
Highlights
Infinite Grid Exploration with Synchronous Myopic Robots with-
out Chirality⋆

Quentin Bramas, Pascal Lafourcade, Stéphane Devismes

• The infinite grid exclusive exploration by synchronous oblivious robots
is impossible under visibility range one whatever by their number.

• The infinite grid exclusive exploration can be achieved by eight syn-
chronous oblivious robots under the optimal visibility range two.

• The infinite grid exclusive exploration can be achieved by six syn-
chronous robots under visibility range one using only two colors.

• The infinite grid exclusive exploration can be achieved by only five
synchronous robots under visibility range one, yet using twelve colors.

Infinite Grid Exploration with Synchronous Myopic
Robots without Chirality

Quentin Bramasa,, Pascal Lafourcadeb, Stéphane Devismesc

aUniversity of Strasbourg, ICUBE, CNRS, Strasbourg, France
bLIMOS, University Clermont Auvergne, Aubière, France

cUniversité de Picardie Jules Verne, Amiens, France

Abstract

In this paper, we consider the exploration of an infinite grid by a swarm
of fully-synchronous robots with weak capabilities: they are disoriented,
opaque, do not communicate explicitely, have limited visibility, and cannot
occupy the same position at the same time.

Our first result shows that, in this context, minimizing the visibility range
and the number of used colors are two orthogonal issues: it is impossible to
design a solution to our exploration problem that is optimal w.r.t. both
parameters simultaneously. Consequently, we address optimality of these
two criteria separately by proposing two algorithms; the former being optimal
in terms of visibility range, the latter being optimal in terms of number of
used colors. More precisely, the first algorithm solves the problem using eight
oblivious robots under visibility range two (this visibility being optimal when
considering oblivious robots), and the second algorithm solves the problem
under visibility range one using six robots and two colors (which is optimal
under this visibility range). Finally, we also tackle the optimality in terms of
number of robots. According to the lower bound given in [7], we propose an
algorithm working with a minimum number of robots (five) under visibility
range one. This latter uses twelve colors and also guarantees that nodes are
visited infinitely often.

⋆This study was partially supported by the French ANR project SkyData (ANR-22-
CE25-0008-01).

Email addresses: bramas@unistra.fr (Quentin Bramas),
pascal.lafourcade@uca.fr (Pascal Lafourcade), stephane.devismes@u-picardie.fr
(Stéphane Devismes)

Preprint submitted to Elsevier June 2, 2025

Keywords: Robot swarms, Luminous Robots, Grid, Infinite Exploration,
FSYNC model

1. Introduction

Robot swarms are a major field of distributed computing that aims to
develop distributed algorithms allowing the coordination of autonomous mo-
bile entities, called robots, in order to solve tasks global to the system. An
important research axis of this field consists in identifying the weakest ca-
pabilities allowing robots to solve a given coordination problem. The mo-
tivation behind this fundamental question is quite natural, since the use of
robots that are physically limited –in terms of sensors, actuators, memory,
battery, and computing capabilities– helps to reduce their manufacturing and
maintenance costs, and consequently enables their massive deployment.

In this paper, we tackle this issue by studying how a finite set of weak
robots can solve an infinite task. More precisely, we consider a set of fully-
synchronous robots evolving in an infinite grid, where nodes represent pos-
sible locations and edges represent the possibility for a robot to move from
one location to another. Our goal is to make robots explore the infinite grid,
i.e., each node of the grid should be visited within finite time by at least
one robot. In the following, we refer to this problem as the Infinite Grid
Exploration (IGE) problem. We also impose the exploration to be exclusive
(also called collisionless in the literature): robots can neither occupy the
same node simultaneously nor traverse the same edge at the same time.

The robots we consider have very low capabilities. First, they are dis-
oriented in the sense that they have no compass and do not agree on any
common chirality. Moreover, they are silent, i.e., they have no direct com-
munication mean. They are also myopic meaning that endowed by visibility
sensors allowing them to perceive their environment within a given constant
(typically small) distance, called the visibility range. Our robots are lumi-
nous [12, 22, 25], i.e., endowed with a light that can take different colors
and that can be perceived by other robots whenever it is within their visibility
range. Finally, we assume that robots are opaque meaning that a robot can-
not see what is behind another robot. In a nutshell, in this model, lights are
both the only indirect communication mean and the only persistent memory
storage. In the special case where lights have a just one color, the same for
all robots, robots are said to be oblivious.

2

Our robots operate in the well-known Look-Compute-Move (LCM) model
proposed by Suzuki and Yamashita [28, 29]. That is, they perform cycles that
comprise three synchronous phases: Look, Compute, and Move. During the
first phase (Look), robots take a snapshot of their environment using their
visibility sensors. In the second phase (Compute), they decide, based on the
previous snapshot, a destination in their surrounding and update their color.
Finally, in the last phase (Move), they move to the computed destination, if
the destination is different from their current location.

1.1. Contribution
We look for solutions to the IGE problem that are optimal w.r.t. three

parameters: the number of robots, the visibility range, and the number of
colors used by the robot lights.

We begin with an impossibility result: there is no algorithm solving the
infinite grid exploration problem with oblivious fully-synchronous robots under
visibility range one, whatever be their number.

A natural question is then: is-it possible to design an oblivious solution
by slightly increasing the visibility range? We positively answer to this ques-
tion by proposing a solution that uses eight oblivious fully-synchronous robots
under visibility range two, which is then the optimal range in case of oblivi-
ousness.

Another orthogonal question is to ask whether there is a solution that
uses only a few colors under visibility range one. We also positively answer
to that question by proposing a solution with six robots that use only two
colors, which is also optimal.

Finally, we investigate the optimal number of robots allowing to solve the
IGE problem under visibility range one. Based on a lower bound given in [7],
we propose an algorithm showing that five fully-synchronous robots under
visibility range one are necessary and sufficient to solve the IGE problem.
This latter solution requires twelve colors. Also notice that it actually solves
a stronger specification as it is the first perpetual IGE algorithm. In this
latter problem, every node of the grid is visited infinitely often.

1.2. Related Work
Since their introduction [12, 22, 25], luminous robots have been widely

studied. For example, they have been used to solve various dedicated problems
including weak gathering [22] and mutual visibility [23]. In a more general
framework, Das et al. [12] compare the computational power of luminous

3

robots with respect to the three main execution models: fully-synchronous,
semi-synchronous, and asynchronous.

The exploration problem is one of the benchmark tasks when it comes
to robots evolving on graphs. Exploration tasks have been first considered
in the context of finite graphs. Various topologies have been studied: lines
[20], rings [2, 13, 15, 21, 24], tori [14], grids [3, 16], cuboids [6], trees [19].
In this context, two main variants, respectively called the terminating and
perpetual exploration, have been considered. The terminating exploration re-
quires every possible location to be eventually visited by at least one robot,
with the additional constraint that all robots stop moving after task comple-
tion. In contrast, the perpetual exploration requires each location to be visited
infinitely often by all or a part of robots. In [16], authors solve terminating
exploration of any finite grid using few asynchronous anonymous oblivious
robots, yet assuming unlimited visibility range. The exclusive perpetual ex-
ploration of a finite grid is considered in the same model in [3]. Synchronous
solutions to exclusive perpetual exploration of a finite grid by myopic lumi-
nous robots are investigated in [9, 26]. The asynchronous case is studied
in [5].

Various terminating problems have been investigated in infinite grids such
as arbitrary pattern formation [4], mutual visibility [1, 11], and gather-
ing [27, 17].

A more related problem is that of the treasure search where robots should
traverse an infinite environment to find a treasure left at an unknown posi-
tion. Emek et al. [18] have investigated the treasure search problem in an
unbounded size grid [10]. They consider robots operating in two models: the
semi-synchronous and fully-synchronous ones. However, they do not impose
the exclusivity at all since their robots can only sense the states of the robots
located at the same node (in that sense, the visibility range is zero). Moreover,
in contrast with our work, they assume all robots agree on a global compass,
i.e., they all agree on the same directions North-South and East-West. They
propose two algorithms that respectively need three fully-synchronous and four
semi-synchronous robots. Moreover, they exclude solutions for two robots. In
a followup paper [10], Brandt et al. extend the impossibility result of Emek
et al. by showing the impossibility of exploring an infinite grid with three
semi-synchronous deterministic robots that agree on a global compass.

In [7], we have investigated the IGE problem by a swarm of fully-synchronous
luminous myopic robots. Those robots agree on a common chirality, but have
no global compass, while here we neither assumed a common chirality, nor

4

a global compass. Precisely, we show that using only three fixed colors, six
robots, with a visibility range one, are necessary and sufficient to solve the
IGE problem. We also show that using modifiable colors with only five states,
five such robots, under a visibility range one, are necessary and sufficient to
solve the IGE problem. Finally, assuming visibility range two, we provide an
algorithm that solves the IGE problem using only seven oblivious robots.

1.3. Roadmap
Section 2 is devoted to the computational model and definitions. We pro-

pose our impossibility result in Section 3. Then, each of our three algorithms
are presented in a dedicated section (Sections 4-6). Finally, we conclude with
some research directions in Section 7.

2. Preliminaries

We consider a swarm R of n > 0 robots located on (nodes of) an infinite
grid with vertex set in Z × Z, i.e., there is an edge between two nodes (i, j)
and (k, l) if and only if the Manhattan distance between those two nodes,
i.e., |i − k| + |j − l|, is one. The coordinates are used for the analysis only,
i.e., robots cannot access them.

Robots are luminous: each robot is endowed with a light that may take
with different colors and that can be see by robots in the surrounding. We
denote by Cl the set of all possible colors.

We consider the fully synchronous model (FSYNC), i.e., we assume time
is discretized into an infinite sequence of rounds 1,2, . . . At each round, robots
simultaneously perform a Look-Compute-Move cycle. In the Look phase, a
robot gets a snapshot of the subgraph induced by the nodes within distance
Φ ∈ N∗ from its position; Φ is called the visibility range. Notice that the
snapshot is not oriented in any way as the robots do not agree on a common
North. However, it is implicitly ego-centered since the robot that performs a
Look phase is located at the center of the subgraph in the obtained snapshot.
Then, based only on its last snapshot and its own color, each robot computes
a destination (either Up, Left, Down, Right or, Idle) and may change its
color. Finally, it moves towards its computed destination.

We forbid robots to simultaneously occupy the same node nor traverse the
same edge (exclusiveness). In such a context, a node is occupied when a
robot is located at the node, otherwise it is empty. The state of a node is
then either the color of the robot located at this node, if it is occupied, or

5

⊥ otherwise. A snapshot includes the state of each node within distance Φ
from the robot, except for those that are obstructed by the presence of another
robots, indeed robots are opaque.

2.1. Configurations
A configuration C is a set of pairs (p, c) where p ∈ Z× Z is an occupied

node and c ∈ Cl is the color of the robot located at p. A node p is empty
if and only if ∀c, (p, c) /∈ C. We sometimes just write the set of occupied
nodes when the colors are clear from the context. Also, by a slight abuse
of notation, we sometimes partition the configuration into several subsets
C1, . . . , Ck and write C = {C1, . . . , Ck} instead of writing (C = C1∪ . . .∪Ck)
∧ (∀i ̸= j, Ci ∩ Cj = ∅).

2.2. Views
We denote by Gr the globally oriented view centered at robot r, i.e., the

subset of the configuration containing the states of the nodes at distance at
most Φ from r, translated so that the coordinates of r is (0, 0). We use
this globally oriented view in our analysis to describe the movements of the
robots: when we say “the robot moves Up”, it is according to the globally ori-
ented view. However, since robots not have any compass, they have no access
to the globally oriented view. When a robot looks at its surroundings, it ob-
tains a local view. To model the absence of compass, we assume that any
local view acquired by a robot r is the result of an arbitrary indistinguish-
able transformation on Gr. The set IT of indistinguishable transformations
contains:

1. the rotations of angle 0 (to have the identity), π/2, π and 3π/2, centered
at r,

2. the mirroring (robots cannot distinguish between clockwise and coun-
terclockwise), and

3. any combination of rotation and mirroring.

Moreover, since robots may obstruct visibility, the function that removes the
state of a node u if there is another robot on the segment linking u and r
(when coordinates are embedded in R×R) is systematically applied to obtain
the local view. Here, we assume that robots are self-inconsistent, meaning
that different transformations may be applied at different rounds; the choice
being made by an adversary.

6

It is important to note that when a robot r computes a destination d, it is
relative to its local view f(Gr), which is the globally oriented view transformed
by some f ∈ IT . So, the actual movement of the robot in the globally
oriented view is f−1(d). For example, if d = Up but the robot sees the grid
upside-down (f is the π-rotation), then the robot moves Down = f−1(Up).
In a configuration C, VC(i, j) denotes the globally oriented view of a robot
located at (i, j).

2.3. Algorithm
An algorithm A is a tuple (Cl , I, T) where Cl is the set of possible col-

ors, I is the initial configuration, and T is the transition function Views →
{Idle,Up,Left ,Down,Right} × Cl , where Views is the set of local views.
When the robots are in configuration C, the configuration C ′ obtained after
one round satisfies: for all ((i, j), c′) ∈ C ′, there exists a robot in C with
color c ∈ Cl and a transformation f ∈ IT such that one of the following
conditions holds:

• ((i, j), c) ∈ C and f−1(T (f(VC(i, j)))) = (Idle, c′),

• ((i− 1, j), c) ∈ C and f−1(T (f(VC(i− 1, j)))) = (Right, c′),

• ((i+ 1, j), c) ∈ C and f−1(T (f(VC(i+ 1, j)))) = (Left, c′),

• ((i, j − 1), c) ∈ C and f−1(T (f(VC(i, j − 1)))) = (Up, c′), or

• ((i, j + 1), c) ∈ C and f−1(T (f(VC(i, j + 1)))) = (Down, c′).

We denote by C 7→ C ′ the fact that C ′ can be reached in one round from
C (n.b., 7→ is then a binary relation over configurations). An execution of
Algorithm A is then a sequence (Ci)i∈N of configurations such that C0 = I
and ∀i ≥ 0, Ci 7→ Ci+1.

2.4. Exploration
An algorithm A solves the infinite grid exploration (IGE) if for every

execution (Ci)i∈N of A and every node (i, j) ∈ Z×Z of the grid, there exists
t ∈ N such that (i, j) is occupied in Ct.

A stronger form of IGE is the perpetual IGE where each node is visited
infinitely often. More formally, an algorithm A solves the perpetual IGE if
for every execution (Ci)i∈N of A, every node (i, j) ∈ Z × Z of the grid, and
every t ∈ N, there exists t′ ≥ t such that (i, j) is occupied in Ct′.

7

2.5. An Algorithm as a Set of Rules
We write an algorithm as a set of rules, where a rule is a triplet (V, d, c) ∈

V iews× {Idle,Up,Left , Down, Right} × Cl .
We say that an algorithm (Cl , I, T) includes the rule (V, d, c), if T (V) =

(d, c). By extension, the same rule applies to indistinguishable views, i.e.,
∀f ∈ IT , T (f(V)) = (f(d), c). Consequently, we forbid an algorithm to
contain two rules (V, d, c) and (V ′, d′, c′) such that V ′ = f(V) for some f ∈
IT .

As an illustrative example, consider local views given in Figure 1. A rule
R can associate View V1 with the direction Up. Since Up is relative to the
view, it means for the robot “I move towards the only robot I see”. View V ′1 is
obtained by rotation from V1, so a robot cannot distinguish V1 and V ′1 , so the
same rule R applies in V ′1 and the robot moves Left towards the only robot it
sees. However, if in V1 a robot decides to move to the right towards an empty
node, then, since it does not distinguish its right from its left, the actual
destination between left and right will be decided according to the applied
indistinguishable transformation f ∈ IT . Similarly, Views V2 and V ′2 are
indistinguishable for the robots (one is the mirror-rotation of the other), so
any rule that applies to V2 also applies to V ′2 , and conversely. For example,
if a robot decides to move towards its blue neighbor B in V2, it will also move
towards its blue neighbor in V ′2 .

2.6. Well-defined Algorithms
Recall that robots are assumed to be self-inconsistent. In this context,

we say that an algorithm (Cl , I, T) is well-defined if the global destination
computed by a robot does not depend on the applied indistinguishable transfor-
mation f , i.e., for every globally oriented view V , and every transformation
f ∈ IT , we have T (V) = f−1(T (f(V))). Every algorithm we will propose,
except the last one, will be well-defined. However, to be as general as possi-
ble, we will consider both well-defined and not well-defined algorithms in our
impossibility results. Finally, let us remark that a well-defined algorithm has
a unique execution.

We denote by t⃗(i,j)(C) the translation of the configuration C by the vector
(i, j), i.e., the configuration obtained by translating the coordinates of all
occupied node positions in C by (i, j).

8

V1 V ′1 V2 V ′2

R

R

R

R R RR R

R

R B

R

R B

B

R R

B

R R

Figure 1: Example of four views. V1 and V ′
1 are indistinguishable. Similarly, V2 and V ′

2

are indistinguishable.

3. Impossibility Result

We start by proving the “fence crossing” Lemma, one of the key points of
our impossibility result.

3.1. The Fence Crossing Lemma
To explore an infinite grid, robots have to regularly cross what we call

fences. A fence L is composed of two infinite adjacent vertical lines L =
(l1, l2) with l1 = {(iL, j)|j ∈ Z} and l2 = {(iL+1, j)|j ∈ Z}, for some iL ∈ Z,
such that each robot is initially located at some coordinates (x0, y0) satisfying
x0 < iL; see Figure 2. Informally, this means that a fence is made of two
infinite adjacent vertical lines that are initially at the right of all robot’s
positions.

We say that a set of robots have crossed a fence when they are all at the
right of the fence at a given time; see Figure 3. Notice that this does not
mean that the robots always stay on the right of the fence afterward.

Formally, we say that a set of robots S has crossed the fence L = (l1, l2)
at Round t if there exists t′ ≤ t such that every robot r ∈ S is located at some
coordinates (x1, y1) with x1 > iL + 1 at Round t′.

We say a set of robots S single-handed crosses the fence L between t and
t′ if for every robot r ∈ S,

1. r is located at some coordinates (x0, y0) satisfying x0 < iL at Round t
(see Figure 2);

2. r is located at some coordinates (x1, y1) with x1 > iL + 1 at Round t′

(see Figure 3);

9

3. only robots of S are within distance one of r between Round t and
Round t′.

We say that a set of robots S has single-handed crossed the fence L at
Round t if ∃t′ < t′′ ≤ t such that S single-handed crosses the fence L = (l1, l2)
between t′ and t′′.

To be more general, we now consider any algorithm, i.e., well-defined or
not. We first prove that if n robots solve the IGE problem, then there is a
fence that is single-handed crossed by a non-empty subset of robots within a
finite number of rounds; see Lemma 1. This result will be used later to show
that, if robots are anonymous and cannot change their color, the exploration
of an infinite grid is impossible under visibility range 1, whatever the number
of robots is; see Theorem 1.

fence
l1 l2

R

R

Figure 2: A team of robots in front of a
fence.

fence
l1 l2

R

R

Figure 3: A team of robots has crossed a
fence.

Lemma 1 (The test of the fence). If an algorithm A solves the IGE problem,
then in every execution (starting fron the initial configuration of A) there
exists at least fence L and a subset of robots S such that S single-handed
crosses L within a finite number of rounds.

Proof. If A solves the IGE problem, then any node is eventually visited by
at least a robot. So, we can choose a node u = (i, j) where i is arbitrarily
large: u should be visited within finite number of rounds despite an arbitrary
number of fences have to be crossed before.

We denote by U(x), resp.
←
U(x),

→
U(x) the set of nodes having x-coordinates

x, resp. at most x, at least x.
We prove by induction the following result: Let S be a set of n robots in

←
U(x0), for some integer x0 at time t0. If at time t1 at least one robot in S

10

reaches U(x0+4(n!)2), and if the robots in S do not see other robots between
time t0 and time t1, then there exists a subset of S that single-handed crosses
a fence (between some times in the intervale [t0, t1]).

The induction is on the number n of robots in S. The base case is trivial
because if a single robots moves to a node with x-coordinate x0 + 4, then it
alone single-handed crosses the fence (x0 + 1, x0 + 2).

Assume now that the result is true for less than n robots. Let S is a set of
n robots in

←
U(x0), for some integer x0 at time t0. Assume at time t1 at least

one robot in S reaches U(x0 + 4(n!)2). The idea is to find a group of robots
strictly included in S with a similar property (with a distance 4((n− 1)!)2 to
travel) to apply the induction hypothesis. We do this in two steps, first we
find a group S ′ of robots that are traveling to the right and after some time
do not see the other robots remaining on the left. Then we find a group S ′′

of robots in S ′ that are far enough from the other robots in S ′ to apply the
induction.

Let b = 4(n − 1)!n! and let mi, 0 ≤ i ≤ n, be the maximum number of
robots simultaneously in

→
U(x0 + bi), between time t0 and t1. Clearly (mi)i

is non-increasing, n ≥ mi ≥ 1, and there are n + 1 values so there exists a
index k such that mk = mk+1.

If mk = n, then the n robots in S single-handed cross the fence (x0 +
1, x0 + 2) because they all reached U(x0 + b(k + 1)) and they do not see any
other robot between time t0 and time t1.

Assume now that mk < n. Let t′1 be the first time mk robots reach
→
U(x0+ b(k+1)) and let S ′ be the set of mk robots reaching

→
U(x0+ b(k+1))

at time t′1. Let t′0 be the first time such that, between t′0 and t′1, the robots
in S ′ are in

→
U(x0 + 2+ bk). This means informally that after time t′0, robots

in S ′ travel towards
→
U(x0 + b(k + 1)) without going back to

←
U(x0 + 1 + bk),

hence without seeing any other robot outside S ′.
S ′ is not yet the set we are looking for because some robots might already

be too far to the right to apply the induction. Let b′ = 4((n − 1)!)2 and
let m′j, 0 ≤ j ≤ mk, be the maximum number of robots of S ′ that are in
←
U(x0+2+bk+(b′+2)j) between time t′0 and t′1. Clearly m′0 ≥ 1 by definition
of t′0. Also, (m′j)j is non-decreasing, m′j ≤ mk, there are mk + 1 values so
there exists an index k′ such that m′k′ = m′k′+1 (k′ + 1 ≤ mk).

Let t′′0 be the time, between t′0 and t′1, when m′k robots are in
←
U(x0 + 2 + bk + (b′ + 2)k′). Let S ′′ be the robots in S ′ that are in

←
U(x0 +

11

2 + bk + (b′ + 2)k′) at time t′′0.
S ′′ is the set we use for the induction. To apply the induction we have

to show that all the robots in S ′′ at time t′′0 are in
←
U(x′0) with x′0 = x0 + 2 +

bk + (b′ + 2)k′ (which is clearly true) ; at least one robot reaches U(x′0 + b′)
; and the robots in S ′′ do not see other robots before this happens.

To prove that at least one robot in S ′′ reaches U(x′0 + b′), we even show
that x′0 + b′ + 2 is at most x0 + (k + 1)b (because we know all the robots in
S ′′ eventually reach

→
U(x0 + (k + 1)b) because mk = mk+1). We have

2(n− 1) ≤ b′ − 2

⇒ 2mk ≤ b′ − 2

⇒ mk(b
′ + 2) ≤ nb′ − 2 = b− 2

⇒ (k′ + 1)(b′ + 2) ≤ b− 2

⇒ x0 + 2 + bk + (k′ + 1)(b′ + 2) ≤ x0 + 2 + bk + b− 2

⇒ x′0 + b′ + 2 ≤ x0 + b(k + 1)

It remains to prove that the robots in S ′′ do not see other robots before
this happens. We already showed that the robots in S ′′ do not see other robot
outside S ′ (that are all on the left, this is why we use +2 in our definition of
x′0). Now, what about the robot in S ′ \ S ′′, on the right? By the definition
of m′k′ , no robots in S ′ \ S ′′ can enter

←
U(x′0 + b′ + 2) after t′0 (t′0 included)

and before at least a robot in S ′′ reaches U(x′0+ b′+3) (otherwise more than
mk′ robots would be in

←
U(x′0+ b′+2)). So when the first robot in S ′′ reaches

U(x′0 + b′), say at time t′′1, the robots in S ′′ \ S ′ are in
→
U(x′0 + b′ + 3) hence

are not visible from S ′′.
So, by the induction hypothesis, there is a subset of S ′′ that single-handed

crosses a fence between time t′′0 and time t′′1.

3.2. The Impossibility Result
With only one color and under visibility one, there is at most six possible

indistinguishable views since every node should contain at most one robot (by
exclusiveness); see Figure 4. One can see that any rule associated with view
V0 and a non-idle movement is ambiguous, i.e., the destination depends on
the indistinguishable transformation applied to the view. Indeed, the robot in
V0 has no way to distinguish between the four neighboring nodes. The same is

12

true for V2, V ′2 , and V4 of Figure 4. Now, as we do not require algorithms to
be well-defined, an algorithm may include some ambiguous rules. Actually,
there are only two views that can result in non-ambiguous non-idle movement:
V1 where a robot sees only one robot around it and V3 where a robot sees three
robots around it. We denote by Rin

1 , resp. Rout
1 , the rule that orders a robot

with view V1 to move towards the neighboring robot, resp. away from the
neighboring robot. Similarly, we denote by Rin

3 , resp. Rout
3 , the rule that

orders a robot with view V3 to move towards the middle robot (i.e., the robot
opposite to the empty node), resp. towards the empty node; see Figure 5.
Note that, since Rin

1 and Rout
1 (resp. Rin

3 and Rout
3) are associated with the

same view, they cannot be part of the same algorithm.

V0 V1 V2

RR

R

R

R

R

R

R R

R

R R

V ′2 V3 V4

R

R

R

R

R

R

R

R R R

R

R R R

R

R R R

R

R

R R R

R

Figure 4: The possible views of a robot with visibility one and without colors.

Rin
1 Rout

1 Rin
3 Rout

3

R

R

R

R

R

R

R

R

R

R R R

R

R R R

R

R R R

R

R R R

Figure 5: Non-ambiguous and non-idle rules, with visibility one and no color.

Theorem 1. There is no algorithm that solves the IGE problem with oblivi-
ous synchronous robots under visibility range one.

13

Proof. Assume, by contradiction, that an algorithm A solves the IGE prob-
lem with oblivious robots and assuming visibility range one. We show the
contradiction by proving that using A, the robots fail the test of the fence
(Lemma 1).

To that goal, we first construct an execution by choosing carefully which
indistinguishable function is applied to views that are associated with am-
biguous rules. If a robot r has a view V where an ambiguous rule applies we
do the following:

1. if V = V0, then we apply f such that the global destination is Left.
2. if V = V2, and the rule dictates the robot to move toward an empty

node, then we apply f such that the global destination is the unique
empty node that is either Up or Down.

3. if V = V2, and the rule dictates the robot to move toward an occupied
node, then we apply f such that the global destination is the unique
occupied node that is either Up or Down.

4. if V = V ′2 , and the rule dictates the robot to move toward an empty
node, then we apply f such that the global destination is the unique
empty node that is either Up or Left.

5. if V = V ′2 , and the rule dictates the robot to move toward an occupied
node, then we apply f such that the global destination is the unique
occupied node that is either Up or Left.

6. if V = V4, then we apply f such that the global destination is Left.

We will see thatA cannot contain ambiguous rules for V1 and V3. By choosing
those indistinguishable transformations, we obtain a unique execution E.
According to Lemma 1, there exists a fence L = (l1, l2) and a subset of
robots S such that S has single-handed crossed L at time t.

By definition, robots in S are initially located on the left of the fence.
We define the Round t1, resp. t2, as the last round, before t, when there is a
robot of S on l1, resp. on l2. Hence, we have, t1 < t2 < t.

Claim 1: A includes at least one out-rule, i.e., Rout
1 or Rout

3 .

Proof of the claim: The first robots that enter l1 move Right (in the
global view) towards empty nodes. Moreover, they do so using a non-
ambiguous rule since the chosen indistinguishable transformation forces
any robot with such rules to move either Up, Down or Left. Thus, A
must include at least one out-rule, i.e., Rout

1 or Rout
3 .

14

Claim 2: A includes at least one in-rule, i.e., Rin
1 or Rin

3 .

Proof of the claim: At Round t2, all the robots on l2 move Right to
complete the fence-crossing. Again, they do so using a non-ambiguous
rule since the chosen indistinguishable transformation forces any robot
with such rules to move either Up, Down or Left. Thus, A must include
at least one in-rule, i.e., Rin

1 or Rin
3 since they see no robot on the left.

Claim 3: A includes Rules Rin
1 and Rout

3 , but neither Rin
3 nor Rout

1 .

Proof of the claim: Since an algorithm cannot have two rules based on
the same view, A either includes Rules Rin

1 and Rout
3 , or Rules Rin

3 and
Rout

1 , by Claims 1 and 2. So, assume, by contradiction, that A includes
Rin

3 and Rout
1 , but neither Rin

1 , nor Rout
3 . At Round t2, all robots on

l2 (at least one) leave it. Again, in this case, these robots necessarily
execute a non-ambiguous rule: the only available rule is Rin

3 . Yet, this
implies that there is an infinite chain of robots on l2, which contradicts
the fact that there is a finite number of robots.

Using Claim 3 we can show the following claim.

Claim 4: There are two adjacent robots ra and r′a (of S) on l2 at Round
t1 + 1.

Proof of the claim: At Round t1, let ra be any robot on l1. Then, ra
leaves l1 towards l2. Again, ra should execute a non-ambiguous rule
at Round t1, i.e., Rin

1 , by Claim 3. So, ra moves towards a robot rd.
This implies that rd ∈ S is not idle at Round t1 since otherwise this
would create a collision, violating exclusiveness. So, rd has only the
three following possibilities at Round t1:

• (a) rd executes Rin
1 or an ambiguous rule toward an occupied node,

• (b) rd executes an ambiguous rule towards an empty node,

• (c) rd executes Rule Rout
3 .

We now show that in all theses cases, we either obtain a contradiction,
or there are two adjacent robots ra and r′a (of S) on l2 at Round t1+1.

15

fence
l1 l2

? ? ?

? ?

ra rd ?

? ?

Figure 6: Case (a), reaching a con-
tradiction.

fence
l1 l2

? ? ?

?

ra rd ?

? ?

Figure 7: Case (b), ra and rd are
neighbors at Round t1 + 1.

• In case (a), illustrated in Figure 6, if Rin
1 is executed by rd, then

ra and rd exchange their positions, violating then exclusiveness, a
contradiction. If an ambiguous rule orders rd to move towards an
occupied destination, then there is an indistinguishable transfor-
mation that makes move rd to the Left. Hence, there is a possible
execution that behaves as the execution E until Round t1 − 1,
but where ra and rd exchange their positions during Round t1,
violating then exclusiveness, a contradiction.

• In case (b), illustrated in Figure 7, rd sees either V2 or V ′2 (the
only ambiguous views with at least one occupied neighbor and
one empty neighbor). So rd has two neighbors, one of which is ra.
The chosen indistinguishable transformation makes it moves Up
or Down towards an empty node on l2 and becomes a neighbor of
ra at Round t1 + 1. So, by letting rd = r′a, we obtain that there
are two adjacent robots ra and r′a (of S) on l2 at Round t1 + 1.

16

fence
l1 l2

? ? ?

r′a ?

ra rd ?

? ?

Figure 8: Case (c), ra and r′a are
neighbors at Round t1 + 1.

fence
l1 l2

? ?

r′a ?

ra ?

? ?

Figure 9: Robots ra and r′a are stuck
on the fence.

• In case (c), illustrated in Figure 8, one of rd’s neighbor, denoted
r′a, is also located on l2. r′a cannot execute Rin

1 to move towards
rd, otherwise it would create a collision with ra, violating then ex-
clusiveness. Also, r′a does not have a neighbor on l1 because that
would prevent ra from applying Rule Rin

1 . So, if Rout
3 applies to r′a,

it moves towards l1, contradicting the definition of t1. An ambigu-
ous rule cannot apply to r′a either. Indeed, if an ambiguous rule
with an empty destination applies, the chosen indistinguishable
transformation makes r′a moves towards l1 (and so violating the
definition of t1), and if an ambiguous rule with an occupied desti-
nation applies, then there is an indistinguishable transformation
that makes r′a move toward rd. So, again, there is an execution
that behaves as the execution E until Round t1−1 but where both
ra and r′a move to the same position during Round t1, creating a
collision with ra at Round t1 +1, a contradiction. Hence, r′a stays
idle and r′a and ra are adjacent on l2 at Round t1 + 1, and we are
done.

From Claim 4, we have an execution where ra and r′a are adjacent on l2 at
Round t1 + 1 (Figure 9). To conclude the proof, we show that if two robots
are adjacent on l2 at Round t′ with t1 < t′ ≤ t2, then they are adjacent on l2
Round t′ + 1. This contradicts the fact all the robots leave l2 at Round t2.

When ra and r′a are adjacent on l2 at time t′ (with ra below r′a), one can
observe that Rout

3 cannot apply to any of them, nor any ambiguous rule with
an empty destination, otherwise the chosen transformation would make them

17

move toward l1, violating the definition of t1.
Now either ra executes:

• (i) Rin
1 ,

• (ii) an ambiguous rule towards an occupied destination,

• (iii) stays idle.

If ra executes Rin
1 or an ambiguous rule towards an occupied destination, it

moves Up towards r′a. The robot r′a cannot stay idle (since otherwise it would
create a collision), and cannot execute Rin

1 , otherwise it would violates the
exclusiveness, so it executes an ambiguous rule toward an occupied destina-
tion and moves Up. At Round t′ + 1, ra and r′a are still adjacent on l2. If
ra stays idle, r′a cannot execute Rin

1 , otherwise it would create a collision,
nor an ambiguous rule towards an occupied destination, otherwise we can
construct a possible execution that behaves as the execution E until Round
t′, but where r′a moves towards ra to create a collision, using the appropriate
indistinguishable transformation. So r′a stays idle as well. At Round t′ + 1,
ra and r′a are still adjacent on l2.

This contradicts the fact that all the robots on l2 at Round t2 move Right.
In the execution E, fence L is never single-handed crossed, which contradicts
our initial assumption.

4. Algorithm with eight anonymous oblivious robots under visibility
two

Our first algorithm, denoted by A1 in the following, uses eight anony-
mous oblivious robots, assuming a visibility range two. The algorithm can be
executed in the companion website 1.Initially, robots are placed as shown in
Figure 10. The robots are divided into two categories: the beacon robots and
the moving group. There are four beacon robots. The four other belong to
the moving group. The actual exploration of the grid is made by the moving
group. The beacon robots are just used to delimit the visited area. Notice that
the two categories remain fixed all along the execution: the beacon robots are
always the same. To maintain this property, we ensure that beacon robots are

1https://robots.app.bramas.fr/?FUN2021/1
Use the left arrow ← and right arrow → of the keyboard to move the robots.

18

https://robots.app.bramas.fr/?FUN2021/1

never adjacent to any other robot. Since the visibility range is two, a beacon
can see other robots and move before becoming their neighbor.

R

R

R

R R R

R

R

Figure 10: Initial configuration I of A1.

Observe that since the visibility range is two, the obstructed visibility can
impact the local view of a robot because a robot at distance one can hide a
robot behind it at distance two. So, the rules of A1 should not depend on the
states of the nodes that are hidden by a robot. To make it clear, those nodes
will be crossed out in the illustrations of our rules; see, e.g., Figure 11.

R

R R R

R

R R R

R

R R

Figure 11: Rules to move along a straight line.

The first three rules (see Figure 11) allow the moving group to move along
a straight line. The moving group always forms a spaceship shape where one
robot is at the bow, one robot is at the stern, and there is one robot on each
side, adjacent to the stern. When in formation, each robot knows whether it
is at the bow, the stern, or at a side of the spaceship. However, the robots
on the side do not know on which side they are, since there is no common

19

chirality. The first rule orders the bow robot to move away from the other
robots, the second rule orders the stern robot to move towards the bow robot,
and the third rule orders the side robots to move to the same direction as the
stern robot.

R

R

R R R

R

R

R R R

R

R

Figure 12: Rules to make the spaceship moving along a straight line when seeing the
beacon, and to make the beacon move away.

Then, when the moving group meets a beacon robot, an adjustment is
made in two rounds. The sequence of configurations during an adjustment
is shown in Figure 13. The first round of the adjustment, robots execute the
rules defined in Figure 12. The first two rules allow the moving group to
act as if the beacon was not there; i.e., they continue to move in the same
direction. The third rule orders the beacon to move away from the bow robot.
The beacon robot can distinguish the correct direction because it also sees
a side robot. In the second round of the adjustment, the two rules given
in Figure 14 are used. The first rule orders the bow robot to continue as
usual (i.e., as if the beacon was not here) and the second rule orders the
side robot that sees the beacon robot in diagonal to move towards the stern
robot. Two other robots of the moving group act as when they move along
a straight line (their views are identical). After the execution of those rules,
the spaceship shape is preserved, but the bow robot has become a side robot,

R

R

R R R

R R

R R R

R R

R R

R

Figure 13: Sequence of configurations during an adjustment.

20

and this side robot has become the bow robot. In the same round, the beacon
robot executes the same rule as in the first round of the adjustment (the third
rule of Figure 12) to move away from the group. The view is mirrored from
the first round of the adjustment, so after the two rounds of the adjustment,
the beacon has moved diagonally.

The last rule given in Figure 15 is necessary to make moving as expected
the side robot that still sees the beacon robot right after an adjustment.

R R

R R R

R R

R R

Figure 14: The leader moves in straight line again to become a side follower, the side
follower that sees the beacon moves left (the beacon move away again using the same rule
as before).

R R

R R

Figure 15: The moving group moves away from the beacon. The side follower that still
see the beacon moves away from it.

Theorem 2. Algorithm A1 solves the exclusive IGE problem using eight
oblivious synchronous robots and visibility range of two.

Proof. The proof consists in (1) decomposing the execution into phases, (2)
showing by induction that each phase is eventually reached, and finally (3)
exhibiting a particular rectangle that is visited during each phase.

We fix a global coordinate system, not accessible to robots, where node
(0, 0) is the one below the leftmost robot in the initial configuration described
in Figure 10. Thus, the initial configuration, denoted by C0, can be split as
follows:

C0 = {M0, C0
0 , C

0
1 , C

0
2 , C

0
3},

21

where

M0 = {(3, 2), (4, 2), (5, 2), (4, 3)},
C0

0 = {(5, 5)},
C0

1 = {(1, 6)},
C0

2 = {(0, 1)}, and
C0

3 = {(5, 0)}.

We define the configuration Ci = {M i, Ci
0, C

i
1, C

i
2, C

i
3} in Phase i ∈ N, where

M i = t⃗(i,i)(M
0), Ci

0 = t⃗(i,i)(C
0
0), Ci

1 = t⃗(−i,i)(C
0
1), Ci

2 = t⃗(−i,−i)(C
0
2), and

Ci
3 = t⃗(i,−i)(C

0
3).

Here, Ci
0 contains the first beacon robot visited in Phase i, located at the

upper right corner of the configuration.
Assume we reach the first configuration Ci of Phase i at time t. Recall

that Ci = {(i+3, i+2), (i+4, i+2), (i+5, i+2), (i+4, i+3), Ci
0, C

i
1, C

i
2, C

i
3}. We

now prove that configuration Ci+1 is eventually reached from configuration
Ci. Figure 16 will illustrate our arguments.

After three rounds, the configuration is {(i + 3, i + 5), (i + 4, i + 4), (i +
4, i+ 5), (i+ 4, i+ 6), Ci+1

0 , Ci
1, C

i
2, C

i
3}.

Then, the moving group has to travel along a straight line during 2i+ 1
rounds until the bow robot sees the second beacon robot. Indeed, at time
t+ 3, the bow robot is located at (3 + i, 5 + i) and the second beacon robot
is at (1− i, 6 + i).

At time t + 2i + 4, when the bow robot sees the second beacon robot,
the second adjustment occurs. At time t+ 2i+ 6, the configuration is {(1−
i, i+ 4), (−i, i+ 5), (1− i, i+ 5), (2− i, i+ 5), Ci+1

0 , Ci+1
1 , Ci

2, C
i
3}. Then, the

moving group travels during 2i + 2 rounds until it reaches the third beacon
robot. Indeed, the bow robot is at (1 − i, 4 + i) at time t + 2i + 4 and the
third beacon is at (−i, 1− i).

This continues until the configuration Ci+1 is reached.
Inductively, the robots start from configuration C0 and reach configura-

tion Ci within finite time, for any i ≥ 0. The set Vi of nodes visited between
Phase i and i+ 1 includes the edges of the rectangle{

t⃗(−i,−i)(0, 1), t⃗(i,−i)(5, 1), t⃗(i,i)(5, 5), t⃗(−i,i)(0, 5)
}
.

Also, the set V0 contains the nodes inside rectangle {(0, 1), (5, 1), (5, 5), (0, 5)}
as they are visited during the first phase. Since

⋃
i≥0 Vi = Z×Z, our algorithm

solves the IGE problem.

22

turn in 2 rounds

2i+ 2 rounds

turn in 2 rounds
2i+ 2 rounds turn in 2 rounds

2i+ 2 rounds

turn in 3 rounds2i+ 1 rounds

R

R

R

R R R

R

R

R

R

R

R

R R R

R

R

R

R

R

Figure 16: Visualization of one phase.

5. Algorithm with six robots and two colors under visibility one

In this section, we present an algorithm, denoted by A2, that uses 6 robots
under visibility range of 1 and only 2 colors, respectively denoted by L (for
leder) and F (for follower) in the following. According to Theorem 1, this
number of colors is optimal under visibility range 1. A2 is based on principles
similar to those of an algorithm for 6 robots presented in [7], however this
latter uses three fixed colors and assumes a common chirality. A2 is also an
improved version of the algorithm proposed in the conference version of this
paper [8] since it uses 2 colors instead of 3. The algorithm can be executed
in the companion website 2.

2https://robots.app.bramas.fr/?unpublished/3
Use the left arrow ← and right arrow → of the keyboard to move the robots.

23

https://robots.app.bramas.fr/?unpublished/3

F

L F

L L L

Figure 17: Initial configuration of A2.

Initially, all robots are close together and organized as shown in Figure 17.
Then, following the rules given in Figures 18 and 19, robots executes some
preliminary moves during the first two rounds; see Figure 21.

After the two first rounds, the six robots are divided into two categories:
the beacon robots and the moving group according to their colors and relative
positions. The moving group consists of two robots: the one colored F and
its neighbor (with color L). In the moving group, the L-colored (resp. the
F -colored) robot is called the leader (resp. the follower). The four remaining
robots (with color L) are called the beacons and delimit an area which has been
already explored: the four nodes in the square whose outerborder is delimited
by the beacons have been already visited.

From that point on, A2 works by phases. At the end of each phase, the
square whose outerborder is delimited by the beacons has grown but still only
contains visited nodes. A phase is performed as follows. The moving group
aims at reaching the beacons one by one. The moving group first move in
a straight line using the rules given in Figure 20. Yet, each time it reaches
a beacon, robots make an adjustment in two rounds. At the end of the ad-
justment, the new beacon position is in the diagonal, two hops away from the
previous one, and the moving group has made a turn toward the next beacon.
This adjustment allows, in particular, to take the newly explored nodes into
account. The moving group then continues toward the next beacon, and so
on. Figure 22 shows the second adjustment of the moving group.

Each time the moving group comes back to the first beacon (bottom right
beacon for instance), the current phase terminates: the border of the area

24

L

F L

L

L

F L

L

F F L

L

F F L

L

F

L L
F

F

L L
F

Figure 18: The three rules executed in the first round of A2.

F L

F

F L

F

F F

L

F F

L F

L L
F

F

L L
F

Figure 19: The three rules executed during an adjustment (the third rule is the same a in
Figure 18).

F LF L F LF L

Figure 20: Two rules to make the moving group move in a straight line.

F

L F

L L L

L

F F

L L

L

L

L

F L

L L

Figure 21: The first two rounds of A2. The gray square represents the already explored
square.

25

L

L

L

F L

L

L

L

L

F F

L

L

L L

F

L

L

Figure 22: The second adjustment performed in the next two rounds of A2.

L

L

F L

L L

L

L

L

F L

F

. . .

L

L

F L

L L

Figure 23: A complete phase of A2. The gray squares represents the already explored
square at the beginning and the end of the phase.

initially delimited by the four beacons is now fully visited, and the area newly
delimited by the beacons is bigger; see Figure 23 to visualize the increasing
area that is explored by the moving group.

Theorem 3. Algorithm A2 solves the IGE problem using six synchronous
robots, two colors and visibility range of one.

Proof. In the following we assume, w.l.o.g., that node (0, 0) is the one where
the bottom-left-most L robot is located in the third configuration; see Fig-
ure 21. The third configuration corresponds to the beginning of the first
phase, where the moving group (located at (0, 0) and (0, 1)) is adjacent to
the bottom beacon. Recall that these global coordinates are used for the
analysis only: robots cannot access those coordinates.

Using this coordinate system, the third configuration is denoted C0 and
is decomposed as follow:

C0 = {M0, C0
0 , C

0
1 , C

0
2 , C

0
3},

26

where
M0 = {((0, 0), L), ((0, 1), F)},
C0

0 = {((1, 0), L)},
C0

1 = {((2, 1), L)},
C0

2 = {((1, 3), L)}, and
C0

3 = {((−1, 2), L)}
corresponding to the moving group and the four beacons. We define the
configuration Ci = {M i, Ci

0, C
i
1, C

i
2, C

i
3} in phase i, where M i = t⃗(−i,−i)(M

0),
Ci

0 = t⃗(−i,−i)(C
0
0), Ci

1 = t⃗(i,−i)(C
0
1), Ci

2 = t⃗(i,i)(C
0
2), and Ci

3 = t⃗(−i,i)(C
0
3).

Informally, the configuration in phase i is obtained by diagonally translating
i times the positions of the beacons and the moving group from the C0

configuration.
We now prove that starting from configuration Ci, configuration Ci+1 is

eventually reached. Since the third configuration of our algorithm is C0, this
implies that every configuration Ci, for every i ≥ 0, is gradually reached.
By doing so, the leader robot visits all the edges of growing squares. The
illustration of one cycle is presented in Figure 24.

Assume we reach the first configuration Ci of phase i at time t.
Recall that:

Ci = {((−i,−i), L), ((−i, 1− i), F)} ∪ Ci
0 ∪ Ci

1 ∪ Ci
2 ∪ Ci

3.

After two rounds, the configuration is:

{((−i+ 2,−i), L), ((−i+ 1,−i), F)} ∪ Ci+1
0 ∪ Ci

1 ∪ Ci
2 ∪ Ci

3.

Then, the moving group travels along a straight line during 2i rounds until
the leader (the robot with color L) sees the second beacon robot. Indeed, at
time t+ 2i+ 2, it is located at (i+ 2,−i) and the second beacon robot is at
(i+ 2,−i+ 1).

At time t+2i+2, when the leader sees the second beacon robot, the second
adjustment occurs. After two rounds, at time t+2i+4, the configuration is:

{((i+ 2,−i+ 2), L), ((i+ 2,−i+ 1), F)} ∪ Ci+1
0 ∪ Ci+1

1 ∪ Ci
2 ∪ Ci

3.

Then, the moving group travels during 2i+1 rounds until it reaches the third
beacon robot. Indeed, the leader is at (i+2, i+3) at time t+4i+5 and the
third beacon is at (i+ 1, i+ 3).

27

turn in 2 rounds

2i+ 2 rounds

turn in 2 rounds
2i rounds

turn in 2 rounds

2i+ 1 rounds

turn in 2 rounds
2i+ 1 rounds

L

L

F L

L L

L F

LF

L

F

Figure 24: Visualization of one phase.

When the robot with color L sees the third beacon, the third adjustment
occurs and the reached configuration is:

{((i, i+ 3), L), ((i+ 1, i+ 3), F)} ∪ Ci+1
0 ∪ Ci+1

1 ∪ Ci+1
2 ∪ Ci

3.

Then, the moving group travels during 2i+1 rounds until the leader sees
the fourth beacon robot. The last adjustment is performed to obtain the
configuration:

{((−i− 1, i+ 1), L), ((−i− 1,−i+ 2), F)} ∪ Ci+1
0 ∪ Ci+1

1 ∪ Ci+1
2 ∪ Ci+1

3 .

Finally, after 2i + 2 rounds, the moving group comes back to the first
beacon robot and the configuration is exactly Ci+1 at time t+ 8i+ 12.

Inductively, from configuration C0, the robots reach configuration Ci

within finite time, for any i ≥ 0. Also, nodes (0, 1), (0, 2), (1, 1), (1, 2) are
visited in the first two rounds, and the set Vi of nodes visited by the leader
between phase i and i+ 1 contains the edges of the square:{

t⃗(−i,−i)(−1, 0), t⃗(i,−i)(2, 0), t⃗(i,i)(2, 3), t⃗(−i,i)(−1, 3)
}
.

28

M

L
F D
M

Figure 25: Initial configuration of A3.

Since {(1, 1)} ∪
⋃

i≥0 Vi = Z×Z, Algorithm A2 solves the IGE problem.

6. Algorithm with five robots under visibility one

We now present algorithm A3, the first perpetual infinite grid exploration
algorithm. This algorithm only uses 5 robots under visibility range 1 with 12
colors. In [7], the following property is proven:

Property 1. There is no IGE algorithm that uses less than 5 robots under
visibility range 1, whatever be the number of used colors and even if a common
chirality is assumed.

Consequently, algorithm A3 is optimal in terms of number of robots. Al-
gorithm A3 can be executed in the companion website 3.

The initial configuration of A3 is given in Figure 25. It contains two
beacons robots that are initially M-colored, a moving group with a leader
robot (colored L) and a follower (with color F), and a pebble robot with color
D.

Actually, the way the robots explore the grid is very different from the
previous infinite grid exploration algorithms. In particular, the moving group
does not explore the boundary of a shape formed by the beacon robots. Here,
all the robots always remain in a strip of width two whose height is delimited
by the two beacons robots.

The exploration is first done by switching the strip from left to right. The
idea is that the moving group goes and back into the strip. During each

3https://robots.app.bramas.fr/?unpublished/2
Use the left arrow ← and right arrow → of the keyboard to move the robots.

29

https://robots.app.bramas.fr/?unpublished/2

end of phase
corner turn

move in a straight line

turn around

move pebble horizontally
move pebble vertically

Figure 26: A phase of the exploration.

complete travel, the moving group (1) pushes each beacon two nodes on the
right, and (2) translates the pebble diagonally, two nodes on the right and two
nodes up. More precisely, the moving group moves in a straight line and each
time it meets a beacon, it turns around the beacon. During a travel between
the two beacons, the moving group meets the pebble twice: when the moving
group is moving top-down and meets the pebble, the pebble is vertically moved
two nodes up; and when the moving group meets the pebble in the other way,
the pebble is moved to the side, precisely two nodes on the right. Figure 26
illustrates this process. Eventually, the moving group, the pebble, and the
top beacon are close together, as shown in Figure 26. Then,a corner turn
is performed: the height of the strip is increased of two nodes and the visit
direction is completely reversed; i.e., the moving group makes a turn, the
strip now moves from right to left, and the pebble is now translated left-down
when hit by the moving group. A phase consists in moving the strip in one
direction and then in the other direction. As illustrated in Figure 27, after a
phase is over, a new phase begins where the strip is longer on both sides, and
being longer, the strip will allow to visit more nodes in each direction during
this phase.

A phase of the exploration can be split into several subphases, as depicted
in Figure 26: moving in a straight line, turning around, moving the pebble
vertically, moving the beacon to the side, and performing a corner turn. We
now give more details about each of these subphases.

30

explored in phase i

beginning of phase i

beginning of phase i+ 1

Figure 27: Phases of the exploration.

F

L

F

L

F

L
K

F

L
K

F

K

L F

K

L F
L F

K
F
L

Figure 28: The moving group moves in a straight line. The rules on the left are executed,
resulting in the sequence of configurations on the right.

Moving in a straight line. The moving group travels in a straight line but stops
once every two rounds, so that the leader of the moving group can indicate to
the follower some information about what is in front of it. When the moving
group is not in the neighborhood of other robots, the follower with color F
moves towards the leader when it has color L and stops otherwise. The leader
with color L moves forward and changes its color to K. The leader having
color K, when it sees only the follower behind it, just change its color to L.
The rules and the sequence of configurations are shown in Figure 28.

The moving group turns around. When the moving group reaches one of the
two beacons, the moving group turns around. When doing so, the beacon
moves two nodes to the side. This sequence of movements is performed in
four rounds by executing the rules shown in Figure 29.

31

F

K M

F

K M K MK M

K M
A

A
K M

A

A

F

K M

F

K M

M

A

B M

A

B

A FA F A F

M

K
A F

M

K

M

B
M

M

B
M

M

B

A
M

B

A

L

F

K

L

F

K

F
L

M

F
K M

F
K M

F
M
A

A F
M

F
M
B

K
F
M

L
F
M

Figure 29: The moving group turns around when it reaches a beacon. The rules on the left
are executed, resulting in the sequence of configurations on the right. The two branches
correspond to the two possible choices for the unique non-deterministic rule.

Move the pebble vertically. When the moving group meets the pebble robot
with color D in front of it, the robots perform a sequence of moves so that

32

the pebble becomes the leader of the moving group and the leader becomes the
pebble. The pebble is then moved two nodes vertically. The rules and the
sequence of configurations are shown in Figure 30.

D

K

F

D D

K

F

D

D

D

F

F
D

D

F

F
D

D

K
D

D

K
D

F

C D

F

C

D

F

M

E D

F

M

E

D
K
F

D
D
F

K
F

C

D
D
F
M

K
F

E
M

Figure 30: When the moving group meets the pebble D, the pebble becomes the leader of
the moving group and the follower becomes the pebble. After the sequence, the new pebble
has color C and has been translated by two nodes. The rules on the left are executed,
resulting in the sequence of configurations on the right. The last row shows the case where
the pebble becomes a neighbor of the beacon.

Move the beacon to the side. When the moving group is meeting with the
pebble having color C, in the opposite direction, the pebble becomes the leader
of the moving group and the leader becomes the pebble. The pebble is then
moved two nodes to the side. The rules and the sequence of configurations
are shown in Figure 31.

33

F

K C
D

F

K C
D

K C
L

K C
L

F

D L

F

D L

D F

L

D F

L

F
L

C
F
K C

F
D L

D F
K

D F
L

Figure 31: When the moving group meets the pebble C in the opposite direction, the
pebble becomes the leader of the moving group and the leader becomes the pebble. After
the sequence, the new pebble has color D and has been translated by two nodes. The
rules on the left are executed, resulting in the sequence of configurations on the right.

Performing a corner turn. After the moving group has made two turns, the
pebble has been moved diagonally by two nodes. Moreover, the moving group
and the two beacons have been moved horizontally by two nodes in the same
direction. Eventually, the pebble reaches one of the beacon. When the pebble
is close enough to the beacon, the four robots together performs a sequence of
moves placing them so that they now move to the opposite direction and the
pebble now travels toward the opposite beacon diagonally. The rules and the
sequence of configurations are shown in Figure 32.

34

F

L E

M

F E

M M F E

N N F E

O O

F E

P P

L

F D

M

F

K E

L F

K E

L

F

L E
M

F

L E
M

E

M M
N

E

M M
N

F

M M
N

F

M M
N

F E

M

F E

M

F E

M

F E

M

E

N N
O

E

N N
O

F

N N
O

F

N N
O

F E

N

F E

N

F E

N

F E

N

E

O O
P

E

O O
P

F

O O
P

F

O O
P

F E

O

F E

O

F E

O

F E

O

F E

P

L
F E

P

L

F

P P
F

F

P P
F

E

P P
M

E

P P
M

F E

P

D

F E

P

D

L

F D

M

L

F D

M

Figure 32: The pebble, the moving group, and the beacons perform a sequence of moves
to initiate the exploration in the opposite direction. The rules below the sequence are
executed, resulting in the sequence of configurations in the first row.

Theorem 4. Algorithm A3 solves the perpetual IGE problem with five syn-
chronous robots having visibility range 1 and 12 colors.

Proof. Observe first that the execution of the algorithm may depend on the
choice, by the adversary, of the indistinguishable transformation applied to
the robot with color K having a single neighbor with color M (see Fig-
ure 29). All the other movements are deterministic and do not depend on
the adversary. However, we can easily show that, regardless of the choice of
the adversary, the same configuration is obtained after either 1 or 2 rounds.
If the robot with color K moves Down (assuming a global coordinate system

35

as shown in Figure 29 for the analysis), then the configuration after one more
round is exactly the same as if the robots had moved Up. Since we are only
interested in which nodes are visited by the robots, we can assume in the
worst case that the robot K always moves Up (since in the other case the
robots visit more nodes). With this assumption, there is a unique execution
to consider.

We can split the execution in phases, where each phase is composed of the
following subphases: repeat round-trip explorations until the pebble reaches
a beacon; a corner move; repeat round-trip explorations in the opposite direc-
tion until the pebble reaches the other beacon; a corner move. A round-trip
exploration consists of moving in a straight line; moving the pebble horizon-
tally; turning around; moving the pebble vertically; and turning around. The
subphases are shown in Figure 26. The entire phase is shown in Figure 27.

Let Ci be the following configuration:

Ci = t⃗(−2i,−2i)({((3, 0),M),((3, 1), F), ((3, 2), L), ((4, 1), D)})
∪ {((2− 2i, 4 + 2i),M)}

C0 is the initial configuration given in Figure 25. In this configuration,
the bottom-left robot is initially at (3, 0). The configuration Ci is the config-
uration at the beginning of the i-th phase. We call the phase rectangle Ri of
phase i the rectangle having 6+2i columns and 7+2i rows, and the bottom-
left corner at (−2i,−2i). We now show that, starting from configuration Ci,
the robots visit all the nodes of the phase rectangle Ri in phase i and that
the configuration at the end of the phase is Ci+1. The theorem follows by
induction.

In phase 0, we can simply check that this is the case by executing the
algorithm from configuration C0. Then, we can prove the result by induction
because adding two rows between the two beacons in the initial configuration
does not change the execution until the pebble reaches the corner. By adding
two rows, the pebble reaches the corner after one more round-trip exploration,
so two more columns are visited (which corresponds to the width of the
phase rectangle). When the phase ends, we can observe that two more rows
are visited (which corresponds to the height of the phase rectangle). The
configuration at the end of the phase is Ci+1.

36

7. Open Questions

There are several immediate research directions to your work. First,
our solution for five synchronous robots under visibility one uses one non-
deterministic rule. Is-it possible to remove this non-deterministic rule without
increasing the visibility nor the number of robots?

Second, what is the optimal number of colors required to solve the IGE
problem under visibility range one using an optimal number of synchronous
robots, that is, five robots?

Finally, long-term open questions concern the scalability of solutions.
This may be tackled through several complementary axes: considering asyn-
chronous settings, providing solutions that works with a unfixed number of
robots, increasing the number of possible initial configurations, addressing
grids in dimension d > 2, guaranteeing fault tolerance properties.

References

[1] Ranendu Adhikary, Kaustav Bose, Manash Kumar Kundu, and Bud-
dhadeb Sau. Mutual visibility by asynchronous robots on infinite grid.
In Algorithms for Sensor Systems - 14th International Symposium on
Algorithms and Experiments for Wireless Sensor Networks, ALGOSEN-
SORS 2018, Helsinki, Finland, August 23-24, 2018, Revised Selected
Papers, pages 83–101, 2018.

[2] Lélia Blin, Alessia Milani, Maria Potop-Butucaru, and Sébastien
Tixeuil. Exclusive perpetual ring exploration without chirality. In DISC,
volume 6343, pages 312–327, 2010.

[3] François Bonnet, Alessia Milani, Maria Potop-Butucaru, and Sébastien
Tixeuil. Asynchronous exclusive perpetual grid exploration without
sense of direction. In Antonio Fernández Anta, editor, Proceed-
ings of International Conference on Principles of Distributed Sys-
tems (OPODIS 2011), number 7109 in Lecture Notes in Computer
Science (LNCS), pages 251–265, Toulouse, France, December 2011.
Springer Berlin / Heidelberg. URL: http: // www. springerlink. com/
content/ 9l3v424157681707/ .

[4] Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Bud-
dhadeb Sau. Arbitrary pattern formation on infinite grid by asyn-

37

http://www.springerlink.com/content/9l3v424157681707/
http://www.springerlink.com/content/9l3v424157681707/

chronous oblivious robots. In WALCOM: Algorithms and Computa-
tion - 13th International Conference, WALCOM 2019, Guwahati, India,
February 27 - March 2, 2019, Proceedings, pages 354–366, 2019.

[5] Quentin Bramas, Stéphane Devismes, Anaïs Durand, Pascal Lafour-
cade, and Anissa Lamani. Optimal asynchronous perpetual grid ex-
ploration. In Toshimitsu Masuzawa, Yoshiaki Katayama, Hirotsugu
Kakugawa, Junya Nakamura, and Yonghwan Kim, editors, Stabiliza-
tion, Safety, and Security of Distributed Systems - 26th International
Symposium, SSS 2024, Nagoya, Japan, October 20-22, 2024, Proceed-
ings, volume 14931 of Lecture Notes in Computer Science, pages 89–105.
Springer, 2024. doi: 10. 1007/ 978-3-031-74498-3\ _6 .

[6] Quentin Bramas, Stéphane Devismes, Anaïs Durand, Pascal Lafour-
cade, and Anissa Lamani. Beedroids: How luminous autonomous swam
of UAVs can save the world? In FUN, pages 7:1–7:21, 2022.

[7] Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. Infinite
grid exploration by disoriented robots. In Chryssis Georgiou and Ru-
pak Majumdar, editors, Networked Systems - 8th International Confer-
ence, NETYS 2020, Marrakech, Morocco, June 3-5, 2020, Proceedings,
volume 12129 of Lecture Notes in Computer Science, pages 129–145.
Springer, 2020. doi: 10. 1007/ 978-3-030-67087-0\ _9 .

[8] Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. Poleless
Exploration with Melomaniac Myopic Chameleon Robots: The Anima-
tions, January 2020. doi: 10. 5281/ zenodo. 3606387 .

[9] Quentin Bramas, Pascal Lafourcade, and Stéphane Devismes. Optimal
exclusive perpetual grid exploration by luminous myopic opaque robots
with common chirality. Theor. Comput. Sci., 977:114162, 2023. URL:
https: // doi. org/ 10. 1016/ j. tcs. 2023. 114162 , doi: 10. 1016/
J. TCS. 2023. 114162 .

[10] Sebastian Brandt, Jara Uitto, and Roger Wattenhofer. A tight lower
bound for semi-synchronous collaborative grid exploration. In Ulrich
Schmid and Josef Widder, editors, 32nd International Symposium on
Distributed Computing, DISC 2018, New Orleans, LA, USA, October
15-19, 2018, volume 121 of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl -

38

https://doi.org/10.1007/978-3-031-74498-3_6
https://doi.org/10.1007/978-3-030-67087-0_9
https://doi.org/10.5281/zenodo.3606387
https://doi.org/10.1016/j.tcs.2023.114162
https://doi.org/10.1016/J.TCS.2023.114162
https://doi.org/10.1016/J.TCS.2023.114162

Leibniz-Zentrum für Informatik, 2018. doi: 10. 4230/ LIPIcs. DISC.
2018. 13 .

[11] Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, and Al-
fredo Navarra. The geodesic mutual visibility problem: Oblivious
robots on grids and trees. Pervasive Mob. Comput., 95:101842,
2023. URL: https: // doi. org/ 10. 1016/ j. pmcj. 2023. 101842 ,
doi: 10. 1016/ J. PMCJ. 2023. 101842 .

[12] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and
Masafumi Yamashita. Autonomous mobile robots with lights. Theor.
Comput. Sci., 609(P1):171–184, January 2016. doi: 10. 1016/ j. tcs.
2015. 09. 018 .

[13] Ajoy Kumar Datta, Anissa Lamani, Lawrence L. Larmore, and Franck
Petit. Enabling ring exploration with myopic oblivious robots. In IPDPS,
pages 490–499, 2015.

[14] Stéphane Devismes, Anissa Lamani, Franck Petit, and Sébastien
Tixeuil. Optimal torus exploration by oblivious robots. Computing,
101(9):1241–1264, 2019.

[15] Stéphane Devismes, Franck Petit, and Sébastien Tixeuil. Optimal prob-
abilistic ring exploration by semi-synchronous oblivious robots. Theor.
Comput. Sci., 498:10–27, 2013.

[16] Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, and
Sébastien Tixeuil. Terminating Exploration Of A Grid By An Optimal
Number Of Asynchronous Oblivious Robots. The Computer Journal, 03
2020. doi: 10. 1093/ comjnl/ bxz166 .

[17] Durjoy Dutta, Tandrima Dey, and Sruti Gan Chaudhuri. Gathering
multiple robots in a ring and an infinite grid. In Distributed Computing
and Internet Technology - 13th International Conference, ICDCIT 2017,
Bhubaneswar, India, January 13-16, 2017, Proceedings, pages 15–26,
2017.

[18] Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wat-
tenhofer. How many ants does it take to find the food? Theor. Comput.
Sci., 608(P3):255–267, December 2015. doi: 10. 1016/ j. tcs. 2015.
05. 054 .

39

https://doi.org/10.4230/LIPIcs.DISC.2018.13
https://doi.org/10.4230/LIPIcs.DISC.2018.13
https://doi.org/10.1016/j.pmcj.2023.101842
https://doi.org/10.1016/J.PMCJ.2023.101842
https://doi.org/10.1016/j.tcs.2015.09.018
https://doi.org/10.1016/j.tcs.2015.09.018
https://doi.org/10.1093/comjnl/bxz166
https://doi.org/10.1016/j.tcs.2015.05.054
https://doi.org/10.1016/j.tcs.2015.05.054

[19] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. Re-
membering without memory: Tree exploration by asynchronous oblivious
robots. Theor. Comput. Sci., 411(14-15):1583–1598, 2010.

[20] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro.
How many oblivious robots can explore a line. Inf. Process. Lett.,
111(20):1027–1031, 2011.

[21] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro.
Computing without communicating: Ring exploration by asynchronous
oblivious robots. Algorithmica, 65(3):562–583, 2013.

[22] Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Fed-
erico Poloni, Nicola Santoro, and Giovanni Viglietta. Mutual visibility
by luminous robots without collisions. Inf. Comput., 254:392–418, 2017.
doi: 10. 1016/ j. ic. 2016. 09. 005 .

[23] Fukuhito Ooshita and Ajoy K. Datta. Brief announcement: Feasibility
of weak gathering in connected-over-time dynamic rings. In Stabiliza-
tion, Safety, and Security of Distributed Systems - 20th International
Symposium, SSS 2018, Tokyo, Japan, November 4-7, 2018, Proceedings,
pages 393–397, 2018.

[24] Fukuhito Ooshita and Sébastien Tixeuil. Ring exploration with myopic
luminous robots. In SSS, pages 301–316, 2018.

[25] David Peleg. Distributed coordination algorithms for mobile robot
swarms: New directions and challenges. In Proceedings of the 7th In-
ternational Conference on Distributed Computing, IWDC’05, pages 1–
12, Berlin, Heidelberg, 2005. Springer-Verlag. URL: http: // dx. doi.
org/ 10. 1007/ 11603771_ 1 , doi: 10. 1007/ 11603771_ 1 .

[26] Arthur Rauch, Quentin Bramas, Stéphane Devismes, Pascal Lafourcade,
and Anissa Lamani. Optimal exclusive perpetual grid exploration by lu-
minous myopic robots without common chirality. In Karima Echihabi
and Roland Meyer, editors, Networked Systems - 9th International Con-
ference, NETYS 2021, Virtual Event, May 19-21, 2021, Proceedings,
volume 12754 of Lecture Notes in Computer Science, pages 95–110.
Springer, 2021. doi: 10. 1007/ 978-3-030-91014-3\ _7 .

40

https://doi.org/10.1016/j.ic.2016.09.005
http://dx.doi.org/10.1007/11603771_1
http://dx.doi.org/10.1007/11603771_1
https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/978-3-030-91014-3_7

[27] Gabriele Di Stefano and Alfredo Navarra. Gathering of oblivious
robots on infinite grids with minimum traveled distance. Inf. Comput.,
254:377–391, 2017. doi: 10. 1016/ j. ic. 2016. 09. 004 .

[28] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mo-
bile robots: Formation of geometric patterns. SIAM J. Comput.,
28(4):1347–1363, 1999. doi: 10. 1137/ S009753979628292X .

[29] Ichiro Suzuki and Masafumi Yamashita. Erratum: Distributed anony-
mous mobile robots: Formation of geometric patterns. SIAM J. Com-
put., 36(1):279–280, 2006. doi: 10. 1137/ 050631562 .

41

https://doi.org/10.1016/j.ic.2016.09.004
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/050631562

	Introduction
	Contribution
	Related Work
	Roadmap

	Preliminaries
	Configurations
	Views
	Algorithm
	Exploration
	An Algorithm as a Set of Rules
	Well-defined Algorithms

	Impossibility Result
	The Fence Crossing Lemma
	The Impossibility Result

	Algorithm with eight anonymous oblivious robots under visibility two
	Algorithm with six robots and two colors under visibility one
	Algorithm with five robots under visibility one
	Open Questions

