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Abstract—We consider the problem of cumulative reward
maximization in multi-armed bandits. We address the security
concerns that occur when data and computations are outsourced
to an honest-but-curious cloud i.e., that executes tasks dutifully,
but tries to gain as much information as possible. We consider
situations where data used in bandit algorithms is sensitive
and has to be protected e.g., commercial or personal data.
We rely on cryptographic schemes and propose UCB-DS, a
distributed and secure protocol based on the UCB algorithm.
We prove that UCB-DS computes the same cumulative reward as
UCB while satisfying desirable security properties. In particular,
cloud nodes cannot learn the cumulative reward or the sum of
rewards for more than one arm. Moreover, by analyzing messages
exchanged among cloud nodes, an external observer cannot learn
the cumulative reward or the sum of rewards produced by some
arm. We show that the overhead due to cryptographic primitives
is linear in the size of the input. Our implementation confirms the
linear-time behavior and the practical feasibility of our protocol,
on both synthetic and real-world data.

I. INTRODUCTION

The stochastic multi-armed bandit game is a sequential
learning framework where a learning agent aims at maximizing
its cumulative reward while successively interacting with an
uncertain environment. At each time step, the agent chooses
an action (a bandit arm) from a fixed set of actions with
unknown associated values. The environment responds with
a stochastic feedback (reward) drawn from the distribution
associated with the chosen action. The agent uses the received
feedback to update its estimate of the values for the chosen
action and to decide which action to choose next. The agent
has to continuously face the so-called exploration-exploitation
dilemma and decide whether to explore by choosing actions
with more uncertain associated values, or to exploit the
information already acquired by choosing the action with
the seemingly largest associated value. Cumulative reward
maximization has been already extensively studied for several
multi-armed bandit settings (see [1] for a survey) and for
various applications, from clinical trials, to online advertising
and recommendation systems. In this paper, we address the
security concerns that occur when outsourcing the cumulative
reward maximization data and computations to the cloud.

Our scenario is inspired by the machine learning as a
service cloud computing model, for which security is known
as a major concern [2]. As a motivating example, assume:
• A data owner: a company that wants to monetize some

collected data, while keeping ownership over it. The collected
data may be a large quantity of surveys on customer prefer-
ences for several products. By product, we mean any type of
object or service. The K bandit arms are the surveyed products
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Fig. 1. Outsourcing data and computations.

and only the data owner knows their associated rewards, based
on the collected surveys.
• A data client: a company that wants to spend some budget

to use some of the data owner’s data. The data client may be
a small company that cannot afford doing its own surveys,
but wants to estimate the income that it could generate for
the products surveyed by the data owner. The cumulative
reward captures such information because it sums the rewards
produced by each product. The budget N is the number of
data owner’s surveys used to compute the cumulative reward
and the bandit algorithm has to decide how to choose these
N surveys in order to maximize the cumulative reward. A
larger budget gives a higher accuracy for the largest cumulative
reward. The data client only sees the cumulative reward,
without knowing the values associated to each arm.

We assume that the interaction between the data owner and
the data client is done using the cloud (as shown in Fig. 1),
where both data and computations are outsourced. The data
owner does the data outsourcing, and the data client interacts
directly with the cloud, by sending the budget and receiving
the obtained cumulative reward. The outsourced data may be
sensitive (e.g., personal, commercial, or medical data). We
want the outsourced learning algorithm to be run while pro-
tecting data against unauthorized access. The problem that we
address is how to allow the data client to obtain precisely the
same cumulative reward as with a standard bandit algorithm,
Upper Confidence Bound (UCB) [1], [3], within a reasonable
computation time and while preserving the data security.
Indeed, the outsourced data can be communicated over an
untrustworthy network and processed on some untrustworthy
machines, where malicious cloud users may learn sensitive
data that belongs only to the data owner.

The privacy-preserving cumulative reward maximization is a
hard problem. To solve it, the authors of [4], [5], [6] use differ-
ential privacy introduced in [7]. However, in these approaches,
the returned reward is not the same reward obtained for the
data client’s budget using standard algorithms. This happens
because differential privacy guarantees depend on noise be-



ing injected in the input/output. We take a complementary
approach by relying on cryptography instead of differential
privacy. To the best of our knowledge, our approach is original
and its goal is to give security guarantees, while obtaining
the same output as standard (non-secure) algorithms. The
security for obtaining the same output has a price because
the computation time may increase because of cryptographic
primitives that are time-consuming in practice. More precisely,
we require that the data owner (which can be seen as an
oracle knowing the reward functions associated with each arm)
encrypts her data before outsourcing it to the cloud. Then, the
cumulative reward maximization algorithm is run directly in
the encrypted domain, and the (encrypted) output should be
exactly the same as for standard UCB, with the cost of an
increased computation time.

From a theoretical point of view, the problem could be
straightforwardly solved by using a fully homomorphic en-
cryption scheme [8], which allows to compute any function
directly in the encrypted domain. However, it remains an open
question how to make such a scheme work fast and be accurate
in practice. Indeed, the state-of-the-art fully homomorphic
systems (SEAL1 and HElib2) yield only approximate results
when they work with real numbers, by using the CKKS
scheme [9]. Hence, it is not currently possible to program
an algorithm such as UCB in a fully homomorphic system
and obtain exactly the same result as in the standard, non-
encrypted UCB.

Consequently, our challenge is to rely on simpler crypto-
graphic schemes and design a distributed protocol with several
cloud node participants such that each of them can only
learn the specific data needed for performing its task and
nothing else e.g., if a participant does in clear computations
on real numbers, these computations concern data of only
one arm, and no other participant has access to this piece
of data. Our distributed algorithm returns exactly the same
cumulative reward as UCB, while satisfying desirable security
properties such as: only the data client can see the cumulative
reward, which cannot be learned by any cloud node participant
nor by an external observer. We precisely characterize our
security model and security guarantees later on in the paper. To
achieve our goals, we rely on indistinguishable under chosen-
plaintext attack (IND-CPA) cryptographic schemes: symmetric
encryption AES-CBC [10], [11] and asymmetric partially
homomorphic Paillier’s scheme [12]. We formally prove the
security of our protocol and we precisely characterize the
number of needed cryptographic operations.

a) Related work: Each line in Table I corresponds to a
standard problem in stochastic multi-armed bandits. The most
popular problem is cumulative reward maximization and UCB
is a standard algorithm for solving it [1], [3]. There is a recent
line of research on enhancing algorithms such as UCB with
differential privacy [4], [5], [6]. There are some fundamental
differences between this line of work and our work based

1https://github.com/Microsoft/SEAL
2http://homenc.github.io/HElib/

TABLE I
SUMMARY OF RELATED WORK AND POSITIONING OF OUR CONTRIBUTION.

Differential privacy Cryptography
Cumulative reward maximization
aka cumulative regret minimization [4], [5], [6] This paper

Best arm identification
aka simple regret minimization

Not yet studied to the
best of our knowledge [13]

on cryptography. On the one side, the running time overhead
of differentially-private algorithms is negligible, whereas our
approach has an overhead in computation time coming from
the use of cryptographic primitives. On the other side, the
cumulative reward returned by differentially-private algorithms
is different from the output of standard UCB. Indeed, to obtain
differentially-private guarantees for a bandit algorithm, noise
is added to the algorithm input or output. Thus, the cumulative
reward obtained using a differentially-private algorithm is
different from that obtained by the algorithm without privacy
guarantees. This is reflected in the regret analysis of the
algorithms (where the regret is given by the difference in the
cumulative reward obtained by a learning agent and the best
cumulative reward possible obtained by always playing the
best arm): the regret of differentially-private bandit algorithms
have as overhead an additive [6] or multiplicative factor [4],
[5] with respect to the regret of their non-private version. In
contrast, our cryptography-based algorithm is guaranteed to
return exactly the same cumulative reward as standard UCB.

The second line in Table I corresponds to a different bandit
problem that is best arm identification [14], equivalent to
minimizing the simple regret, that is the difference between the
values associated with the arm that is actually the best and the
best arm identified by the algorithm. From the cryptography
point of view, there exists a distributed algorithm [13] that
enhances the Successive rejects algorithm [14] for best arm
identification with security guarantees that are similar to
the ones from this paper. Naturally, the algorithms that are
secured (Successive rejects [14] in [13] and UCB [3] in this
paper) solve different problems, thus the corresponding secure
protocols are different and cannot be reduced to one another.

All related works discussed thus far are for standard stochas-
tic bandit models. Securing cumulative reward maximization
algorithms using cryptography has been recently studied for a
different bandit model i.e., linear bandits [15], where the arms
are vectors and the rewards are unknown linear functions of the
arms. The corresponding secure protocols are again different
and cannot be reduced to one another.

b) Summary of contributions and paper organization:
In Sect. II, we introduce some basic notions: standard UCB
algorithm and some cryptographic tools. Then, Sect. III is the
core of our contribution:
• We propose UCB-DS, a secure and distributed protocol

for cumulative reward maximization that guarantees the
same cumulative reward as standard UCB.

• We show that UCB-DS satisfies desirable security prop-
erties that we precisely characterize.

• We analyze the theoretical complexity of UCB-DS, by

https://github.com/Microsoft/SEAL
http://homenc.github.io/HElib/


quantifying the number of needed cryptographic prim-
itives: O(NK) AES-CBC encryptions/decryptions, K
Paillier encryptions, and one Paillier decryption.

• We propose the UCB-DS2 refinement, with stronger se-
curity guarantees at the price of K more AES-CBC keys
and O(NK) more AES-CBC encryptions/decryptions,
and the same number of Paillier encryptions/decryptions.

In Sect. IV, we include a proof-of-concept empirical evaluation
that confirms the theoretical complexity, and shows the scal-
ability and practical feasibility of our protocols, on synthetic
and real-world data. Finally, we conclude our paper and outline
directions for future work in Sect. V.

II. PRELIMINARIES

We first recall the UCB algorithm [3]. Then, we briefly
present two cryptographic schemes that we use to build our
protocols: Paillier asymmetric encryption scheme and AES-
CBC symmetric encryption, which are both IND-CPA secure.

a) Upper Confidence Bound (UCB): is a class of
algorithms commonly used when facing the exploration-
exploitation dilemma. Each bandit arm is associated with a
distribution whose mean is unknown to the learning agent.
When pulling an arm, the agent observes an independent
reward drawn from the distribution associated to the chosen
arm. Specifically, we consider rewards drawn from Bernoulli
distributions with expected values µ1, . . . , µK unknown to the
agent. For a chosen arm i, a call to the function pull(i)
randomly returns 0 or 1 according to the associated Bernoulli
distribution, i.e., the probability of returning 1 is µi and the
probability of 0 is 1–µi. The agent sequentially selects the N
arms to be pulled with the goal of maximizing the sum of
rewards.

To guide the choice of the learner, arm scores have been
proposed [16] to construct upper confidence bounds (UCB)
based on the empirical mean of arm-specific rewards and the
number of arm pulls. In the class of UCB algorithms, an im-
portant breakthrough was the introduction of algorithms with a
finite-time analysis [3]. Specifically, in the UCB algorithm [3]
presented in Fig. 2, for each arm i, the score Bi is an upper-
confidence bound on µi, obtained as the sum between (i)
the exploitation term given by the empirical mean of rewards
observed from arm i, and (ii) the exploration term, which takes
into account the uncertainty. Notice that after each observed
reward, scores for all arms are updated, since the exploration
term

√
2 ln(t)
ni

depends on the total number of rewards observed
up to current round t. Thus, an arm i being pulled few times
(i.e., with small ni) will have a relatively large exploration
term. The score Bi is thus an optimistic estimate for the value
associated to arm i, since it can be interpreted as the largest
statistically plausible mean value associated to arm i, given
the observed rewards. As shown in Fig. 2, UCB chooses to
pull next the arm with the largest updated Bi score, thus
following the principle of optimism in the face of uncertainty.
This principle suggests to follow what seems to be the best
arm, based on the optimistically constructed scores. The same

Input: Budget N , number of arms K
Unknown environment: K distributions associated to the
K arms, with expected values µ1, . . . , µK unknown to the
learning agent. The agent has access to a reward function
pull(.) that can be called N times. A call pull(i) returns a
random value from the distribution associated to arm i.
Output: Sum of observed rewards for all arms
/* Initialization: pull each arm once & initialize variables */
for 1 ≤ i ≤ K

let r = pull(i) /* Random reward for arm i */
let si = r /* Sum of observed rewards for arm i */
let ni = 1 /* Number of pulls of arm i */
let Bi = si

ni
+
√

2 ln(K)
ni

/* Bi is an UCB on µi */

/* Exploration-exploitation: pull one arm at each round t */
for K + 1 ≤ t ≤ N /* Only a budget of N −K is left */

let im = argmax1≤i≤K(Bi) /* Ties broken randomly */
let r = pull(im)
let sim = sim + r
let nim = nim + 1
for 1 ≤ i ≤ K

let Bi = si
ni

+
√

2 ln(t)
ni

return s1 + . . .+ sK

Fig. 2. UCB Algorithm [3].

principle is employed in various sequential decision making
problems (see [17] for a survey).

b) Paillier asymmetric encryption: Paillier’s cryptosys-
tem is additive homomorphic [12]. Let m1 and m2 be two
plaintexts in Zn. The product of the two associated cipher-
texts with the public key pk, denoted c1 = Epk(m1) and
c2 = Epk(m2), is the encryption of the sum of m1 and m2.
Indeed, we have: Epk(m1) ·Epk(m2) = Epk(m1 +m2). We also
denote by Dsk(c) the decryption of the cipher c by the secret
key sk.

c) AES-CBC symmetric encryption: AES [10] is a NIST
standard for encrypting messages of 128 bits. We use it with
CBC mode (Cipher Block Chaining) and denote c = Enc(m)
the encryption of m and m = Dec(c) the decryption of c with
the same symmetric key shared between the participants.

Both Paillier and AES-CBC are IND-CPA: (i) Paillier
is IND-CPA under the decisional composite residuosity as-
sumption [12], and (ii) AES-CBC is IND-CPA under the
assumption that AES is a pseudo-random permutation [11].
All theoretical security properties of our protocols also hold
if we choose any other IND-CPA symmetric scheme instead
of AES-CBC, and any other additive homomorphic IND-CPA
asymmetric scheme instead of Paillier. Our choice to rely on
the aforementioned schemes is due to practical reasons. AES-
CBC is very efficient in practice and implemented in standard
libraries for modern programming languages. Paillier is also
supported by a number of libraries that can be used in practice.



III. UCB-DS: A DISTRIBUTED AND SECURE PROTOCOL
BASED ON UCB ALGORITHM

We define the security model in Sect. III-A. We propose
our secure protocol UCB-DS (Sect. III-B), and we analyze
its correctness, security, and complexity (Sect. III-C). We
introduce a refinement of UCB-DS in Sect. III-D.

A. Security Model

As outlined in Introduction and in Fig. 1, we assume that the
data (i.e., the reward functions associated to K bandit arms)
and the computations (i.e., the cumulative reward maximiza-
tion algorithm) are outsourced to an honest-but-curious cloud.
This means that the cloud executes tasks dutifully, but tries
to extract as much information as possible from the data that
it sees. Our model follows the classical formulation in [18]
(Ch. 7.5, where honest-but-curious is denoted semi-honest),
in particular (i) each cloud node is trusted: it correctly does
the required computations, it does not sniff the network and it
does not collude with other nodes, and (ii) an external observer
has access to all messages exchanged over the network.

The data client indicates to the cloud her budget N and
receives the cumulative reward R that the cloud computes
using the K arms outsourced by the data owner and the data
client’s budget N . The data client does not have to do any
computation, except for decrypting R when the data client
receives this information encrypted from the cloud. We expect
the following security properties:

1) No cloud node can learn the cumulative reward.
2) The data client cannot learn information about the re-

wards produced by each arm or which arm has been
pulled at some round.

3) By analyzing the messages exchanged between different
cloud nodes, an external observer cannot learn the cumu-
lative reward, the sum of rewards produced by some arm,
or which arm has been pulled at some round.

We give a brief intuition for each property. Property 1 implies
that only the data client can see in clear the cumulative
reward for which she spends a budget. Property 2 ensures
that the data client can see only the information for which
she pays, and nothing else. Otherwise, depending on the
difficulty of the bandit problem, the data client could estimate
the arm values based on the contribution of each arm to the
cumulative reward, which would leak information that should
be known only by the data owner. Property 3 states that if
some curious cloud admin analyzes all messages exchanged
over the network, then she should have no clue on any input,
output, or intermediate data that is used by the cumulative
reward maximization algorithm.

We design a distributed protocol that satisfies the aforemen-
tioned properties by exchanging only encrypted messages, and
by distributing the computations among several cloud node
participants, each of them having access only to the specific
data that it needs for performing its task and nothing else. The
challenge is to efficiently distribute tasks among as few cloud
participants as possible, while minimizing the time needed for
cryptographic primitives.

B. Overview of UCB-DS

In Fig. 3, we present an overview of UCB-DS. There are
K+1 cloud participants: K arm nodes Ri and a node AS (Arm
Selector) that is the controller of the protocol. We assume
that the data owner and all cloud participants share the same
symmetric AES-CBC key, used for encryption function Enc.
The data client (DC) generates a Paillier’s key pair (pk, sk)
and for sake of clarity we denote EDC(m) for Epk(m). By
JxK, we denote the set {1, . . . , x}, and by y||z we denote the
concatenation of y and z. UCB-DS works as follows:
• Fig. 3(a) (steps 0 and 1). For i ∈ JKK, the data owner

outsources to arm node Ri the reward function (encrypted
with Enc) associated to arm i. The data client sends to
the cloud her budget N .

• Fig. 3(b) (steps 2, 3, and 4). This is the core of the
protocol, being done during 1 +N −K iterations: once
for the initialization phase of UCB and N −K times for
the exploration-exploitation phase of UCB cf. Fig. 2. For
each iteration, all arm nodes interact to decide which arm
should be pulled next and communicate this information
to AS. The arm nodes communicate in a random order,
which changes at each iteration. All messages exchanged
between nodes are encrypted with Enc. Although each
arm node stores information about its rewards, it never
reveals this information to other nodes.

• Fig. 3(c) (steps 5 and 6). After spending the data client’s
budget, each arm node sends to AS the sum of rewards
that it produced, encrypted with EDC. Due to the additive
homomorphic property of Paillier cryptosystem, AS is
able to sum up the K partial rewards to compute the
cumulative reward EDC(R) directly in the encrypted do-
main. Only the data client can decrypt this information.

We next detail each step and present pseudocode only when
the step is not trivial.

a) Step 0: We recall (cf. Fig. 2) that the data owner
knows µ1, . . . , µK defining K Bernoulli distributions associ-
ated to the K arms. The data owner sends to each arm node Ri
the encrypted value Enc(µi), for i ∈ JKK. Since the data owner
and the cloud share the symmetric key, then each arm node Ri
can decrypt and obtain µi. Moreover, each node Ri initializes
to 0 the following two variables that it later on updates during
the protocol: si (i.e., sum of rewards for arm i) and ni (i.e.,
number of times the arm i has been pulled). Additionally, each
arm node Ri initializes a variable t = K − 1, which is later
on updated and needed for the computation of Bi.

b) Step 1: The data client sends her budget N to AS.

Pseudocodes of Steps 2, 3, and 4 are presented in Fig. 4.
c) Step 2: It corresponds to everything except the last

two lines in Fig. 4(a) and has 1 +N −K iterations. At each
iteration, AS sends to the Ri nodes a bit bi indicating whether
the arm i should be pulled or not. At the first iteration (that
corresponds to the initialization phase of UCB cf. Fig. 2), AS
sends bi = 1 to each arm, and at the next N −K iterations
(that correspond to the exploration-exploitation phase of UCB
cf. Fig. 2), AS sends bi = 1 only to a chosen arm im and



Data Client AS

R1

. . . . . .

RK

Data Owner(0) Enc(µ1)

(0) Enc(µK)

(1) N

(a) Steps 0 and 1 are done only once at the beginning.

AS

Rσ−1(1)

Rσ−1(2)

. . .

Rσ−1(K)

. . .

(2) Enc(bσ−1(1)||1||σ−1(2))

(2) Enc(bσ−1(2)||0||σ−1(3))

(2) Enc(bσ−1(K)||0||0)

(3.1) Enc(Bm||im)

(3.2) Enc(Bm||im)

(3.K–1) Enc(Bm||im)
(4) Enc(im)

(b) Steps 2, 3, and 4 are done 1 +N −K times.

Data Client AS

R1

. . .. . .

RK

(5) EDC(s1)

(5) EDC(sK)

(6) EDC(R)

(c) Steps 5 and 6 are done only once at the end.

Fig. 3. Overview of UCB-DS. The dashed rectangle is the cloud.

sends bi = 0 to all other arms. Moreover, at each iteration,
AS generates a permutation σ : JKK→JKK (i.e., a function for
which every element occurs exactly once as an image value),
based on which AS computes two more components that it
sends to Ri: first i that indicates whether the arm node is the
first of the ring hence it should initialize Bm and im, and
next i that indicates to which node the updated Bm and im
should be sent during Step 3. The arm node that receives 0 on
the next component is the last one of the ring and sends im to
AS, which thus knows which arm should be pulled next. All
information that AS sends to Ri are thus useful for the ring
computation of im in Step 3. The permutation changes at each
AS iteration because it is important to have a random order
during the ring communication. Without a random order, it
may happen that the last arm is much better than all others and
it is almost always pulled, hence it has a very good estimate
of the cumulative reward.

d) Step 3: This step corresponds to everything except the
last two lines in Fig. 4(b). Note that the variable t stores how
many arm pulls have been done in total since the beginning
of the protocol. As discussed for Step 0, each arm initialized
t = K − 1, hence t = K after the first iteration of AS,
which allows to compute the first Bi values at the end of the
initialization phase. Then, during the next N − K iterations
of AS, the variable t is incremented, which allows to compute
Bi values during the exploration-exploitation phase. To decide
which arm has the highest Bi and should be pulled at the next
iteration, the arm nodes Ri do a distributed ring computation,

let im = 0
for j ∈ JN −K + 1K

let σ=random permutation of JKK
for i ∈ JKK

/* bi is a bit indicating if arm i should be pulled */
if im = 0 or im = i then let bi = 1 else let bi = 0

/* first i is a bit indicating if i is the first arm node
in the ring cf. σ */

if σ(i) = 1 then let first i = 1 else let first i = 0

/* next i indicates the next arm node in the ring, or
0 if i is the last cf. σ */

if σ(i) 6= K then let next i = σ−1(σ(i) + 1) else
let next i = 0

send Enc(bi||first i||next i) to arm node Ri
receive ciphertext from arm node Rσ−1(K)

/* ciphertext is Enc(im) */
let im = Dec(ciphertext)

(a) Pseudocode of AS.

receive ciphertext1 from AS
/* ciphertext1 is Enc(bi||first i||next i) */
let bi||first i||next i = Dec(ciphertext1)
let t = t+ 1
if bi = 1 /* Pull arm i and update its variables */

let r = pull(i)
let si = si + r
let ni = ni + 1

let Bi = si
ni

+
√

2 ln(t)
ni

if first i = 0
receive ciphertext2 from preceding arm node in ring
/* ciphertext2 is Enc(Bm||im) */
Bm||im = Dec(ciphertext2)

if first i = 1 or Bm < Bi
let im = i
let Bm = Bi

if next i 6= 0
send Enc(Bm||im) to Rnexti

else
send Enc(im) to AS

(b) Pseudocode of Ri, for i ∈ JKK.

Fig. 4. Pseudocode of AS and Ri during steps 2, 3, and 4 cf. Fig. 3(b).

where the first arm node according to permutation σ (i.e., the
only arm node that received first i=1) initializes max value Bm
and argmax im. At each ring iteration (Steps 3.1, . . ., 3.K-1,
cf. Fig. 3(b)), the current arm node sends updated Bm and
im to the next arm node cf. σ. Even though Bm and im do
not change, it is important to re-encrypt Enc(Bm||im) before
sending it to the next node to prevent an external observer from
knowing when there is a change in the max and argmax (and
hence learn information about which arms are pulled more
often). Finally, once the ring computation reaches the last arm
node relative to σ (i.e., the only one that received next i = 0),



we go to Step 4.
e) Step 4: This step corresponds to the last two lines in

Fig. 4(b) (the last arm node in the ring sends Enc(im) to AS),
followed by the last two lines in Fig. 4(a) (AS receives and
decrypts the index of the arm to be pulled at the next iteration).

f) Step 5: Once the budget is spent and no more arm has
to be pulled, each arm node Ri (for i ∈ JKK) encrypts with
EDC its sum of rewards si and sends the result EDC(si) to AS.

g) Step 6: The node AS takes the K ciphertexts EDC(si)
received at Step 5, and computes EDC(R) = EDC(

∑K
i=1 si) =∏K

i=1(EDC(si)), thanks to the additive homomorphic property
of Paillier cryptosystem. Then, AS sends EDC(R) to the data
client, who is able to decrypt using sk and hence obtains R.

C. Analysis of UCB-DS

Next, we analyze the correctness (Sect. III-C1), security
(Sect. III-C2), and complexity (Sect. III-C3) of UCB-DS.

1) Correctness: We point out that UCB-DS outputs exactly
the same cumulative reward as UCB. The computations done
in Fig. 4 to maximize the reward are the same as the one
done in Fig. 2. Indeed, if we take UCB-DS and remove
all encryptions/decryptions (both symmetric and asymmetric),
and all messages are communicated in clear between partici-
pants, then we obtain a protocol that we call UCB-D, which
outputs exactly the same result as UCB-DS. This happens be-
cause of the consistency property of the chosen cryptographic
schemes i.e., if we encrypt a message M using Enc (or EDC,
respectively) to obtain a ciphertext C, then if we decrypt
C using Dec (or DDC, respectively), then we obtain exactly
M . Next, to reduce UCB-D to UCB, we simply remove all
distributions of tasks among participants and rewrite UCB-D
as a sequential algorithm to obtain exactly UCB. In particular,
the random permutation σ (that is generated at each round to
decide in which order to iterate over arms) reduces to the
randomness in the argmax function used in standard UCB
cf. Fig. 2 when, if several arms have maximal Bi-value, then
the argmax should be randomly picked among those arms.

2) Security: In Table II, we summarize what each partici-
pant in UCB-DS knows/does not know. The main properties
of our protocol are:
• No cloud node can learn the cumulative reward and

additionally:
– Only AS and the pulled arm know which arm is pulled

at each round. Arms that are not pulled can guess the
pulled arm with average probability 1

2 + 1
2K .

– Only arm node Ri knows the sum of rewards for arm i.
• Only DC knows the cumulative reward, and she knows

nothing else.
• An external observer cannot learn the cumulative reward,

the sum of rewards for some arm, or which arm has been
pulled at some round.

These properties subsume the list of desirable security proper-
ties listed in Sect. III-A. We omit here formal statements and
proofs for all these security properties, which are available
in [19].

TABLE II
WHAT EACH PARTICIPANT OF UCB-DS KNOWS AND DOES NOT KNOW.

Participant Knows Does not know
AS • Arm pulled at each round • Sum of rewards for some arm

and cumulative reward

Ri

• Sum of rewards for arm i
• Arm pulled at each round,
with average probability
1
2
+ 1

2K

• Sum of rewards of other arm
j 6= i and cumulative reward

DC • Cumulative reward • Arm pulled at each round
• Sum of rewards for some arm

External
observer

• Nothing
• Arm pulled at each round
• Sum of rewards for some arm
and cumulative reward

TABLE III
NUMBER OF CRYPTOGRAPHIC OPERATIONS USED IN UCB-DS.

Encryptions Decryptions

AES-CBC

K (step 0)
(N −K + 1)K (step 2)
(N −K+1)(K−1) (step 3)
(N −K + 1) (step 4)

K (step 0)
(N −K + 1)K (step 2)
(N −K + 1)(K − 1)(step 3)
(N −K + 1) (step 4)

Paillier K (step 5) 1 (step 6)

3) Complexity: We detail in Table III the number of crypto-
graphic operations used in each step of UCB-DS. By summing
up, we obtain O(NK) AES-CBC encryptions/decryptions, K
Paillier encryptions, and one Paillier decryption. Hence, we
have a number of AES-CBC operations linear in N , whereas
the number of Paillier operations does not depend on N . These
are desirable complexity properties. In particular, the number
of Paillier operations (which are quite slow to evaluate in
practice) depends only on K that is typically much smaller
than N in bandit scenarios. Our implementation (cf. Sect. IV)
follows the aforementioned theoretical analysis and confirms
the linear time behavior and the scalability of UCB-DS.

D. Refinement

We propose the UCB-DS2 refinement, which adds slightly
stronger security guarantees to UCB-DS, for few more cryp-
tographic operations (but the similar asymptotic behavior as
UCB-DS). A property of UCB-DS (cf. Table II) is that an arm
node Ri knows with average probability of 1

2 + 1
2K what arm

is pulled at the next round. This happens because during the
ring computation, every arm sees in clear the partial argmax
im. Our UCB-DS2 refinement removes this leakage.

The idea of UCB-DS2 is that, in addition to UCB-DS, we
also encrypt the partial argmax im during the ring compu-
tation. This modification requires to introduce new keys. We
recall that UCB-DS assumes an AES-CBC key that is shared
between the data owner and all cloud participants and that is
used for the functions Enc/Dec. For UCB-DS2, if we want
that an arm node Ri cannot decrypt the partial argmax im
received from the previous arm node in the ring, we need to
encrypt im with some other key. This is why in UCB-DS2
we introduce K new AES-CBC keys, each of them shared
between AS and a single Ri arm node. Each such key defines



functions Enci/Deci. We omit here the pseudocode and the
analysis of UCB-DS2 that we include in [19].

IV. EXPERIMENTS

We show that the overhead due to cryptographic primitives
is reasonable, hence our protocols are feasible in practice.
More precisely, we show the scalability of our protocols with
respect to both parameters N and K through an experimental
study using synthetic and real data. We compare:
• UCB = Standard UCB [3], outlined in Fig. 2.
• UCB-D = UCB with distribution of tasks among partic-

ipants in the spirit of UCB-DS cf. Sect. III-B, but with
all messages exchanged in clear among participants (i.e.,
UCB-D does not use any cryptographic primitive). The
only overhead w.r.t. UCB is due to distribution of tasks.

• UCB-DS = Distributed Secure UCB cf. Sect. III-B.
• UCB-DS2 = Refinement of UCB-DS cf. Sect. III-D.

We implemented the algorithms in Python 3. For AES-CBC
we used the PyCryptodome library3 and keys of 256 bits. For
Paillier, we used the phe library4 in the default configuration
with keys of 2048 bits. We did our experiments on a laptop
with CPU Intel Core i7 of 2.80GHz and 16GB of RAM, run-
ning Ubuntu. Each reported result is averaged over 100 runs.
In each run, we executed all algorithms using the same random
seeds, needed for drawing arm rewards and for generating the
permutation used to iterate in a random order over the arms
when choosing the argmax arm to be pulled at the next round.

We make available on a public GitHub repository5 our
source code, together with the data that we used, the generated
results from which we obtained our plots, and scripts that allow
to install the needed libraries and reproduce our plots.

As expected, in each experiment, all four algorithms output
exactly the same cumulative reward. The property that our
secure algorithms return exactly the same cumulative reward as
standard UCB is in contrast with differentially-private multi-
armed bandit algorithms [4], [5], [6], where the returned
cumulative rewards are different from that of standard UCB.
Consequently, a shallow empirical comparison between these
works and ours boils down to comparing apples and oranges:
(i) on the one hand, the running time of differentially-private
bandit algorithms is roughly the same as for standard UCB
and is never reported in their experiments, whereas (ii) on
the other hand, for our algorithms the cumulative reward is
always the same as for standard UCB and consequently there
is no point for us in doing any plot on the cumulative reward.
Nevertheless, we carefully analyzed all experimental settings
(N , K, µ) used in the related work, that we adapt for our
scalability experiments, as we detail next.

a) Scalability with respect to N : In this experiment, we
rely on six scenarios from the related work [4], [6] to fix
K and µ, and to vary N . In Fig. 5, we show the results
only for Scenario 1 [4]. We omit here the other scenarios,
which yield similar results, included in [19]. We vary N

3https://pycryptodome.readthedocs.io/en/latest/src/cipher/classic.html
4https://python-paillier.readthedocs.io/en/develop/
5https://github.com/radu1/secure-ucb

from 102 to 105 that is also the maximum budget from [4],
[6]. UCB and UCB-D have very close running times, and
up to two orders of magnitude smaller than UCB-DS and
UCB-DS2, which are also very close. All algorithms have a
similar linear time behavior. The overhead between secure and
non-secure algorithms comes naturally from the cryptographic
primitives. Moreover, the two lines corresponding to the secure
algorithms are not parallel with the other two lines because,
cf. Sect. III-C3, the overhead due to Paillier encryptions
depends only on K (that is fixed in the figure) and not on N
(that varies in the figure), hence the Paillier overhead is more
visible for small N . The running times of UCB-DS/UCB-DS2
for the largest considered budget N=105 is of ∼100 seconds,
which remains practical. In Fig. 5, we also zoom on the time
taken by each participant of UCB-DS for N=105. We observe
that AS takes the lion’s share, which is expected because at
each round AS sends encrypted messages to all Ri participants,
whereas each Ri sends an encrypted message only to one
other participant. As expected, all Ri take roughly the same
time. The shares taken by the data owner and the data client
are the smallest among all participants, which is a desirable
property because we require them to do as few computations
as possible, whereas the bulk of the computation is outsourced
to the cloud.

b) Scalability with respect to K: In this experiment, we
fix N=105, and we vary K∈{5, 10, 15, 20} and implicitly µ
with µ1=0.9 and µ2≤i≤K=0.8. We present results in Fig. 6. We
observe, as in the previous experiment, a linear time behavior
and a similar zoom on the time taken by each participant.

c) Real-world data: We also stress-tested our algorithms
on real-world data, using the same data and setup as [20].
After a pre-processing step (detailed in [19]), we transformed
real-world data in three bandit scenarios: Jester-small (K=10)
and Jester-large (K=100) based on Jester dataset [21], and
MovieLens (K=100) based on MovieLens dataset [22]. We ran
each of these scenarios with N=105 that is the largest budget
considered in [20]. Our results (cf. Fig. 7) essentially confirm
the behavior observed in the synthetic experiments i.e., there
are roughly two orders of magnitude between non-secure and
secure algorithms. In the largest considered scenarios (Jester-
large and MovieLens, both with K=100), where standard UCB
takes around twenty seconds, both UCB-DS and UCB-DS2
take around one thousand seconds, that we believe acceptable
as waiting time for the data client before getting the cumulative
reward result for which she pays.

V. CONCLUSIONS AND FUTURE WORK

We tackled the problem of cumulative reward maximization
in multi-armed bandits, in a setting where data and compu-
tations are outsourced to some honest-but-curious cloud. We
proposed UCB-DS, a distributed and secure protocol based
on UCB, which yields exactly the same cumulative reward
as UCB while enjoying desirable security properties that we
precisely characterize. In particular, no cloud node or external
observer can learn the cumulative reward, which can be seen
only by the data client who pays a budget. We rely on

https://pycryptodome.readthedocs.io/en/latest/src/cipher/classic.html
https://python-paillier.readthedocs.io/en/develop/
https://github.com/radu1/secure-ucb
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Fig. 7. Running times on three real-world data scenarios from [20].

distribution of tasks and on cryptographic schemes to achieve
the security properties of UCB-DS, and we characterize the
overhead of cryptography from both theoretical and empirical
points of view. Our experiments show the scalability and prac-
tical feasibility of UCB-DS, and of its refinement UCB-DS2.

As future work, we plan to extend our scenario such that
multiple data clients concurrently submit budgets to the cloud
and receive corresponding cumulative rewards. In such a
scenario, parallelism between nodes could be leveraged to
improve the system’s throughput.
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APPENDIX A
SECURITY PROOFS

In Sect A-A, we detail the definition of the security tools from Sect. II. Then, we prove the security of UCB-DS and
UCB-DS2 in Sect A-B and A-C, respectively.

A. Additional Information on Security Tools
In this section, we detail the definition of the security tools briefly introduced in Sect. II in order to provide enough

background to formally prove the security of our protocols. Before introducing the two cryptographic schemes, we point out
that each of them has a security parameter λ that is input to key generation. By 1λ we denote the unary representation of
λ, which is a standard notation in cryptography. Our security theorems are always asymptotic i.e., they describe the behavior
when λ becomes infinitely large. In practice, the security parameter is the length of the keys, for both Paillier and AES-CBC.

a) Paillier asymmetric encryption: Paillier’s cryptosystem [12] is an asymmetric partial homomorphic encryption scheme
defined by a triple of polynomial-time algorithms (G, E ,D) and a security parameter λ such that:
• G(1λ) generates two prime numbers p and q according to λ, sets n = p · q and Λ = lcm(p − 1, q − 1) (i.e., the least

common multiple), generates the group (Z∗n2 , ·), randomly picks g ∈ Z∗n2 such that M = (L(gΛ mod n2))−1 mod n
exists, with L(x) = (x− 1)/n. It sets sk = (Λ,M), pk = (n, g), it returns (sk,pk).

• Epk(m) randomly picks r ∈ Z∗n, computes c = gm · rn mod n2, and outputs c.
• Dsk(c) computes m = L(cΛ mod n2) ·M mod n, and outputs m.

Paillier’s cryptosystem is additive homomorphic. Let m1 and m2 be two plaintexts in Zn. The product of the two associated
ciphertexts with the public key pk = (n, g), denoted c1 = Epk(m1) = gm1 · rn1 mod n2 and c2 = Epk(m2) = gm2 · rn2
mod n2, is the encryption of the sum of m1 and m2. Indeed, we have:

Epk(m1) · Epk(m2) = c1 · c2 mod n2

= (gm1 · rn1 ) · (gm2 · rn2 ) mod n2

= (gm1+m2 · (r1 · r2)n) mod n2

= Epk(m1 +m2) .

b) AES-CBC symmetric encryption: AES [10] is a NIST standard for symmetric encryption that encrypts messages of 128
bits. AES is used as a block cipher, for instance using CBC mode (Cipher Block Chaining). The AES-CBC cryptosystem is a
symmetric encryption scheme defined by a triple of polynomial-time algorithms (KeyGen,Enc,Dec) and a security parameter
λ such that:
• KeyGen(1λ) generates Key, a uniformly random symmetric key of 128, 192 or 256 bits, according to λ.
• Enc(m) splits m in blocks of 128 bits m1, . . . ,mn (padding bits may be added if mn is smaller than 128 bits). By x⊕ y

we denote the standard bit-wise xor operation between two numbers x and y. Then, Enc computes ci = E(Key,mi⊕ci−1)
for 1 ≤ i ≤ n where c0 = IV is a random 128-bits number and E is the AES encryption [10]. Then Enc returns the tuple
(c0, . . . , cn).

• Dec(c) splits c in blocks of 128 bits c0, . . . , cn and computes mi = D(Key, ci)⊕ ci−1 for 1 ≤ i ≤ n where c0 = IV and
D is the AES decryption [10]. Then, Dec(c) returns m = (m1, . . . ,mn).
c) IND-CPA (INDistinguishability under Chosen-Plaintext Attack) [11]: Let Π= (KeyGen, Encrypt, Decrypt) be a

cryptographic scheme. The probabilistic polynomial-time (PPT) adversary A tries to break the security of Π. The IND-CPA
game, denoted by EXP(A), works as follows: the adversary A chooses two messages (m0,m1) and receives a challenge
c = Encrypt(LRb(m0,m1)) from the challenger who selects a bit b ∈ {0, 1} uniformly at random, and where LRb(m0,m1)
is equal to m0 if b=0, and m1 otherwise. The adversary, knowing m0,m1 and c, is allowed to perform any number of
polynomial computations or encryptions of any messages, using the encryption oracle, in order to output a guess b′ of the
encrypted message in c chosen by the challenger. Intuitively, Π is IND-CPA if there is no PPT adversary that can guess b
with a probability significantly better than 1

2 . By α = Pr[b′ ← EXP(A); b = b′], we denote the probability that A correctly
outputs her guessed bit b′ when the bit chosen by the challenger in the experiment is b. A scheme is IND-CPA secure if α− 1

2
is negligible function in λ, where a function γ is negligible in λ, denoted negl(λ), if for every positive polynomial p(·) and
sufficiently large λ, γ(λ) < 1/p(λ).

Both cryptographic schemes mentioned earlier in this section are IND-CPA: (i) Paillier is IND-CPA under the decisional
composite residuosity assumption [12], and (ii) AES-CBC is IND-CPA under the assumption that AES is a pseudo-random
permutation [11].

In our theorems, the notion of “better than random” is consistent with the aforementioned IND-CPA property. We also point
out an additional notation used in the proofs. Similarly to Landau Big O notation, where by convention O(f) can describe
any function bounded above by f , we abuse notation and denote by negl(λ) any function negligible in λ. Notably, we have
negl(λ) + negl(λ) = negl(λ) and we may write x+ negl(λ) instead of x− negl(λ).



TABLE IV
WHAT EACH PARTICIPANT OF UCB-DS KNOWS AND DOES NOT KNOW, WITH POINTERS TO THE RELEVANT THEOREMS.

Participant Knows Does not know
AS • Arm pulled at each round • Sum of rewards for some arm and cumu-

lative reward (Th. 1)

Ri

• Sum of rewards for arm i
• Arm pulled at each round, with aver-
age probability 1

2
+ 1

2K
(Th. 2)

• Sum of rewards of other arm j 6= i and
cumulative reward (Th. 3)

DC • Cumulative reward • Arm pulled at each round (Th. 4)
• Sum of rewards for some arm (Th. 5)

External
observer

• Nothing
• Arm pulled at each round (Th. 6)
• Sum of rewards for some arm and
cumulative reward (Th. 7)

B. Security Proofs for Sect. III-C2

In this section, we provide formal statements and proofs for the security properties of UCB-DS that we have already outlined
in Sect. III-C2. In Table IV, we summarize what each participant in UCB-DS knows/does not know, with pointers to the relevant
theorems.

Before formally stating the theorems, we point out some assumptions. First, we recall (cf. Sect. III-A) that the participants
are honest-but-curious and do not collude. We discuss the impact of collusions at the end of this section. Second, during the
ring computation (cf. Step 3 in Sect. III-B), each arm learns an intermediate max value Bm, together with intermediate arm
argmax im; we assume that the knowledge on intermediate Bm and im by each arm does not leak significant information
on the sum of rewards. Our refinement UCB-DS2 (cf. Sect. III-D) hides im during the ring computation to relax the second
hypothesis.

Before discussing the security properties for each participant, we introduce some notations needed for the theorem statements:
• ni,t = the number of times arm i has been pulled until round t.
• si,t = the sum of rewards obtained by arm i until round t.
• datatA = the data to which participant A has access until round t, where A can be a participant from Fig. 3 or the external

observer (ext). If t is omitted, this denotes the data to which A has access at the end of the protocol.
• Apb(.)(d) = the answer of a Probabilistic Polynomial-Time (PPT) adversary A that knows d and tries to solve the problem

pb. Depending on the problem, pb can also take some input.
• By negligible in λ, we denote that our security theorems are always asymptotic i.e., they describe the behavior when the

security parameter λ of the cryptographic schemes becomes infinitely large.
We next provide theorems that state each non-trivial property from Table IV. We first state an useful lemma, which intuitively
says that guessing the cumulative reward with probability better than random is equivalent to guessing the sum of rewards of
some arm with probability better than random.

Lemma 1. Let A be a PPT adversary trying to find the cumulative reward R, and let B be a PPT adversary trying to find
the sum of rewards of some arm. Let d be some data, cr(.) be the problem of guessing the cumulative reward, and sum(.)
be the problem of guessing the sum of rewards of some arm. We have the following statement: Acr(.)(d) has a non-negligible
advantage ⇔ Bsum(.)(d) has a non-negligible advantage.

Proof. ⇐ Assume that B can guess the sum of rewards of some arm with probability better than random. Then, A can call B,
and hence get the sum of rewards of one arm with probability better than random. From this sum, A can guess a lower bound
on the cumulative reward, hence eliminating some possibilities, and thus guessing the cumulative reward with probability better
than random.
⇒ If A can guess the cumulative reward with probability better than random, then B can use this cumulative reward as an

upper bound on the sum of rewards of some arm, thus having a probability better than random of guessing the sum of rewards
of some arm.

a) Security of AS: By construction of UCB-DS, AS knows the arm pulled at each round. We state that AS cannot learn
the sum of rewards produced by some arm.

Theorem 1. For an arm i ∈ JKK and a round t ∈ JN −K + 1K, an honest-but-curious AS cannot learn si,t, given datatAS,
with a probability better than random. More precisely, for all PPT adversaries A,∣∣∣Pr

[
(i, ŝi,t)← Asum(t)(datatAS); ŝi,t = si,t

]
− pS(ni,t, si,t)

∣∣∣



is negligible in λ, where Asum(t)(datatAS) returns (i, ŝi,t) in which ŝi,t is A’s guess on si,t for the arm i (chosen by A), and
pS(ni,t, si,t) is the probability of obtaining a sum of rewards si,t from ni,t pulls of arm i until round t.

Proof. Before Step 5 of UCB-DS, AS has access at each round to the indices of the pulled arms. Thus, AS knows ni,t i.e.,
the number of times the arm i has been pulled until round t. The set of all possible sums of rewards for arm i until round t is
{0, 1, . . . , ni,t}. We denote by pS(ni,t, si,t) the probability of obtaining the sum of rewards si,t from ni,t pulls of arm i until
round t. Next, we show that the advantage of AS based of datatAS is pS(ni,t, si,t) plus an amount negligible in λ.

Since AS has no knowledge on µi, the property stated in the theorem is respected at each round before Step 5, i.e., for all
t < N −K + 1.

We next prove the property for the last round i.e., t = N −K+ 1. At the end of UCB-DS, at Step 5, AS receives the values
EDC(s1,t), . . . , EDC(sK,t). We prove that retrieving any information about any si,t from these ciphertexts breaks the IND-CPA
property of Paillier’s cryptosystem [12]. At this point of UCB-DS, datatAS consists of EDC(s1,t), . . . , EDC(sK,t) and the list of
arms that have been pulled at each round. Assume there exists a PPT adversary A able, from datatAS to find si,t for some i
with non negligible advantage x:∣∣∣Pr

[
(i, ŝi,t)← Asum(t)(datatAS); ŝi,t = si,t

]
− pS(ni,t, si,t)

∣∣∣ = x+ negl(λ).

In the worst case, each i ∈ JKK has an equal probability of being chosen by A. We also assume that if datatAS does not
correspond to the data collected by AS during a run of UCB-DS (for instance, if one piece of datatAS has been replaced by
another unrelated message), then A does not give any advantage. If such an adversary A exists, then we show how to construct
an adversary B able to break the IND-CPA property of Paillier.

Let us build an IND-CPA game, in which B chooses two values m0,m1, and sends them to the challenger. The challenger
randomly selects b ∈ {0, 1} and answers with EDC(mb). B wins the IND-CPA game if B guesses b with a non-negligible
advantage.

To do so, B first creates a simulation of an UCB-DS execution i.e., B creates nodes DC′, AS′, R′i, and DO′, with Bernoulli
distributions defined by µ′i of its choice. Then, B runs an execution of UCB-DS on these nodes. Because B controls all the
nodes, it knows the sums of rewards s′1,t, . . . , s

′
K,t, as well as a list L of arms pulled at each round.

As input for the IND-CPA game, B chooses m1 = s′1,t and another value m0, different from all s′i,t,
sends both values to the challenger, and receives EDC(mb). Then, B computes EDC(s′i,t) for each i, and calls
Asum(t)([EDC(mb), EDC(s′2,t), . . . , EDC(s′K,t), L]).

The strategy of B is as follows: if A returns (1,m1), then B answers 1. Otherwise, B answers randomly. We next derive
the probability of a correct answer by B.

• If i 6= 1 (probability 1 − 1
K ), then B answers randomly and is correct with probability 1

2 . Hence this branch offers a
probability of success of (1− 1

K ) 1
2 .

• If i = 1 (probability 1
K ), let us consider the value of b.

– If b = 0 (probability 1
2 ), then we have two cases:

∗ If the output of A is (1,m1) (probability pS(n1,t, s1,t)), then B answers 1 and it is wrong, hence the probability
of success is 0.

∗ Otherwise (probability 1 − pS(n1,t, s1,t)), B answers randomly and is correct with probability 1
2 . The probability

of success of this branch is 1
K

1
2 (1− pS(n1,t, s1,t))

1
2 .

– If b = 1 (probability 1
2 ), then we have two cases:

∗ If the output of A is (1,m1) (probability pS(n1,t, s1,t) + x+ negl(λ)), then B correctly answers 1. The probability
of success of this branch is 1

K
1
2 (pS(n1,t, s1,t) + x+ negl(λ)).

∗ Otherwise (probability 1−pS(n1,t, s1,t)−x−negl(λ)), B answers randomly and is correct with probability 1
2 . The

probability of success of this branch is 1
K

1
2 (1− pS(n1,t, s1,t)− x− negl(λ)) 1

2 .
By aggregating the aforementioned cases, the probability α of success of B is:

α =

(
1− 1

K

)
1

2
+

1

K

1

2
(1− pS(n1,t, s1,t))

1

2
+

1

K

1

2
(pS(n1,t, s1,t) + x+ negl(λ))

+
1

K

1

2
(1− pS(n1,t, s1,t)− x− negl(λ))

1

2

=
1

2
− 1

2K
+

1

4K
− pS(n1,t, s1,t)

4K
+
pS(n1,t, s1,t)

2K
+

x

2K
+

1

4K
− pS(n1,t, s1,t)

4K
− x

4K
+ negl(λ)

=
1

2
+

x

4K
+ negl(λ)



Hence, B has an advantage of x
4K in the IND-CPA game, which is non negligible. This is a contradiction with the fact that

Paillier is IND-CPA secure. Consequently, there does not exist any PPT adversary A that violates the property stated in the
theorem.

As a corollary, by Lemma 1 and Theorem 1, we infer that AS cannot learn the cumulative reward with probability better
than random.

b) Security of Ri: By construction of UCB-DS, each arm node Ri knows its sum of rewards. Moreover, due to the
properties of the ring computation, Ri knows with average probability 1

2 + 1
2K the arm to be pulled at the next round

(Theorem 2), but it cannot learn the sum of rewards of any other arm (Theorem 3).

Theorem 2. At the end of round t ∈ JN −KK and before the start of round t+ 1, given datatRi
, the average probability that

an honest-but-curious Ri guesses the arm to be pulled at round t+ 1 is 1
2 + 1

2K .

Proof. After round t, an arm i can either guess randomly (with a success probability of 1
K ), or use the data to which it has

access: the partial max Bm, the partial argmax index im, and the next arm in the ring communication. The knowledge of
the next arm is useless, as it does not bring any information about any B value. Similarly, the knowledge of Bm does not
leak more information than im. Hence, the only useful piece is im. Based on this only useful piece of data and on the earlier
assumption that any information derived from partial argmax data from the previous rounds is negligible, we infer that the best
policy for the arm is to bet that arm im is the arm to be pulled at the next round. Let us consider an arm at position σ−1(i),
where σ is the ring permutation used at the round t. Its guess is correct if and only if the next arm to be selected, say j, has
position σ−1(j) ≤ σ−1(i). Hence, the arm at position σ−1(i) has a success probability of σ−1(i)

K . On average, an arm has a
success probability of

1

K

K∑
i=1

σ−1(i)

K
=

1

K2

K(K + 1)

2
=
K + 1

2K
=

1

2
+

1

2K

which concludes the proof.

Theorem 3. For an arm i ∈ JKK and a round t ∈ JN −K + 1K, an honest-but-curious Ri cannot learn sj,t for some other
arm j 6= i, given datatRi

, with a probability better than random. More precisely, for all PPT adversaries A,∣∣∣Pr
[
(j, ŝj,t)← Asum(t)(datatRi

); ŝj,t = sj,t

]
− pR(ni,t, t, sj,t)

∣∣∣
is negligible in λ, where Asum(t)(datatRi

) returns a tuple (j, ŝj,t) in which j 6= i is chosen by A and ŝj,t is A’s guess of the
sum of rewards for arm j, and pR(ni,t, t, sj,t) is the probability of arm j to have sum of rewards sj,t at round t seen that
arm i has been pulled ni,t times.

Proof. If an arm i has been pulled ni,t times until round t, then another arm j has been pulled at most t− ni,t times. Hence,
a baseline probability of Ri to guess the sum of rewards of any other arm j is the pR(ni,t, t, sj,t) defined in the theorem
statement. The arm node Ri cannot possibly guess the sum of rewards for arm j with a better probability because it does not
see any useful information that it can leverage. In particular, the only information that Ri receives about the rewards of any
other arm is the partial max value Bm (derived from the sum of arm im using the number of pulls of im, to which Ri does
not have access) received during Step 3. As mentioned earlier, we assume that the information that one arm can derive from
one such random B value does not provide any advantage.

As a corollary, by Lemma 1 and Theorem 3, we infer that Ri cannot learn the cumulative reward with probability better
than random.

c) Security of DC: The data client knows the cumulative reward that she can decrypt after Step 6. Moreover, the data
client cannot learn the arms selected at some round (Theorem 4) or the sum of rewards for some arm (Theorem 5).

Theorem 4. For each round t ∈ {2, . . . , N −K + 1}, the data client DC cannot guess which arm is pulled at round t with
probability better than random.

Proof. The data client does not receive any message until the end of UCB-DS (Step 6). By construction of UCB-DS, all arms
are pulled at the first round, then from round 2 and until the end of UCB-DS i.e., round N −K + 1, there is a single arm
pulled at each round. In particular, the data client does not receive any information on which arm is pulled at some round,
hence her best strategy is to answer randomly, with a probability of success of 1

K .

Theorem 5. For an arm i ∈ JKK, the data client DC cannot guess the sum si of rewards for the arm i with probability better
that random.



Proof. Similarly to the previous proof, we observe that the data client DC does not receive any message until the end of
UCB-DS (Step 6). In particular, DC does not get any information about which arm is selected at some round. Because all arm
probability distributions are equiprobable to DC, it is also true that all partitions of the cumulative reward R are equiprobable
to DC, thus DC has no advantage in guessing the partition of rewards. Hence, the the probability of DC guessing a correct
partition of the rewards is equal to 1

p(R) , where p(R) is the number of partitions of R. This observation also proves that DC
cannot guess the individual sum of rewards of some arm i. If it was the case, then DC would know that some of the partitions
are more likely e.g., if DC can guess the sum of rewards si of the arm i, then all partitions not having si as the value for arm
i would be discarded, which is a contradiction.

d) External observer: An external observer sees all messages exchanged between nodes, from which we show that she
cannot learn which arm is pulled at some round (Theorem 6) or the sum of rewards for some arm (Theorem 7).

Theorem 6. For each round t ∈ {2, . . . , N − K + 1}, an honest-but-curious external observer cannot learn which arm is
pulled at round t, given datatext , with probability better than random. More precisely, for all PPT adversaries A,∣∣∣∣Pr[Apa(t)(datatext) = itm]− 1

K

∣∣∣∣ is negligible in λ,

where Apa(t)(datatext) returns the guess of A on which arm is pulled at round t, and itm is the true arm pulled at round t.

Proof. By construction of UCB-DS, all arms are pulled at the first round, then from round 2 and until the end of UCB-DS
i.e., round N −K + 1, there is a single arm pulled at each round. We next show that if there exists a PPT adversary with a
non negligible advantage in guessing the arm pulled at some round 2 ≤ t ≤ N −K + 1, then this would break the IND-CPA
property of AES-CBC.

An external observer (denoted ext in the sequel) sees all encrypted messages that are exchanged among UCB-DS participants.
We denote by datatext this collection of data after round t. We assume, toward a contradiction, that there exists a PPT adversary
A able from dataext to find the arm itm pulled at some round t with a non negligible advantage x:∣∣∣∣Pr[Apa(t)(datatext) = itm]− 1

K

∣∣∣∣ = x+ negl(λ).

We also assume that if datatext does not correspond to an actual collection of encrypted messages that ext sees, then the
advantage for such an input is negligible.

We next show that by using the adversary A, we can construct an adversary B able to break the IND-CPA property of
AES-CBC. To do so, B creates a simulation of an UCB-DS execution, similarly to the proof of Theorem 1. Even though the
messages of such a simulation are encrypted, B knows the keys hence the state of each arm. In particular, B knows in plain
text the message sent by AS to the arm pulled at round t. This message is of the form m1 = (1||firsti,t||nexti,t), with 1
being the Boolean value saying the arm has to be pulled.

As input for the IND-CPA game, B sends the aforementioned m1 and another message m0 = (0||firsti,t||nexti,t) that it
generates based on m1. Then, B receives back Enc(mb), where b is a random bit selected uniformly by the challenger. Next,
B calls Apa(t)(data ′ext), where data ′ext is the collection of encrypted messages from the B’s simulation, except that it replaces
Enc(m1) by Enc(mb). The strategy of B is: if A returns the correct itm, then B returns 1, otherwise answer randomly.
• If b = 0 (probability 1

2 ), then A does not receive a correct simulation because no arm is pulled at round t. According to
our assumption, A does not give any advantage.
– If A returns the correct itm (probability 1

K ), then B answers 1 and is wrong.
– Otherwise (probability 1 − 1

K ), then B answers randomly and is correct with probability 1
2 . This branch yields a

probability of success of 1
2 (1− 1

K ) 1
2 .

• If b = 1 (probability 1
2 ), then the advantage given by A can be leveraged by B.

– If A returns the correct itm (probability 1
K + x + negl(λ)), then B correctly answers 1. The probability of success of

this branch is 1
2 ( 1
K + x+ negl(λ)).

– Otherwise (probability 1− 1
K −x−negl(λ)), B answers randomly and is correct with probability 1

2 . This branch yields
a probability of success of 1

2 (1− 1
K − x− negl(λ)) 1

2 .
By aggregating the aforementioned cases, the probability α of success of B is:

α =
1

2
(1− 1

K
)
1

2
+

1

2
(

1

K
+ x+ negl(λ)) +

1

2
(1− 1

K
− x− negl(λ))

1

2

=
1

4
− 1

4K
+

1

2K
+
x

2
+

1

4
− 1

4K
− x

4
+ negl(λ)

=
1

2
+
x

4
+ negl(λ)



Hence, B has an advantage of x
4 in the IND-CPA game, which is non negligible. This contradicts the fact that AES-CBC is

IND-CPA secure. Hence, we conclude that there does not exist any PPT adversary A that violates the property stated in the
theorem.

Theorem 7. For an arm i ∈ JKK and a round t ∈ JN −K + 1K, an honest-but-curious external observer cannot learn si,t,
given datatext , with a probability better than random. More precisely, for all PPT adversaries A,∣∣∣Pr

[
(i, ŝi,t)← Asum(t)(datatext); ŝi,t = si,t

]
− pQ(t, si,t)

∣∣∣
is negligible in λ, where Asum(t)(datatext) returns (i, ŝi,t) in which ŝi,t is A’s guess on si,t for the arm i (chosen by A), and
pQ(t, si,t) is the probability of obtaining a sum of rewards si,t from at most t pulls of arm i until round t.

Proof. The external observer collects datatext , which consists of several encrypted messages, some of them being encrypted
with Enc (AES-CBC) and some other being encrypted with EDC (Paillier). We prove that these messages do not provide an
advantage bigger than the advantage of an adversary in a classical IND-CPA game on Enc or EDC. For simplicity, we assume
that the datatext only contains two encrypted messages, Enc(m) and EDC(n). The proof can obviously be adapted if datatext
consists of more than two messages.

The goal of the adversary is to extract at least a bit of information from either m or n. The entropy of this system is minimal
when m = n. Hence, when m = n, the adversary has the highest probability of guessing at least a bit from either m or n
(which are the same in this case). As a consequence, in the general case, the advantage of an adversary having to guess a bit
about m or n, knowing Enc(m) or EDC(n) is bounded above by the advantage of an adversary having to guess a bit about m,
knowing Enc(m) and EDC(m).

Let us prove that the advantage of a PPT adversary in this latter case (having to guess a bit about m from Enc(m) and
EDC(m)) is negligible.

We assume, toward a contradiction, that there exists a PPT adversary A able to win the game where, given Enc(m) and
EDC(m), A recovers a bit of information about m with a non-negligible advantage x: given Enc(m) and EDC(m), the probability
that A outputs a correct guess about a bit of m is equal to 1

2 + x+ negl(λ).
We use this adversary to create another adversary B able to break the IND-CPA property of the encryption schemes

Enc (or EDC, respectively). As usually in the IND-CPA game, B chooses two messages m0 and m1, and sends them to
the challenger. Then, B receives the challenge Enc(mb) (or EDC(mb), respectively), and calls A(Enc(mb), EDC(m0)) (or
A(Enc(m0), EDC(mb)), respectively). If A returns a correct guess about m0, then B returns 0. Otherwise, it returns 1.

• If b = 0 (happens with probability 1
2 ), then A has a non negligible advantage in guessing a bit about m.

– A outputs a correct guess about one bit of m0 with probability 1
2 + x+ negl(λ). In this case, B is correct. This branch

happens with probability 1
2 ( 1

2 + x+ negl(λ)).
– If A does not answer correctly (happens with probability 1

2 − x− negl(λ)), then A is correct with probability 1
2 . This

branch happens with probability 1
2 ( 1

2 − x− negl(λ)) 1
2 .

• If b = 1 (happens with probability 1
2 ), then A has no advantage.

– If A returns a correct guess about one bit of m0 (happens with probability 1
2 ), then B is wrong.

– If not (happens with probability 1
2 ), then A returns a random guess and is correct with probability 1

2 . This branch of
events happen with probability 1

23 .
By aggregating these cases, the probability α of success of B is:

α =
1

2
(
1

2
+ x+ negl(λ)) +

1

2
(
1

2
− x− negl(λ))

1

2
+

1

8

=
1

4
+

1

2
x+

1

8
− 1

4
x+

1

8
+ negl(λ)

=
1

2
+

1

4
x+ negl(λ)

Hence, B has a non-negligible advantage of 1
4x in the IND-CPA game against Enc (or EDC, respectively), which is a contradiction

with its IND-CPA property. Guessing a bit about the encrypted message is equivalent to guessing the reward with a probability
better than random (i.e., better than pQ(t, si,t) cf. our theorem statement), which concludes our proof.

As a corollary, by Lemma 1 and Theorem 7, we infer that the external observer cannot learn the cumulative reward with
probability better than random.



receive ciphertext from arm node Rσ−1(K)

/* ciphertext is now Enc(Encim(im)) */

let ciphertext2 = Dec(ciphertext)
/* ciphertext2 is Encim(im), but AS does not know im,

hence it has to try each i */
for i ∈ JKK

if Deci(ciphertext2) = i
/* ciphertext2 decrypts as a correct arm index */

let im = i
break

(a) For AS, take all except the last 2 lines in Fig. 4(a), then take the above.

if first i = 0
receive ciphertext2 from preceding arm node in ring
/* ciphertext2 is now Enc(Bm||Encim(im)) */
Bm||Encim(im) = Dec(ciphertext2)

if first i = 1 or Bm < Bi
let im = i
let Bm = Bi

if next i 6= 0
send Enc(Bm||Encim(im)) to Rnexti

else
send Enc(Encim(im)) to AS

(b) For Ri (with i ∈ JKK), take first 8 lines in Fig. 4(b), then take the above.

Fig. 8. Modifications to UCB-DS pseudocode cf. Fig. 4 to obtain UCB-DS2.

e) Impact of collusions: As pointed out earlier, an hypothesis behind our security theorems is that cloud nodes do not
collude. By collusion we mean that cloud nodes put together all their data. If at least 2 of the Ri nodes collude, they could learn
their respective algorithm inputs (i.e., bandit arm values that only the data owner is supposed to know at the same time) and
outputs (i.e., cloud nodes could sum up the partial sums of rewards known by each node), hence UCB-DS would not satisfy
the desirable security properties. In addition to following a standard security model (cf. discussion in Sect. III-A), we believe
that the no-collusion hypothesis is necessary if we want a secure cumulative reward maximization algorithm that produces
exactly the same output as standard UCB, which manipulates real numbers i.e., Bi needs average, ln, and sqrt. Indeed, as
already mentioned in the introduction, it is not currently possible in practice to use fully-homomorphic encryption on real
numbers without result approximation. Hence, to minimize data leakage, our choice is to do computations on real numbers in
clear, and to distribute reward functions and Bi-value computations among K cloud nodes (one per arm), each of them having
access in clear only to data pertaining to its arm.

C. Security Proof for Sect. III-D

A property of UCB-DS, stated in Theorem 2, is that an arm node Ri knows with average probability of 1
2 + 1

2K what arm
is pulled at the next round. This happens because during the ring computation, every arm sees in clear the partial argmax im.
The UCB-DS2 refinement of UCB-DS removes the aforementioned leakage and hence allows relaxing the second hypothesis
from the beginning of Sect. A-B.

We show in Fig. 8 the modifications to Step 3 and 4 of UCB-DS cf. Fig. 4 that allow to obtain UCB-DS2. In the worst
case, these modifications cost (N −K + 1)(K − 1) encryptions at Step 3 and (N −K + 1)K decryptions at Step 4, which
does not change the overall asymptotic behavior outlined in Sect. III-C3.

All theorems from Sect. A-B also hold for UCB-DS2, except Theorem 2 that is replaced by the next theorem, which formally
states the stronger security guarantees of UCB-DS2.

Theorem 8. In UCB-DS2, at the end of round t ∈ JN −KK and before the start of round t+ 1, given datatRi
, an honest-but-

curious arm node Ri cannot learn the arm to be pulled at round t+ 1 with probability better than random.

Proof. At each round t, the arm node Ri receives Enc(Bm||Encim(im)) and decrypts into Bm||Encim(im). By hypothesis, Bm
does not leak any information about the next arm to be pulled. The only way for Ri to guess the next arm with probability
better than random is to use some information contained in Encim(im). However, since Encim is IND-CPA, it is impossible to
learn any information on im with non negligible advantage. Hence, the strategy of Ri to guess the arm pulled at round t+ 1
is not better than random.

APPENDIX B
ADDITIONAL INFORMATION ON EXPERIMENTS

A. Additional Experiments for Scalability with Respect to N

We present additional experimental results, using the same experimental setup as in Sect. IV. More precisely, in Fig. 9, we
show the results for five additional scenarios from the related work, which confirm all the observations that we have already
discussed for the scenario in the paragraph Scalability with respect to N of Sect. IV.



B. Pre-processing of Real-World Data

For this experiment, we use the same data and experimental setup as [20]. More precisely, we use data from Jester6[21], a
collection of ratings ranging from -10 (very not funny) to 10 (very funny), given by 25K users on 100 jokes. Exactly as [20],
we pre-process this dataset by assigning the lowest score to the unrated jokes, and then we extract two bandit scenarios:
• Jester-small: K = 10, corresponding to the 10 most rated jokes, where µi = (# of ratings ≥ threshold 3.5 for joke i) / (#

of users).
• Jester-large: K = 100, corresponding to all 100 jokes, where µi is computed similarly as for Jester-small, except that the

threshold here is set to 7.
Moreover, we use data from MovieLens7[22], more precisely the “MovieLens 100K Dataset” that contains ratings ranging
from 1 (bad) to 5 (very good) given by 1K users on a set movies, from which, exactly as [20], we look only at the first 100
movies and derive the following bandit scenario:
• MovieLens: K = 100, corresponding to the first 100 movies, where µi = (# of ratings ≥ threshold 4 for movie i) / (# of

users).

6http://eigentaste.berkeley.edu/dataset/
7https://grouplens.org/datasets/movielens/

http://eigentaste.berkeley.edu/dataset/
https://grouplens.org/datasets/movielens/
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(a) Scenario 2 [4], [6]: K = 2, µ1 = 0.9, µ2 = 0.6.
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(b) Scenario 3 [4] K = 2 µ1 = 0.9, µ2 = 0.8

102 103 104 105

Budget N

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

UCB-DS2

UCB-DS

UCB-D

UCB

ASR1

R2

R3

R4

R5
R6 R7 R8

R9

R10
DC

Zoom on UCB-DS for N=100000

(c) Scenario 4 [4] K = 10: µ1 = 0.9, µ2=µ3=µ4=0.8, µ5=µ6=µ7=0.7, µ8= µ9=µ10 = 0.6.
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(d) Scenario 5 [4] K = 10: µ1 = 0.9, µ2 = . . . = µ10 = 0.6.
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(e) Scenario 6 [6] K = 10: µ1 = 0.55, µ2 = 0.2, µ3 = . . . = µ10 = 0.1.

Fig. 9. Scalability with respect to N for five more bandit scenarios from the related work. In the zoom, we do not show DO (its share is close to 0).
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