
Secure Best Arm Identification in Multi-Armed
Bandits

Radu Ciucanu1, Pascal Lafourcade2, Marius Lombard-Platet3?, and
Marta Soare4

1 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, France
radu.ciucanu@insa-cvl.fr

2 Université Clermont Auvergne, LIMOS CNRS UMR 6158, Aubière, France
pascal.lafourcade@uca.fr

3 Département d’informatique de l’ENS, École normale supérieure, CNRS, PSL
Research University, Paris, France & Be-Studys, Geneva, Switzerland

marius.lombard-platet@ens.fr
4 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, France

marta.soare@univ-orleans.fr

Abstract. The stochastic multi-armed bandit is a classical decision
making model, where an agent repeatedly chooses an action (pull a
bandit arm) and the environment responds with a stochastic outcome
(reward) coming from an unknown distribution associated with the cho-
sen action. A popular objective for the agent is that of identifying the
arm with the maximum expected reward, also known as the best-arm
identification problem. We address the inherent privacy concerns that
occur in a best-arm identification problem when outsourcing the data
and computations to a honest-but-curious cloud.
Our main contribution is a distributed protocol that computes the best
arm while guaranteeing that (i) no cloud node can learn at the same time
information about the rewards and about the arms ranking, and (ii)
by analyzing the messages communicated between the different cloud
nodes, no information can be learned about the rewards or about the
ranking. In other words, the two properties ensure that the protocol has
no security single point of failure. We rely on the partially homomorphic
property of the well-known Paillier’s cryptosystem as a building block in
our protocol. We prove the correctness of our protocol and we present
proof-of-concept experiments suggesting its practical feasibility.

Keywords: Multi-Armed Bandits · Best Arm Identification · Privacy ·
Distributed Computation · Paillier Cryptosystem

1 Introduction

In a stochastic multi-armed bandit model, a learning agent sequentially needs to
decide which arm (option/action) to pull from K arms with unknown associated

? This project is partially funded by the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 826404.

User

Data Owner

Budget N

Best arm learned
for budget N

K arms

Fig. 1. System architecture.

values available in the learning environment. After each pull, the environment
responds with a feedback, in the form of a stochastic reward from an unknown
distribution associated with the arm chosen by the agent. This is a dynamic
research topic with a wide range of applications, including clinical trials for
deciding on the best treatment to give to a patient [17], on-line advertisements
and recommender systems [12], or game playing [11, 4, 14].

In this paper, we focus on a popular objective in multi-armed bandits, that
of best arm identification: given a set of K arms and a limited budget of N pulls,
the goal of the agent is to design a budget-allocation strategy that maximizes
the probability of identifying the arm with the maximum expected reward. This
problem has been extensively studied in the machine learning community [1,
3, 7, 8, 10, 16], but to the best of our knowledge, there is no previous work that
considers this problem from a privacy-preserving viewpoint. Next, we illustrate
the problem via a motivating example.

Use Case Example. A classical real-world application of the best-arm iden-
tification problem is as follows. Before launching a new product on the market,
companies can create several versions of the product that are put into a test-
ing phase. By product, we refer here to any type of object/service that might
be offered by a company and that may contain (or be obtained as a result of
analyzing) private data. Each version of the product has distinguishing charac-
teristics and the company surveys potential customers about the version they
prefer. The company’s objective is that once the testing phase is over, it can
put on the market the version that is likely to yield the best sales. The goal of
the best-arm identification problem is to define algorithms that maximize the
probability of identifying the best arm (here, the best version among the K al-
ternative versions), given a limited budget of N observations (here, customer
surveys). Therefore, best-arm identification algorithms are a good fit for the
product testing phase.

Now, imagine the scenario where a company collected over the years a large
quantity of customer surveys that it no longer needs for its purposes. This data
may actually be useful for other smaller companies that cannot afford doing their
own customer surveys, but nonetheless want to simulate the test of different
versions of their product. This brings us to the system architecture depicted in
Figure 1. The data owner is the company that owns a large quantity of customer
surveys that it wants to monetize. The user is the small company that wants
to simulate the testing of different versions of its product, without conducting
its own customer survey. It may actually be cheaper to pay a limited budget to
reuse pieces of existing data, rather than doing a new survey with real customers.

The interaction between the data owner and the user is done using some
public cloud, where initially the data owner outsources its data, then the users
interact directly with the cloud. More precisely, each user allocates some budget
to the cloud and reuses the available surveys for deciding which version of its
own product should be put on the market. The budget would refer here to the
number of survey answers the user wants the cloud to use before outputting the
best option. As a simplified example, assume that the available data consists of
user preferences about the characteristics of security devices they would buy for
protecting their homes. There are 1M surveys available and consulting a survey
costs 0.1$. If a small company wants to know which type of device people from
their market are more likely to buy, the precision of the answer it receives from
the cloud depends on the paid budget. If it pays 100$, it is more likely to get a
clearer image about the type of device that is the most likely to be purchased,
than if it pays 5$. But in both cases the obtained information is not 100% sure
because only a sample of the available data is consulted.

The aforementioned use case can be easily reformulated to other real-world
scenarios, such as health or medical data, cosmetics (e.g., trials for finding the
best anti-wrinkle cream), data concerning political preferences, education and
employment records, to name a few.

As already mentioned, we consider a scenario where the multi-armed ban-
dits (i.e., the data) as well as the best arm identification algorithm (i.e., the
computation) are outsourced to some public cloud. We assume that the cloud
is honest-but-curious: it executes tasks dutifully, and try to gain information
on the ranking of the arms and their associated values from the data they re-
ceive. We address the privacy concerns that occur when outsourcing the data
and computations.

Indeed, the externalized data can be communicated over an untrustworthy
network and processed on some untrustworthy machines, where malicious public
cloud users may learn private data that belongs only to the data owner. This is
why we require the data owner to encrypt all information about the arms before
outsourcing the data to the public cloud.

Moreover, each cloud user observes a result of the best arm identification
algorithm that is proportional to the budget that the user pays. It should be
impossible for a malicious cloud user to compose observations of several runs
of the best arm identification algorithm in order to learn the best arm with a
higher confidence, and then sell this information to some other user.

Summary of Contributions and Paper Organization. In Section 2,
we give background information on the problem of best-arm identification in
multi-armed bandits.

In Section 3, we first present the considered security model, then the needed
security tools, and finally the distributed security protocol, that is the main con-
tribution of the paper. We rely on the partial homomorphic property of Paillier’s
cryptosystem [15] as a building block in our protocol. The difficulty of our setting
comes from the fact that we need additions, multiplications, and comparisons
to solve the best arm identification problem, whereas a partially homomorphic

cryptosystem such as Paillier’s provides only homomorphic additions. There-
fore, in our protocol we distribute the computation among several participants
and insure that each of them can only learn the specific information needed for
performing their task, and no any other information. Thus, we show that our
distributed protocol has no single point of failure, in the honest-but-curious cloud
model. The overhead due to the security primitives of our protocol depends only
on the number of arms K and not on the budget N . This is a desirable property
because in practice the budget N (i.e., the number of arm pulls that we are
allowed to do) is often much larger than the number of arms K among which
we can choose.

We prove the security of our protocol in Appendix A, and we present proof-
of-concept experiments suggesting its feasibility in Section 4. We discuss related
work in Section 5, and conclusions and future work in Section 6.

2 Primer on Multi-Armed Bandits

The problem of best arm identification in multi-armed bandits [1] has been ini-
tially formulated in the domain of real numbers. We slightly revisit the initial
formulation of the problem in order to manipulate integers. The reason behind
this adaptation is that later on in our protocol, we rely on public key cryptogra-
phy tools to add security guarantees to a state-of-the-art best arm identification
algorithm.

Input. The input is twofold:
• Number of arms K. Each arm i ∈ {1, . . . ,K} is associated to a reward

value x(i) and a reward function r that returns a random integer in an interval
[x(i)− ε, x(i) + ε] according to a uniform probability distribution. Whereas each
arm i is associated to its specific value x(i), the value of ε is common to all arms.
The intervals associated to different arms may be overlapping, which makes the
setting non-trivial. The best arm i∗ is arg maxi∈{1,...,K} x(i).
• Budget N that means how many arm pulls (and implicit reward observa-

tions) the user is allowed to do.
Note that for designing a budget-allocation strategy between the arms, only

the number of arms K and the budget N are known. There is no initial infor-
mation about the reward associated to each arm.

Output. The estimated best arm î∗α that can be learned after makingN arm
pulls (and subsequent reward observations) according to some allocation strategy
α, which defines how the budget is divided between the K arms. The challenge
is to design a budget-allocation strategy α that makes the best possible use of
the budget. In other words, when selecting the arms to be pulled according to
α, the observed rewards allow to acquire as much useful information as possible
for identifying i∗.

Performance Measure. We call simple regret RN the difference between
the value of the (true) best arm i∗ and the arm î∗α estimated as being the
best arm by an allocation strategy α after N arm pulls. Thus, we compare the
gap between the value of the identification made by strategy α and that of an

oracle strategy that knows the values of the arms beforehand. Formally, the
performance of strategy α after using a budget N is RN (α) = x(i∗)− x(î∗α).

Example. We have 3 arms with associated reward values in intervals [3, 23],
[25, 45], and [40, 60]. This means that x(1)=13, x(2) = 35, x(3) = 50, and ε=10.
Assuming a budget of 3, the user may choose to spend one pull for each arm and
observe rewards of (for instance) 23, 44, and 41, respectively. Hence, the user
could wrongly think that arm 2 is the best, thus getting a regret of 50−35 = 15.

Obviously, increasing the budget would increase the number of pulls that
can be done, hence it would increase the chances of correctly identifying the
best arm. This can be easily done in the presence of an infinite budget, but the
challenge is to identify the best arm using as few pulls as possible, or in other
words, to maximize the probability of correctly identifying the best arm while
having a limited budget.

Successive Rejects (SR) [1]. The algorithm takes as input the number of
arms K and the budget N . Initially, all K arms are candidates. SR divides the
budget in K − 1 phases. At the end of each phase, a decision is made. The
phases’ lengths are fixed such that the available budget is not exceeded and the
probability of wrongly identifying the best arm is minimized.

More precisely, at each phase j ∈ {1, . . . ,K − 1}, each still candidate arm in
Aj is pulled nj times according to the fixed allocation (cf. Algorithm 1). At the
end of each phase, the algorithm rejects the arm with the lowest sum of observed
rewards, that is the arm estimated to be the worst. If there is a tie, SR randomly
selects the arm to reject among the worst arms. Then, at the next phase, the
remaining arms are again uniformly pulled according to the fixed allocation.
Thus, the worst arm is pulled n1 times, the second worst is pulled n2 +n1 times,
and so on, with the best and the second-best arm being pulled nK−1 + . . .+ n1
times. The estimated best arm is the unique arm remaining after phase K − 1.

We consider the sums of observed rewards per arm when deciding which arm
to reject instead of empirical means as in the original version [1] as a simplifi-
cation. Indeed, each candidate arm is pulled the same number of times in each
phase, hence the ranking of the arms is identical regardless of whether we look
at sums or means.

Example. Let a multi-armed bandit with 4 arms and x(1) > x(2) > x(3) >

x(4), with budget N = 500 pulls. We have log(4) = 1
2 +

∑4
i=2

1
i = 19

12 and:
Phase 1: each arm 1, 2, 3, 4 is pulled n1=d 1219

500−4
4+1−1e=79 times

Phase 2: each arm 1, 2, 3 is pulled n2=d 1219
500−4
4+1−2e–n1=26 times

Phase 3: each arm 1, 2 is pulled n3=d 1219
500−4
4+1−3e–(n1 + n2)=52 times.

In other words, arm 4 is pulled 79 times, arm 3 is pulled 79+26=105 times, each
arm 1, 2 is pulled 79+26+52=157 times, totalling 79+105+2×157 = 498 pulls.

3 Secure Protocol

3.1 Security Model

We assume that the reward functions associated to the arms as well as the best
arm identification algorithm are outsourced to some cloud. We assume that the

Algorithm 1 SR algorithm (adapted from [1])

1: A1 ← {1, . . . ,K} . Initialization
2: for all i ∈ A1 do
3: sum[i]← 0

4: log(K)← 1
2

+
∑K

i=2
1
i

5: n0 ← 0

6: for j from 1 to K − 1 do . Successive rejects

7: nj ←
⌈

1

log(K)

N−K
K+1−j

⌉
−
∑j−1

l=0 nl

8: for all i ∈ Aj do
9: loop nj times

10: r ← random integer from [x(i)− ε, x(i) + ε]
11: sum[i]← sum[i] + r

12: Aj+1 ← Ai\ arg mini∈Aj
sum[i]

13: return AK

cloud is honest-but-curious i.e., it executes tasks dutifully, but tries to extract
as much information as possible from the data that it sees. The user indicates
to the cloud her budget and receives the best arm that the cloud can compute
using the user’s budget. The user does not have to do any computation, except
for eventually decrypting î∗ if she receives this information encrypted from the
cloud. We expect the following security properties:

1. No cloud node can learn at the same time information about the rewards
and about the ranking of the arms.

2. By analyzing the messages communicated between the different cloud nodes,
no information can be learned about the rewards or about the ranking.

The two aforementioned properties essentially ensure that the desired proto-
col has no security single point of failure. In particular, the first property says
that (i) there may be some cloud node that knows the ranking of the arms (hence
also the best arm), but it is not allowed to know which rewards are associated to
these arms, and (ii) there may also be some cloud node that knows some rewards,
but it is not allowed to know which arms are associated to these rewards. If all
cloud nodes collude, the cloud can learn the rewards associated to the arms5.
We do not consider collusions in our model.

3.2 Security Background

We use Pailler’s public key encryption scheme [15]. We first recall the definition
of public-key encryption. Pailler’s encryption scheme is IND-CPA secure. We

5 In case of collusions, if several users spent successive budgets to learn the best arm
among the same set of arms, the cloud could compose the observed rewards. Hence
the cloud could compute the best arm using as budget the total budget of the users
and leak this information to some malicious user.

recall the definition of IND-CPA before presenting the scheme itself that has an
additive homomorphic property that we use in our protocol.

Definition 1 (PKE). Let η be a security parameter. A public-key encryption
(PKE) scheme is defined by (G, E ,D):
G(η): returns a public/private key pair (pk, sk).
Epk(m): returns the ciphertext c.
Dsk(c): returns the plaintext m.

We also recall the notion of negligible function in order to define the IND-
CPA security notion.

Definition 2. A function γ : N → N is negligible in η, and is noted negl(η), if
for every positive polynomial p(·) and sufficiently large η, γ(η) < 1/p(η).

Let Π = (G, E ,D) be a PKE scheme, A be a probabilistic polynomial-time
adversary. For b ∈ {0, 1}, we define the IND-CPA-b experiment where A has
access to the oracle Epk(LRb(·, ·)) taking (m0,m1) as input and returns Epk(m0) if
b = 0, Epk(m1) otherwise. A tries to guess the bit b chosen in the experiment. We

define the advantage of A against the IND-CPA experiment by: Advind-cpaΠ,A (η) =∣∣Pr[1←ExpIND-CPA-1
Π,A (η)]−Pr[1← ExpIND-CPA-0

Π,A (η)]
∣∣. We said that Π is IND-CPA

if this advantage is negligible for any probabilistic polynomial-time A. Paillier’s
cryptosystem is an IND-CPA scheme. We give the key generation, the encryption
and decryption algorithms.

Key generation. We denote by Zn, the ring of integers modulo n and by Z×n the
set of invertible elements of Zn. The public key pk of Paillier’s cryptosystem is
(n, g), where g ∈ Z×n2 and n = pq is the product of two prime numbers such that
gcd(p, q) = 1. The corresponding private key sk is (λ, µ), where λ is the least
common multiple of p− 1 and q− 1 and µ = (L(gλ mod n2))−1 mod n, where
L(x) = (x− 1)/n.

Encryption algorithm. Let m be a message such that m ∈ Zn. Let g be an
element of Z×n2 and r be a random element of Z×n . We denote by Epk(·) the
encryption function that produces the ciphertext c from a given plaintext m
with the public key pk = (n, g) as follows: c = gm · rn mod n2.

Decryption algorithm. Let c be a ciphertext such that c ∈ Z×n2 . We denote by
Dsk(·) the decryption function of c with the secret key sk = (λ, µ) defined as
follows: m = L

(
cλ mod n2

)
× µ mod n.

Paillier’s cryptosystem is a partial homomorphic encryption scheme. Let m1

and m2 be two plaintexts in Zn. The product of the two associated ciphertexts
with the public key pk = (n, g), denoted c1 = Epk(m1) = gm1 · rn1 mod n2 and
c2 = Epk(m2) = gm2 · rn2 mod n2, is the encryption of the sum of m1 and m2,
i.e., Epk(m1) · Epk(m2) = Epk(m1 +m2 mod n).

We also remark that: Epk(m1) · Epk(m2)−1 = Epk(m1 −m2).

U BAI RPj

Comp

Data Owner
(1) N

(5) EpkU(î∗)

(2*)
nj , EpkRPj (σj), σj

(
list of EpkComp

(sum(i))
)

σj(list EpkComp
(sum ′(i)))

(3*)
(3*) σj(list of EpkComp

(sum ′(i)))(4*) arg min(sum ′(i))

(0)
list of EpkComp

(x(i)), EpkRPj (ε)

Fig. 2. Workflow of the secure algorithm. We use numbers to indicate the order of the
steps. The steps annotated with * are repeated for each phase j ∈ {1,K − 1}. For the
communications BAI → RPj , RPj → BAI, and RPj → Comp, the list concerns all the
arms that are still candidates i.e., the set Aj .

3.3 Secure Algorithm

We revisit the successive rejects (SR) algorithm in order to satisfy the properties
outlined in Section 3.1. We consider K arms. We note JnK the set of the n first
integers: JnK = {1, . . . , n}. Recall that SR has K–1 phases and at each phase j,
it uses a budget of nj to pull each of the still candidate arms. At the end of each
phase, SR rejects the worst arm, based on all pulls observed since the beginning.

In the sequel, each time we refer to some (pk, sk), and associated encryp-
tion/decryption functions, we assume they are done using Paillier’s cryptosys-
tem [15]. In particular, we rely on the homomorphic addition property of Pail-
lier’s cryptosystem i.e., Epk(x+ y) = Epk(x) · Epk(y).

In our security protocol, we assume K + 3 participants:
– DO is the Data Owner, who is not in the cloud. DO sends the encrypted arm

values EpkComp
(xi) and EpkRPj (ε) for i ∈ JKK and j ∈ JK − 1K.

– U is the User, a participant that is not in the cloud. The user generates
(pkU, skU) and shares pkU and the budget N with the cloud. The cloud nodes

compute î∗ and at the end BAI sends EpkU(î∗) to the user, who is able to
decrypt it using her secret key skU.

– BAI (Best-Arm Identification) is the node responsible for executing the K−1
phases of the SR algorithm. BAI generates K − 1 uniformly selected permu-
tations σj of JK + 1 − jK (as there are K + 1 − j candidate arms at round
j). Each σj is shared with the node RPj , but not with Comp. At each phase,
BAI knows which arm is the worst and should be rejected, and after the last
phase it knows which arm is the best. However, BAI does not know which
rewards are associated to the arms because the rewards are encrypted with
pkComp.

– Comp is the node responsible of choosing the worst one among the sums of
rewards associated to the candidate arms. Comp generates (pkComp, skComp)
and shares pkComp with all other cloud nodes and DO.

Node BAI Comp RPj

Does know

• ranking of
arms
(including
best arm)

• sums of rewards

• arms still candidate at phase j
• arms already rejected before
phase j
• sums of rewards added at phase j

Does not
know

• sums of
rewards of
any arm
(Theorem 1)

• mapping between
sums of rewards and
the arms that produced
them (Theorem 3)
• ranking of arms
(including best arm)
(Theorem 2)

• ranking of arms (including best
arm)
(Theorems 4 and 5)
• sums of rewards from phases
1, . . . , j − 1, j + 1, . . . ,K − 1
(Theorem 6)

Table 1. What each cloud node knows and does not know.

– RP1, . . . , RPK−1 are K − 1 nodes, each of them knowing the value ε that
is needed to generate a reward for each arm. Each node RPj generates
(pkRPj

, skRPj
) and shares pkRPj

with BAI and DO.
The algorithm, which is summarized in Algorithm 2, consists of:

– Initialization done by BAI is:
• Based on the total budget N , compute n1, . . . , nK−1 that is the number

of times each of the candidate arms should be pulled at phase 1, . . . ,K−
1, respectively.
• Uniformly select a permutation σ1 of JKK and send EpkRP1 (σ1) to RP1. A

new permutation σj on JK + 1− jK is randomly selected at each round,
and sent to RPj .
• For each arm i, compute sum[σ1(i)] = EpkComp

(0).
During the K−1 phases of the algorithm, these encrypted sums are updated
by the nodes RPj .

– K−1 phases where nodes BAI, RPj , and Comp interact as shown in Figure 2.
We add the following specifications:
• Each RPj updates the encrypted sums using the homomorphic addi-

tion property of the Paillier’s cryptosystem: for a round j and a can-
didate arm i with sum sum[σj(i)], we get the updated sum sum ′[σj(i)]

by homomorphically adding
(
EpkComp

(x(σj(i)))
)nj

×
∏nj

l=1 EpkComp
(kl) to

sum[σj(i)], where kl is uniformly selected in [−ε, ε] by RPj .
• When Comp computes the index of the worst arm, if two or more arms

have the same worst sum of rewards, then Comp selects uniformly at
random one of these arms as the worst one. This ensures that the index
of the worst arm has a uniform distribution.

We summarize in Table 1 what each cloud node knows and does not know, in
order to satisfy the desired security properties. We formally prove the security
properties in Appendix A. Next, we briefly outline why we need so many nodes:
– Assuming that all RPj nodes are a single one, this node would know all

rewards since the beginning of the algorithm hence it would learn the ranking
of the arms.

Algorithm 2 Secure SR algorithms

1: function Setup BAI(N) . Step 1 . j tracks the round number, sum contains the
sum of rewards of each competing arm. Both are stored in BAI state.

2: for j from 1 to K-1 do

3: nj ←
⌈

1

log(K)

N−K
K+1−j

⌉
−
∑j−1

l=0 nl

4: for all i ∈ JKK do
5: sum[i]← EpkComp

(0)

6: j ← 1

7: function Start Round BAI . Step 2∗

8: σj ← random permutation of JK − j + 1K
9: save σj in BAI state

10: return σj(sum), EpkRPj (σj), nj

11: function Round RPj(σj(sum), EpkRPj (σj), nj) . Step 3∗

12: Decrypt EpkRPj (σj), retrieve σj and un-permute σj(sum) to get sum

13: for each arm in sum do
14: Homomorphically add to sum[arm] the rewards from nj pulls of the arm

15: return σj(sum)

16: function Round Comp(σj(sum)) . Step 4∗

17: Decrypt each element of σj(sum)
18: xmin ← the index of a lowest element of the decrypted list, randomly chosen

amongst all lowest elements
19: return xmin

20: function End Round BAI(σj(sum), xmin) . After Step 4∗, before next round
21: umin ← σ−1

j (xmin)
22: Remove arm umin from the list of participants, and from sum to reflect so
23: j + +

24: function Result . Step 5
25: Get the only remaining competing arm î∗ from sum in BAI state
26: return EpkU(î∗)

– Assuming that Comp and RPj are the same, then it would leak which arm
is associated to which sum, hence the best arm could be leaked.

– Assuming that Comp and BAI are the same, then BAI would learn the plain
rewards in addition to the ranking that it already knows.

– Assuming that BAI and RPj are the same, then it would leak to BAI the sum
of rewards associated to each arm.

3.4 Complexity

We give here a brief description of the complexity, in terms of the number of
calls to E and D (the costliest operations).
– At Step 0, DO computes ∀i ∈ JKK, EpkComp

(x(i)). It also encrypts ε for each
RPj , thus having O(K) complexity.

– At Step 2, BAI computes a new encrypted permutation, that can be encoded
as [EpkRPj (σj(1)), . . . , EpkRPj (σj(K + 1 − j)], thus having O(K − j) = O(K)

complexity.
– At Step 3, RPj computes the added rewards. Given the algorithm in Sec-

tion 3.3, this step has O(K) complexity.
– At Step 4, Comp decrypts all partial sums, with a complexity of O(K), before

sending the argmin to BAI.
Steps 2, 3, 4 are repeated K−1 times. The total complexity of these three steps
is then O(K2), and the total complexity of the algorithm is O(K2).

Note that the complexity of the algorithm is independent from the total
budget N , which is a great advantage as typical budgets for these kinds of
problems are often elevated and usually much larger than the number of arms.
More precisely, the complexity related to N is hidden by the complexity of the
encryptions.

4 Experiments

We report on a proof-of-concept experimental study of our proposed protocol.
We implemented and compared:
– SR: the successive rejects algorithm, adapted from [1]. We give the pseu-

docode of SR in Figure 1.
– SR-secured: our proposed protocol, which adds security guarantees to SR.

We describe SR-secured in Section 3.3 and we outline its workflow in Fig-
ure 2.

We implemented the algorithms in Python 3. Our code is available on a public
git repository6. For SR-secured, we used phe7, an open-source Python 3 library
for partially homomorphic encryption using the Paillier’s cryptosystem.

We summarize the results in Figure 3 and we discuss them next. We carried
out these experiments on a laptop with Intel Core i5 3.10GHz and 8GB of RAM.
We used 2048 bits keys. The results are averaged over 100 runs.

6 https://gitlab-sds.insa-cvl.fr/vciucanu/secure-bai-in-mab-public-code
7 https://python-paillier.readthedocs.io/en/develop/

100000 150000 200000 250000 300000 350000 400000
0.01

0.02

0.03

0.04

Ti
m

e
fo

r S
R

K=5
K=10
K=15

100000 150000 200000 250000 300000 350000 400000
Budget

0

10

20

30

Ti
m

e
fo

r S
R-

se
cu

re
d

(a) Run time (in seconds) for SR (full lines), and
for SR-secured (dashed).

U

DO

BAI

Comp RP1
RP2

RP3

RP4

(b) Time share during
SR-secured execution, for
N=400000 and K=5.

Fig. 3. Experimental results.

Run time comparison SR vs SR-secured. In each half of Figure 3(a),
we have 12 points, corresponding to the pairwise combinations between 4 bud-
get values N (100000, 200000, 300000, 400000) and 3 values for the number of
arms K (5, 10, 15). We split the figure in two plots with different Y axis be-
cause the observed times are in the order of tens of milliseconds for SR and
tens of seconds for SR-secured. For SR, we observe that the time varies more
on N and less on K, which makes sense because the operations depending on
N (i.e., picking random numbers in the rewards generation) are more expensive
than the operations depending on K (i.e., additions and multiplications). On
the other hand, for SR-secured, the slight run time increase depending on N
is barely visible (hence the curves look rather constant) because of the three-
orders-of-magnitude overhead that is a natural consequence of the high number
of encryptions and decryptions performed by SR-secured. As explained in Sec-
tion 3.3, each participant and encryption/decryption from SR-secured is useful
for the protocol in order to guarantee the desired security properties. We stress
that the time of SR-secured barely grows when increasing the budget N , which
confirms the essential property that we outlined in the complexity discussion: the
number of cryptographic primitives does not depend on N . Hence, we were easily
able to run SR-secured for large budgets as we show in the figure. We conclude
from this experiment that SR-secured retains the scalability of SR while adding
an overhead (depending on K and not on N) due to the security primitives.
Obviously, both algorithms compute exactly the same result i.e., the best arm.
Moreover, before running this time comparison study, we carefully checked that
all intermediate sums and arm rankings are identical for SR and SR-secured,
despite the encryptions and decryptions that the latter algorithm performs.

Zoom on SR-secured. In Figure 3(b) we highlight how the total time
taken by SR-secured is split among the participants. We obtained this figure
for N=400000 and K=5, hence there are 4 phases, thus 4 participants RP1,
RP2, RP3, RP4 in addition to Comp, BAI, the data owner DO, and the user
U. First, notice that the shares of U and DO of the total time are relatively
small, which is a desired property. Indeed, we require the DO only to encrypt
her knowledge of the arms before outsourcing such encrypted data to the cloud
(step 0 in Figure 2). This could be actually done only once at the beginning
and then all runs of the best-arm identification algorithm can be done using the
same encrypted data, regardless of the user that pays for such a run. Moreover,
we require U to not do any computation effort other than decrypting the result
of the best-arm identification algorithm that the cloud returns to her (step 5 in
Figure 2). Among the cloud participants, we observe that BAI takes the lion’s
share of the total running time. This is expected because the role of BAI is similar
to a controller that interacts with all other cloud participants. In what concerns
Comp and the RPj , their shares are quite similar. We observed the same behavior
regardless of the chosen N and K on which we zoom.

5 Related work

To the best of our knowledge, our work is the first that relies on public-key en-
cryption in order to add privacy guarantees to best-arm identification algorithms
for multi-armed bandits.

There is a recent line of research on multi-armed bandits using differential
privacy techniques [5, 6], which are based on adding an amount of noise to the
data to ensure that the removal or addition of a single data item does not affect
the outcome of any data analysis. These works have either focused on strate-
gies to obtain: (i) privacy-preserving input guarantees i.e., make the observed
rewards unintelligible to an outside user [9], or (ii) privacy-preserving output
guarantees i.e., protect the chosen actions and their associated rewards from
revealing private information [13, 18].

There are some fundamental differences between this line of work based on
differential privacy and our work based on public-key encryption. First, the con-
sidered multi-armed bandit problems are different. Indeed, we focus on identify-
ing the best arm, which is equivalent to minimizing the simple regret, that is the
difference between the values associated to the arm that is actually the best and
the best arm identified by the algorithm. On the other hand, the aforementioned
works consider the cumulative regret minimization that roughly consists of min-
imizing the difference between the rewards observed after pulling N times the
best arm and the rewards observed during the N pulls done by the algorithm.

A second difference is as follows. On the one hand, our secured algorithm
based on public-key encryption is guaranteed to return exactly the same result
as the (non-secured) SR algorithm [1] on which we rely as a building block in
our protocol. On the other hand, the result of a differentially-private algorithm

contains by definition some noise, hence it is different from the result of the
algorithm without privacy guarantees.

Third, by construction, the performance measure (the regret) of our secure al-
gorithm remains the same as for the non-secured version, since both versions use
the same arm-pulling strategies (that is, the performed encryptions/decryptions
have no influence on the choice of arms to be pulled). The price we pay for mak-
ing the algorithm secure comes only in the form of additional time needed for the
encryptions and decryptions. In contrast, in the differential privacy approach,
noise is introduced in the inputs/outputs in order to guarantee that the algo-
rithms are differentially private and this has a direct impact on the arm-selection
strategies. Therefore, the performance of the differential private versions of the
algorithms suffers an increased regret with respect to their non-secured versions
by an additive [18] or a multiplicative factor [9, 13].

6 Conclusions and Future Work

We studied the problem of best-arm identification in multi-armed bandits and
we addressed the inherent privacy concerns that occur when outsourcing the
data and computations to a public cloud. Our main contribution is a distributed
protocol that computes the best arm while guaranteeing that (i) no cloud node
can learn at the same time information about the rewards and about the ranking
of the arms and (ii) by analyzing the messages communicated between the differ-
ent cloud nodes, no information can be learned about the rewards or about the
ranking. To do so, we relied on the partially homomorphic property of Paillier’s
cryptosystem. The overhead due to the security primitives of our protocol de-
pends only on the number of arms K and not on the budget N . Our experiments
confirmed this property.

Looking ahead to the future work, there are many directions for further
investigation. For example, we plan to investigate whether we can leverage an
addition-homomorphic cryptosystem other than Paillier’s, which may be more
efficient in practice and could help us reduce the run time gap between the
secured and the non-secured algorithms that we observed in our proof-of-concept
experimental study. Additionally, we plan to add privacy guarantees to other
multi-armed bandit settings e.g., cumulative regret minimization [2] or best-
arm identification in linear bandits [16], where the rewards of the arms depend
linearly on some unknown parameter.

References

1. Audibert, J., Bubeck, S., Munos, R.: Best Arm Identification in Multi-Armed Ban-
dits. In: Conference on Learning Theory (COLT) (2010)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time Analysis of the Multiarmed
Bandit Problem. Machine Learning (2002)

3. Chen, S., Lin, T., King, I., Lyu, M.R., Chen, W.: Combinatorial Pure Exploration
of Multi-Armed Bandits. In: Conference on Neural Information Processing Systems
(NIPS) (2014)

4. Coquelin, P., Munos, R.: Bandit Algorithms for Tree Search. In: Conference on
Uncertainty in Artificial Intelligence (UAI) (2007)

5. Dwork, C.: Differential Privacy. In: International Colloquium on Automata, Lan-
guages and Programming (ICALP) (2006)

6. Dwork, C., Roth, A.: The Algorithmic Foundations of Differential Privacy. Foun-
dations and Trends in Theoretical Computer Science (2014)

7. Even-Dar, E., Mannor, S., Mansour, Y.: Action Elimination and Stopping Condi-
tions for the Multi-Armed Bandit and Reinforcement Learning Problems. Journal
of Machine Learning Research (2006)

8. Gabillon, V., Ghavamzadeh, M., Lazaric, A.: Best Arm Identification: A Unified
Approach to Fixed Budget and Fixed Confidence. In: Conference on Neural Infor-
mation Processing Systems (NIPS) (2012)

9. Gajane, P., Urvoy, T., Kaufmann, E.: Corrupt Bandits for Preserving Local Pri-
vacy. In: Algorithmic Learning Theory (ALT) (2018)

10. Kaufmann, E., Cappé, O., Garivier, A.: On the Complexity of Best-Arm Identi-
fication in Multi-Armed Bandit Models. Journal of Machine Learning Research
(2016)

11. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: European Con-
ference on Machine Learning (ECML) (2006)

12. Li, L., Chu, W., Langford, J., Schapire, R.E.: A Contextual-bandit Approach
to Personalized News Article Recommendation. In: International Conference on
World Wide Web (WWW) (2010)

13. Mishra, N., Thakurta, A.: (Nearly) Optimal Differentially Private Stochastic Multi-
Arm Bandits. In: Conference on Uncertainty in Artificial Intelligence (UAI) (2015)

14. Munos, R.: From Bandits to Monte-Carlo Tree Search: The Optimistic Princi-
ple Applied to Optimization and Planning. Foundations and Trends in Machine
Learning (2014)

15. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: International Conference on the Theory and Application of Crypto-
graphic Techniques (EUROCRYPT) (1999)

16. Soare, M., Lazaric, A., Munos, R.: Best-Arm Identification in Linear Bandits. In:
Conference on Neural Information Processing Systems (NIPS) (2014)

17. Thompson, W.R.: On the Likelihood that One Unknown Probability Exceeds An-
other in View of the Evidence of Two Samples. Biometrika (1933)

18. Tossou, A.C.Y., Dimitrakakis, C.: Algorithms for Differentially Private Multi-
Armed Bandits. In: AAAI Conference on Artificial Intelligence (2016)

Appendix

A Security Proofs

In this section, we prove that our secure algorithm presented in Section 3.3
satisfies the two desirable security properties outlined in Section 3.1: we prove the
first property from Section A.2 to A.4, and the second property in Section A.5.

A.1 Notations and Security Hypothesis

For a node A, we note dataA the data to which A has access andApb(d) the answer
of a Probabilistic Polynomial-Time (PPT) adversary A having knowledge of d,

trying to solve the problem pb. We recall that, in our notation conventions, JKK
denotes the set of positive integers lower than or equal to K: JKK = {1, . . . ,K}.

Lemma 1. For a list l = [l1, . . . , ln], a permutation σ and the permuted list
σ(l) = [lσ(1), . . . , lσ(n)], a PPT adversary A(lσ) cannot invert one element with
probability better than random. More specifically,

P
[
Aσ−1

(σ(l)) ∈ {i, σ−1(i)}i∈JKK

]
= 1

K where A returns a tuple (i, g(i)) and g(i)

is A’s guess for the preimage of i.

Proof. This is immediate, as all preimages are equally likely if σ is uniformly
selected. ut

Lemma 2. Let A be a PPT adversary. Consider the adversarial game in which
A choses three messages m0,m1, z and sends them to the challenger C. C choses
a random bit b, and returns a tuple (c0, c1, s) where c0 = Epk(m0), c1 = Epk(m1),
and s = Epk(mb + z) = cb · Epk(z). A must then guess the value of b.

If Epk(·) is IND-CPA secure, then A does not have any advantage in this
adversarial game: 2

∣∣P [A(c0, c1, s) = b]− 1
2

∣∣ < negl(η).

Proof. Assume there is a PPT adversary O able to win the game with significant
advantage x + negl(η): then O can guess b with probability 1

2 + x
2 + negl(η).

We then prove that an PPT adversary A can break the IND-CPA property of
Paillier. We can assume that when O is given c0, c

′
0, s as input (where c′0 is

another encryption of m0), then the advantage of O is negligible: this gives us a
lower bound of the advantage of O in a more general adversarial game.

Let us consider an IND-CPA game and an adversary A, in which A choses
m0,m1 and sends them to the challenger. The challenger randomly selects the
bit b and sends back cb = Epk(mb). Then, A selects a message z and computes
Epk(z), before computing s = Epk(mb) · Epk(z). A also computes c′0 = Epk(m0).
Then, A calls O(c′0, cb, s), retrieves (in polynomial time) from O the guessed
value b∗, and returns b∗.

If b = 0, then A has actually called O(c′0, c0, s), which guesses the correct b∗

with probability 1
2 + negl(η). On the other hand, if b = 1, then A has actually

called O(c′0, c1, s), which gives the correct b∗ with probability 1
2 + x

2 + negl(η).
b being randomly chosen, A correctly guesses b with probability 1

2 ·
1
2 + 1

2 ·(
1
2 + x

2

)
+negl(η) = 1

2+ x
4 +negl(η), thus yielding toA an advantage of x2 +negl(η)

in the IND-CPA game, in polynomial time. This is a contradiction with the fact
that Paillier is IND-CPA secure. ut

A.2 Security Proofs for BAI

Lemma 3. From the data obtained at round j, a honest-but-curious BAI does
not know the sum of the rewards of any arm. More precisely, for R the set of pos-

sible rewards, |R|
|R|−1

∣∣∣P [Areward(dataBAIj) ∈ {i, reward(i)}i∈JK+1−jK
]
− 1
|R|

∣∣∣ <
negl(η) where Areward(dataBAIj) returns a tuple (i, greward(i))), with greward(i)
being A’s guess of the sum of rewards of i.

Proof. At round j, BAI has access to the permuted list of the encrypted partial
sums, as well as to the permutation σj and the index iminj

of the lowest-ranking
element from round j. From the first two arguments, BAI can access to the
(unpermuted) list of the encrypted partial sums of the arms rewards sej =[
EpkComp

(sumα1), . . . , EpkComp
(sumαK+1−j

)
]
, where the αi are the arms still present

in the algorithm at step j. So we can equivalently say that datajBAI = [sej , iminj
].

Assume that there exists a PPT adversary O able to break the above in-
equality, with advantage x+ negl(η): given [se, iminj

] as input, O returns some
tuple (i, greward) where greward is the guessed reward of the arm αi. The guess

is correct with probability 1
|R| + |R|−1

|R| x + negl(η). Also note that, on average,

i = 1 with probability 1
K+1−j .

Let us consider a classical IND-CPA game as previously defined. When A
receives Epk(mb), they randomly chose K−j cleartexts r1, . . . , rK−j and compute
their ciphertexts Epk(r1), . . . , Epk(rK−j). Then, A calls the oracle O(Epk(mb),
Epk(r1), . . . , Epk(rK−j) which returns (i, greward). If i = 1 and greward ∈ {m0,m1}
then A returns 0 or 1, respectively. Otherwise A returns a random guess.

Finally, A returns the good answer with probability
1

K+1−j

(
1
|R| + |R|−1

|R| x+ negl(η)
)

+
(

1− 1
K+1−j

(
1
|R| + |R|−1

|R| x+ negl(η)
))

1
2
, i.e. with

probability 1
2 + 1

2
1

K+1−j

(
1
|R| + |R|−1

|R| x
)

+ negl(η), which yields an advantage of

1
K+1−j

(
1
|R| + |R|−1

|R| x
)

+ negl(η) to A. Hence, A has a non-negligible advantage

in the IND-CPA game, which is a contradiction with the fact that Paillier’s
cryptosystem is IND-CPA secure. ut

Theorem 1. From the data obtained up to round j, a honest-but-curious BAI
does not know the sum of the rewards of any arm. More precisely, for R the set of

possible rewards, |R|
|R|−1×

∣∣∣P [Areward(dataBAI≤j) ∈ {i, reward(i)}i∈JKK
]
− 1
|R|

∣∣∣ <
negl(η) where the data dataBAI≤j is the data obtained by BAI during the first j
rounds and reward(i) is the reward of the i-th arm.

Proof. We notice that dataBAI≤j is equal to [dataBAI1 , . . . , dataBAIj] = [[se1, imin1],
. . . , [sej , iminj]]. We know that each ciphertext from sej+1 results from the homo-
morphic addition of one ciphertext from sej and one other unknown ciphertext8.
Given Lemma 2, the set [sej , sej+1] is indistinguishable from the set [sej , se

′
j+1]

where se′j+1 is a list of ciphertexts, unrelated to the ones in sej . Hence, dataBAI≤j

is indistinguishable from the list [se1, se
′
2, . . . , se

′
j , imin1

, . . . , iminj
], where se′i is

a list of ciphertexts unrelated to se′j or se1.
Assume that there exists a PPT adversary O able to break the above in-

equality, with an advantage of x + negl(η). The data available to A basically
consists of j iterations, of various sizes, of the problem addressed in Lemma 3.
Then, if A can solve our current adversarial game with non negligible advantage,
A can immediately solve the problem in Lemma 3 with non negligible advantage
(from one set of ciphertexts, A will generate other sets, and immediately places

8 Namely, the ciphertext of the rewards of the arm i at round j.

itself in the current problem). Because a non negligible advantage to the above
problem breaks IND-CPA security, we conclude to a contradiction. ut

A.3 Security Proofs for Comp

Lemma 4. Let j ∈ JK − 1K. From the data received at the round j, a honest-
but-curious Comp cannot infer the ranking of any arm. More specifically,
P
[
Arank(dataCompj) ∈ {i, ranking(i)}i∈JK+1−jK

]
= 1

K+1−j .

Proof. We have dataComp = seσj = [EpkComp
(sumσj(α1)), . . . , EpkComp

(sumσj(αK+1−j))],
which can be decrypted by Comp to sσj

= [sumσj(α1), . . . , sumσj(αK+1−j)] where
the αi are the arms still present at round j. From this list of scores, Comp can
infer the ranking of the permuted arms, i.e., compute the ranking any Aσj(i) in
polynomial time.

Assume there exists a PPT adversary Arank capable of breaking the above
equality. If A is able to predict the ranking of the arm i with advantage better
than random, then A knows the ranking of Ai, namely ranking(Ai). Knowing
the ranking of all Aσj(i), with probability better than random, A is then able to

compute σ−1j (i) with advantage better than random by identifying which Aσj(i)

matches Ai. Hence a contradiction with Lemma 1. ut

Theorem 2. Let j ∈ JK − 1K. From the data received until the round j, A
honest-but-curious Comp cannot infer the ranking of any arm. More specifically,
P
[
Arank(dataComp≤j) ∈ {i, ranking(i)}i∈JKK

]
= 1

K+1−j .

Proof. The proof is based on the proof of Lemma 4, with additional arguments
similar to the ones of the proof of Theorem 1: because of Lemma 2, we can assume
that we have j independent sets of unrelated permuted data. If an adversary A
can break the above equality with non-negligible advantage in PPT, then we can
construct an adversary who breaks the equality of Lemma 4 with non-negligible
advantage, in PPT, which breaks Lemma 1, so we get a contradiction. ut

Lemma 5. Let j ∈ JK − 1K. From the data received at round j, a honest-
but-curious Comp does not know the correspondence between sums of rewards
and arms. More specifically, P

[
Arwd(dataCompj) ∈ {i, reward(i)}i∈JK+1−jK

]
=

1
K+1−j .

Proof. Assume that Comp is able, from sσj
, to infer the sum of rewards of the

arm Ak with probability better than 1
K+1−j . Because Comp knows the sum of

rewards of the permuted arms Aσj(αi) for all i ∈ JK + 1− jK, then by matching
these rewards with the sum of the rewards of Ai, Comp is able to compute σj(i)
with a probability better than random. Hence, Comp breaks Lemma 1. ut

Theorem 3. Let j ∈ JK − 1K. From the data received until round j, a honest-
but-curious Comp does not know the correspondence between sums of rewards
and arms. More specifically, P

[
Arwd(dataComp≤j) ∈ {i, reward(i)}i∈JKK

]
= 1

K .

Proof. Similar to the proof of Theorem 2. ut

A.4 Security Proofs for the RPj

Theorem 4. A honest-but-curious RPj does not know the ranking of the K −
j + 1 best ranking arms, for j ∈ JK − 1K. More specifically, ∀j ∈ JK − 1K,∀i ∈
JK + 1− jK, and rankingj(i) is the ranking of the i-th arm at round j,
K+1−j
K−j

∣∣∣P [Arank(dataRPj) ∈ {i, rankingj(i)}i∈JK+1−jK
]
− 1

K+1−j

∣∣∣ < negl(η).

Proof. We have dataRPj = [seσj , EpkRPj (σj), nj], where seσj = σj([EpkComp
(sumα1),

. . . , EpkComp
(sumαK−j

)]), the permuted list of encrypted sums of rewards. RPj can
further ‘un-permute’ seσj

to se = [EpkComp
(sumα1

), . . . , EpkComp
(sumαK−j

)], the list
of encrypted sums of rewards. Note that nj does not carry any information about
the partial sum, as one can simulate any se with the same nj , so does not carry
significant information to our problem.

Assume that RPj can guess the ranking of one element with advantage
x+ negl(η): there exist a PPT oracle O taking as input se, and outputs (i, v(i)),
with i ∈ JK + 1− jK. Furthermore, we have v̂(i) = rankingj(i) with probability

1
K+1−j + K−j

K+1−jx+negl(η). Note that, on average, i = 1 with probability 1
K+1−j .

Let us consider an IND-CPA game, in which the strategy of A is the same as
the one in the proof of Lemma 3 (i.e., generate enough ciphertexts so they can
call O). Then, following the same reasoning we get that A has an advantage of

1
K+1−j

(
1

K+1−j + K−j
K+1−jx

)
+ negl(η) in the IND-CPA game, which is a contra-

diction with the IND-CPA property of Paillier’s. ut

Theorem 5. A honest-but-curious RPj does not know the ranking of the j − 1
lowest ranking arms. More specifically, ∀j ∈ {3, . . . ,K − 1},∀i ∈ Jj − 1K, and
ranking(i) the ranking of the i-th arm,
j−1
j−2

∣∣∣P [Arank(dataRPj
) ∈ {i, ranking(i)}i∈JK+1−jK

]
− 1

j−1

∣∣∣ < negl(η).

Proof. This is straightforward as RPj does not receive any information about the
sums of the j lowest ranking arms. Furthermore, we must impose j ≥ 3 because
it is clear that RP1 and RP2 know the ranking of the lowest ranking arm. ut

Theorem 6. Except for RP1, a honest-but-curious RPj does not know the sums
of rewards at step j. More precisely, for R the set of possible rewards, ∀i ∈ JK+

1− jK, |R|
|R|−1

∣∣∣P [Areward(dataRPj
) ∈ {i, rewardj(i)}i∈JK+1−jK

]
− 1
|R|

∣∣∣ < negl(η).

Proof. Assume that a PPT adversary A breaks the above inequality: there ex-
ists a PPT oracle O(c1, . . . , cK), that returns the tuple (i,mi) where mi is the
cleartext of ci with advantage x + negl(η). Then we prove that the adversary
breaks the IND-CPA property of Paillier’s cryptosystem. Note that, on aver-
age, i = 1 with probability 1

n , and that a decryption is correct with probability
1
|R| + |R|−1

|R| x+ negl(η).

If we consider an IND-CPA game where the strategy of A is the same as in
the proof of Lemma 3 (i.e., generate enough ciphertexts so they can call O), we

get that A has an advantage of 1
n|R| +

|R|−1
n|R| x in the IND-CPA game, which is a

contradiction with Paillier being IND-CPA secure. ut

A.5 Security Proof for an External Observer

Theorem 7. An external observer, having access to the set M of all the mes-
sages exchanged during the protocol, cannot infer anything about the sum of re-
wards of any arm. More specifically, any such observer is bound by the inequality
mentioned in Theorem 1, with dataBAI≤j being replaced by M .

Proof. Assume that there exists an adversary O able to break the above in-
equality, given M , in PPT. We then prove that an adversary A is able to break
IND-CPA security of Pailier’s scheme in PPT.

Let us consider a classical IND-CPA challenge, in which A choses two rewards
r0, r1 and sends them to the challenge. The challenger returns EpkComp

(rb), where
b is a uniformly random bit. Then, A simulates a secure multi-armed bandit
protocol, with 2 arms, so that at the end of round 1, one of the arms has for
encrypted sum of rewards the value EpkComp

(rb), the other being random. This
is possible because in this simulation, A can set herself the rewards xi of each
arm, as well as the budget for round 1. Furthermore, knowing the cleartext of
every encrypted value at any time, A can simulate the full protocol by herself
(especially, she can simulate Comp execution). This simulation yields a set of
messages M .

Now, calling O(M), A will retrieve in PPT, with some non-negligible ad-
vantage, some information about the sums of rewards of one of the arms. With
probability 1

2 , this information will be about the arms of rb, thus giving, in PPT,
a non-negligible advantage in the IND-CPA game, as A is able to find the value
of b with some advantage. This is a contradiction with the fact that Paillier is
IND-CPA secure. ut

Theorem 8. An external observer, having access to the set M of all the mes-
sages exchanged during the protocol, cannot infer anything about the ranking of
any arm: K

K−1
∣∣P [Arwd(M) ∈ {i, ranking(i)}i∈JKK

]
− 1

K

∣∣ < negl(η).

Proof. It is obvious that such an observer can deduce the permuted list of rank-
ings by listening to data exchanged at step 4. However, from the data of one
round, it is impossible to know more: the data from one round is an encrypted
permuted sum of rewards S, the lowest permuted index i, and the same sum,
with the lowest element removed S′ (steps 3,4,2). This is equivalent of having
knowledge of S and i only. If an adversary O breaks the inequality with S and
i, then we can break IND-CPA.

Let A be the adversary, picking K + 1 messages such that m0 < m′i < m1,
and a permutation σ. Sending m0 and m1, they receive cb = Epk(mb), and also
compute c′i = Epk(m′i). Then, if O(σ([cb, c

′
2, . . . , c

′
k]), σ(0)) = 0, A returns 0, else

1. If O has a non-negligible advantage x, we prove similarly to the other proofs
that A has a advantage of x

2 in the IND-CPA game, which is a contradiction.
Now, because of Lemma 2, having access to all messages does not change

anything. This is because each new round is indistinguishable from a simulation
run by A, so an advantage in the ”all-rounds” game would yield an advantage
in the ”one-round” game. ut

