algorithms, the goal is to lower the delay between the finding of
two different solutions. The complexity analysis is focused on the complexity of this
delay.

In this master’s thesis in graphs, I will focus myself onto the enumeration of
particular objects called potential maximal cliques. A definition followed by the
state of the art of the different enumeration techniques and the potential maximal
clique object will be made at first. Secondly, we will give an overview of the different
results of this internship. Finally, the conclusion of this document will present the
remaining work to do and the opportunities of pursuing in studying this topic.

Before going into the main content of this document, I thanks the Laboratoire
d’Informatique de Modélisation et d’Optimisation des Systèmes (LIMOS) and more
precisely the line of researchModèles et Algorithmes de l’Aide à la Décision (MAAD)
who welcome myself for this internship.
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Chapter 1

Introduction to graphs

This chapter will give a short introduction concerning the graph object. From basic
definitions and notations to some necessary graph classes, this chapter will give all
the necessary information concerning graphs in order to help the understanding of
the main content of this manuscript. Moreover, the end of this chapter will have a
section defining with a little more details the separators which will be a key tool to
the potential maximal cliques understanding.

1.1 Definition, properties and classes

1.1.1 Definition and properties

First let us give the definition of a graph itself.

Definition 1 (Graph (undirected)). An undirected graph is a binary relation of two
elements G = (V,E) with V the set of vertices (or nodes) and E the set of edges.
An edge e is a bidirectional relation between two nodes u and v from V : it is noted
(u, v) or in short uv.

Remark 1. In the case of undirected graphs, uv and vu define the same notion.

A vertex of a graph often describes an object and an edge the existence of a
link between two objects. Most of the time, a node is represented as a circle and a
edge as a straight line between two nodes. The former definition is a definition of
undirected graphs. In this case, the edge represents a symmetric relation. On the
contrary, there exists directed graphs where edges represent an asymmetric relation.
Unless written explicitly all graphs will be considered as undirected ones.

Knowing the definition of a graph, let us take a good look at various properties
of graphs.
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Neighbourhood

The notion of neighbourhood is related to the edges. The neighbourhood of a vertex
v ∈ V denoted N(v) is the set of vertices that are at an endpoint of an edge where
the other endpoint is v. This former definition is the open neighbourhood of v. More
formally :

Definition 2 (Open Neighbourhood). The open neighbourhood of a vertex v ∈ V
is N(v) = {u ∈ V |uv ∈ E}.

Given an open neighbourhood, one can define its closed neighbourhood :

Definition 3 (Closed Neighbourhood). The close neighbourhood of v is N [v] =
N(v) ∪ {v}.

u

vN [u] N(v)

Figure 1.1: Difference between open and closed neighbourhood

In Figure 1.1, we can see in highlight the closed neighbourhood N [u] of u and
the open neighbourhood N(v) of v.

When dealing with neighbourhood, some might want to compute their sizes. It
is called the degree of a vertex. More formally :

Definition 4 (Degree). The degree of v ∈ V is d(v) = |N(v)|.

Paths and cycles

Paths are a common tool of graphs that are used in many problems. Here is a
definition : let P ⊆ V be a path from a to b of G. P is a succession of vertices such
that a new vertex is chosen in the neighbourhood of the previous one, such that the
first vertex is a, the last is b, and there is no repetition of any vertex in between.
More formally :

Definition 5 (Path). We say P = (v1, v2, ..., vk) is a k-length path if vivi+1 ∈ E(G),
∀i ∈ [1, k − 1] and vi ̸= vj, ∀i, j, i ̸= j.

Without loss of generality let us define cycles :

Definition 6 (Cycle). A cycle is a path from a vertex a to this same vertex a.
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Connectivity

With the notion of neighbourhood and path, we can define the notion of connectivity
of a graph :

Definition 7 (Connectivity). A graph G is connected if for any pair of vertices
u, v ∈ V , there is a path between them.

In a non connected graph, we define the connected components :

Definition 8 (Connected components). Given a non connected graph G, the con-
nected components of G are all the distinct maximal induced subgraphs that are
connected.

In fact, we usually say that a connected graph has a unique connected component.

Clique

A clique is a set of vertices such that there is an edge between any pair of vertices
in this set, hence, we define :

Definition 9 (Clique). S ⊆ V is a clique if ∀u, v ∈ S : u ̸= v, uv ∈ E.

Lemma 1 (Maximal Clique). A clique S is said maximal if for every vertex v ∈
V \ S, S ∪ {v} is not a clique.

From the previous lemma we can assume that a clique cannot be strictly included
in one another.

v

Figure 1.2: Difference between a clique and a maximal clique

In Figure 1.2, N(v) is a clique but it is not a maximal clique. Adding v to N(v)
creates a maximal clique in this graph.

Subgraph / Supergraph

A subgraph H of a graph G is a graph that is defined on a subset of nodes and edges
of G. Conversely, G is a supergraph of H because all the nodes and edges of H
are included in G. H is said induced if H is the graph created from a set of nodes
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X ⊆ V and all the edges {u, v ∈ X|uv ∈ E}. Hence, the induced subgraph of a
clique is called complete (all the nodes pairs are linked by an edge).

G H H ′

Figure 1.3: Difference between a subgraph and an induced subgraph

In Figure 1.3, G is the supergraph of H and H ′ : they are both subgraphs of G.
Only H ′ in an induced subgraph of G.

Directed graph

Definition 10 (Graph (directed)). A directed graph is a tuple of two elements
G = (V,A) with V the set of vertices and A the set of arcs. An arc a is a asymmetric
relation between two nodes u and v from V . The arc a is noted uv denotes an arc
starting from u and ending in v. Conversely vu denotes an arc starting from v and
ending in u.

This document will not go into detail about the directed graphs properties as
almost all used graphs will be undirected. However the only knowledge that will
be necessary to understand about directed graphs is that the notion of neighbour
is now asymmetric. Indeed for an arc uv, v is in the neighbourhood of u while the
opposite is not true. From this follow that, taking two vertices a and b, the existence
of a path from a to b does not ensure the existence of a path from b to a.

1.1.2 Graph classes

Graph classification is a powerful tool to understand graph theory. Undoubtedly,
knowing various graph classes properties can be a great help to understand and
find an efficient solution to some problem. In some cases, problems are specifically
related to a precise class of graphs. As stated in the introduction, there are over
1600 graph classes that have been described in [14]. In this subsection, we will first
describe a class of graph that is strongly connected to the potential maximal cliques
: the chordal graphs. Secondly, we will describe a particular class of graphs that
hold some of the results around potential maximal cliques application : the P5-free
graphs.
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Chordal graphs

Chordal graphs are the most important class of graphs of this manuscript as the
problem studied is based on a property of this class.

Definition 11 (Chordal graph). A graph G is chordal if every cycle of length greater
than three has an edge joining two non-consecutive vertices of the cycle. We say that
the cycle has a chord.

Remark 2. A cycle of length four with no chord is called a C4.

Figure 1.4: Chordal graphs

The graph of Figure 1.4 is not chordal because of the presence of a C4. Adding
either the dashed or the dotted edge make the graph chordal. We can notice that a
graph can always be transformed to a chordal graph by adding edges in the chordless
cycles. This operation is called the triangulation of a graph. Here a more formal
definition :

Definition 12 (Triangulation [19]). G′ is a triangulation of G = (V,E) if G′ =
(V,E ∪X) where X is an edge set which makes G chordal.

As a lot of graph properties, this one can either be maximised of minimised. In
the case of triangulation, only the minimisation is important.

Definition 13 (Minimal triangulation [20]). G′ = (V,E ∪ X) is a minimal trian-
gulation of G = (V,E) if for any edge e ∈ X, G′ − e is not chordal.

We can notice that these graph can be recognized in linear time O(n+m) by an
algorithm based on the perfect elimination ordering fromRose, Tarjan and Lueke
in [28]. Moreover, the chordal graph classes admit a tree decomposition where each
vertex represent a clique of the chordal graph. In order to create this tree, we will
create the clique intersection tree. A clique intersection tree is a tree where all
vertices are intervals and two intervals intersect if the corresponding vertices are
linked by an edge. This construction verifies the Helly property.

Lemma 2 (Helly property [30]). A geometric intersection model has the Helly prop-
erty if for every clique C there is a single point p such that every vertex of C include
this point p.
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6 Graphs overview

a

b c

d e f

(a) Chordal graph

a

b c

d

e

f

(b) Clique intersection tree

abc

bcd

bde cdf

(c) Clique tree

Figure 1.5: Decomposition of a chordal graph

Finally, given this clique intersection tree, we can find all the maximal cliques
easily by searching for the p point from the Helly property definition, and then link
the maximal cliques if they have a vertex in common. Please see Figure 1.5 to see
the construction from the original chordal graph.

P5-free graphs

A P5-free graph is a graph that does not have a path on 5 vertices (P5) as an
induced subgraph. This class is a well studied class of graph since a lot of NP-
Complete problem can be solved in polynomial time on it. For example the problem
Maximum Independent Set which is defined below is NP-Complete in the general
cases, but, Lokshtanov et al. presented a polynomial time algorithm solving this
problem in [24]. Furthermore, their algorithm is particularly interesting because it
features the use of potential maximal cliques to solve the problem.

Maximum Independent Set
Input: A graph G = (V,E).
Output: A set S ⊆ V such that ∀u, v ∈ S|u ̸= v, u /∈ N(v) of maximum
cardinality.

1.2 Separators

As a final section of this chapter and as a useful property that will be frequently
used in the following chapters, vertex separators will be define below.

Definition 14 (a, b-separator). Given a set of vertices S ⊂ V and two vertices
a, b ∈ V , S is an (a, b)-separator if a and b are in different connected components in
G− S.

Remark 3. The S is said minimal if for any subset S ′ ⊂ S, S ′ is not an (a, b)-
separator.

M2 ARIAS
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Definition 15 (Separator). We said that S is a separator if S is an (a, b)-separator
for some pair a, b ∈ V .

Remark 4. We note ∆G the set of all minimal separators of G.

Lemma 3. [[8]] For any graph G with a, b ∈ V , and any (a, b)-separator S ⊂ V of
G, S is minimal if and only if for every v ∈ S, there is a path from a to b which
intersect S only in v.

The connected components created by a minimal separator can hold a property
named full.

Definition 16 (Full component). A connected component C is a full component to
a set of vertices X if, ∀x ∈ X, N(x) ∩ C ̸= ∅.

This notion of full component will be really helpful when we will describe the
potential maximal cliques.

Lemma 4. A minimal separator S admit at least two full components.

Proof. A separator creates at least two connected components. Let S be a minimal
a, b-separator. It follows that G \ S has one component containing a denoted Ca

and one containing b denoted Cb. By Lemma 3, it follows that both a and b have a
path from themselves to any vertex of S.

Definition 17 (Close separator [31]). Let A ⊂ V be a connected set (i.e such that
G[A] is connected) where a ∈ A, b /∈ A. The close separator S of A is the unique
minimal (a, b)-separator included in N(A), called S(A). The set S(A) is obtained by
computing the neighborhood of the connected component containing b in G \ N(A)
(see Figure 1.6).

aA

N(A)

b Cb

N(Cb) = S(A)

Figure 1.6: Schema of a close separator (in blue)

We can also describe a more restrained type of minimal separators : the inclusion
wise minimal separators.

Definition 18. Let S be a separator of G. S is a inclusion wise minimal separator
if there is no subset X ⊊ S such that X is also a separator.
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This has already been proved by Brosse et al. [9] that enumerating all this kind
of separators is not possible with an output polynomial algorithm unless P = NP .

Definition 19 (Parallel separators). Two separators S and T of a graph G are
parallel, if S (resp. T ) does not contain any vertices from two distinct components
in G \ T (resp. G \ S).

S T

X

Figure 1.7: Parallel separators

In Figure 1.7, we can see that the separators S and T are parallel since T have
vertices in only one connected component of G \ S. However, S and X (and also T
and X) are not parallel.

M2 ARIAS



Chapter 2

State of the art

2.1 Enumeration

In graph theory, usual tackled problems only search for a unique ”best” solution
considering some criteria. Those problems are called optimization problems. Un-
fortunately, many years of study in this domain have shown that a lot of optimiza-
tion problems are hard to solve in polynomial time. Hence, most of them are NP-
Complete. As those problems can be hard, researchers either solve a parameterized
version (thus algorithm with a complexity based on the output and some other pa-
rameters) of these, solve the approximation version where they find an approximate
solution (a solution which is at a calculable distance ratio to the optimal solution),
solve it on a restrained classes of graphs or solve what is called the enumeration
version of these problems. The enumeration version of a problem is different from
the optimization version in the way that not only the ”best” solutions need to be
outputted. Unlike optimization problem, enumeration problem does not search for
the minimum/maximum solutions explicitly. In fact, enumeration problems are of-
ten taken into account when the optimization version is hard to solve efficiently. In
this kind of problem, the minimal/maximal solutions is sought. The difference be-
tween a minimum/maximum and a minimal/maximal solution is the fact that given
a minimum/maximum solution, there is no other solution with a lower/greater size
than this solution. Considering a solution, the solution is minimal/maximal if re-
moving/adding any element of/to this solution make it no longer one. Finally, in
the process of the enumeration, we does not want any duplicate solution. To achieve
this, we need to find a way to remember the outputted solutions. We can easily see
that in some problems with exponential number of solutions, the trivial remembering
of all the already outputted solutions leads to an exponential space use. It follows
that optimizing the space complexity of such algorithm can also be challenging.

Knowing the goal of enumeration, two approaches for solving these problems
emerged. First, the input sensitive approach and secondly the output sensitive
approach. The first one only considers the input size to bound the complexity. In
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this case, as most of enumeration problems have an exponentially large number of
solutions, then the complexity of input sensitive algorithm is naturally exponential
in the input size. With this exponential complexity of the shape O(an), it cannot be
seen as efficient regarding of the usual algorithm complexity. Researchers working
on input sensitive algorithms try to lower the a in the complexity in order to make
the time complexity as lower as the number of solutions.

The second approach and the one that will be studied in the rest of this manuscript
is an approach which consider both the input and the output size in the complex-
ity analysis. Since there is an exponential number of solutions, an output sensitive
algorithm goal is to lower either the total running time in function of the output
or the time between each solution to be outputted. For the rest of this section, we
will give an overview of this approach and some important result of output sensitive
enumeration algorithms.

2.1.1 Time complexity

Analysing the complexity of an enumeration algorithm in the classical way (de-
scribed by Jack Edmonds in the 1960’s [1]) will often result in an exponential
complexity lower-bounded by the number of solutions. In this case, how can the
efficiency of an enumeration algorithm be evaluated ? This is a major motive to
analyse the complexity with the input and output size. In the following, the in-
put size will be regarded as n and the output size as N . In 1988 in [22], different
complexity measures were introduced for output sensitive enumeration algorithms.
They will be presented below.

Output polynomial

Also described as Total Time algorithm, Output algorithms are defined with a
f(n,N) complexity. Those algorithms have no guarantee on the time between two
solutions to be outputted but it takes a maximum time bounded by f(n,N). An
Output algorithm complexity is bounded by the function f on n and N . Indeed the
order of magnitude of f defines the algorithm complexity. For example, if f is a
polynomial function, then the algorithm will be Output polynomial and if f is linear
then it will be Output linear. Figure 2.1 schematises the behaviour of this kind of
algorithm complexity in order to help its understanding.

These algorithms needs a O((n+N)c) time to produce all the solutions.

Incremental polynomial

Incremental algorithms are defined by a
N∑
i=1

f(n, i) complexity, a sum of a function

f on the input n and the number of previously outputted solutions i. Oppositely as
the Output algorithms, the solutions are outputted with a f(n, i) times between two
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Début Fin
f(n,N)

S1 SN

Figure 2.1: Example of the execution time of an Output algorithm and a potential
solution distribution (in red) along the running time

solutions. In this way, the time between two solutions to be outputted may increase
with each new solution. In the other hand, similarly as the Output complexity,
Incremental are named based on the complexity of f . For instance, if f is polyno-
mial, then the algorithm will be Incremental polynomial. Figure 2.2 schematises the
behaviour of this kind of algorithms complexity in order to help its understanding.

Début Fin
f(n, i)

S1 SNSi Si+1

Figure 2.2: Example of the execution time of an Incremental algorithm and a po-
tential solution distribution (in red) along the running time

Given Li the list of solutions already found at the step i, these algorithms need
a O((n+ |Li|)c) time to produce the i+ 1th solution.

Polynomial delay

Lastly, Delay algorithm are algorithms with f(n) × N complexity. It follows that
the solutions are outputted with an identical delay bounded by f(n). Identically as
the two previous complexity classes, Delay algorithms are defined by the complexity
of f . Hence, if f is polynomial, then the algorithm will have a polynomial Delay.
Figure 2.3 schematises the behaviour of this kind of algorithms complexity in order
to help its understanding.

Constant delay

Lastly, we mention the constant Delay algorithm. Those are related to the polyno-
mial Delay one except that constant Delay is the best hope for an Delay algorithm.
Indeed, with this delay, only the modification between two solution can be used
because any use of the graph entirely will imply a linear delay. In particular, a
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Start End
f(n)

S1 SN

Figure 2.3: Example of the execution time of a Delay algorithm and a potential
solution distribution (in red) along the running time

constant Delay algorithm starts with a preprocessing operation before navigating
in constant delay between the solutions. To have more details and example about
constant Delay algorithm, please refer to [25].

2.1.2 Space complexity

In the same way as classical algorithms, enumeration algorithms can be analysed
regarding their space complexity. However, for enumeration problems, we might
want to store the previous outputted solution in order to output them only once.
This can, for example, be done by storing all the already outputted instances but this
can be very space consuming as some problems will need a exponential number of
solutions to be stored this way. Hence it will lead to a exponential-space algorithm.
In order to be more efficient in space, some technique need to be settled as ordering
the solution and does not output solution with a lower ordering than the actual
solution.

2.1.3 Algorithmic methods

In order to design efficient enumeration algorithms with respect to the output sen-
sitive enumeration time complexity, there are some methods in the literature. An
non-exhaustive overview of these different methods will follow.

Flashlight Search

In 1975, one of the very famous enumeration technique was introduced by R. C.
Read and R. E. Tarjan in [27]. This technique have various names in literature
such as Backtracking [27], Binary Partition [23], or, the one that will be used in this
paper, Flashlight Search [10, 11]. Considering an arbitrary ordering of the elements
that could be in the solution e1, e2, ..., en, this method consist in creating node by
node a binary tree rooted in ∅ and branched by ei and ei at depth i − 1. Each
ei branch represent the solution including ei and ei excluding it. Without further
modifications, we will end with the leaves of the tree representing all the different
set of elements that stand as a potential solution. It means that some leaves may
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not be a solution. In the Flashlight search, we want the leaves to represents all the
different maximal solutions searched. In order to achieve this, we will stop extending
a branch when no solution hides beneath. At each step, in order to prune the tree,
the extension version of the problem need to be answered at each depth. Such
problem template is defined as below :

Extension problem template
Input: A graph G = (V,E), a subset M ⊂ V of mandatory vertices, a subset
F ⊂ V of forbidden vertices such that M ∩ F = ∅ and a property P to satisfy.
Question: Does X, a set of vertices with M ⊆ X, X ∩ F = ∅ and such that X
satisfy P exist ?

In this definition P represents the property which has to be satisfied in order
to be a solution. It can be various : being a minimal dominating set, a maximal
independent set,... Given a node of the tree, if the answer of the extension problem
considering the ei elements in M and the ej in F is Yes, then it is easy to see that
there will be at least one solution below and it is worth continuing the exploration.
It follows that if the answer is No then there is no solution below and we can cut
the branch and backtrack to the parent node. In Figure 2.4 we can see an example
of the exploration of the solutions using the Flashlight Search.
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{e1, e2}{e1, e3} {e1} {e3}

Figure 2.4: Example of an exploration of a binary tree with a Flashlight Search
algorithm with a possible ordering on the nodes travelled

This technique is very effective. Indeed, if a polynomial time algorithm solving
the extension version of the problem exists, then a polynomial delay, polynomial
space algorithm comes out from Flashlight Search. As an example of such algorithm,
the article [31] gives a clever algorithm to enumerate all minimal a, b-separators of
a graph. A minimal a, b-separator of a graph is a minimal set of vertices that
disconnects a and b in the graph. In this paper, the author achieves this by creating
a polynomial delay, quadratic space algorithm using Flashlight Search.
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Reverse Search

In 1996, Reverse Search framework was described by David Avis and Komei
Fukuda in [2]. It has been motivated by local search which is a famous technique
from optimisation field. Indeed this technique rely on navigating in the solutions
space by improving a solution at each step until it became a local optimum solution.
The Reverse Search principles are the followings : create a rooted spanning tree con-
taining all the solutions and define an unique parent for each solution except for the
root. The search will be done by exploring in a Depth First Search the spanning tree
starting from the root. Please note that the tree can rather be a spanning forest
depending on the situation. In this case, multiple parallel DFS on the roots are
done.

With more detail, the tree structure is made with the help of three functions:

• A neighbouring function Neighbourhood which generates in polynomial
time all the neighbouring solutions of a solution in order to create a directed
supergraph of solutions.

• A parent functionParent which will help to define the spanning tree structure
of the solutions graph.

• A children function Children which define the neighbours of a solution in the
spanning tree. For a solution S, it is defined as follow : Children(S) = {S ′ ∈
Neighbourhood(S)| Parent(S ′) = S}.

S0

S1 S2 S3

S4
S5

S6

S7 S8

DFS = S0, S1, S4, S3, S2, S5, S6, S7, S8

Parent(S2) = S3

Children(S1) = S3, S4

Figure 2.5: Example of a possible solutions supergraph and its spanning forest
structure in red

The complexity of such algorithm relies on the complexity of theChildren func-
tion and the maximum number of neighbours that this function creates in the worst
case. Indeed, if this function creates a exponentially large number of neighbours,
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then it follows that exploring all these neighbours will cost a exponential time. More-
over, in order to guarantee a polynomial delay for a polynomial time computable
Children function, the solutions needs to be outputted in a smarter way. In fact,
if the algorithm outputs a solution as soon as it encounters it, when dealing with
a exponential path on the spanning tree, an exponential length backtrack without
any outputs can occur and increase the delay. In order to solve this issue, Takeaki
Uno proposed in 2003 two modifications to the enumerations algorithms in order to
reduce the delay [32]. The one that is interesting for the Reverse Search is the one
called Alternative Output Method and more specifically theModified Internal Output
Algorithm which consists in outputting before or after the recursive call depending
on the evenness of the recursion. This way, half of the solutions will be outputted
on the way forward of the recursion and the other half on the backtrack part.

Finally, here is the algorithm template for a Reverse Search algorithm :

Algorithm 1: Reverse Search algorithm template

Input: The polynomially computable Children function to travel on the
spanning forest of the solutions supergraph G and S the set of root
nodes of G

Output: All solutions enumerated
1: foreach root node S ∈ S do
2: Dive (S, 0)

3: Function Dive (S, depth):
if depth is even then

4: Output S

foreach child X ∈ Children (S) do
5: Dive (X, depth+ 1)

if depth is odd then
6: Output S

Proximity Search

Recently, in 2019, Alessio Conte and Takeaki Uno introduced in [13] a brand
new enumeration framework called Proximity search which was defined for maximal
induced subgraph enumeration in an other article in 2021 [12]. This technique is
similar with the Reverse Search technique as they are both based on the exploration
of a solutions supergraph. However, Proximity Search algorithm relies on a spe-
cific neighbour function which is computable efficiently and makes the supergraph
of solutions strongly connected. Conceiving this neighbouring function may lead
to various difficulties to overcome in order to conceive such enumeration algorithm.
Indeed, as the number of solutions of an enumeration problem can be exponentially
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large as the input size, a solution might have an exponentially large number of neigh-
bours in the solution graph. Moreover, the strongly connected property needs to be
verified, otherwise it cannot be guaranteed that all the solutions will be reachable
by performing a Depth First Search starting from any solution. In summary, this
technique is based on the existence of a neighbouring function that creates a polyno-
mially maximal degree and strongly connected solutions supergraph. However, how
does this strongly connected property can be proven ? It comes from the ”proxim-
ity” notion. Obviously, as the framework is called Proximity Search, it induces that
a relation of proximity between two solution exists. Actually, the notion is to be
defined below.

Let us consider two distinct solutions S and T defined by a set of elements from
e1, e2, ..., en. The notion of proximity between two solutions can be defined as the
longest common prefix between S and T . It follows that the longer is this prefix,
the closer S and T are in the solution graph. To create this proximity measure, one
can create an ordering on the vertices for each solution.

Definition 20. Given two solution S and T , S∩̃T define the proximity between S
and T by their longest common prefix.

Remark 5. The proximity operation ∩̃ is not symmetric hence we may have S∩̃T ̸=
T ∩̃S.

Finally, the authors defined the notion of proximity searchable which described
the existence of a Proximity Search algorithm for a specific enumeration problem P .

Definition 21 (Proximity Searchable). An enumeration problem P is proximity
searchable if there is a proximity function ∩̃ and a neighbouring Neighbourhood
function such that a solution of P can be identified in polynomial time in the out-
put size, the neighbouring function is computable in polynomial time in the out-
put size and for every two distinct solutions S and T there is a solution S ′ ∈
Neighbourhood(S) such that |S ′∩̃T | > |S∩̃T | (S ′ is ”closer” to T than S).

The last point of this definition induces that for any two solutions S and T there
is S ′ a neighbor of S (from the neighbouring function) which is ”closer” to T than
S. It follows that consecutively using the neighbouring function and choosing the
solution that get closer to T will lead to reach T at some point.

An algorithm created using Proximity Search lead to a polynomial delay algo-
rithm. However, as for the Reverse Search technique, Proximity Search explores
the solutions space. And for the same reason as Reverse Search, it is necessary to
use the Modified Internal Output Algorithm to ensure the delay. Indeed, the DFS
can lead to an exponential backtrack path which will extend the delay. Moreover,
Proximity Search does not guarantee a polynomial space algorithm. It can be seen
by the fact that all solutions already explored need to be remembered in order to
avoid outputting it twice.

Finally, as for the Reverse Search technique, please see below a template for a
Proximity Search algorithm :
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Algorithm 2: Proximity Search algorithm template

Input: The polynomially computable Neighbourhood function to
explore the strongly connected solutions supergraph G and S a
solution of the problem

Output: All solutions enumerated
1: S ← ∅ // The set of already found solutions

2: Explore (S, 0)
3: Function Explore (S, depth):
4: S ← {S ∪ S}

if depth is even then
5: Output S

foreach neighbour X ∈ Neighbourhood (S) do
6: Explore (X, depth+ 1)

if depth is odd then
7: Output S

2.2 Potential Maximal Cliques

Showcasing the potential maximal cliques needs some preliminary notions to be
introduced too. Indeed, the potential maximal cliques are strongly related to cliques
and chordal graphs, defined in Chapter 1. Yet, even with the knowing of cliques and
chordal graphs, there is one more key structure that has been studied in parallel with
potential maximal cliques in this master thesis : the separators. Indeed, during the
potential maximal cliques studies, the separators showed a strong connection to this
former [8]. Before defining explicitly the potential maximal cliques, a brief historical
review comes first.

It is in the late 90s and more precisely in 1998 that Vincent Bouchitté and
Ioan Todinca defined, during Todinca thesis, the notion of maximal set of neigh-
bour separators in [6]. At first, it was defined as a tool to compute the treewidth
in some specific classes of graphs such as circle and circular arc graphs, chordal
bipartite graphs or weakly triangulated graphs. It is only in 1999 that the name
potential maximal clique emerged with the article [7]. In this paper, the authors
claim that if all potential maximal cliques can be listed in polynomial time for some
classes of graph, then computing the treewidth and the minimum fill-in is polyno-
mially tractable. This result really pushed forward the potential maximal cliques
study. Finally, Bouchitté and Todinca designed an output-quadratic algorithm
to enumerate all potential maximal cliques in 2002 [8]. Nowadays, these articles are
still studied because of the possible applications in various graph theory fields.

The following of this section will be used to first, define the potential maximal
cliques along with some of their properties and characterisations, secondly describe
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the outline of the first algorithm enumerating them, and finally, exhibit an overview
of different outcomes due to potential maximal cliques.

2.2.1 Definition, properties and characterisations

As previously written, potential maximal cliques have various relations to other
graph theory objects or classes. Hence, there are multiple characterisations of this
object. The most well-known will be presented below.

Definition 22 (Potential Maximal Clique). A set Ω ⊆ V is a potential maximal
clique of G if Ω is a maximal clique in some minimal triangulation of G.

We can also define a potential maximal clique using only minimal separators and
minimal triangulation as presented in [26].

Lemma 5. A triangulation of a maximal set of pairwise parallel minimal separators
is a minimal triangulation.

From this lemma, we deduce that transforming a maximal set of pairwise parallel
minimal separators into a clique generate at least one potential maximal clique.

Lemma 6. A set S is an inclusion wise minimal separator if and only if all connected
components of G \ S are full components associated to S.

Proof. By definition of S, there is no subset X of S such that X is also a separator.
It means that all vertices of S are connected to the same connected components of
G \ S so they are all full components associated to S.

Lemma 7 ([8]). If Ω is a potential maximal clique from G, then for any pair of
vertices x, y ∈ Ω, x and y are either adjacent in G or they are connected by a path
in a connected component Ci of G \ (Ω \ ({x, y})). For the second case, we will say
that x and y are connected by a virtual-edge via Ci.

In the rest of the paper, we will use the property from Lemma 7 as reachability.
We will say that a vertex x has the reachability property to the vertex y if there
exists a direct or a virtual-edge between them.

With this previous lemma and the full component property defined before, we
can give an other characterisation of potential maximal cliques :

Lemma 8 ([8]). Let X ⊆ V a set of vertices. Ω is a potential maximal clique if
G\Ω has no full component associated to Ω and if for every pair x, y ∈ Ω, Lemma 7
holds.

Definition 23 (Active/Inactive separator [8]). Let Ω be a PMC of a graph G and
S ⊂ Ω a minimal separator of G. S is said to be active for Ω if Ω is not a clique in
the graph G where all Si ∈ ∆(Ω)\S are completed where ∆(Ω) is the set of minimal
separators included into Ω. Otherwise, S is inactive for Ω.
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2.2.2 Bouchitté and Todinca algorithm

As a first prominent result about potential maximal cliques comes the output-
quadratic enumeration algorithm from Vincent Bouchitté and Ioan Todinca
[8]. Here, we will outline its functioning and show what can be improved. First,
the algorithm concept is based on the finding of the potential maximal cliques in
a incremental way manner by finding the potential maximal clique in a subgraph
before extending these solutions to a larger subgraph.

In order to guarantee the efficiency of this technique, some properties have been
verified. Especially, there are four cases that the algorithm take care of for creating
the potential maximal cliques. Let us denote G′ the subgraph of G = G′ ∪ {a}.
Two of the fourth cases are testing if a former potential maximal clique of G′ can be
extended into one in G by either keeping the exact same potential maximal clique
or either adding the vertex a to it. Then, one case is based on the addition of a to
any separators of the graph to create a potential maximal clique. Lastly, the final
case is taking into account some specific potential maximal cliques which are S-
active. Those potential maximal cliques are hard to find and in this algorithm, they
found them by searching all the separators T that lie in a connected component of
a minimal separator S of G. This step is much slower than the other cases. Hence,
it makes the algorithm quadratic in the number of separators, and hence possibly
quadratic in the number of potential maximal cliques.

In order to improve this algorithm, the enhancement of the fourth case is proba-
bly the best way to go. Indeed, improving this case can, in the best scenario, makes
the algorithm become output linear in the number of potential maximal cliques.
However, this algorithm has a drawback which cannot be overcome. Certainly, be-
cause the algorithm construct the potential maximal cliques from a subgraph, we
obtain the outputted solution only when the graph is fully completed, and it follows
that all the potential maximal cliques are only outputted at the end of the execution.
To get rid of this issue, the only way is to use an other enumeration technique that
overcome this drawback.

2.2.3 Research interests and outcoumes

As previously mentioned in the beginning of this chapter, the study of potential
maximal cliques is strongly motivated by its link to the treewidth of graphs. In-
deed, the enumeration of potential maximal cliques in polynomial time ensures a
polynomial time computation of treewidth [8]. Then the treewidth applications are
indirectly potential maximal cliques applications. Below, some applications of the
treewidth from [4] will be described.
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Cholesky factorisation

The Cholesky factorisation (or Cholesky decomposition) is a method to decompose
a matrix into a product of matrices. The so created matrices can be very helpful to
enhance the efficiency of some calculation. In exemple, they can be used to simulate
efficiently the Monte Carlo simulations [21] or to accelerate the quantum chemistry
calculation [3]. The Cholesky factorisation has a connection with treewidth. Indeed,
in this factorisation, there are multiple matrices to deal with and it can be shown
that bounding those matrices size correspond to bounding the treewidth of a certain
graph constructed from the matrices [5].

Expert system

Graph modelling of some kind of expert system have shown a small treewidth in
practice. Then, tree-decompositions of such graphs can be done in order to perform
efficient certain computation instead of time-consuming statistical computation with
uncertainty.

Evolution theory

A very common problem in evolution theory and more precisely in phylogenetic is
the Perfect Phylogeny problem. First of all, a phylogeny is a tree representation
of the evolution history of a taxa which is a group of organisms regrouped based on
some criteria [16]. As an example of phylogeny, consider Figure 2.6 from [16].

a b c d e f
lamprey 0 0 0 0 0 0
shark 1 1 0 1 0 0
salmon 1 1 1 1 0 0
lizard 1 1 1 0 1 0

f

a,b

d

c

d e

lamprey shark salmon lizard

Figure 2.6: A data matrix and a phylogeny. The characters are : (a) paired fins,
(b) jaws, (c) large dermal bones, (d) fin rays, (e) lungs, (f) rasping tongue

In Figure 2.6, we can remark that the characters (d) appear in two distinct
branches. This phenomena is called homoplasy and sometimes cannot be avoided
with real data. A phylogeny is called perfect if there is no homoplasy.

For the Perfect Phylogeny problem, the input is a binary data matrix with
taxa in rows and characters in columns. The objective is to decide if a set of taxa S
admit a perfect phylogeny on the characters set C. In optimization, we might want
to find the largest set S. It has been shown that the perfect phylogeny problem can
be characterized in finding a minimal triangulation in a particular graph. This way,
a link with potential maximal arose and an algorithm using it appear in [18].

M2 ARIAS



Chapter 3

Results

When trying to design enumeration algorithms, there is several ways to go. In this
internship, I tried different methods to improve the literature algorithm. Indeed,
the algorithm proposed by Bouchitté and Todinca has an output polynomial
algorithm, quadratic in the size of the output [8]. In fact, as seen in the previous
chapters, an output complexity gives no indication in the computation time between
two solutions. In this internship, I focused myself on creating another algorithm
using either Flashlight Search or Proximity Search to guarantee a delay between
two outputted solutions.

In this way, I studied diverse extension problems in order to find if any extension
problem that could be used in the potential maximal cliques enumeration is polyno-
mial time solvable. However, we show multiple hardness results of this kind in this
chapter. They will be divided as follow. First, as a preliminary, we will introduce
the idea of extending a minimal separator, and then a potential maximal clique and
finally, the extension of a certain kind of potential maximal clique will be studied.

3.1 Separators extension hardness

As mentioned in the previous chapter, minimal separators have a strong link to
potential maximal cliques. This way we hypothesise that being able to enumerate
those in an efficient way will help to enumerate the potential maximal cliques. In
order to do so, we will first consider the extension of a minimal (a, b)-separator.
As a reminder from Chapter 2, solving this extension problem in polynomial time,
ensures us the existence of a polynomial Delay algorithm (with polynomial space) to
enumerate all minimal (a, b)-separators of a graph. The problem is defined formally
below :
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minimal (a, b)-separator extension
Input: A graph G = (V,E), a subset M ⊂ V of mandatory vertices, a subset
F ⊂ V of forbidden vertices such that M ∩F = ∅ and two vertices a and b of V .
Question: Is there X ⊆ V such that a minimal (a, b)-separator with M ⊆ X
and X ∩ F = ∅ ?

a

m1

m2

b

X

Figure 3.1: An instance and a solution for the minimal (a, b)-separator exten-
sion problem

In Figure 3.1, we can see an instance of the problem with m1,m2 ∈ M and
F = ∅. The solution for this instance is the extended set X of M which is a minimal
(a, b)-separator. We established some natural properties of separator extension.

Lemma 9 ([8]). M can be extended if and only if ∃V ′ ⊂ V , a, b ∈ V ′ and M ⊊ V ′,
M is a minimal (a, b)-separator of G[V ′].

Lemma 10. M is extendable if and only if ∃T1, T2 such that :

• T1 is a tree rooted in a with M+ ⊇M as leaves.

• T2 is a tree rooted in b with M+ ⊆M as leaves.

• V (T1)∩ V (T2) = M+, V (T1)∪ V (T2) = V (G) and there is no edge connecting
T1 and T2.

Proof. =⇒ direction : If M is extendable, there is a M+ ⊇ M which is a minimal
(a, b)-separator. Then, M+ admits a full component in G\M+ containing a (denoted
by Ca) and another one containing b (denoted by Cb). Consider T1 as the spanning
tree of G[Ca ∪M+] and T2 the spanning tree of G[Cb ∪M+], such that, in both of
these spanning tree, all vertices of M+ are leaves.
⇐= direction : It is easy to see that the leaves of T1 and T2 make a minimal (a, b)-
separator which extend M .

We provide a polynomial reduction from 3-SAT to Minimal (a, b)-separator
extension.

Theorem 1. The problem Minimal (a, b)-separator extension is NP-Complete.
Furthermore, under the Exponential Time Hypothesis (ETH), Minimal (a, b)-separator
extension cannot be solved in time 2o(n).
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Proof. Obviously, the problem belongs to NP since checking whether a set S is a
minimal (a, b)-separator and both contains M and does not intersect F can be done
in polynomial time. We will now reduce this problem to the 3-SAT problem. We fix
F = ∅. Let L be the set of literals, xi and xi the assignations for the literal ℓi and

let Φ =
m∧
i=1

Ci with the clauses Ci = ℓj ∨ ℓk ∨ ℓm for ℓj, ℓk, ℓm ∈ L be a CNF1 formula

with n literals and m clauses and we that Φ is satisfiable if and only if there is an
extension of M . We will note Ci = ℓj ∧ ℓk ∧ ℓm the negation of Ci. This clause is
True if and only if Ci is False.
Construction. In the following, we will transform a formula Φ into a graph G(Φ).
In order to create an instance of 3-SAT from our problem, we propose a gadget to
represent literals. It represents the selection of the value of a literal ℓi, with a XOR
mechanism. In Figure 3.2, the square and diamond nodes are in the mandatory set

a

βi βi

αiαi

b

αmi

βmi

Ci Cj

Figure 3.2: The XOR gadget to represent a ℓi together with its link to Ci = xi and
Cj = xi (trivial instance)

M , and the other can be used for the expansion of M . Let us call αi (resp. βi) the
node representing xi in N(a) (resp. N(b)).

Without taking into account the red diamond nodes, we can see that we are
forced to take either both αi and βi nodes or both αi and βi nodes to expend the
green square αmi

and βmi
nodes (otherwise the (a, b)-separator will not be minimal).

We complete this gadget by adding the clauses. Each clause Ci is represented
by a vertex in M and this vertex will be linked to a and for every literals ℓi ∈ Ci, to
the vertex βi if ℓi = xi in Ci (and to βi if ℓi = xi in Ci). This graph can be built in
polynomial time since for a formula with n literals and m clauses, we need 6n+m
nodes and 12n+ 4m edges.
From 3-SAT to Minimal (a, b)-separator extension. Now we will show that,
if there is a truth assignment of the 3-SAT formula, then there is a minimal (a, b)-
separator which extends M . Let A = {0, 1}i with i = |L| be a truth assignment of Φ
where A[i] is the assignation for xi in A (1 for True and 0 for False). By definition
of A, for every clause, there is at least one literal that makes this clause True. With
our XOR gadget, the only possible extension for a literal ℓi is either by taking αi

1Conjunctive Normal Form
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and βi or αi and βi. We will consider the first option as assigning xi to True and
the second to False.

Considering the αi and βi as the vertices that make xi True (resp. αi and βi for
xi False), we construct our extension by adding the vertices corresponding to A.
As the Ci vertices are in M and the only 3 paths from a to b crossing Ci are by also
crossing βi (or βi) for a xi ∈ Ci, then if we add all those βi (or βi) in the extension
of M then the separator is not minimal because of Ci. However, as our extension is
constructed from A which is a truth assignment, for each Ci, there is at least one
xi from Ci such that βi (or βi) is not in the separator. In conclusion, the separator
constructed is minimal.
From Minimal (a, b)-separator extension to 3-SAT. If there is a minimal (a, b)-
separator S extending M , then for each node Ci, there is a xi ∈ Ci such that its
corresponding αi, βi /∈ S. Considering the αi, βi, αi and βi the same way as the
previous direction, we construct a truth assignment for Φ by taking the value of the
vertices of the extension of M . This assignment is True because we have at least
one literal that makes a Ci True.

We can see in Figure 3.3, an example of an instance of 3-SAT with three clauses.
This formula is easily satisfiable by the assignment setting x1, x2, x3, x4, x5 to True.
If we take the (a, b)-separator made of the αi and βi nodes and the mandatory
vertices of M , we see that the (a, b)-separator is minimal.

From now on, we will discuss some properties about this reduction graph that
will be helpful for the next section and more precisely for the next hardness proof
because they share the same reduction graph.

Lemma 11. ∀S ∈ G(Φ) separator, a and b cannot be in the same connected com-
ponent is G \ S.

Proof. For an a, b-separator it is obvious, but it is also true for any separator of
G(Φ). Indeed, as N [a]∪N [b] = G(Φ) and N [a]∩N [b] = ∅. Assume that there is a S
separator with at least two connected components C and C ′, with a, b ∈ C without
loss of generality. Then a vertex of C ′ is adjacent to either a or b which contradicts
the fact that S is a separator.

Corollary 1. Each vertex of G(Φ) \ {a, b} has either a or b in its neighborhood.

Corollary 2. Each vertex v ∈ V [G(Φ) \ (M ∪ {a, b})] has degree two in G(Φ) \M .
Their neighborhood is either a and a vertex in N(b) or b and a vertex in N(a).

Lemma 12. Any (a, b)-separator extending M contains, for all i, at least one vertex
from both sets : {αi, βi}; {αi, βi}.

Proof. Since the only vertices that can be used to extend M are the α and β nodes,
and since there are two disjoints paths from a to b in G(Φ) \M which are, for all
i, a, αi, βi, b and a, αi, βi, b, it is easy to see that we need to take in S at least one
vertex of each path.
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a

b

β1 β1

α1α1

β2 β2

α2α2

β3 β3

α3α3

β4 β4

α4α4

β5 β5

α5α5

C1 C2 C3

Figure 3.3: An example of the reduction for the 3-SAT formula : (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4 ∨ x5)

Lemma 13. For any (a, b)-separator S of G(Φ) extending M and considering Ca

and Cb the connected components in G(Φ)\S containing respectively a and b, ∀x ∈ Ca

(resp. Cb), ∃v ∈ S such that N(v) ∩ Ca = {x} (resp. Cb).

Proof. All vertices from V [G(Φ) \ (M ∪ {a, b})] have two neighbors in G(Φ) \M
and at most one neighbor in each connected component of G(Φ) \S (by Corollary 2
and Lemma 12). Furthermore, by the construction of M and its extension, each
vertex of Ca or Cb has at least one neighbor in S. In addition, by Corollary 1 and
Lemma 12, each vertex of S \M has at most one neighbor in Ca and Cb.

3.2 Potential maximal cliques extension hardness

From the reduction of minimal (a, b)-separator extension follows a similar NP-
Completeness proof for the potential maximal clique extension. Interest ourselves to
the study of this problem is very natural since every vertex of the graph is contained
in at least one potential maximal clique. The proof will directly follow from the first
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one, using the same construction graph and technique. As for the separator, we can
define an extension problem for the potential maximal clique :

Potential Maximal Clique Extension
Input: A graph G = (V,E), a subset M ⊂ V of mandatory vertices, a subset
F ⊂ V of forbidden vertices such that M ∩ F = ∅.
Question: Does X, a Potential Maximal Clique with M ⊆ X and X ∩ F = ∅
exist ?

Let us note, for all i, B(Ci) the set of β nodes in the neighborhood of the clause
neighbour Ci in G(Φ). The G(Φ) and the set M is the same as presented for the
previous NP-completeness proof, and here, the set F = {a, b}.

Lemma 14. If Ω is a potential maximal clique of G(Φ) extending M and such
that a, b /∈ Ω, then there is exactly one literal ℓi such that |Ti| = 3 with Ti =
{αi, αi, βi, βi} ∩ Ω. Otherwise, for all other literals, we have |Tj| = 2.

Proof. We will proceed by case disjunction. From Lemma 11, we deduce that if
there is an open path from a to b in G(Φ) \ Ω, then we have only one connected
component in G(Φ) \ Ω which is full to Ω by Corollary 1. Obviously, when |Ti| = 0
or 1, there is at least one path from a to b. |Ti| = 4 is not possible either because
there will be no direct edge or a path via a connected component from αi to βi, from
αi to βi, and from αmi

to βmi
. In the following, we will show that all ∀i, |Ti| = 2

cannot happen. We exclude the case where we take either αiβi or αiβi because it
lead to a path from a to b and by Lemma 11 and Corollary 1, it cannot happen in
Ω. Then, there is only three configurations for each ℓi to consider :

(1) Ti = αiαi,

(2) Ti = βiβi

(3) Ti = αiβi or αiβi

If all ℓi are in the case (1), then we have Cb has a full component associated to
Ω. Same for the case (2) and Ca. For the case (3), if there is no Ci such that
B(Ci) \ Ω = ∅, then there are two full components (Ca and Cb). Otherwise there is
only one full component Ca. If we mix the case (1) and (2), then we have the βmi

of
a ℓi in case (1) that can’t reach by a virtual-edge via a connected component a αmi′

of a ℓi′ in case (2). If we blend the case (1) and the case (3), then, we have either 0
full component if there is a Ci such that B(Ci) \ Ω = ∅ but the Ci node will not be
linked by a virtual-edge to any βmi

in the case (1) or, if no such Ci exist, Cb will be
a full component associated to Ω. If we mix case (2) and the case (3), we have Ca

in full component associated to Ω.
In conclusion, we see that we cannot have ∀i, |Ti| = 2. We will show that we cannot
have more than one ℓi with |Ti| = 3. With |Ti| = 3, there is a vertex u from Ti that
is not connected to Ca and there is a vertex v not connected to Cb. We can easily
see that for any pair of ℓi, ℓi′ such that |Ti| = 3, the vertex u (resp. v) of ℓi does not
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have a virtual-edge to the vertex v′ (resp u′) of ℓi′ .
At last, if there is exactly one ℓi with |Ti| = 3, then all other ℓi have |Ti| = 2.
Furthermore, other ℓi with Ti = 2 cannot be in the case (1) or (2) because, as those
cases are full to only one connected component and the ℓi with |Ti| = 3 is not full
to any connected component, a pair of vertices not linked by a virtual-edge via a
connected component will exist. In conclusion, all ℓi with |Ti| = 2 are in the case
(3) such that there are two full components which correspond to a minimal (a, b)-
separator because, by Lemma 13, adding a third vertex in a ℓi with |Ti| = 2 will
break the full component property of a connected component, so in order to hold
property from Lemma 7 have Ω as a potential maximal clique, we need to have two
full components before adding it.

Corollary 3. Given a potential maximal clique Ω extending M and avoiding a and
b, for each gadget ℓi of G(Φ), Ω contains at least either αiβi or αiβi.

Corollary 4. For Ω a potential maximal clique of G(Φ) extending M and avoiding
a and b, by Lemma 14, all ℓi with |Ti| = 2 have two full components associated to
Ω.

Lemma 15. Let Ω be a potential maximal clique of G(Φ) extending M and avoiding
a and b. For all i we have B(Ci) \ Ω ̸= ∅.

Proof. Let us suppose that such a Ci exists. Then the Ci vertex is only connected to
the Ca component. Moreover, we know, by Lemma 14 and Corollary 4, that there is
exactly one ℓj with |Tj| = 3 and that all ℓi with |Ti| = 2 have two full components.
There are two cases to consider. First, the ℓj with |Tj| = 3 is none of the Ci literals.
The second case, is when it is one of the Ci literals. In the first hand, as the Ci

node is only connected to Ca, then, it will not be linked by a connected component
to the β vertex which is only linked to Cb in the ℓj where |Tj| = 3. In the other
hand, if the ℓj with |Tj| = 3 is one of the Ci literals, then, we can also decompose
in two situation. Either the ℓi with |Ti| = 3 has all the α nodes and the Ci node
will not be linked via a connected component to the βmi

of this ℓi or it has all the β
node and Ci will not be linked via a connected component to the β vertex which is
only linked to Cb. In all cases, it contradicts the fact that Ω is a potential maximal
clique, so, such Ci can’t exist.

Remark 6. Concretely, Lemma 15 means that there is no Ci such that {βh, βj, βk} ⊆
Ω knowing that Ci = xh ∪ xj ∪ xk.

Theorem 2 (Hardness of PMC extension). The problem Potential Maximal
Clique Extension is NP-Complete.

Proof. In this proof, we will use the graph G(Φ) described in Theorem 1. We will
show that if you are able to solve 3-SAT, then you can extend M in a minimal (a, b)-
separator in G(Φ) and then you can extend this separator into a potential maximal

M2 ARIAS



28 RESULTS

clique avoiding a and b. We will also show that given a potential maximal clique
avoiding a and b, you can find a minimal (a, b)-separator and a truth assignment for
a 3-SAT formula.
Construction. For this part, we will keep the graph G(Φ) from Theorem 1.
From 3-SAT to PMC extension. By Theorem 1, given a truth assignment of
Φ we can construct a minimal (a, b)-separator S. Now, we will use S to create
the potential maximal clique. From Theorem 4.6 of the article [26] from Parra
and Scheffler, it is known that a triangulation is minimal if and only if it is a
triangulation of a maximal set of parallel separators (see Lemma 5). In our case, we
know the minimal (a, b)-separator S and in that case we can triangulate a maximal
set of parallel separators including S and our potential maximal clique will be any
maximal clique containing S in the triangulated graph.
In order to make a better understanding of the reduction graph, we propose a proof
from the graph. In the first place, if there is a minimal (a, b)-separator S ∈ G(Φ),
it’s mean that S has two full components Ca and Cb (containing respectively a and
b). We construct Ω our potential maximal clique by adding any vertex x ∈ G \ S.
We will note Cx the connected component containing x in G \ S. Cx is obviously
either Ca or Cb. Without loss of generality, let Cx the connected component in G\S
which does not contain x. In order to have a potential maximal clique, we need to
break the full component property but keep the property of the Lemma 7. From the
Lemma 13, adding x to S will break the full component property of Cx. Moreover,
as S is a separator, x cannot have an edge to the other connected component so
the full component property of Cx also falls. Secondly, from Lemma 13, x is clearly
connected by a direct edge to the vertices which break the full component property
of the Cx and to the other by an virtual-edge. The property hold for the vertices of
S because Cx is a full component associated to S. In conclusion, Ω is a potential
maximal clique.
From PMC extension to 3-SAT. Assuming we have a potential maximal clique
Ω avoiding a and b, construct the minimal (a, b)-separator S by taking the close
separator of Ca or Cb in G(Φ) \Ω depending on the number of taken α and β nodes
and, by Theorem 1, construct the truth assignment for the formula Φ. Let us note
Tα and Tβ the number of α nodes (resp. β nodes) in Ω. By Corollary 3, for each ℓi
there is at least one α node and one β node in Ω and thus, by Lemma 14, there is
Tα > Tβ or Tα < Tβ. Selecting S = S(Ca) if Tα < Tβ and S = S(Cb) otherwise will
ensure having all vertices of M in the separator. Indeed, if Tα > Tβ, then there is a
ℓi with all the α nodes in Ω and it means that the βmi

node which is mandatory is
not connected to Ca. In the other way, the fully covered α nodes on the path from
a to b will not be connected to Cb but all αmi

and βmi
nodes will be. Moreover, all

Ci nodes are reachable from Ca and by Lemma 15, we ensure that all Ci nodes are
connected to Cb. Finally, by definition of a close separator (Definition 17), S is a
minimal (a, b)-separator.
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3.3 S-Active potential maximal cliques extension

hardness

Finally, we describe our last hardness result about potential maximal cliques enu-
meration. This last result is considering the creation of a particular kind of potential
maximal cliques. Indeed, in the main theorem of [8], Bouchitté and Todinca
present four ways to obtain a new potential maximal cliques to enumerate. We
noticed that in this algorithm, one type of potential maximal cliques have a slow
computation time and forced the algorithm to have a quadratic complexity. Ac-
tually, these potential maximal cliques are the one involving an active separator.
Indeed, in their algorithm, those potential maximal cliques are found by, given a
separator S, trying each separator T inside a full component to create a potential
maximal clique. This way, the potential maximal cliques where S is active are found
inefficiently, and similarly to the other cases, with the occurrence of redundancy of
outputs.

With the hope to improve their algorithm to a output linear one, we studied
the enumeration of S-active potential maximal cliques. The S-Active Potential
Maximal Clique Extension problem is a sub-problem of Potential Maximal
Clique Extension problem and is formally defined as follow :

S-Active Potential Maximal Clique Extension
Input: A graph G = (V,E) and a subset S ⊂ V a minimal separator of G.
Question: Does X, a Potential Maximal Clique with S ⊂ X and S active for
X exist ?

Theorem 3 (Hardness of S-Active PMC extension). The problem S-Active Po-
tential Maximal Clique Extension is NP-Complete.

Proof. As the two previous NP-Complete problems, this problem also obviously
belongs to NP since we can check if a set is a potential maximal clique and if a
pair of non adjacent neighbours appear together in exactly one minimal separator
in polynomial time by simply calculating all the minimal separators of the potential
maximal clique. In order to prove this statement, a 3-SAT graph construction from
S-Active Potential Maximal Clique Extension will be described first. For
notations purposes, let us consider Φ the 3-SAT formula with n literals and m
clauses.

Construction. First of all, the graph of the reduction must include a separator
S and this separator will be active for a potential maximal clique only if there is
a satisfiable assignment for the literals. This way, the S has two mirroring full
components that represent the same 3-SAT formula such that extending S into a
potential maximal clique where S is active will lead to solve the formula. First the
separator will be constituted of m+2 vertices, hence one vertex per clause and two
vertices a and b. All the vertices of S will be adjacent to each other except for a
and b. Secondly, each literal affectation will be represented by a vertex in the full
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components. Hence, it will have 2n vertices. Each literal and its two affectation
vertices makes a path from a to b so passing by first xi and then xi. Moreover,
edges are added between all xi nodes and also between the xi nodes (there is no xixj

edges with i ̸= j). Said differently, the subgraph induced by all xi nodes (resp. xi)
form a clique. Besides, each clause is linked to the negation of each of their literals.
Finally, a vertex d that dominates the connected component with a and b is added.
In order to help the understanding of the construction, please consider looking at
Figure 3.4.

S

z d

a

b

C1

C2

Cm

x1

x1

x2

x2

...

.....
.

xn

xn

Φ = C1 ∧ C2 ∧ ... ∧ Cm

C1 = x1 ∨ x2

C2 = x1 ∨ x2 ∨ xn
...

Cm = xn

Figure 3.4: Partial schema of the reduction of S-Active Potential Maximal
Clique Extension to 3-SAT. The vertex z represents the other mirrored half

From 3-SAT to S-Active PMC extension. Given a 3-SAT formula Φ, let
us consider a truth assignment A = {0, 1}n of Φ. Firstly, let us represent A in the
reduction graph by taking the corresponding affectation vertices in the potential
maximal clique X. X is constructed from the union of S, the A vertices and the
dominating vertex d. The last is obviously in the potential maximal clique because
of its dominating property. Indeed, to separate a from b, we obviously need d.
By definition of a truth assignment, all clauses have at least one literal satisfied. It
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follows that, by the construction of the graph, there is at least one neighbour of each
clause that does not belong to X. Furthermore, as for any i, all xi nodes are linked
together and all xi also, and, as the definition of a truth assignment implies that,
for any i, either xi or xi is chosen, witness that each taken vertices (A vertices) for
the potential maximal clique will be able to reach all other vertices of the connected
component and S (either directly or by its negation vertices). Moreover, as S has
two full components, it follows that S alongside the A vertices verify Lemma 7.
Lastly, we need to ensure that there is no full components. To begin with, we can
notice that any pair of not taken affectation vertices with different values will not be
in the same connected component as their negation in G \X. Furthermore, vertex
a does not have any link into the connected component of G \ X involving false
affectation. The converse with b and true affectation hold. Finally, there is no full
components and by Lemma 8, X is a potential maximal clique.

In conclusion, a and b will not be linked to the same separators of the connected
components of G \X. From that last conclusion follows that the A vertices and d
construct a minimal a, b-separator. As a and b are not in the same separators of
G \X except one, it follows that S is active for X with the pair a, b.

From S-Active PMC extension to 3-SAT. For the other side, let us con-
sider X the potential maximal clique. We construct a truth assignment A of Φ by
assigning the literals to their corresponding taken affectation vertex in X. As X is
a potential maximal clique where S is active and as the only non adjacent pair of
vertices of S is a, b, then a and b are connected by exactly one full component of
G \ X. In order to separate a and b, all disjoint paths from a to b must admit a
vertex in X. This way, for any i, either xi or xi node must be in X. Furthermore,
there is the d vertex which is mandatory to separate a from b. Finally, X cannot
choose at random the affectation nodes because we need to ensure that all clauses
have a neighbour not taken in X or the d vertex will not be linked by a virtual-edge
to a Cj. In conclusion, the selected affectation nodes in X correspond to a truth
assignment A of Φ.

3.4 Efficient algorithm for P5-free graphs

In this section, we provide a small result concerning the enumeration of the po-
tential maximal cliques in the P5-free graphs. This result directly follows from the
understanding of some basic property of the P5-free graphs and from a result from
Lokshtanov et al. in [24] who showed a polynomial time algorithm for Max In-
dependent Set using the potential maximal clique framework. Indeed, in this
article, some properties of potential maximal cliques applied to P5-free emerge. For
instance, one property is of interest for our purpose. As said in Chapter 2, there is
a way to improve Bouchitté and Todinca algorithm by simplifying the S ∪T (S
minimal separator of G and T minimal separator of a connected component of G\S)
case. In fact, in the paper, the Lemma 3.13 states that all these potential maximal
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cliques can be found in P5-free graphs by adding the neighbourhood of any vertex
of the separator S to the potential maximal clique. This way, with |∆G| the number
of minimal separators of G there is a maximum of |∆G|n3 potential maximal cliques
of this kind. It follows from the fact that we need to test all the combinations of S
in G, connected component C of G \ S and a vertex u of S. To enumerate them,
Lokshtanov proved a O(|∆G|n4) bound to the time complexity of those potential
maximal cliques calculation since the operation S ∪ (N(u) ∩ C) can be computed
trivially in O(n).

From this result, we can assume that calculating potential maximal cliques in
P5-free graphs is possible in output linear time O(n2m|∆G|) by modifying the fourth
case of Todinca’s algorithm with Lokshtanov proposition.

Theorem 4. Potential maximal cliques can be enumerated in time |∆G|n2 in P5-free
graphs.

Proof. For each induction graph Gi = G[vi], instead of computing all pairs S, T
of separators, we compute all triplets (S,C, u) where S is a separator, C a full
component, and u ∈ S in |∆G|nO(1). By Lokshtanov proposition, all potential
maximal cliques of P5-free graphs are of the form S∪ (N(u)∩C). For every triplets,
we just test if it gives a potential maximal cliques in O(nm).
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Conclusion

During this five months internship, I studied the Potential Maximal Clique object in
order to conceive an efficient algorithm to enumerate them all. This subject lead me
to discover the enumeration field and more specifically the output sensitive enumer-
ation field. Indeed, in this internship, by trying to design algorithm techniques, I
finally found different hardness results showing the impossibility of such techniques
to be used for the enumeration of potential maximal cliques. Those results will
thus be helpful to pursue the search of an efficient enumeration algorithm since
they indicate that some enumeration techniques are not relevant. In particular, we
showed the difficulty of using Flashlight Search by the hardness of several exten-
sion problems. However, it does not prove that Flashlight Search cannot be used
to enumerate the potential maximal cliques. Indeed, one can possibly find a new
specific extension problem which is polynomial time solvable to enumerate potential
maximal clique in polynomial delay and polynomial space using Flashlight Search.

In addition, there are other enumeration techniques that may help us create the
algorithm. We can, for example, cite Proximity Search, which is a recent one. This
technique can ensure a polynomial delay for the enumeration if a polynomial time
computable neighbouring function between two potential maximal cliques can be
found.

In conclusion, there are a lot of perspectives to continue the search of such
algorithm, and I will continue to search it during a PhD thesis. This PhD thesis will
take place at LIMOS directed by both the supervisors of this internship : Vincent
Limouzy and Pierre Bergé. In this thesis, I will continue my internship work and
I will encounter many other enumeration problem to work on.
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[23] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari
Nourine. On the Enumeration of Minimal Dominating Sets and Related No-
tions. SIAM Journal on Discrete Mathematics, 28(4):1916–1929, January 2014.
Publisher: Society for Industrial and Applied Mathematics.

[24] Daniel Lokshtanov, Martin Vatshelle, and Yngve Villanger. Independent Set
in P5 -Free Graphs in Polynomial Time. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 570–581. Society
for Industrial and Applied Mathematics, January 2014.
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