A Posteriori Openable Public Key Encryption*

Xavier Bultel>'2 and Pascal Lafourcade!:2

1 CNRS, UMR 6158, LIMOS, F-63173 Aubiere, France
2 Université Clermont Auvergne, LIMOS, BP 10448, 63000 Clermont-Ferrand, France

Abstract. We present a public key encryption primitive called A Pos-
teriori Openable Public Key Encryption (APO-PKE). In addition to con-
ventional properties of public key cryptosystems, our primitive allows
each user, who has encrypted messages using different public keys, to
create a special decryption key. A user can give this key to a judge to
open all messages that have been encrypted in a chosen time interval
with the public keys of the receivers. We provide a generic efficient con-
struction, in the sense that the complexity of the special key generation
algorithm and this key size are independent of the number of ciphertexts.
We give security models for our primitive against chosen plaintext attack
and analyze its security in the random oracle model.

Keywords: Public-Key Encryption, Openable Encryption, ROM, CPA.

1 Introduction

Since the emergence of the Internet, email communication is accessible to any-
one. Email privacy is an important computer security topic. Without public key
encryption schemes, plaintext messages are sent and stored by the mail server
without any protection. Fortunately, there exist many straightforward to use
softwares that allow everyone to encrypt and sign emails using public key cryp-
tography, such as the well known GnuPG? tool. Unfortunately, these softwares
are rarely used [27], consequently encrypted emails may be considered as a sus-
pect behavior. Hence as P. Zimmermann, the designer of PGP, said: “If privacy
is outlawed, only outlaws will have privacy”. We hope that in a near future ev-
erybody can privately exchange emails. Then our motivation is based on the
following scenario, where Alice is implied in a court case. To find some clues, the
judge needs to read emails that Alice has sent during a specified time period.
The judge uses his power to obtain from Alice’s email server all emails sent by
Alice (including dates of dispatch and receiver identities). If the messages are not
encrypted then the judge can read emails without relation to the investigation,
which is a privacy violation. On the other hand, if messages are encrypted with

* This research was conducted with the support of the “Digital Trust” Chair from the
University of Auvergne Foundation.
3 https://www.gnupg.org

the receiver public key then the judge can suspect Alice to hide crucial informa-
tion for the investigation. Moreover, without the receivers’ private keys, Alice
has no solution to prove her innocence and cannot reveal his correspondence to
the judge.

To solve this problem, Alice needs a mechanism to give to the judge a possi-
bility to open all messages sent during a specified time period. Using our solution
Alice can construct such a special key called an interval-key. With this key, the
judge can only read the encrypted messages sent during this specific interval of
time, because this key does not allow him to open other encrypted messages
stored on the email server. Nowadays, to the best of our knowledge, there is no
efficient cryptographic solution that offers such functionality to the users. The
goal of this paper is to propose a practical and efficient solution to this problem.

In many public key cryptosystems, when a ciphertext is generated, it is pos-
sible to create a special key that allows a person to decrypt it, without knowing
the corresponding secret key. For example, in ElGamal [13], C = (C1,Cs) =
(9",g™" - m) is the ciphertext of the message m with the public key ¢* and a
random element r (for g a generator of G a group of prime order). Knowing
the random element r, the public key of Bob ¢” and the ciphertext C' a third
party can compute C3/(g*)" = m to recover the plaintext. Using this property
it is possible to construct a naive solution by giving n random elements to a
third party to decrypt n ciphertexts. However, this method presents an inherent
limitation when the number n is large and the user has to store all the random
elements used to encrypt all the messages during an interval of time. The aim
of this paper is to allow a user to construct an interval-key to decrypt several
consecutive messages in a time interval where the size of the key, the stored
information and the key generation complexity are constant and do not increase
with the number of ciphertexts.

Contributions: We first present the notion of Random Coin Decryptable
Public Key Encryption (RCD-PKE). The idea of RCD-PKE is that one can open
a ciphertext with the secret key and also use the random coin used during the
encryption to open a cipher. We show that several existing schemes in the lit-
erature satisfy this notion, e.g. [1, 10, 14]. We use the RCD-PKE property to
construct a scheme that allows a user to generate an interval-key for a judge
to open all the messages he sent during a period of time. This scheme, called
A Posteriori Openable Public Key Encryption (APO-PKE), allows the judge to
open all messages sent between two given dates. The number of ciphertexts is
potentially infinite but the judge decryption capability is limited to the a pos-
teriori chosen interval. It contains, like a standard public key encryption, a key
generation function, an encryption function and a decryption function. It also
has an extraction function that, given two ciphertexts and a secret value, gen-
erates an interval-key for the judge. Using this interval-key he can then open
all messages encrypted by different public keys between the two ciphertexts for
which the key has been created. Our scheme is generic since it only relies on any
IND-CPA secure RCD-PKE and hash functions.

Performances: Our scheme has reasonable encryption and decryption execu-
tion time overhead comparing to the PKE we use, because the size of ciphertexts
generated by our scheme is approximately the double of the size of the PKE
encryption. Moreover the generation of the interval-key, its size and the stored
information are also independent of the number of messages contained in the
interval of time. Finally, there is no restriction neither about the total number
of generated ciphertexts nor about the number of ciphertexts in a time interval.

Security: We provide the security models to prove the security of our schemes
in the Random Oracle Model (ROM). We prove that the judge colluding with
some users cannot learn more than the messages for which he received the
interval-key. We also show that several users cannot collude in order to learn
information about plaintexts contained in an interval of ciphertexts with the
judge interval-key. We also demonstrate that the judge gets the same plaintext
as the one received by the owners of the secret keys. This means that it is not
possible to forge fake messages that the judge can open and not the owners of
the secret keys, and vice-versa.

Our construction allows us to use the extraction algorithm only once per
judge (or per set of encrypted mails). Our security model captures this situation.
It is not going against our motivation as long as we consider that two judges
having an interval key in two different court cases (for the same set of mails)
do not collude. To avoid this drawback, we need to reinitialize the secret values
stored by a user after the generation of an interval-key, in order to be able to
produce new interval-key on the next encrypted data. We leave the construction
of an APO-PKE with constant interval key generation complexity and constant
interval key size allowing several interval key generations for the same judge and
the same set of encrypted mails as an open problem.

Related work: Functional encryption [26] is a public-key encryption primi-
tive that allows a user to evaluate a function on the plaintext message using a key
and a ciphertext. This cryptographic primitive was formalized in [5]. It general-
izes many well know cryptographic primitives such identity based encryption [4]
or attribute based encryption [26]. Moreover, some schemes that evaluate an ar-
bitrary function have been proposed in [17,18]. A posteriori openable encryption
can be seen as a functional encryption, where all ciphertexts (resp. plaintexts)
that are encrypted by one user correspond to a unique large ciphertext (resp.
plaintext). Then the interval-keys allow a user to find only some parts of the
corresponding plaintext. Our proposal scheme is an efficient solution for this
kind of functional encryption.

Deniable encryption [7,22] is an encryption system that allows to encrypt
two messages (original and hidden messages) in the same ciphertext. Using his
secret key, the receiver can retrieve the original message. Using another shared
secret key, the receiver can also decrypt the hidden message. It is not possible
for the sender to prove that his encryption does not contain an hidden encrypted
message. In our a posteriori openable encryption, the judge is only convinced
that the plaintext that he decrypts is the same message that the plaintext de-
crypted by the secret key of the receiver. This notion differs from undeniability

since the judge is convinced that a message he decrypts using interval key has
actually been sent and received, but does not deal with message from another
channel that the given encryption system (including different way to encrypt or
decrypt a message in the same ciphertext).

Some cryptographic primitives deal with time in decryption mechanism or
rights delegation. Timed-Release Encryption (TRE), first proposed in [24], is
a public key encryption where encrypted messages cannot be opened before a
release-time chosen by the person who encrypted the messages. In this primitive,
it is generally a time server that allows the receiver to decrypt the message in
the future at a given date. Several TRE with diverse security properties have
been proposed [3,8,9]. More recently, an extension of TRE, called Time-Specific
Encryption (TSE), has been proposed in [25] and deals with time intervals.
Somehow these primitive are close to our because APO-PKE allows somebody
to give decryption capabilities in the future, after that encrypted messages has
been sent. However, TRE and TSE cannot be used to achieve APO-PKE, because
TRE ciphertext are intended to only one user and decryption capabilities cannot
be delegated to another party. Moreover, in TRE, time of decryption capability
must be chosen during the encryption phase, while in our primitive it can be
chosen at any time (a posteriori).

It is interesting to note that some TRE possess a pre-open mechanism [21]
that allows the sender to give decryption capabilities before the pre-specified
release-time. In this case, a security requirement (called binding property) en-
sures that the decrypted message from the pre-open mechanism is the message
decrypted by the receiver after the release-time [11]. For our primitive, we define
a similar property, called integrity, since we require that decrypted messages us-
ing an interval key must be equal to the messages decrypted by the legitimate
receivers.

Finally, Key-Insulated Encryption (KIE) [12,20,23] is a public key encryption
primitive where messages are encrypted from a tag corresponding to a time
period and a public key. At each time period corresponds a partial secret key
computed from a master key and the previous partial secret key. Moreover, the
public key is never changed. The motivation of this primitive is to provide secret
keys that can be stored in an untrusted device without compromising the master
key. Indeed, the leakage of a secret key compromises only messages received in a
specified time interval, and future encryptions remain secure. In the motivation
of [12], the authors give another interesting use of this primitive based on [16].
They provide a secure delegation of decryption rights in a time period. However,
this type of delegation allows them to delegate decryption rights only on pre-
defined time period. For example, if the time period corresponds to one month
then right delegation cannot be restricted to the last week of a month and the
first week of the following month without revealing all messages of these two
months. Moreover, delegator must give a different secret key to each time period,
so the decryption keys are proportional to the number of time periods contained
in the interval. Our goal is to propose decryption delegation capabilities to the

sender, while KIE only focuses on receiver decryption right delegation. Thus this
primitive cannot solve our problem.

Outline: In the next section, we introduce some cryptographic tools and
define the notion of RCD-PKE. In Section 3, we present a generic A Posteriori
Openable Public Key Encryption. Then in Section 4, we provide security models
and analyze the security of our scheme before concluding in the last section. All
the proofs of our security results are given in the full version of this paper [6].

2 Random Coin Decryptable Public Key Encryption

We first recall the definition of probabilistic public key encryption.

Definition 1 (Probabilistic Public Key Encryption (PKE)). A proba-
bilistic PKE s a triplet of polynomial time algorithms (Gen, Enc, Dec) such that
Gen(1%) returns a public/private key pair (pk, sk), Encox(m; o) returns a cipher-
text ¢ from the public key pk, the message m and the random coin o, and Decg(c)
returns a plaintext m or a bottom symbol 1 from a secret key sk and a ciphertext
c. Moreover the following equation holds: Decg(Encpi(m; o)) = m.

A PKE scheme IT is said indistinguishable

under chosen-plaintext attack (IND-CPA) [19] Expllgll?L{CPA (F):
if for any polynomial time adversary A, the b & {’0 1)

difference between % and the probability that
A wins the IND-CPA experiment described
in Fig. 1 is negligible.

We introduce the notion of Random Coin
Decryptable PKE (RCD-PKE). A public key
encryption scheme is said RCD-PKE, if there
exists a second way to decrypt the ciphertext
with the random coin used to construct the
ciphertext. This primitive is a kind of PKE with double decryption mechanism
(DD-PKE) which is defined in [15]. Actually RCD-PKE is a DD-PKE where the
second secret key is the random coin and is used once.

(pk, sk) < Gen(1%)

(mo, mq, St) — .Ao(lk, pk)
¢ < Encpr(my; 0)

b+ Aj(st,pk,c)

return (b =1b')

Fig. 1. IND-CPA experiment.

Definition 2 (Random Coin Decryptable PKE (RCD-PKE)). A proba-
bilistic PKE is Random Coin Decryptable if there exists a polynomial time al-
gorithm CDec such that for any public key pk, any message m, and any coin o,
the following equation holds: CDec,(Encpk(m; o), pk) = m.

For instance, ElGamal encryption scheme is RCD-PKE. It is possible, from
a ciphertext ¢ = Encp(m;o) = (co,c1) = (g7, pk? - m) to use the algorithm
CDec,(c, pk) that computes ¢;/pk? to retrieve the plaintext message m. Many
probabilistic encryption schemes in the literature are RCD-PKE, e.g. [1, 10, 14].
Algorithms CDec of these two cryptosystems PKE are given in the full version of
this paper [6]. We also introduce the concepts of valid key pair and of verifiable
key PKE.

Definition 3 (Verifiable Key PKE (VK-PKE)). We say that a key pair
(pk, sk) is valid for PKE = (Gen, Enc, Dec) when for any message m and any
random coin o the equation Decgy(Encp(m; o)) = m holds. We say that a proba-
bilistic PKE is verifiable-key (VK) when there exists an algorithm Ver such that
Ver(pk, sk) = 1 if and only if (pk, sk) is valid for PKE.

In many probabilistic public key cryptosystems, the public key is generated
from the secret key by a deterministic algorithm. For example, the ElGamal
public key is the value ¢g* computed from the secret key x. In this case, it suffices
to check that g = pk in order to be convinced that a key pair (pk, sk) is valid.
It is easy to see that [1,10] are also VK-PKE.

3 A Posteriori Openable Public Key Encryption

An APO-PKE is a public key encryption scheme, where Alice can use receiver
public keys to send them encrypted messages that can be opened thanks to
the corresponding secret keys. The goal of an APO-PKE is to allow Alice to
keep enough information to be able to construct a key to a posteriori open a
sequence of messages that she had encrypted during an interval of time. We do
not consider real time but a sequence of n successive ciphertexts {Cy }1<z<n that
have been encrypted by Alice with possibly different public keys. Then with an
APO-PKE, it is possible for Alice to extract a key for a judge that opens all
ciphertexts between the message C; and the message C; where 1 <17 < j < n.
We call this key an interval-key denoted by K ffj where pko is the public key of
the opener (here the judge). Moreover before encrypting her first message with
a public key, Alice needs to initialize a secret global state denoted st. The goal of
st is to keep all required information to generate an interval-key and to encrypt a
new message. Naturally each time Alice encrypts a message with a public key, st
is updated (but has a constant size). Finally an APO-PKE, formally described in
Definition 4, contains an algorithm that opens all ciphertexts in a given interval
of time thanks to the interval-key forged by Alice.

Note that all key pairs come from the same algorithm APOgen. However, for
the sake of clarity, we denote by pko and sko (for opener public key and opener
secret key) the keys of an interval-key recipient, e.g. a judge that can open some
messages, denoted by O (for opener) in the rest of the paper.

Definition 4 (A Posteriori Openable Public Key Encryption (APO-
PKE)). An APO-PKE is defined by:

APOgen(1%): This algorithm generates a key pair for a user. It returns a pub-
lic/private key pair (pk, sk).

APQini(1%): This algorithm initializes a global state st and returns it.

APOenc:tk(m): This algorithm encrypts a plain-text m using a public key pk and
a global state st. It returns a ciphertext C' and st updated.

APOdec(C): This algorithm decrypts a ciphertext C' using the secret key sk. It
returns a plaintext m or L in case of error.

APOQexts (Ci, Cj): This algorithm generates an interval-key Kﬁfj that allows
the owner O of the public key pko to decrypt all messages {Cy}i<z<j using
algorithm APOpen.

APOpenSko(Kffj7 {Cr}lic<a<j, {Pky ti<a<y): Inputs of this algorithm contain a ci-
phertext set {Cy}i<az<j and all the associated public keys {pk,}i<z<j. This
algorithm allows a user to decrypt all encrypted messages sent during an
interval using his secret key sk and the corresponding interval-key KP* It

=g
returns a set of plaintexts {my }i<z<; or L in case of error.

In Scheme 1, we give a generic construction of APO-PKE based on an IND-CPA
secure RCD-PKE and three hash functions.

Scheme 1 (Generic APO-PKE (G-APO)) Let k be a security parameter, & =
(Gen, Enc, Dec) be a RCD and VK PKE scheme, R be the set of possible random
coins of & and F : {0,1}* — {0,1}*, G : {0,1}* — R and H : {0,1}* —
{0,1}%% be three universal hash functions. Our generic APO-PKE is defined by
the following six algorithms where @ denotes the exclusive-or, |x| denotes the bit
size of message x and y||z the concatenation of y with z:

APOgen(1F): This algorithm generates (pk, sk) with Gen and returns it.
APQini(1%): This algorithm picks three random values & <~ {0,1}%, & & {0, 1}*
and K & {0, 1} of the same size, and returns the state st = (K||7||7).
APOQency, (m): We note that st = (K||gn||on). This algorithm picks a random

m such that |m| = |m| and computes m = M @ m. Let & <& {0,1}* and
o & {0,1}F be two random wvalues of size |Gn|. This algorithm computes
C = Encou(il|(5 & F(x)); G(@w)) and C = Encu(iill(@n @ F(3)); G(&)).
It also computes D = (5x||5) ® H(K||C||C). Finally it updates the state st

with (K|[5]|5) and returns C = (C||C||D).

APOdec(C): The decryption algorithm computes the decryption of m|lo =
Decy(C) and the decryption of m||& = Decy(C), where C = (6||CN’||D)
It returns m = m @ m.

APOQexty, (Ci, Cj): Using the state st = (K||onllon), Ci = (@||C~'1||Dl) and
C; = (C;]|C;||D;), this algorithm computes 7;_1||5; = D; & H(K]|C;||C;)
and Gj_1|lc; = D; & H(K||éj||5j) It picks r & R and returns Kﬁfj =
Encpro((@i-1l|0;); 7).

APOpensko(Kffj, {(Co||Cal|D2) Yicosss {pk, ti<z<j): This algorithm begins to re-
covering values 6;_1||0; = Decsko(Kfffj).

— For all = in {i,i+1,...,5}, it computes R = G(G,_1) and opens C,
as follows my||os = CDecﬁ(ampkm). It computes the next 6, = T4 @
F(Goo1). If Encok, ((|[5%); G(G4—1)) # C then it returns L.

— For all x in {j,j — 1,...,i}, it computes R = G(0,) and opens C, as
follows my||ok_, = CDecE(ém,pkm). It computes the previous 0,1 =
051 DF(02). If Encor, ((Melloy_1);G(02)) # C, then it returns L.

Finally, it returns {Mg & My Fi<a<j-

The encryption algorithm APOenc separates the plaintext m in two parts
using xor operation such that m = m @ m. We generate two random coins ¢ and
0. Using the two previous coins on and oy in the state st, we encrypt into two
different ciphertexts C' and C' the following two messages m||(c @ F(oy)) and
m||(cn @ F(¢)). Finally we hide the usefull random elements with H(K||6HC~')

Knowing the secret key it is possible to recover m and m and then to obtain
the plaintext m thanks to the algorithm APOdec.

An interval-key for the owner O of a public key pko is constructed using the
algorithm APOQext. It is simply the encryption with pko of o and &. At each
encryption, the values ¢;_; and o; are masked by a “one time pad” with the
digest H(K| \CA'zHa) in D;. Then with the ciphertexts C;, C; and the secret value
K we can construct an interval-key that contains these values ¢;,_1 and 7.

Using an interval-key Kffj it is possible to open all ciphertexts encrypted
during an interval of time with the algorithm APOpen: thanks to the RCD prop-
erty, someone who knows values oy and o for one ciphertext can open each part
C and C of it in order to recover ¢ and oy, and m and m, hence m. We also
notice that with @; it is possible to decrypt all ciphertexts in {Cy } (;i41)<o<n- In
the other hand, with o; it is possible to decrypt all ciphertexts in {51}1959.
Then it is possible to recover all messages between C; and Cj;. Thus, it is possible
to decrypt all messages between C; and C; with the knowledge of 7,1 and ;.

If the interval always contains the first message, we give a more efficient
algorithm. The idea is to only keep one part of the ciphertext, by consequence
we do not need to split into two the message m. Hence the size of the ciphertext is
smaller. Similarly if the algorithm always ends with the last encrypted message,
we can also drop one half of the ciphertext and the tag value following the same
idea. These simpler schemes are given in the full version of this paper [6].

4 Model and Security

We present the security properties of an APO-PKE scheme and we analyze the
security of our G-APQO scheme. The first security property corresponds to a
chosen-plaintext attack scenario where the adversary has access to interval-keys
on intervals that do not contain the challenge. We next introduce the notion
of indistinguishability under chosen sequence of plaintext attack security (IND-
CSPA) that corresponds to a chosen-plaintext attack scenario where the challenge
is an interval of ciphertexts and the corresponding interval-key generated for a
given judge public key. The last property is integrity, and captures the integrity
of messages decrypted by APOpen algorithm. All security proofs are detailed
in [6].

4.1 IND-CPA security

It concerns the resistance of an APO-PKE against a collusion of adversaries that
have access to interval-keys in a chosen-plaintext attack scenario. For example, if

we consider a judge who receives an interval-key to open a sequence of ciphertexts
and who colludes with ciphertext recipients; then it ensures that they cannot
deduce any information about messages that are not in the sequence. Indeed,
he cannot request an interval-key for an interval containing the challenge. We
define the OT-IND-CPA security when only one interval-key can be asked during
the experiment. Our scheme is proved secure in this model.

Definition 5 (OT-IND-CPA experiment). Let IT be an APO-PKE, let k be
a security parameter, and let A = (Ao, A1) be a pair of polynomial time algo-
rithms. We define the one-time indistinguishability under interval opener chosen-
plaintext attack (OT-IND-CPA) experiment as follows:

Exp
b & {0,1}

(pk,, sk.) < APOgen(1%)

st. < APQini(1%)

(mo, ma, state) < Ao(1", pk,)
Cs < APOenc;; (my)

b+ Ay(state, C\)

If b=V return 1, else 0

OT-IND-CPA
A (F)

The adversaries Ay and A; have access to the following oracles:

OgnPcA: On the first call to this oracle, it initializes the following values I =1 and

n = 1. This oracle takes as input a public key pk and a message m. It returns
C = APOenc;";j (m). It increments the counter l. Only in the first phase, it
increments the value n that counts the number of calls to the encryption
oracle before the generation of the challenge.

OSPA: The adversary can ask this oracle only one time during the experiment.
This oracle takes a public key pko and two ciphertexts C), and Cj. In the
second phase, if there exists C; = CI, and C; = C} such that i < n < j
then the oracle rejects the query. Else, if Cl, = C,, or C} = C,,, it rejects the

query. Else it returns APOeXt:t,;‘O(C;, Cy).

We also define the IND-CPA experiment as the same as the OT-IND-CPA exper-
iment except that the adversary can ask the oracle APOext several times.

Definition 6 (OT-IND-CPA advantage). The advantage of the adversary A
against OT-IND-CPA is defined by:

1
AdVETIND A) = |PAEGTIN A1) = 1] - 5
We define the advantage on OT-IND-CPA experiment by:
AdVIOYT_IND_CPA(k) _ maX{AdVIOY:I—AIND—CPA(k)}
for all A € poLy (k). The advantages on IND-CPA experiment are similar to

those of OT-IND-CPA. We say that a APO-PKE scheme IT is OT-IND-CPA (resp.
IND-CPA) secure when AdvSTNP-CPA(LY (resp. AdvINP-CPA(K)) is negligible.

Our construction is not IND-CPA since if a judge has two interval-keys for
two different intervals of time given by the same user and computed with the
same secret value then he can open all messages between the two extreme dates.

Theorem 1. Let E be an IND-CPA secure RCD-PKE, then G-APO based on E
is OT-IND-CPA secure in the random oracle model.

Proof idea: To prove the OT-IND-CPA security, we show first that no polynomial
adversary wins the experiment with non negligible probability using the oracle
OSPA in an interval of previous ciphertexts of the challenge. The interval-key
allows to open the part C. of the challenge C\, but since the PKE is IND-CPA then
the interval-key gives no information about the part of the challenge encrypted
in the part C,. Similarly, we then prove that no adversary can win using the
oracle in an interval of next ciphertexts of the challenge. Finally, using this two

results, we show that our scheme is OT-IND-CPA in any case. ad

4.2 IND-CSPA security

A sequence of ciphertexts coupled with an interval-key can be seen as an unique
ciphertext that encrypts a sequence of plaintexts because the open algorithm
allows a judge to decrypt all the messages of the sequence with the knowledge
of any secret key. Thus, we define a security model where the adversary must
distinguish the sequence of plaintexts used to produce a challenge sequence of
ciphertexts associated to an interval-key. The IND-CSPA security captures this
security property. In this model, the adversary is a collusion of users that must
distinguish the sequence of plaintexts used to produce a sequence of ciphertexts
given the corresponding interval-key generated for the judge.

Definition 7 (IND-CSPA, experiment). Let II be an APO-PKE, let k be a
security parameter, and let A = (Ag, A1) be a pair of polynomial time algorithms.
We define the indistinguishability under chosen sequence of plaintext attack
(IND-CSPAy) experiment as follows, where n denotes the number of calls to the
encryption oracle during the first phase and ¢ denotes the number of calls to the
generation oracle:

IND-CSPA
Expy a7 (K):

b,d & {0,1}

(pko,, sko.) + APOgen(1¥)

st. < APQini(1%)

(q, {mg}n<x§n+q» {malc}n<wﬁn+qa {pk, }n<w<n+q, State) Ao(lk’ pko.,)

Vee{n+1l,n+2,.,n+q}:
if pk, comes from Ogces,,PA then Cy; = APOencffk*m (m?)
else, Cy = APOenc:tk*z (m2)

Ké’:jfnﬁ(nﬂ) APOextyy, (Cr1, Crq)

/ * ko,
b+ Al (state, {Cz}n<z§n+qa K(Pn+1>*)(n+q>)
Ifb=1" return 1, else 0

10

The adversaries Ag and Ay have access to the following oracles:

ngnPA: At the first call, the oracle creates a keys’ list K that contains (pko,, sko,).

At each call, it generates values (pk,sk) from APOgen(1%) and adds it to K.

Then it returns pk. This oracle can be called only ¢ times.

OSSPA: This oracle takes as inputs a public key pk and a message m. Only in the

first phase, it increments the value n that counts the number of calls to the
encryption oracle before the generation of the challenge.In the two phases, it

returns APOenc;tk* (m).

ngstPA: This oracle takes as input two ciphertexts C; and C;. It returns the
interval-key Kfio; = APOext;'j(*o* (Cy, Cy).

In the first phase The challenger generates (pko,,sko.) from APOgen(1%)
and a state st, from APQini(1¥). He sends the public key pko, to the adversary.
The challenger initializes a counter n that counts number of calls to the oracle

OSSPA during this phase. Finally, the adversary sends to the challenger values

(q’ {mg}n<z§(n+q)v {m;}n<m§(n+q)v {pkx}n<x5n+qv State)-

In second phase, the challenger computes a sequence of ciphertexts from
the adversary’s output. He encrypts messages of one of the two sequences.
The sequence of produced ciphertexts forms the challenge. More formally, the
challenger picks two random bits b and d. Then, V z € {n +1,n+2,...,n +
q}, if pk, corresponds to an honest user (i.e. pk, comes from oracle Og;PA)
then he computes C = APOenc;tkl (m?) else if pk, corresponds to a dishonest
user (i.e. pk, comes from the adversary), he computes C = APOenc:tk*I (md).

Finally, he computes KF:$1)—>(n+q) = APOext:tk*o*(C’nH,CnM) and he sends

(state, {C’;}nqg(nﬂ),K(F)Zj_*l)%(nﬂ)) to the adversary A;. During the guess
phase, the adversary returns the bit ¢'. If ¥’ = b then A wins.

Definition 8 (IND-CSPA advantage). We define the advantage of A against
IND-CSPA by:

IND-CSPA IND-CSPA 1
A% (k) = |PrE 2 () = 1] — 5

We define by:

Advyy” P (k) = max{Advyy 7 (k)}

for all A € poLy(k) the advantage on IND-CSPA. We say that an APO-PKE

scheme II is IND-CSPA secure when the advantage Advy}lD’CSPA“b(k) 18 negligible

for any polynomial ¢.

Theorem 2. Let E be a PKE that is RCD, then G-APO using E is IND-CSPA
secure in the random oracle model.

11

Proof idea: In [2] authors prove that any IND-CPA PKE is still secure in multi-
user setting, i.e. where the adversary can ask several challenges for several dif-
ferent public keys. Without interval-key oracle, the IND-CSPA security of our
scheme can be reduced to the IND-CPA of the PKE in multi-user setting since
the challenge corresponds to ciphertexts of several messages from several public
keys. Moreover, since the interval-keys from the oracle are encrypted, then the
adversary must break the IND-CPA security of PKE to use it. It is possible to
prove that no adversary can efficiently break the IND-CSPA of our scheme using
these two arguments. a

4.3 Integrity

The last security property for APO-PKE is the integrity. This property is similar
to binding property of TRE defined in [11]. The judge must be sure that the
messages he decrypts with APOpen algorithm are the sent messages.
Definition 9 (Integrity experiment). Let II a APO-PKE, let k be a secu-
rity parameter, and let A a polynomial time algorithm. We define the integrity
experiment as follows:

Exp'ﬁfi%rity (k):

(pko, , sko.) + APOgen(1%)

(N A{Cuhr<aen, {Pk, <o, I, skiyi, §, KPS7) = A(1Y, pk,)

if (pky, ski) is not a valid key pair then return 0

{ma}icos; ¢ APOpeny, (K2 {Cu}icacs, Pk, bicass)

if my # APOdecs, (Ci) then return 1, else 0.
The challenger generates (pko,,sko,) from APOgen(1*) and sends the public
key pko, to the adversary. The adversary A sends to the challenger an inte-
ger N, an ordered set of N ciphertexts {Cy}i<z<n and an ordered set of N
public keys {pk, }1<z<n. The adversary then sends two integers ¢ and j and
the corresponding interval-key Kfﬁ)] He finally sends the integer [and the se-
cret key sk; corresponding to pk;. If (pk;,sk;) is not a valid key pair then the
challenger aborts and returns 0. The challenger then computes {mg}i<z<; <

APOpeny, (K™ {CyYica<s, {pk, bica<;)- IEmy # APOdecy, (C;) then the chal-

i—7)
lenger returns 1, else he returns 0.

Definition 10. The advantage of A against integrity is defined by:
Advi ™ (k) = PrlExpl ™ (k) = 1

The advantage against integrity by:
Advll'}tegrity(k) = maX{Advgfefrity(k)}

for all A € poLy(k). We say that a APO-PKE scheme II satisfies the integrity

property AdvInE™ () is negligible.

Theorem 3. Let E be a RCD and VK PKE that is IND-CPA secure, then G-APO
using this PKE satisfies the integrity property.

12

Proof idea: Since the judge has all the random coins and all the public keys
used to encrypt all the opened messages, he can use them to re-encrypt these
messages. Thus, if the ciphertexts that he opens correspond to the ciphertexts
that he encrypts by himself, then he can conclude that the opened messages are
the same as the messages decrypted by the recipient secret keys. a

5 Conclusion

We introduce the notion of RCD-PKE. Based on this notion, we propose an a
posteriori openable PKE (APO-PKE) scheme. Our scheme allows a user to prove
his innocence by showing to a judge the content of his encrypted communica-
tion with several PKE during a period of time. Our construction preserves the
privacy of the others communications, meaning that the judge cannot learn any
information concerning the other encrypted messages. Moreover the receivers of
the encrypted messages cannot collude in order to learn more information that
is contained in the received messages. Our construction is proven secure in the
Random Oracle Model and is generic because it only requires RCD-PKE and
hash functions.

In the future, we aim at proving that is not possible to have a secure con-
struction that supports several generations of interval key with constant size
interval-key and stored data (state). Another future work is to design a secu-
rity model for chosen-ciphertext security of APO-PKE and to provide a generic
construction that achieves this higher security. Finally, it may be interesting to
design such a scheme in the standard model.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. DHIES: an encryption scheme based on
the Diffie-Hellman problem. Contributions to IEEE P1363a, Sept. 1998.

2. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In B. Preneel, editor, FUROCRYPT 2000,
volume 1807 of LNCS, pages 259-274. Springer, May 2000.

3. I. F. Blake and A. C.-F. Chan. Scalable, server-passive, user-anonymous timed
release public key encryption from bilinear pairing. ICDS, IEEE Computer Society
Press, 2005.

4. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In
J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213—229. Springer,
2001.

5. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253-273.
Springer, Mar. 2011.

6. X. Bultel and P. Lafourcade. A posteriori openable public key encryption.
Technical report, University Clermont Auvergne, LIMOS, 2015. http://sancy.
univ-bpclermont.fr/~lafourcade/APOPKE.pdf.

7. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In
CRYPTO’97, volume 1294 of LNCS, pages 90-104. Springer, 1997.

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

J. Cathalo, B. Libert, and J.-J. Quisquater. Efficient and non-interactive timed-
release encryption. In ICICS 05, volume 3783 of LNCS, pages 291-303. Springer,
2005.

J. H. Cheon, N. Hopper, Y. Kim, and I. Osipkov. Timed-release and key-insulated
public key encryption. In G. Di Crescenzo and A. Rubin, editors, F'C' 2006, volume
4107 of LNCS, pages 191-205. Springer, Feb. / Mar. 2006.

R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167-226, 2003.

A. W. Dent and Q. Tang. Revisiting the security model for timed-release encryption
with pre-open capability. In J. A. Garay, A. K. Lenstra, M. Mambo, and R. Peralta,
editors, ISC 2007, volume 4779 of LNCS, pages 158-174. Springer, Oct. 2007.

Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosystems.
In EUROCRYPT 2002, volume 2332 of LNCS, pages 65-82. Springer, 2002.

T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469—-472, 1985.

E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Journal of Cryptology, 26(1):80-101, 2013.

D. Galindoa and J. Herranz. On the security of public key cryptosystems with
a double decryption mechanism. Information Processing Letters, 108(5):279-283,
Nov. 2008.

O. Goldreich, B. Pfitzmann, and R. L. Rivest. Self-delegation with controlled prop-
agation - or - what if you lose your laptop. In H. Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 153-168. Springer, Aug. 1998.

S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
How to run turing machines on encrypted data. In CRYPTO 2013, volume 8043
of LNCS, pages 536-553. Springer, 2013.

S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In 45th ACM STOC,
pages 555-564. ACM Press, 2013.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270-299, 1984.

G. Hanaoka and J. Weng. Generic constructions of parallel key-insulated encryp-
tion. In SCN’10, volume 6280, pages 36-53, 2010.

Y. H. Hwang, D. H. Yum, and P. J. Lee. Timed-release encryption with pre-open
capability and its application to certified e-mail system. In ISC 2005, volume 3650
of LNCS, pages 344-358. Springer, 2005.

M. Klonowski, P. Kubiak, and M. Kutylowski. Practical deniable encryption. In
SOFSEM 2008: Theory and Practice of Computer Science, volume 5805 of LNCS,
pages 599-609. Springer, 2008.

B. Libert, J.-J. Quisquater, and M. Yung. Parallel key-insulated public key encryp-
tion without random oracles. In T. Okamoto and X. Wang, editors, PKC 2007,
volume 4450 of LNCS, pages 298-314. Springer, Apr. 2007.

T. May. Time-release crypto. Manuscript, 1993.

K. G. Paterson and E. A. Quaglia. Time-specific encryption. In SCN’10, volume
6280, pages 1-16, 2010.

A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457-473. Springer, May 2005.
A. Whitten and J. D. Tygar. Why johnny can’t encrypt: A usability evaluation of
pep 5.0. In Proceedings of the 8th Conference on USENIX Security Symposium -
Volume 8, SSYM’99, pages 14-14, Berkeley, CA, USA, 1999. USENIX Association.

14

A Proof of Theorem 1

Theorem 1. Let E be an IND-CPA secure RCD-PKE, then G-APO based on E
1s OT-IND-CPA secure in the random oracle model.

Lemma 1. Let F be a hash function. We define the following experiment:

ExpSP(k):
q + Ao(1%)
vie{0,1,2,...,q}:
g; <i {0, 1}k
(’I’L7 {Gi}0<i§n) — A (state, {O'i () F(Ui—l)}0<i§q)
return 1 if 31 < n such that o4 = 0;

Then Pr[Eij(po(k) = 1] < n/2% in the random oracle model.

Proof (Lemma 1). We perform a proof by recurrence.

— Suppose that ¢ = 1, the adversary must find o1 from o1 @ F(op). Without
knowledge of the value oy, the value F(o() seems to be a random value from
the adversary point of view. F(o) is a one time pad used to hide o4, and A
has no better solution that picks a random value in {0, 1}*. The adversary
tries n values, so the probability that he wins the experiment is n/2*.

— Assume that Pr[Expi’{pO(k) = 1] < n/2* is true when q < Ag(1%). If ad-
versary chooses the value ¢ + 1 during the first phase, the challenger gives
it the set {o; ® F(0y—-1)}o<i<q plus the value o441 @ F(oy). We know that
{0: ® F(0i-1) }o<i<q gives no information on the value o, so F(o,) is a one
time pad for the value o4y;. Without information about o411, the adver-
sary has no better choice that to try a random value to win the experiment

and Pr[Expij(k) = 1] < n/2*. We conclude that for all polynomial ¢ € N,
Pr[ExpSP (k) = 1] < n/2*.
O

Lemma 2. Let F be a hash function. We define the following experiment:

Exp%P (k):
g« Ao(1%)
Vie{0,1,2,...,q}:
o; & {0, 1}k
(n,{0i}o<i<n) < Ai(state, {o;—1 ® F(0:) }o<i<q)
return 1 if 3 1 < n such that og = 0;

Then PrExpSP°(k) = 1] < n/2* in the random oracle model.

Proof (Lemma 2). The proof is done by recurrence.

15

— Suppose that ¢ = 1, the adversary must find oy from o¢ ® F(o1). Without
knowledge of the value o1, the value F(o1) seems to be a random value from
the adversary point of view. F(o1) is a one time pad used to hide ¢, and A
has no better solution that picks a random value in {0, 1}*. The adversary
tries n values, so the probability that he wins the experiment is n/2*.

— Assume that PriExpSP (k) = 1] < n/2% is true when g < Ao(1%). If the
adversary chooses the value g+1 during the first phase, the challenger gives it
the set {o;_1 PF(0;) bo<i<q pPlus the value o, & F(o441). Without information
about o441, 04 @ F(04+1) seems to be a random value and is useless for A.
The adversary has no better choice that to try a random value to win the
experiment and Pr{Exp%P (k) = 1] < n/2F. We conclude that for all ¢ € N,
Pr[ExpSP (k) = 1] < n/2k.

O

Lemma 3. Let EXp%TXND'CPAO(k) be the same experiment that Expg’TXND'CPA(k)

except that Ay does not access to the oracle OSFA. Then Advg_Z,,IDNOD_CPAO(k) is
negligible when E is IND-CPA.

Proof (Lemma 3). We assume there exists a polynomial time adversary A such

that Advg_TAg\(‘)I?fPAo(k) is non negligible. We show then how to construct an

adversary B with a similar running time such that Advlg,%CPA(k) is also non

negligible.
Description of the adversary B:

Phase 1: B receives the key pk, and sends it to A. It picks three random values
K, 5o and &y from {0,1}* and initializes two counters n = 1 and [= 1.
It computes st, = (K||0g||o0) and creates three empty lists Fisr, Grsr and
Hisr. It then simulates the oracles as follows:

F(.): Tt takes an input value f. If there exists (f/, F') € Fy4r such that f = f’
then B returns F. Else it picks a random value F, adds (f, F') to Fygr
and returns F.

G(.): Tt takes an input value g. If there exists (¢’, G) € Gpgr such that g = ¢’
then B returns G. Else it picks a random value G, adds (g, G) to Gpgr
and returns G.

H(.): Tt takes an input value h. If there exists (h', G) € Hygr such that h = h'
then B returns H. Else it picks a random value H, adds (h, H) to Hygr
and returns H.

OSPA: Using the input (pk,m) and the oracles F(.), G(.) and H(.), B runs
the algorithm APOenc;tk* (m) to compute Cj. It increments [and n and

returns Cj.
OSPA: Tt returns APOext:tgo(Cg,Cé) using the input (pko, C},C%) and the
oracle H(.).

Finally, A returns (mg, my).
Phase 2: B picks 6,0, < {0,1}* and m & {0,1}™l Tt then computes
mo = mo ®@ m and my; = my © m. Using st. = (K||0(—1)|[0nm-1)), it

16

sets Mo = mol[(0(n—1) @ F(0,)) and My = my||(0(,—1) © F(n)). It com-
putes C,, = Encok, (|[(6n @ F(0(n-1))); G(G(n—1))) and sends (Mo, M;) to
the challenger. B receives the challenge Ch. Finally, it computes D,, =
(Cn-1)llon) ® H(K||C,[|Cy) and sends C,, = (Cy||Cy||Dy) to A. It incre-
ments /.

It then simulates the oracles as follows:

F(.): Tt is as in the first phase.

G(.): If input g is 7, then B aborts the experiment. Else it is as in the first
phase.

H(.): If 3 (o, B) such that h = (K||a]|B) then B aborts the experiment. Else
it is as in the first phase.

OSPA: Tt is as in the first phase excepts that it does not increment n.

Finally, A returns b and B returns the same b.

Analyze: While B does not abort the experiment, it is perfectly simulated for
A. In this case, if A wins his experiment then B also wins his experiment. We
claims that Pr[B aborts| is negligible: Let E; and E3 be two events such that:

— By = 7B aborts during oracle H(.) simulation”
— Ey = 7B aborts during oracle G(.) simulation”

We remark that 4 has no knowledge about the value K. Let Ay be the
number of queries to H(.) asked by A, then Pr[E;] < \y/2* is negligible.

Note that Ey = —E; since if B aborts on H(.) he cannot abort on G(.). ~E}
implies that all D; for all ¢ < [seems to be randoms elements of the uniform
distribution on {0,1}*. In this case, informations about &,, that A has, are
the following values {7;_1 @ F(0;) }n<i<i- However, Lemma 1 claims that these
elements give no information about &, in the random oracle model. We can
deduce that Pr[Ey] < A\g/2* for Ag the number of queries to G(.) asked by A

We note Ey = ”B does not abort” = —FEy A =FE5. From previous results,
we have that Pr[Ep] is non negligible and Pr[—FEy] is non negligible. Finally, as
Pr[B wins|E;]| = Pr[B wins|Es] = 0,

Pr[B wins|] = Pr[B wins|Ey].Pr[Ey]
= Pr[A wins|.Pr[Ey]

On the other hand:

Advll'E\I’DB-CPA(k) = ‘(Pr[A wins] — %).Pr[EO] — %Pr[—\Eo}

1
> ‘Adng,gL“gD‘CPAO(k).Pr[EO] — 5 Prl=E]

We can conclude that Adv',l;\'%CPA(k) is non negligible, which is a contradiction

since E is IND-CPA. ' O

17

Lemma 4. Let EprOY’T;(ND_CPAl (k) be the same experiment that Exp%I;{ND'CPA(k)

except that Ay does not access to the oracle OSA. Then Advg_z,’,’\(l)D‘CPAl(k) 18
negligible when E is IND-CPA.

Proof (Lemma 4). We assume there exists a polynomial time adversary A such

that Adv(G)TAIL“(')D;L‘CPAl(k) is non negligible. We show then how to construct an

adversary B with a similar running time such that Advlg%cpA(k) is also non

negligible.
B description:

Phase 1: B receives the key pk, and sends it to .A. It picks three random values
K, 5 and 7o from {0,1}* and initializes two counters n = 1 and [= 1.
It computes st, = (K||g||do) and creates three empty lists Fir, Gusr and
Hisr. It then simulates the oracles as follows:

F(.): Tt takes an input value f. If there exists (f/, F') € Fy4r such that f = f’
then B returns F'. Else it picks a random value F', adds (f, F') to Fysr
and returns F.

G(.): Tt takes an input value g. If there exists (¢, G) € Gpgr such that g = ¢’
then B returns G. Else it picks a random value G, adds (g, G) to Gpgr
and returns G.

H(.): Tt takes an input value h. If there exists (h', G) € Hygr such that h = b’
then B returns H. Else it picks a random value H, adds (h, H) to Hygr
and returns H.

OSPA: Using the input (pk,m) and the oracles F(.), G(.) and H(.), B runs
the algorithm APOenc:t; (m) to compute Cj. It increments [and n and
returns Cj.

Finally, A returns (mq, mq).

Phase 2: B picks 6,0, < {0,1}* and m & {0,1}™ol It then computes
mo = mo © m and my = my & m. Using st, = (K||G,—1)|[0(n—1)), it sets
My = mol|(0n @ F(G(n—1))) and My = m1|[(0n & F(G(n—1))). It computes
Cp = Encp (||(G(n_1) ® F(5,)); G(Gn)) and sends (Mo, M) to the chal-
lenger. B receives the challenge C,. Finally, it computes D,, = (Cn-n)|on) @

H(K||C,||Cy) and sends C,, = (Cp||Cy||Dy) to A. It increments 1.
It then simulates the oracles as follows:

F(.): It is as in the first phase.

G(.): If input g is o(,,—1) then B aborts the experiment. Else it is as in the
first phase.

H(.): If 3 («, 8) such that h = (K||«||8) then B aborts the experiment. Else
it is as in the first phase.

OSPA: Tt is as in the first phase excepts that it does not increment n.

OSEA: Tt receives (pko, Cl,C}) If it exists C; = C2, and C; = Cj such that
i <n < j then the oracle rejects the query. Else, if C, = C,, or C} = C,,

it rejects the query. Else it returns APOext3- (C7,, Cy).

Finally, A returns b and B returns the same b.

18

Analyze: While B does not abort the experiment, it is perfectly simulated for

A. In this case, if A wins his experiment then B also wins his experiment. We

claims that Pr[B aborts| is negligible: Let E; and E3 be two events such that:
- B
— E2

We remark that 4 has no knowledge about the value K. Let Ay be the
number of queries to H(.) asked by A, then Pr[E;] < A\y/2* is negligible.

Note that Ey = —E; since if B aborts on H(.) he cannot abort on G(.). ~E}
implies that all D; for all ¢ < [seems to be randoms elements of the uniform
distribution on {0, 1}*. In this case, informations about O(n—1), that A has, are
the following values {7; ® F(d;-1) }1<i<n. However, Lemma 2 claims that these
elements give no information about 7(,_1) in the random oracle model. We can
deduce that Pr[Ey] < A\g/2* for Ag the number of queries to G(.) asked by A

We note Ey = 7B does not abort” = —FE; A ~Fs. From previous results,
we have that Pr[Ey] is non negligible and Pr[—Ey] is non negligible. Finally, as
Pr[B wins|E1] = Pr[B wins|Es] = 0,

Pr[B wins|] = Pr[B wins|Ey].Pr[Ey]
= Pr[A wins].Pr[Ey]

"B aborts during oracle H(.) simulation”
"B aborts during oracle G(.) simulation”

On the other hand:
1 1
AdV%\{DB‘CPA(k) = ‘(PF[A Wins] — §)PF[E0] — §Pr[—|EO]

IND- 1
> |Advgipg < ()-PrlEo] — 5 Pr{-Eq

We can conclude that Adv%‘%CPA(k) is non negligible, which is a contradiction
since E is IND-CPA. O

Theorem 1. Let E be an IND-CPA secure RCD-PKE, then G-APO based on E
18 OT-IND-CPA secure in the random oracle model.

Proof (Theorem 1).

This theorem is a direct consequence of Lemma 3 and 4: Let A be an ad-
versary against APO-PKE. During the experiment Expgggf\lp?{éi%(k), if A chooses
to call oracle OSPA in the first phase then his advantage is negligible. However,
if A chooses to call oracle OSPA in the second phase then his advantage is also
negligible. Thus, we can conclude that Advgg'olf\lplj,{g%(k) is negligible.

O

B Proof of Theorem 2

Theorem 2. Let E be a PKE that is RCD, then G-APO using E is IND-CSPA

secure in the random oracle model.

Consider the following experiment:

19

b & {0, 1}
For i =1,---,n do (pk;,sk;) < Gen(1¥)
/(7 AE”CPkl (LRb('f)?U)"“’Encpk (LR (+,-);0)(St pk17 . 7pkn)

return (b =10')
Were LRy(-, -) returns my, from (mg, my) and Encpy, (LR, (-, -); o) is an oracle that
returns Encyy, (ms; o) from (mg, my). Let AdviND-CPA (1) be the advantage func-
tion associated with the previous experiment. In [2], authors prove that if IT is
IND-CPA then Adv?{'ND‘CPA(k) is negligible for any poly-time A and polynomial
n. We use this result in the proof of Theorem 2.
Lemma 5. Let Exp IND CSPA (k) be the same experiment that Expy; ex-
cept that in guess phase A returns o and wins the experiment if zt exists K;_,;
generated by oracle O such that o1 = o for Decs, (Ki—y;) = (00l|o1). Let

ext
AdvIII;ID_CSPA¢(k) be the advantage on EprND CSPA¢(k) of A defined by

IND- CSPA¢ (kﬁ)

IND-CSPA, IND-CSPA
Advy 4 P (k) = PriExpy o 0 (k) = 1]

IND-CSPA,

Then Advy, 1=IND-CPA (1)

(k) is negligible when Adv; is negligible.

Proof (Lemma 5). We assume there exists a polynomial time adversary A such
that Adv™ IND- CSPA¢,

versary B Wlth a similar running time such that Advy;
negligible.
Description of the adversary B:

(k) is non negligible. We show then how to construct an ad-

T WP-CPA(E) is also non

Phase 1: B receives the key pko,. It pleb four random values K, o 0o, 0o and o
from {0, 1}* and initializes three lists £(0) = &, X(0) = & and X, (0) = 5.
It initializes counters n = 0 and [= 1. It creates three empty lists Fy 51, Grigr
and Hygr. It sends pk, to A and then simulates the oracles as follows:

F(.): Tt takes as input value f. If there exists (f’, F') € Fysr such that f = f’
then B returns F. Else it picks a random value F, adds (f, F) to Fpsr
and returns F.

G(.): Tt takes as input value g. If there exists (¢', G) € G such that g = ¢
then B returns G. Else it picks a random value G, adds (g, G) to Gpgr
and returns G.

H(.): Tt takes as input value h. If there exists (b, G) € Hygr such that h = '
then B returns H. Else it picks a random value H, adds (h, H) to Hygr
and returns H.

Ofg:esnpA B generates (pk;, sk;) from Gen(k) and sends value pk; on the i*® call
to this oracle.

OSSPA: Using the input (pk,m), the state st, and oracles F(.), G(.) and H(.),
B picks a random coin ¢ from R, a random message m from {0, 1}‘”',
random elements f, g, and & from {0,1}* and h from {0,1}2*, and

20

computes C; = Enco(i]|(7 & F(E(1))); G(Z(1))), m = m @& m, C) =
Encpk(m||f; g9), D = h and returns C; = ((Z, Cy, D). It increments [and
n and initializes £(1) = 3, Xo(l) = o and (1) = 4.

ngstpi: Using the input (Cq||Cy) such that € = (C'||C"||D’) and C}
(G311 Dy): A

— If it exists ¢ such that C; = C/, B computes a = X(i — 1).

— Else, it computes (a||a’) = D, @ H(K,C",C").

— If it exists j such that C; = C}, B computes Sy = Yo(j) and By =
Y1 (j) and sends (a||B) and («||B1) to the oracle Encpko, (LRs (-, -)57)
and receives Kskj’g. B returns it.

— Else, it computes (8]|5') = D{)@H(KH@’)H@’)), Ksko* = Encpro, ((]|B);7)

. —b T
pko,
and returns K, ;.

Finally, A returns (¢, {m}ni1<o<ntgr 113 Int1<o<nrar {PKe Int1<a<nrg)-
Phase 2: For all z such that n + 1 < x < x + ¢, B performs the following
computations:
— If it exists y € {1,2,-- ¢} such that pk, = ﬂy then uses OSSPA on mb
to compute C,.

— Else it uses OS2PA

pk,
B then computes K(n+1)%(n+q

{Cw}n+1§z§z+q and K?rtfkl)a(njtq) to A.

It then simulates the oracles as follows:

F(.): If A sends o such that o = X,(z) for 0 < z <[, B aborts the experi-
ment and returns the bit o. Else, it is as in the first phase.

G(.): If A sends o such that 0 = X,(x) for 0 < x <, B aborts the experi-
ment and returns the bit o. Else, it is as in the first phase.

H(.): Tt takes as input value h. If 3 C,, = (C;||Cy||D,) for 1 < z <1 such
that h = (K||6’w||éx) then B aborts the experiment. Else it is as in the
first phase.

OgsnPA,OSnSCPA and OSSPA: B process as in the first phase.

Finally, A returns o. If it exists x such that 0 = X,(x) for 0 <z <[, B
returns the bit o. Else, it returns a random bit.

on m to compute C,.
CSPA

oa +on Cpyy and Cpy, and sends

) using O

Analyze: Let Fy and Es be two events such that:

— Ey = 7B aborts during oracle H(.) simulation”
— Ey = 7B aborts during oracle F(.) or G(.) simulation”

During simulation of OS3PA, oracle H(.) is never called on an input A such

that 3 Cy = (@c“CN‘xHDx) forl<z<land h= (KH(/Z'\IHéz) We remark that
A has no knowledge about the value K. Let Ay be the number of query to H(.)
asked by A, then Pr[E;] < Ap/2* is negligible.

We first prove that Pr[” B loses ”|Es] is negligible. Let Ag (resp. Ag) be the
number of query to G(.) (resp. F(.)) asked by .A. Since A has no information

21

about elements of fl_b, the probability that A sends o such that o = X _(x)
for 0 < z <1 is inferior to (Ag + A4)/2¥, that is negligible. On the other hand,
we can remark that Pr[” B wins”|E»] is non negligible.

We note Ey = ~E; A ~Es. We remark that Pr[B wins|E1] = 0. If Pr[-Es] is
negligible, then:

1
= |Pr[B wins] — 2’

1
> |Pr[B wins|Es].Pr[Es] — 3 + Pr[B wins|Ey].Pr[—E1].Pr[-E5]

>

(; - AF;AG> - Pr[Ey] + Pr[B wins| Eq).Pr[~E;].Pr[~E)

Then AvalEfl'gND'CPA(k) is non negligible. On the other hand, if Pr[Es] is negligible,
then:

Adv]lg—,llgND-CPA(k)
1
= |Pr[B wins] — 2‘

> |Pr[B wins|Es].Pr[Es] + Pr[B wins|Ep].Pr[~Eo] — %

1 CspA! 1
> |Pr[B wins|Es).Pr[Es] + §Adv'gfjf%(k) Pr[Ey] - Prl~Ey] = SPrEy V By

Then Adv}gjllsND‘CPA(k) is non negligible. Finally, Adle_,llgND'CPA(k) is non negligible

in any cases. a

Theorem 2. Let E be a PKE that is RCD, then G-APO using E is IND-CSPA
secure in the random oracle model.

Proof (Theorem 2).

We assume there exists a polynomial time adversary A such that AdVIG'\fgg;,((:)si/s‘l5 (k)
is non negligible. We show then how to construct an adversary B with a similar
running time such that Adv%jllsND'CPA(k) is also non negligible.

Description of the adversary B:

Phase 1: Breceives the key set {pk, }1<.<4 and generates (pko, ,sko,) ¢~ Gen(1¥).
It picks three random values K, and Gy from {0,1}* and initializes st, =
(K||60||00). It initializes counters n = 0 and I = 1. It creates three empty
lists Frisr, Gugr and Hygr. It sends pko, to A and then simulates the oracles
as follows:

F(.): Tt takes as input value f. If there exists (f’, F) € Fysr such that f = f’
then B returns F. Else it picks a random value F, adds (f, F') to Fygr
and returns F'.

22

G(.): Tt takes as input value g. If there exists (¢', G) € Gy such that g = ¢’
then B returns G. Else it picks a random value G, adds (g, G) to Gpgr
and returns G.

H(.): Tt takes as input value h. If there exists (h', G) € Hygr such that h = 1’/
then B returns H. Else it picks a random value H, adds (h, H) to Hygr
and returns H.

OESHPA: B sends value pk; on the i" call to this oracle.

OSSPA: Using the input (pk,m), the state st, and the oracles F(.), G(.) and
H(.), B computes C; = APOency (m) and returns it. During the encryp-
tion, st. is updated by (K||a;||07). B increments n and .

OSSPA: Using the input (C!||C}), the oracle H(.) and st., B computes and

sends APOext;tgo* (CL,Cy).

Finally, A returns (g, {mg}n-&-lﬁwﬁnﬁ-qa {malc}n+1San+qv {pkx}n-&-lSan-i—q)-
Phase 2: For all z such that n + 1 < 2 < x + ¢, B performs the following
computations:
— Tt picks m, <& {0,1}‘”’2| and computes m2 = m? @ m, and m}
ml @ M.
— Tt picks G,, 0, < {0,1}%.
— If it exists y € {1,2,--- ¢} such that pk, = &y then it computes @ =
Encye (Ma|l(00 @ F(02-1));H(@2-1)) using st. = (K|[oz-1[0o-1). B

sends m0||(7,_1®F(5,)) and ml||(5,_1©F(d,)) to oracle Enco (LR ()
It responds by the value C;. It computes Dy = (G5—1[0)®H(K||C:||Cy)
It computes C, = (C,||C||Dx) and updates st, = (K||o,||0:) and in-

crements .
— Else it uses

iT).

OCSPA

d
e+ on MG to compute Cy.

k
B then computes KFn:-*l)%(n+q) = APOext:tljo* (Crs1, Crgq), and sends {Cy }rt1<a<atq

pko,
and K(n+1)_>(n+q) to A.

It then simulates the oracles as follows:
F(.): It is as in the first phase.

G(.): Tt takes as input value g. If 3 &, such that n+ 1 < 2 < n + ¢ and
0, = g then B aborts the experiment. Else it is as in the first phase.
H(.): Tt takes as input value h. If 3 («||8) such that h = (K||«||3) then B

aborts the experiment. Else it is as in the first phase.

OSPAOSPA and OS3PA: B is as in the first phase.

Finally, A returns b and B returns the same b.

Analyze: While B does not abort the experiment, it is perfectly simulated
for A. In this case, if A wins his experiment then B also wins his experiment. We
claims that Pr[B aborts| is negligible: Let E; and E; be two events such that:

— Ey = 7B aborts during oracle H(.) simulation”
— Ey = 7B aborts during oracle G(.) simulation”

23

We remark that A has no knowledge about the value K. Let Ay be the
number of queries to H(.) asked by A, then Pr[E;] < A\y/2¥ is negligible.

Note that EFy = —E; since if B aborts on H(.) then it cannot abort on
G(.). —E; implies that all D; for all i < I seems to be randoms elements of the
uniform distribution on {0, 1}*. Moreover, Lemma 1 claims that values {5;_; ®
F(7:)}o<i<i give no information about values {7, }o<z<;- Finally, since interval

keys are the only one information that A possess about values {7 }o<z<i, finding

~ IND-CSPA/
o such that {7, }o<z<i is equivalent to win the experiment Expy; , (k). Thus,

Pr[E;] < Advgzcsp% (k) that is negligible (Lemma 5)

We note Fy = "B does not abort” = - Fy A =Es. Finally, as Pr[B wins|E4] =
Pr[B wins|E2] = 0,

Pr[B wins|] = Pr[B wins|Ey].Pr[Ey]
= Pr[A wins].Pr[Ey]

On the other hand:

AdV%TéND_CPA(k) = ’(Pr[.A wins]).Pr[Eo] — %PF[—\EO]

1
2
i 1
> ‘Advg'\f,'ipcg"’Afb(k).Pr[Eo] — 5Pr-E)

Since Pr[Ey] is non negligible, we can conclude that AdvlgoDigCPA(k) is non negli-

gible, which is a contradiction since E is ¢ — IND-CPA. O
C Proof of Theorem 3

Theorem 3. Let E be a RCD and VK PKE that is IND-CPA secure, then G-APO
using this PKE satisfies the integrity property.

Proof. Suppose that Exp'{}t’ejrity(k) = 1 then there exists a tuple

(Na {Cw}lgng; {pkl}ISLESNv la Skl7i7ja szi;kj)

such that Ver(pk;,sk;) = 1 and m; # APOdecy, (C;) for m; € {my}ica<; =
APOpeny, (K75, {Catisasy {Pks bicas,).

We note C; = (CA'ZHélHDl) During APOpen execution, algorithm computes
(7u|[31) = CDecy(Cy, pk;) and (y|[5;) = CDecy(Cy, pk;) for two given keys R
and R. Algorithm then checks that Encyy, ((77]|77); R) = C; and Encpy, (([51); R) =
6’1. It finally returns m; € {mg };<.<; such that m; = m;&m,. By the correctness
?EOII)th)y of PKE7 Decskl (Encpkl ((ml||ﬁl), R)) = (ﬁu||8l) and Decskl (Encpkl ((ﬁ”tlH&l), E)) =
my||oy)-

24

However, decryption algorithm APOdecqy, (C}) computes two values (M ||o]) =
Decq, (C7) and (my||o]) = Decq, (C;) and returns m; = m; @& m;. From previous
result, m; = m; and m) = m; but m; # m], which leads us to a contradiction.

We conclude that AdvZ & (k) = 0.

O

D Exemple of RCD-PKE

Definition 11 (Cramer-Shoup Cryptosystem [10]). The Cramer-Shoup
cryptosystem is a PKE defined by:

Gen(1%): Choose a cyclic group G of prime order p and two generators (g1, g2)
of G. Choose H a universal one-way hash function. Pick five random values
Ty, To, Y1 Y2 and z in L. Compute ¢ = gi" - g5°, d = g{' - g3° and h = g7.
Return the public key pk = (G,p,g1,92,H,¢,d, h) and the secret key sk =
(1,22, Y1,Y2, 2).

Encpk(m;o): Compute uqw = g7, us = g5, e = h%.m, a = H(u,uqg,e) and
v=1c?-d’®. Return (ui,us,e,v).

Decs(c): Compute o = H(uy,uz,e). If ui* - ug? - (ui'uy®)® = v then return

m = =, else return L.
1

Cramer-Shoup cryptosystem is a RCD-PKE since we have
CDec, ((u1,uz,e,v), pk) = e/h? = m.

Definition 12 (DHIES Cryptosystem [1]). The DHIES cryptosystem is
a Diffie-Hellman based PKE using a IND-CPA symmetric encryption scheme
SYM = (£2,D?) and a CMA message authentication code scheme MAC = (G, T, V).
DHIES is defined by:

Gen(1%): Choose a cyclic group G of prime order p and a generator g of G.
Choose H : {0,1}8Len — {0, 1}mtentelen o yniversal one-way hash function
such that glen is the length of g, mLen is the length of a MAC key and elLen
is the length of a SYM key. Pick a random value x in Z,,. Return the public
key pk = (g%, H) and the secret key sk = x.

Encpk(m; o): Compute K = H((¢9")7) from the public key pk, forge the key Kmac
from the mLen first bits of K and the key Ksypy from the elLen last bits of
K. Compute Cy = ¢7,C1 = &, (m) and Co = Ti,,,(C1) and return
C = (Cy, Cy,Cs).

Decg(c): Compute K = H(CsF), forge the key Kmac from the mLen first bits of
K and the key Ksypm from the elLen last bits of K. If Vk,,,.(C1,C2) =1 then
compute m = E¢_ (C1) and return it, else return L.

DHIES is a RCD-PKE since we can construct the CDec algorithm as follows:

CDec, ((Cy, C1,Cs), pk): Compute K = H((g*)7), forge the key Ksym from the
elen last bits of K and return m = &5, (Cy).

Ksym

25

Definition 13 (Fujisaki-Okamoto generic construction [14]).

Fujisaki-Okamotto generic construction is a PKE construction using an IND-CPA
symmetric encryption scheme SYM = (€°,D®), an IND-CPA public key encryp-
tion PUB = (GP,&EP,DP) and two hash functions G and H. This construction is
defined as follows:

Gen(1%): Generate (pk, sk) = GP(1%) and return it.

Encpk(m; o): Compute Cy = 5&0)(m) C1 = &, (o;H(a,Cy)). Return C = (Cy, C1).

Decg(c): Compute the two values o = DY (C1) and m = D¥g»)(Co). If C1 =
En(aiH(a,Cy)) then return m, else return L.

Fujisaki-Okamoto construction is a RCD-PKE since we can construct the
algorithm CDec, ((Co, C1), pk) = D*g(¢)(Co)-

E Particular APO-PKE schemes

We introduce two particular cases of APO-PKE: Last A Posteriori Openable Pub-
lic Key Encryption (LAPO-PKE) that is an APO-PKE where openable intervals
always contain the last message, and First A Posteriori Openable Public Key
Encryption (FAPO-PKE) that is an APO-PKE where openable intervals always
contain the last message. We give a generic construction for theses two primitives
from G-APO.

Definition 14 (Generic LAPO-PKE (G-LAPO)). Let k be a security pa-
rameter, & = (Gen, Enc, Dec) be a RCD and VK public key encryption scheme,
R be the € set of random coin and F : {0,1}* — {0,1}*, G : {0,1}* — R and
H:{0,1}* — {0,1}* be three universal hash functions. Our generic LAPO-PKE
is defined by:

APOgen(1¥): This algorithm generates (pk, sk) with Gen and returns it.

APOQini(1¥): This algorithm picks two random wvalues o and K in {0,1}*. It
returns st = (K||o).

APQenc;, (m): Using the state st = (K||on), this algorithm picks a random
value o in {0,1}* and computes C = Encp(m||(c @ F(on)); G(on)) and
D = on @ H(K||C). Finally it updates the state st := (K||o) and returns
(CIID).

APOdec(C): This algorithm computes (m||o) = Decy(C) and it returns m.

APOQexts, (Ci, Cj): We note st = (K||on) and C; = (C||D). It initializes o;_1 =
D @ H(K||C). It picks r & R and returns Kfffj = Encpio(0i—1;7).

APOpen, (K™, {(Col|Ds) Yico<n, {Pky Yica<n): This algorithm starts by re-
covering o;_1 = Decsko(KffN).

— For all x in {i,i+ 1,...,N}, it computes R = G(o,—1). It opens C,
as follows (my||ok) = CDecr(Cy, pk,). Finally it computes o, = o @
Foz—1). If Encp, ((maz|]o}); G(oz—1)) # Co then it aborts and returns
1.

Finally, it returns {mg }i<z<n-

26

Definition 15 (Generic FAPO-PKE (G-FAPOQ)). Let k be a security param-
eter, & = (Gen, Enc, Dec) be a RCD and VK public key encryption scheme, R
be the € set of random coin and F : {0,1}* — {0,1}*, G : {0,1}* — R and
H:{0,1}* — {0,1}* be three universal hash functions. Our generic FAPO-PKE
1s defined by:

APOgen(1%): This algorithm generates (pk, sk) with Gen and returns it.

APOQini(1¥): This algorithm picks two random values o and K from {0,1}*. It
returns st = (K||o).

APOQency, (m): Using the state st = (K||oy), this algorithm picks a random
value o in {0,1}* and computes C = Encpx(m||(on & F(0)); G(o)) and D =
o @ H(K||C). Finally it updates the state st := (K||o) and returns (C||D).

APOdec (C): This algorithm computes (m||o) = Decy(C) and it returns m.

APOexts),(Cy, Cj): We note st = (K|lon) and C; = (C||D). It initializes o =
D @ H(K||C). It picks r & R and returns KP*. = Encpo(0;7).

i—J
APOpensko(Kffj,{(C_THDm)}lngj,{pkz}lgzsj): This algorithm starts by re-

covering o;j = Decsko(Kfﬁ’j).

— For all = in {j,5 — 1,...,1}, it computes R = G(o,). It opens C,
as follows (myl|lok_;) = CDecr(Cy, pk,). Finally it computes 0,1 =
051 ®F(oz). If Encor, ((mazlloy_1); G(ow)) # Co then it aborts and re-
turns L.

Finally, it returns {mg}1<z<;.

27

