
SLACK-MAC: Adaptive MAC Protocol for Low

Duty-Cycle Wireless Sensor Networks

Affoua Thérèse Aby(1,2), Alexandre Guitton(1,2), Pascal Lafourcade(3,2), Michel Misson(3,2)

(1) Clermont Université, Université Blaise Pascal, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France

(2) CNRS, UMR 6158, LIMOS, F-63173 Aubière, France

(3) Clermont Université, Université d’Auvergne, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France

Emails: {aby,guitton,lafourcade,misson}@sancy.univ-bpclermont.fr

Abstract—Wireless sensor networks (WSNs) are increasingly
used in environmental monitoring applications. They are de-
signed to operate for several months by featuring low activity
cycles, in order to save energy. In this paper, we propose a MAC
protocol for such WSNs with duty-cycles of 1%. Initially, nodes
are activated randomly and independently, then they use the
knowledge of previous successful frame exchanges to compute
their next activation times. We study the choice of the history
size, and we compare the performance of our protocol with
other protocols from the literature. We show that with a limited
history size of only six entries, we significantly improve the
performance of existing protocols, while keeping the advantages
of fully asynchronous protocols.

I. INTRODUCTION

Environmental monitoring applications, such as the moni-

toring of volcanoes [?], bird nests [?], fields [?], or bridges [?],

are increasingly using Wireless sensor networks (WSNs). In

such applications, wireless sensor nodes are deployed in the

environment, where they perform periodic measurements and

communicate the collected data to a sink in a multi-hop

manner.

Energy-efficient protocols are designed to increase the life-

time of such WSNs. These protocols deactivate the radio

module of nodes most of the time, as it is the node hardware

component having the largest energy consumption. The MAC

protocol is responsible for allowing nodes to communicate in

the rare periods when the radio module of neighbor nodes is

active too.

In this paper, we propose the SLACK-MAC (Self-

adaptive Low Activity Cycle Knowledge-based MAC) proto-

col. SLACK-MAC is an asynchronous protocol where nodes

activate their radio modules randomly. The idea behind

SLACK-MAC is inspired by the routing protocol proposed

in [?], where authors proposed the SR3 protocol, which is

an improvement over a biased random walk based on a

reputation mechanism. In SLACK-MAC, nodes communicate

opportunistically and consider discrete time. Nodes record a

history of previous successful communications with neighbors,

and use this history to determine the time of the next activation

of their radio module. This history increases the probability to

select a recent successful time of activation among all possible

times during each cycle. Thus, nodes adapt their activation

times depending on their neighborhood. We show in this

paper that this behavior improves the probability of successful

communications, which in turn improves the performance in

terms of delivery rate and delay.

The remainder of this paper is organized as follows. Sec-

tion ?? presents the main existing MAC protocols for low

duty-cycles. Section ?? describes the SLACK-MAC protocol,

and justifies our choice of parameters. Section ?? compares

the performance of existing protocols with the performance of

SLACK-MAC. Finally, Section ?? concludes our work.

II. STATE OF THE ART

Most energy-efficient MAC protocols for WSNs are based

on sequences of active and inactive periods, called duty-cycle.

Indeed, as the radio module of a node is the component

having the largest energy consumption, energy can be saved

by deactivating it periodically. MAC protocols based on duty-

cycles can be classified depending on whether the activities of

nodes are synchronized or not.

A. Synchronous MAC protocols

In synchronous duty-cycle MAC protocols, nodes share a

common time (through synchronization) and agree on a com-

mon schedule for their activities and inactivities. Generally,

all nodes are either simultaneously active or simultaneously

inactive.

The IEEE 802.15.4 standard [?] in beacon-enabled mode

is one of the most largely used synchronous MAC protocols.

Full-function devices send periodic beacons, with period BI
(for Beacon Interval). Reduced-function devices start their

activities at the beacon reception, and are allowed to com-

municate during a period SD (for Superframe Duration).

The communication is performed using the slotted CSMA/CA

(Carrier-Sense Multiple Access with Collision Avoidance)

mechanism, which is designed to consume low energy for

channel sensing. After this period, nodes go back to sleep until

the next beacon. The ratio SD/BI defines the duty-cycle of

nodes.

Several other protocols have been proposed for the same

purpose, such as D-MAC [?], DW-MAC [?], Speed-MAC [?],

TreeMAC [?], MC-LMAC [?], SEA-MAC [?] and others [?],

[?], [?]. As in IEEE 802.15.4, these protocols generally have

three types of periods: a synchronization period, which ensures

that all nodes share a common time, a communication period,

where nodes can communicate efficiently, and an inactive

period, where nodes save energy.

Synchronous duty-cycle MAC protocols have two main

drawbacks. The first drawback is the overhead of the manda-

tory synchronization period. The second drawback is the

high contention for the channel when all nodes are active

simultaneously. In this paper, we focus on asynchronous duty-

cycle MAC protocols.

B. Asynchronous MAC protocols

Asynchronous duty-cycle MAC protocols do not need to

synchronize nodes. Notice that generally, asynchronous MAC

protocols yield large delays, but have a low energy con-

sumption. In the following, we describe the two main cat-

egories of asynchronous protocols: sender-initiated protocols

and receiver-initiated protocols.

1) Sender-initiated protocols: The first asynchronous MAC

protocol for WSNs was B-MAC [?], which is based on the

LPL (Low Power Listening) technique. In B-MAC, the source

sends a long preamble before each frame, and receivers wake

up periodically to detect potential preambles. This technique

has been the basis for sender-initiated protocols.

X-MAC [?], [?] is based on a similar approach. In X-

MAC, nodes switch between active (20 ms) and inactive

period (500 ms), but instead of using a long preamble, nodes

send small preambles to inform the receiver. The maximum

duration of the series of short preambles is one inactivity

period (500 ms). Once the receiver wakes up and receives

a short preamble, it replies by an acknowledgment to inform

the transmitter of its availability to receive data, as shown in

Figure ??. When a node having no packet to send wakes up

and hears a preamble for another node, it immediately returns

to sleep. When a node having packets to send wakes up and

hears another preamble, it stops sending its own preamble and

waits to receive the acknowledgment for the other transmission

before attempting to send its own preamble again. In X-

MAC, some source nodes remain active much longer than

other nodes. This causes an inequity in energy consumption

which reduces network lifetime. Moreover, X-MAC generally

achieves a low end-to-end delay, but increases the risk of

collisions due to the fact that nodes can interpret the duration

between two preambles as a free channel.

In WiseMAC [?], preambles are used, but their length is

reduced by allowing the sender to send data as soon as both

nodes are active.

In [?], the authors proposed a distributed algorithm to

control the sleep interval of nodes in order to achieve fairness

of energy consumption in asynchronous duty-cycle WSNs.

The mechanism can increase network lifetime, but has a

significant impact on the end-to-end delay.

In this paper, we decide not to use a sender-initiated ap-

proach, in order to avoid the overhead and energy consumption

caused by preambles. Indeed, for very low duty-cycles, the

average duration for a preamble is long.

2) Receiver-initiated protocols: In RI-MAC [?], the re-

ceiver initiates the communication by sending a beacon to

Short preambles
Receive ACK

Send

data

data

Recv

A
C

K
A

C
K

Sender

Receiver

Send ACK
Wake up

Activity
Time

Time

Figure 1. X-MAC’s short preamble approach.

express its ability to receive data packets. RI-MAC reduces

channel occupation (as it does not require nodes to send

preambles), but introduces a wasted period as the sender has

to wait for the reception of the beacon. The ABD protocol [?]

adds a broadcast service to the RI-MAC protocol.

In PW-MAC [?], each node computes its awakening times

according to a pseudo-random number generator rather than

according to a fixed schedule. The drawback of PW-MAC

is that sending beacons before frame transmissions generates

overhead, and introduces a delay when listening to the channel.

In EM-MAC [?], nodes decide independently their wake-up

time schedule and channel using a pseudo-random generator.

EM-MAC allows the sender to wake up just before the beacon

of the receiver. However, EM-MAC requires a neighbor dis-

covery phase before starting and each node needs to maintain

information about all its neighbors.

HKMAC [?] uses an hybrid approach, where time is divided

into random activation periods (similar as in RI-MAC) and

scheduled activation periods (which requires synchronization).

The MAC protocol proposed in [?] is based on random

wake-up times. Each node knows the duration of the cycle,

denoted by C, and the duration of its activity within each

cycle, denoted by A. Each node activates its radio module

during A time units every C time units. The beginning of the

activation within each cycle is chosen uniformly at random in

[0;C−A[. When a node is active, it uses unslotted CSMA/CA

to access the medium (as in the non beacon-enabled mode

of IEEE 802.15.4 [?]). With this mechanism, nodes are not

synchronized, and nodes do not make assumptions about the

activity times of the others. Moreover, there is a non-null

probability that any two neighbors share a common activity

at each cycle. Figure ?? depicts an example of the activities

of three neighbor nodes for this protocol: n1, n2 and n3. We

notice that the cycles of nodes are not synchronized. During

the first cycle of n1, nodes n1 and n2 share a common

activity, during which they can communicate. However, for

n1 to communicate with n3, both nodes have to wait until the

middle of the third cycle of n1.

In this paper, we focus on a receiver-initiated protocol based

on random node activities, as in [?].

III. MAC PROTOCOLS FOR LOW DUTY-CYCLES

In this section, we describe our SLACK-MAC protocol and

our methodology to choose its parameters.

cycle

n1

n2

n3 Time

Time

Time

Figure 2. Example of the activities of three neighbor nodes with the protocol
of [?], with a duty-cycle of 25% (this long duty-cycle is chosen for clarity).

A. SLACK-MAC protocol

The main idea of SLACK-MAC is to maintain a history

of times corresponding to successful communications with

neighbors. In SLACK-MAC, nodes do not always choose their

activation times uniformly at random. Instead, they have a high

probability to choose times when successful communications

occurred in the recent past. Figure ?? depicts an example of

the activities of three neighbor nodes with SLACK-MAC: n1,

n2 and n3. Initially, all nodes choose their activation times

uniformly at random. When a node chooses a time that yields

to successful communications (reception or transmission of a

frame), it memorizes it and the probability to choose this time

increases.

cycle

n1

n2

n3 Time

Time

Time

Figure 3. Example of the activities of three neighbor nodes with the SLACK-
MAC protocol, with a duty-cycle of 25% (again, this long duty-cycle is chosen
for clarity).

cycle

tstarti tendi

tchildi tfatheri

Time

Figure 4. Zoom on a cycle where tstart
i

and tend

i
are respectively activity

start time and activity end time in a cycle i with the SLACK-MAC protocol,
with a duty-cycle of 25%.

Then SLACK-MAC requires that each node maintains two

lists E (Emission) and R (Reception) that contain wake-up

times in the cycle. Let us denote by tstarti the start of activity

in the current cycle i, and tendi is the end of activity time, as

depicted on Figure ??. During this activity a node can send

and receive one or several frame, and can add tstarti in both

lists, once or several times. Each node uses these two lists to

determine its next wake-up time.

A new time tstarti is added to E when a node wakes up

at time tstarti and communicates with another node located

closer to the sink at time tfatheri . Similarly, a new time tstarti

is added to R when a node wakes up in a given cycle and

communicates with another node located further away from

the sink at time tchildi .

Figure ?? shows the evolution of lists E and R, at three

different time steps. Step 1 shows the state of the lists when

they are being filled (with one successful transmission and two

successful receptions). When a list is full (see Step 2), the last

entry is removed to add the newest entry to the front (using a

first-in first-out mechanism, as shown on Step 3).

E R

t
E

1

t
E

1

t
E

1

t
E

2

t
E

2

t
R

1

t
R

1t
R

1

t
R

1t
R

1

t
R

2

t
R

2

t
R

2 t
R

3

t
R

3

step 1

step 2

step 3

Figure 5. Example of the state of the E and R lists, at three different times.

More formally, the probability that a node selects its next

wake-up time t ∈ D (where D denotes all possible times) is

given by the following formula:

Pr[X = t] =
1|R|6=0

(

|R|t
|R|

)

+ 1|E|6=0

(

|E|t
|E|

)

+ 1

|D|

1|R|6=0 + 1|E|6=0 + 1
,

where |L| denotes the number of elements in list L, |L|t
denotes the number of occurrences of time t in L, and 1P

is the indicator function that is 1 when the predicate P is true

and 0 otherwise. Note that nodes consider that time is discrete

(the granularity of time can be, for instance, 320 µs, as in

IEEE 802.15.4, which results into 15,625 slots for a cycle of

C = 5 seconds).

In Algorithm ??, we give a pseudo code of the behavior

of a node when it wakes up. During this time, a node can

receive and send some data. These two operations change the

content of SendQueue and the two lists E and R. Before going

back to sleep, a node uses these lists to determine its next

wake-up time using the function Next-Wake-Up-Time defined

in Algorithm ??, where random(x) draws an integer uniformly

at random within [0, x− 1], the duration of a cycle is denoted

by C time units and the activity of a node by A time units.

The function Next-Wake-Up-Time draws the next wake up

time according to the content of the two lists and following

the previous distribution. Note that initially, when both lists

are empty, we have Pr[X = t] = 1

|D| , meaning that the next

wake-up time is chosen uniformly at random in D. If one of

the two lists is empty, we select an element of the non empty

list with a probability of 1/2, and uniformly at random in D
otherwise. If none of the list is empty, we select an element

from list R with probability of 1/3, from list E with probability

1/3, and uniformly at random in D otherwise.

Moreover, each node has a packet queue of fixed size for

packets that have to be sent, denoted SendQueue. If SendQueue

is full and a node receives a new packet, the node ignores this

last packet.

In order to optimize our protocol according to the state of

SendQueue, each node adapts its selection strategy for its next

wake-up time, according to the following rules:

• If SendQueue is empty (state = 1), a node has no packet

to send, so it is useless to select times that are in the E

list. The next wake-up time is chosen uniformly in R with

probability 1/2, and uniformly at random in D (i.e., all

possible times) otherwise.

• If SendQueue is full (state = 2), a node cannot accept

any incoming packet, so it is useless to select times

that are in the R list. The next wake-up time is chosen

uniformly in E with probability 1/2, and uniformly at

random in D otherwise.

• In all the other cases (state = 3), a node selects its

next wake-up time uniformly in E with probability of

1/3, uniformly in R with probability 1/3, and randomly

in D otherwise.

Algorithm 1 Activity of a node.

Node n wake-up at time tstarti for duration A time units in

a cycle i of C time units.

while node n (at distance d) is active do

if n has received a frame from nr (at distance dr) during

cycle i then

if (d < dr) and (tstarti has not yet been added) then

add(nr, tSi) to R

add frame to SendQueue

end if

end if

if n has sent a frame to ns (at distance ds) during cycle

i then

if tstarti has not yet been added then

add(ns, tstarti) to E

remove frame from SendQueue

end if

end if

end while

if SendQueue is empty then

t← Next-Wake-Up-Time(1);

else

if SendQueue is full then

t← Next-Wake-Up-Time(2);

else

t← Next-Wake-Up-Time(3);

end if

end if

Schedule next activity at time t of the next cycle

B. Determination of the size of SLACK-MAC lists

In order to determine the size of both E and R lists, we

need to specify the routing algorithm used in our experiments.

We have taken a gradient-based routing protocol. Gradient-

based routing protocols operate by estimating a distance, called

the gradient, to the sink. When a node receives a frame to

forward to the sink, the node sends the frame to any neighbor

having a gradient smaller than its own gradient. The gradient

is computed in the following way: initially, only the sink has

a gradient of 0; when a node has a gradient, it sends its

gradient to its neighbors; when a node receives a gradient

from a neighbor, it updates its own gradient if it detects that

Algorithm 2 Next wake-up time in a cycle i.

Next-Wake-Up-Time(state);

if state=1 then

indicator← random(2);

if indicator = 0 then

position← random(sizeOf(R));

t← R[position];

else

t← random(C −A);

end if

else

if state=2 then

indicator← random(2);

if indicator = 0 then

position← random(sizeOf(E));

t← E[position];

else

t← random(C −A);

end if

else

indicator← random(3);

if indicator = 0 then

position← random(sizeOf(E));

t← E[position];

else

if indicator = 1 then

position← random(sizeOf(R));

t← R[position];

else

t← random(C −A);

end if

end if

end if

end if

return t

this neighbor is closer to the sink than itself. The gradient is

generally computed according to several parameters, including

the hop count to the sink, link quality estimations, etc.

We first notice that for a routing protocol based on gradient

and for a random topology with one sink (located at one corner

of the area), a node is likely to have more neighbors further

away from the sink than closer to the sink. We estimate that

this ratio is about two, which means that the maximum size

of R is set to be twice the maximum size of E. In order

to determine the actual size of these lists, we perform 100

simulations over 10 random topologies (of average degree 8)

for three different values of the traffic generation period (P).

Figure ?? shows the delivery ratio as a function of the size

of E, and Figure ?? shows the end-to-end delay as a function

of the size of E, both with |R| = 2|E|. We observe in these

two figures that regardless of the period (P), the best size is

two for E and four for R when combining the two criteria.

These parameters are used in the following.

We also observed experimentally that on average, it takes

 100

 0 1 2 3 4 5

 0

 20

 40

 60

 80

P
ac

k
et

d
el

iv
er

y
ra

ti
o

(i
n

%
)

Size of list E

P=5s
P=7.5s
P=10s

Figure 6. Impact of the size of list E of SLACK-MAC on the packet delivery
ratio, with |R| = 2|E| and a duty-cycle of 1%, where P is the traffic generation
period.

 40

 50

 60

 70

 80

 0 1 2 3 4 5

 0

 10

 20

 30

D
el

ay
(i

n
s)

Size of list E

P=5s
P=7.5s
P=10s

Figure 7. Impact of the size of list E of SLACK-MAC on the end-to-end
delay, with |R| = 2|E| and a duty-cycle of 1%, , where P is the traffic
generation period.

about 12 cycles (60 seconds) for the nodes to fill E and about

50 cycles (250 seconds) for the nodes to fill R. This shows that

the convergence of the list is fast and negligible comparing to

the life time of a node.

IV. RESULTS

In order to evaluate the performance of SLACK-MAC, we

conducted several simulations to compare SLACK-MAC with

the protocol of [?] and with X-MAC [?] (as it is one of the

most representative asynchronous MAC protocols).

We also compared SLACK-MAC with the main MAC

standard for synchronized duty-cycle, which is ZigBee [?].

ZigBee defines the upper layers of the network stack of a

wireless personal area network, and assumes that the lower

layers are compliant with IEEE 802.15.4. In the following, we

use the tree-based routing protocol of ZigBee (which is used

when addresses are allocated hierarchically), as a comparison

basis.

A. Simulation parameters

Table I
SIMULATION PARAMETERS

Topologies area 170 m x 170 m

Transmission range 30 m

Number of nodes 100

Number of source nodes 30

Transmission power 0 dBm

Propagation model shadowing model

Path loss exponent 2.74

Packet size 30 bytes

Maximum send queue size 20

Number of repetitions per topology 100

Simulation duration 3600 seconds

Our simulations are performed using NS-2 [?]. The simula-

tion parameters for all protocols are given in Table ??. In our

settings, 30 sources perform periodic measurements and route

data (in a multi-hop manner) to a single sink located at one

corner of the network. Nodes have a duty-cycle of 1% and the

global cycle is 5 s (that is, nodes are active during A=50 ms

every C=5 s), unless specified otherwise. For our simulations,

we use 10 random topologies of 100 nodes, having a maximum

number of hops of 7. All presented results are averaged over

100 repetitions per topology.

It should also be noted that apart from ZigBee [?] which

incorporates a tree routing protocol, the same gradient-based

routing protocol is used to route packets hop by hop towards

the sink for all the other MAC protocols.

B. Simulation results

Our objective being to provide a MAC protocol with very

low duty-cycle (1%), we initially show that the synchronous

duty-cycle MAC protocols are not adapted to such low duty-

cycles.

Figure ?? shows the packet delivery ratio as a function of the

traffic generation period for ZigBee, X-MAC [?], the protocol

of [?] and SLACK-MAC. The traffic generation period ranges

from 5 seconds (which corresponds to a high traffic generation

for a duty-cycle of 1%) to 20 seconds (which corresponds to

a relatively low traffic generation for such duty-cycle).

For the ZigBee protocol, the packet delivery ratio increases

from about 25% to nearly 78%. This low packet delivery

ratio with ZigBee is due to the fact that the low duty-cycle

generates a strong contention (as nodes are all synchronized).

This strong contention generates many collisions and causes

overflows in nodes queues, causing a large packet loss ratio.

It is also important to note that these results do not take into

account the cost of synchronization because we assume that

all nodes are synchronized.

For the X-MAC protocol, the packet delivery ratio increases

from about 64% to 86%. Although X-MAC does not set a fixed

duty-cycle for each node, the delivery ratio is explained by the

 0

 20

 40

 60

 80

 100

 5 7.5 10 12.5 15 17.5 20

P
ac

k
et

d
el

iv
er

y
ra

ti
o

(i
n

%
)

Traffic generation period (in s)

protocol of [?]

X-MAC

SLACK-MAC

ZigBee

Figure 8. Packet delivery ratio as a function of the traffic generation period,
for a duty-cycle of 1%, and for several protocols.

collisions due to the relatively high number of preambles, and

by the fact that the sender has no knowledge of the successful

reception of packets by the receiver.

For the protocol of [?], the packet delivery ratio increases

from 79% to 99%. The packet delivery ratio is high: indeed,

when nodes meets, they can benefit from this meeting time,

as there are few simultaneously active nodes.

For the SLACK-MAC protocol, the packet delivery ratio

increases from about 83% to 99%. Indeed, it takes advantage

of a mechanism similar to the protocol of [?], and allows

more common activities between nodes thanks to the history

mechanism. SLACK-MAC also remains completely dynamic

with a probability of 1/3 for nodes to choose a random mecha-

nism. The results show that, in terms of packet delivery ratio,

for traffic generation period from 5 seconds to 20 seconds,

SLACK-MAC provides a gain over X-MAC of 29.61% for a

period of 5 seconds and of 15.10% for a period of 20 seconds,

a gain over ZigBee of 241.26% for a period of 5 seconds and

of 27.70% for a period of 20 seconds, and a gain over the

protocol of [?] of 3.98% for a period of 5 seconds and the

same delivery ratio for a period of 20 seconds.

Figure ?? shows the average delay of data packets as a

function of the traffic generation period (from 5 seconds to

20 seconds) for ZigBee, X-MAC, the protocol of [?] and

SLACK-MAC. We note that SLACK-MAC provides a lower

end-to-end delay (going from 25 seconds to 68 seconds) than

ZigBee (from 37 seconds to 205 seconds) and the protocol

of [?] (from about 29 seconds to 79 seconds). The delay of X-

MAC is very low (from 6 seconds to 11 seconds) compared to

the other protocols, at the cost of a high energy consumption

(see Figure ??, described later). Indeed, when a sender has

frames to send, it remains active. SLACK-MAC provides a

gain over ZigBee in terms of end to end delay of 66.61% for a

period of 5 seconds and of 32.37% for a period of 20 seconds,

and a gain over the protocol of [?] of 12.90% for a period of

5 seconds and of 13.87% for a period of 20 seconds.

 15 17.5 20

 0

 50

 100

 150

 200

 5 7.5 10 12.5

D
el

ay
(i

n
s)

Traffic generation period (in s)

protocol of [?]

X-MAC

SLACK-MAC

ZigBee

Figure 9. End-to-end delay of data packets as a function of the traffic
generation period, for a duty-cycle of 1%, and for several protocols.

Figure ?? shows the duty-cycle in percent for each protocol.

For ZigBee, the protocol of [?] and SLACK-MAC, the duty-

cycle is set to 1% and is fixed. For X-MAC, the duty-cycle

of node actually depends on the communication opportunities,

as nodes having frames to send remain active until they can

send their frames. Thus, X-MAC yields large duty-cycles, and

consumes more energy than the other protocols.

 10 12.5 15 17.5 20

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5 7.5

D
u

ty
-c

y
cl

e
(i

n
%

)

Traffic generation period (in s)

X-MAC
SLACK-MAC,protocol of [?],ZigBee

Figure 10. Duty-cycle (which is an approximation of the consumed energy)
as a function of the traffic generation period, for a duty-cycle of 1%, and for
several protocols.

Table ?? summarizes the gain of the best protocol over the

other protocols, for three metrics. It can be seen that the gain of

SLACK-MAC over all the other protocols is large, except for

the end-to-end delay. For this metric, X-MAC has the lowest

end-to-end delay, but this comes at the cost of a much larger

energy consumption.

Table II
SUMMARY OF RESULTS

Metric Best protocol Gain
over
Zig-
Bee

Gain
over
X-
MAC

Gain
over
[?]

Gain
over
SLACK-
MAC

Delivery
ratio (%)

SLACK-MAC 79.31 19.90 1.04 -

Delay (%) X-MAC 91.35 - 82.75 79.58

Duty-cycle
(%)

SLACK-MAC,
ZigBee, [?]

- 91.03 - -

V. CONCLUSION

In this paper, we proposed the SLACK-MAC protocol for

WSNs with low duty-cycles of 1%. Initially, nodes in SLACK-

MAC activate their radio module randomly and independently,

and build a history of successful communications. The history

is used to determine the next activation times, which results

into a self-adaptive behavior. We show that SLACK-MAC

reaches a good behavior with a limited history size of only six

entries. Only few activity cycles are needed to fill the memory

lists. Then, we compare SLACK-MAC with existing protocols

in terms of frame loss, end-to-end delay and consumed energy.

We show that our low-cost protocol is able to significantly

improve the performance of existing protocols. As future work,

we aim to see if using an history can be applied to other

existing probabilistic MAC protocols.

ACKNOWLEDGMENT

This research was partially supported by the “Digital Trust”

Chair from the University of Auvergne Foundation.

