
Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol –

ABSTRACT
We propose PCS_AC – a new cryptographic framework for post-

compromise security (PCS) in secure-communication protocols,

which caters not only for the traditional PCS-corruption of key

material, but also for adversarial controls of a PCS-nature at the
application level. That is, we study and formalise when and how an
adversary can maintain or lose post-compromise advantages due to
application-driven controls as well, rather than do so based on crypto-
graphic manipulations and settings alone. In fact, the motivation and

ideas in our PCS_AC are in line with a recent document by NIST [15],

where adversarial application-level influence on key compromise

are discussed, and it is the first of this kind to be produced.

Since measures of PCS “healing” are discrete, we also mecha-

nised an approximation of our cryptographic PCS_AC framework,

in symbolic/Dolev-Yao models, as well; we do this in the two state-

of-the-art protocol verifiers, ProVerif and Tamarin, and –in the

process– we also compare and discuss different tool-assistance as-

pects in each. We include a summary of this in this version of the

paper, too.

We apply PCS_AC to the 5G procedure called AKMA (Authenti-
cation and Key Management for Application), showing new PCS-

attacks therein and proposing patches, including a backwards-

compatible one. We implement and test AKMA as well as of one of

our PCS-driven patches, on top of Fraunhofer’s Open5GCore.
We also cast ‘TLS1.3 with session resumption and key updates’ in

PCS_AC in various ways, looking at different keys being potentially

targeted by one type of attacker or another, amongst the multiple

possible choices formalised in PCS_AC. This captures new and varied

PCS dimensions of TLS, underlining the versatility and usefulness

of our framework.

ACM Reference Format:
. 2025. Post-Compromise Security with Application-Level Key-Controls –

with a comprehensive study of the 5G AKMA protocol –. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 19 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Note: All our Proverif and Tamarin files are here [11].

1 INTRODUCTION
Post-compromise security (PCS) [22] is a timely notion, generally

cast around communications on secure channels: intuitively, PCS

holds if the security of a channel, primarily its confidentiality, can

repair, or “heal", even after a full compromise by an adversary. In

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2025 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2017, Cohn-Gordon et al. proposed a PCS framework [16], and

recently, Blazy et al. [14] refined those in a computational metric

for quantifying how fast key-establishment protocols can heal post-

compromise.

But, all these past works only look at the key-derivation, i.e.,

the attacker’s corruption and access are only w.r.t. keys inside key-

derivation trees and ratcheting chains. Notably, the attacker does

not control the application-related aspects of the key-derivations;

e.g., Blazy et al.’s attacker do not control explicitly the triggers of the
regeneration of the keys inside various levels of the key-derivation

tree: i.e., they do not control the algorithmic software/hardware

resets or parameters linked to the refreshing of keys, such as session-

tickets expiry times or “times to live (TTLs)”. Yet, different key-

establishment protocols for different applications have an explicit

logic and time-frame which determine how the keys can evolve,

e.g., TLS, 3G/4G/5G procedures, and this can clearly influence the

PCS of the protocol. For instance, if an attacker can keep a mobile

phone charged and “alive” forever at one location within a stable

network then this phone will not re-register on the network, nor

will it refresh its various sessions keys, thus allowing an attacker to

potentially prolong a given compromise. Conversely, if a session-

key has a given TTL which the attacker cannot control, this TTL

can be a prime factor in increasing the healing speed of the protocol

once a compromise has occurred.

Moreover, this type of application-level control on key-compromises

came to the attention of NIST [15] and they are also calling for ac-

tion. We answer that call herein.

We propose a PCS Metric with Application Control (PCS_AC), a
new PCS formalism and metric such that PCS is no longer “just”

about key-manipulation compromises. Concretely, PCS_AC is the
first (PCS) framework to bring and formalise application-level con-

trols (e.g., someone manipulating the time-to-live of a session)

into the cryptographic attackers’ playground. The application-level

adversarial additions also lead to our attacker model being more

fine-grained, adding numerous and more complex dimensions to

intruders, discerning and mixing various levels of threats at the ap-

plication level (e.g., algorithmic, physical, etc), with multi-facetted

key controls (e.g., hijacking application-level handles that affect

different levels in a key hierarchy); all of this is formalised in a

cryptographic model.

The depth of PCS attackers and security notions that PCS_AC
brings is showcased in a comprehensive analysis we undertake,

using PCS_AC, of the recent 5G protocol called Authentication and
Key Management for Applications based on 3GPP credentials in the
5G Systems, AKMA for short [5]. AKMA lends itself extremely

well to analysis via PCS_AC, since it is a procedure which mixes

key-derivation, key-establishment and application-controls linked

to these in intricate and different ways over the multiple parties

involved. In short, in AKMA, the mobile operator (e.g., Orange)

uses the existing mobile key-hierarchy to derive session keys for a

third-party application server (e.g., BMW) to be used with Orange

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

subscribers (e.g., BMW cars with Orange SIM cards inside); and, the

latter two employ and govern over the time-to-live of these session

keys via a protocol over which the core has no visibility or control.

Finally, PCS_AC’s versatility and added-value, in terms of secu-

rity analyses which combine application-level corruptions and key

compromises, are clearly demonstrated also when we apply PCS_AC
to TLS 1.3 [24]. Indeed, because of TLS’ complex key-hierarchy, its

intricate key-derivation options (e.g., TLS modes w/o resumption),

and its multiple application-level controls (e.g., w.r.t. session tick-

ets), there are numerous ways in which one can apply PCS_AC to
TLS 1.3. Indeed, this array of choices available and the wealth of the

analyses that PCS_AC brings to TLS 1.3 are dissected in Appendix E.

Our more detailed contributions are as follows:

CONTRIBUTIONS
• We introduce a new PCS framework, PCS Metric with Appli-
cation Control (PCS_AC), which gives PCS adversaries control
over application-level parameters. In this way, attackers can

manipulate not only cryptographic keys, but –importantly–

also the application-logic which re-initiates or stalls the re-

freshing of keys.

In Section 5 and Appendix B we show the value of PCS_AC:
new attacks issued out ofmanipulating the application layers,

in ways that impact on key security/compromises.

• We give a mechanisation of our PCS_AC framework (and, by

proxy, [14] as well), in the state-of-the-art symbolic/Dolev-

Yao [17] protocol-verifiers Proverif and Tamarin, and we

discuss the advantages of each of the two mechanisations.

We apply the mechanisation to AKMA and AKMA+, and
our findings in Proverif and Tamarin are in line with our

computational analyses via PCS_AC. We give a summary of

all of this herein.

• We first apply PCS_AC to AKMA [5], a key-establishment

protocol intrinsically application-driven, and show PCS at-

tacks therein that would not have been exhibited via prior

PCS frameworks.

We provide full cryptographic proofs for AKMA in our new

PCS model.

We also propose an efficient patch to AKMA, called AKMA+,
with formally proven improved security w.r.t. our strong

PCS attackers, and which 3GPP is looking to adopt in the

future version of the spec.

• We show an implementation of AKMA on top of Fraun-

hofer’s Open5GCore, and use it to attest that our PCS-improved

AKMA maintains good efficiency compared to the original

AKMA.

We believe this is also the first implementation of AKMA

which is publicly-available.

• Also, PCS_AC is applied to TLS 1.3 with session resumption,

session tickets and key updates, where the key-hierarchy is

vast, the application controls numerous (including on time-

to-live of tickets and session keys) and the various sensible

types of attackers abound (e.g., passive, active, global, fo-

cused on “local”/temporary keys). This complex use case is

suited to underline the versatility and usefulness of PCS_AC.
Due to space constraints, this is shown in Appendix E.

2 BACKGROUND
2.1 PCS Notions
The most recent PCS framework by Blazy et al. [14] focuses on two-

party secure-channel establishment only ignoring aspects linked to

the application-level. So, it expresses PCS only in terms of number

of key-evolutions, at various levels, measuring PCS-healing speed

in numbers of key-evolutions.

That is insufficient for us, as we wish to add PCSmeasure modulo

the application logic; however – to keep uniformity in this research

field – we keep and extend some of their notions: the notions of

stage, stage-based keys and adversaries, as well as a stage-based

security notion. We summarise these below.

Stages & Horizontal/Vertical Key Evolutions. In Blazy et
al. [14], an important concept is the notion of stage, denoted (𝑥,𝑦).
Each stage corresponds to a bundle of ephemeral key-materials,

such as message-keys – later used to authenticate and encrypt mes-

sages. In more details, a stage (𝑥,𝑦) refers to the bundle of keys

that have been evolved/refreshed the 𝑦-th time in some dimen-

sion, and the 𝑥-th time in another dimension. More intuitively,

the 𝑥 vertex refers to some “horizontal” key-evolutions denoting

rather ephemeral keys being evolved/refreshed, whereas the 𝑦 ver-

tex refers to “vertical” key-evolutions whereby other, less ephemeral

keys, or keys higher up in a key-hierarchy are evolved/refreshed.

More concretely, (communication-securing) keys can evolve

from stage to stage, in two different ways: horizontal – from stage

(𝑥,𝑦) to (𝑥 + 1, 𝑦), generally providing weaker post-compromise

healing, and vertical — from stage (𝑥,𝑦) to (1, 𝑦 + 1), generally
providing stronger PCS.

Stage-based Keys. Blazy et al. [14] have: single-stage keys,

which are only relevant during that stage and that session; cross-

stage keys, which are used during at least two stages of the same

session, but not in two different sessions; and cross-session keys,

which are long-term keys used across multiple sessions.

Threat Model. Blazy et al. classify their adversaries in terms of

three different characteristics:

• Reach. Attackers can learn (by corruption) keys at different

levels of the key-schedule: global adversaries can learn all

keys,medium attackers can only learn cross-stage and single-

stage keys, while local attackers can only find single-stage

keys.

• Power.Attackers may have different abilities to interfere with

the communication channel. Passive attackers cannot inject
data, while active adversaries can.
• Access. Protocols can be attacked by adversaries that lie out-

side the system (which are called outsiders) or even within it

(insider adversaries).
Blazy’s “Healing” Measures. Post-compromise security is a no-

tion that captures, intuitively, how fast the confidentiality of a

secure channel recovers after an attacker compromises at least one

Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol – Conference’17, July 2017, Washington, DC, USA

of the endpoints. In particular, if a protocol is proved to be (𝜒, Υ)-
PCS-secure for a given-strength attacker, then proofs in Blazy et al.
show that: (a) 𝜒 stages in the currently evolving key-chain and Υ
subsequent chains’ worth of stages have had their security compro-

mised; (b) all other stages are secure.

3 PCS_AC: APPLICATION-DRIVEN PCS
METRIC

• In Appendix A, we detail how and why our threat model, inspired

by this NIST document [15], is realistic. This threat model (and the

execution environment alongside it) is formalised next.

3.1 Key-evolution Protocols with Key-Control
Our model focuses on two-party key-exchange protocols that fea-

ture a dynamic key-evolution. The two endpoints retain some con-

trol over how and when the key-evolution occurs, at application

level. We call such schemes Key-Exchange with Dynamic Evolution

and Key-Control, in short KE-DECK.
A key-control will be a tuple, indexed by the name of the key

and the stage of the key-evolution, which characterises (by means

of a predicate) whether a specific key may evolve at a given stage,

and how that evolution may take place (which party initiates and

controls the evolution). The attacker will access and manipulate

the key-controls, i.e., :

• The attacker only switches the key-controls for evolution

off at a particular target stage;

• The attacker switches the key-controls for the evolution of a

given key permanently off. Depending on the protocol, this

might result in a denial of service;

• The attacker switches the key-controls for the evolution of

several keys for a number of stages.

Now, we formalise PCS (in)security driven by key-controls, by

modularly building on the framework by Blazy et al..

The Execution Environment. We consider two types of end-

points with asymmetric roles: i.e., clients and servers. The sets of
clients C and S are disjoint and, together with a single super-user
Ŝ ∉ C ∪ S, they give partition of the party set P. All parties are
probabilistic polynomial-time interactive Turing machines (PPT

ITM).

KE-DECK protocols run in sessions between exactly one client

and one server. We assume that any two parties P,Q will run at

most one session of this protocol during their lifetime. The super-

user may help the parties set up their session, but will not interact

throughout it.

In contrast to [14], we abstract away certain application-message

exchanges between parties
1
, and instead focus only on the evolu-

tion of the keys and the control the parties may exert over which

type of evolution occurs when. So, stages typical in asynchronous-

messaging frameworks (including [14]) now simply mark interme-

diate key-evolutions.

1
Note that we do take into account generic, message-exchange-based attacks, as we

model MiM interference in the protocol. Yet, in security notions we focus primarily

on the way keys are used and evolved, and therein we abstract away some details

of the communication – thus focusing on attacks which will immediately impact

keys’ security. This may elude PCS-related, adaptive attacks – which do not impact

key-evolution (e.g., privacy threats).

Consider a key hierarchy (KH). Over it, a key-schedule is a finite-
depth tree (specifically, each key has a single ancestor from KH),

whereby edges between nodes denote one key-derivation from the

parent to the child node; keys in a schedule may evolve across

stages, differently. We associate parties P ∈ C and Q ∈ S with such

a key-schedule.

The focus of the security definition will be a particular kind

of single-stage target key, which we denote by target key t_kP,Q .
But, we can examine the PCS characteristics of any key in the key-

schedule (regardless of how high it might be in the hierarchy) – by

casting it into the role of the target key, and tracing the impact of

the evolution of that key and its ancestors in the key-schedule.

Keys can be prompted to evolve unilaterally or mutually, and

might require contributions from one or both parties. We model the

key-update logic in terms of key-evolution controls, which are essen-

tially flags determining whether a particular key can be updated,

as well as indicating to each party whether it can, unilaterally or

interactively cause this.

Attributes. Each party P ∈ C ∪ S keeps track of:

• (P .𝑝𝑘, P .𝑠𝑘): a pair of long-term public/private credentials

that may be set to ⊥ for specific protocols;

• P .𝑟𝑜𝑙𝑒 ∈ {𝐶, 𝑆}: denoting whether the party is a client or a

server (note that the role of each party is static and will not

change ever);

• P .𝐾𝐻 : the key-hierarchy associated with the protocol. Apart

from names, e.g., 𝑘 , keys are identified by their level in the

hierarchy, i.e., 𝑘.𝑙𝑒𝑣𝑒𝑙 1, 2, 3, . . . (from top to bottom). The

bottom key is directly targeted in our PCS-security games

and it is also denoted target key (t_k), whereas the others are
also referred to, indiscriminately, as non-target keys (nt_k).
The keys at the top of the key-hierarchy are called top keys,
generically denoted 𝐾 , and they do not evolve.

Instances 𝜋 of a party 𝑃 presumably partneredwith𝑄 are denoted:

𝜋
Q
P . Party instances inherit the long-term attributes of the party,

and additionally keep track of:

• 𝜋QP .ltsk: a long-term key associated with the unique session

between P and a party Q whose role is different than that of

P .
• 𝜋QP .sid: the session identifier of the session that 𝜋

Q
P is run-

ning, which is a protocol-specific set of values that uniquely

determine the key material computed by the two endpoints.

• 𝜋QP .pid: the partner identifier of P , namely the party that P
thinks it is talking to. This partner cannot have the same

role as P .
• 𝜋QP .stages: a list of tuples (𝑠𝑡, 𝑣), of stages 𝑠𝑡 = (𝑥,𝑦), with
values 𝑣 ∈ {0, 1} indicating whether the stage 𝑠𝑡 was reached
(𝑣 = 1) or not (𝑣 = 0). By abuse of notation we write 𝑠𝑡 ∈ 𝜋QP
if (𝑠𝑡, 𝑣) ∈ 𝜋QP .stages.
• 𝜋QP .𝐾𝑒_𝑇𝑟 : key-evolution transcript 𝜋

Q
P .𝑇 , indexed by stages,

describing all key-evolution data associated with a stage. We

denote by 𝜋
Q
P .𝑇 [𝑠𝑡] the key-evolution data of instance 𝜋

Q
P .𝑇

at stage 𝑠𝑡 .

• 𝜋QP .var: a set 𝜋
Q
P .var of ephemeral values used to compute

stage keys, indexed by stages. If a value is used for more

Conference’17, July 2017, Washington, DC, USA

than one stage, it will appear under every single stage that

it is required for.

– One of the values included in P .var is the target key shared
with a Q party: t_kP,Q . As it evolves over a multitude of

stages, we denote by t_k(𝑥,𝑦)P,Q the value of this key at stage

(𝑥,𝑦).
• 𝜋QP .KControls: a list of tuples indexed by keys and stages,

of the form (𝑘𝑒𝑦, 𝑠𝑡, 𝜏, aEvolve) where 𝑘𝑒𝑦 is the name of a

secret or a key included in P .𝐾𝐻 , 𝑠𝑡 is a stage, aEvolve is a

boolean predicate indicating whether an evolution of that

key is possible at this stage, and 𝜏 is the key-control prompt,
which can be set to ⊥ if party P cannot cause evolution of

that key at all, 𝑁𝐼 if party P can non-interactively cause its

update, to P · if party P canmake the key evolve by interacting

with its partner (but P initiates this update, and the partner

follows), and to ·P if the key-evolution process is interactive,

but the partner goes first.

We define our primitive KE-DECK, noting that the common algo-

rithms for sending and receiving messages are abstracted away into

a potentially interactive protocol, ΠEvolve, which instead focuses

just on key-evolution.

Definition 1 (KE-DECK Protocol). A Key-Exchange with Dy-
namic Evolution and Key-Control (KE-DECK) is a tuple of algorithms:
KE-DECK = (aSetup, aPGen,ΠUReg,ΠEvolve):
aSetup(1𝜆) → (Ŝ.sk, Ŝ.pk, pparam) : outputs the public/private long-

term keys of super-user Ŝ and the public system parameters
pparam implicitly taken in input by all other algorithms.

aPGen(1𝜆, P, role) → P : run by a party P to output the handle of a
party P, whose role is then set to either client (=𝐶) or server
(=𝑆).

ΠUReg (P, Ŝ) → ({sk, pk}, 𝑏) : an interactive protocol run by party P

and super- user Ŝ. The latter outputs a bit 𝑏 (set to 1 for a
successful registration), while the former outputs public/private
credentials inside P .𝐴𝑡𝑡𝑟 (which Ŝ may also learn). The super-
user keeps track of a registration database indexed by user
name.

ΠStart (P, role, pid, Ŝ) → (𝜋pidP , 𝑏) : run interactively between P and

super-user Ŝ, so as to create an instance of P meant to be talking
to an instance of pid, if the latter is possible (allowed by their
roles). If successful, Ŝ outputs 𝑏 = 1, while P outputs a handle
𝜋
pid
P . Some initial key material might be computed during this

phase (like first stages of top keys in P’s KH).
ΠEvolve (𝜋QP , 𝜋

P
Q, 𝑠𝑡, 𝑘𝑒𝑦,𝐴𝐷) → (𝜋

Q
P , 𝜋

P
Q, 𝐴𝐷

∗) ∪ ⊥ . This algorithm

represents evolution at stage 𝑠𝑡 = (𝑥,𝑦) in the session between
P and Q with additional data AD, where P is the initiator
of the evolution. Essentially, the algorithm finds the value of
P .KControls(𝑥,𝑦)P,Q and, if the flag is either 𝑁𝐼 or P ·, then the
algorithmic steps for evolution (as described by aDesc will be
assumed to occur. The evolution might require knowledge of
some, or the entire – state of one or both parties P and Q. If the
evolution is successful, the output are updated party instances
𝜋
Q
P and 𝜋PQ , as well as a potential list of ciphertexts resulting

from the transmission, and corresponding𝐴𝐷∗. If the evolution
fails, a special symbol ⊥ is output.

Now, we give the definition of matching conversation: i.e., a

communicating party is indeed as perceived.

Definition 2 (Matching Conversation). Let P be a client, Q a
server registered and running a KE-DECK protocol through instances
𝜋 ·P and 𝜋 ·Q respectively. We say these two instances have matching

conversation if, and only if: 𝜋 ·P .sid = 𝜋 ·Q .sid and 𝜋 ·P .pid = Q, and
𝜋 ·Q .pid = P.

KE-DECK’s Correctness. If 𝜋QP and 𝜋PQ have matching conversation,

then a KE-DECK protocol is correct if both conditions hold (in the

absence of an adversary):

• For each 𝑠𝑡 = (𝑥,𝑦), both instances have identical secret & key

values, down to the target key t_k(𝑥,𝑦)P,Q and t_k(𝑥,𝑦)Q,P ;

• For each 𝑠𝑡 = (𝑥,𝑦), both instances have compatible key-controls

for all keys𝑘𝑒𝑦 ∈ 𝐾𝐻 : in otherwords, for all entry (𝑘𝑒𝑦, 𝑠𝑡, 𝜏, aEvolve) ∈
𝜋
Q
P .KControls, it holds that there exists a “matching” entry

(𝑘𝑒𝑦, 𝑠𝑡, 𝜏∗, aEvolve) ∈ 𝜋QP .KControls, with identical values for

𝑘𝑒𝑦, 𝑠𝑡 , and aEvolve, and entry 𝜏∗ such that:

– If 𝜏 = ⊥ then 𝜏∗ = 𝑁𝐼 and vice-versa;

– If 𝜏 = P ·, then 𝜏∗ = ·Q;
– If 𝜏 = ·P , then 𝜏∗ = Q·.
• Whenever P and/or Q use ΠEvolve, to update, then 𝜋

Q
P and 𝜋PQ

still have matching conversation.

Stages. A stage is the period of time between two successive evo-

lutions (not necessarily of the same key) in KE-DECK. If the parties
prompt the evolution of the target key, then stages evolve horizon-

tally (from (𝑥,𝑦) to (𝑥 + 1, 𝑦)). Else, stages evolve vertically (from

(𝑥,𝑦) to (𝑥,𝑦 + 1)).

Keys.We also write kx (P,Q) for the 𝑥-th value of the key 𝑘 (shared

by P and Q and part of some stage (𝑥, ·) or (·, 𝑥)).

Key Controls. In KE-DECK, at each stage 𝑠𝑡 = (𝑥,𝑦), each party in

each instance has potentially-different key-controls (𝑘𝑒𝑦, 𝑠𝑡, 𝜏, aEvolve) ∈
P .KControls, for each key 𝑘𝑒𝑦 ∈ 𝐾𝐻 . In particular, aEvolve indi-

cates whether an evolution of that key is possible at stage 𝑠𝑡 . Note

that, if 𝑘𝑒𝑦 = t_kP, · or t_k·,P , then, if aEvolve indicates that an

evolution is possible, then that evolution is horizontal; else, it is

vertical.

Key-Controls Conditions. The value 𝜏 indicates the conditions
for a specific evolution. For instance, if party P has no say in the

evolution, then the value 𝜏 = ⊥. If P is unilaterally responsible

for an evolution (i.e., the evolution takes only input from party P
and can be triggered by that party) then 𝜏 = 𝑁𝐼 . Also, we consider

evolutions that are interactive, requiring input from both P and its

partner; either P goes first – in which case 𝜏 = P ·, or its partner
goes first: 𝜏 = ·P .

In the following section, we show how the adversary can hijack

the key-controls, for instance by modifying the values of aEvolve
for one or multiple stages. Obviously, the attacker’s success depends

on the robustness of the scheme with respect to such changes (for

instance, if aEvolve is turned off entirely for 10 stages, maybe the

Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol – Conference’17, July 2017, Washington, DC, USA

partner of the corrupted party will be alerted to the presence of

the attacker and shut down that instance). The goal of a protocol

designer will be to either render key-control attacks impossible or

to ensure that if key-controls are corrupted on the one side, then

the partner of that instance will detect the attack.

3.2 Adversarial Model
We have a taxonomy of keys as follows:

Stage-specific Keys: keys occurring in only one stage of one pro-

tocol instance 𝜋
Q
P (typically including, but not necessarily

limited to, the target keys). Namely, we require that for all in-

stances 𝜋
Q
P and any two stages 𝑠𝑡 and 𝑠𝑡 ′, the value stored for

stage-specific keys 𝑘𝑒𝑦 ∈ 𝐾𝐻 is different. We denote the set

of all stage-specific keys of instance 𝜋
Q
P by 𝜋

Q
P .1Stage-Keys.

Cross-stage Keys: keys that repeat in at least two stages: there ex-

ists an instance 𝜋
Q
P and distinct stages 𝑠𝑡 ∈ 𝜋QP and 𝑠𝑡 ′ ∈ 𝜋QP ,

such that𝑘 ∈ 𝜋QP .var[𝑠𝑡] and𝑘 ∈ 𝜋
Q
P .var[𝑠𝑡

′], but𝑘 ∉ 𝜋 ·P .var

for another instance from 𝜋
Q
P . We denote the set of cross-

stage keys belonging to instance 𝜋 iP as 𝜋
Q
P .𝑋Stage-Keys.

Cross-session Keys: keys that (intentionally) repeat in at least

two sessions
2
: a key 𝑘 is cross-session if there exist distinct

instances 𝜋 ·P , 𝜋
·
P
∗
of registered party P , and (potentially dis-

tinct) stages 𝑠𝑡 ∈ 𝜋 ·P and 𝑠𝑡 ′ ∈ 𝜋 ·P
∗
such that 𝑘 ∈ 𝜋 ·P .var[𝑠𝑡]

and 𝑘 ∈ 𝜋 ·P
∗ .var[𝑠𝑡 ′]. By definition, P’s ltsk(P, ·) and sk

are cross-session keys. We denote 𝑃 ’s cross-session keys as

P .𝑋 sid.
Clearly, these three sets of keys are disjoint and form a true

partition of the set of keys.

Our Adversary. The adversary’s goal will be to distinguish, from

random, a target key t_k (P,Q) freshly and honestly generated. So,

each instance needs to also store the attribute 𝜋P .b[𝑠𝑡]: a challenge
bit randomly chosen for each instance for stage 𝑠𝑡 . If 𝑏 = 1, the

output is the real key t_kst (P,Q) at stage 𝑠𝑡=(𝑥,𝑦), else the output
is a random key.

Oracles. Our framework re-uses six oracles from [14]:

oUReg(P): runs aKeyGen on party P i.e., A can register malicious

P to an honest Ŝ.
oStart(P, role, pid, ℎ𝑜𝑛): for an honest P , the algorithm runs ΠStart

to create a new instance of an existing honest party with

the role P .role, and its intended partner pid. If P is malicious,

the algorithm runs ΠStart with the indicated role and pid as

intended partner. The value ℎ𝑜𝑛 is a bit: if set, the challenger

poses as Ŝ, whereas if ℎ𝑜𝑛 = 0, the adversary poses as Ŝ.
oTest𝑏 (𝜋P , 𝑠𝑡): for honest parties, valid instances and stages, and

a target key t_kst (P,Q) at stage 𝑠𝑡 , it returns that key (if

𝜋P .b[𝑠𝑡] = 1), or a same-length, random key (if 𝜋P .b[𝑠𝑡] = 0).

It can only be queried once.

2
We thus formally exclude collisions in randomness. This is just at definitional level,

w.r.t. classifying/defining types of keys, and it is not about collision in probabilistic

events inside proofs. I.e., in proofs, there is a chance 𝑐𝑘1 will later reappear, for instance,

as 𝑐𝑘101 .

oReveal.1Stage-Keys(𝜋P , 𝑠𝑡). It leaks the set
{t_k ∈ 𝜋P .1Stage-Keys}

⋂
𝜋P .var[𝑠𝑡] of stage-specific val-

ues, for stage 𝑠𝑡 .

oReveal.XStage-Keys(𝜋P , 𝑠𝑡): for stage 𝑠𝑡 , it leaks the set of non-

target keys 𝜋P .𝑋Stage-Keys
⋂
𝜋P .var[𝑠𝑡] of cross-stage val-

ues.

oReveal.XSid(P): corrupts P , giving A access to P .𝑋 sid.
Since our framework is no longer centred on the sending/receiv-

ing of message (as Blazy et al.’s work was), two of their oracles

(sending and receiving) are replaced by an oracle that prompts

either honest or malicious key-evolution:

oKE(𝜋P , 𝜋Q, 𝑠𝑡, 𝐴𝐷). This oracle can be run in honest or malicious

mode. In the first case, the value 𝐴𝐷 is input as ⊥, and the

oracle runs ΠEvolve for these arguments. Else, 𝐴𝐷 takes an

actual value (or tuple of values) that represent the messages

sent by P during the purported evolution. Note that an adver-

sarial input of 𝐴𝐷 can make the partner instance 𝜋Q abort.

Unlike [14], our framework allows an adversary to control keys

in multiple ways, over an arbitrary number of stages:

oHijack.1Stage(𝜋QP , 𝑘, [𝑠𝑡1, 𝑠𝑡2, . . . 𝐴𝐿𝐿], 𝜏
∗, aEvolve∗). This oracle

will return ⊥ unless: P is honest, Q exists, instance 𝜋
Q
P exists,

𝑘 ∈ 𝐾𝐻 such that 𝑘 ∈ 𝜋QP .1Stage-Keys, and all stages 𝑠𝑡1, . . .
are current or future stages of 𝜋

Q
P . Note that 𝐴𝐿𝐿 is a special

value, which indicates that the input value to this oracle

concerns all current and future stages of 𝜋
Q
P . The oracle al-

lows the adversary to control the entry (𝑘, 𝑠𝑡𝑖 , 𝜏, aEvolve) ∈
𝜋
Q
P .KControls for all indicated 𝑠𝑡𝑖 . If aEvolve

∗ ≠ ⊥, then the

input 𝜏∗ is ignored, and the adversary modifies each entry

(𝑘, 𝑠𝑡𝑖 , 𝜏, aEvolve) ∈ 𝜋QP .KControls to (𝑘, 𝑠𝑡𝑖 , 𝜏, aEvolve
∗).

Else, if aEvolve∗ = ⊥, then the entries (𝑘, 𝑠𝑡𝑖 , 𝜏, aEvolve) ∈
𝜋
Q
P .KControls are changed to (𝑘, 𝑠𝑡𝑖 , 𝜏∗, aEvolve)

oHijack.XStage(𝜋QP , 𝑘, [𝑠𝑡1, 𝑠𝑡2, . . . 𝐴𝐿𝐿], 𝜏
∗, aEvolve∗). This acts sim-

ilarly to the above, but 𝑘 ∈ 𝜋QP .𝑋Stage-Keys (i.e., for cross-
stage keys).

The last two oracles add numerous dimensions to the types of

adversaries captured in [14], as shown in Section 3.3.

3.3 Taxonomy of Adversaries
From [14], we import three dimensions of adversaries: reach (which
keys are revealed); power (active or passive); access (is the adversary
a person-in-the-middle or a super-user?); and power (active session-
hijacking vs. passive).

In our framework, we seamlessly adapt the definition of active
adversaries to include attackers that either run oKE in a malicious

mode (with 𝐴𝐷 ≠ ⊥) or query one of the two hijacking oracles

(oHijack.1Stage or oHijack.XStage). Intuitively, in the former case,

the adversary is compelled to insert valid messages on behalf of an

honest party in order to force an update, whereas in the latter, we

assume it obtained illicit access to the victim device and it was thus

able to modify the parameters present at the application layer.

Three New Adversarial Traits. To Blazy et al.’s traits (reach,

power, and access), we add three new, which describe how strength

in relation key-evolution controls:

Conference’17, July 2017, Washington, DC, USA

Exp𝑃𝐶𝑆KE-DECK (𝜆,A)
(Ŝ.sk, Ŝ.pk, pparam) ← CaSetup(1𝜆)
(P = {P1, · · · PnP } = C ∪ S) ← C(𝜆, nP)
(P .𝑝𝑘𝑖 , P .𝑠𝑘𝑖) ← CaKeyGen(1

𝜆) ∀𝑖 ∈ {1, · · · , nP }
Otype ←

{
oUReg(·), oStart(·, ·, ·, ·), oReveal[A .reach] (·, ·), oKE(·, ·, ·, ·), oHijack[A .breadth] (·, ·, ·, ·),

}
;

(𝜋★P , 𝑠
★) ← AOtype (1𝜆)

𝐾 ← oTest𝑏★ (𝜋★P , 𝑠
★)

𝑑 ← AOtype (𝜆, nP , 𝐾)
A wins iff. 𝑑 = 𝑏★ and (¬oUReg(P) ∨ ¬oUReg(𝜋 iP .pid)) = ⊤
𝑘 ∪ ⊥ ← CoForceEvolve(·, ·)

Figure 1: The PCS game Exp𝑃𝐶𝑆KE-DECK (𝜆,A) between adversary
A and challenger C, parametrized by the security parameter
𝜆 and nP honest parties. Depending on type, A can query a
set of oracles Otype, including a subset of reveal oracles col-
lectively denoted as oReveal[A .reach], and a subset of hijack-
ing oracles collectively denoted as oHijack[A .breadth].
Breadth: We distinguish between adversaries with stage-specific

key-control access (which only query oHijack.1Stage), and
cross-stage key-control access (theymay also query oHijack.XStage).

Impact: We distinguish between minimal key-control hijacking
(the attackers only modify aEvolve or 𝜏 for one stage), mod-
erate key-control hijacking (the attackers modify aEvolve
or 𝜏 , for multiple, but not all current and future stages), and

extreme key-control hijacking (all current and future stages

are compromised).

Layer: We distinguish between algorithmic key-control access (the
attackers onlymodify aEvolve for each hijacked key-control),
and physical key-control access (also modifying 𝜏 for at least

one hijacking call).

Thus, an attacker making no key-control hijacking queries (com-

patible with Blazy et al.’s framework) will be, for instance, a medium

passive outsider. If this now exerted key-control capacities, it can

become, e.g., a medium passive outsiderwith moderate stage-specific
physical key-control.

3.4 PCS Games & Definition in PCS_AC
Our generalisation and augmentation of notions in [14] enable us

to also elegantly build upon their security definition.

(𝜒, Υ)-PCS security [14]. Informally, this security notion captures

one counting the number of stages from the last key-reveal until

the moment when security is recovered, i.e., when an adversary

only has a negligible advantage to distinguish the real target-key

from a random target-key. Formally, the PCS attacker in [14] will,

depending on its type, have access to different oracles. After the

setup of all the honest parties and the super-user, the adversary will

be free to use its oracles – and at some point, it will have to make

its single oTest query. The attacker will then be free to use its other

oracles and will eventually have to guess whether the bit input to

oTest was 0 or 1. We denote by 𝑠𝑡∗ – the stage at which oTest is
queried, and by 𝑠𝑡 – the last stage before 𝑠𝑡∗ at which the adversary

has revealed a key. The notion of (𝜒, Υ)-PCS security measures the

distance between 𝑠𝑡 and 𝑠𝑡∗, assuming that the adversary only wins

with negligible advantage.

Our PCS Winning & Aborts. In our case, the adversary now has

access to key-controls: for each key 𝑘 and at each stage 𝑠𝑡 , the

adversary can modify whether a party expects an update for that

key (as per our algorithm aEvolve), or it can modify how the party

expects that update to happen, i.e., interactively, unilaterally, etc.

(as per our parameter 𝜏).

In our PCS game, adversaries can now hijack the key-controls

for some stage 𝑠𝑡 and thus win a number of stages “for free”. If

both parties involved in a session are affected by hijacking for a

number of stages, then those stages are counted as trivial wins for

the adversary. But, if only one instance in the exchange is hijacked,

then this might cause the partner to abort; if this happens, the

hijacking is essentially detected, and we say that the adversary lost.

More formally, say our attacker queries oTest at stage 𝑠𝑡∗, and
that 𝑠𝑡 is the last stage before 𝑠𝑡∗ for which the attacker has revealed
keys, or changed the evolution parameters of one instance, but not

the other. Our measure (𝜒, Υ) is then measured as the minimum

between the distance between 𝑠𝑡 and 𝑠𝑡∗ and the distance between

𝑠𝑡 and the stage 𝑠𝑡 , when one of the two partners aborts.

Key Staleness.Whether the protocol heals or not, our adversary

may also impact the expected freshness of keys. We call a key 𝑘
stale, written 𝑘⟲, if the attacker stops it from evolving, although

it should be able to evolve. We do not quantify all the keys which

may have been made stale, but just the one(s) at the lowest level of

the key-hierarchy.

In order to test for staleness, the challenger will simulate, subse-

quently to the attack, some verifications for the evolution of each

key 𝑘 ∈ 𝐾𝐻 from the leaves to the root of 𝐾𝐻 ; such verifications

are simulated, so they do not change the states of the two instances.

More formally, the challenger, which knows the initial key-schedule

and evolution conditions (before the attacker modified them) for

all parties, will simulate successive evolutions, which we denoted

by the following abbreviated “oracle”:

• oForceEvolve(𝜋QP , 𝜋
P
Q): For each key 𝑘 , starting from the leaves

of 𝐾𝐻 and ending at the root, the challenger simulates successive

key-evolutions based on the original protocol’s evolution rules and

the current states of PPQ and its partner in order to learn the earliest

stage at which 𝜋
Q
P is meant to be able to evolve key 𝑘 and actually

manages to do so. The challenger output the first 𝑘 for which this

earliest evolution stage should be non-∞ (an update is possible),

but is in fact∞ (the attack made evolution impossible).

Our Resulting Metric. Thus, protocols will be associated with a

(𝜒, Υ, 𝑘⟲)-PCS value. By default, we will maintain the same metric

as Blazy et al. and say that one scheme provides more PCS-security
in the presence of key-control hijacking than another scheme if the

former’s Υ value is strictly smaller than the latter’s Υ or if for equal
Υ values, the first protocol’s 𝜒 value is smaller than the second’s.

Definition 3 (Extended (𝜒, Υ, 𝑘⟲)-PCS security). Consider a
KE-DECK protocol Π. Assume an adversaryA queries its unique oTest
query for an instance 𝜋QP at some stage 𝑠𝑡∗ = (𝑥∗, 𝑦∗). Let 𝑠𝑡 = (𝑥,𝑦)
be the last stage before the oTest query at which:

• the adversary queried its oReveal.XStage or oReveal.1Stage for
either 𝜋 iP or its matching instance; or
• The two conditions hold for the values (𝑘, 𝑠𝑡, 𝜏, aEvolve) either in
𝜋
Q
P or in its partnering instance 𝜋PQ :

– The adversary has modified either aEvolve or 𝜏 for 𝜋QP or in its
partnering instance 𝜋PQ , but not for both; and

Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol – Conference’17, July 2017, Washington, DC, USA

– The adversary has modified either aEvolve or 𝜏 for both 𝜋QP and
𝜋PQ at the stage immediately preceding 𝑠𝑡 .

Let 𝑠𝑡 = (𝑥,𝑦) be the earliest stage at which either 𝜋QP or its
partnering instance aborts the execution of the protocol session such
that both instances have successfully attained stage 𝑠𝑡 in a matching
state.

We call protocol Π (𝜒, Υ, 𝑘⟲)-PCS secure with key-control hijack-
ing if the following conditions hold:
• Either 𝑠𝑡 , 𝑠𝑡∗, and 𝑠𝑡 are such that 𝑦 −𝑦 < 𝑦∗ −𝑦 or 𝑦 −𝑦 = 𝑦∗ −𝑦
and 𝑥 − 𝑥 < 𝑥∗ − 𝑥 , and then 𝑦 − 𝑦∗ = Υ and 𝑥 − 𝑥∗ = 𝜒 (if the
distance between the abort and unilateral hijacking is smaller than
that between oTest and the unilateral, then we assume healing
occurs at the abort), or
• If 𝑠𝑡 , 𝑠𝑡∗, and 𝑠𝑡 are such that 𝑦 − 𝑦∗ > 𝑦∗ − 𝑦 or 𝑦 − 𝑦∗ = 𝑦∗ − 𝑦
and 𝑥 − 𝑥∗ > 𝑥∗ − 𝑥 , then the two following conditions hold
simultaneously:
– An adversary has a non-negligible advantage to win the game
by testing at stage 𝑠𝑡∗ such that:
∗ If Υ = 0, 𝑥∗ < 𝑥 + 𝜒 and 𝑦∗ = 𝑦;
∗ If Υ > 0, 𝑥∗ is arbitrary and 𝑦∗ < 𝑦 + Υ.

– If the adversary is also allowed to query oReveal.XSid, then A
has a non-negligible chance to win for all instances of party P
which are not yet instantiated, or have not yet reached stage
𝑠𝑡 ′ = (𝑥 ′, 𝑦′) such that:
∗ If Υ = 0, then 𝑥 ′ ≥ 𝜒 and 𝑦′ ≥ 1;
∗ If Υ > 0, then 𝑥 ′ > 1 and 𝑦′ ≥ Υ.

– Finally, the adversary has a negligible advantage to win if oTest
is queried for 𝑠Test other than those specified in the first of these
three simultaneous conditions.

Finally, it holds that the output of the challenger’s run of oForceEvolve
returns 𝑘 .

Let us discuss some aspects of Definition 3.

Firstly, let us look at its intuitive meaning. It says: following a

compromise, the protocol can either take a number of (horizontal

–Υ and vertical – 𝜒) stages before healing, or it can take that many

stages before an abort. Also, Definition 3 equates aborting the

session with healing (since we chose to identify this abortion as a

detection of compromise). This is why, if an abort occurs before

a healing, at some stage 𝑠𝑡 , we count the number of vertical and

horizontal stages between 𝑠𝑡 and the stage of compromise 𝑠𝑡∗ and
define those to be the healing distance for an abort.

Secondly, given the above meaning, let us underline that Defini-

tion 3 does not give any numerical values for stage values 𝑠𝑡∗ and
𝑠𝑡 : these are the stages at which oTest is queried and respectively

when the last major compromise is done before oTest. Their pre-
cise values are arbitrary, so our definition is equivalent to saying

“whatever the values of 𝑠𝑡∗ and 𝑠𝑡, ... are, the bound holds”. Also,

formulations such as “for any value of 𝑠𝑡∗ and 𝑠𝑡, ...” are not the
same and would not make sense, since that would imply that there

are multiple queries of oTest.

4 MECHANISING PCS_AC IN SYMBOLIC TOOLS
Section 3 presented PCS_AC – a computational/cryptographic frame-

work. So, one appeal would be to mechanise PCS_AC in computa-

tional tools such as Squirrel [12]. But, on the one hand, this would be

arguably close to Section 3 and its associated proofs in Appendix B,

whereas what we aim to emphasise next is that several aspects

of PCS_AC make the mechanisation of (an abstraction of) PCS_AC
attractive specifically in symbolic/Dolev-Yao [18] tools; next, we

name such reasons:

(1) Our security notion inside PCS games has discrete measures,

i.e., the healing speed is counted in several steps until security

is restored.

(2) The local, global, medium type of PCS_AC attackers can be

easily modelled via the leaking of keys in specific stages within

a symbolic protocol-model.

(3) Our attackers’ gain/loss in key-evolution controls, i.e., the PCS_AC
parameters 𝜏 and aEvolve in KControls, can be modelled ele-

gantly in symbolic verifiers.

(4) Finally, we use two state-of-the-art symbolic verification tools,

Proverif and Tamarin. The reason for using both is that, re-

cently, each tool introduced distinct ways to model counters,

which is crucial for mechanising PCS_AC, and we also wish

to compare and contrast these recent additions for counter-

modelling by each tool.

Note that this mechanisation of PCS_AC in symbolic/Dolev-Yao

tools, also implies the mechanisation of the framework of Blazy et
al. [14] (since PCS_AC adds application-controls to all its dimensions,

from model, to attacker to security notions).

4.1 Mechanisation PCS_AC Symbolically
We used two state-of-the-art symbolic verification tools, Proverif
and Tamarin, for our symbolic models.

Both modelisations are based, w.l.o.g., on a key hierarchy in

PCS_AC of 3 vertical levels: 𝐾1, 𝐾2, 𝐾3, where 𝐾3 is derived from 𝐾2
and 𝐾2 is derived from 𝐾1.

As per PCS_AC, we do not bound the number of horizontal evo-

lutions on any of these keys.

We model different KDFs between these keys: one allows for

guaranteed, nonce-based freshness at a lower level (e.g.,

𝐾3:=𝐾𝐷𝐹𝑎 (𝐾2, random-nonce)), one does not (e.g., 𝐾3:=𝐾𝐷𝐹𝑏 (𝐾2),
where the freshness of 𝐾3 depends only on the freshness of 𝐾2).

• Note: All our ProVerif and Tamarin files are at [11].

4.2 Mechanisation of PCS_AC in ProVerif
ProVerif [13] is a Dolev-Yao protocol-verifier, fully automated and

supporting an unbounded number of protocol sessions. Its syntax is

based on applied pi-calculus [8]. Within a ProVerif model, events
are predicates on a process’ variables, tagging points in its execu-

tions/traces. Generally, to prove a protocol’s security properties,

these events are then reasoned about using queries.

PCS_AC in ProVerif.We used the ProVerif version 2.05, to mech-

anise PCS_AC.
The file PCS_LISTS.pv [11] contains ourmechanisation of PCS_AC

in ProVerif. This ProVerif model encodes PCS_AC over a three-
level key hierarchy, and unbounded number of horizontal evolu-

tions of keys therein. Its main characteristics are:

(1) To model horizontal key evolutions, we defined a theory for

lists indexed by integers (ProVerif-built-in type 𝑛𝑎𝑡). Then,

each level of the hierarchy is managed via such a user-defined

Conference’17, July 2017, Washington, DC, USA

list: 𝐾1_list, 𝐾2_list, 𝐾3_list. That is, 𝐾𝑝_list[𝑖] keeps the 𝑖-th
value key 𝐾𝑝 . A PCS_AC stage (𝑥,𝑦) is then a tuple (𝐾𝑝_list[𝑖],
𝐾𝑞_list[𝑖], ...) for 𝑝, 𝑞 ∈ {1, 2, 3}, 𝑝 ≠ 𝑞.

(2) As per PCS_AC, the key-refresh “application trigger” at each key-
evolution is controlled by the boolean result of the aEvolve
oracle. To simplify notation, we call this trigger 𝛼 – for 𝐾3 and

we call it 𝛽 – for 𝐾2. So, if 𝛼 is 𝑇𝑟𝑢𝑒 , then the 𝐾3 value evolves

and a new entry will be added to the 𝐾3_list. For simplicity, the

top-level key, 𝐾1, is refreshed at each iteration.

(3) Tomodel the key refresh of each level in the hierarchy, we firstly

use user-defined function (i.e., the ProVerif, letfun construct).
Such a function uses the relevant 𝛼 and 𝛽 flags and the KDFs, to

either derive a new key or look up the previous, old value using

its corresponding key list. The resultant key is then added back

to its list with the current index 𝑖 thus allowing us to keep track

of the key-derivation history.

(4) As per PCS_AC, we need a target-key. The most possibilities

w.r.t. controls/leaks are if we select the lowest key. So, we make

𝐾3 our target-key and allow it to leak at a fixed, but user-defined

point 𝑛, e.g., 𝐾3_𝑙𝑖𝑠𝑡 [𝑛] leaks.
(5) Finally, we formulate ProVerif queries that check the knowl-

edge to post-leakage points on the 𝐾3_list depending on the

different values possible for 𝛼 , 𝛽 and the adversary’s control of

each, as well as the use of the fresh vs. non-fresh KDFs 𝐾𝐷𝐹𝑎
and 𝐾𝐷𝐹𝑏 .

These ProVerif queries show, a la PCS_AC’s security in Def. 3,

under which of these conditions the adversary knows 𝐾3_𝑙𝑖𝑠𝑡 [𝑚]
when he knew𝐾3_𝑙𝑖𝑠𝑡 [𝑛], and what is the compromise length𝑚−𝑛.

Screenshot-examples of queries are given in Appendix C.

Once again, our model allows for an unlimited number of end-

key/horizontal evolutions. It proves in less than 8 minutes on a

laptop with an Intel® Core™ i7-1065G7 CPU @ 1.30GHz (4 cores)

with 32GB RAM.

4.3 Mechanisation of PCS_AC in Tamarin
Tamarin [23] is a Dolev-Yao [18] protocol-verifier, which also sup-

ports an unbounded number of protocol sessions. Tamarin mod-

els are transition systems (TS), whereby the transitions are mod-

elled via rules containing logical predicates (called facts) over user-
defined protocol variables. One can inspect (all or one) possible

executions/traces of the TS via first-order formulae over facts.

PCS_AC in Tamarin. We also used Tamarin [23], version 1.8.0, to

mechanise PCS_AC. The file PCS_LISTS_nats.spthy [11] is our

mechanisation, in Tamarin, of PCS_AC, over a 3-level key hierarchy
and unbounded number of horizontal evolutions of the keys within.

The main characteristics of the model are:

(1) We used the recently added support for integers to emulate

counting, up to some fixed𝑚 (as needed by the PCS winning

conditions in Def 3).

(2) Possible key-leakages were implemented via Tamarin rules

which allow the 𝑖-th value of the target key𝐾3 to be leaked. Con-

cretely, the model includes a “LeakBranch” rule and a “NoLeak-

Branch” rule representing the presence/absence of leakage of

one key at a stage. The transition through these different rules

is controlled using restrictions on the facts in those rules.

(3) To model the key-control options w.r.t. PCS_AC’s KControls
and different KDFs, at each key level, we have two essential

branches, implemented via alternative Tamarin rules: one rule

for a key-update at that level (“do_updateKXBranch”, where KX

represents either 𝐾1, 𝐾2 or 𝐾3, as per the above), another that

re-uses the old key for that level (“doNot_updateKXBranch”).

(4) The 𝑖-th key 𝐾𝑝 is represented by an action fact, “UpdateKX(kx,

index, refreshToken)”, where KX again represents either 𝐾1, 𝐾2
or 𝐾3, index is the 𝑖-th position and the refreshToken indicates

whether or not the key was refreshed or not during that stage

in the model.

We used the above model to demonstrate all that is expected

given Def. 3, i.e., we prove a lemma, “compromise𝐾3_alpha”, that

demonstrates that, once 𝐾3 was leaked, if the attacker controls its

key-evolution trigger 𝛼 , then it can make 𝐾3 stale. See Figure 10 for

this lemma. Similarly, our lemma “compromise𝐾2_beta” proves the

attacker can make 𝐾3 stale, by controlling the upper key-trigger

𝛽 if the KDF is without freshness, 𝐾𝐷𝐹𝑏 . See Figure 11, for this

lemma.

The model requires a user-supplied oracle
3
to facilitate auto-

mated proofs. Again, our model allows for an unlimited number of

end-key/horizontal evolutions. It proves within 40 seconds on the

same aforementioned, commonplace laptop.

4.4 PCS_AC in ProVerif vs. Tamarin
We now compare our modelling and subsequent PCS verification

of PCS_AC in ProVerif vs. Tamarin.

Modelling Counting for PCS_AC’s PCS Conditions. Our first
point of call for symbolically-modelling PCS_AC was the 2.04 ver-

sion of ProVerif, because it provided a new built-in type 𝑛𝑎𝑡 , i.e.,

an approximation for the theory of natural numbers; this was con-

tinued in the current 2.05 version of ProVerif. This allows us
to:

• create user-defined integer-indexed lists, which, together with

ProVerif’s user-defined functions (letfun), permitted us to cre-

ate a natural model of any key-hierarchy and key-evolution on

top of it, i.e., our KE-DECK, its party-instances executing over

stages;

• create 𝑛𝑎𝑡-based user-defined queries over structures to show

the key-evolution can be attacker-controlled for exactly𝑚 stages,

before ceasing to be so;

• encode in a natural way, the winning-conditions (𝑚,𝑛) inside
the PCS games.

Tamarin 1.8.0 now also offers built-in support for natural num-

bers. This allowed us to store counters for the different levels of

key evolutions, similarly to Proverif. However, Tamarin’s lack of

support for lists and conditionals meant that we had to keep track

of these key evolutions via rules and state predicates. This resulted

in lengthier and less readable code.

Modelling PCS_AC’s Stateful Stages. In ProVerif, we used our

own user-defined list theory, with integer indices, for this. ProVerif
also offers a built-in type of 𝑡𝑎𝑏𝑙𝑒 which could have been used to

implement the key look-ups. However, 𝑡𝑎𝑏𝑙𝑒 is private (i.e., all its

3
This is a user-define heuristic to guide the state-exploration in Tamarin’s TS during
its proofs.

Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol – Conference’17, July 2017, Washington, DC, USA

elements stay unknown to the attacker) by default, which did not

suit us. Also, the performance of 𝑡𝑎𝑏𝑙𝑒 proved to be an order of

magnitude slower than our user-defined lists.

In Tamarin, on the other hand, no lists were modelled to keep

track of the key hierarchy, as aforementioned. That said, as men-

tioned in Section 4.3, the action facts “UpdateKX” proved sufficient

to query a key’s position in the model.

Modelling PCS_AC’s Key-Refresh Triggers and Options. Op-
tions such as non-deterministic key-refresh triggers were imple-

mented in ProVerif via parameters in user-defined functions, and

we can then simulate adversarial access to these. As if-then-else
conditionals are also supported in ProVerif, switching between

options is trivial.

Tamarin lacks functions and conditionals. So, to attain the above,
we implemented separated rules for each alternative branch of a

behaviour resulting in a harder-to-read model with duplicated code

sections.

Performance. In Proverif, we first encountered some perfor-

mance issues, which we overcame. Concretely, instead of symbolic

𝑖 variables (see our executability lemma on 𝑖 ,𝑖 + 1) we used con-

crete values (e.g., 3, 4), then Proverif built a partially instantiated

model of a certain depth (e.g., for 4 stages in the horizontal key-

evolutions) and therefore there were an exponential number of

partially-instantiated choices, and it performed badly. So, in the

end, we did not use concrete values, and Proverif transforms the

model entirely into a set of symbolic Horn clauses where resolution

has no tractability issues.

Overall, in terms of performance, both tools proved their respec-

tive queries/lemmas quickly, with Tamarin outperforming ProVerif
due to it is effective, multi-threaded implementation. However, one

proof in Tamarin requires manual intervention
4
.

Thus, both symbolic verification tools were able tomodel PCS_AC.
ProVerif’s letfun constructs, its native support of integers via

𝑛𝑎𝑡 and if-then-else allowed for a more natural encoding. For

this mechanisation, ProVerif was therefore our preferred choice

despite its slower overall performance.

5 APPLYING PCS_AC
We first apply our PCS_AC to the 5G AKMA protocol. Also, our

theorems for AKMA show that PCS_AC exhibits attacks that [14]

could not.

To apply this to AKMA, we first have to introduce it and we do

so in the next Section 5.1.

5.1 5G AKMA & Our AKMA Improvement –
AKMA+

In 5G (5th Generation) mobile networks, a procedure for delegated

authentication was added: i.e., a kind of “Single-Sign-On”-cum-

“OAuth” called the Authentication and Key Management for Ap-
plications based on 3GPP credentials in the 5G Systems, AKMA for

short [5]. Using AKMA, for instance, a driver inside a connected car

securely employs a proprietary navigation system to an e-charging

space or securely pays for road services and tolls automatically,

4
While this takes longer, having the option of manually guiding a proof is actually

one of Tamarin’s strengths.

just using the car’s SIM-card subscribed to a mobile network for

authentication to any of these 3rd-party systems.

Primer on 5G. In Figure 2, we present a simplified overview of

the relevant 5G network entities for AKMA:

(1) the User Equipment (UE) – a device subscribing to mobile

service;

(2) the Radio Access Network (RAN) – the 5G radio “towers/base-

stations” also called gNBs that “ferry” the service to the UEs;

(3) the 5G core [3, 4] – servers implementing the operator’s logic,

split into services: e.g., the Authentication Server Function
(AUSF) and the Access and Mobility Management Function
(AMF) authenticate the UE via the protocol called the 5G
Registration / AKA (Authentication and Key Agreement); the
User Plan Functions (UPFs) are gateways for routing the user

to the internet; Network Exposure Function (NEF) is an API-

based proxy for 5G to allow third-party applications’ queries;

e.g., some of these calls go to the core via the Applications
(AKMA) Anchor Function (AANF);

(4) Application Functions (AFs) – 3rd-party application-servers

leveraging, e.g., the network’s authentication.

AF

UE DNRAN

CORE

AUSF NEF

AMF

AANF

UPF…....

Figure 2: Overview of 5G – see [3, 4].
5G AKMA [5], or simply AKMA, is in fact a delegated authenti-

cation service in 5G: applications (AFs) outside the network “ask”

the core to authenticate UEs. Thereafter, the core will compute a

key called 𝐾𝐴𝐹 (application function key) and deliver it to the AF.

Finally, a UE and an AF server will establish a channel secured with

said key. Figure 13 shows, at the high level, how the AKMA service

have an “inverse” dependency on the main 5G authentication keys,

all the way up to the so-called 𝐾𝐴𝑈𝑆𝐹 established at the end of the

frequent Registration/AKA procedure [5] and sitting “high” in 5G’s

key-hierarchy.

5.1.1 AKMA-relevant Keys: 𝐾𝐴𝐾𝑀𝐴 & 𝐾𝐴𝐹 . The derivations of the
AKMA-relevant keys are given next:

𝐾𝐴𝐾𝑀𝐴 = 𝐾𝐷𝐹 (𝑐𝑜𝑛𝑠𝑡, 𝐾𝐴𝑈𝑆𝐹 , “𝐴𝐾𝑀𝐴”, SUPI) (1)

𝐾𝐴𝐹 = 𝐾𝐷𝐹 (𝑐𝑜𝑛𝑠𝑡, 𝐾𝐴𝐾𝑀𝐴, 𝐴𝐹_𝐼𝐷) (2)

As shown in Figure 13, 𝐾𝐴𝐾𝑀𝐴 is a key computed at the end of Reg-
istration/AKA procedure [2] and 𝐾𝐴𝐹 is computed asynchronously

as part of the AKMA protocol, 𝐾𝐷𝐹 is a hash, 𝑐𝑜𝑛𝑠𝑡 symbolise

hex constant values, SUPI is an ephemeral identifier of the UE,

and 𝐴𝐹_𝐼𝐷 is constructed as 𝐴𝐹_𝐼𝐷 = 𝐴𝐹 | |𝑈𝑎∗ with 𝑈𝑎∗ being
the identifier

5
of the protocol eventually used at the application

level between the UE and an application server associated with

an AKMA Application Function (AF). An example of 𝐴𝐹_𝐼𝐷 is

“hex(name_of_AF) || 0x01 0x00 0x00 0x00 0x02” where “0x01 0x00

5
This is specified in Annex H of 3GPP 33.220 TS [7].

Conference’17, July 2017, Washington, DC, USA

0x00 0x00 0x02” stands for the Ua* security protocol for “HTTP

digest authentication”.

Note A: For a given AF and protocol Ua*, the AF_ID is a constant,

so knowledge/freshness of a new 𝐾𝐴𝐹 is based on the freshness of

its 𝐾𝐴𝐾𝑀𝐴 value.

Note B: Similarly, knowledge of a new 𝐾𝐴𝐾𝑀𝐴 is based on the

knowledge of its 𝐾𝐴𝑈𝑆𝐹 and SUPI value.

5.1.2 Generating the AKMA-relevant Keys. AKMA is run be-

tween a UE, an AF (Application Function) and the core
6
, i.e., the

AAnF (Application Anchor Function).

ETSI

ETSI TS 133 535 V16.0.0 (2020-07)103GPP TS 33.535 version 16.0.0 Release 16

Application Key KAF can continue to be used until its lifetime expires. When the KAF lifetime expires, a new AKMA
Application Key is established based on the current AKMA Anchor Key KAKMA.

6 AKMA Procedures

6.1 Deriving AKMA key after primary authentication
There is no separate authentication of the UE to support AKMA functionality. Instead, it reuses the 5G primary
authentication procedure executed e.g. during the UE Registration to authenticate the UE. A successful 5G primary
authentication results in KAUSF being stored at the AUSF and the UE.

AUSFUE AMF

Primary authentication

Generate A-
KID

Generate
 KAKMA from

KAUSF

Generate A-
KID

UDM

Naanf_AKMA_KeyRegistration Request
(SUPI, A-KID, KAKMA)

Generate
 KAKMA from

KAUSF

AAnF

Naanf_AKMA_KeyRegistration Response

Nudm_UEAuthentication_
Get Request (SUPI/SUCI)

Nudm_UEAuthentication_Get
Response (AV, [AKMA Ind])

Figure 6.1-1: Deriving AKMA root key after primary authentication

During the primary authentication procedure, the AUSF interacts with the UDM in order to fetch authentication
information such as subscription credentials (e.g. AKA Authentication vectors) and the authentication method using the
Nudm_UEAuthentication_Get Request service operation. In the response, the UDM may also indicate to the AUSF
whether AKMA keys need to be generated for the UE. If the AUSF receives the AKMA indication from the UDM, the
AUSF shall store the KAUSF and generate the AKMA Anchor Key (KAKMA) and the A-KID from KAUSF after the primary
authentication procedure is successfully completed.

After AKMA key material is generated, the AUSF shall send the generated A-KID, and KAKMA to the AAnF together
with the UE SUPI using the Naanf_AKMA_KeyRegistration Request service operation. The AAnF shall store the latest
information sent by the AUSF.

NOTE 1: The AUSF need not store any AKMA key material after delivery to the AAnF.

The UE shall generate the AKMA Anchor Key (KAKMA) and the A-KID from the KAUSF before initiating communication
with an AKMA Application Function.

A-KID identifies the KAKMA key of the UE from which other AKMA keys are derived.

A-KID shall be in NAI format as specified in clause 2.2 of IETF RFC 7542, i.e. username@realm. The username part
includes the Routing Identifier and the A-TID (AKMA Temporary UE Identifier), and the realm part shall include
Home Network Identifier.

The A-TID shall be derived from KAUSF as defined in clause A.3.

NOTE 2: The chance of A-TID collision is not zero but practically low as the A-TID derivation is based on KDF
specified in Annex B of TS 33.220 [4]. The detection of A-TID collision as well as potential handling of
collision is not addressed in the present document.

Figure 3: Deriving the 𝐾𝐴𝐾𝑀𝐴 key (Figure 6.1-1 [5]).

ETSI

ETSI TS 133 535 V16.0.0 (2020-07)113GPP TS 33.535 version 16.0.0 Release 16

The key derivation of KAKMA shall be performed using the key derivation function (KDF) specified in TS 33.220 [4].
KAKMA is computed (as per Annex A.2) as KAKMA=KDF (KAUSF, "AKMA", SUPI), where the key derivation parameters
consist of a static string "AKMA", and SUPI.

Since AKMA keys are based on KAUSF from primary authentication run, the AKMA keys can only be refreshed by
running a fresh primary authentication.

6.2 Deriving AKMA Application Key for a specific AF
Figure 6.2-1 shows the procedure used by the AF to request application function specific AKMA keys from 5GC
directly, when the AF is located in the operator's network.

Pre-requisite

AUSF AAnF AFUE

Primary authentication and establishment of KAKMA

1. Application Session Establishment Request (A-KID)

2. Naanf_AKMA_AFKey Request
(A-KID, AF ID)

4. Naanf_AKMA_AFKey
Response

(AF key, Exp time)

3. Derive AF key
from KAKMA

5. Application Session Establishment Response

Figure 6.2-1: KAF generation from KAKMA

Before communication between the UE and the AKMA AF can start, the UE and the AKMA AF needs to know
whether to use AKMA. This knowledge is implicit to the specific application on the UE and the AKMA AF.

1. When the UE initiates communication with the AKMA AF, it shall include the derived A-KID in the Application
Session Establishment request message (see clause 6.1).

2. If the AF does not have an active context associated with the A-KID, then the AF sends a
Naanf_AKMA_AFKey request to AAnF with the A-KID to request the AKMA Application Key for the UE. The
AF also includes its identity (AF Id) in the request. The AAnF shall authorize AF. The AAnF shall check
whether the AAnF can provide the service to the AF based on the configured local policy or based on the
authorization information or policy provided by the NEF/NRF using the AF Id. If succeeds, the following
procedures are executed. Otherwise, the AAnF shall reject the procedure.

The AAnF can check whether the subscriber is authorized to use AKMA by the presence of the AKMA anchor
key K_AKMA that has been received from the AUSF.

If the AAnF is in possession of the AKMA Application Key (KAF), it responds to the AF with the KAF. If not, the
AAnF shall check if it has the UE specific KAKMA key identified by the A-KID.

 If KAKMA is available in AAnF, the AAnF shall continue with step3.

 If KAKMA is not available, the AAnF shall continue with step 4 and send an error response.

3. The AAnF derives the AKMA Application Key (KAF) from KAKMA.

Figure 4: Deriving the 𝐾𝐴𝐹 key (Figure 6.2-1 [5]).

At the end of 5G authentication (i.e., Registration/AKA [2]), an

AKMA-ready UE and the AAnF will both hold a new 𝐾𝐴𝐾𝑀𝐴 key,

one for all AFs it can communicate with; this instance of the𝐾𝐴𝐾𝑀𝐴
key will be indexed under a AKMA Key Identifier (A-KID). See
Figure 3. Based on this 𝐾𝐴𝐾𝑀𝐴 key, the UE and the AF associated

with an A-KID can derive deriving a new 𝐾𝐴𝐹 key. This is shown

in Figure 4 and described
7
as follows.

• The UE sends its A-KID on the AF’s so-called Ua* chan-

nel/protocol.

• The AF sends the AAnF this A-KID and its own identifier,

on the 5G-network’s channels for this.

• When the AANF receives the request, it checks that the

contacting AF can provide service to the UE linked to the

A-KID, based on the UE’s information.

If successful, a new KAF key and its time-to-live (TTL) is sent
by the AAnF to the AF; otherwise, a descriptive error is sent

back, instead.

6
It is run between the AF and the AAnF – if the AF is internal to the operator, and

between the AF, the AAnF and the NEF – otherwise.

7
We describe this w.r.t. revision 17.07 of the 3GPP specifications. The current revision

is 18, yet no difference is of essence here.

• If successful, the AF sends a message to the UE confirming

the start of a new AKMA/Ua* session. If unsuccessful, the

AF sends an error message to the UE with the error cause.

• In case of success, the UE computes the 𝐾𝐴𝐹 key, just as

the core did, using equation (2) above, and the new, 𝐾𝐴𝐹 -

encrypted AKMA/Ua* session can now truly start between

the UE and the AF.

5.1.3 Freshness of theAKMA-relevantKeys. The crux on new/fresh
𝐾𝐴𝐹 s is summarised below:

(1) For a given A-KID, two 𝐾𝐴𝐹 s in a series can be the same,

as they can be issued out of the same 𝐾𝐴𝐾𝑀𝐴 , as the 3GPP

specifications convey: (a) “𝐾𝐴𝐾𝑀𝐴 and A-KID can only be re-
freshed by a new successful primary authentication8” (Section
6.1.1 [5]); (b) “... when a new 𝐾𝐴𝐾𝑀𝐴 is derived, the 𝐾𝐴𝐹 will
not be re-keyed automatically.” (Section 6.4.2 [5]); (c) “ When
the 𝐾𝐴𝐹 lifetime expires and the 𝐾𝐴𝐾𝑀𝐴 has not changed in
AAnF, according to the Annex A.4, the AKMA Application Key
which is established based on the current AKMA Anchor Key
KAKMA is not a new one” (Section 5.2 [5]).

(2) The expiration-time of the 𝐾𝐴𝐹 s can be made longer/shorter

via the third party Ua* protocol, as the 3GPP specifications

convey: (a) “The Ua* protocol shall be able to handle the ex-
piration of KAF”. (Section 4.4.1 [5]); (b) “If the Ua* protocol
supports refresh of 𝐾𝐴𝐹 , the AF may refresh the 𝐾𝐴𝐹 at any
time using the Ua* protocol.” (Section 6.4.3 [5]).

5.1.4 Using AKMA & The Importance of Its 𝐾𝐴𝐹 s. To put certain
discussions w.r.t. AKMA in a concrete context, consider Figure 5

below. Radio nodes connect the UE “out to the internet” via different

gateways (UPFs), which are decided as part of Registration/AKA

and/or handovers [2]. All this traffic is encrypted with keys shared

with between the nodes and the UE. When the UE re-registers upon

a connection loss, or when it changes physical location and enters

the range for new nodes (see Fig. 5), these mobile-traffic encrypting

keys also change (as may do the UPFs); this happens frequently,

especially for a fast-moving UE, such as a car. AKMA brings more

stability to this, by providing dedicated lines of traffic between the

UE and certain servers in the “data network”. For instance, in Fig. 5,

a connected car can use the internet just as any SIM-enabled device,

but also with have an AKMA-provided, dedicated channel to a BMW

server. In this case, BMW holds an AF that runs AKMA with the

UE/car and the core, and BMW also has, e.g., an HTTP server, that

the UE/car has 𝐾𝐴𝐹 encrypted traffic to/from. The protocol run in

the “𝐾𝐴𝐹 -encrypted tunnel” between the UE/car and AF’s/BMW’s

server is the aforesaid𝑈𝑎∗.

5.1.5 AKMA+ – An Idealised Version of AKMA. As per Note A,

Note B and point 1 above, for a new 𝐾𝐴𝐹 to be truly fresh, Reg-

istrations/AKAs ought to happen at least as often as the 𝐾𝐴𝐹 -

regenerations, and this is not guaranteed. But, if we operate in

a distribution of Registration/AKA-calls and of 𝐾𝐴𝐹 regenerations

where the former is always more frequent than the latter, then we

refer to the resulting, idealised AKMA procedure as AKMA+.

8
This means Registration/AKA.

Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol – Conference’17, July 2017, Washington, DC, USA

UE/
SIM-enabled car

gNB 1

gNB 2,
10m away
from gnB1

UPF 1 (gateway)

Data Network (Internet)
UPF 2 (gateway)

General Internet
traffic (e.g., for some
navigation app)

AF-dedicated
UPF (gateway)

General traffic, encrypted
with UE-gNB shared,
access-stratum keys

BMW’s AFKBMW-AF

KBMW-AF KBMW-AF

BMW’s HTTP server
(“HTTP” here is the
so-called the UA*
protocol, in AKMA)

AF traffic

AF trafficAF traffic

AF traffic

AF traffic
AF t

ra
ffi

c

AF traffic, re-encrypted
with KBMW-AF

5G core, incl. AAnF/NEF

KBMW-AF

any gNB

RAN
It decides initial TTL of initial KBMW-AF

It calls for new KBMW-AF

It can keep an old KBMW-AF alive, or ask for a new KBMW-AF,
based on, e.g., “HTTP with authentication” sessions

Figure 5: Using AKMA & 𝐾𝐴𝐹 Keys in Real Life

5.2 Applying the PCS_AC to AKMA and AKMA+

Let P be the set of honest users with unique identifiers, composed

of clients C, server S, and a single super-user Ŝ. In practice, the

super-user Ŝ is the core (e.g., the operator which provides services

to the UE).

Setup. The server chooses the cryptographic suite (e.g., signature
algorithms, KDFs, etc.) to be used during the protocol. We assume

that an existing procedure for the AF to get authenticated by Ŝ
(be it with hardware solution or secure channel establishment) is

used; we thus abstract the authenticating phase and assume that the

correct parties are involved. Notice that a variant of AKMA keeps

the core and AF as a unique component but this configuration is

not considered, as it hides the vulnerability of AF. So we emphasise

that the core and AF are distinct entities.

The server Ŝ generates a key pair (Ŝ.sk, Ŝ.pk) used in the secure-

channel establishment with each party in P. We also abstract this

part and assume that communications between parties and Ŝ are
secure. In particular, we assume that Ŝ and each party in P share a

secret (which is, in practice, done within the SIM of the UE).

Key Generation. Each party P ∈ C ∪ S generates a key-pair

(P .𝑝𝑘, P .𝑠𝑘).
User Registration. Each party P has long-term symmetric key

shared with Ŝ, denoted ltsk(P, Ŝ).
Instance Initialisation. A client 𝐶 ∈ C starts a session with a

server 𝑆 ∈ S by querying the core Ŝ. The key-hierarchy C .𝐾𝐻 is

constructed, then Ŝ initialises the session for 𝑆 thus constructing

S.𝐾𝐻 .
Key Evolution. We abstract the actual sending/receiving phase

and only consider the key evolution within the session.

Key Material. For AKMA, in PCS_AC this is:

• Cross-Session Keys: 𝐾 ;

• Cross-Stage Keys: KAKMA;

• Single-Stage Keys: KAF.

ThePCS-security ofAKMA.HavingmodelledAKMAas a KE-DECK,
and split the key material in the corresponding categories, we can

now analyse its PCS-security.

Theorem 1. Consider the AKMA protocol modelled as a KE-DECK
scheme. In the random oracle model (by replacing the KDFs with ran-
dom oracles), and assuming AKE-security of the channels established
between honest users and an honest Ŝ, AKMA is:

• (∞, 1)-PCS secure against local outsider without key-control;
• (∞, 1, 𝐾𝐴𝐹⟲)-PCS secure against local outsider with single-
stage key-control;
• (∞,∞, 𝐾𝐴𝐾𝑀𝐴⟲)-PCS secure against local outsider with cross-
stage key-control;
• (∞, 1)-PCS secure againstmedium outsider without key-control;
• (∞,∞, 𝐾𝐴𝐹⟲)-PCS secure againstmedium outsider with single-
stage key-control;
• (∞,∞, 𝐾𝐴𝐾𝑀𝐴⟲)-PCS secure against medium outsider with
cross-stage key-control;
• (∞,∞)-PCS secure against insider or global.

The proofs are given in Appendix B.1, each in two steps. First,

we show a lower bound of the metric by explaining an attack (i.e.,
there is no healing faster than this bound). Second, we show that

the security holds beyond the given value. And, for (∞,∞, ·) cases,
we only need to give an actual attack (no healing/security is ever

occurring/recovered).

5.3 PCS_AC onto AKMA+, TLS1.3, and Others
In Theorem 2 (Appendix B.2), we move to not considering the

layer adversarial-trait, as our metric considers the worst case: i.e.,

adversary targets the component with the maximal key control (for

AKMA, this is AAnF, which chooses the time-to-live of KAF). In

tandem, for AKMA, the impact adversarial-trait makes little sense,

since KAF could be set with an endless time-to-live. However, this is

not possible in AKMA+, since there any new KAKMA will produce

a new KAF.
Indeed, PCS_AC can be applied to all protocols with repeated

key-evolutions over a key-hierarchy. The more complex the key-

hierarchy, the more subtle the application controls and the more

attackers’ type plausible, the better can PCS_AC show its value

in systematisation of PCS-driven formal measuring on such an

application.

One use-case that well suits this PCS-versatile setting is TLS1.3

with session resumption, session tickets and key updates. We use

this complex use-case to underline the versatility and usefulness of

PCS_AC. This is shown in Appendix E.

5.4 Verifying AKMA and AKMA+ in the
Symbolic Mechanisation of PCS_AC

In Section 4, we showed for PCS_AC can be mechanised in Tamarin

and/or Proverif. Now, we discuss how that can be applied to AKMA
and AKMA+. To do so, we just needed specialise the key-hierarchy

in ourmechanisation of PCS_AC to that in Section 4.1 (i.e.,𝐾1=𝐾𝐴𝑈𝑆𝐹 ,
𝐾2=𝐾𝐴𝐾𝑀𝐴 , 𝐾3= 𝐾𝐴𝐹); two KDFs in the PCS_AC mechanisation al-

ready adhere to AKMA’s KDFs, a la Notes A and B in Section 5.1.3,

and another has added freshness as needed byAKMA+’s KDFs. Both
for AKMA and AKMA+, we found the same results as in Section 5,

but –this time– via our mechanisation of PCS_AC in Proverif and

Tamarin.

6 IMPLEMENTING AKMA & AKMA+

We show: (1) the first implementation of AKMA; (2) an implementa-

tion ofAKMA+ (Section 5.1.5), which we formally proved (Section 5)

Conference’17, July 2017, Washington, DC, USA

0 250 500 750 1,000
0

4

8

12

16

Iterations

T
i
m
e
(
s
)

AKMAReg

AKMA

Figure 6: AKMA vs AKMAReg Execution Times

to be a PCS-driven improvement of AKMA; (3) an efficiency com-

parison between the two.

Our implementations are on Fraunhofer’s 3GPP-compliant testbed

called Open5GCore [20]. This is not open-source, so we cannot share
all our entire code, but – at [11]– we share parts of it w.r.t. our ex-

periments.

Overview of Open5GCore. Open5GCore is Fraunhofer’s testbed

for 5G networks written in C. The toolkit offers numerous features

of the 5G core. However, with respect to the Network Exposure

Function (NEF), it only offers simplistic capabilities such as quality-

of-service measures (see [21]) and does not support the AKMA

procedure.We augmented Open5GCore’s NEF capabilities by adding
to it the AKMA procedure

9
in line with its latest 3GPP specification

[6].

Adding AKMA to Open5GCore Firstly, we added all the AKMA

protocol-messages to the Open5GCore. This had to be in line with a

YAML file called Nnef_AKMA [1] that specifies how the NEF and AF

interface inside the Open5GCore. This is via are simple API calls,

following a specific format, emulating the YAML definitions. Some

additional details on the YAML files are given in Appendix D.

Secondly, we implemented in C the logic behind these AKMA

messages, i.e., we derived KAF as per [5], using the objects/classes
producing the “authentication vectors” which include the 𝐾𝐴𝑈𝑆𝐹
and 𝐾𝐴𝐾𝑀𝐴 keys.

Adding AKMA+ to Open5GCore To lift AKMA to AKMA+, we
need to add calls to Registration/AKA [2] every time a new KAF is
generated onto Open5GCore Thus, as part of the KAF refresh, we

implemented a call by the AF to the NEF/ AAnF, and in turn, a call

by the AAnF to the AMF, to do Registration/AKA.

AKMA vs. AKMA+ Experimentation
For this comparison, we fixed one UE, one AF, one AFID, one

AKID, and considered that, when needed, full Registration/AKA [2]

takes place. In this context, we compared the bandwidth depre-

ciation (number of packets) in AKMA+ vs. AKMA, as well as the

execution times between the two in 1, 30, 1000 and 1000 runs of

one vs. the other.

Nb. of Packets for 30 Runs

at NEF at UE at AMF Total

AKMA 780 120 116 1016

AKMA+ 780 240 191 1211

Table 1: 5G AKMA vs. AKMA+ Nb. of Packets for 30 Runs

9
In Section 5.1, we presented the AKMA without an NEF, but this is simply a proxy

between AFs and the AANF.

Packets’ number are in Table 1: at the NEF, no change between

the two procedures, since the NEF is not involved in Registra-

tion/AKA; at the UE, 4 more packets per call of AKMA+ vs. AKMA;
at the AMF, 25 packets more

10
.

Figure 6 shows the execution times. There is no perceptible

change between one single call of AKMA and one of AKMA+(11,000
vs. 20,000 microseconds). Yet, AKMA and AKMA+ take respectively:
359,000 and 782,000 microseconds (𝜇s) for 30 executions, 1,110,000

vs. 1,690,000 𝜇s for 100 executions, and 9 mil. vs. 16 mil. 𝜇s for 1000

executions.

Experimentswere run on amulti-threaded installation of Open5GCore
on a Ubuntu 18.04 virtual machine, with an Intel(R) Core(TM) i5

CPU 2.4GHz, and 8GB of RAM.

Disclosure and Possible Adoption. Given what we show for-

mally and experimentally, we propose that AKMA optionally work

as AKMA+. We filed a disclosure form on this with 3GPP, and the

conversations are ongoing.

7 RELATEDWORK
In Sections 1, 3.2, 3.3, we discussed extensively, the differences

between PCS_AC and Blazy et al. [14]. And, in turn, they formally

compare with other known PCS models in [14]: e.g., there are sepa-

rations between them and [16], which we inherit, One can also see

PCS_AC as motivated by a recent PCS work in [19]. It shows that

if active, a messaging-protocol adversary can prevent traditional

PCS “healing”, and even act as a man-in-the-middle indefinitely

and without detection. We take that further and formalise such

adversarial abilities but specifically at the application level, in gen-

eral and not just for messaging, we taxonomise these controls, and

even look at conditions for preventing the attacker to win at such

enhanced PCS games (see Definition 3).

Finally, we note that, w.r.t. to symbolic verification, the AKMA as

an authentication protocol, or from privacy perspectives, has been

looked at very recently: in ProVerif – in [9, 10], and in Tamarin –

in [25]. However, this is was w.r.t. classical Dolev-Yao agreement,

not w.r.t. to key-evolution or PCS, key-evolution PCS as per PCS_AC.

8 CONCLUSIONS
We proposed PCS_AC – a new computational framework for post-

compromise security (PCS), which adds adversarial controls at the

application level. We gave a Dolev-Yao mechanisation of PCS_AC,
in ProVerif and Tamarin. PCS_AC applies to all protocols with re-

peated key-evolutions, in line with what NIST recently calls for [15].

We show-cased PCS_AC on a study of 5G AKMA; we also suggested

a backwards-compatible, PCS-driven improvement called AKMA+,
now under consideration by 3GPP. We implemented and tested

AKMA and AKMA+, on top of Fraunhofer’s Open5GCore. We cap-

tured new and varied PCS dimensions of TLS1.3 with session re-

sumption and key updates, via its casting under PCS_AC in various

ways.

10
Yet, packets at AMF are larger than at the UE.

Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol – Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] 3GPP. YAML OpenAPI Gitlab for 3GPP 5G Core Network (Release 17).

[2] 3GPP. Procedures for the 5G System. Technical Specification (TS) 23.502, 3rd

Generation Partnership Project (3GPP), 10 2021. Version 16.7.0.

[3] 3GPP. 5G Security Assurance Specification (SCAS); Access and Mobility man-

agement Function (AMF). Technical Specification (TS) 33.512, 3GPP, 07 2022.

Version 16.3.0.

[4] 3GPP. 5G Security Assurance Specification (SCAS) for the Session Management

Function (SMF) network product class. Technical Specification (TS) 33.515, 3GPP,

07 2022. Version 16.2.0.

[5] 3GPP. Authentication and Key Management for Applications (AKMA) based on

3GPP credentials in the 5G System. Technical Specification (TS) 33.535, 3GPP, 09

2022. Version 17.

[6] 3GPP. Network Exposure Function Northbound APIs. Technical Specification

(TS) 33.535, 3GPP, 07 2022. Version 17.6.0.

[7] 3GPP. Digital cellular telecommunications system (Phase 2+), ... Technical

Specification (TS) 33.220, 3GPP, 01 2023. Version 17.4.0.

[8] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure com-

munication. ACM Sigplan Notices, 36(3):104–115, 2001.
[9] Gizem Akman, Philip Ginzboorg, Mohamed Taoufiq Damir, and Valtteri Niemi.

Privacy-enhanced AKMA for multi-access edge computing mobility. Comput.,
12(1):2, 2023.

[10] Gizem Akman, Philip Ginzboorg, and Valtteri Niemi. AKMA for Secure Multi-

access Edge Computing Mobility in 5G. In Osvaldo Gervasi, BeniaminoMurgante,

Sanjay Misra, Ana Maria A. C. Rocha, and Chiara Garau, editors, Computational
Science and Its Applications - ICCSA 2022 Workshops - Malaga, Spain, July 4-7,
2022, Proceedings, Part IV, volume 13380 of Lecture Notes in Computer Science,
pages 432–449. Springer, 2022.

[11] Anonymous. Anonymous Files, 2024. https://gitlab.com/Anonymous123AB/pcs-

appl.

[12] David Baelde, Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos, and Solène

Moreau. An interactive prover for protocol verification in the computational

model. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021, pages 537–554. IEEE, 2021.

[13] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.

In IEEE CSFW, 2001.

[14] Olivier Blazy, Ioana Boureanu, Pascal Lafourcade, Cristina Onete, and Léo Robert.

How fast do you heal? a taxonomy for post-compromise security in secure-

channel establishment. In Usenix Security Symposium, 2023.

[15] Lily Chen. Recommendation for key derivation using pseudorandom functions.

online, 2022. https://csrc.nist.gov/pubs/sp/800/108/r1/upd1/final.

[16] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-

glas Stebila. A Formal Security Analysis of the Signal Messaging Protocol.

Proceedings - 2nd IEEE European Symposium on Security and Privacy, EuroS and P
2017, (July):451–466, 2017.

[17] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic

methods in computational analysis of cryptographic systems. J. Autom. Reason.,
46(3-4):225–259, 2011.

[18] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE Trans. Inf.
Theory 29, 29(2), 1983.

[19] Benjamin Dowling and Britta Hale. Secure messaging authentication against

active man-in-the-middle attacks. In 2021 IEEE European Symposium on Security
and Privacy, pages 54–70, 2021.

[20] Fraunhofer. Open5GCore, 2023.

[21] Fraunhofer. Open5GCore: Advanced QoS and Session Management, 2023.

[22] M. Marlinspike and T. Perrin. The double ratchet algorithm, 2016.

[23] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN Prover for the

Symbolic Analysis of Security Protocols. In CAV, pages 696–701, 2013.
[24] Eric Rescorla. The transport layer security (tls) protocol version 1.3. Technical

report, 2018.

[25] Tengshun Yang, ShulingWang, Bohua Zhan, Naijun Zhan, Jinghui Li, Shuangqing

Xiang, Zhan Xiang, and Bifei Mao. Formal Analysis of 5G Authentication and

Key Management for Applications (AKMA). Journal of Systems Architecture,
126:102478, 2022.

A REALISTIC NATURE OF OUR THREAT
MODEL

We now explain our attacker’s capabilities, showing that they are

realistic, pragmatic and necessary today.

• What do we mean by application-layer or application controls,

and how important are they?

Take a key-establishment protocol such as TLS that secures an

application-layer protocol such as HTTP (to make it HTTPS). If the

attacker controls some aspect at the HTTP(S) level, that may affect

their ability to mount or prolong an attack on the session-keys

established via TLS. The same is the case with the Ua* protocol(s)

and the keys established via the AKMA procedure.

Our attacks and PCS proofs on AKMA (see Section B), and our

attacks on ‘TLS1.3 with session tickets’ (see Section E) show just

this.

• To have application controls, the attacker does NOT compro-

mise a device/application entirely or forever.

Our attacker only needs to control some aspect of the application

that deals with refreshing keys (e.g., generation of session tickets).

Concretely, say he/she could have polluted a Javascript that deals

with the TTL of session tickets in TLS. Or, he/she can manipulate a

cookie for some time, until it gets cleared. Also, this control can be

very ephemeral (e.g., an attacker has limited access to a server for

30 mins).

• There two different/independent PCS attacking powers: (1)

manipulating application controls; (2) controlling/compromising

keys in a hierarchy that is used by the application.

Concretely, imagine a key where 𝐾2 depends on 𝐾1, in that of 𝐾1
is refreshed, then 𝐾2 is refreshed. Then, let the attacker have power

over the “application controls” of 𝐾1 but not that of 𝐾2. Then, when

𝐾2 is refreshed, the attacker loses control over 𝐾1 as well, no matter

if the attacker manipulates the control (e.g., TTL) of 𝐾1. That is, 𝐾2
has now been refreshed due to an “upper” key regeneration and

this supersedes manipulations the “application controls” of 𝐾1.

This is what happens in AKMA and in TLS, as per our results

(Section B and Section E), where the keys in a key hierarchy/tree can

evolve independently (via application controls), as well as evolve

due to “upper keys” refreshes.

• In mobile networks, to partly control the application layer

of the UE/phone by keeping it temporarily in an ‘alive/connected’

state, the attacker does not need to run malicious code on the device.

Indeed, if an attacker only wants to keep the phone/UE from

re-registering for a given period (e.g., say a 1h window, whilst they

know some keys are due to be regenerated), all the attacker need

to do is to keep the device in the same rough location for that time

and turn the screen on/off a few times (e.g., spend a coffee break

with the device’s owner, looking at something on their phone every

so often).

B PCS PROOFS FOR AKMA AND AKMA+ IN
PCS_AC

We consider all KDF modelled as random oracles. The security

games are parametrised by a maximal number of stages nx−max in a

given chain with a maximal number of chain ny−max. The maximal

number of clients and servers are denoted |C| and |S| respectively.

https://gitlab.com/Anonymous123AB/pcs-appl
https://gitlab.com/Anonymous123AB/pcs-appl
https://csrc.nist.gov/pubs/sp/800/108/r1/upd1/final

Conference’17, July 2017, Washington, DC, USA

The number of session created by any party is n𝜋 . The set of a key
𝑘 is given by | |.

In all the proofs, we exclude collision from derivated keys. This

comes from two fact: (1) the long-term symmetric keys associated

to each session are computed by Ŝ; and (2) the KDFs are assumed

to have an output space large enough to avoid collisions. So the

input are not colliding and the probability of outputing the same

value with different inputs is negligible.

The proofs are done via game-hops where the initial game corre-

sponds to the security game in Fig. 1, and the last game is designed

such that the adversary has no advantage.

We can describe the first games common to all cases:

G0 : This game corresponds to the original security game (Fig. 1

of Sec. 3.4). The advantage of A is Adv0.
G1 : The challenger guesses which P (from C) and which Q

(from S) are chosen; it also chooses randomly the session from

the maximal number of possible sessions n𝜋 ; it also chooses the

targeted stage (for which A has queried oTest).
If the challenger does not guess correctly, then a random bit is

drawn and the game aborts. Otherwise, the game continue and we

have:

Adv0 ≤ |C| · |S| · n𝜋 · nx−max · ny−max · Adv1

B.1 Proof of Theorem 2 (PCS_AC security for
AKMA)

Local outsiderwithout key-control. This case is actually hard to
model since the metric does depend on external factor than purely

algorithmic/applicative. Indeed, our metric is given through worst-
case scenario which considers the maximal number of compromised

stages.

Let us consider the attack: the adversary reveal KAF which can

or cannot evolved. This imprecision is due to the specification of

AKMA on the derivation of KAF. The latter is derived with the upper
key KAKMA but independently from the case where K𝑖AKMAs old or

new. This means that if KAKMA does not evolve then KAF is always
derived from the same value (which gives always the same KAF).

Notice that the evolution ofKAKMA depends on various factor which

are not considered in our model (other than adversarially ones).

For instance, the user equipment could avoid idle state thus not

executing a Reg/AKA procedure which in turns make the KAKMA
static.

The worst-case scenario is thus from a not evolving KAKMA
(which is possible without A intervening) which produces a static

KAF. This means that the key hierarchy is stuck in a single chain

composed of one KAF without being a key stale per se (the key still

could evolved). Notice that the case with optimal healing could also

occur. This means that the adversary has compromised one stage

(which is, by assumption, possible) but cannot compromise future

stage, and a new KAKMA is generated.

Recall that the adversary is local (the KAF is revealed which

defines the compromised stage), outsider (with no access to the

super-user Ŝ) and without key-control (so the key hierarchy is not

changed by A).

We can now resume to our security games.

G2 : We ensure that the value K1,𝑦★

AF is unique. If there are two

equal values in a session, or in two different (honest) sessions, then

the challenger aborts, returning a random bit.

Recall that the random oracle model implies that a call to the

KDF duplicates the output if the same inputs are used, or if true

randomness repeats (with negligible probability), thus we have:

Adv1 ≤ nx−max ·
(nx−max ·ny−max

2

)
· 2−|KAF | + Adv2.

At this point, we claim that Adv2 ≤ 2
−|KAKMA | · 2−|KAF | . This

means that the adversary has now two possiblities to guess the

target key: guessing from random directly the target key or passing

to the random oracle the value KAKMA.

Notice that the case we cover is the same as a local outsider

with single-stage key-control. In this case, the KAF is specifically

made stale by the adversary (where in the previous case, it was only

assumed in the worst-case).

Local outsider with cross-stage key-control.We now explicitly

give an attack for this adversary, with no heal: since A is local, it

can reveal the KAF and its breadth trait allows it to make the KAKMA
a key stale (i.e., stopping its evolution). This revealed key equates

to new KAF being derived from the same KAKMA.

Notice that this case also covers a medium outsider adversary

with cross-stage key-control (the keys revealed include the previous

one).

Medium outsider without key-control. We show that, in this

case, the protocol is (∞, 1).
First, the adversary can reveal (since it is medium) the KAKMA

thus all derived keys are accessible. This attack shows that a single

full chain is compromised. We now show that no other (future)

stage are compromised.

G2 : We ensure that the value KAKMA for chain𝑦∗+1 is unique. If
there are two equal values in a session, or in two different (honest)

sessions, then the challenger aborts and returns a random bit.

We consider the random oracle model, thus we have: Adv1 ≤
nx−max ·

(nx−max ·ny−max
2

)
· 2−|KAKMA | + Adv2.

At this point, we claim that Adv2 ≤ 2
−|KAKMA | · 2−|ltsk(P,Q) | . This

means that the adversary has now two possiblities to guess the

KAKMA: guessing from random directly or passing to the random

oracle the value ltsk(P,Q) which is a global key.

Insider and Global adversaries. Those cases give the worst heal-
ing (i.e., no healing at all) because the keys revealed (for global)

are too high in the key hierarchy, or the information from the

super-user (i.e., insider) are leaked.

B.2 PCS_AC PCS for AKMA+

Theorem 2. Consider theAKMA+ protocol modelled as a KE-DECK
scheme. The following results hold in the random oracle model (by
replacing the KDFs with random oracles), and assuming the AKE
security of the channels established between honest users and an
honest Ŝ, AKMA+ is:
• (1, 0)-PCS secure against local outsider without key-control;
• (1, 0)-PCS secure against local outsider with single-stage key-
control;
• (∞,∞, 𝐾𝐴𝐾𝑀𝐴⟲)-PCS secure against local outsider with cross-
stage key-control;
• (1, 0)-PCS secure against medium outsider without key-control;

Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol – Conference’17, July 2017, Washington, DC, USA

• (1, 0)-PCS secure against medium outsider with single-stage
key-control;
• (∞,∞, 𝐾𝐴𝐾𝑀𝐴⟲)-PCS secure against medium outsider with
cross-stage key-control;
• (∞,∞)-PCS secure against insider or global.

The proofs follow similarly. These improvements for AKMA+

come from the fact that the control for single-stage key KAF be-

comes useless: when a new KAKMA is generated, a new KAF is also
generated and independently for the time-to-live of KAF. However,
there are two cases that are not improved: (1) for adversaries with

cross-stage key-control, and (2) for insider/global adversaries. In

both cases, the key-control is higher in the key hierarchy than the

target key, so a key-stale attack has a consequence of no healing.

C PROVERIF & TAMARIN CODE SNIPPETS
C.0.1 Proverif Code Snippets. We recall that in ProVerif, for ease

and with loss of generality, we take a vertical hierarchy of three

keys: 𝐾1 feeding into 𝐾2, which feeds into 𝐾3. The “key-refresh ap-

plication trigger” at each key-evolution is controlled by the boolean

result of the 𝑎𝐸𝑣𝑜𝑙𝑣𝑒 oracle in our PCS cryptographic model. To

simplify notation, we call this trigger 𝛼 – for 𝐾3 and we call it 𝛽 –

for 𝐾2.

We give an example of such a query in Figure 7 which shows

that if the 𝐾3 key is known to the attacker and is still the same at

step 3 then it was the same in the previous step 2.

(* This shows that it is possible for the

attacker to know k3 at several stages.

If the attacker knows k3 and k3 has not

changed at iteration 3 then it was also

the same at step 2. *)

query k3:key, st1,st2:stamp, k3list:keylist,

alpha1, alpha2:bool; attacker(k3) &&

event (K3_Refresh (3, k3, st2, alpha2)) ==>

event (K3_Refresh (2, k3, st1, alpha1)).

Figure 7: ProVerif query w.r.t. knowing target-key 𝐾3

The following Proverif code snippets illustrate the knowledge

of the attacker and how the control of either or both of 𝛼 and 𝛽

allows the attacker to control the “freshness” of the target key 𝐾3.

C.0.2 Tamarin Code Snippets. The following code snippets show

Tamarin lemmas expressing similar attacker behaviour and knowl-

edge with respect to 𝛼 , 𝛽 and the “freshness” of the target key

𝐾3.

(* This shows that if the attacker controls

alpha then they can ensure that from the

point of leakage onwards they know the

secret k3 by ensuring that alpha is

false in the next step. *)

query k3:key, st1,st2:stamp, k3list:keylist;

event (effective_leakage_stamped(af, k3

, 1, st1, k3list)) && event (K3_Refresh

(2, k3, st2, false)) .

Figure 8: Proverif query showing attacker controlling 𝛼

(* This shows that if the attacker controls

beta then they can ensure that, provided

they stop k2 from changing, they will

know k3 (once leaked) even if k3 "

refreshes" as k2 remains the same *)

query k2,k3:key, st0,st1,st2:stamp; event (

K2_Refresh (0, k2, st1, false)) (* if k2

is not updated in step 0 *) && event (

K3_Refresh (0, k3, st1, true)) (* and we

force a refresh of k3 *) && event (

K2_Refresh (1, k2, st2, false)) (* and

k2 is not updated in step 1 *) (* then

k3 stays the same even when forced to

refresh *) && event (K3_Refresh (1, k3,

st2, true)) .

Figure 9: Proverif query showing attacker controlling 𝛽

/* This shows that if the attacker controls

alpha then they can ensure that from the

point of leakage onwards they know the

secret k3 */

lemma compromiseK3_alpha:

"All #t01 #t02 #t03 k3 k3_new .

Leak('1', k3, 'True ') @ t01 & UpdateKAF(

k3_new, '1'+'1', 'alpha_0 ') @ t02

& Secret('1'+'1',k3_new) @ t03

==> k3_new=k3

"

Figure 10: Tamarin lemma – attacker controlling 𝛼

D IMPLEMENTATION ON OPEN5GCORE –
DETAILS

The Open5GCore YAML files provide an image of the AF, the AAnF

and/or any part of the core as web servers, that accept HTTP and

Conference’17, July 2017, Washington, DC, USA

/* This shows that if the attacker controls

beta then they can ensure that,

provided they stop K2 from changing before

the point of leakage and afterwards,

They will know K3 no matter if K3 updates or

not as K2 remains the same */

lemma compromiseKAF_beta:

"All #t01 #t02 #t03 #t04 k2 k2_new k3

k3_new .

UpdateK2(k2, '1', 'beta_0 ') @ t01 & Leak('1'

, k3, 'True ') @ t02

& UpdateK2(k2_new, '1'+'1', 'beta_0 ') @ t03

& Secret('1'+'1',k3_new) @ t04

==>

k3_new=k3

"

Figure 11: Tamarin lemma – attacker controlling 𝛽

JSON requests, which, in turn, emulate the 5G procedures (such as

the 3GPP specifications). For instance, a partial JSON request for

AKMA looks like

jsonRequest = {..., "afId" : "23", "aKId" :

"3234"}

and, to trigger the AKMA procedure for the above, we make

a process call with an HTTP POST containing this jsonRequest
inside, e.g.,:

subprocess.Popen(['curl ', '-i', '--http2 -

prior -knowledge ', '-X', 'POST ', '-d',

dumps(jsonRequest), "http://192. zzz.yy.

xx:pppp/3gpp -akma/v1/retrieve", '-H', "

accept: application/json"], stdout=

subprocess.DEVNULL, stderr=subprocess.

STDOUT).

E TLS1.3 WITH SESSION TICKETS IN PCS_AC

E.1 TLS 1.3 with Session-Resumption & Key
Updates

The network protocol TLS (Transport Layer Security) is widely

deployed and aims at providing high level security to Internet traffic.

Throughout the years, various versions of TLS were designed and

standardised. The most recent of these is TLS 1.3, whose design

revolutionised TLS in many ways, including its key-derivation, its

session-resumption mechanisms, and the encryption of part of the

handshake.

In this section, our goal will be to analyse how our framework

applies to TLS 1.3. Although a complete study of this protocol would,

in and of itself, require a full paper, our goal is to provide an intuition

that shows the versatility of our framework in capturing potential

vulnerabilities at various levels of the key-derivation hierarchy.

O

espsk

hsDHE

C.hs

S.hs

C.htk

S.htk

msO

C.ts0

S.ts0

rms

C.tk0

S.tk0

C.tk1

S.tk1
C.ts1

S.ts1

psk

. . .

. . .

Figure 12: Key Schedule & Evolution in TLS 1.3 (simplified)

To begin with, we briefly recall the key-schedule and some

session-resumption/key-update mechanisms of TLS 1.3. This is

by no means a full description of the protocol (indeed, we do not –

for instance – focus at all on the messages exchanged throughout

the protocol). For further details, we direct the interested reader to

RFC 8446, which standardises TLS 1.3.

The key-schedule of TLS 1.3. TLS sessions are run between a

client C and a server S. If the client and server do not share any key
material (for instance material exchanged out of band or through a

previous TLS session), then the client and server engage in a full
TLS handshake. The latter begins with a parameter-, nonce-, and

handshake-element exchange, during which the two parties:

– Agree on cipher-suites and extensions they want to use;

– Choose two nonces which are meant to provide the freshness of

computed keys;

– Exchange key material that enables them both to compute an

ephemeral Diffie-Hellman secret DHE.
These messages are exchanged in clear (unencrypted), and they

are unauthenticated at this stage – and allow C and S to use DHE
in order to compute a handshake secret hs, which is expanded to a

client handshake secret C.hs and a server handshake secret S.hs.
The client and server then derive handshake keys C.htk, S.htk, the
former derived fromC.hs and the latter, derived from S.hs bymeans

of a KDF:

C.htk = HKDF.aXP(C.hs, label.chtk, 𝜏)
S.htk = HKDF.aXP(S.hs, label.shtk, 𝜏),

where 𝜏 is the current session transcript in each case.

The remainder of the handshake between the client and server

is encrypted with these two keys. It serves to:

– Authenticate the server and the (unencrypted) beginning of the

handshake, through a signature;

– Confirm the key material through the exchange of encrypted

finished messages;

– Compute a master secret ms, which will then be expanded to

several secrets, including: the client traffic secret C.ts, the server
traffic secret S.ts, and the resumption master secret rms. An ab-

straction of this key-hierarchy is in the Figure 12. Note that in a

full handshake the top psk is set to 0. The two traffic secrets C.ts
and S.ts are expanded to the client traffic key C.tk and the server

Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol – Conference’17, July 2017, Washington, DC, USA

traffic key S.tk, respectively:

C.tk = HKDF.aXP(C.ts, label.ctk, 𝜏)
S.tk = HKDF.aXP(S.ts, label.stk, 𝜏) .

Updating the traffic key. The traffic secrets in TLS 1.3 are update-

able (in long sessions) by means of a KDF expansion:

C.ts𝑁+1 = HKDF.aXP(C.ts𝑁 , traffic update).

Each party is responsible for its own traffic-secret update (and

for later deleting the stale secret).

Session resumption. If the client and server share some key ma-

terial (through out-of-band exchange or having run a prior, full

TLS session), they can abbreviate their next handshake and use

the shared key-material in the key-schedule. In that abbreviated

handshake psk, which is generated from the resumption master

secret rms of a prior, full TLS session, is used for two purposes:

– It provides implicit mutual authentication as (hopefully) only the

two endpoints of the original handshake (which had authenticated

to each other) should know psk;
– It enables the derivation of an early secret es, a new handshake

secret based on psk and fresh session-specific nonces, and a new

master secret based on hs and a potentially-new DHE value.

There are several ways of resuming a TLS session, which influ-

ence the security of the traffic keys.

The simplest resumption is 0-RTT, in which the psk and a client-
side nonce provide the freshness for the client’s early traffic secret.

In PSK-only session-resumption, the derivation continues, with

the handshake secret (hs) derived from the early secret and the new

session’s transcript (including the two fresh nonces). Subsequently,

key-derivation follows as in a full handshake.

In PSK+DHE session-resumption, the handshake secret is de-

rived from es and the new session’s DHE value, as well as the new

session’s transcript.

Whichever resumption will eventually be chosen, it depends

on the client and server both having access to rms and the value

psk derived from it. There are two ways of allowing the endpoints

access to this shared information:

– The client and server both store these values for each completed

session;

– The client stores resumption data, but the server does not, in-

stead sending it in encrypted form to the server in the form of a

session ticket. The client sends the session ticket to the server in

the abbreviated handshake, allowing S to decrypt it and retrieve

the pre-shared key material.

TLS 1.3 and our framework. TLS 1.3 is a complex and many-

layered protocol, and our framework allows us to focus on multiple

aspects of it. If we consider the key-schedule depicted in Figure 12,

then we can immediately classify the following keys:

– Single-stage keys: the client- and server-traffic secrets C.ts, S.ts,
as well as the traffic keys derived from it are clearly single-stage

keys, which are removed from memory as soon as they are updated

(either through key-updates or by ending the current session). We

can also classify the Diffie-Hellman value DHE, as well as the early
secret es, the handshake secret hs, and the master secretms, which
only need to survive until they are expanded into intermediate,

independent secrets.

– Cross-session keys: the server’s long-term key (used for authenti-

cation) and potentially the long-term secret used to encrypt session

tickets are both cross-session secrets.

This leaves a number of secrets and keys in a grey area.

The resumption values: psk and rms Technically, the pre-shared
key originates from the resumption master secret and ticket nonce

computed in one session, and is used in a subsequent and distinct

session. One can therefore wonder whether psk is then a cross-
session key – which would not allow us to apply our framework

(and key-controls) on it.

However, note that in fact, the values encapsulated by each ticket

are the resumption secret and a session nonce, and the psk is only

derived and used during the next session. In this case, rms becomes

a cross-session key, whereas psk is a single-stage key (derived and

used only at the beginning of the TLS key-schedule).

This is interesting because, as we discuss below, there are ways of

abusing session resumption in order to prolong the attack window

of a passive local outsider.

Ticket lifetime Another interesting aspect of resuming sessions

via session tickets is the notion of ticket lifetime (which can run up

to a week). Technically, ticket lifetime is a property of the session

ticket and not of a specific key; it is a value that accompanies the

rms and ticket-nonce of each ticket, and thus characterizes the

lifetime, not of the rms, but of the psk that will be computed from

it with the aid of the ticket nonce.

This is why in the analysis below the ticket lifetime will be

assumed to be part of the key-controls for the stage-specific psk
key.

E.2 Applying PCS_AC to TLS 1.3
There are multiple ways in which we can apply our framework to

TLS 1.3, and we present some of these below.

The target keys, in each case, are the traffic keys used to encrypt

messages: potentially the early traffic keys (derived from es) or
traffic keys C.tk and S.tk. The goal of the attacker is to maximize

its ability to compromise the target keys by using traditional means

(corruption, key-revelation, active message-sending attacks), as

well as key-control hijacking.

Case 1: key updates. During long TLS sessions, both endpoints

can choose to update their keys as often as they deem necessary.

However, note that this update is unilateral: a client cannot, say,

force a server to update its traffic key, nor vice-versa. Say that the

attacker is able to ensure that the client never updates its traffic

secret, no matter how long a session is. Then, once it compromises

the client’s current traffic key, it is able to break security for all

client-side traffic for the remainder of that (endless) session, even

if the server does update its own traffic secret.

We can model this in our framework as a set of key controls such

that, on the client side, each C.ts has 𝜏 set to 𝑁𝐼 and, by default,

aEvolve is set to true, because in principle the client is always

allowed to evolve its own traffic secrets in an independent, non-

interactive way (same on the server side, with S.ts). In this case,

the hijacker triggers the aEvolve control, setting that flag to false.

This threat can be avoided by, for instance, timing out sessions

that have not been updated with sufficient frequency, in the case of

Conference’17, July 2017, Washington, DC, USA

both partners. This would force the existence of a new session (and

new keys).

Case 2: long psk lifetimes. In RFC 8446, ticket lifetimes are re-

stricted to a week. Thus, an attacker that has learned psk can benefit
from hijacking the following controls:

– Ticket lifetime: the attacker will maximize the lifetime of all tick-

ets, making each psk valid for an entire week; – PSK resumption: By

choosing PSK resumption, an attacker ensures that the key deriva-

tion remains symmetric, and thus predictable for the adversary;

Resumption: The adversary can force servers to always issue (mul-

tiple) resumption tickets at the end of each session, thus continuing

to be able to derive keys from the same, single-stage psk. On the

client side, the adversary can prompt clients to resume sessions

whenever possible.

We capture this threat in our framework by working with psk
as a single-stage key, and then treating ticket-lifetime, resumption-

type, and the prompt for resumption as key-controls that can be

hijacked. A particularly elegant trait of our framework is that we

are able to separate the following key-control actions: (1) forcing

servers to always issue tickets for resumption; (2) forcing clients to

always use resumption; (3) choosing the type of resumption. The

type of resumption chosen by the client, as well as whether or not

it chooses to resume tickets it has received, can be modelled in our

framework as a 𝜏 control (since it prompts whether or not the client

and prompt a particular evolution), whereas the issuing of tickets

can be chalked up as an aEvolve control (since it influences the

existence or not of an evolution). An adversary that is able to hijack

all the three controls is thus a physical-layer attacker, whereas one
that only has partial control is an algorithmic-layer attacker.

Case 3: use of 0-RTT. An attacker could also choose to target the

client’s early traffic key. This is the weakest key in the entire key-

schedule. In the TLS RFC, there are several ways in which server

settings can affect how effectively the attacker can abuse this:

– The RFC specifies that servers should not allow 0-RTT encryption

whenever they suspect psk to be unfresh (i.e., if a ticket is resumed

much later than its issue time). An attacker could benefit from

allowing 0-RTT client traffic even for stale tickets.

– The client can continue encrypting messages with early traffic

keys until the server continues the handshake (and move from 0-

to 1-RTT). An attacker can delay this so, by default, servers choose

not to continue the handshake, thus keeping the communication

1-sided.

Note that, in the former threat, the attacker would only need to

hijack the aEvolve for a single stage, in order to compromise the

early-traffic keys. The latter threat is a single-stage 𝜏-type control on

the server side, allowing the latter to prompt, or not, the evolution

to 1-RTT keys.

E.3 TLS 1.3 (in-)security
Above we gave a description of part of key-hierarchy in TLS 1.3

and its keys’ modelling in our framework, as well as discussed the

application controls (e.g., time to live) that come with them.

Onto these, we can impose different attackers as classified in our

framework and thereforemake and prove different statements about

the PCS_AC-security of TLS 1.3. As we said before, an exhaustive

and fully-explained analysis of this needs a paper in its own right.

So, we give an example of one such PCS_AC-insecurity statement

for TLS 1.3 for a relatively weak attacker in the PCS_AC framework.

Proposition 1. The TLS 1.3 session resumption PSK mode with
ticket is (∞,∞)-PCS secure against an PCS_AC attacker that is: passive,
extreme, physical, local outsider, with stage-specific key-control.

This proposition essentially reflects the intuition behind case

2. The proposition claims that the described adversary (passive,

extreme, physical, local outsider with stage-specific key-control) is

able to destroy the protocol’s healing entirely (∞,∞). The adversary
in question targets the traffic keys of a session between endpoints

C and S which:
– Needs to recover one psk value shared by C and S at some stage 𝑠

(since psk is a stage-specific key, this attacker is local);
– Needs to hijack both key-controls for psk (𝜏 and aEvolve) in order
to ensure that the server always issues exactly one ticket at the end

of each session with C, that the client always resumes, and that it

also only runs PSK-based resumption. This makes the adversary

physical. All stages of evolution of psk need to be toggled, hence

the attacker is extreme. Finally, the key whose controls are hijacked

is stage-specific, thus the attacker has stage-specific controls;
– Does not need to inject any messages into the protocol (is passive),
and is a regular PitM attacker, able to intercept all communications

between C and S (is an outsider).
This attacker can learn all future client- and server-traffic keys

for all future sessions run between C and S, since the endpoint are
configured to keep resuming sessions starting from one psk known
to the attacker. (In PSK-only resumption, knowledge of the psk and
of the nonces suffices to compute both the handshake and the traffic

keys.)

Even a weaker attacker (minimal rather than extreme), which

performs the attack described above, but hijacks the controls only

for one stage of psk is able to damage the security of TLS 1.3,

providing (∞, 2)-PCS_AC security.

F KEY HIERARCHY IN 5G & IN AKMA

Post-Compromise Security with Application-Level Key-Controls
– with a comprehensive study of the 5G AKMA protocol – Conference’17, July 2017, Washington, DC, USA

Key Hierarchy and Refreshing in 5G Registration [as per 3GPP 33.501]

Key Hierarchy and Refreshing in AKMA (application protocol)

[as per 3GPP 33.535]

K

CK, IK

KAUSF

KSEAF

KAMF

KgNB

KAS

UE

UE

UE

UE

Core

Registration

CK’,IK’

KAUSF
Core

Core

Core

Core/

gNB UE

UEgNB

KAKMA

KAUSF

KAKMA

KAF

UE

UE

Core/

AUSF

Aanf

AF

UE

AKMA

Registration

….

Figure 13: Key-Hierarchy in 5G (Left) & AKMA (Right)

	Abstract
	1 Introduction
	2 Background
	2.1 PCS Notions

	3 PCS_AC: Application-Driven PCS Metric
	3.1 Key-evolution Protocols with Key-Control
	3.2 Adversarial Model
	3.3 Taxonomy of Adversaries
	3.4 PCS Games & Definition in PCS_AC

	4 Mechanising PCS_AC in Symbolic Tools
	4.1 Mechanisation PCS_AC Symbolically
	4.2 Mechanisation of PCS_AC in ProVerif
	4.3 Mechanisation of PCS_AC in Tamarin
	4.4 PCS_AC in ProVerif vs. Tamarin

	5 Applying PCS_AC
	5.1 5G AKMA & Our AKMA Improvement – AKMA+
	5.2 Applying the PCS_AC to AKMA and AKMA+
	5.3 PCS_AC onto AKMA+, TLS1.3, and Others
	5.4 Verifying AKMA and AKMA+ in the Symbolic Mechanisation of PCS_AC

	6 Implementing AKMA & AKMA+
	7 Related Work
	8 Conclusions
	References
	A Realistic Nature of Our Threat Model
	B PCS Proofs for AKMA and AKMA+ in PCS_AC
	B.1 Proof of Theorem 2 (PCS_AC security for AKMA)
	B.2 PCS_AC PCS for AKMA+

	C ProVerif & Tamarin Code Snippets
	D Implementation on Open5GCore – Details
	E TLS1.3 with Session Tickets in PCS_AC
	E.1 TLS 1.3 with Session-Resumption & Key Updates
	E.2 Applying PCS_AC to TLS 1.3
	E.3 TLS 1.3 (in-)security

	F Key Hierarchy in 5G & in AKMA

