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Abstract. Auctions have a long history, having been recorded as earf08
B.C. [17]. Nowadays, electronic auctions have been a great sucoésara in-
creasingly used. Many cryptographic protocols have beepgsed to address
the various security requirements of these electronicstretions, in particular
to ensure privacy. Brandd] developed a protocol that computes the winner us-
ing homomorphic operations on a distributed EIGamal enagpof the bids.
He claimed that it ensures full privacy of the bidders, i.e.imformation apart
from the winner and the winning price is leaked. We first shbet this proto-
col —when using malleable interactive zero-knowledge fsreds vulnerable to
attacks by dishonest bidders. Such bidders can maniphiateublicly available
data in a way that allows the seller to deduce all particigdritls. Additionally
we discuss some issues with verifiability as well as attackaan-repudiation,
fairness and the privacy of individual bidders exploitingteentication problems.

1 Introduction

Auctions are a simple method to sell goods and servicescailpiaseller offers a good
or a service, and thieidders make offers. Depending on the type of auction, the offers
might be sent using sealed envelopes which are opened aimeoltsly to determine the
winner (the “sealed-bid” auction), or auctioneer could announce prices decreasingly
until one bidder is willing to pay the announced price (theitth auction”). Addi-
tionally there might be several rounds, or offers might beamced publicly directly
(the “English” or “shout-out” auction). The winner usualythe bidder submitting the
highest bid, but in some cases he might only have to pay tlenddughest offer as a
price (the “second-price”- or “Vickrey”-Auction). In gered a bidder wants to win the
auction at the lowest possible price, and the seller wandeltdhis good at the highest
possible price. For more information on different auctioethods seel7]. To address
this huge variety of possible auction settings and to aehéifferent security and effi-
ciency properties numerous protocols have been develeppd4,11,19,20,21,22,23]
and references therein.

One of the key requirements of electronic auction (e-Aumtjarotocols is privacy,
i.e. the bids of losing bidders remain private. Brandt psmuba first-price sealed-bid
auction protocol4,3,2] and claimed that it is fully private, i.e. it leaks no infoation
apart from the winner, the winning bid, and what can be dedfieen these two facts
(e.g. that the other bids were lower).



Our Contributions. The protocol is based on an algorithm that computes the winne
using bids encoded as bit vectors. In this paper we showtikadhiplementation using
the homomorphic property of a distributed Elgamal encryptiroposed in the original
paper suffers from a weakness. In fact, we prove that any fifferent inputs (i.e.
different bids) result in different outcome values, which anly hidden using random
values. We show how a dishonest participant can removesth@om noise, if malleable
interactive zero-knowledge proofs are used. The sellettoamefficiently compute the
bids of all bidders, hence completely breaking privacy. \l¢e discuss two problems
with verifiability, and how the lack of authentication enebhttacks on privacy even if
the above attack is prevented via non-malleable non-ictigegproofs. Additionally we
show attacks on non-repudiation and fairness, and propdstans to all discovered
flaws in order to recover a fully resistant protocol.

Outline. In the next section, we recall the protocol of Brandt. Therthie following
sections, we present our attacks in several steps. In 8&;tiwe first study the proto-
col using interactive zero-knowledge proofs and withouseoThen we show how a
dishonest participant can remove the noise, thus mountthekaon the protocol with
noise, and discuss countermeasures. Finally, in Sedtiore discuss verifiability and
in Section5 we discuss attacks on fairness, non-repudiation and grggloiting the
lack of authentication.

2 The Protocol

The protocol of Brandt4] was designed to ensure full privacy in a completely dis-
tributed way. It exploits the homomorphic properties of stiibbuted EI-Gamal encryp-
tion scheme12] for a secure multi-party computation of the winner. Theusés zero-
knowledge proofs of knowledge of discrete logarithms taieasorrectness of the bids
while preserving privacy. We first give a high level desddptof the protocol and then
present details on its main cryptographic primitives.

2.1 Informal Description

The participatingn bidders and the seller communicate essentially using loasdd
messages. The latter can for example be implemented usingegirb board, i.e. an
append-only memory accessible to everybody. The bids aveded ask-bit-vectors
where each entry corresponds to a price. If the biddesrnts to bid the pricé,, all
entries will bel, except the entry, which will be Y (a public constant). Each entry of
the vector is then encrypted separately usimgaut-of-n-encryption scheme set up by
all bidders. The bidders use multiplications of the enaegptalues to compute values
vq;, €xploiting the homomorphic property of the encryptionestie. Each one of this
values isl if the biddera wins at pricej, and is a random number otherwise. The de-
cryption of the final values takes place in a distributed wagrisure that nobody can
access intermediate values.



2.2 Mathematical Description (Brandt [4])

Let G, be a multiplicative subgroup of order prime, andy a generator of the group.
We consider that, h € {1,...,n}, j,bid, € {1,...,k} (wherebid, is the bid chosen
by the bidder with index), Y € G, \ {1}. More precisely, the: bidders execute the
following five steps of the protocol:

1. Key Generation
Each bidder, whose bidding price iid, among{1, ..., k} does the following:

— chooses a secret, € Z/qZ
— chooses randomly:{; andr,; € Z/qZ for eachi and;.
— publishegy, = ¢g®« and proves the knowledge ¢f’s discrete logarithm.
— using the publisheg, then computes = []""_, v;.
2. Bid Encryption
Each biddern
Y if j =bid,
1  otherwise
— publishesy,; = by; - ¥+ andf,; = g"+s for eachyj.
— proves that for allj, log, (83.;) equaldog, (cv;) orlog, (%), and that

log,, (L;a”) = log, (Hle ﬁaj)-

3. Outcome Computation
— Each biddern computes and publishes for alandj:

= ([ Ty o) (T} ) ()™
IR R EED R =ED)

and proves its correctness.
4. Outcome Decryption
— Each bidder sends¢?; = ([]},_, ;)" for eachi and;j to the seller and
proves its correctness. After having received all valuesseller publishe$§fj
forall ¢, j, andh # 1.
5. Winner determination _
— Everybody can now compuig,; = g:l lz; for eachj.
— If vgq, = 1 for somew, then the biddes wins the auction at pricg,, .

— setsb,; =

2.3 Malleable proofs of knowledge and discrete logarithms

In the original paper4] the author suggests using zero-knowledge proofs of kriyde
to protect against active adversaries. The basic protdeolgroposes are interactive
and malleable, but can be converted into non-interactivefsrusing the Fiat-Shamir
heuristic [L3], as advised by the author. We first recall the general idesudti proofs,
then we expose the man-in-the-middle attacks on the irttegacersion, which we will
use as part of our first attack.

Let PDL denote aproof of knowledge of a discrete logarithm. A first scheme for
PDL was developed in 1986 by Chaum et d]. [In the original auction paper]



Brandt proposes to use a non-interactive variafRdf as developed by Schnoi24],
which are malleable. Unfortunately, interactive mallegPDL are subject to man-in-
the-middle attacksl[6]. We first recall the classi&'-protocol on a group with generator
g and orderg [1,5,7]. Peggy and Victor know andg, but only Peggy knows:, so
thatv = ¢g*. She can prove this fact, without revealingby executing the following
protocol:

1. Peggy choosesat random and sends= ¢" to Victor.

2. Victor chooses a challengeat random and sends it to Peggy.
3. Peggy sends= (r 4+ ¢-z) mod g to Victor.

4. Victor checks thay® = z - v°.

Man-in-the-middle attacks on interactive PDL Suppose Peggy possesses some se-
cret discrete logarithm. We present here the man-in-the-middle attackléf,[where

an attacker can pretend to have knowledge of any affine catibmof the secret,
even providing the associated proof of knowledge, withaabking the discrete loga-
rithm. To prove this possession to say Victor, the attackitistart an interactive proof
knowledge session with Peggy and another one with Victae. attacker will transform
Peggy’s outputs and forward Victor’s challenges to her. itlea is to use the proof of
possession of Peggy’s to prove possession df — z to Victor. Indeed to prove for
instance possession of justo Victor, an attacker would only have to forward Peggy'’s
messages to Victor and Victor's messages to Peggy. The idi@ attack is similar,
except that one needs to modify the messages of Peggy. Wetsb@xample of — «

in Figurel since it is used in Sectio®.4to mount our attack. Upon demand by Victor
to prove knowledge of — z, Mallory, the man-in-the-middle, simply starts a proof of
knowledge ofr with Peggy. Peggy chooses a random exponeartd sends the com-
mitmentz = ¢” to Mallory. Mallory simply invertsz and sendg = z~' to Victor.
Then Victor presents a challeng¢hat Mallory simply forwards without modification
to Peggy. Finally Peggy sends a respontizat Mallory combines witl, asu = ¢ — s,

to provide a correct answer to Victor. This is summarizediguFe 1.

Peggy Mallory Victor
Secret : T
Public : g,v=g" g,w=gv ! g
1/
=g 1: 2z y = L1 Yy
2: ¢ 2 ¢
c c
. /o,
s:7’+c-x4>3's w=c—s—— S %
2 ?
Check : g° ==2z-v° gt ==y w

Fig. 1: Man-in-the-middI€DL of 1 — «, with 2 an unknown discrete logarithm.
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Actually, the attack works in the generic settings BfLB] or of X-protocols [L0].
We letf : I' — (2 denote a one way homomorphic function between two commetati
groups(l, +) and ({2, x). We use this generalization to prevent possible countermea
sures of our first attack in Secti@eé.

For an integral valuey, o - x € I' (resp.y® € {2) denotesy applications of the
group law+ (resp.x). For a secret € I', and any(h, o, 3) € I" x Z?, the attacker
can build a proof of possession®f i+ 3 - x. In the setting of the example of Figute
we usedf(z) =¢*, h =1, =1andg = —1.

In the general case also, upon demand of proof by Victor,diabitarts a proof with
Peggy. The secret of Peggyisand the associated witness v = f(z). Then Mallory
wants to prove that his witnesscorresponds to any combination:ofvith a logarithm
h that he knows. With only public knowledge and his choskm, 3) € I' x Z2,
Mallory is able to computes = f(h)® - v%. For the proof of knowledge, Mallory
still modifies the commitment = f(r) of Peggy toy = z#. Mallory forwards the
challengec of Victor without modification. Finally Mallory transformihe response
s of Peggy, still with only public knowledge and his choséna, 3) € I' x Z2, as
u=c-(a-h)+p-s. We summarize this general attack on FigRre

Peggy Mallory Victor
Secret : zel (h,a, B) € I x Z*
Public : v=f(z) w = f(h)* x v® f
1: 2 8 Uy
z=f(r) y==z
2: ¢ 2 ¢
c c
3: s 3 u
S:T+C'14>u:c-(a»h)+5<5
Check : f(s) ==z x0° fu) = y X w®

Fig. 2: Man-in-the-middle attacks proving knowledge of ragfitransforms of a secret
discrete logarithm in the generic setting.

Lemma 1. Intheman-in-the-middleattack of Figure 2 of theinteractive proof of knowl-
edge of a discrete logarithm, Victor is convinced by Mallory’s proof of knowledge of
a-h+p-x.
Proof. Indeed,

u=c-(a-h)+p-s=c-(a-h)+p-(r+c-z)=08-r+c-(a-h+p-z). (1)
Now, sincez = f(r),y = 2%, v = f(x) andf(h)* x v% = w, the latter Equationi()
proves in turn that

flw) = f(r)" x fla-h+B-2)° = 2" x (f(B)* x f(2)") =y xw'. (2)

Now Victor has to verify the commitment-challenge-respofis ¢, u) of Mallory for
his withessw. Then Victor needs to checks whethféi:) corresponds tg x w®, which
is the case as shown by the latter Equat@n ( a



Generalizations to equality of discrete logarithms We let EQDL denote gproof of
equality of several discrete logarithms. Any PDL can in general easily be transformed
to an EQDL by applying itk times on the same witness. It is often more efficient
to combine the application in one as 9], or more generally as composition af
protocols, here with two logarithms and two generatgrandg.. Peggy wants to prove
that she knows such that = g{ andw = g3:

1. Peggy choosesat random and sends= g] andu = g5 to Victor.

2. Victor chooses a challengeaat random and sends it to Peggy.

3. Peggy computes= (r + ¢ - ) mod ¢ and sends it to Victor.

4. Victor tests ifg; = A\ - v¢ andgs = p - w°.
This protocol remains malleable, and the previous attackstll valid since the re-
sponse remains of the forny ¢ - z.

CountermeasuresDirect countermeasures to the above attacks are to usentemaétive
and/or non-malleable proofs:
— An interactive protocol can be converted into a non-inteva®ne using the Fiat-
Shamir heuristic13].
— Also the firstPDL by [6] uses bit-flipping, and more generally non-malleable pro-
tocols like [L5 could be used.

We will show in the following that if the proofs proposed iretbriginal paper are
not converted into non-interactive proofs, there is ancittan privacy. Note that even
if non-interactive non-malleable zero-knowledge progtsased, a malicious attacker
in control of the network can nonetheless recover any bigltiéat as the messages are
not authenticated, as we show in Sectfon

3 Attacking the fully private computations

The first attack we present uses some algebraic propertifeeafomputations per-
formed during the protocol execution.

3.1 Analysis of the outcome computation

The idea is to analyze the computations done in Stepthe protocol. Consider the
following example with three bidders and three possiblegwi Then the first bidder
computes

Y11 = ((a12 - 13- agn - a3+ @z - aigz) - (1) - (1) )mi1
Y = ( (13- a23- ass) - (a11) (1) JEE
s = ( (1) - (a1 - anz) - (1) )i
7211 = ( (o2 - 013 22 - 23~ a3z - az3) - (1 - (1) )mél
V3o = ( (13- Q23 ass) - (@21) - (12) )z
Y3 = ( (1) - (21 - az2) - (13) )as
Y31 = ((a12 - @13 g2 - a3+ iz - ags) - (1 - (a11 - a91) )mél

1 ml
V32 = ( (a3 Q23- as3) - (as1) - (o2 - agp) )s2
Y33 = ( (1) - (a31 - as2) - (o3 - ang) )™



The second and third bidder do the same computations, bog ukiferent random
valuesmy;. Since eacl;; is either the encryption df or V', for example the valuel,
will be an encryption ofl only if

— nobody submitted a higher bid (the first block) and

— bidder 2 did not bid a lower bid (the second block) and

— no bidder with a lower index submitted the same bid (the thioatk).
If we ignore the exponentiation by.;, each~;; is the encryption of the product of
severab;;'s. Eachb;; can be either 1 oY, hence(ng)*mgf will be the encryption of
a valueY'ii, where0 < l;; < n. The lower bound of;; is trivial, the upper bound
follows from the observation that eael); will be used at most once, and that each
bidder will encryptY” at most once.

Assume for now that we know alf;. We show next that this is sufficient to ob-

tain all bids. Consider the functiofiwhich takes as input the following vectol =

logy ((bu, sy bk, bar, oo bok, oo, bpa, ...,bnk)T), and returns the val-

uesl;;. The input vector is thus a vector of all bid-vectors, wheigreplaced by and
Y by 1. Consider our above example with three bidders and threslpesprices, then
we have:

T
b= logy ((511, bia, biz, bo1, baa, bas, bz, baz, baz) ) :

A particular instance where bidder 1 and 3 submit price 1,kddder 2 submits price

2 would then look ash = (1,0,0, 0,1,0, 1,0, O)T. Hence only the factors,

oo andag; are encryptions of, all othera’s are encryptions of. By simply counting
how often the factorsu 1, a2 andas; show up in each equation as described above,
we can compute the following result(b) = (1,1,1, 2,0,1, 2,1, 1)T. Note that
since we chose the input ¢fto be a bit-vector, we have to simply count the ones (which
correspond td’’s) in particular positions irb, where the positions are determined by
the factors insidey;;. Hence we can expregsas a matrix, i.ef(b) = M - b for the
following matrix M :

(011 011 011]
101 001 001
110 000 000

111 011 011
f)=M-b=|011 101 001
001 110 000

111 111 011
011 011 101
001 001 110

OO = OO OO H
Il
— N RO R

To see how the matrix/ is constructed, consider for examte, ) ™22 = (a3 - a3 -
ass) - (a21) - (12) which corresponds to theecond rowin the second vertical block:

® By abuse of notation we writeygs (1, ..., zn) for (logs(z1), ..., logs(zn)).



— a12 andags; hence the two ones at position 2 and 3 in the first horizomtalkb

— as; andass; hence the two ones at position 1 and 3 in the second horiduotk

— agss3; hence the one at position 3 in the third horizontal block

More generally, we can see that e&ck 3 block consists of potentially three parts:

— An upper triangular matrix representing all bigger bids.

— On the diagonal we add a lower triangular matrix represgrdaitower bid by the
same bidder,

— In the lower left half we add an identity matrix representadid at the current
price by a bidder with a lower index.

This corresponds exactly to the structure of the produstdéeachy;;. Itis also equiv-
alent to formula (1) in Section 4.1.1 of the original papgnfithout the random vector
R;. In the following we prove that the functiofi is injective. We then discuss how
this function can be efficiently inverted (i.e. how to comgtite bids when knowing all
lij ,S).

3.2 Linear algebra toolbox

Let I, be thek x k identity matrix; letL;, be a lowerk x k triangular matrix with zeroes
on the diagonal, ones in the lower part and zeroes elsewhpdeletU;, be an upper

k x k triangular matrix with zeroes on the diagonal, ones in theenpart, and zeroes
elsewhere:

10 ---0 00 - ---0 01 ---1
I, = 0 . . L= 17 U, = 0

S0 S0 T |

()... ()1 1.-- 10 ()... 00

By abuse of notation we usk L andU to denote respectively, L, andUj. For
ak x k-matrix M, we define(My)" = M---M (r times) and(M)° = Ij. Let
(e1,...,ex) be the canonical basis.

Lemma 2. Matrices L, and Uj have the following properties, for 0 < j < k and
r>0: (Up)" -ej = i;; es and (Lg)" - e; = Zl::j+r Cs-

Lemma 3. Matrices L, and U}, are nilpotent, i.e. (Uy)* = 0 and (Ly)* = 0.
This follows immediately from Lemma by computing(Uy)* - I, and(Ly,)* - I.
Lemma 4. IfoZl x; = lthenwehave Ly - 2 = (1,..., 1) — (I + Uy) - z.

Proof. First note that sincd."_, z; = 1,

0
000 ! -Yh
. 1 1 k
Ly -x= = L 1_21:2%
0 Tk . :
1 10 s -z,



On the other hand, if we lat = (1,...,1)7, we have also:

11 1 1_2221%
o1 i | -,
1—(Ik+Uk)'I:1— o | = '1:2 i
1 .
0 01 1—ap

Lemmas. el Ut 2 =2 +el - Ut 2

The proof follows immediately from the fact thet - U*~* = (0,...,0,1,...,1). As
S—— ——

a direct consequence we obtain the following corollary.
Corollary 1. ef' - Uk=t. 2 =z, +eT . UF-HL. 2
Lemma 6. For z = ¢; — e;, wehavethat (L + Uy) - 2 = —z.

Proof. If i = j, thenz = 0 and the results is true. Suppose w.l.0.g. that; (otherwise
we just prove the result for z). ThenUy - (e; —e;) = Sl es =S Tes = S L e

s=j ~S°

Similarly Ly, - (e; — e;) = Z’j:iﬂ es — Z';:jﬂ es = Zi:jﬂ —e,. Therefore( Ly, +

Ur) - (ei =€) = S0 €s = Yamjp1 €5 = €5 — € = —2.

3.3 How to recover the bids when knowing thd;;’s

As discussed above, we can represent the fungtias a matrix multiplication. Led/
be the following square matrix of sizek x nk:

U+L) U U
U+I) (U+L) U U
M= : N : | .Thenf(b) = M -b.
W+I) ... U+D)(U+L) U
U+ ... ... (U+I) (U+1L)

The function takes as input a vector composed eéctors, each of bits. It returns the
nkvalued;;, 1 <i <nandl < j < k. As explained above, the structure of the matrix
is defined by the formula that computg$, which consists essentially of three factors:
first we multiply all o;; which encode bigger bids (represented by the mafjixthen

we multiply all ;; which encode smaller bids by the same bidder (represented by
adding the matrix_ on the diagonal), and finally we multiply by afl;; which encode

the same bid by bidders with a smaller index (representediting the matrix on the
lower triangle ofM). In our encoding there will be al” in the vector for eacly” in the
protocol, hencef will count how manyY's are multiplied when computing;. Using

this representation we can prove the following theorem.

Theorem 1. f isinjective on valid bid vectors, i.e. for two different correct bid vectors
u=[u,...,ur]T andv = [vy,...,v;]" withu # v wehave M - u # M - v.



Proof. Letu andv be two correct bid vectors such that# v. We want to prove that
M -u # M -v. We make a proof by contradiction, hence we assumelthat = M -v
orthatM - (v — v) = 0. Because: andv are two correct bid vectors, each one of them
is an element of the canonical basis, ..., e;), i.e.u = ¢; andv = e;, as shown

in Section3.1 We denotex — v by z, and consequently = e; — e;. Knowing that
M - z = 0, we prove by induction on that for alla the following propertyP(a) holds:

P(a) : V1,0 <1 < a,diag(U*") -2 =0

wherediag(U*~*) is ank x nk block diagonal matrix containing only diagonal blocks
of the same matrik’*=*, The validity of P(k) proves in particular thatiag(U°) - z; =
0, i.e.z = 0 which contradicts our hypothesis.
— Casen = 1: we also prove this base case by induction, i.e. fob &l 1 the property
Q(b) holds, where:

Q) :¥Ym,0 <m < b, Ut .2, =0

which gives us tha/*—1 . z = 0.

e Base casé = 1: We start by looking at the multiplication of the first row bf
with z. We obtain(L+U) -2+ U - (22 +. ..+ zx) = 0. We can multiply each
side byU*~1, and use Lemma@to obtain:U* 1. [— 2, +U* - (z0+...+21)] =
0. SinceU is nilpotent, according to Lemngithe latter gives-U*~1 . z; = 0.
Hence we know)(1) : U¥~1. z; = 0, i.e. the last entry of; is 0.

e Inductive stepb + 1: assumeR)(b). Consider now the multiplication of the
(b + 1)-th row of the matrix\/:
U+D)-z1+...4U+1) -2+ (L+U) 2p41+ U+ (2b42+...+2;) =0.
Then by multiplying byt/*~! and using Lemma& we obtain:

Ukt U+ 214 ...+ (U+1) 25— 2041 +U - (2p32+ ... +21)] = 0.
SinceU is nilpotent according to Lemnfwe havel/*~! - z; + ...+ U*~1.
2 —U*"1. 2,1 = 0. Using the fact that for altn < b we havel/*~!-z,, = 0,
the latter gives-U*~! - 2z, = 0.
— Inductive ste + 1: assumeP(a). By induction onb > 1 we will show thatQ’ (b)
holds, where
Q'(b) : ¥m,0 <m < b, UF @+ .5 —0

which gives us that/*—(@+1) . » = 0, i.e. P(a + 1).

e Base casé = 1: Consider the multiplication of the first row witti*—(e+1):
Uk=@+D) [(L+U) -2+ U - (22 + ... + z)] = 0 which can be rewritten as
—Uk @D o 1 UF (294 ... + 2;)] = 0. UsingU*@ . 2y = 0 for all [,
we can conclude thatU*—(@+1) . 2, = 0, i.e.Q'(1) holds.

e Inductive steph + 1: assumey’(b). Consider now théb + 1)-th row of the
matrix M:
U+D)-z1+..+U+I)-2+(L+U) - 2p41+U - (2p42+ ...+ 2;) =0.
Then by multiplying byU*~(e+1) and using Lemm& we obtain:

Ukt U+ )21+ ...+ U+ 2+ —2p41+ U (zpy2+ ...+
2)] = 0. UsingU*=% . z; = 0 for all 1, we can conclude thaf*—(e+1) . z; +
oo UR et k(e L5 0 = 0. Now, for allm < b, we have
Uk—(at) . 5 =0,sothat-UF(+D) . 5 ., = 0;i.e.Q'(b+1) holds. O
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This theorem shows that if there is a constellation of bids kd to certain valuek;,
this constellation is unique. Hence we are able to inyem valid outputs. We will now
show that this can be efficiently done.

An efficient algorithm Our aim is solve the following linear syste -z = 1. We will
use the same steps we used for the proof of injectivity toestilis system efficiently.
First note that

M-z =1= diag(U"'"Y)- M -z = diag(U**71) - 1.

Consider the-th block of sizek of the latter equality. We have, = (z, 1,22, ...,
z,.1). When multiplying bye? we obtain the first line of this block. Theth block of
M- xis

U+Dx1+...+U+Dxp1 + (L+U)ay + Uxpgq + ... + Uz

= U(Ciy @) + (X5 @) + La,
and ther-th block of/ is /,.. Hence:
o [Ukt (S ) + U (S i) + UF 1 ] = FOR e,
Usif\g Lemmad, we can exchangg in the latter to get:
ef (Ut (S0 ) + UR 1 (S0 ) + UM (L = (I + Un) )|
= ef UF~t~1,.. We then remark that] U*~*~11 = ¢ + 1, which gives:
T -Uk—t (ZLL#T :cz) L k-t (Z:;ll Iz) _ Uk—t—lxr]
= eTU*=t=1], — (t +1). Using Lemméb, we have

e{ {Uk*t ((Efﬂ «rz) — 2:67") 4 k-t (Z:;ll xz)} +(t+1)— e{katfllT

= Trk—t—1 (3)

Using several times Corollarywe have:
o cTUk—t ((Zle xl) - 217,«)
= Tyk—t+l ((Zle xl) — 2xr) +ei, ((Zle xz) — 2xr)
= r—1 _ r—1 r—1
o f UM (Zi:l xZ) =ef UM (Zi:l Iz) + ey (Zi:l 5171)
o UM, = TUR Y, 1,y
By changing to ¢t — 1 in Equation 8) we get:
el [U’“_Hl ((Zle :vi) - 2£CT) + Ukt (Z:;ll )| +t—eTU, = 2 4y
Then regrouping the applications of Corollatyand the latter formula within Equa-
tion (3), we obtain:

k r—1
Trh—t ey ((Z xz> - 2%«) +er—t—1 (Z xz> 1+l k—t—1 = Trp—t—1 (4)

1=1 =1
This gives us a formula to compute the valuesepf, starting with the last element

of the first blockz; ;. Then we can compute the last elements of all other blocks
T2k, - - -, Tn k, and then the second to last elemenits_1, ..., z, k-1, €tc.
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Complexity Analysis. To obtain all values, we have to apply the above formula for
eacht < n andr < k, hence we have:

n

k
ZZ (k+r)=mn (k2 + Lk;_ 1)> = gnk2 + %nk eO (nkQ)
t=1r=1

This is efficient enough to be computed on a standard PC ftistieavalues ofn (the
number of bidders) an#él (the number of possible bids). Those could be less than a
hundred bidders with a thousand different prices, thusireguabout the order of only

a hundred million arithmetic operations. It is anyway thdesrof magnitude of the
number of operations required of each user just to computererypted bids.

3.4 Attack on the random noise: how to obtain the;;'s

In the previous section we showed that knowingliis allows us the efficiently break
the privacy of all bidders. Here is how to obtain thes. The seller will learn alb;; =

(Ylij)(z;i:1 ™35) at the end of the protocol. Since the/; are randomly chosen, this
will be a random value if;; # 0. However a malicious bidder (“Mallory”, of index)
can cancel out thmfj as follows: in Ste8 of the protocol each bidder will compute
his v, anddy;. Mallory waits until all other bidders have published theaues (the
protocol does not impose any synchronization or speciarang) and then computes

his valuesy;; andd;; as:

'ﬁ; = ((HZ:I HZ:j+l O‘hd) ’ (Hfi;i O‘id) ’ (H;L;11 O‘hj)) ) (H;@&w 'sz;)
5 = ((TThs TTh= 1 Bna) - (TEZE Bia) - (T2 B ) ) - (T 85

The first part is a correct encryption bfii , with mg; = 1forall i andj. The second
part is the inverse of the product of all the other biddgfijsand 61’3 and thus it will
eliminate the random exponents. Hence after decryptioseher obtains);; = Y,
wherel;; < n for a smalln. He can comput&; by simply (pre-)computing all possible
valuesY" and testing for equality. This allows the seller to obtaia tlecessary values
and then to use the resolution algorithm to obtain each b®ltdil. Note that although
we changed the intermediate values, the output still glvesorrect result (i.e. winning
bid). Therefore, the attack might even be unnoticed by thergtarticipants. Note also
that choosing a different; per bidder does not prevent the attack, since alltheeed
to be public in order to prove the correctness of the bid ip Stef the protocol.

However the protocol requires Mallory to prove thgt andé; have the same
exponent. This is obviously the case, but Mallory does naivkithe exact value of
this exponent. Thus it is impossible for him to execute theppsed zero-knowledge
protocol directly.

In the original paper4] the malleable interactive proof o8], presented in Sec-
tion 2.3, is used to prove the correctnessygf andd;; in Step3 of the protocol. If this
proof is not converted into a non-interactive proof, thenlidty is able to fake it as
follows.

-1

-1
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3.5 Proof of equality of the presented outcomes

Note that we can rewritg;; andd;; as:

1= (X miy)

n k j—1 i—1
v=as={{II I an]- (H aid) : (H ahj)
d=1 h=1

h=1d=j+1

g1
1—(Zk¢w mfj)

0ok -1 i1
w=05= (] T Bra|- (H 5id> : (H 5hj>
h=1d=j+1 d=1 h=1

=j+

92

When Mallory, the biddem, is asked by Victor for a proof of correctness of his values,
he starts by asking all other bidders for proofs to initialize man-in-the-middle attack
of Figurel. Each of them answers with valugs = ¢7° andu, = ¢g5°. Mallory can
then answer Victor with values = ], A, ! andu =[], p, *, whereo € ([1,n] \ m).
Victor then sends a challenge which Mallory simply forwards to the other bidders.
They answer with, = z, + ¢ - mg;, and Mallory sends = ¢ — > r, to Victor, who
can check thag] = X-v€ andgi = p-we. If the other bidders did their proofs correctly,
then Mallory’s proof will appear valid to Victor:

. _ 1—(2, m)\ ¢ L. (X, my =3, (zo+em?;
/\.,U:HO)\OI.(gl( )) Lo ( ):gl ( )

C
_ 1-(, mg ey e=e(D,mE) =3, (sotems;
u-wc=l_[ouol-(gz ( J)) =11,927 9 ( ])=92 ( 2

Hence in the case of malleable interactive zero-knowledgefp Mallory is able to
modify the valuesy;; andd;; as necessary, and even prove the correctness using the
bidders. Hence the modifications may stay undetected andefter will be able to
break privacy.

3.6 The complete attack and countermeasures

Putting everything together, the attack works as follows:

1. The bidders set up the keys as described in the protocol.

2. They encrypt and publish their bids.

3. They compute/; andé?; and publish them.

4. Mallory, who is a bidder himself, waits until all other Wiers have published their
values. He then computes his values as defined above, andhmsiihem.

. If he is asked for a proof, he can proceed as explained ab&ection3.5.

. The bidders (including Mallory) jointly decrypt the vals

7. The seller obtains alt’!s’s. He can then compute thg’s by testing at most

possibilities.

o Ol
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8. Once he has all values, he can invert the funcfi@s explained above.

9. He obtains all bidders bids.

Again, note that for all honest bidders, this execution Witlk normal, so they might
not even notice that an attack took place. To prevent théglkatone could perform the
following actions:

— To counteract the removal of the noise of Sect®4, the bidders could check
whether the product of the'; for all biddersa is equal to the product of they,q
without any noise (exponenti3. Unfortunately, the man-in-the-middle attack gen-
eralizes to any exponent as shown in FigBr&herefore the attacker could use a
randomly chosen exponent only known to him.

— As mentioned above, another countermeasure is the use ahtevactive, non-
malleable proofs of knowledge. In this case, we will showeéet®n5 that it is still
possible to attack a targeted bidder’s privacy.

4  Attacking verifiability

Brandt claims that the protocol is verifiable as the partasho provide zero-knowledge
proofs for their computations, however there are two pnoisle

4.1 Exceptional values

First, a winning bidder cannot verify if he actually won. Tdhéeve privacy, the protocol
hides all outputs of,,; except for the entry containing “4"This is done by exponenti-
o, i.e. by computingcizj:“ s
wherex;; is the product of somey;; as specified in the protocol. if;; is one,z}”
will still return one for anym, and in principle something different from one for any
other value ofz;;. Now, the random values:{; may add up to zero (mog), hence
the returned value will be} = z; = 1 and the bidder will conclude that he won,
although he actually lost:(; # 1). Hence simply verifying the proofs is not sufficient
to be convinced that the observed outcome is correct. Fosdhee reason the seller
might observe two or more “1"-values, even though all praas correct. In such a
situation he is unable to decide which bidder actually wartasihe cannot determine
which “1”s correspond to a real bids, and hence which bidedtighest real bid. If two
“1”s correspond to real bids, he could even exploit suchuasiin to his advantage: he
can tell both bidders that they won and take money from bdthpagh there is only
one good to sell — this is normally prohibited by the protécid-breaking mechanism.
If the bidders do not exchange additional data there is nofaraihem to discover that
something went wrong, since the seller is the only partyraaiccess to all values.

A solution to this problem could work as follows: when comipgtthe~;; andds;,
the bidders can check if the product

(i ) () ()

h=1d=j+1

ation with random values:{; inside all entriesy;’; andd;,

4 Note that the protocol contains a mechanism to resolveiteeshere should always be exactly
one entry equal to 1, even in the presence of ties.
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is equal to one —if yes, they restart the protocol using difiekeys and random values.
If not, they continue, and check[f, v;; = 1. If yes, they choose different random val-
uesmg; and re-compute thef’;, anddy;, otherwise they continue. Since the probability

of the random values adding up to zero is low, this will rapigld to correct values.

4.2 Different private keys

Second, the paper does not precisely specify the prooffieivatto be provided in the
joint decryption phase. If the bidders only prove that theg the same private key on
all decryptionsand not also that it is the one they used to generate their public key,
they may use a wrong one. This will lead to a wrong decryptibierg with very high
probability no value is “1”, as they will be random. Hence lailliders will think that
they lost, thus allowing a malicious bidder to block the whaliction, as no winner
is determined. Hence, if we assume that the verificationdmssists in verifying the
proofs, a bidder trying to verify that he lost using the psoiight perform the verifica-
tion successfully, although the result is incorrect anddtaally won — since he would
have observed a “1” if the vector had been correctly decdipte

This problem can be addressed by requiring the biddersagats/e that they used
the same private key as in the key generation phase.

5 Attacks using the lack of authentication

The protocol as described in the original paper does notidtechny authentication of
the messages. This means that an attacker in control of ta@riecan impersonate
any party, which can be exploited in many ways. However, thih@s supposed in the
original paper a “reliable broadcast channel, i.e. the eshrg has no control of com-
munication” §]. Yet even under this assumption dishonest participam$uopersonate

other participants by submitting messages on their behdtfitionally, this assumption

is difficult to achieve in asynchronous systerd][ In the following we consider an

attacker in control of the network, however many attacksalan be executed analo-
gously by dishonest parties (which are considered in thgirai paper) in the reliable

broadcast setting.

5.1 Another attack on privacy

Our first attack on privacy only works in the case of malleahieractive proofs. If we
switch to non-interactive non-malleable proofs, Mallognoot ask the other bidders
for proofs using a challenge of his choice.

However, even with non-interactive non-malleable zerovdedge proofs, the pro-
tocol is still vulnerable to attacks on a targeted bidderiggey if an attacker can im-
personate any bidder of his choice as well as the sellerwhithe case for an attacker
controlling the network due to the lack of authenticatianphrticular, if he wants to
know Alice’s bid he can proceed as follows:

1. Mallory impersonates all other bidders. He starts bytarg&keys on their behalf
and publishes the valugs and the corresponding proofs for all of them.
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. Alice also creates her secret keyshare and publightsyether with a proof.
. Alice and Mallory compute the public key
. Alice encrypts her bid and publishes hey; andj;; together with the proofs.
. Mallory publishesy;; = a,4; andg;; = 5,; for all other bidders and also copies
Alice’s proofs.
. Alice and Mallory execute the computations describeth@pgrotocol and publish
74 anddg.
7. They computey; and send it to the seller.
8. The seller publishes thg; and computes the, ;.
Since all submitted bids are equal, the seller (which mitgut e impersonated by Mal-
lory) will obtain Alice’s bid as the winning price, hence & mot private any more. This
attack essentially simulates a whole instance of the pobtocmake Alice indirectly
reveal a bid that was intended for another, probably redi@uclo counteract this it is
not sufficient for Alice to check that the other bids are dif&: Mallory can produce
differenta;; = aq;y” together withs;; = 5,;9% which are still correct encryptions of
Alice bids.
Note that the same attack also works if dishonest biddetadmwith the seller:
they simply re-submit the targeted bidders bid as their oidn b

b owN

o

5.2 Attacking fairness, non-repudiation and verifiability

The lack of authentication obviously entails that a winnbidder can claim that he
did not submit his bid, hence violating non-repudiationefeyn the case of reliable
broadcast). Additionally, this also enables an attack anéas: an attacker in control
of the network can impersonate all bidders vis-a-vis tHeisesubmitting bids of his

choice on their behalf and hence completely controllingvirner and winning price.

This also causes another problem with verifiability: it igimssible to verify if the bids

were submitted by the registered bidders or by somebody else

5.3 Countermeasures

The solution to these problems is simple: all the messaga$toche authenticated, e.g.
using signatures or Message Authentication Codes (MACsdan a trust anchor, for
example a Public Key Infrastructure (PKI).

6 Conclusion

In this paper we analyze the protocol of Brandltfrom various angles. We show that
the underlying computations have a weakness which can beitegby malicious bid-
ders to break privacy if malleable interactive zero-knalgle proofs are used. We also
identified two problems with verifiability and proposed dauns. Finally we showed
how the lack of authentication can be used to mount diffemétatks on privacy, verifi-
ability as well as fairness and non-repudiation. Again wggasted a solution to address
the discovered flaws.
So sum up, the following countermeasures have to be implerden
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— Use of non-interactive or non-malleable zero-knowledg®fs.
— All messages have to be authenticated, e.g. using a Publidiffrastructure (PKI)
and signatures.

— In the outcome computation step: when computingifjyeandd;;, the bidders can

check ifz;; = (HZ:I | ahd) : (Hfi; aid) : (]‘[};11 ahj) is equal to one —

if yes, they restart the protocol using different keys armditan values. If not, they

continue, and check [, vf; = 1. If yes, they choose different random valueg
and re-compute the;; andJ;;, otherwise they continue.

— In the outcome decryption step: the bidders have to provetiieavaluez, they
used to decrypt is the samg they used to generate their public kgyin the first
step.

The attacks show that properties such as authenticationearcessary to achieve
other properties which might appear to be unrelated at fight,dike for instance pri-
vacy. It also points out that there is a difference betweenmgding the winner in a fully
private way, and ensuring privacy for the bidders: in theosdattack we use modified
inputs to break privacy even though the computations themseare secure. Addition-
ally our analysis highlights that the choice of interactirenon-interactive, malleable
or non-malleable proofs is an important decision in anyquotdesign.

As for possible generalizations of our attacks, of coursditfear algebra part of our
first attack is specific to this protocol. Yet the man-in-thadle attack on malleable
proofs as well as the need of authentication for privacy apieable to any protocol.
Similarly, checking all exceptional cases and ensuringttie same keys are used all
along the process are also valid insights for other prosocol
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