
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

Design and Practical Implementation of Verify-Your-Vote
Protocol

Marwa Chaieb*1 | Souheib Yousfi2 | Pascal Lafourcade3 | Riadh Robbana2

1LIPSIC, Faculty of Sciences of Tunis,
University Tunis El-Manar, Tunis, Tunisia

2LIPSIC, National Institute of Applied Science
and Technology, University of Carthage, Tunis,
Tunisia

3LIMOS, University Clermont Auvergne,
Clermont-Ferrand, France

Correspondence
*Marwa Chaieb. Email:
chaiebmarwa.insat@gmail.com

Summary
One of the most critical properties that must be ensured to have a secure electronic voting is ver-

ifiability. Political parties, observers and especially voters want to be able to verify that all eligible

votes are cast as intended and counted as cast without compromising votes secrecy or voters

privacy. Over the past few decades, an important number of e-voting protocols attempt to deal

with this issue by using cryptographic techniques and/or a public bulletin board (PBB). Recently,

some Blockchain-based e-voting systems have been proposed, but were not found practical in

the real world, because they do not support situations with large numbers of candidates and vot-

ers. In this paper we design and implement A Verifiable Blockchain-based Online Voting Protocol,

called Verify-Your-Vote (VYV). Our protocol ensures several security properties thanks to some

cryptographic primitives and Blockchain technology. We also evaluate its performance in terms

of time, cost and the number of voters and candidates that can be supported.
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1 INTRODUCTION

Voting is a crucial aspect of democracy. Secure and transparent elections have always been the major concern of voters and political parties. In tra-
ditional elections, every voter needs to physically go to a polling station to cast a vote and all votes are counted manually by the election organizers,
who may detect and commit errors in the final election tally. To reduce these inherent voting limitations and due to recent cryptographic improve-
ments, these technologies, have been developed. Called Electronic Voting simply e-Voting, these systems have several advantages, including the
simplicity of the process, automated tallying, and the reduction of organizational costs. The security provided by such a system should include, at
least, the following properties 1: Eligibility: only registered voters can vote and only one vote per voter is counted (if the voter is allowed to vote
more than once, the most recent ballot will be tallied and all others are discarded); Individual verifiability: the voter him/herself must be able to
verify that his/her ballot was counted correctly; Universal verifiability: the election official tally must be verifiable by all parties; Vote-privacy: the
connection between a voter and his/her vote cannot be established without his/her help; Receipt-freeness: a voter cannot prove to a potential
coercer that he/she voted in a particular way;Coercion resistance: evenwhen a voter interacts with a coercer during the voting process, the coercer
will not be sure of whether the voter obeyed his demand or not; Integrity: ballots are not altered or deleted during any step of the election; Fair-
ness: no partial results that could influence voters are published before the official tally; Robustness: the system should be able to tolerate some
faults, Vote-and-go: a voter does not need to wait for the end of the voting phase or trigger the tallying phase; Voting policy: specify if a voter can
vote only once or has the possibility to change his/her choice before the end of the election. On the other hand, existing e-voting systems suffer
from several security issues since they are centralized by design. Hence, to achieve the trustworthiness required by voters and election organizers,
e-voting systems must be secure, while allowing transparency of elections. Blockchain, which is a distributed public ledger, helps to achieve this
level of security and verifiability, while maintaining confidentiality and non-malleability of transactions. Indeed, it operates without the need for a
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trusted central authority and ensures data integrity as every transaction is verified and stored by each of the nodes in the Blockchain. All transac-
tions are gathered into blocks by miners, who must complete a proof such as a Proof-of-Work or Proof-of-Stake. Thus, Blockchain is considered
an immutable and secure data structure. In this paper, we design and implement a secure and verifiable Blockchain-based e-voting protocol called
Verify-Your-Vote 2.
• Contributions: Our contributions can be summarized as follow:

– Design and practical implementation of a secure and verifiable blockchain based e-voting system, called Verify-Your-Vote (VYV),
– Evaluation of the performance of the protocol in terms of cost, time and the number of voters and candidates that can be supported.
– Formal and informal security evaluation of VYV protocol.

• Paper organization:We study some existing e-voting systems in Section2 and discuss the cryptographic techniques used in VYV in Section3.
In the next section, we present the different phases of VYV protocol and give the details of its practical implementation. We then analyze
its performance and evaluate its security in Sections 6 and 7, respectively. Section8 is a conclusion and a set of perspectives.

2 RELATEDWORK

In the last few years, a number of online Blockchain-based e-voting systems have been proposed to resolve the security problems of traditional
voting protocols. In this section, we give an overview and evaluate some of these systems.

A Smart Contract for Boardroom Voting with Maximum Voter Privacy 3(OVN): It is a self-tallying voting protocol based on Blockchain technol-
ogy. It is implemented on the Ethereum Blockchain and supports only elections with two options "yes" or "no". OVN allows voters and any third
party to compute the election final result without assistance which guarantees voter’s privacy. In return, it does not ensure fairness. In fact, it is
possible for voters that have not yet cast their votes to cooperate and compute the election partial results. If these voters are dissatisfied with the
tally, they can simply either not cast votes or send invalid votes and in both cases the other voters cannot perform the final tally. Thus, this protocol
does not ensure robustness. Also, it is not coercion resistant and supports only elections with a maximum of 50 voters due to the mathematical
tools they have used. Finally, it needs to trust the election administrator to register and authenticate eligible voters.

Platform-independent secure Blockchain-based voting system 4(PSBVS): It is an independent e-voting system implemented on a BFT consensus
based Blockchain. Authors claim that their solution does not rely on a centralized trusted party to compute and publish the election final result,
but they still need to trust an administrator to decrypt the sum of votes and upload the result to the Blockchain. They use Paillier cryptosystem 5 to
encrypt votes before publishing them, proof of knowledge to ensure the correctness and consistence of votes, and Short Linkable Ring Signature
(SLRS) to guarantee voters privacy. This protocol does not ensure voters eligibility since a voter can register him/herself by simply providing his/her
e-mail address, ID number or an invitation URL with a password and these mechanisms are not sufficient to verify the eligibility of a voter. In
addition, this protocol does not respect the definition of coercion resistance given by Juels et al. 6. A coercer can vote in the place of a voter if he
knows the voter’s secret key. The coerced voter cannot provide a fake secret key to the coercer because a vote with a fake secret key is rejected
by the smart contract. In summary, the security of this protocol relies on the honesty of the administrator, the smart contract, and the Blockchain
validation nodes that replicate the execution of the smart contract codes to ensure its correct execution. To achieve the trustworthiness of the
Blockchain platform, the authors propose to allow different parties to host the Blockchain validation nodes. However, the major concern of the BFT
consensus based Blockchain is the scalability of nodes. As shown in papers 7,8, Hyperledger stops working beyond 16 nodes. Due to this limitation,
the authors implement their protocol on the Hyperledger Fabric Blockchain using only 4 validation nodes for an election with 1 million voters.

An End-to-end Voting-system Based on Bitcoin 9 (EtEVBB): Based on Blockchain technology, this voting platform uses Bitcoin as a ballot box
to ensure an end-to-end verifiability. This solution uses an Anonymous Kerberos Authentication Protocol 10,11 to authenticate voters and ensure
their anonymity. It also uses the digital asset coin based on the Open Asset Protocol (OAP) to create voting tokens. To vote, each eligible voter
transfer his/her voting token to the Bitcoin address of the chosen candidate. The final count is then obtained by summing the tokens received by
each candidate. Authors mentioned that the count should start after 80 minutes of the election closing time due to the time that take the mining
process of Bitcoin (10minutes per block) and to avoid forks.This protocol does not provide anymechanism to avoid coercion resistance or to ensure
receipt-freeness. Finally, all parties can watch the election progress in real time and get partial results.

End-to-end voting with non-permissioned and permissioned ledgers 12 (EtEVnPPL): Authors extend the paper 9 by proposing another imple-
mentation of the same e-voting protocol using a different Blockchain platform which is the Multichain. They started by recalling the different
phases of the protocol and its implementation over Bitcoin. Then, they described possible threats related to Bitcoin that impact on the security
of their proposed protocol, such as DDoS attacks, software bugs on wallets, misbehavior of pool of miners and some other problems related to
the anonymity in Bitcoin. For those reasons, they proposed to use Multichain, a platform for the creation and deployment of private Blockchains,
derived from Bitcoin Core. This platform restricts the access to the Blockchain to only chosen participants, introduces controls over which trans-
actions are permitted and avoid the proof of work consensus algorithm. Authors created two Blockchains: the first one is dedicated to manage
the voting process and the second one to manage the anonymous ID of voters instead of using Anonymous Kerberos Authentication, or Blind sig-
nature. Authors claim that their new proposed solution guarantees all the security requirements proposed by Bistarelli et al. 9 and adds two other
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security properties: (1) uncoercibility and receipt freeness and (2) data confidentiality and neutrality. However, referring to the definition of coer-
cion resistance introduced by Juels et al. 6, this new implementation is not coercion resistant because a coercer can vote in the place of the coerced
voter if this latter provides his/her private key to the coercer or if the coercer is next to the voter and controlling him/her during the voting phase.

Follow My Vote1(FMV): It is a commercial voting system that employs the Blockchain as a ballot box. To authenticate themselves, voters need
a web cam and an ID. They can verify voting progress in real time. This possibility compromises the fairness of the election. Additionally, FMV
requires a trusted authority to hide the correspondence between voters identities and their voting key. This authority also has the possibility to
change votes since it has all voters’ pass-phrases. Also, votes secrecy is not verified by this system as votes are cast without being encrypted.
Furthermore, this system does not offer any mechanism to allow voters or observers to check the accuracy of the election final result.

TIVI2: It is a commercial solution proposed by a Venezuelan-ownedmultinational company specializing in technology solutions for governments,
named Smartmatic. This online voting system includes an authentication phase based on biometric techniques. Indeed, voters are authenticated by
means of a selfie. TIVI uses cryptographic primitives to ensure votes privacy and voters anonymity. Taking advantage of the Blockchain technology,
it ensures universal verifiability and votes integrity. However, this voting system is not coercion resistant and does not ensure receipt-freeness.

3 PRELIMINARIES

In this section, we introduce the technologies and the cryptographic primitives used in our protocol.
Blockchain technology: A public and decentralized ledger that operates without a central authority. It stores the different exchanges made

between its users in a transparent and secure way. To ensure data integrity, all the nodes on the blockchain verify and store every transaction.
Transactions are then gathered into blocks by miners. For every new block, it is required to follow a consensus mechanism, such as Proof-of-Work
(PoW) and Proof-of-Stake (PoS), to agree on the next block to be appended to the chain. The blockchain technology has an append-only data
structure, such that new blocks can be written to it but cannot be altered or deleted. In order to rewrite a part of the blockchain, the majority of
the computational power on the network (at least 51%) would need to collude.

Ethereum Blockchain3: A decentralized, open source and public computing platform based on Blockchain technology. It expands the function-
alities of Blockchain by implementing smart contracts. It offers a tuning complete virtual machine called Ethereum Virtual Machine (EVM) where
smart contracts can be run. There are two types of account in Ethereum: (1) Externally Owned Account (EOA) which is a user-controlled account,
characterized by a key pair that allows the user to send and receive transactions, and (2) Smart contract account which is a set of code stored on
the blockchain. To protect the system against malicious users and compensate miners for their computational power usage, the execution of each
transaction includes a transaction fee, called "gas". Gas is the unit of measure for the amount of work that is accomplished for an operation and
gas price is measured in terms of Ether, which is the cryptocurrency of Ethereum.

Elliptic Curve: A geometric curve that has particularly interesting properties for the world of cryptography. To add two points P and Q of an
elliptic curve, it is enough to remark that in certain cases, the line L passing through these two points also passes through a third point R’ of the
curve. The result of the addition will be represented by the symmetrical point of R’.

Elliptic Curve Cryptography (ECC) 13: In cryptography, elliptic curves are used for asymmetric operations. One of the main advantage of ECC is
its efficiency compared to traditional cryptography because it offers equal security level for a far smaller key size.

Pairings 14: Another advantage of elliptic curve cryptography is that a bilinear operator can be defined between groups. Let G1 be an additive
cyclic group of order a prime number q and G2 a multiplicative group of the same order q. A function e : G1 × G1 → G2 is called a bilinear
cryptographic coupling (also called pairing) and denoted by e(., .), if it satisfies the following properties:

1. Bilinearity: for all P,Q ∈ G1 and a, b ∈ Z; e(aP, bQ) = e(P,Q)ab,
2. Non-degeneration: e(P,P) is a generator of G2 and so e(P,P) 6= 1,
3. Computability: there is an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.
Identity Based Encryption (IBE): It is an asymmetric cryptosystem where the public key of a user is an arbitrary string related to its identity for

example: an e-mail address, a phone number, or an IP address, and the secret key is given by a trusted authority. ID-based encryption was initially
proposed by Adi Shamir 15 in 1984 and the first IBE protocol was proposed in 2001 by Boneh and Franklin 16. In this protocol, the Private Key
Generator (PKG) knows the private key. This issue can be corrected by using a distributed PKG like that of Pedersen4 or Gennaro et al. 17. In these
protocols, a master key is generated in a way whereby each of the m PKGs randomly constructs a fragment. Such a scheme unfolds in four steps
that we represent by the following functions:

1https://followmyvote.com/
2https://www.smartmatic.com/elections/online-voting/tivi/
3https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.

pdf
4https://www.cryptoworkshop.com/ximix/lib/exe/fetch.php?media=pedersen.pdf

https://followmyvote.com/
https://www.smartmatic.com/elections/online-voting/tivi/
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://www.cryptoworkshop.com/ximix/lib/exe/fetch.php?media=pedersen.pdf
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1. Setup(): the PKG generates the different parameters namely two groupsG1 andG2 of order a prime number q, a generator P ∈ G1, a pairing
function e(., .), two hash functions H1 and H2 as well as the master secret key msk and its corresponding master public key mpk = msk ·P.

2. Extract(msk, id): the PKG calculates the secret key related to the identity "id" using the following formula sk = msk · H1(id).
3. Encrypt(mpk, id, Msg):We use the mpk of the PKG and the id of the receiver to calculate the cipher-text of a given message "Msg". We use

the following formula: EncMsg = (r · P,Msg ⊕ H2(gr
id)); where r ∈ Z∗

q and gid = e(H1(id),mpk).
4. Decrypt(sk, EncMsg): The receiver uses his secret key do decrypt EncMsg = (u, v) by using the following formula: Msg = v⊕H2(e(msk, u)).
Paillier cryptosystem 18: Proposed by Pascal Paillier in 1999, it is a non deterministic asymmetric algorithm for public key cryptography. It is

based on computations over the group Z∗
n2 , where n is an RSA modulus. This scheme has the additive homomorphism property, that allows the

encryption of many bits in one operation with a constant expansion factor, and allows for efficient decryption.

4 VERIFY-YOUR-VOTE PROTOCOL: DESIGN AND IMPLEMENTATION

In this section, we give a detailed description of Verify-Your-Vote 2 protocol, an online electronic voting protocol that uses Ethereum Blockchain
as a public bulletin board and is based on a variety of cryptographic primitives, namely ECC 13, pairings 14 and IBE 16. We start by describing the
structure of a ballot and the signification of each parameter in the ballot, we present then the list of protocol entities as well as their roles during
the voting process and finally we give the different phases of the protocol with their implementation details.

4.1 Ballot Structure
Ballot number BN

Pseudo ID Candidate’s name Choice Counter-value
"Cj" "namej" "CVBN,namej,k"
0 Paul � CVBN,name0,0

1 Nico � CVBN,name1,1

2 Joel � CVBN,name2,2

FIGURE 1 Ballot structure.

As illustrated in Figure 1, each ballot is composed of a unique bulletin number BN

obtained as follows:BN = EPKA
(g,D), where g is a generator of an additive cyclic

group G, D is a random number and EPKA
(x) denotes the encryption of the mes-

sage x with the administrator public key PKA, using Paillier cryptosystem. Each
ballot also contains a set of m candidates name namej and candidates pseudo ID,
denoted Cj, which are the positions of candidates on the ballot, obtained from
an initial order and an offset value. The offset value is obtained, for each ballot, by using the following formula: Offset = H(g) mod m; where
H is an hash function, g is the same generator used to calculate the ballot number BN and m is the number of the candidates who participate to
the election. In addition, each ballot includes a set of counter-values CVBN,namej,k that serves as a receipt for each voter. They are obtained by
using the following formula: CVBN,namej,k = e(Qnamej, Sk ·QBN); Where Sk is the secret key of the tallying authority TAk, Qnamej = H1(namej) and
QBN = H1(BN) are two points of the elliptic curve E, and H1 is an hash function.

4.2 Protocol Entities
Five entities interact with each other during our voting process. They are:
• A registration authority (RA) that verifies the eligibility of voters by a face-to-face meeting and gives access to only eligible voters to a

registration server,
• A registration server (RS) that provides only eligible electors with their authentication parameters,
• An administrator (Admin) that manages the election, sets up its different parameters, authenticates voters and participates in the construction

of ballots,
• A set of n eligible voters (Vi) who have the right to vote more than once and only their last votes will be counted. They have the possibility

to verify that their votes were counted correctly and check the accuracy of the election final result,
• A set of m tallying authorities (TAs) that construct ballots, decrypt votes, perform the tally and publish the results on the Blockchain.

4.3 Voting Process and Implementation
VYV protocol unfolds in six steps. In this part, we describe each phase and give its implementation details. We start by presenting the software
and hardware environments of the protocol implementation.

1. Hardware environment: We deploy the protocol on a Personal Computer with an Intel(R) Core(TM) i5-3210M processor with 4 GB RAM
and running on Ubuntu 16.04.

2. Software environment: For the implementation of our system, we choose an interpreted, object-oriented, high-level and general-purpose
programming language which is Python5. We also use a set of cryptographic libraries, written in Python, to develop the cryptographic
primitives of our protocol. These libraries are: Charm Crypto 21:a framework for rapidly prototyping advanced cryptosystems, ships with a
library of implemented cryptosystems. We import from this framework the package of identity-based encryption to be used to encrypt

5https://www.python.org/

https://www.python.org/
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and decrypt votes; Cryptography6: provides a variety of cryptographic primitives. From this package, we use the elliptic curve cryptography
(ECC) scheme. We choose the SECP256K1 elliptic curve, defined in Standards for Efficient Cryptography (SEC)7; Tate_bilinear_pairing 0.6 8:
allows to compute the Tate bilinear pairing. We use this package to calculate counter-values. We recall here the formula of a counter-value:
CVBN,namej,k = e(Qnamej ,Sk ·QBN); PHE9: A Python library for Partially Homomorphic Encryption. We use it to generate the voters and the
administrator key pairs, to encrypt and to decrypt the authentication parameters of eligible voters; and Hashlib: implements many different
secure hash and message digest algorithms. From this package, we use the SHA256 hash algorithm to calculate the Offset value of each
ballot (Offset=H(g) mod m).

We present now the different phases of our approach as well as the set of Python functions developed to implement each phase.
1. Online Setup Phase: This phase is illustrated by Figure 2. The administrator generates the election parameters and publishes them on the

Blockchain. These parameters are: G1 an additive cyclic group of order a prime number q, G2 a multiplicative group of the same order q, an
Hash function: H : {0, 1}∗ → G1, and PKA the administrator public key, generated using Paillier’s cryptosystem. Then, the administrator
calculates each ballot number and its corresponding offset value (BN = {g,D}PKA

,Offset= H(g) mod m) and sends them to the TAs via the
Blockchain to obtain for a given tallying authority TAk the corresponding counter-value (CVBN,namej,k = e(Qnamej,Sk · QBN)).

Administrator Election Blockchain
1. Generates parameters,

2. Calculates BN and Offset values

Tallying Authorities

3. (BN, Offset) 4. (BN, Offset)

4. Calculate counter-value:
CVBN,namej,k = e(Qnamej,Sk · QBN)

FIGURE 2 Setup Phase.

To implement this phase, we develop the function described by Algorithm 1.
• ConstructBallots (Algo1): This function takes in input the voters number l, the candidates number m, a list of their names Names[ ],

the secret key of the tallying authority Sk, the group G1 and its order n and returns a list of l ballots.

Algorithm1 ConstructBallots

INPUT: l, m, Names[ ], Sk, G1, n

OUTPUT: ListBallots[ ]

1: For i← 1 to l

2: D← random number;
3: g← generator from (G1, n);
4: BN← PaillierEncrypt(g||D, PKA);
5: Offset← H(g) mod m;
6: For j← 1 to m

7: CVBN,namej,k ← pairing(H(Names[j]), Sk · H(BN));
8: ListCV← append(CVBN,namej,k)
9: end For
10: Ballot = [BN,Offset,Names[ ], ListCV[ ]]

11: ListBallots[ ]← append(Ballot)
12: end For
13: return(ListBallots[ ]);

2. Off-line registration phase: The voters physically go to a polling station to register and obtain their authentication parameters. To verify
his/her eligibility, each voter must provide his/her ID card to the registration authority who checks if the voter is eligible to participate in
the election. Then, only eligible voters have access to a registration server to get their authentication parameters. Each voter’s credentials
have the following form: (SPWi

= SRS_A.H1(PWi),PPWi
= H1(PWi)), where PWi is a password entered by the voter Vi and SRS_A is a

secret value shared between the RS and the Admin. This phase is illustrated by Figure 3.

6https://pypi.org/project/cryptography/
7http://www.secg.org/sec2-v2.pdf
8https://pypi.org/project/tate_bilinear_pairing/
9https://pypi.org/project/phe/

https://pypi.org/project/cryptography/
http://www.secg.org/sec2-v2.pdf
https://pypi.org/project/tate_bilinear_pairing/
https://pypi.org/project/phe/
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Election Agent Eligible Voter RS

4. PWi

5. (SPWi
,PPWi

)

1. ID Card

3. Successfull Verification

2. Checks voter’s eligibility

FIGURE 3 Registration Phase.
3. Online authentication phase: All registered voters sign and encrypt their authentication parameters by using the administrator public key

PKA and send them to the Admin who decrypts and checks the validity of each voter authentication parameters. If the voter is eligible to
vote, he/she has the right to create his/her own account on the election Blockchain. From this account, he/she participates in the election
process and publishes his/her public key. Figure 4 illustrates these interactions.
To implement this phase we develop two functions described by Algorithm 2 and Algorithm 3.
• EncryptAuthParam (Algo2): This function encrypts the login and the password of a voter. It takes as input the administrator public

key PKA, the login Login and the password PWD of the voter and outputs the encrypted login and password (EncLogin,EncPWD).
• VerifyAuthParam (Algo3): This function implements the role of the administrator during the authentication phase. It takes as input an

encrypted login EncLogin, an encrypted password EncPWD, the administrator secret key SKA and the shared secret SRS_A. It returns
True if the authentication parameters are valid and False otherwise.

Algorithm2 EncryptAuthParam

INPUT: PKA, Login, PWD

OUTPUT: EncLogin, EncPWD

1: EncLogin← PaillierEncrypt(Login,PKA);
2: EncPWD← PaillierEncrypt(PWD,PKA);
3: return(EncLogin, EncPWD);

Algorithm3 VerifyAuthParam

INPUT: EncLogin, EncPWD, SKA, SRS_A

OUTPUT: A boolean value
1: DecLogin← PaillierDecrypt(EncLogin, SKA);
2: DecPWD← PaillierDecrypt(EncPWD, SKA);
3: If DecLogin = SRS_A· DecPWD
4: return(True);
5: else
6: return(False);
7: end if

Voter Administrator
2. Verifies the signature and the

authentication parameters of the voter.

1. Sign(EPKA
(SPWi

,PPWi
), SSKV)

FIGURE 4 Authentication Phase.

4. Online voting phase: As presented in Figure 5, two entities participate during this phase:
• TAs: They randomly choose a ballot for each voter, encrypt it with the voter’s public key and send it to the corresponding voter via

the Blockchain.
• Eligible voters: When receiving his/her ballot, each voter proceeds to the decryption of his/her ballot, chooses his/her favorite can-

didate, encrypts his/her vote, casts it to the TAs via the Blockchain and saves the corresponding counter-value CVBN,namej,k which
allows him/her to verify his/her vote later. To encrypt his/her vote, each voter chooses a candidate with pseudo ID Cj and encrypts
it using his/her ballot number BN. Thus, each encrypted vote has the following form: Enc_Vote = EQCj

(BN) where QCj
= H1(Cj).

To process this phase, we implement two functions described by Algorithm 4 and Algorithm 5.
• EncryptBallot (Algo4): Implements the role of TAs during the voting phase. It takes in input a ballot and an eligible voter public key

and returns the encrypted ballot.
• Vote (Algo5): This function allows voters to vote for a certain candidate. It takes as input an encrypted ballot and the master public

key of the IBE scheme MPK, decrypts the ballot using the voter secret key SKV and outputs an encrypted vote and its correspond-
ing counter value. To encrypt a vote, we use the identity-based encryption scheme, imported from the Charm package. A ballot is
represented by the following list: Ballot = [BN,Offset, [name1, name2, ..., namem], [CVBN,name1,1,CVBN,name2,2, ...,CVBN,namem,m]].
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Algorithm4 EncryptBallot

INPUT: Ballot = [BN,Offset,Names[ ], ListCV[ ] ], PKV

OUTPUT: EncBallot = [EncBN,EncOffset,Names[ ],
ListCV[ ] ]

1: EncBallot[ ]← Ballot[ ];
2: EncBallot[0]← PaillierEncrypt(Ballot[0], PKV);
3: EncBallot[1]← PaillierEncrypt(Ballot[1], PKV);
4: return(EncBallot[ ]);

Algorithm5 Vote

INPUT: EncBallot[ ], MPK, SKV

OUTPUT: EncVote, CVBN,namej,k

1: Ballot[ ]← EncBallot[ ];
2: Ballot[0]← PaillierDecrypt(EncBallot[0], SKV);
3: Ballot[1]← PaillierDecrypt(EncBallot[1], SKV);
4: Cj ← input of the index of the chosen candidate;
5: BN← Ballot[0];
6: EncVote← Encrypt(MPK, Cj, BN);
7: CVBN,namej,k ← Ballot[3][Cj];
8: return(EncVote, CVBN,namej,k);

Tallying authorities Election Blockchain Voter

1.EPKV
(BN,Offset,CV[ ]) 2.EPKV

(BN,Offset,CV[ ])

3. Decrypts ballot and encrypts his vote.

4. EQCj
(BN)5. EQCj

(BN)

FIGURE 5 Voting Phase.

5. Online tallying phase: TAs decrypt all eligible votes using their secret keys to obtain the bulletin numbers BN. Each tallying authority is
dedicated to calculate the number of votes of a specific pseudo ID (Cj): for example the first tallying authority "TA1" decrypts, with its secret
key S1 · QC1, all bulletins that were encrypted with the public key QC1. Each TA is responsible for generating its own secret key to decrypt
votes by executing the function Extract of the IBE scheme (see Section 3). This means that each TA plays the role of a PKG. This step
can be performed before the beginning of the election. From each ballot number BN and its corresponding offset value, TAs reconstruct
ballots, identify chosen candidates and add up the counters. Once all votes have been decrypted and counted, TAs publish, on the election

Blockchain, the final result of the election as well as the count of each candidate using the following formula: σk,namej
=

lj∑
i=1

Sk · QBNi,namej

where lj is the number of votes received by the candidate with name namej, Sk is the private key of the tallying authority k, QBNi,namej
=

H1(BNi,namej
) and BNi,namej

is the ballot number of the vote i that corresponds to the candidate with name namej. This phase is described
by Figure 6 and implemented by two functions given by Algorithm 6 and Algorithm 7.
• Tally (Algo6): This function takes in input an encrypted vote EncVote, the secret key of the TA SK, the list of ballot numbers ListBN[ ],

the list of their corresponding offset values ListOffset[ ] and the list of candidates name Names[ ]. It returns the result of the election
after incrementing counters.

• CalculSigma (Algo7): This function implements the formula σk,namej
=

lj∑
i=1

Sk · QBNi,namej
(lines 2, 3 and 4 of Algo7) to calculate the

count of each candidate. It takes in input a candidate’s name namej, the list of ballot numbers that contains a vote for this candidate
ListBN[ ] and the tallying authority secret key Sk.

Algorithm6 Tally

INPUT: EncVote, SK, ListBN[ ], ListOffset[ ], Names[ ]

OUTPUT: Result

1: DecVote← Decrypt(SK, EncVote);
2: For i← 1 to length(ListBN)
3: If (DecVote = ListBN[i])
4: Offset← ListOffset[i];
5: end If
6: end For
7: Result← IncrementCounter(Offset,Names[ ]);
8: return(Result);

Algorithm7 CalculSigma

INPUT: namej, ListBN[ ], Sk

OUTPUT: σk,namej

1: σk,namej ← 0;
2: For i← 1 to length(ListBN[ ])
3: σk,namej

← σk,namej
+ Sk · H1(ListBN[i]);

4: end For
5: return(σk,namej

);

6. Online verification phase: This phase allows voters to verify that their votes have been cast as intended (individual verification) and counted
as cast (universal verification). It includes two sub-phases:
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Tallying authorities Election Blockchain
1. Decrypts votes to reveal bulletin numbers, Reconstructs ballots,

Identifies chosen candidates and increments counters.

2. σk,namej
=

lj∑
i=1

SkQBNi,namej

FIGURE 6 Tallying Phase.

Tallying authorities Election Blockchain
1. Reconstruct counter-values

Voter

2.ReconstructedCV[ ] 3.(ReconstructedCV[ ]

4. Checks the existence of his/her CV

FIGURE 7 Verification 1st Sub-phase.

• During the first sub-phase, TAs re-calculate counter-values from each ballot number and the chosen candidate’s name and publish
them on the Blockchain. Thus, every voter who wishes to verify that his/her last vote has been included in the final tally, can access
the election Blockchain and check the existence of his/her counter-value that he/she saved during the voting phase, in the list of
reconstructed counter-values. This sub-phase is illustrated by Figure 7 and implemented by the following functions described by
Algorithm 8 and Algorithm 9:

– ReconstructCV (Algo8): This function takes in input a ballot number, the name of the chosen candidate and the secret key of
the tallying authority Sk. It returns the corresponding counter-value CVBNi,namej,k.

– VerifyCV (Algo9): This function takes as inputs the list of reconstructed counter-values ReconstructedCV[ ] as well as the voter’s
receipt CV and checks its existence in the list. It returns True if ReconstructedCV[ ] contains the value ofCV and False otherwise.

Algorithm8 ReconstructCV

INPUT: BNi, namej, Sk

OUTPUT: CVBNi,namej,k

1: QBN ← H1(BN);
2: Qnamej ← H1(namej);
3: CVBNi,namej,k ← pairing(Qname, Sk · QBN);
4: return(CVBNi,namej,k);

Algorithm9 VerifyCV

INPUT: ReconstructedCV[ ], CV

OUTPUT: A boolean value
1: For i← 1 to length(ReconstructedCV[ ])
2: if (ReconstructedCV[i]= CV)
3: return(True);
4: end if
5: end For
6: return(False);

• The second sub-phase allows voters and all other parties to check the accuracy of the final result from the list of reconstructed
counter-values CVBNi

and the count of each candidate as follows:
l∏

i=1

CVBNi
=

m∏
k=1

m∏
j=1

lj∏
i=1

CVBNi,namej
,k =

m∏
k=1

m∏
j=1

lj∏
i=1

e(Qnamej , Sk.QBNi,namej
) =

m∏
k=1

m∏
j=1

e(Qnamej ,

lj∑
i=1

Sk.QBNi,namej
)

=

m∏
k=1

m∏
j=1

e(Qnamej , σk,namej
) (1)

Where l =
m∑

j=1
lj is the total number of votes. These equalities use the bilinear property of pairing:

lj∏
i=1

e(Qnamej , Sk · QBNi,namej
) = e(Qnamej ,

lj∑
i=1

Sk · QBNi,namej
)

We develop the function described by Algorithm 10 to implement this sub-phase:
– VerifyResult (Algo10 Part 1 & 2): It takes as input the list of reconstructed counter-values ReconstructedCV[ ], the list of can-

didates count σk,namej
[ ][ ] and the list of candidates name Names[ ], and outputs True if the equation 1 is verified and False

otherwise.
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Algorithm10 VerifyResult (Part 1)
INPUT: ReconstructedCV[ ], σk,namej

[ ][ ], Names[ ]

OUTPUT: A boolean value
//Calculation of the product of the reconstructed
counter-values (ReconstructedCV[ ])
1: Prod_CV= 1;
2: For i← 1 to length(ReconstructedCV[ ])
3: Prod_Cvj← Prod_Cvj · ReconstructedCV[i];
4: end For

Algorithm10 VerifyResult (Part 2)

//Calculation of
m∏

k=1

m∏
j=1

e(Qnamej , σk,namej
)

5: Prod_Pairing← 1
6: For k← 1 to m 7: For j← 1 to m

8: Prod_Pairing← Prod_Pairing · pairing(H(Names[j]), σk,namej
[k][j]);

9: end For
10: end For
11: If (Prod_Cvj = Prod_Pairing)
12: return(True);
13: else
14: return(False);
15: end If

5 VYV PERFORMANCE EVALUATION

After implementing our protocol, we proceed to the evaluation of its performance. We vary the number of voters, candidates and servers, and
measure, for each value of these parameters, the time required to execute each phase of our system. When we dispose of more than one server
per authority to run the election, we use a load balancing strategy that allows us to ameliorate performance and exploit all the resources we have.
Using the obtained values, we generate curves that show the variation of execution times as a function of these parameters. The obtained curves
can be divided into two categories: (1) strictly monotonic curves (either increasing, when representing the variations of time as a function of voters
number, or decreasing when representing the variations of time as a function of servers number) and (2) increasing curves with constant parts
(when representing the variation of the time as a function of candidates number, which is equal to the number of TAs). These constant parts are
obtained when the servers number is not multiple of candidates number and the minimum number of servers per TA is the same for close values
of TAs number. For each experimental value, we repeat the execution 100 times and take the average of the 100 values obtained. We test our
system with a number of voters ranging from 0 to 1000, a number of candidates that varies between 1 and 31 and on a single computer (whose
characteristics are mentioned in Subsection4.3). Then, we will take two examples of real world elections, which are the last presidential election of
Tunisia (2019) and that of France (2017), and we calculate the time taken by these elections if they were executed on our system. We mention here
that we only evaluate the complexity of the cryptographic primitives without considering the time it takes to send the data via the Blockchain.

5.1 Registration Time Evaluation
As we mentioned before, the registration phase is off-line (and of course off-chain). Every voter moves to the nearest polling station to register
and gets his/her authentication parameters. The total time that takes this phase depends only on the number of eligible voters and the number of
servers that we dispose to run our system on. When running our system on a single server and with different values of voters number we get the
curve represented in Figure 8.a. To evaluate the speed-up when varying the number of servers, we fix the number of voters to 1000 and measure
the time that takes our system to register these voters. Figure 8.b shows the variation of this time as a function of the number of servers.
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(a) Registration Time as a function of Voters Nbr. (b) Registration Time as a function of Servers Nbr.

FIGURE 8 Evaluation of the Registration Time.

5.2 Setup Time Evaluation
During the setup phase, the election administrator generates all ballot numbers and their corresponding offsets. Then, TAs calculate counter-
values. The total time that takes this phase depends on the number of ballots to generate, which is equal to the number of eligible registered voters
(Figure 9.a), the number of servers that we dispose to run this phase (Figure 9.b) and the number of candidates of the election (Figure 9.c). For
each value of servers number of the curve represented by Figure 9.b, we use a load balancing strategy to distribute the work of each TA on the
different servers that it disposes.



10 Chaieb et al.

Seconds

0

400

800

1,200

1,600

0 200 400 600 800 1,000 Voters

1 Server/1 Candidate
Seconds

0

400

800

1,200

1,600

0 10 20 30 40 50 Servers

1000 Voters/1 Candidate
Seconds

0

400

800

1,200

1,600

0 5 10 15 20 25 30Candidates

1000 Voters/50 Servers

(a) Set up Time as a function of Voters Nbr. (b) Set up Time as a function of Servers Nbr. (c) Set up Time as a function of Candidates Nbr.

FIGURE 9 Evaluation of the Set up Time.

5.3 Authentication Time
The majority of existing e-voting systems that include an authentication phase, verify each voter’s credentials by checking their existence in a
list that contains all registered voters’ credentials. This verification has a quadratic complexity. In our case, the authentication phase has a linear
complexity since we verify the validity of each voter’s authentication parameters by executing only one multiplication operation. We evaluate the
time taken by this phase as a function of voters number (Figure 10.a) and servers number (Figure 10.a). Candidates number has no influence on
the authentication time.
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FIGURE 10 Evaluation of the Authentication Time.

5.4 Voting Time
During the voting phase, TAs encrypt and send a ballot to each eligible voter, who decrypts it, chooses his/her favorite candidate, encrypts his/her
vote and sends it back to TAs. The total voting time depends on the total number of ballots to encrypt (which is equal to the number of voters),
and the number of servers. This variation is illustrated by Figure 11.
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FIGURE 11 Evaluation of the Voting Time.

5.5 Tallying Time
The total time of the tallying phase depends on: the number of votes, the number of servers, the way how voters voted and the number of TAs
(which is equal to the number of candidates) (Figure 12). In fact, each TA is dedicated to calculate the number of votes for a specific pseudo-ID. The
best case is when TAs count an equal number of votes. The worst case is when only one TA counts all votes (all votes are for a unique pseudo-ID).
When each TA disposes of more than one server to tally votes, it uses a load balancing strategy to distribute its work and exploit all servers it has.
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FIGURE 12 Evaluation of the Tallying Time.

5.6 Verification Time
The verification phase is optional and includes:
• The reconstruction of voters receipts (by the TAs). The time of this step depends on the number of votes (Figure 13.a) the number of servers

(Figure 13.b), the number of TAs (or candidates), and the way how voters voted (Figure 13.c).
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FIGURE 13 Evaluation of the Reconstruction of Counter-values Time.

• The verification of the existence of a voter’s counter-value in the reconstructed list. This step is performed by each voter who wants to
verify that his/her vote was taken into account correctly, on his own computer. The time that takes this verification is about 0.07 second.

• The verification of Equation (1) to check the correctness of the final tally. The time that takes this step depends on the number of votes,
the number of servers that dispose the verifier to check the equation and the number of candidates. Figure 14 illustrates these variations.
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FIGURE 14 Evaluation of the Universal Verification Time.

5.7 Example1: Presidential Election of Tunisia 2019
In this part, we evaluate the performance of our protocol in a large scale context. We take the example of the presidential Tunisian election of 2019.
The statistics of this election are given in Table110 and we give the time that takes each phase of our protocol to execute the Tunisian election
in Table2. The calculation is done based on the experimental measurements presented in the previous sub-sections. To execute our system, we
suppose that we have a number of servers equal to the number of polling stations of the election.

10http://www.isie.tn/

http://www.isie.tn/
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Number of Number of Voters Number of Candidates Number of Voters Number of Candidates Number of Polling
Registered Voters 1st rnd 1st rnd 2nd rnd 2nd rnd Stations

7,074,566 3,465,184 26 3,892,085 2 4,567

TABLE 1 Statistics of Presidential Tunisian Election of 2019

Nbr of Set up Time Registration Authentication Time Voting Time Tallying Time Verification Time
Servers Time 1st rnd/2nd rnd 1st rnd/2nd rnd 1st rnd/2nd rnd 1st rnd/2nd rnd
4,567 11h 55min 38s 1h 7min 23s 5min 3s / 5min 40s 3min 9s / 3min 32s 1min 17s / 1min 27s 32min 14s / 19min 52s

TABLE 2 Execution of Presidential Tunisian Election of 2019 With VYV Voting System.

5.8 Example2: Presidential Election of France 2017
We take another example of an election with a larger number of voters which is the last Presidential Election of France (2017). The statistics of
this election are represented in Table311. We consider that we have a number of servers equal to the number of cantons in France to execute this
election on our voting system. The results are given in Table4.

Number of Number of Voters Number of Candidates Number of Voters Number of Candidates Number of
Registered Voters (1st rnd) (1st rnd) (2nd rnd) (2nd rnd) Cantons

47,582,183 37,003,728 11 35,467,327 2 2,054

TABLE 3 Statistics of Presidential French Election of 2017

Nbr of Set up Time Registration Authentication Time Voting Time Tallying Time Verification Time
Servers 1st rnd/2nd rnd Time 1st rnd/2nd rnd 1st rnd/2nd rnd 1st rnd/2nd rnd 1st rnd/2nd rnd
2,054 3d 4h 15min 12s / 16h 47min 42s 2h 6s / 1h 55min 6s 1h 14min 45s / 30min 43s / 29min 26s 4h 18min 4s /

15h 32min 27s 1h 11min 39s 1h 57min 51s

TABLE 4 Execution of Presidential French Election of 2017 With VYV Voting System.

6 DISCUSSION

We elaborate an informal security evaluation of VYV protocol and compare it with the security of the e-voting protocols studied in the related work
section (see section 2). We also give a formal proof for three security properties which are: voters authentication, votes secrecy and votes privacy.

6.1 Informal Security Evaluation of VYV
We evaluate and compare the security of VYV protocol with that of A Smart Contract for Boardroom Voting with Maximum Voter Privacy (OVN),
Platform-independent secure Blockchain-based voting system (PSBVS), An End-to-end Voting-system Based on Bitcoin (EtEVBB), End-to-end voting with
non-permissioned and permissioned ledgers (EtEVnPPL), Follow My Vote (FMV) and TIVI. The summary of the comparison is given in Table 5.
• Eligibility: VYV protocol guarantees that only eligible voters join the election Blockchain and participate to the voting process since regis-

tration authorities verify each voter identity via a face to face meeting, during the registration phase, and only eligible voters are provided
with authentication parameters. The list of eligible registered voters is then published on the Blockchain and auditable by everyone. Our
protocol also includes an authentication phase in which we verify the validity of the authentication parameters entered by the voter. In
the case of OVN and FMV, we need to trust, respectively, the election administrator and a centralized authority to guarantee this property
because they are the only ones responsible of authenticating voters. PSBVS does not ensure, also, voter’s eligibility since it does not verify,
physically or by using biometric techniques, the eligibility of the voter. A voter can register him/herself by simply providing his/her e-mail
address, identity number or an invitation URL with a desired password. TIVI respects this property since it checks the elector’s identity via
a selfie and by using the facial recognition technology. EtEVBB uses an Anonymous Kerberos Authentication Protocol to authenticate vot-
ers and EtEVnPPL uses a dedicated private Blockchain to manage voters identities. In both cases, we need to trust an authority to ensure
voters eligibility.

• Individual verifiability: VYV protocol gives the possibility to each eligible voter to check that his/her vote is cast as intended by checking the
existence of his counter-value in the list of reconstructed counter-values, published during the verification phase. Due to the transparency

11https://www.insee.fr/fr/statistiques/3540007

https://www.insee.fr/fr/statistiques/3540007
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of Blockchain, in all other voting systems each eligible voter has the possibility to verify the presence and the correctness of his/her vote
in the ballot box by inspecting the Blockchain and verifying the existence of a transaction containing his/her vote.

• Universal verifiability: In the case of VYV, voters check the accuracy of the final result by checking Equation 1 which verifies the equality
between the product of reconstructed counter values and the sum of the counts displayed by tallying authorities. OVN is a self tallying
protocol, thus it ensures universal verifiability. TIVI ensures universal verifiability by using Blockchain technology. Voters in PSBVS check
the correctness of the election final result by comparing the number of eligible voters with the number of recorded and counted ballots. In
EtEVBB and EtEVnPPL, voters verify the accuracy of the election final result by inspecting the Blockchain and summing tokens received by
each candidate. However, FMV is not universally verifiable.

• Vote-Privacy: In the case of VYV, we can not make a link between a voter and his/her vote included in the final tally, since votes are cast
encrypted and recorded using Blockchain technology. Like VYV,OVN, TIVI, EtEVBB and EtEVnPPL ensure vote-privacy, by using Blockchain
technology. However, FMV needs to trust a centralized authority to hide the correspondence between the voters’ real identities and their
voting keys. Finally, PSBVS ensure votes privacy due to the use of Blockchain technology and the Short Linkable Ring Signature (SLRS).

• Receipt-freeness: Our protocol ensures receipt freeness due to our ballot structure that includes counter-values CVBN,namej,k that allow
voters to verify their votes without disclosing the chosen candidates. On the other hand,OVN, TIVI, FMV and EtEVBB do not provide voters
with receipts that allow them to verify their votes without revealing the value of the vote. In PSBVS, voters verify the existence of their
votes in the ballot box by inspecting the Blockchain and checking the existence of transactions bearing their signatures. EtEVnPPL respects
this property thanks to the use of Multichain platform.

• Coercion resistance:With reference to Juels et al. definition of coercion resistance 6, all the studied systems, including our proposed protocol,
are not coercion resistant. A coercer can force a voter to vote for a certain candidate and check his submission later.

• Fairness: This property is ensured by VYV, TIVI and PSBVS due to the encryption of votes before being cast, thus nobody can get partial
results before the end of the voting phase. EtEVnPPL also ensures fairness due to the use of private Blockchain. However, in OVN, voters
who have not yet cast a vote, can cooperate and calculate a partial result. Also, FMV does not ensure fairness because votes are cast without
being encrypted. Finally, EtEVBB compromise this security property since voters can watch the election progress in real time.

• Integrity: VYV protocol and all other systems use the Blockchain technology as a ballot box. Blockchain is characterized by the immutability
of its transactions. Thus, they ensure the integrity of the stored data, with exception of FMV which gives the possibility to a centralized
authority to change votes by using the voters’ pass-phrases.

• Robustness: Except OVN, in which a dishonest voter can invalidate the election by refusing to cast a vote for example, all the other voting
systems, including our proposed solution, resist to the misbehavior of dishonest voters.

• Vote-and-go: Unlike OVN which is a self tallying voting protocol, VYV and the other voting systems do not need the voter to trigger the
tallying phase, they can cast their votes and quit before the voting ends.

• Voting policy: VYV and FMV give the possibility to eligible voters to vote more than once and only their last votes are counted. However,
OVN, TIVI PSBVS, EtEVBB and EtEVnPPL record and save only the first valid vote of each eligible voter and discard the other ones.

VYV OVN TIVI FMV PSBVS EtEVBB EtEVnPPL
Eligibility X Trusted Admin X Trusted Authority X Trusted Authority Trusted Authority

Individual verifiability X X X X X X X

Universal verifiability X X X X X X X

Vote-Privacy X X X Trusted authority X X X

Receipt-freeness X X X X X X X

Coercion resistance X X X X X X X
Fairness X X X X X X Trusted Authority
Integrity X X X X X X X

Robustness X X X X X X X

Vote-and-go X X X X X X X

Voting policy Multiple Single Single Multiple Single Single Single

TABLE 5 Security evaluation of VYV, OVN, TIVI, FMV, PSBVS, EtEVBB and EtEVnPPL, where Multiple or Single indicates the number of possible
votes.

6.2 Formal Security Evaluation of VYV
ProVerif 22 is an automatic symbolic protocol verifier, capable of proving reachability properties, correspondence assertions, and observational
equivalence 23 of security protocols. To perform an automated security analysis using this verification tool, we model our protocol in the Applied
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Pi-Calculus 24. This modeling language is a variant of the Pi-Calculus extended with equational theory over terms and functions and provides an
intuitive syntax for studying concurrency and process interaction. The Applied Pi-Calculus allows us to describe several security goals and to
determine whether the protocol meets these goals or not. We use the classical intruder model and the standard modeling of the security properties
proposed by Dreier et al. 1 in our ProVerif code.

Because of the limitation on the number of pages, we put all ProVerif codes online12 and give the queries, the results of executing these codes,
and the time it takes ProVerif to prove the properties in Table 6.

Properties Description Query Result Time
To capture the value of a given vote, an attacker has to -Query attacker(BN)

Vote secrecy intercept the values of two parameters: the ballot num- -Query attacker(Cj) Proved 0.019s
ber BN and the pseudo ID of the chosen candidate Cj.

Voter’s We use correspondence assertion to prove this property. - event acceptedAuthentication(SPW , PPW) Proved 0.017s
Authentication ⇒ event VerifiesParameters(SPW , PPW)

To express vote privacy we prove the observational equi- - VYV(SKV1, choice[V1, V2])|
Vote privacy valence between two instances of our process that differ VYV(SKV2, choice[V2, V1]). Proved 0.038s

only in the choice of candidates.

TABLE 6 ProVerif results and execution times.

7 CONCLUSION

In this paper, we have proposed a secure online electronic voting protocol based on a variety of cryptographic primitives namely Elliptic Curve
Cryptography, Identity Based Encryption, Pairing and Paillier Cryptosystem. Called Verify-Your-Vote 2, this protocol uses Ethereum Blockchain as
a public bulletin board. We have implemented this protocol and evaluated its performance in terms of time, cost and the number of voters and
candidates that can be supported. Our evaluation considers only the cost related to the voting protocol itself, which is more significant than the one
related to Blockchain operations. We have proved that VYV protocol ensures voters eligibility, individual and universal verifiability, votes secrecy,
voters privacy, receipt freeness, fairness, and robustness. We have also elaborate a formal proof of three security properties, using the Applied Pi-
Calculus modeling language and ProVerif tool. However, VYV protocol does not ensure coercion resistance and should be executed only in a low
coercive environment. Thus, future work will be dedicated to ameliorate the security of this protocol to ensure coercion resistance.
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