

Stage de Master sur l'énumération des Cliques Maximales Potentielles

Nicolas Schivre

26 juin 2025

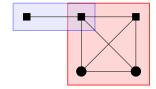
Plan

- Graphes : définitions et propriétés
- État de l'art
 - Complexité d'énumération
 - Techniques d'énumération
 - Clique Maximale Potentielle
 - Définition des Cliques Maximales Potentielles
- Énumération des cliques maximales potentielles
 - Extension d'un a, b-separateur minimal
 - Extension d'une PMC
 - Extension d'une PMC S-Actif

Graphes : définitions et propriétés

Clique

Ensemble de sommets 2 à 2 voisins. Maximal si ne peut être aggrandit.



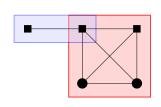
Clique

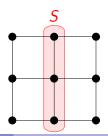
Ensemble de sommets 2 à 2 voisins. Maximal si ne peut être aggrandit.

Séparateur

Ensemble de sommets S tel que $G \setminus S$ est déconnecté. S est $\underline{minimal}$ si tout sous-ensemble n'est pas un séparateur.

Deux séparateurs S et T sont <u>parallèles</u> si il existe une composante connexe C de $G \setminus S$ tel que $T \subseteq S \cup C$.





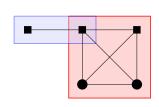
Clique

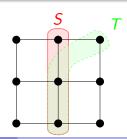
Ensemble de sommets 2 à 2 voisins. Maximal si ne peut être aggrandit.

Séparateur

Ensemble de sommets S tel que $G \setminus S$ est déconnecté. S est $\underline{minimal}$ si tout sous-ensemble n'est pas un séparateur.

Deux séparateurs S et T sont <u>parallèles</u> si il existe une composante connexe C de $G \setminus S$ tel que $T \subseteq S \cup C$.





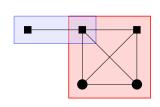
Clique

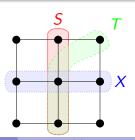
Ensemble de sommets 2 à 2 voisins. Maximal si ne peut être aggrandit.

Séparateur

Ensemble de sommets S tel que $G \setminus S$ est déconnecté. S est $\underline{minimal}$ si tout sous-ensemble n'est pas un séparateur.

Deux séparateurs S et T sont <u>parallèles</u> si il existe une composante connexe C de $G \setminus S$ tel que $T \subseteq S \cup C$.



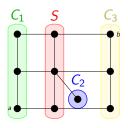


Full component

Un ensemble S admet une full component C si $\forall v \in S, N(v) \cap C \neq \emptyset$.

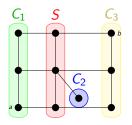
Full component

Un ensemble S admet une full component C si $\forall v \in S, N(v) \cap C \neq \emptyset$.



Full component

Un ensemble S admet une full component C si $\forall v \in S, N(v) \cap C \neq \emptyset$.



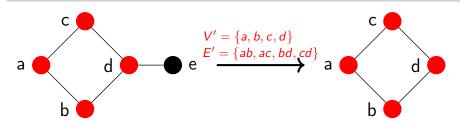
Lemmes

- FOLKLORE: Pour tout graphe G avec a, b ∈ V, et tout
 a, b-séparateur S ⊂ V de G, S est minimal ssi ∀v ∈ S, il y a un
 chemin de a vers b qui intersecte S seulement en v.
- Un séparateur minimal admet au moins 2 full components.

Sous-graphe

Un <u>sous-graphe induit</u> de G est un graphe G' = (V', E') où $V' \subseteq V$ et $E' = \{uv, \forall u, v \in V' : uv \in E\}.$

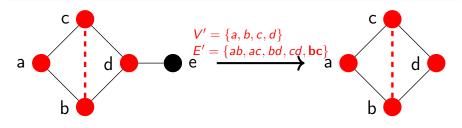
G' est un <u>cycle induit</u> (ou <u>trou</u>) de G si G' est un sous-graphe induit de G et G' est un cycle.



Sous-graphe

Un <u>sous-graphe induit</u> de G est un graphe G' = (V', E') où $V' \subseteq V$ et $E' = \{uv, \forall u, v \in V' : uv \in E\}.$

G' est un <u>cycle induit</u> (ou <u>trou</u>) de G si G' est un sous-graphe induit de G et G' est un cycle.

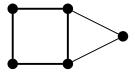


Corde

Arête entre deux sommets non adjacent d'un cycle.

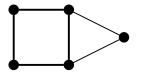
Graphe cordal

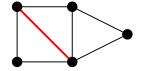
Un graphe G est dit <u>cordal</u> si il ne possède pas de cycle induit de longueur au moins 4.

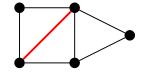


Graphe cordal

Un graphe G est dit <u>cordal</u> si il ne possède pas de cycle induit de longueur au moins 4.







Triangulation

Une <u>triangulation</u> est une opération d'ajout d'arêtes dans un graphe dans le but de le rendre cordal. Elle est dite <u>minimale</u> si enlever une arête de la triangulation crée un trou.

État de l'art

Problèmes d'énumération

Définition

On cherche à trouver toutes les solutions du problèmes.

En général, on se restreint aux solutions dites *minimales/maximales* car il n'est pas rare que trouver une solution minimum/maximum est dur (problèmes d'optimisation NP-complet).

Problèmes d'énumération

Définition

On cherche à trouver toutes les solutions du problèmes.

En général, on se restreint aux solutions dites *minimales/maximales* car il n'est pas rare que trouver une solution minimum/maximum est dur (problèmes d'optimisation NP-complet).

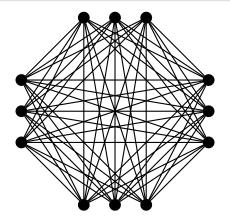
Deux approches

- Input-sensitive : Complexité sur la taille de l'entrée de la forme $O(a^n)$.
- Output-sensitive : Complexité sur la taille de l'entrée et de la sortie.

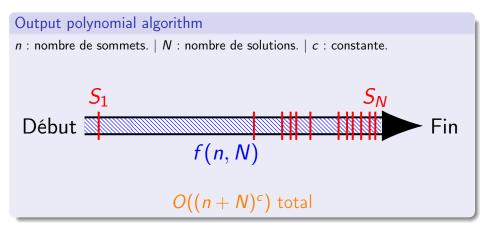
Un nombre exponentiel de solutions

Le cas des cliques maximales

Une borne supérieure sur le nombre de cliques maximales de $3^{n/3}$ (par Moon et Moser 1965).

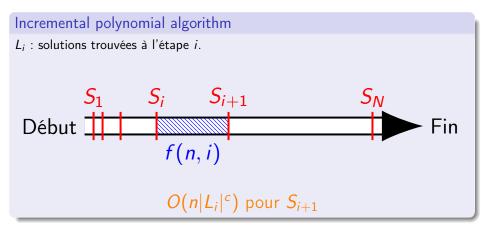


3 classes de complexités (JOHNSON, YANNAKAKIS, Papadimitriou 1988)

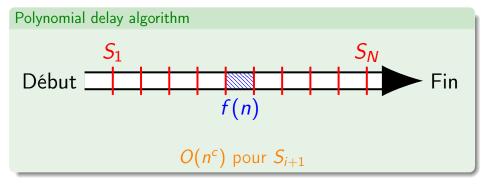


Nicolas Schivre

3 classes de complexités (JOHNSON, YANNAKAKIS, Papadimitriou 1988)



3 classes de complexités (JOHNSON, YANNAKAKIS, Papadimitriou 1988)



Techniques d'énumération

Principe: résolution d'un problème d'extension

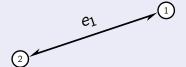
- Création et exploration d'un arbre ou les feuilles représentent des solutions.
- Résolution d'un problème de décision à chaque étape afin de savoir si on explore le sous-arbre.

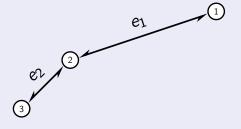
Schéma de problème d'extension

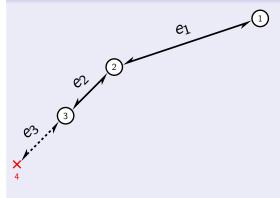
Entrée: Un graphe G = (V, E), un sous-ensemble $M \subset V$ de sommets *obligatoires*, un sous-ensemble $F \subset V$ de sommets *interdits* tel que $M \cap F = \emptyset$ et une propriété P à satisfaire.

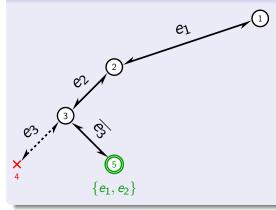
Question: Est-ce qu'il existe X, un ensemble de sommets avec $M \subseteq X$,

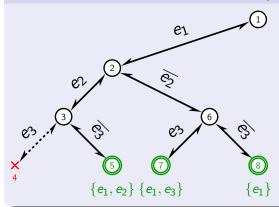
 $X \cap F = \emptyset$ et tel que X satisfait P?

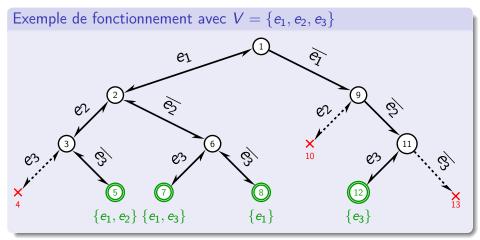


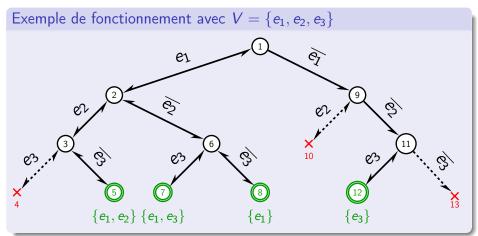












Conséquences

Permet un algorithme à délai polynomial et espace polynomial.

Nicolas Schivre Stage M2: Énumération PMC 26 juin 2025 14 / 29

Clique Maximale Potentielle

Motivations

- Première apparition dans un article de VINCENT BOUCHITTÉ et IOAN TODINCA en 1998 sous le nom de maximal set of neighbour separators.
- Renommé depuis 1999 en Cliques Maximales Potentielles.

Applications aux décompositions

- Calcul de la largeur arborescente (treewidth)
- Factorisation de Cholesky : lien avec la taille des matrices.
- Utilisation d'algorithmes Fixed-Parameter Tractable (FPT).

Motivations

Premiers résultats

- Un algorithme capable de les énumérer avec une complexité output polynomial quadratique $O(N^2)$.
- Si $N = O(n^c)$ alors treewidth calculable en temps polynomial.

Applications structurelles

- Théorie de l'évolution : résolution du Perfect Phylogeny problem.
- Algorithme polynomial pour résoudre Max Independent set dans les P_5 -free. b
- Algorithme polynomial pour résoudre Feedback Vertex set dans les P_5 -free. c

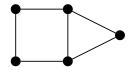
a. Gysel 2013, http://arxiv.org/abs/1303.3931

b. Lokshtanov, Vatshelle et Villanger 2014, SODA

c. Abrishami, Chudnovsky, Pilipczuk, Rzazewski et Seymour 2020

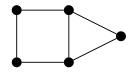
Définition

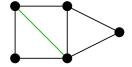
Une <u>Clique Maximale Potentielle</u> (PMC) est une clique maximale qui apparait dans au moins une triangulation minimale.

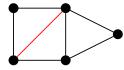


Définition

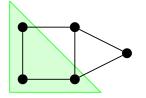
Une <u>Clique Maximale Potentielle</u> (PMC) est une clique maximale qui apparait dans au moins une triangulation minimale.

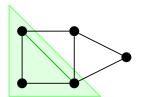


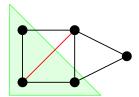




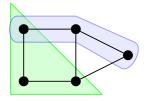
Une <u>Clique Maximale Potentielle</u> (PMC) est une clique maximale qui apparait dans au moins une triangulation minimale.

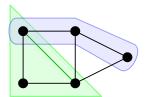


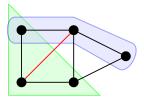




Une <u>Clique Maximale Potentielle</u> (PMC) est une clique maximale qui apparait dans au moins une triangulation minimale.



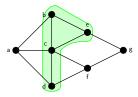




Caractérisation (BOUCHITTÉ et TODINCA 2002)

Un ensemble Ω est une PMC si :

- 1. Ω n'admet pas de full component.
- 2. Pour toute paire de sommets $u, v \in \Omega$, soit $uv \in E$ ou il existe une composante connexe C de $G \setminus \Omega$ tel que $N(u) \cap C \neq \emptyset$ et $N(v) \cap C \neq \emptyset$.

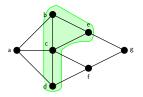


PMC valide

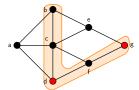
Caractérisation (BOUCHITTÉ et TODINCA 2002)

Un ensemble Ω est une PMC si :

- 1. Ω n'admet pas de full component.
- 2. Pour toute paire de sommets $u, v \in \Omega$, soit $uv \in E$ ou il existe une composante connexe C de $G \setminus \Omega$ tel que $N(u) \cap C \neq \emptyset$ et $N(v) \cap C \neq \emptyset$.



PMC valide

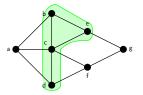


d et g non connectés

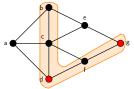
Caractérisation (BOUCHITTÉ et TODINCA 2002)

Un ensemble Ω est une PMC si :

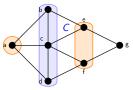
- 1. Ω n'admet pas de full component.
- 2. Pour toute paire de sommets $u, v \in \Omega$, soit $uv \in E$ ou il existe une composante connexe C de $G \setminus \Omega$ tel que $N(u) \cap C \neq \emptyset$ et $N(v) \cap C \neq \emptyset$.



PMC valide



d et g non connectés



C est une full component

Algorithme output quadratique de BOUCHITTÉ et TODINCA 2002

Solution de sous-graphes

Dans cet algorithme, on cherche les solutions dans un sous-graphe G_i (graphe G restreint à $i \leq |V|$ sommets). G_{i+1} est l'union de G_i et d'un sommet $a \in V \setminus V[G_i]$.

Disjonction de cas

Pour construire les PMC de G_{i+1} , l'algorithme test 4 cas :

- 1. $\Omega = \Omega' \cup \{a\}$ avec Ω' une PMC de G_i .
- 2. $\Omega = \Omega'$ avec Ω' une PMC de G_i .
- 3. $\Omega = S \cup \{a\}$ avec S un séparateur minimal de G_{i+1}
- 4. $\Omega = S \cup (C \cap T)$ avec S, T deux séparateur minimaux de G_{i+1} et C une composante connexe de $G_{i+1} \setminus S$.

Correspond aux PMC trouvé via le cas n°4 de l'algorithme de BOUCHITTÉ et TODINCA.

Définition

 Ω une PMC de G, Δ_{Ω} l'ensemble des séparateurs de Ω et S un séparateur minimal.

 $\Omega'=\Omega$ auquel on ajoute des arêtes entre tout les sommets des séparateur

 $X \subseteq \Delta_{\Omega} \setminus S$ de sorte que tout X forme une clique.

Si Ω' n'est pas une clique, alors S est actif. Sinon S est inactif.

Correspond aux PMC trouvé via le cas n°4 de l'algorithme de BOUCHITTÉ et TODINCA.

Définition

 Ω une PMC de G, Δ_{Ω} l'ensemble des séparateurs de Ω et S un séparateur minimal.

 $\Omega'=\Omega$ auquel on ajoute des arêtes entre tout les sommets des séparateur

 $X \subseteq \Delta_{\Omega} \setminus S$ de sorte que tout X forme une clique.

Si Ω' n'est pas une clique, alors S est actif. Sinon S est inactif.

Correspond aux PMC trouvé via le cas n°4 de l'algorithme de BOUCHITTÉ et TODINCA.

Définition

 Ω une PMC de G, Δ_{Ω} l'ensemble des séparateurs de Ω et S un séparateur minimal.

 $\Omega'=\Omega$ auquel on ajoute des arêtes entre tout les sommets des séparateur

 $X \subseteq \Delta_{\Omega} \setminus S$ de sorte que tout X forme une clique.

Si Ω' n'est pas une clique, alors S est actif. Sinon S est inactif.

Séparateurs $\{a, b\}, \{a, c\}, \{b, c\}$ actifs

Correspond aux PMC trouvé via le cas n°4 de l'algorithme de BOUCHITTÉ et TODINCA.

Définition

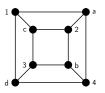
 Ω une PMC de G, Δ_{Ω} l'ensemble des séparateurs de Ω et S un séparateur minimal.

 $\Omega'=\Omega$ auquel on ajoute des arêtes entre tout les sommets des séparateur

 $X \subseteq \Delta_{\Omega} \setminus S$ de sorte que tout X forme une clique.

Si Ω' n'est pas une clique, alors S est actif. Sinon S est inactif.

Séparateurs $\{a, b\}, \{a, c\}, \{b, c\}$ actifs



 $PMC = \{1, 2, 3, 4\}$

Correspond aux PMC trouvé via le cas n°4 de l'algorithme de BOUCHITTÉ et TODINCA.

Définition

 Ω une PMC de G, Δ_{Ω} l'ensemble des séparateurs de Ω et S un séparateur minimal.

 $\Omega'=\Omega$ auquel on ajoute des arêtes entre tout les sommets des séparateur

 $X \subseteq \Delta_{\Omega} \setminus S$ de sorte que tout X forme une clique.

Si Ω' n'est pas une clique, alors S est actif. Sinon S est inactif.

Séparateurs $\{a, b\}, \{a, c\}, \{b, c\}$ actifs



 $PMC = \{1, 2, 3, 4\}$

Correspond aux PMC trouvé via le cas n°4 de l'algorithme de BOUCHITTÉ et Todinca.

Définition

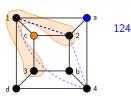
 Ω une PMC de G, Δ_{Ω} l'ensemble des séparateurs de Ω et S un séparateur minimal.

 $\Omega' = \Omega$ auguel on ajoute des arêtes entre tout les sommets des séparateur

 $X \subseteq \Delta_{\Omega} \setminus S$ de sorte que tout X forme une clique.

Si Ω' n'est pas une clique, alors S est actif. Sinon S est inactif.

Séparateurs $\{a, b\}, \{a, c\}, \{b, c\}$ actifs



 $PMC = \{1, 2, 3, 4\}$

Correspond aux PMC trouvé via le cas n°4 de l'algorithme de BOUCHITTÉ et TODINCA.

Définition

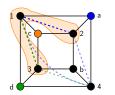
 Ω une PMC de G, Δ_{Ω} l'ensemble des séparateurs de Ω et S un séparateur minimal.

 $\Omega'=\Omega$ auquel on ajoute des arêtes entre tout les sommets des séparateur

 $X \subseteq \Delta_{\Omega} \setminus S$ de sorte que tout X forme une clique.

Si Ω' n'est pas une clique, alors S est actif. Sinon S est inactif.

Séparateurs $\{a, b\}, \{a, c\}, \{b, c\}$ actifs



124134

 $PMC = \{1, 2, 3, 4\}$

Nicolas Schivre Stage N

Correspond aux PMC trouvé via le cas n°4 de l'algorithme de BOUCHITTÉ et Todinca.

Définition

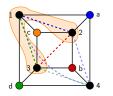
 Ω une PMC de G, Δ_{Ω} l'ensemble des séparateurs de Ω et S un séparateur minimal.

 $\Omega' = \Omega$ auguel on ajoute des arêtes entre tout les sommets des séparateur

 $X \subseteq \Delta_{\Omega} \setminus S$ de sorte que tout X forme une clique.

Si Ω' n'est pas une clique, alors S est actif. Sinon S est inactif.

Séparateurs $\{a, b\}, \{a, c\}, \{b, c\}$ actifs



 $PMC = \{1, 2, 3, 4\}$

124 134 234

Correspond aux PMC trouvé via le cas n°4 de l'algorithme de BOUCHITTÉ et Todinca.

Définition

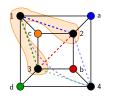
 Ω une PMC de G, Δ_{Ω} l'ensemble des séparateurs de Ω et S un séparateur minimal.

 $\Omega' = \Omega$ auguel on ajoute des arêtes entre tout les sommets des séparateur

 $X \subseteq \Delta_{\Omega} \setminus S$ de sorte que tout X forme une clique.

Si Ω' n'est pas une clique, alors S est actif. Sinon S est inactif.

Séparateurs $\{a, b\}, \{a, c\}, \{b, c\}$ actifs



 $PMC = \{1, 2, 3, 4\}$ Aucun séparateur actif

124 134 234 Énumération des cliques maximales potentielles

EXTENSION D'UN a, b-SEPARATEUR MINIMAL

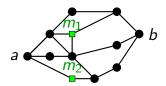
Entrée: Un graphe G=(V,E), un sous-ensemble $M\subset V$ de sommets *obligatoires*, un sous-ensemble $F\subset V$ de sommets *interdits* tel que $M\cap F=\emptyset$ et deux sommets a et b de V.

Question: Existe-t-il $X \subseteq V$ un a, b-separateur minimal avec $M \subseteq X$ et $X \cap F = \emptyset$?

EXTENSION D'UN a, b-SEPARATEUR MINIMAL

Entrée: Un graphe G = (V, E), un sous-ensemble $M \subset V$ de sommets *obligatoires*, un sous-ensemble $F \subset V$ de sommets *interdits* tel que $M \cap F = \emptyset$ et deux sommets a et b de V.

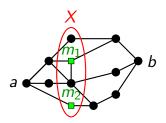
Question: Existe-t-il $X \subseteq V$ un a, b-separateur minimal avec $M \subseteq X$ et $X \cap F = \emptyset$?



EXTENSION D'UN a, b-SEPARATEUR MINIMAL

Entrée: Un graphe G = (V, E), un sous-ensemble $M \subset V$ de sommets *obligatoires*, un sous-ensemble $F \subset V$ de sommets *interdits* tel que $M \cap F = \emptyset$ et deux sommets a et b de V.

Question: Existe-t-il $X \subseteq V$ un a, b-separateur minimal avec $M \subseteq X$ et $X \cap F = \emptyset$?



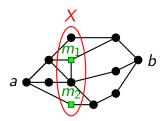
22 / 29

Extension d'un a, b-séparateur minimal

EXTENSION D'UN a, b-SEPARATEUR MINIMAL

Entrée: Un graphe G = (V, E), un sous-ensemble $M \subset V$ de sommets *obligatoires*, un sous-ensemble $F \subset V$ de sommets *interdits* tel que $M \cap F = \emptyset$ et deux sommets a et b de V.

Question: Existe-t-il $X \subseteq V$ un a, b-separateur minimal avec $M \subseteq X$ et $X \cap F = \emptyset$?



Théorème (SCHIVRE 2025)

EXTENSION D'UN a, b-SEPARATEUR MINIMAL est NP-complet.

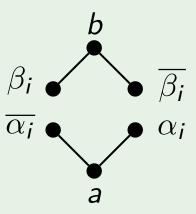
Énumération des séparateurs : résultats connus

- TAKATA 2010 :
 - Énumération des a, b-séparateurs minimaux :
 - * Délai polynomial (O(nm)).
 - * Espace polynomial (O(n)).
 - Énumération des séparateurs minimaux :
 - * Incremental polynomial $(O(n^3m))$.
 - Espace (O(n)).
- BERGOUGNOUX, M. KANTÉ et WASA WEPA 2019: Amélioration de l'algorithme de TAKATA pour tout les séparateurs. Utilisation de parallélisation.
 - Délai polynomial $(O(n^3m))$.
 - Espace polynomial $(O(n^3 + m))$.

Réduction à 3-SAT : Gadget

Nicolas Schivre

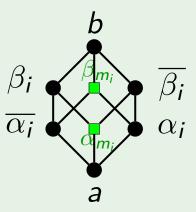
Réduction à 3-SAT : Gadget



Nicolas Schivre Stage M2 : Énumération PMC 26 juin 2025 24 / 29

Réduction à 3-SAT : Gadget

■ ∈ *M*

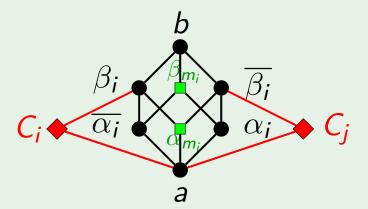


Nicolas Schivre Stage M2 : Énumération PMC 26 juin 2025 24 / 29

Réduction à 3-SAT : Gadget

$$\Phi = C_i = (? \lor ? \lor \overline{x_i}) \land C_j = (x_i \lor ? \lor ?)$$

24 / 29



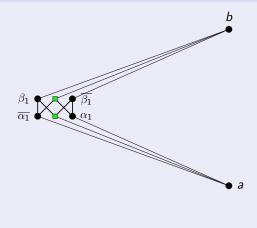
Nicolas Schivre Stage M2: Énumération PMC 26 juin 2025

Réduction à 3-SAT : Graphe de réduction pour

$$\Phi = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_5) \wedge (x_3 \vee \overline{x_4} \vee \overline{x_5})$$

a

Réduction à 3-SAT : Graphe de réduction pour $\Phi = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_5) \wedge (x_3 \vee \overline{x_4} \vee \overline{x_5})$



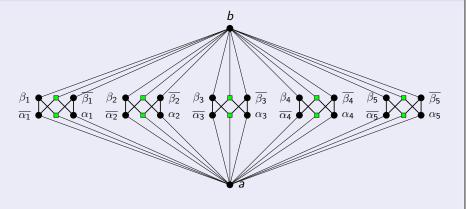
Stage M2: Énumération PMC

25 / 29

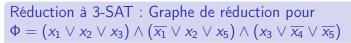
25 / 29

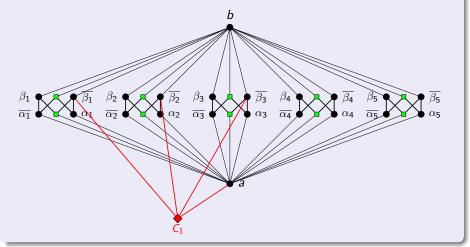
Extension d'un a, b-séparateur minimal

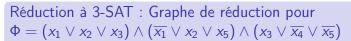
Réduction à 3-SAT : Graphe de réduction pour $\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_5) \land (x_3 \lor \overline{x_4} \lor \overline{x_5})$

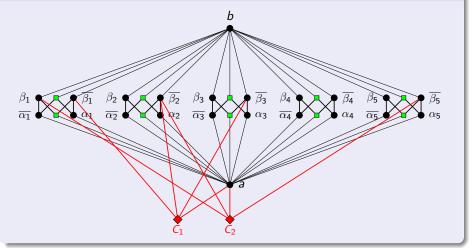


Nicolas Schivre Stage M2 : Énumération PMC 26 juin 2025



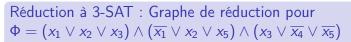


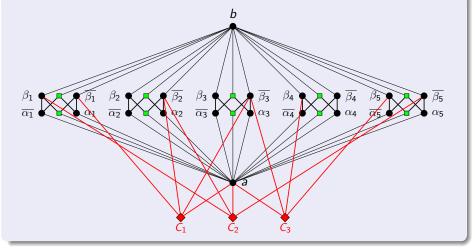




Nicolas Schivre Stage M2 : Énumération PMC

25 / 29



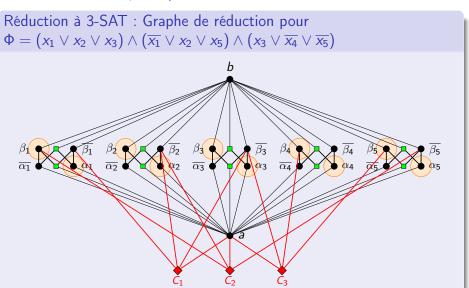


Nicolas Schivre Stage M2 : Énumération PMC

25 / 29

25 / 29

Extension d'un a, b-séparateur minimal



Nicolas Schivre Stage M2 : Énumération PMC 26 juin 2025

Extension de Clique Maximal Potentielle

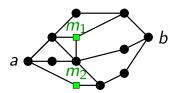
Entrée: Un graphe G = (V, E), un sous-ensemble $M \subset V$ de sommets *obligatoires*, un sous-ensemble $F \subset V$ de sommets *interdits* tel que $M \cap F = \emptyset$.

Question: Est-ce que X, une clique maximale potentielle avec $M \subseteq X$ et $X \cap F = \emptyset$ existe?

Extension de Clique Maximal Potentielle

Entrée: Un graphe G = (V, E), un sous-ensemble $M \subset V$ de sommets obligatoires, un sous-ensemble $F \subset V$ de sommets interdits tel que $M \cap$ $F = \emptyset$.

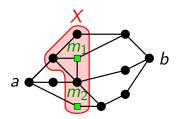
Question: Est-ce que X, une clique maximale potentielle avec $M \subseteq X$ et $X \cap F = \emptyset$ existe?



Extension de Clique Maximal Potentielle

Entrée: Un graphe G = (V, E), un sous-ensemble $M \subset V$ de sommets obligatoires, un sous-ensemble $F \subset V$ de sommets interdits tel que $M \cap$ $F = \emptyset$.

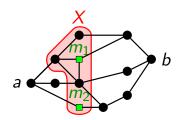
Question: Est-ce que X, une clique maximale potentielle avec $M \subseteq X$ et $X \cap F = \emptyset$ existe?



EXTENSION DE CLIQUE MAXIMAL POTENTIELLE

Entrée: Un graphe G=(V,E), un sous-ensemble $M\subset V$ de sommets *obligatoires*, un sous-ensemble $F\subset V$ de sommets *interdits* tel que $M\cap F=\emptyset$.

Question: Est-ce que X, une clique maximale potentielle avec $M \subseteq X$ et $X \cap F = \emptyset$ existe?



Théorème (SCHIVRE 2025)

EXTENSION DE CLIQUE MAXIMALE POTENTIELLE est NP-complet.

26 / 29

Extension d'une PMC S-Actif

EXTENSION DE PMC S-ACTIF

Entrée: Un graphe G = (V, E) et un sous-ensemble $S \subset V$ un separateur minimal de G.

Question: Est-ce que X, une clique maximale potentielle avec $S \subset X$ et S actif pour X existe?

Extension d'une PMC S-Actif

EXTENSION DE PMC S-ACTIF

Entrée: Un graphe G = (V, E) et un sous-ensemble $S \subset V$ un separateur minimal de G.

Question: Est-ce que X, une clique maximale potentielle avec $S \subset X$ et S actif pour X existe?

Théorème (SCHIVRE 2025)

EXTENSION DE PMC S-ACTIVE est NP-complet.

NP-complétude de l'extension d'une PMC S-Actif

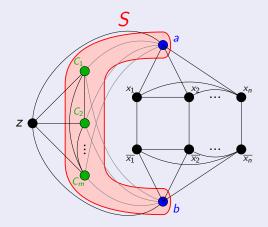
Réduction à 3-SAT : Graphe de réduction



Nicolas Schivre

NP-complétude de l'extension d'une PMC S-Actif

Réduction à 3-SAT : Graphe de réduction

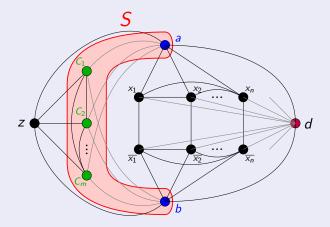


Nicolas Schivre

28 / 29

NP-complétude de l'extension d'une PMC S-Actif

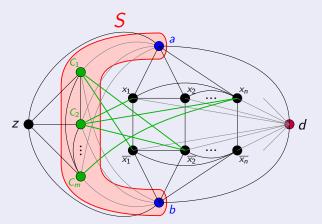
Réduction à 3-SAT : Graphe de réduction



Nicolas Schivre Stage M2 : Énumération PMC 26 juin 2025

NP-complétude de l'extension d'une PMC S-Actif

Réduction à 3-SAT : Graphe de réduction



$$\Phi = C_1 \wedge C_2 \wedge ... \wedge C_m \text{ avec}$$

 $C_1 = x_1 \vee x_2, \ C_2 = \overline{x_1} \vee x_2 \vee \overline{x_n}, ..., \ C_m = \overline{x_n}$

Nicolas Schivre Stage M2 : Énumération PMC 26 juin 2025 28 / 29

Perspectives

Amélioration de l'algorithme de BOUCHITTÉ et TODINCA 2002?

L'amélioration du cas $\underline{n^{\circ}4}$ pourrait permettre une complexité output linéaire.

Algorithme avec un délai polynomial?

- Conception d'un algorithme à délai polynomial en utilisant d'autres méthodes comme *Proximity Search*.
- Algorithme avec Flashlight Search via une extension similaire à TAKATA.

Résultat d'impossibilité?

Preuve d'impossibilité de construction d'un algorithme incremental polynomial ou polynomial delay.

Merci pour votre attention!

Proximity Search (CONTE et UNO 2019)

Principe

- Établir une fonction VOISINAGE entre les solutions à énumérer.
- Parcours via Breadth First Search sur le graphe de solutions.

Difficultés

- Le graphe de solution doit être fortement connexe.
- Chaque sommet à un degré polynomial.
- Une mesure de proximité $\widetilde{\cap}$ entre les solutions doit exister.
- Pour toute paire de solutions $S, T : \exists S' \in \text{Voisinage}(S), |S' \cap T| > |S \cap T|.$