
A Faster Cryptographer’s Conspiracy Santa?

Xavier Bultela, Jannik Dreierb, Jean-Guillaume Dumasc, Pascal Lafourcaded

aUniversité d’Orléans, LIFO, Institut National des Sciences Appliquées Centre Val de Loire,
88 boulevard Lahitolle CS 60013 - 18022 Bourges, cedex, France

bUniversité de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
cUniversité Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS 5224, 700 avenue

centrale, IMAG - CS 40700, 38058 Grenoble, cedex 9, France
dUniversity Clermont Auvergne, LIMOS, CNRS UMR 6158, Campus Universitaire des

Cézeaux, 1 rue de la Chebarde, 63170 Aubière, France

Abstract

In Conspiracy Santa, a variant of Secret Santa, a group of people offer each other
Christmas gifts, where each member of the group receives a gift from the other
members of the group. To that end, the members of the group form conspiracies,
to decide on appropriate gifts, and usually divide the cost of each gift among
all participants of that conspiracy. This requires to settle the shared expenses
per conspiracy, so Conspiracy Santa can actually be seen as an aggregation of
several shared expenses problems.

First, we show that the problem of finding a minimal number of transaction
when settling shared expenses is NP-complete. Still, there exist good greedy
approximations. Second, we present a greedy distributed secure solution to
Conspiracy Santa. This solution allows a group of n people to share the expenses
for the gifts in such a way that no participant learns the price of his gift, but
at the same time notably reduces the number of transactions to 2 · n+ 1 with
respect to a näıve aggregation of n · (n − 2). Furthermore, our solution does
not require a trusted third party, and can either be implemented physically (the
participants are in the same room and exchange money using envelopes) or, over
Internet, using a cryptocurrency.

Keywords: Sharing expenses, Conspiracy Santa, Secret Santa, Secure
Multi-Party Computation, Cryptocurrency, Physical Cryptography,
Privacy-preserving Protocols, Formal Security Models

?This research was conducted with the support of the FEDER program of 2014-2020, the
region council of Auvergne-Rhône-Alpes, the support of the “Digital Trust” Chair from the
University of Auvergne Foundation, the Indo-French Centre for the Promotion of Advanced
Research (IFCPAR), the Center Franco-Indien Pour La Promotion De La Recherche Avancée
(CEFIPRA) through the project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted
Programme, and the OpenDreamKit Horizon 2020 European Research Infrastructures project
(#676541).

Preprint submitted to Elsevier

http://opendreamkit.org
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html

1. Introduction

Secret Santa is a Christmas tradition, where members of a group are randomly
assigned to another person, to whom they have to offer a gift. The identity
of the person offering the present is usually secret, as well as the price of the
present. Moreover, the participants often determine a common bound for the
gift’s prices.

In Conspiracy Santa, a variant of Secret Santa, for each participant, the other
members of the group collude and jointly decide on an appropriate gift. The gift
is then usually bought by one of the colluding participants, and the expenses
are shared among the colluding participants.

In this setting, the price of the gift must remain secret and, potentially, also
who bought the present. At the same time, sharing the expenses usually results
in numerous transactions. Existing results in the literature (e.g., [3, 4, 5, 13])
aim at minimizing the number of transactions, but they assume that all expenses
are public, that all participants are honest, and that communications are safe.
Our goal is instead to propose a secure Conspiracy Santa algorithm for paranoid
cryptographers that do not want to disclose the prices. Further, they want to
keep their privacy at all cost, so they might rely on external third parties but
only in case they do not need to trust them.

1.1. Contributions

Our results can be split into the following 3 contributions:

• We show that the general problem of finding a solution with a minimal
number of transactions when sharing expenses (Shared Expenses Problem,
or SEP) is NP-complete.

• We provide secure protocols for Conspiracy Santa for arbitrary n partici-
pants. The algorithms ensure that no participant learns the price of his
gift, nor who bought it. Moreover, the algorithms reduce the number
of transactions necessary to 3 · n or 2 · n + 1 (depending on the largest
authorized amount for a given transaction) compared to a näıve solution
of n · (n− 2).

• Our secure algorithms are entirely distributed and do not require any
trusted third party. To also realize the payments in a distributed fashion,
a secure peer-to-peer cryptocurrency can be used. Additionally, we present
a physical payment solution where all participants need to be in the same
place, using envelopes and bank notes.

Our algorithms can also be used in the case where expenses are shared within
multiple groups. There, some people belong to several of these groups and the
goal is to reduce the number of transactions while still ensuring privacy: all
participants only learn about the expenses of their groups, not the other groups.
One can also see this problem as a variant of the dining cryptographers [8].
However, instead of respecting the cryptographers’ right to anonymously invite

2

everybody, we here want to respect the cryptographers’ right to privately share
expenses of multiple diners with different groups.

Table 1 summarizes the number of transactions, as well as the order of
magnitude of the largest amount per transaction, required for the different
algorithms considered in order to realize a conspiracy Santa.

Algorithm Peer-to-peer Transactions
Largest amount
per transaction

n instances of SEP 4 n · (n− 2) constant
With a trusted third-party 8 n constant
Here (Protocols 1, 2, 3) 4 3 · n constant
Here (Protocols 1, 6, 7) 4 2 · n+ 1 linear

Table 1: Number of transactions for Conspiracy Santa

With respect to the conference version of this paper [7], we here provide
the faster algorithm requiring only 2 · n+ 1 transactions, instead of 3 · n. With
respect to an upper bound B on the price of any gift, in this faster protocol, the
amount of each transaction can then grow up to n ·B, where it stayed below B
in our other protocol. We also provide a physical variant as well as complexity
and security proofs for this novel protocol.

1.2. Outline

The remainder of the paper is structured as follows: in Section 2, we analyze
the complexity of the general problem of sharing expenses. In Section 3, we
present our protocol to solve the problem of privately sharing expenses in
Conspiracy Santa, in a peer-to-peer setting. We also discuss further applications
of our solution, and how to realize the anonymous payments required by the
algorithm, either physically or online. In Section 4, we then present our second
algorithm, with less transactions. We finally conclude in Section 5.

2. The Shared Expenses Problem and its Complexity

Before analyzing the Conspiracy Santa problem in more detail, we first discuss
the problem of settling shared expenses with a minimal number of transactions.
This problem frequently arises, for example when a group of security researchers
attends a FUN conference and wants to share common expenses such as taxis,
restaurants etc. Reducing the overall number of transactions might then reduce
the overall currency exchange fees paid by the researchers.

In such a case, each participant covers some of the common expenses, and
in the end of the conference, some transactions are necessary to ensure that all
participants payed the same amount. Note for this first example, there are no
privacy constraints, as all amounts are public.

Example 1. Jannik, Jean-Guillaume, and Pascal attended FUN’16. The first
night, Jannik payed the restaurant for 155 e, and Jean-Guillaume the drinks at

3

the bar for 52 e. The second day Pascal payed the restaurant and drinks for a
total of 213 e.

The total sum is then 155 + 52 + 213 = 420 e, meaning 140 e per person.
This means that Jannik payed 140 − 155 = −15 e too much, Jean-Guillaume
needs to pay 140−52 = 88 e more, and Pascal has to receive 140−213 = −73 e.
In this case, the optimal solution uses two transactions: Jean-Guillaume gives
15 e to Jannik, and 73 e to Pascal.

There are numerous applications implementing solutions to this problem (e.g.,
[3, 4, 5]), but it is unclear how they compute the transactions. Moreover, in these
applications all expenses are public, making them unsuitable for Conspiracy
Santa.

David Vávra wrote a master’s thesis [13] about a similar smartphone ap-
plication that allows to settle expenses within a group. He discusses a greedy
approximation algorithm (see below), and conjectures that the problem is NP-
complete, but without giving a formal proof. We start by formally defining the
problem.

Definition 1. Shared Expenses Problem (SEP).

Input: Given a multiset of values K = {k1, . . . , kn} such that
∑n
i=1 ki = 0,

where a positive ki means that participant i has to pay money, and a
negative ki means that i has to be reimbursed.

Question: Is there a way to do all reimbursements using (strictly) less than
n− 1 transactions?

Note that there is always a solution using n − 1 transactions using a greedy
approach: given the values in K = {k1, . . . , kn}, let i be the index of the
maximum value of K (i = arg maxi(ki)) and let j be the index of the minimum
value of K (j = arg minj(kj)), we use one transaction between i and j such
that after the transaction either the participant i or j ends up at 0. I.e., if
|ki| − |kj | > 0, then the participant j ends up at 0, otherwise the participant i
ends up at 0. By then recursively applying the same procedure on the remaining
n− 1 values, we can do all reimbursements. Overall, this greedy solution uses
n− 1 transactions in the worst case.

It is easy to see that SEP ∈ NP : guess a list of (less than n−1) transactions,
and verify for each participant that in the end there are no debts or credits left.

We show that SEP is NP-complete, for this we use a reduction from the
Subset Sum Problem [11] which can be seen as a special case of the well known
knapsack problem [10].

Definition 2. Subset Sum Problem (SSP)

Input: Given a multiset of values K = {k1, . . . , kn}.

Question: Is there a subset K ′ ⊆ K such that
∑
k′∈K′ k

′ = 0?

The Subset Sum Problem is known to be NP-complete (see, e.g., [9]).

4

Theorem 1. The Shared Expenses Problem is NP-complete.

Proof. Consider the following reduction algorithm:
Given a Subset Sum Problem (SSP) instance, i.e., a multiset of values

K = {k1, . . . , kn}, compute s =
∑
k∈K k. If s = 0 then return yes, otherwise

let K ′ = K ∪ {−s} and return the answer of an oracle for the Shared Expenses
Problem for K ′.

It is easy to see that the reduction is polynomial, as computing the sum is in
O(n). We now need to show that the reduction is correct. We consider the two
following cases:

• Suppose the answer to the SSP is yes, then there is a subset K ′′ ⊆ K such
that

∑
k∈K′′ k = 0. If K ′′ = K, then the check in the reduction is true, and

the algorithm returns yes. If K ′′ 6= K, then we can balance the expenses
in the sets K ′′ and K ′ \ K ′′ independently using the greedy algorithm
explained above. This results in |K ′′| − 1 and |K ′| − |K ′′| − 1 transactions
respectively, for a total of |K ′| − |K ′′| − 1 + |K ′′| − 1 = |K ′| − 2 < |K ′| − 1
transactions. Thus there is a way to do all reimbursements using strictly
less than |K ′| − 1 transactions, hence the answer will be yes.

• Suppose the answer to the SSP is no, then there is no subset K ′′ ⊆ K such
that

∑
k∈K′′ k = 0. This means that there is no subset K3 ⊆ K ′ such that

the expenses within this set can be balanced independently of the other
expenses. To see this, suppose it were possible to balance the expenses
in K3 independently, then we must have

∑
k∈K3

k = 0, contradicting the
hypothesis that there is no such subset (note that w.l.o.g. K3 ⊆ K, if it
contains the added value one can simply choose K ′ \K3).

Hence any way of balancing the expenses has to involve all n participants,
but building a connected graph with n nodes requires at least n− 1 edges.
Thus there cannot be a solution with less than n− 1 transactions, and the
oracle will answer no.

2

3. Cryptographer’s Conspiracy Santa

Consider now the problem of organizing Conspiracy Santa, where no partici-
pant shall learn the price of his gift. Obviously we cannot simply apply, e.g., the
greedy algorithm explained above on all the expenses, as this would imply that
everybody learns all the prices.

More formally, an instance of Conspiracy Santa with n participant consists
of n shared expenses problem (sub-SEP), each with n − 1 participants and
with non-empty intersections of the participants. In each sub-SEP, the n − 1
participants freely discuss, decide on a gift, its value vi and who pays it; then

5

agree that their share for this gift is vi/(n − 1). Overall the share of each
participant j is ∑n

i=1,i6=j vi

n− 1
.

A participants balance pj is this share minus the values of the gifts he bought.
A simple solution would be to use a trusted third party, but most cryptogra-

phers are paranoid and do not like trusted third parties. A distributed solution
would be to settle the expenses for each gift within the associated conspiracy
group individually, but this then results in n instances of the problem, with n−2
transactions each (assuming that only one person bought the gift), for a total of
n · (n− 2) transactions.

Moreover, the problem becomes more complex if several groups with non-
empty intersections want to minimize transactions all together while preserving
the inter-group privacy.

Example 2. Example 1 continued. For the same conference, FUN’16, Jannik,
Jean-Guillaume and Xavier shared a taxi from the airport and Jean-Guillaume
paid for a total of 60e, that is 20e per person. There are two possibilities. Either
Jannik and Xavier make two new transactions to reimburse Jean-Guillaume. Or,
to minimize the overall number of transactions, they aggregate both accounts,
i.e. those from Example 1 with those of the taxi ride. That is [−15, 88,−73, 0] +
[20,−40, 0, 20] = [5, 48,−73, 20]. Overall Jannik thus gives 5 e to Pascal, Jean-
Guillaume reduces his debt to Pascal to only 48e and Xavier gives 20 e to Pascal.
The security issue, in this second case, is that maybe Jannik and Jean-Guillaume
did not want Xavier to know that they were having lunch with Pascal, nor that
they had a debt of more than 20 e, etc.

In the next part, we present our solution for the generalization of Conspiracy
Santa as the aggregation of several shared expenses problems with non-empty
intersections between the participants. This solution uses 3 · n transactions,
preserves privacy, and does not require a trusted third party.

3.1. A Distributed Solution using Cryptocurrencies
Assumptions.

1. We suppose that all participants know a fixed upper bound B for the
value of any gift.

2. We suppose that each participant balance is an integral number. A
simple solution for this is to express everything in cents (¢), and make
users agree that shares could be unevenly distributed up to a difference of
one cent.

3. We consider semi-honest participants in the sense that the participants
follow honestly the protocol, but they try to exploit all intermediate
information that they have received during the protocol to break privacy.

Apart from the setup, the protocol has 3 rounds, each one with n transactions,
and one initialization phase.

6

Initialization Phase. In the setup phase, the participants learn the price of the
gifts in which they participate and can therefore compute their overall balance,
pi. They also setup several anonymous addresses in a given public transaction
cryptocurrency like Bitcoin [1], ZCash [6] or Monero [2].

Finally the participants create one anonymous address which is used as a
piggy bank. They all have access to the secret key associated to that piggy bank
address. For instance, they can exchange encrypted emails to share this secret
key. Protocol 1 presents the details of this setup phase.

Protocol 1 SEP broadcast setup

Require: An upper bound B on the value of any gift;
Require: All expenses.
Ensure: Each participant learns his balance pi.
Ensure: Each participant creates 1 or several anonymous currency addresses.
Ensure: A shared anonymous currency address.

1: One anonymous currency address is created and the associated secret key is
shared among all participants.

2: for each exchange group do
3: for each payment within the group do
4: broadcast the amount paid to all members of the group;
5: end for
6: for each participant in the group do
7: Sum all the paid amounts of all the participants;
8: Divide by the number of participants in the group;
9: This produces the in-group share by participant.

10: end for
11: end for
12: for each overall participant do
13: Add up all in-group shares;
14: Subtract all own expenses to get pi;
15: if pi < 0 then
16: Create bpiB c anonymous currency addresses.
17: end if
18: end for

First Round. The idea is that the participants will round their debts or credits
so that the different amounts become indistinguishable. For this, the participants
perform transactions to adjust their balance to either 0, B or a negative multiple
of B. The first participant randomly selects an initial value between 1 and
B ¢, and sends it to the second participant. This transaction is realized via
any private payment channel between the two participants. It can be a physical
payment, a bank transfer, a cryptocurrency payment, . . . , as long as no other
participant learns the transferred amount. Then the second participant adds

7

his balance to the received amount modulo B, and forwards the money1 to the
next participant, and so on. The last participant also adds his balance and
sends the resulting amount to the first participant. In the end, all participants
obtain a balance of a multiple of B, and the random amount chosen by the
first participant has hidden the exact amounts. The details are described in
Protocol 2.

Protocol 2 Secure rounding to multiple of the bound

Require: An upper bound B on the value of any gift;
Require: Each one of n participants knows his balance pi;
Require:

∑n
i=1 pi = 0.

Ensure: Each one of n participants has a new balance pi, either 0, B or a
negative multiple of B;

Ensure:
∑n
i=1 pi = 0;

Ensure: Each transaction is between 1 and B ¢;
Ensure: The protocol is zero-knowledge.

1: P1: t1
$←− [1..B] uniformly sampled at random;

2: P1: p1 = p1 − t1;
3: P1 sends t1 ¢ to P2; . Random transaction 1..B on a secure channel
4: P2: p2 = p2 + t1;
5: for i = 2 to n− 1 do
6: Pi: ti = pi mod B;
7: Pi: if ti = 0 then ti = ti +B; end if . 1 ≤ ti ≤ B
8: Pi: pi = pi − ti;
9: Pi sends ti ¢ to Pi+1; . Random transaction 1..B on a secure channel

10: Pi+1: pi+1 = pi+1 + ti;
11: end for
12: Pn: tn = pn mod B;
13: Pn: if tn = 0 then tn = tn +B; end if . 1 ≤ tn ≤ B
14: Pn: pn = pn − tn;
15: Pn sends tn ¢ to P1; . Random transaction 1..B on a secure channel
16: P1: p1 = p1 + tn;

Second Round. The second and third rounds of the protocol require anonymous
payments, for which we use anonymous cryptocurrency addresses. These two
rounds are presented in Protocol 3, where parfor is a notation for parallel
execution of a for command where the order is not important. In the second
round, every participant makes one public transaction of B ¢ to the piggy bank.

Third Round. Each creditor recovers their assets via bpiB c public transactions of
B ¢ from the piggy bank. Note that if a participant needs to withdraw more
than B ¢ he needs to perform several transactions. To ensure anonymity, he

1up to B, or such that its credit becomes a multiple of B.

8

Protocol 3 Peer-to-peer secure debt resolution

Require: An upper bound B on the value of any gift;
Require: n participants each with a balance pi, either 0, B or a negative

multiple of B.
Ensure: All balances are zero;
Ensure: The protocol is zero-knowledge.

1: parfor i = 1 to n do . Everybody sends B to the piggy bank
2: Pi: pi -=B;
3: Pi sends B ¢ to the shared anonymous address; . Public transaction of
B

4: end parfor
5: parfor i = 1 to n do
6: if pi < 0 then . Creditors recover their assets
7: parfor j = 1 to −piB do
8: Pi makes the shared anonymous address pay B¢ to one of his own

anonymous addresses; . Public transaction of B
9: end parfor

10: Pi: pi = 0.
11: end if
12: end parfor

needs to use a different anonymous address for each transaction. In the end, the
account is empty and the number of transactions corresponds exactly to the
number of initial transactions used to credit the piggy bank’s account.

Theorem 2. For n participants, Protocols 1, 2, 3 are correct and, apart from
the setup, require 3 · n transactions.

Proof. Including the piggy bank, all the transactions are among participants,
therefore the sum of all the debts and credits is invariant and zero. There
remains to prove that in the end of the protocol all the debts and credits are
also zero. The value of any gift is bounded by B, thus any initial debt for any
gift is at most B/(n− 1). As participants participate to at most n− 1 gifts, the
largest debt is thus lower than B ¢. Then, during the first round, all participants,
except P1, round their credits or debts to multiples of B. But then, by the
invariant, after the first round, the debt or credit of P1 must also be a multiple
of B. Furthermore, any debtor will thus either be at zero after the first round
or at a debt of exactly B ¢. After the second round any debtor will then be
either at zero or at a credit of exactly B ¢. Thus after the second round only the
piggy bank has a debt. Since the piggy bank received exactly n ·B ¢, exactly n
transactions of B ¢ will make it zero and the invariant ensures that, after the
third round, all the creditors must be zero too. 2

Remark 1. It is important to use a cryptocurrency such as Bitcoin, Monero or
ZCash in order to hide both the issuer and the receiver of each transaction in
the third round. This ensures that nobody can identify the users.

9

Note that when using Bitcoin, users can potentially be tracked if the addresses
are used for other transactions. Using Monero or Zcash can offer more privacy
since the exchanged amount can also be anonymized. Moreover, to avoid leaking
the fact that some persons need to withdraw B¢ multiple times, and are thus
doing multiple transaction at the same time, all the withdrawals should be
synchronized. If exact synchronization is difficult to achieve, one can decide
on a common time interval, e.g., an hour, and all the transactions have to be
done at random time points during this interval, independently, whether they
are executed from the same or a different participant.

Example 3. We now have a look at the algorithm for our example with Jannik,
Jean-Guillaume, Pascal and Xavier. As in Example 2, the initial balance vector
is [5, 48,−73, 20]2. They decide on an upper bound of B = 50 e (note that to
provably ensure exactly 3 · n = 12 transactions they should take an upper bound
larger than any expense, that is larger than 213 e, but 50 is sufficient for our
example here). For the first round, Jannik randomly selects 1 ≤ t1 = 12 ≤ 50
and makes a first private transaction of t1 = 12 e to Jean-Guillaume. Jean-
Guillaume then makes a private transaction of t2 = 12 + 48 mod 50 = 10 e
to Pascal; Pascal makes a private transaction of t3 = 10− 73 mod 50 = 37 e
to Xavier; who makes a private transaction of t4 = 37 + 20 mod 50 = 7 e to
Jannik. All these transactions are represented in Figure 1. The balance vector
is thus now [0, 50,−100, 50], because for instance Jean-Guillaume had a balance
of 48 e, received 12 e from Jannik and sends 10 e to Pascal, hence his new
balance is 48 + 12− 10 = 50 e. Everybody sends 50 e to the piggy bank address,
so that the balance vector becomes [−50, 0,−150, 0]. Finally there are four 50 e
transactions, one to an address controlled by Jannik and three to (different)
addresses controlled by Pascal. These two last rounds are illustrated in Figure 2.
Note that we have exactly n = 4 transactions per round.

3.2. Security Proof

We now provide a formal security proof for our protocol. We use the
standard multi-party computations definition of security against semi-honest
adversaries [12]. As stated above, we consider semi-honest adversaries in the
sense that the entities run honestly the protocols, but they try to exploit all
intermediate information that they have received during the protocol.

We start by formally defining the indistinguishability and the view of an
entity.

Definition 3 (Indistinguishability). Let η be a security parameter and Xη

and Yη two distributions. We say that Xη and Yη are indistinguishable, denoted
Xη ≡ Yη, if for every probabilistic distinguisher D we have:

Pr[x← Xη : 1← D(x)]− Pr[y ← Yη : 1← D(y)] = 0

2In our running example the values are integral numbers in euros, so for simplicity we
continue in euros instead of cents as in the protocol description.

10

J: 5 J-G: 48

P: -73X: 20

t1 = 12

12 e

12 + 48 = 10 mod 50

10− 73 = 37 mod 50

37 + 20 = 7 mod 50

Figure 1: First round (private transactions) of Example 3 (starting at t1 = 12, ending with
5 − 12 + 7 = 0 mod 50).

J: 0 J-G: 50

P: -100X: 50

Piggy Bank

50 e 50 e

50 e50 e

J: -50 J-G: 0

P: -150X: 0

Piggy Bank

50 e

50 e

50 e

50 e

Figure 2: On the left: second round of Example 3. On the right: third round of Example 3.
Dotted arrows represent anonymous transactions, in particular Pascal uses three different
anonymous addresses.

Definition 4 (view of a party). Let π(I) be an n-parties protocol for the
entities (Pi)1≤i≤n using inputs I = (Ii)1≤i≤n. The view of a party Pi(Ii) (where
1 ≤ i ≤ n) during an execution of π, denoted viewπ(I)(Pi(Ii)), is the set of all
values sent and received by Pi during the protocol.

To prove that a party P learns nothing during execution of the protocol, we
show that P can run a simulator algorithm that simulates the protocol, such
that P (or any polynomially bounded algorithm) is not able to differentiate an
execution of the simulator and an execution of the real protocol. The idea is
the following: since the entity P is able to generate his view using the simulator
without the secret inputs of other entities, P cannot extract any information
from his view during the protocol. This notion is formalized in Definition 5.

Definition 5 (security with respect to semi-honest behavior). Let π(I)
be an n-parties protocol between the entites (Pi)1≤i≤n using inputs I = (Ii)1≤i≤n.

11

We say that π is secure in the presence of semi-honest adversaries if for each
Pi (where 1 ≤ i ≤ n) there exists a protocol Simi(Ii) where Pi interacts with a
polynomial time algorithm Si(Ii) such that:

viewSimi(Ii)(Pi(Ii)) ≡ viewπ(I)(Pi(Ii))

Theorem 3. Our conspiracy Santa protocol is secure with respect to semi-honest
behavior.

Proof. We denote our protocol by SCSn(I) (for Secure Conspiracy Santa). For
all 1 ≤ i ≤ n, each entity Pi has the input Ii = (n,B, pi), where I = (Ii)1≤i≤n,
pi is the balance of each of the n participants. For all 1 ≤ i ≤ n, we show how
to build the protocol Simi such that:

viewSimi(Ii)(Pi(Ii)) ≡ viewSCSn(I)(Pi(Ii))

Sim1 is given in Simulator 4, and Simi for 1 < i ≤ n is given in Simulator 5.

Simulator 4 Algorithm S1 of the protocol Sim1(I1).

Require: S1 knows I1 = (n,B, p1)
1: S1 receives t1 ¢ from P1;
2: if 0 ≤ (p1 − t1) then
3: S1 sends (B − (p1 − t1)) ¢ to P1;
4: else if (p1 − t1) < 0 then
5: S1 sends (B − ((t1 − p1) mod B)) ¢ to P1;
6: end if
7: for j = 1 to n− 1 do
8: S1 sends B ¢ to the shared anonymous address;
9: end for

10: if 0 ≤ (p1 − t1) then
11: x = n;
12: else if (p1 − t1) < 0 then

13: x = n+ (p1−t1)−((t1−p1) mod B)
B ;

14: end if
15: for j = 1 to x do
16: S1 makes the shared anonymous address pay B ¢ to an anonymous

address;
17: end for

We first show that the view of P1 in the real protocol SCSn is the same as in
the protocol Sim1:

• At Instruction 1 of Simulator 4, S1 receives t1 ¢ from P1 such that 1 ≤
t1 ≤ B, as at Instruction 3 of Protocol 2.

• At Instruction 15 of Protocol 2, Pn sends tn ¢ to P1 such that:

• 1 ≤ tn ≤ B

12

Simulator 5 Algorithm Si of the protocol Simi(Ii), where 1 < i ≤ n.

Require: Si knows I1 = (n,B, pi)

1: ti−1
$←− [1..B] ;

2: Si sends ti−1 ¢ to Pi;
3: Si receives ti ¢ from Pi;
4: for j = 1 to n− 1 do
5: Si sends B ¢ to the shared anonymous address;
6: end for
7: x = n+ pi+ti−1−ti−B

B ;
8: for j = 1 to x do
9: Si makes the shared anonymous address pay B ¢ to an anonymous

address;
10: end for

• The balance of P1 is a multiple of B.

We show that these two conditions hold in the simulator. At Instruction 2
of Protocol 2, the balance of P1 is (p1 − t1).

1. If the balance is positive, then 0 ≤ (p1 − t1) < B and S1 sends
B − (p1 − t1) ¢ to P1. We then have:

• 1 ≤ B − (p1 − t1) ≤ B
• The balance of P1 is B−(p1−t1)+(p1−t1) = B which is multiple

of B.

2. If the balance is negative, then S1 sends (B − ((t1 − p1) mod B)) ¢
to P1. We then have:

• 1 ≤ B − ((t1 − p1) mod B) ≤ B
• The balance of P1 is: B − ((t1 − p1) mod B) + (p1 − t1) =
B +

⌊
p1−t1
B

⌋
·B =

(⌊
p1−t1
B

⌋
+ 1
)
·B, which is a multiple of B.

• At Instruction 8 of Simulator 4, S1 sends B ¢ to the shared anonymous
address (n−1) times, and P1 sends B ¢ to the shared anonymous address 1
time, so together they send B ¢ n times to the shared anonymous address,
as at Instruction 3 of Protocol 3.

• At Instruction 8 of Protocol 3, the users make the shared anonymous
address payB ¢ to n anonymous addresses. At Instruction 16 of Simulator 4,
the balance of P1 is:

– 0 if 0 ≤ (p1 − t1) (because P1 had B ¢ and sent B ¢ to the shared
address).

– Otherwise, the balance of P1 is B−((t1−p1) mod B)+(p1−t1)−B =
((t1−p1) mod B) + (p1− t1). Hence P1 receives B ¢ from the shared

anonymous address
∣∣∣ ((t1−p1) mod B)+(p1−t1)

B

∣∣∣ times, and S1 receives

13

B ¢ from the shared anonymous address n+ ((t1−p1) mod B)+(p1−t1)
B

times. We note that ((t1 − p1) mod B) + (p1 − t1) ≤ 0 because
(p1 − t1) ≤ 0 and ((t1 − p1) mod B) ≤ −(p1 − t1). Finally, P1 and
S1 make the shared anonymous address pay B ¢ to n anonymous
addresses because:

n+
(t1 − p1) mod B + (p1 − t1)

B
+

∣∣∣∣ (t1 − p1) mod B + (p1 − t1)

B

∣∣∣∣ = n

Finally, we deduce that the view of P1 in the real protocol SCSn is the the same
as in the simulator Sim1:

viewSim1(I1)(P1(I1)) ≡ viewSCSn(I)(P1(I1))

We then show that the view of Pi in the real protocol SCSn is the same as in
the protocol Simi for any 1 ≤ i ≤ n:

• At instruction 3 and 9 of Protocol 2, each user Pi receives ti−1 ¢ from
Pi−1 for any 1 ≤ i ≤ n such that 1 ≤ ti−1 ≤ B. We note that each
ti−1 depends on the value t1 chosen by P1. Moreover, t1 comes form
a uniform distribution and acts as a one-time pad on the values ti−1,
i.e., it randomizes ti−1 such that Pi cannot distinguish whether ti−1 was
correctly generated or comes from the uniform distribution on {1, . . . , B}.
At instruction 1 of Simulator 5, Si chooses ti−1 at random in the uniform
distribution on {1, . . . , B} and sends ti−1 to Pi.

• At Instruction 3 of Simulator 5, Si receives ti ¢ from Pi such that 1 ≤ t1 ≤
B, like at Instruction 9 of Protocol 2.

• At Instruction 5 of Simulator 5, Si sends B ¢ to the shared anonymous
address (n−1) times, and Pi sends B ¢ to the shared anonymous address 1
time, so together they send B ¢ n times to the shared anonymous address,
as at Instruction 3 of Protocol 3.

• At Instruction 8 of Protocol 3, the users make the shared anonymous
address pay B ¢ to n anonymous addresses. At Instruction 9 of Simulator 5,
the balance of Pi is pi + ti−1 − ti − B. Hence Pi receives B ¢ from

the shared anonymous address
∣∣∣pi+ti−1−ti−B

B

∣∣∣ times, and Si receives B

¢ from the shared anonymous address n + pi+ti−1−ti−B
B times. We note

that pi + ti−1 − ti − B ≤ 0; indeed, we have ti = (pi + ti−1) mod B
(Instruction 6 of Protocol 2). Since pi ≤ B and ti−1 ≤ B, then we have
(pi + ti−1)− ti ≤ B, so we have pi + ti−1 − ti −B ≤ 0. Finally, Pi and Si
make the shared anonymous address pay B ¢ to n anonymous addresses
because:

n+
pi + ti−1 − ti −B

B
+

∣∣∣∣pi + ti−1 − ti −B
B

∣∣∣∣ = n

14

Finally, to conclude the proof, we deduce that for all 1 ≤ i ≤ n the view of Pi in
the real protocol SCSn is the the same as in the simulator Simi:

viewSimi(Ii)(Pi(Ii)) ≡ viewSCSn(I)(Pi(Ii)). 2

3.3. Physical Variant

If one does not wish to use cryptocurrencies, one can use the following
physical variant of the protocol. In the first round each participant needs to
transfer some money to another participant using a private channel. A simple
physical solution is that they meet and perform the transfer face to face, while
ensuring that nobody spies on them. For the second round, the balance of all
participants is a multiple of B ¢. During the first part of this algorithm, everyone
puts an envelope containing B ¢ onto a stack that is in a secure room. By secure
room, we mean a place where no other participants can spy what is going on
inside. In the second part all participants enter this secure room one after the
other and do the following according to their balance:

• If the balance is 0 then the participant does nothing.

• If the balance is a multiple k of B ¢, the participant takes k envelopes
from the top of the stack, opens them and collects the corresponding k ·B
¢. Then he places, in each of the now empty k envelopes, a piece of paper
that have the same shape and weight as a the B ¢. These envelopes are
placed under the stack of envelopes.

This method allows everyone to collect his money without revealing to the other
ones how much they have taken.

We show that this protocol is secure with respect to semi-honest behavior.
For this, we physically simulate the protocol for any participant. We first note
that the first round of the protocol is the same as Protocol 2, so this round
can be simulated exactly as in the proof of Theorem 3. We simulate the second
round for any participant as follows. During the first part of the algorithm, the
simulator enters n− 1 times the secure room and puts an envelope containing
B ¢ onto the stack. When it is his turn, the participant enters the room and
puts an envelope containing B ¢ onto the stack. Finally, there are n envelopes
containing B ¢ on a stack. In the second part the simulator enters the room
n− 1 times and does nothing. When it is his turn, the participant enters the
room and takes k envelopes from the top of the stack, opens them and collects
the corresponding k ·B ¢ as in the real protocol, where 0 ≤ k ≤ n. Since each of
the n envelopes contains B ¢, the simulation works for any 0 ≤ k ≤ n.

We deduce that the view of the participant during the simulation is the same
as during the real protocol, which implies that our physical protocol is secure
with respect to semi-honest behavior.

Remark 2. This physical protocol mimics exactly the solution using cryptocur-
rencies. One advantage, though, of the physical world is that it is easier to

15

perform transactions with 0 ¢. Therefore there exists a simpler solution for the
second round, where creditors do not have to give B ¢ in advance: if the partici-
pant is in debt he puts an envelope containing B ¢ onto the stack, otherwise he
puts an envelope containing a piece of paper under the stack.

The first and third rounds are not modified, and the simulator for the security
proof is not modified either.

4. A Faster Protocol

To the price of having much larger transactions, there exist a protocol for
conspiracy Santa that requires less transactions: 2 · n+ 1 instead of 3 · n.

4.1. Merging the first two rounds

We now propose a variant of the cryptocurrency protocol where the initial-
ization phase and the third round are unchanged but the first and second round
are merged.

The idea is that the participants will round their debts or credits so that the
different amounts become indistinguishable, and at the same time they will give
B ¢ to the next player: this is what they would have given to the Piggy bank in
the second round. At the end the first player will receive the amount needed to
round his debt or credit as previously, plus n− 1 times B ¢. It is then sufficient
for him to give n ·B ¢ to the Piggy bank, for the third round to take place as
previously. The details are described in Protocols 6 and 7.

Theorem 4. For n participants, Protocols 1, 6, 7 are correct and, apart from
the setup, require 2 · n+ 1 transactions.

Proof. Including the piggy bank, all the transactions are among participants,
therefore the sum of all the debts and credits is invariant and zero. There
remains to prove that in the end of the protocol all the debts and credits are
also zero. Any initial debt for any gift is strictly lower than B/(n− 1) and the
largest debt is thus strictly lower than B ¢, that is all integral debts are between
0 and B − 1. Then, during the first round, all participants, except P1, still
round their credits or debts to multiples of B: for i ≥ 2, pi = (pi − 1)− (pi − 1
mod B) − (i · 1) · B ≡ 0 mod B. Also, every participant sends more than he
received: 1 + ti + (i− 1) ·B < 1 + ti+1 + i ·B, so any creditor remains creditor.
Furthermore, any debtor will thus either be at zero after the first round or at a
credit of exactly B ¢: any debtor (i+ 1) 6= 1 has an initial debt 1 ≤ pi+1 ≤ B;
then he receives 1+ti+(i−1)·B so that his new debt is between 2+(i−1)·B and
(i+1) ·B; finally he sends the residue mod B plus i ·B, so that his credit must be
either B or 0. All the money sent is immediately added to the debt of the receiver
and removed from that of the sender (including an aggregation for P1 at the end,
(n−1) ·B−n ·B = −B) so, overall, including the piggy bank, the sum of all debts
and credits remains zero. We just showed that except P1 all the credits or debts
are now multiples of B so that of P1 must also be a multiple B. Further, if P1 is
a debtor then 1 ≤ p1 ≤ B. He sends 1 + t1, n ·B and receives 1 + tn + (n− 1) ·B

16

Protocol 6 Secure rounding with an extra multiple

Require: An upper bound B on the value of any gift;
Require: Each one of n participants knows his integer balance pi;
Require:

∑n
i=1 pi = 0.

Ensure: Each one of n participants has a new balance pi, either 0, B or a
negative multiple of B;

Ensure:
∑n
i=1 pi = 0;

Ensure: The credit of the piggy bank is nB ¢;
Ensure: The protocol is zero-knowledge.

1: P1: t1
$←− [0..B − 1] uniformly sampled at random;

2: P1: p1 = p1 − 1− t1;
3: P1 sends 1 + t1 ¢ to P2; . Random transaction 1..B on a secure channel
4: P2: p2 = p2 + 1 + t1;
5: for i = 2 to n− 1 do
6: Pi: ti = pi − 1 mod B; . 0 ≤ ti ≤ B − 1
7: Pi: pi = pi − 1− ti − (i− 1) ·B;
8: Pi sends (1 + ti + (i− 1) ·B) ¢ to Pi+1;

. Transaction (i− 1) ·B + 1..i ·B on a secure channel
9: Pi+1: pi+1 = pi+1 + 1 + ti + (i− 1) ·B;

10: end for
11: Pn: tn = pn − 1 mod B; . 0 ≤ tn ≤ B − 1
12: Pn: pn = pn − 1− tn − (n− 1) ·B;
13: Pn sends (1 + tn + (n− 1) ·B) ¢ to P1; . Transaction (n− 1) ·B + 1..n ·B

on a secure channel
14: P1 sends n ·B ¢ to the piggy bank; . Public transaction of nB
15: P1: p1 = p1 + 1 + tn −B;

so that his new balance is 2− 2 ·B ≤ p1 − t1 − n ·B + tn + (n− 1) ·B ≤ B − 1.
As we have shown that this balance must be a multiple of B, then either his
balance is zero or he has a credit of B. Therefore, at the end of Protocol 6,
only the piggy bank has a debt. Since the piggy bank received exactly n ·B ¢,
exactly n transactions of B ¢ will make it zero and the invariant ensures that,
after Protocol 7, all the creditors must be zero too. 2

Example 4. We now have a look at the algorithm for our example with Jannik,
Jean-Guillaume, Pascal and Xavier. As in Example 3, the initial balance vector
is [5, 48,−73, 20] and the upper bound is B = 50 e. For the first round, Jannik
randomly selects 0 ≤ t1 = 11 < 50 and makes a first private transaction
of 1 + t1 = 12 e to Jean-Guillaume. Jean-Guillaume then makes a private
transaction of 1 + (12 + 48− 1 mod 50) + 50 = 60 e to Pascal; Pascal makes a
private transaction of 1 + (60− 73− 1 mod 50) + 2 · 50 = 137 e to Xavier; who
makes a private transaction of 1 + (137 + 20− 1 mod 50) + 3 · 50 = 157 e to
Jannik and the balance vector is [150, 0,−150, 0] Finally Jannik gives 200 e to the
piggy bank so that the player’s balance vector becomes [−50, 0,−150, 0]. Indeed,
for instance, Jean-Guillaume had a balance of 48 e, received 12 e from Jannik

17

Protocol 7 Secure recovering from the piggy bank

Require: An upper bound B on the value of any gift;
Require: n participants each with a balance pi, either 0, or a negative multiple

of B, their sum being −nB;
Require: The piggy bank has a credit of nB ¢.
Ensure: All balances are zero;
Ensure: The protocol is zero-knowledge.

1: parfor i = 1 to n do
2: if pi < 0 then . Creditors recover their assets
3: parfor j = 1 to −piB do
4: Pi makes the shared anonymous address pay B¢ to one of his own

anonymous addresses; . Public transaction of B
5: end parfor
6: Pi: pi = 0.
7: end if
8: end parfor

and sends 60 e to Pascal, hence his new balance is 48 + 12− 60 = 0 e. All these
transactions are represented in Figure 3. Finally there are four 50 e transactions,
one to an address controlled by Jannik and three to (different) addresses controlled
by Pascal. This last round is exactly the one illustrated in Figure 2, right.
Note that we have n = 4 participants and exactly 1 + (n − 2) + 1 + 1 = 5
transactions in Protocol 6 and 4 transactions in Protocol 7, hence the total is
9 = 5 + 4 = 2 · 4 + 1 = 2 · n+ 1.

4.2. Security Proof of the Faster Variant

Theorem 5. Our faster conspiracy Santa protocol is secure with respect to
semi-honest behavior.

Proof. We denote our protocol by FSCFn(I) (for Fast Secure Conspiracy
Santa). For all 1 ≤ i ≤ n, each entity Pi has the input Ii = (n,B, pi), where
I = (Ii)1≤i≤n. For all 1 ≤ i ≤ n, we show how to build the protocol Sim′i such
that:

viewSim′i(Ii)
(Pi(Ii)) ≡ viewFSCFn(I)(Pi(Ii))

Sim′1 is given in Simulator 8, and Sim′i for 1 < i ≤ n is given in Simulator 9.
We first show that the view of P1 in the real protocol FSCSn is the same as

in the protocol Sim′1:

• At Instruction 1 of Simulator 8, S1 receives (1 + t1) e from P1 such that
0 ≤ t1 ≤ B − 1, as at Instruction 3 of Protocol 6.

• At Instruction 13 of Protocol 6, Pn sends (1 + tn + (n − 1) · B) e to P1

such that:

– 0 ≤ tn ≤ B

18

J: 5 J-G: 48

P: -73X: 20

Piggy Bank

200 e

t1 = 11

1 + 11 = 12 e

12 + 48− 1 = 9 mod 50

1 + 9 + 50 = 60 e

60− 73− 1 = 36 mod 50

1 + 36 + 100 = 137 e

137 + 20− 1 = 6 mod 50

1 + 6 + 150 = 157 e

Figure 3: Merged round of Example 4 (starting at t1 = 11, ending with 5 − 12 + 157 = 0
mod 50, and a final transaction of 200 e to the Piggy bank).

– The balance of P1 is a multiple of B.

We show that these two conditions hold in the simulator. At Instruction 1
of Protocol 6, the balance of P1 is (p1 − 1− t1).

1. If (p1 − t1) ≥ 1, then 1 ≤ (p1 − t1) ≤ B and S1 sends 1 + (B − (p1 −
t1)) + (n− 1) ·B e to P1. We then have:

– 0 ≤ B − (p1 − t1) ≤ B − 1

– At Instruction 3 of Simulator 8, The balance of P1 is p1 − 1 −
t1 + 1 + (B − (p1 − t1) + (n− 1) ·B = n ·B, as at Instruction 13
of Protocol 6, which is multiple of B.

2. If (p1 − t1) ≤ 0, then S1 sends 1 + ((t1 − p1) mod B) + (n− 1) ·B e
to P1. We then have:

– 0 ≤ ((t1 − p1) mod B) ≤ B − 1

– At Instruction 5 of Simulator 8, The balance of P1 is: p1 − 1−
t1 + 1 + ((t1 − p1) mod B) + (n− 1) ·B = (p1 − t1) + ((t1 − p1)
mod B)+(n−1)·B =

⌈
p1−t1
B

⌉
·B+(n−1)·B, as at Instruction 13

of Protocol 6, which is a multiple of B.

• P1 sends n · B e to the shared anonymous address, so his balance is a
multiple of B and is at most 0, as at the end of Protocol 6.

• At Instruction 1 of Protocol 7, the users make the shared anonymous ad-
dress pay B e to n anonymous addresses. At Instruction 13 of Simulator 8,
the balance of P1 is:

19

Simulator 8 Algorithm S1 of the protocol Sim′1(I1).

Require: S1 knows I1 = (n,B, p1)
1: S1 receives (1 + t1) e from P1;
2: if 1 ≤ (p1 − t1) then
3: S1 sends (1 +B − (p1 − t1) + (n− 1) ·B)) e to P1;)
4: else if (p1 − t1) ≤ 0 then
5: S1 sends (1 + ((t1 − p1) mod B) + (n− 1) ·B)) e to P1;
6: end if
7: if 1 ≤ (p1 − t1) then
8: x = n;
9: else if (p1 − t1) ≤ 0 then

10: x = n+ (p1−t1)+((t1−p1) mod B)−B
B ;

11: end if
12: for j = 1 to x do
13: S1 makes the shared anonymous address pay B e to an anonymous

address;
14: end for

Simulator 9 Algorithm Si of the protocol Sim′i(Ii), where 1 < i ≤ n.

Require: Si knows I1 = (n,B, pi)

1: ti−1
$←− [0..B − 1] ;

2: Si sends (1 + ti−1 + (i− 2) ·B) e to Pi;
3: Si receives (1 + ti + (i− 1) ·B) e from Pi;
4: Si sends n ·B e to the shared anonymous address;
5: x = n+ pi+ti−1−ti−B

B ;
6: for j = 1 to x do
7: Si makes the shared anonymous address pay B e to an anonymous

address;
8: end for

– 0 if 1 ≤ (p1 − t1) (because P1 had n · B e and sent n · B e to the
shared address).

– Otherwise, the balance of P1 is
⌈
p1−t1
B

⌉
·B−B. Hence P1 receives B e

from the shared anonymous address x = n+ (p1−t1)+((t1−p1) mod B)−B
B

= n +
⌈
p1−t1
B

⌉
− 1 times, and S1 receives B e from the shared

anonymous address n − x times, as in Instruction 3 of Protocol 7.
Finally, P1 and S1 make the shared anonymous address pay B e to
n anonymous addresses.

Finally, we deduce that the view of P1 in the real protocol FSCSn is the the
same as in the simulator Sim′1:

viewSim′1(I1)
(P1(I1)) ≡ viewFSCSn(I)(P1(I1))

20

We then show that the view of Pi in the real protocol FSCSn is the same as
in the protocol Sim′i for any 1 ≤ i ≤ n:

• At instruction 3, 8 and 13 of Protocol 6, each user Pi receives (1+ti−1+(i−
2)·B) e from Pi−1 for any 1 ≤ i ≤ n such that 0 ≤ ti−1 ≤ B−1. As in Simi

(see proof of Theorem 3) Pi cannot distinguish whether ti−1 was correctly
generated or comes from the uniform distribution on {0, . . . , B − 1}.

• At Instruction 3 of Simulator 9, Si receives (1 + ti + (i− 1) ·B) e from Pi
such that 0 ≤ t1 ≤ B − 1, like at Instruction 3 of Protocol 6.

• At Instruction 4 of Simulator 9, Si sends n ·B e to the shared anonymous
address, as P1 at Instruction 14 of Protocol 6.

• At Instruction 1 of Protocol 7, the users make the shared anonymous
address pay B e to n anonymous addresses. At Instruction 7 of Simulator 9,
the balance of Pi is pi+1+ti−1+(i−2)·B−1−ti−(i−1)·B = pi+ti−1−ti−B.

Hence, setting x = n + pi+ti−1−ti−B
B , Pi receives B e from the shared

anonymous address n − x = −pi+ti−1−ti−B
B times, and Si receives B e

from the shared anonymous address x times. Finally, Pi and Si make the
shared anonymous address pay B e to n anonymous addresses, as in Sim′i.

Finally, to conclude the proof, we deduce that for all 1 ≤ i ≤ n the view of Pi in
the real protocol FSCSn is the the same as in the simulator Sim′i:

viewSim′i(Ii)
(Pi(Ii)) ≡ viewFSCSn(I)(Pi(Ii)). 2

4.3. Physical Variant

Similarly, one can adapt the physical variant as follows. For Protocol 6, they
perform a face to face transfer. At the end, the first player puts n envelopes
containing B ¢ onto a stack in the secure room. The last part is unchanged, all
participants enter this secure room one after the other and either does nothing
or takes as many envelopes as needed to zero out his credit.

The security proof of this physical variant also uses the simulator of Theorem 5
for Protocol 6 and that of Section 3.3 for Protocol 7.

Remark 3. Note that in the physical word, in some sense only 2 ·n transactions
are required: n face to face transfers and n trips to the secure room.

5. Conclusion

In this paper we showed that the Shared Expenses Problem (SEP) is NP-
complete. Moreover, we devised two privacy-preserving protocols to share
expenses in a Conspiracy Santa setting where members of a group offer each
other gifts.

Our protocols ensure that no participant learns the price of his gift, while
reducing the number of transactions compared to a naive solution, and not relying

21

on a trusted third party. We formally prove the security of our protocol and
propose two variants, one relying on cryptocurrencies for anonymous payments,
the other one using physical means, such as envelopes, to achieve anonymous
payments.

Our protocol can also be used to share expenses among different groups with
non-empty intersections, while still ensuring that each participant only learns
the expenses of his group(s).

The next step is to design a practical implementation using Paypal or a
cryptocurrency. We would like to both have a platform on a website and an
application on smartphone, which however requires to solve synchronization
problems between them when not using a central server (which was one of the
design goals!). There, we also would need also to fix random time points during
an allowed interval for transactions, set up some ciphered communications (at
setup), etc.

Finally, another avenue of research to explore could be the determination of
a lower bound on the number of transactions in a secure peer-to-peer setting.

Acknowledgements

Many thanks to Marie-Béatrice, Anne-Catherine, Marc, Jacques and Luc
for such great conspiracy Santas! A big thanks also to the Gilbert family for
having big instances of the Shared Expenses Problem problem regularly, and to
Cyprien for asking the question of its complexity. More thanks go to Mathilde
and Gwénaël for the discussions on efficient algorithms.

References

References

[1] Bitcoin. https://bitcoin.org/. Accessed: 2018-02-13.

[2] Monero. https://getmonero.org/. Accessed: 2018-02-13.

[3] Settle up. https://settleup.io/. Accessed: 2018-02-13.

[4] Splitwise. https://www.splitwise.com/. Accessed: 2018-02-13.

[5] Tricount. https://www.tricount.com/. Accessed: 2018-02-13.

[6] Zcash. https://z.cash/. Accessed: 2018-02-13.

[7] Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas, and Pascal Lafour-
cade. A cryptographer’s conspiracy Santa. In Hiro Ito, Stefano Leonardi,
Linda Pagli, and Giuseppe Prencipe, editors, 9th International conference
on Fun with algorithms (FUN 2018), Maddalena, Italy, volume 100 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 13:1–13:13,
Dagstuhl, Germany, June 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. URL: https://hal.archives-ouvertes.fr/hal-01777997,
doi:10.4230/LIPIcs.FUN.2018.13.

22

https://bitcoin.org/
https://getmonero.org/
https://settleup.io/
https://www.splitwise.com/
https://www.tricount.com/
https://z.cash/
https://hal.archives-ouvertes.fr/hal-01777997
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.13

[8] David Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of Cryptology, 1(1):65–75, Jan 1988.
doi:10.1007/BF00206326.

[9] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[11] Richard M. Karp. Reducibility among combinatorial problems. In
Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A.
Wolsey, editors, 50 Years of Integer Programming 1958-2008: From the Early
Years to the State-of-the-Art, pages 219–241. Springer, Berlin, Heidelberg,
2010.

[12] Qingkai Ma and Ping Deng. Secure multi-party protocols for privacy preserv-
ing data mining. In Yingshu Li, Dung T. Huynh, Sajal K. Das, and Ding-Zhu
Du, editors, Wireless Algorithms, Systems, and Applications, pages 526–537,
Berlin, Heidelberg, 2008. Springer. doi:10.1007/978-3-540-88582-5_49.

[13] David Vávra. Mobile Application for Group Expenses and Its Deployment.
Master’s thesis, Czech Technical University in Prague, Faculty of Electrical
Engineering, Department of Computer Graphics and Interaction, 2012.

23

http://dx.doi.org/10.1007/BF00206326
http://dx.doi.org/10.1007/978-3-540-88582-5_49

	Introduction
	Contributions
	Outline

	The Shared Expenses Problem and its Complexity
	Cryptographer's Conspiracy Santa
	A Distributed Solution using Cryptocurrencies
	Security Proof
	Physical Variant

	A Faster Protocol
	Merging the first two rounds
	Security Proof of the Faster Variant
	Physical Variant

	Conclusion

