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Abstract. The Internet Engineering Task Force and its LAKE working
group standardized the Ephemeral Diffie-Hellman over COSE (EDHOC)
authenticated key-exchange protocol for use in constrained Internet of
Things deployments. The use cases include cellular networks, such as NB-
IoT, but also non-cellular networks such as 6TiSCH, and LoRaWAN.
As a result of its use in cellular networks, EDHOC will be subject to
Lawful Interception (LI), which allows a group of authorities to break, if
equipped with a warrant, the end-to-end (E2E) security of the channel es-
tablished through EDHOC. Current implementations of EDHOC would
only allow lawful interception by using the cellular network operator as
a legitimate endpoint, essentially running a Person-in-the-Middle attack
against the protocol. In this work, we focus on a privacy-preserving, fine-
grained LI-compliant modification of EDHOC for all four authentication
methods that this protocol currently supports. We achieve this via a
careful white-box composition of EDHOC with the Lawful Interception
Key-Exchange approach of Arfaoui et al. (ESORICS 2021) and Bultel
and Onete (SAC 2022). Our resulting construction not only achieves
strong key-security, but also non-frameability, and LI-compliance, with-
out breaking the identity-protection property of EDHOC. Our imple-
mentation results show that, while LIKE adds an overhead to a stan-
dard EDHOC implementation in Rust, the resulting protocol remains
practical while achieving much better privacy and LI-compliance.

1 Introduction

Privacy is a human right. The Universal Declaration for Human Rights 4, states:
“No one shall be subjected to arbitrary interference with his privacy [...] or corre-
spondence [...]. Everyone has the right to the protection of the law against such
[...] attacks." The United Nations describes privacy as a cornerstone of other
basic human rights, like “the free development and expression of an individual’s
personality, identity, and beliefs, and their ability to participate in political, eco-
nomic, social and cultural life" 5.
4 https://www.un.org/en/universal-declaration-human-rights/
5 UNO, https://www.ohchr.org/en/special-procedures/

https://www.un.org/en/universal-declaration-human-rights/
https://www.ohchr.org/en/special-procedures/
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Edward Snowden’s 2013 revelations of widespread mass surveillance engen-
dered public outcry. Advocates for sacrificing privacy for the sake of (inter-
)national security clashed with privacy supporters warning of censorship and
autocracy. Examples of illegal mass-surveillance abound today. The NSA once
collected call data from all Verizon customers, and data pertaining to calls in the
Bahamas and Afghanistan [11]. During the COVID-19 pandemic, contact-tracing
data was used in order to facilitate criminal investigations [10]. A recently-
proposed EU regulation on moderating child sexual abuse material (CSAM)
in encrypted communications enables mass client-side scanning, in spite of out-
spread criticism from both scientists [24] and socio-economical entities [6].

Mass-surveillance is a threat to basic human rights. Yet, even strong privacy
advocates agree that investigations limited in scope and motivation (by lawfully-
obtained warrants) can be legitimate [1]. This is the type of limited Lawful
Interception (LI) that the EU resolution on security through encryption and
security despite encryption supports [9].

Lawful Interception (LI) has been a legal and technical requirement for over
30 years in mobile communications, featuring prominently in 3GPP specifica-
tions 6. Every operator that provides end-to-end encrypted user communication
is subject to such requirements.

LAKE. The Lightweight Authenticated Key Exchange (LAKE) working group
of the Internet Engineering Task Force (IETF) standardized a lightweight secure-
channel establishment for use in NB-IoT, 6TiSCH, and LoRaWAN. Since it will
be used in mobile environments, LAKE must comply with LI.

The solution proposed by LAKE is EDHOC [25]: a mutually-authenticated
lightweight secure-channel establishment scheme, guaranteeing identity-protection
as a form of privacy. The Initiator and Responder may choose to authenticate ei-
ther through signatures or by using static DH-keys. As described in Section 3,
the protocol completes in 1.5, optionally 2, round trips. Starting from the 2nd
message, communications may be authenticated and/or encrypted using inter-
mediate secrets.

EDHOC is not LI-compliant by design. Naïvely, this can be achieved by
turning mobile infrastructure nodes into endpoints – as is the case for other
protocols, like AKA; this comes, however, at the cost of an unnecessary loss of
privacy, making mobile network operators complicit to mass surveillance.

In this paper, we aim to render the EDHOC protocol LI-compliant without
this massive loss of privacy. Ideally, our LI-EDHOC scheme must guarantee the
security of exchanged messages except with respect to their sender, the receiver,
and the collaborative efforts of all the Lawful Interception authorities7permitted

6 See technical specifications TS33126 ; TS33127 ; TS33128
7 LI is performed differently from one country to another. For instance in France,

Lawful Interception requires the technical cooperation of the operator, the legisla-
tive branch, and law-enforcement. We model each participant that requires a cryp-
tographic key as an authority – which allows us to construct our protocol in an
elegant manner. In other countries, potentially more authorities might be required.
Our system is flexible and can address all such scenarios. Our protocol is designed
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to intercept. Moreover, interception should be fine-grained, limited only to one
session at a time.

We use the pairing-free Lawful-Interception Key-Exchange (LIKE) approach [5]
described in Section 2. Applying LIKE to a real-world protocol such as ED-
HOC, which features four methods of authentication and complex key schedules,
while also preserving EDHOC’s lightweight character and identity-protection,
is far from trivial. An important challenge, for instance, stems from the fact
that EDHOC features two types of authentication, which can be combined ar-
bitrarily. While signature-based authentication is compatible with past LIKE
approaches, it is not clear that MAC-based authentication will provide provable
non-framewability. Another important challenge is combining LIKE with the
complex key-schedule of the EDHOC protocol.

Our contribution. We describe LI-compliant extensions for EDHOC’s four
authentication methods, and guarantee:

- Key-secrecy: session traffic keys are indistinguishable from random ex-
cept for that session’s Initiator, Responder, and the collusion of all the au-
thorities allowed to perform LI for that session.

- Non-Frameability: it is impossible to falsely accuse a user of taking
part in a session that it did not run.

- LI Compliance: the mobile infrastructure nodes (proxies) forwarding the
communication can prove keys computed in accepting sessions are lawfully-
interceptable by the correct set of LI authorities.

- Identity-protection: an attacker (active for Initiator and passive for
Responder) cannot learn the identities of the two endpoints.

Each property provably holds in the LIKE models of [2,5], and a (modified)
identity-protection model of [8]. Moreover, we provide an open-source implemen-
tation of our scheme in Rust optimized for constrained devices. We demonstrate
the feasibility of our scheme by evaluating it on two hardware platforms that are
typical examples of hardware used in the LAKE use cases.

Related work. Lawful Interception initially relied on Key-Escrow: the idea
of entrusting communication to a managing trusted third party (TTP), which
could learn the session key. Unfortunately, Key-Escrow often requires the online
presence of authorities and can easily be pushed to mass surveillance. In spite
of new LI techniques [3], current LI still relies on Key Escrow [26,16].

Our work comes closest to a different approach [2] called LIKE, which aimed
to achieve fine-grained LI-compliant Authenticated Key-Exchange (AKE) with
better privacy. A first pairing-based instantiation [2] was rendered more efficient,
pairing-free, and usable in roaming scenarios by Bultel and Onete [5]. One prop-
erty provided by LIKE is non-frameability, which is also underlined by recent
related work [4] in the context of 5G (and beyond) network architectures.

to allow parties to be aware of potential LI (as we believe transparency should be
reinforced) – but this could be technically adjusted to allow proxies to indicate, in
a prior message, the authorities that must be used for each exchange.
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Some techniques for connection-monitoring and data-encryption [13,15] could
be extended to the LI scenario, though this is not their original goal. As they
rely on pairings, they are incompatible with lightweight AKE, however. Finally, a
worthwhile privacy-preserving alternative for LI is provided by CRUMPLE [27],
which provides LI through a proof of work. This interesting approach is, unfor-
tunately, not sufficiently efficient to comply with current LI requirements (which
demand that interception yield “timely" results).

Finally note that throughout the standardization process of EDHOC [25],
the protocol was analysed in various versions. A formal analysis using SAPIC+
identified weaknesses and proposed modifications in EDHOC version 12 [17];
later, the authors verified draft 14, showing that many previously identified
issues had been addressed. Cottier and Pointcheval then provided an analysis of
EDHOC draft 15 [8,7] and suggested further improvements. In 2023, Günther
and Mukendi [12] analyzed draft 17 and proposed changes to the key schedule
and to the construction of transcript hashes.

2 The LIKE framework and further primitives

Originally introduced in the context of mobile authenticated key-exchange pro-
tocols, Lawful Interception Key Exchange (LIKE) is a two-party AKE scheme
featuring two proxies, representing the serving networks of the two endpoints [2].
The system also features a number of authorities, which need not be online for
the duration of each protocol session. Each handshake is lawfully-interceptable
by the collaboration of all the members of an authority set, whose size and
composition depend on current legislations.

Formally, LIKE is defined as LIKE = (Setup, UKeyGen, OpKeyGen, AKeyGen,
AKE, Verify, TDGen, Open). Setup provides a global setup for the choice of uni-
versal parameters. The next three algorithms allow mobile users, operators, and
authorities to generate long-term public keys. The LIKE protocol is run in ses-
sions via the AKE algorithm. The verification algorithm allows for the verifica-
tion of the soundness of the handshake and for the validation of the participants,
whereas the last two algorithms provide mechanisms for LI.

LIKE assumes a scenario in which the two endpoints can only communicate
through the proxies, and the protocol guarantees: key-security, non-frameability,
and LI compliance (also called “honest-operator" in [2,5]). Key-security is en-
sured by essentially ensuring that only the legitimate owners of keys associated
with authorities can retrieve meaningful trapdoor information for the session
keys – and even then, only the composition of all the required trapdoors yields
and the session key. Non-frameability requires, in LIKE, the use of signatures
for both endpoints. The Honest-operator property is achieved by providing the
proxy a means of verifying the LI-compliance of a protocol transcript, while not
providing the proxy any information about the session key. In this paper, we
start from [5], a follow-up work of [2] which achieved pairing-free LIKE in the
roaming scenario, by using an Elgamal-like encryption of the session secret.

Our approach carefully combines this second LIKE approach, and makes
use of both Non-Interactive Proofs of Knowledges (NIPoK) and Signatures of
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ID Initiator Credential I Responder Credential R

0 Signature (sskI, spkI) Signature (sskR, spkR)

1 Signature (sskI, spkI) Static Diffie-Hellman (r, gr)

2 Static Diffie-Hellman (i, gi) Signature (sskR, spkR)

3 Static Diffie-Hellman (i, gi) Static Diffie-Hellman (r, gr)

Table 1: Current authentication methods registered by IANA (0-1-2-3).
Knowledge (SoK). Let R be a binary relation and let L be a language such that
s ∈ L ⇐⇒

(
∃w, (s, w) ∈ R

)
. We denote by ν := NIPoK{w : (w, s) ∈ R} the proof

of knowledge of a witness w for a statement s, and by σ := SoKm{w : (w, s) ∈ R}
the signature of knowledge on message m using witness w. Both NIPoKs and
SoKs must be complete, extractable, and zero-knowledge.

3 The EDHOC protocol

EDHOC is a two-party mutually-authenticated Diffie-Hellman-based AKE scheme
relying on Krawczyk’s SIGMA-I protocol [19]. It features three mandatory mes-
sages and an optional fourth. The handshake is run in sessions between an
Initiator I and a Responder R, which can choose how they want to authenticate:
either by using signature schemes, or by using a certified static Diffie-Hellman
(DH) key. The four combinations of authentication mechanisms are called meth-
ods 0, 1, 2, and 3, as described in Table 1. We denote by (sskP, spkP) the pri-
vate/public signature keys of party P, and by (p, gp) party P’s long-term static
DH private/public keys. The parties indicate their preferred means of authenti-
cation method in message_1.

Protocol outline. Figure 1 depicts the EDHOC message flow. The first mes-
sage, always sent unencrypted, consists of parameters METHOD and SUITES_I,
indicating the authentication method and desired cipher suite, a connection
identifier CI which acts as a session identifier for peers running multiple ses-
sions, some additional information called external authorization data EAD1, and
a fresh ephemeral public key gx (we denote the corresponding private key as x).

If the Responder supports the method and cipher suite, it computes message_2,
which consists of an ephemeral DH element gy sent in clear (the private key is
denoted as y) and a ciphertext, encrypted with a key denoted as sk2, derived
from gx and gy. The plaintext consists of: a connection identifier CR, an identifier
indicating the Responder’s long-term authentication credential, some additional
data EAD2, and an authentication by the Responder, consisting of either a signa-
ture (methods 1 and 3) or a MAC (methods 0 and 2). The signature is computed
with the Responder’s private key sskR over the credential identifier ID_CRED_R,
a transcript hash TH2 detailed in Figure 2, the public key spkR, and EAD2. If the
Responder uses static-DH authentication, then the MAC key is derived from both
the ephemeral DH product of gx and gy and from the semi-static DH product
of gx and the static element gr.

The Initiator decrypts the ciphertext in message_2 with the key sk2, derived
from gx and gy (the latter is sent in clear). Then, it recovers and verifies the
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Fig. 1: The EDHOC message flow [22].

Responder’s authentication, according to the authentication method. message_3
is somewhat similar to message_2, except that it is AEAD-encrypted using a
key derived either solely from the ephemeral DH values gx and gy (methods 0
and 2) or from both the ephemeral DH product of gx and gy, and the semi-static
DH product of gx and gr (methods 1 and 3).

The optional message_4 provides explicit key-confirmation and is an AEAD-
encryption on additional data EAD4. The encryption key is derived from the
previously computed ephemeral (and potentially semi-static) DH products, and
additionally, for methods 2 or 3, a new semi-static DH product between the
ephemeral value gy and the Initiator’s static DH element gi.

The full key-schedule of the protocol is depicted in Figure 2. EDHOC uses
two functions, EDHOC_Expand and EDHOC_Extract, with the EDHOC hash al-
gorithm in the selected cipher suite to derive keys used in message process-
ing. EDHOC_Extract is used to derive fixed-length uniformly pseudorandom keys
(PRKs) from Elliptic Curve Diffie-Hellman (ECDH) shared secrets.
EDHOC_Expand is used to define a key derivation function, EDHOC_KDF, for gen-
erating MACs and for deriving output keying material (OKM) from PRKs.

There are three main secret values that are computed, labelled, respectively
PRK2e, PRK3e2m and PRK4e3m. The notations indicate the purposes of these se-
crets: the 2e subscript indicates the key is used to encrypt message_2 content.
The 3e2m subscript indicates the value is used to encrypt message_3 and (de-
pending on the authentication method) compute the MAC in message_2. Note
that in case of signature-only authentication (method 0), the entire key-schedule
is derived from the ephemeral DH values gx and gy. If both parties use static
DH authentication, the key schedule resembles X3DH 8, using the ephemeral
DH product and two semi-static ones.

EDHOC primitives. While EDHOC can be instantiated with different prim-
itives, currently its implementations use elliptic-curve cryptography [23]. We
will require the hardness of both the Decisional Diffie-Hellman (DDH) and the
Gap Diffie-Hellman (GDH) problems in the groups selected in protocol ses-

8 https://signal.org/docs/specifications/x3dh/

https://signal.org/docs/specifications/x3dh/
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Fig. 2: EDHOC’s key scheduling. The figure shows how keys are derived for all
four authentication methods [23].

sions. Key-derivation for EDHOC employs HKDF [20]. In this paper, we ide-
alise both extraction and expansion as a random oracle. Once expanded, keys
are used in two fundamental ways: 1) for stream-cipher encryption (XOR-ing
key-bits with plaintext-bits, which we require to be injective [8,21]), and 2)
for AEAD-encryption (which we require to be AEAD-secure), both IND-CPA-
secure. Key-derivation steps also rely on updated session hashes. We idealise
the hash function H as a random oracle (in practice, instantiated as SHA256).
Finally, signature-based authentication requires the use of an EUF-CMA-secure
signature scheme DS = (DS.Gen,DS.Sign,DS.Verif) (usually instantiated as
EdDSA or ES256), while static-DH-based authentication is combined with a MAC
scheme, implemented in EDHOC as EDHOC_Expand.

4 LI-compliant EDHOC

In order to empower Mobile Network Operators (MNOs) with the ability to pro-
vide privacy-preserving LI-compliant secure-channel establishment, we encrypt
session secrets in the session state, such that only the collaboration of the entire
authority-set will be able to decrypt these values. For that purpose, we essentially
combine the LIKE approach and the EDHOC protocol (Section 3).

The composition is not black-box, for several important reasons. The first
is our wish to preserve as many of the EDHOC properties as possible, includ-
ing identity-protection. The latter requires that network adversaries (passive,
for Responders, active, for Initiators) be unable to distinguish the endpoint’s
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identity (Initiator or Responder). As a result, some of the LIKE messages will
need to be incorporated in EDHOC’s encrypted messages, modifying them in
a non-trivial fashion. As a result, we prefer to use different notations for the
two protocols, referring to EDHOC’s first and second messages as message_1
and message_2 (as in Section 3), as opposed to M1 and M2 for our protocol
LI-EDHOC. Another problem is verifying the consistency of the elements input
in the key-computation, which we discuss below. Finally, we choose white-box
composition for the sake of efficiency – since some LIKE elements are already
present in EDHOC.

An important modification we make to the original LIKE [2,5] is that the
session keys take in input an additional nonce nr (and we use the exporter keys
featured in EDHOC). This artifice of our construction is necessary in order to
enforce LI-compliance on the Initiator’s side. Thus, we include the nonce nr in the
context of the exporter PRK expansion (bottom right of Figure 2). Encrypting
part of the handshake also raises a serious concern with respect to LI-compliance,
in which proxies must be able to prove that the elements required to compute
the key are consistent with the encrypted secrets and the ciphertexts. A naïve
solution would be to send the entire messages unencrypted (thus nullifying the
identity-protection afforded by EDHOC). Our solution tries to reconcile both LI
requirements and identity-protection. We make endpoints send their encryption
keys (not secrets) for handshake messages, encrypted with a key shared between
the endpoint and the proxy9, which allows the latter to verify the consistency of
the transcript10.

In order to provide LI-recovery of session keys, we essentially encrypt some
component session secrets. This could be done naïvely by running the protocol
of [5] for each secret in parallel; that, however, would be suboptimal and could
potentially break the LI-compliance guarantee, since EDHOC features an inter-
dependence between the ephemeral and semi-static secrets. Each secret will be
recovered by the authorities from an ElGamal-like encryption of it under the
product of the authorities’ keys. During the protocol, each authority derives a
trapdoor (essentially a local decryption with just its own private key) – and by
using the homomorphic properties of ElGamal, the combination of all trapdoors
yields the session’s secret. Crucially, if even one authority withholds its trapdoor,
the secret remains hidden – even from a collusion of all other authorities.

We proceed to describe our protocol, whose handshake is also depicted in
Figures 3, 4 and 5. Due to space restrictions, we only detail LI-EDHOC for

9 This is not a strong assumption, as the mobile protocol stack feature a hierarchy of
keys usable to that effect.

10 We considered two alternative approaches. The key under which the keys are en-
crypted could be negotiated during the handshake, at the expense of additional
complexity. We discarded this alternative since a shared key is already present in
the 5G stack. A second cleaner alternative would be to encrypt handshake messages
with a different key, which is computable by the proxies and endpoints. Unfortunately
this would require modifying the key schedule of EDHOC (already standardized) and
introducing cumbersome key-computation tools including pairings.
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Initiator Proxy PI Proxy PR Responder

InitRun1(IDI)
M1 ProxIRun1(M1)

M1 ProxRRun1(M1)
M1

RespRun1(IDR,M1)
M2 ProxIRun2(M2)

M2 ProxRRun2(M2)
M2

InitRun2(IDI,M2)
M3 ProxIRun3(M3)

M′
3 M′

3 M′
3

RespRun2(IDR,M
′
3)

InitRun3(IDI,M
′′
4 )

M′′
4 ProxIRun4(M

′
4)

M′
4 ProxRRun3(M4)

M4

Fig. 3: Message flow of the LI-EDHOC handshake protocols. Algorithms for
the Static-Sign (ID = 2) instances are provided in Figures 4 and 5.

authentication method 2 (Static-Sign). The other 3 methods are included in
our full version [21].

Setup and Key Generation. Endpoints (Initiators and Responders), proxies,
and authorities will all generate long-term keys. Endpoints generate signature
keypairs (sskU, spkU) for authentication, using the algorithm DS.Gen(1λ) (for
signature-based authentication) and DH pairs (p, gp) with p ∈ {i, r} (for static
authentication). Proxies generate signature keys (sskProx, spkProx) which authen-
ticate LI material. Authorities generate DH keys for LI {Λ.SK, Λ.pk = gΛ.SK},
for which they prove knowledge of the private key: Λ.ni← NIPoK{Λ.SK : Λ.pk =
gΛ.SK}. We set Λ.PK← (Λ.pk, Λ.ni). Formal descriptions are provided in [21].

Precomputation. Handshakes are preceded by a precomputation phase, dur-
ing which users and proxies verify all authorities’ public keys and proofs. Note
that due to roaming, LI can take place for an independent set of authorities at
each end (Initiator and Responder). In addition, at this point we assume that, if
the proxy does not already have a shared key pcsk, then we assume both the
proxy and the endpoint generate this common key11.

Let (ΛI
j .PK)

nI
j=1 denote the vector of the authority public keys involved in

the interception (with ΛI
j an authority for all j ∈ [[1, nI]], and with each ΛI

j .PK =

(ΛI
j .pk, Λ

I
j .ni)). The Initiator and its proxy ProxI verify the proofs as NIPoKver(ΛI

j .

pk, ΛI
j .ni) and proceeds if all verifications pass. They set hI ←

∏nI

j=1 Λ
I
j .pk, and

ωI ← (ΛI
j)

nI
j=1∥IDI, returning (hI, ωI). This is analogous on the Responder side and

its associated proxy ProxR.
The values (hI, ωI) and pcskI,ProxI (for the Initiator), and (hR, ωR) and pcskR,ProxR

(for the Responder), are shared between the proxies and the endpoints, and both
entities check (h, ω) to ensure that neither of them is cheating. We assume more-
over that the proxies know the identity of the endpoints (as is already the case
following an initial AKA/Handshake). This stage can be done once and then
reused for multiple sessions (for the same set of authorities of an endpoint).

11 This would be done at the beginning of each handshake anyway, within the 5G
protocol stack.
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InitRun1(IDI)

1 : (x←$ Z∗
p, g

x),CI ←$ {0, 1}lC

2 : return M1 ← (MCS∥gx∥CI∥EAD1)

InitRun2(IDI,M2)

1 : Parse M2 as (gy∥c2), gxy ← (gy)x, gyi ← (gy)i

// Compute sk2, decrypt c2

2 : Compute TH2,PRK2e, sk2 as in RespRun1, lines 4,5,9
3 : m2 ← Dec(sk2, c2), parse m2 as (CR∥IDR∥σ2∥EAD2)

4 : sid← (CI,CR, g
x, gy)

5 : Compute CTX2, t
′
2 as in RespRun1, lines 6,7

// Verify Responder authentication

6 : if DS.Verif(spkR, (lsig∥CTX2∥t′2), σ2) ̸= 1

7 : then return ⊥
// Compute key-schedule for 3rd message

8 : TH3 ← H(TH2,m2, IDR),CTX3 ← (IDI∥TH3∥gi∥EAD3)

9 : sk3 ← HKDF_Expand(PRK2e, 3∥TH3∥lkey, lkey)
10 : IV3 ← HKDF_Expand(PRK2e, 4∥TH3∥liv, liv)
11 : ad3 ← (laead∥“ ”∥TH3)

12 : salt4e3m ← HKDF_Expand(PRK2e, 5∥TH3∥lhash, lhash)
13 : PRK4e3m ← HKDF_Extract(salt4e3m, gyi)

// Authenticate (static DH in method 2)

14 : t3 ← HKDF_Expand(PRK4e3m, 6∥CTX3∥lmac, lmac)

// Ensure LI-compliance and assemble M3

15 : m3 ← (IDI∥t3∥EAD3), c3 ← Enc′(sk3, IV3, ad3,m3)

16 : TH4 ← H(TH3,m3, IDI)

17 : HI ← (hIg
y)x,H1

I ← (hIg
y)i

18 : stmI ←
[
X = gx ∧ HI = (hIg

y)x ∧X1 = gi

∧ H1
I = (hIg

y)i
]

19 : niI ← SoKωI∥IDR∥TH2∥TH3∥TH4
{(x, i) : stmI}

20 : KI ← (sk2∥sk3∥IV3∥t2), SI ← Enc′′(pcskI,ProxI ,KI)

21 : return M3 ← (c3∥HI∥H1
I ∥niI∥SI)

InitRun3(IDI,M
′′
4 )

1 : Parse M ′′
4 as (c4∥nr∥val∥TH5), if c4 =⊥ then return ⊥

2 : if TH5 ̸= H(TH4, val, nr) then return ⊥
3 : Compute sk4, IV4, ad4 as in RespRun2, lines 7-9
4 : m4 ← Dec′(sk4, IV4, ad4, c4), parse m4 as EAD4

5 : if m4 =⊥ then return ⊥
6 : PRKout ← HKDF_Expand(PRK4e3m, 7∥TH4∥ nr ∥lhash, lhash)

7 : terminated← 1

RespRun1(IDR,M1)

1 : (y ←$ Z∗
p, g

y),CR ←$ {0, 1}lC

2 : Parse M1 as (MCS∥gx∥CI∥EAD1)

// Compute key-schedule for 2nd message

3 : gxy ← (gx)y, sid← (CI,CR, g
x, gy)

4 : TH2 ← H(gy,H(M1))

5 : PRK2e ← HKDF_Extract(TH2, g
xy)

6 : sk2 ← HKDF_Expand(PRK2e, 0∥TH2∥l2, l2)
7 : CTX2 ← (CR∥IDR∥TH2∥EAD2)

8 : t2 ← HKDF_Expand(PRK2e, 2∥CTX2∥lmac, lmac)

// Authenticate (signature in method 2)

9 : σ2 ← DS.Sign(sskR, (lsig∥CTX2∥t2))

// Assemble M2

10 : m2 ← (CR∥IDR∥σ2∥EAD2), c2 ← Enc(sk2,m2)

11 : return M2 ← (gy∥c2)
RespRun2(IDR,M

′
3)

1 : Parse M ′
3 as c3

// Compute sk3 and decrypt c3

2 : Compute TH3, sk3, IV3, ad3 as in InitRun2, lines 8-11
3 : m3 ← Dec′(sk3, IV3, ad3, c3), parse m3 as (IDI∥t3∥EAD3)

4 : Get gi from IDI, g
yi ← (gi)y

// Compute key-schedule for 4th message

5 : Compute CTX3, salt4e3m,PRK4e3m as in InitRun2, lines 8,12,13
6 : TH4 ← H(TH3,m3, IDI), ad4 ← (laead, ∥“ ”∥TH4)

7 : sk4 ← HKDF_Expand(PRK4e3m, 8∥TH4∥lkey, lkey)
8 : IV4 ← HKDF_Expand(PRK4e3m, 9∥TH4∥lkey, lkey)

// Verify Initiator authentication

9 : t′3 ← HKDF_Expand(PRK4e3m, 6∥CTX3∥lmac, lmac)

10 : if t3 ̸= t′3 then return ⊥

// Ensure LI-compliance and assemble M4

11 : HR ← (hRg
x)y,H1

R ← (hRg
i)y

12 : stmR ←
[
Y = gy ∧ HR = (hRg

x)y ∧ H1
R = (hRg

i)y
]

13 : niR ← SoKωR∥IDI∥TH2∥TH3∥TH4
{y : stmR}

14 : KR ← (sk2∥sk3∥IV3∥t2), SR ← Enc′′(pcskR,ProxR ,KR)

15 : m4 ← EAD4, c4 ← Enc′(sk4, IV4, ad4,m4)

16 : nr ←$ {0, 1}lrand , val← H(gxy, “ ”, nr)

17 : PRKout ← HKDF_Expand(PRK4e3m, 7∥TH4∥ nr ∥lhash, lhash)
18 : terminated← 1,TH5 ← H(TH4, val, nr)

19 : return M4 ← (c4∥nr∥val∥TH5∥HR∥H1
R∥niR∥SR)

Fig. 4: The LI-EDHOC protocol for authentication method 2.
Dashed boxes represent operations associated with LI. The notation MCS
denotes the method and the cipher suite that the Initiator wants to use.
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Handshake. We assume all precomputations are done. The handshake is run as
described in Figure 3, with details provided in Figures 4 (endpoint computations)
and 5 (for the proxies, in Appendix C).

The first message sent by the Initiator is unchanged compared to EDHOC and
contains the Initiator’s ephemeral secret gx. This message is faithfully forwarded
by both proxies, which store gx and ωI (for the Initiator’s proxy), respectively
ωR (on the Responder side). The Responder follows EDHOC and generates the
ephemeral secret gy, then follows the key-schedule in order to obtain the secret
PRK2e and the derived key sk2. In method 2, the Responder computes a signa-
ture using its long-term signing key12. The computed message is the same as in
EDHOC (line 10 of the RespRun1 routine in Figure 4), and it is XOR-encrypted
with sk2. The Responder proxy stores gy and the message. On the Initiator side,
the proxy forwards the message faithfully, but stores gy.

LI elements start being added from the third message onward. In method
2, keys are computed based on two DH products gxy and giy (the Initiator con-
tributes its static long-term DH key gi as well as the ephemeral gx). The Initiator
computes trapdoor messages HI and H1

I (line 17 of InitRun2 in Figure 4), which
essentially encrypt gxy and giy under the product hI of the authorities’ public
keys. In order to prevent the Initiator from cheating, the latter has to compute
a signature of knowledge proving that the exponents of the ephemeral gx, the
static gi and both HI and H1

I are the same (line 18). The message that is signed
consists of the set of identities ωI, as well as the Responder’s identity and the
concatenation of the transcript hashes used to compute the keys. Finally, in or-
der to prevent cheating, the Initiator encrypts the tag t2 and the keys used to
encrypt/AE-encrypt messages m2,m3 with the key pcskI,ProxI it shares with its
proxy as SI. Thus M3 is composed of ciphertexts c3 and SI, and LI elements
HI, H1

I and niI. The ciphertext SI allows the proxy to decrypt/AE-decrypt the
received second- and third-message ciphertexts, and verify the correctness of
both transcript-hash values and the signature σ2 (aborting if the endpoint mis-
behaves). Then it will store the transcript hashes, long-term static Initiator DH
key, the two trapdoors, the signature of knowledge, the Responder identifier, and
the HMAC, forwarding only the EDHOC ciphertext c3 to the Responder’s proxy.

The procedure is analogous for the preparation of the fourth message on the
Responder’s side after receiving and analyzing the third message as in the original
protocol. Note that this message is compulsory in LI-EDHOC, as opposed to the
original protocol. The final ingredient for Lawful Interception is an added nonce
nr generated by the Responder and input in the key-generation step in RespRun2

lines 19-20 in Figure 4.
The reason we must add nr in the key-computation step is as follows: un-

like in [2,5], the Responder’s signature of knowledge is verified only after the
latter computed the final key. Thus, if the Initiator computed the key before the
Responder, the Initiator’s proxy might not be able to provide LI-interceptable

12 This correspond to the authentication method provided in the original EDHOC
protocol. In method 2, the Responder authenticates by signing t2, and the Initiator
authenticates thanks to t3 partially computed with its static DH share.
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communication. The nonce nr is sent unencrypted in the fourth mandatory mes-
sage to the Initiator, which can now compute the same session key. In order to
ensure that this nonce also arrives securely at the proxies and the Initiator, the
Responder sends the nonce nr, a verification value val and TH5 = H(TH4, val, nr),
so that every party may check the validity of the nonce (using TH4 they all com-
puted themselves). In addition, the proxy ProxR also verifies the signature σ2

with the tag t2. Finally each proxy stores in the session state the nonce nr, the
tag t2 and the value val, for a potential verification from the authorities.

Verification of sst. The session state sst consists of: ω∥MCS∥gx∥gy∥gi∥TH2∥
TH3∥TH4∥M1∥m2∥m3∥H∥H1∥ni∥pid∥t2∥nr∥val∥σ. The plaintext messages m2,m3

allow for the verification of the transcript hashes and the authentication of both
parties (through signatures of knowledge). The verification algorithm also ex-
tracts, from ω the public keys of the authorities, for which the proofs of knowl-
edge of the discrete logarithm must be verified. Subsequently the signature of
knowledge is verified with respect to both the signed message and to the equality
of the discrete logarithm used to compute H and H1. Since method Static-Sign
only requires the Responder to use signature-based authentication, the verifica-
tion algorithm obtains, from m2 and t2 all the necessary information to verify
the signatures σ2. Finally, parsing sst as τ∥σ, the signature σ generated by the
proxy is verified with respect to the message τ .

Lawful Interception. Given an sst, authorities invariably must first verify
it (using the process described above). If sst is correct, each authority Λd first
derives individual trapdoors for each of the two secrets: compute AI ← gx, AR ←
gy, Λd.td1 ← Ad

Λd.SK, Λd.td2 ← giΛ
d.SK (d ∈ {I,R}) and prove

Λd.td0 ← NIPoK{Λd.SK : Λd.pk = gΛ
d.SK ∧ Λd.td1 = Ad

Λd.SK ∧ Λd.td2 = giΛ
d.SK}.

Finally, set and return Λd.td ← (Λd.td0, Λ
d.td1, Λ

d.td2). Once all trapdoors are
available, all parties verify the proofs Λd.td0 and reconstitute the secrets gxy and
giy. The calculations, e.g., on the Initiator’s side for gxy, are as follows:

HI∏nI

j=1 Λ
I
j .td1

=
(hIg

y)x∏nI

j=1 g
xΛI

j .SK
=

(∏nI

j=1 g
ΛI

j .SK
)x

gxy∏nI

j=1 g
xΛI

j .SK
=

∏nI

j=1 g
xΛI

j .SKgxy∏nI

j=1 g
xΛI

j .SK
= gxy.

To retrieve giy, we proceed in the same way, using H1, and either Λd.td1 or Λd.td2
depending on the point of view (Initiator or Responder).

At this point, authorities check the validity of the last unverified element of
the sst: nr. To do this they simply computeH(gxy, “ ”, nr) and compare this value
to the provided val value in sst. This verification ensures that this nr, transmitted
by the proxy, is indeed the one used by the endpoints to compute their session
key PRKout. Finally, with the two secrets gxy and giy, the authorities, using
the verified additional data TH2, TH3, TH4 and nr, are now able to recompute
the original EDHOC’s key derivation schedule to derive the original session key
PRKout (which coincides with the one computed by the endpoints).
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5 Security Analysis in the Random Oracle Model

Our LI-EDHOC protocol guarantees the key-security, non-frameability, and LI-
compliance security properties from LIKE [2,5], but also a stronger property of
EDHOC: identity protection. We provide here only a high-level description of
the security model. A complete formalization is in the full version [21].

Execution environment. LIKE includes three types of participants: end-
points belonging to a set ESet, proxies from a set PROXSet, and authorities in
a set AUTHSet. Each party has private and public parameters (P.SK,P.PK) –
which for EDHOC are in fact private/public keysets instead of just one key. We
also make endpoints and proxies store a set of symmetric keys shared between
them in an attribute P.PCSK = {(Q, pcskP,Q)},Q ∈ ShareSet (if P ∈ ESet, then
ShareSet = PROXSet and vice-versa). Any party may be corrupted, yielding to
the adversary one element of the private keyset. The party stores a corruption
bit P.SK.γ for each key SK ∈ P.SK.

Protocol sessions are always run by instances of four parties: two endpoints,
playing the parts of Initiator and Responder; and two proxies. We denote by πq

P

the qth instance of P. Each endpoint/proxy instance keeps track of attributes,
including: the session identifier πq

P.sid; the computed session key πq
P.PRKout; a

session state πq
P.sst; partner identifiers AID for the authorities chosen by that

party as legitimate for Lawful Interception, PNID for the partnering endpoint
(or endpoints if this is a proxy instance), and ProxID for the partnering proxies;
a flag indicating authentication acceptance (denoted πq

P.α); and πq
P.role (the role

role ∈ {Initiator,Responder,ProxyI,ProxyR} of P in the handshake).
To better capture EDHOC, endpoint party instances require several addi-

tional values: πq
P.meth (the method that will be used for a session involving this

instance); πq
P.SK (the private key used by P to authenticate); πq

P.pid.PK (the pub-
lic key that P expects its partner to use for authentication), a flag indicating the
corruption of the long-term private key used by that instance (denoted πq

P.SK.γ);
a flag indicating the revelation of the session key (denoted πq

P.ρ); and πq
P .ProxID

(the identity ProxID ∈ PROXSet of the party’s proxy). Both proxy and endpoint
instances also store the current symmetric encryption key πq

P.pcsk ∈ P.PCSK used
during the handshake. Finally proxy instances store two specific values : πq

P.sst
(the session state built during the protocol session run) and πq

P.tr (the transcript
of the protocol session run).

Following [2,5] we define the notion of instances have matching conversation.

Definition 1. Let (P,Q) be two endpoints with P ̸= Q and let q, j be two nat-
ural integers. We says that πq

P have matching conversation with πj
Q (or that πq

P

matches πj
Q) if πq

P.sid ̸=⊥, πq
P.sid = πj

Q.sid, Q = πq
P.PNID and P = πj

Q.PNID.

For correctness, accepting endpoint instances that have matching conversa-
tion compute the same session key; accepting endpoint instance keys are lawfully-
interceptable by the collaboration of all the authorities in the instance’s AID.

Oracles. Similarly to [2,5], we use game-based security notions and give the ad-
versary access to oracles, such as: oRegister(P, type,P.PK) (A can register either
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honest parties, or malicious parties, with malicious P.PK); oSend(πq
P,m) (A can

send a message to an endpoint instance πj
P′); oReveal(πq

P) (A learns the session
key of endpoint instance πq

P); oTestb(π
q
P) – which can only be queried once, and

returns either the real session key computed by endpoint instance πq
P or a random

key, depending on the value of a bit b; and oRevealTD(sst, I,R,Prox,AID, ℓ) (A
learns the trapdoor of authority Λℓ registered in authority set AID for a session
with state sst. We need to modify two oracles in our work, extending them to
capture multiple authentication modes and credentials:

- oNewSession(P, role,PNID,PKI,PKR,ProxID,AID) – which creates endpoint/
proxy instances of an endpoint/proxy P with role role = Initiator or role =
Responder, or role = Proxy, with Initiator authentication using the Initiator’s
public credential PKI and Responder authentication using Responder creden-
tial PKR. This allow to create an instance using a specific method (either 0,
1, 2 or 3);

- oCorrupt(P, ℓ) – which allows the adversary to corrupt the ℓth long-term
key of party P.

Key security. In the key-security game, the adversary uses all the oracles pre-
sented above in order to learn the value of the bit b used for the single oTest

query. The adversary wins if, and only if, it guarantees the soundness property
(i.e., two honest instances having matching conversation and running a protocol
session derive the same session key), it guesses b correctly and if its oTest query
target fresh instances (i.e., for which the long-term authentication credential
used by both endpoints in that instance is uncorrupted at the time of the test
query, the session key has not been revealed, and at least one authority in AID
is honest and its trapdoor has not been revealed). This is fully detailed in [21].
Non-frameability. In this game, the adversary may query all but the oTest

oracle, and wins if it ties an honest endpoint P to a session with state sst, in
which P did not end in an accepting state.
LI-compliance. In LI-compliance, the adversary may query all but the oTest

oracle, and must output a proxy session in which the key retrieved by LI differs
from the key that can be extracted from the session transcript.

The security of LI-EDHOC. We state the security theorems of LI-EDHOC
for all the four authentication methods and prove them in the full version [21].
Interestingly, allowing both static-DH-based and signature-based authentication
yields both a positive and a negative outcome. On the plus side, if one credential
is lost or corrupted, the endpoint need not immediately re-initialize its pub-
lic keys. Moreover, note that EDHOC’s static-DH authentication mode is still
forward-secure, since it is combined with an ephemeral secret. On the downside,
however, the use of static-DH authentication renders non-frameability difficult
to prove, requiring either heavier computations (which we present in the full
version, for completeness), or a slight modification of the standard Discrete Log-
arithm problem (we will require access to a CDH oracle, akin to how GDH
requires DDH oracle access). We dub this new problem Oracle-DLog13.
13 This problem is similar to the Q-One-More Diffie–Hellman problem defined in [18].
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Definition 2 (Oracle-DLog). Let G be a cyclic group of prime order p gener-
ated by g ∈ G. Let x ←$ Z∗

p and X ← gx. The Oracle-DLog problem challenges
an adversary in possession of (g, p,G, X), with oracle access to OCDH(·) – re-
turning, on input Y = gy ∈ G, the value gxy ∈ G – to retrieve x.
Theorem 1. If LI-EDHOC is instantiated with an EUF-CMA-secure signature
scheme; zero-knowledge and extractable proofs and signatures of knowledge; IND-
CPA and injective encryption schemes; and if DDH and GDH problems are hard
in G, then LI-EDHOC (methods 0,1,2,3) achieve key security, LI-compliance,
and (Initiator and Responder) identity protection. Moreover, LI-EDHOC method
0 also achieves non-frameability. If, in addition, the Oracle DLog problem is
hard in G, LI-EDHOC (methods 1,2,3) also guarantee non-frameability.

6 Implementation and Evaluation
As method 3 (static-static) of authentication is likely to be the most expensive,
we implement LI-EDHOC in this particular setting (which appears in the full
version). We complement the lakers implementation of EDHOC in Rust, with
bindings for C and Python. As an online addition to this article, we release the
LIKE implementation as open source14.

Our implementation transports LIKE elements within the External Autho-
rization Data (EAD) fields of EDHOC. This allows for selective activation of
lawful interception maintaining EDHOC’s base structure. There are two main
additions to the lakers implementation of EDHOC: (1) the cryptographic prim-
itives supporting the generation and verification of the Signature of Knowledge.
We instantiate the SoK as described in Appendix A. (2) dedicated EAD handlers
that generate and process LIKE elements during the EDHOC handshake. These
handlers populate the EAD field of the message with the necessary additional
elements of LIKE. The implementation includes the pre-computation phase per-
formed once for a given set of peers and authorities, during which the values
(hI, ωI) are computed.

We evaluate the implementation on two typical constrained platforms, based
on the ARM Cortex-M core15: (1) nRF52840 development board featuring an
ARM Cortex-M4F processor running at 64 MHz with 256 kB RAM and 1 MB
flash memory, and (2) STM32WBA55CG development board featuring an ARM
Cortex-M33 processor running at 32 MHz with 128 kB RAM and 512 kB flash
memory. We measure both overhead and execution time. To measure the later,
we used the Saleae Logic 8 logic analyzer connected to specific GPIO pins on both
development boards, that are toggled at the beginning and end of given code
sections (Figure 6, Appendix C).The sampling frequency is set to 40 MS/s (Mega
Samples per second). For the evaluation, the Initiator and the Responder are
located on the same physical device, which removes the network communication
overhead and allows us to focus on computational performance. Note that the
evaluation does not include the proxies which run on non-constrained devices.
14 https://github.com/ElsaLopez133/lakers.git
15 Note that we are not making a comparison here, but simply presenting implemen-

tation results on commonly used platforms.

https://github.com/ElsaLopez133/lakers.git
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We made a comparison of the message overhead for the Initiator (messages 1
and 3) running EDHOC authenticated with DH Static Keys, with and without
implementing LIKE. With LIKE, a total of 152 bytes (37 for the first message,
and 115 for the third) are carried out for the Initiator, while without, only 56
bytes (37 for the first message, and 19 for the third) are carried out. The extra
bytes compared to the standard EDHOC implementation in the third message
come from the additional signature of knowledge.

Table 2, in Appendix C, shows the time measurements for both micro-
controllers. “Software LIKE” corresponds to a software-based implementation,
with all cryptographic operations performed in software, without any hardware
acceleration. “Hardware LIKE” corresponds to a hardware-accelerated imple-
mentation where elliptic curve operations (point addition and point multiplica-
tion), field operations (modular multiplication and modular addition) and hash
operations are performed using hardware acceleration.

Table 2 shows that the implementation of LIKE comes with a significant
overhead, mainly due to the expensive ECC point multiplications and additions
which figure in the SoK. We note an (expected) effect of the clock frequency and
processor architecture on performance: the software-based implementation on
Cortex M4F is comparable with the hardware-based implementation on Cortex
M33. Finally, we observe that hardware acceleration substantially reduces the ex-
ecution time differences observed between base EDHOC and LI-EDHOC for the
Cortex M33 device, making lawful-interception more practical for deployment in
constrained devices. Future iterations of this implementation could implement
hardware acceleration as well in the nRF52840 (Cortex M4F) to further improve
performance and reduce computation times.

Moreover, it would be interesting to run future experiments on hardware
dedicated for ECC computations, such as [14]. Finally note that, whereas static
authentication requires a lengthy signature of knowledge, complexity drops for
authentication methods relying only on ephemeral secrets (i.e., where peers use
signatures to authenticate).

7 Conclusion
Mobile environments come with a compulsory Lawful Interception (LI) clause
for mobile network operators (MNOs). Naïve LI, however, is intrusive, essen-
tially forcing the operator to eavesdrop on all communications. Our work pro-
vides fine-grained, session-specific LI for the complex EDHOC protocol, which
is being standardized for mobile use in the LAKE IETF working group. Our
LI-EDHOC scheme provably guarantees key-security, non-frameability, and a
proof of LI key-recovery for EDHOC’s 4 authentication methods, while pre-
serving identity-protection and explicit authentication. Evaluations on two dif-
ferent ARM Cortex-M platforms, show that our protocol remains efficient in
constrained environments, especially when the signatures of knowledge benefit
from hardware acceleration. Even better performances are likely to be obtained
for signature-based authentication methods, or if the processor were optimized
for ECC computations.
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A NIPoK/SoK instantiation

We present here the instantiation of the SoK used in method 3, i.e., the one
we implemented, and describe how to adapt it to method 2 (presented in the
core of the paper). LI-EDHOC in method 3 requires, for the SoK, a proof of
knowledge of the equality of three discrete logarithms, and of the equality of
two other discrete logarithms, in order to certify that the elements Hd, H1

d and
H2

d are well formed. We consider a hash function HSoK : G × {0, 1}∗ → Z∗
p

modeled as a random oracle. We use the following instantiation for the Initiator
SoK. The Initiator has witnesses x and i to the statement stmI =

[
X = gx ∧

HI = (hIg
y)x ∧ H1

I = (hIg
r)x ∧ X1 = gi ∧ H2

I = (hIg
y)i

]
, and will sign message

mI = ωI∥IDR∥TH2∥TH3∥TH4. The Initiator runs the SoK algorithm as follows and
when he checks niI, the proxy ProxI runs the SoKver algorithm.

https://hal.science/hal-05126079
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SoK(mI, (x, i), stmI): Pick random rI, sI ←$ Z∗
p. Compute I1 ← grI , I2 ←(

hIg
y
)rI , I3 ←

(
hIg

r
)rI , I4 ← gsI , I5 ←

(
hIg

y
)sI , αI ← HSoK(I1I2I3I4I5,mI),

βI ← rI − αIx (mod p) and γI ← sI − αIi (mod p). Return niI = (αI, βI, γI).
SoKver(mI, stmI, niI): Compute I ′1 ← gβI(gx)αI , I ′2 ← (hIg

y)βI(hxI g
xy)αI =

(hIg
y)βI(HI)

αI , I ′3 ← (hIg
r)βI(hxI g

xr)αI = (hIg
r)βI(H1

I )
αI , I ′4 ← gγI(gi)αI and I ′5 ←

(hIg
y)γI(hiIg

iy)αI = (hIg
y)γI(H2

I )
αI . Return 1 if αI = HSoK(I

′
1I

′
2I

′
3I

′
4I

′
5, ωI), else

return 0.
On their side, the Responder and his proxy ProxR work with the statement

stmR =
[
Y = gy ∧ HR = (hRg

x)y ∧ H1
R = (hRg

i)y ∧ Y1 = gr ∧ H2
R = (hRg

x)r
]
, the

witnesses y and r, and the message mR = ωR∥IDI∥TH2∥TH3∥TH4. The SoK and
SoKver algorithms work in the same way.

In authentication method 2, this SoK is the same on the Initiator side, see
Figure 4. On the Responder side, however, the SoK is less computationally ex-
pensive, as the Responder proves the equality of two discrete logarithms instead
of three, omitting thus the Responder-side equivalents of I4 and I5.

B Further properties: identity-protection

Identity-Protection was defined in [8] and tailored to the EDHOC protocol. We
slightly modify this game in order to tailor it to our modification of EDHOC. We
prove that our protocol preserves the following two properties also achieved by
the original scheme: that the Initiator’s identity is hidden by encryption against
an active attacker; and that the Responder’s identity is also hidden by encryption
against a passive attacker.

C Additional figures and tables

Operation Cortex M4F @ 64
MHz

Cortex M33 @ 32 MHz

SW
LIKE

SW
base

SW
LIKE

SW
base

HW
LIKE

HW
base

Precomputation Phase
Precomputation
(vok_log_auth)

1.8095 - 7.1282 - 0.5798 -

Precomputation (h) 0.0015 - 0.0057 - 0.00005 -

Precomputation (w) 0.0015 - 0.0055 - 0.0009 -

Subtotal 1.8125 - 7.1394 - 0.5808 -

Initiator
Message_1 0.0016 0.0016 0.0062 0.0062 0.0016 0.0016

Message_3 9.1231 2.8495 35.9294 11.2157 4.1256 1.2649

(SoK) (6.2477) - (24.6097) - (2.8484) -

Subtotal 9.1247 2.8511 35.9356 11.2219 4.1272 1.2665
Table 2: LI-EDHOC handshake (LIKE) vs. EDHOC (base) runtime evaluation
(in seconds), for implementations fully run in software (SW) or featuring ECC,

field operations, and hashes that are hardware accelerated (HW).
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ProxI/RRun1(M1)

1 : Parse M1 as (MCS∥gx∥CI∥EAD1)

2 : τI/R ← ωI/R∥MCS∥gx // Initialize τI/τR

3 : return M1

ProxIRun3(M3)

1 : Parse M3 as (c3∥HI∥H1
I ∥niI∥SI)

// Decipher SI and verify transcript hashes

2 : KI ← Dec′′(pcskI,ProxI , SI),parse KI as (sk2∥sk3∥IV3∥t2)
3 : m2 ← Dec(sk2, c2), get IDR, σ2 from m2

4 : TH2 ← H(gy,H(M1)),TH3 ← H(TH2,m2, IDR)

5 : ad3 ← (laead∥“ ”∥TH3),m3 ← Dec′(sk3, IV3, ad3, c3)

6 : TH4 ← H(TH3,m3, IDI)

// Verify SoK and HMAC, update τI

7 : if SoKver(ωI∥IDR∥TH2∥TH3∥TH4, stmI, niI) ̸= 1

8 : or if DS.Verif(spkR, (lsig∥CTX2∥t2), σ2) ̸= 1

9 : then return ⊥
10 : τI ← τI∥gi∥TH2∥TH3∥TH4∥M1∥m2∥m3∥HI∥H1

I ∥niI∥IDR∥t2
11 : return M ′

3 ← c3

ProxIRun4(M
′
4)

1 : Parse M ′
4 as (c4∥nr∥val∥TH5)

2 : if TH5 = H(TH4, val, nr) then return ⊥
// Update and sign τI

3 : τI ← τI∥nr∥val, σI ← DS.Sign(sskProxI , τI)

4 : sstI ← τI∥σI, return M ′′
4 ←M ′

4

ProxI/RRun2(M2)

1 : Parse M2 as (gy∥c2)
2 : τI/R ← τI/R∥gy // Update τI/τR

3 : return M2

ProxRRun3(M4)

1 : Parse M4 as (c4∥nr∥val∥TH5∥HR∥H1
R∥niR∥SR)

// Decipher SR and verify transcript hashes

2 : KR ← Dec′′(pcskR,ProxR , SR)

3 : Parse KR as (sk2∥sk3∥IV3∥t2)
4 : m2 ← Dec(sk2, c2),TH2 ← H(gy,H(M1))

5 : TH3 ← H(TH2,m2, IDR), ad3 ← (laead∥“ ”∥TH3)

6 : m3 ← Dec′(sk3, IV3, ad3, c3), get IDI from m3

7 : TH4 ← H(TH3,m3, IDI)

// Verify SoK and HMAC, update and sign τR

8 : if DS.Verif(spkR, (lsig∥CTX2∥t2), σ2) ̸= 1

9 : then return ⊥
10 : if SoKver(ωR∥IDI∥TH2∥TH3∥TH4, stmR, niR) ̸= 1

11 : then return ⊥
12 : if TH5 ̸= H(TH4, val, nr) then return ⊥
13 : τR ← τR∥gi∥TH2∥TH3∥TH4∥M1∥m2∥m3∥

HR∥H1
R∥niR∥IDI∥t2∥nr∥val

14 : σR ← DS.Sign(sskProxR , τR), sstR ← τR∥σR

15 : return M ′
4 ← (c4∥nr∥val∥TH5)

Fig. 5: Proxies instantiation of the LI-EDHOC protocol with ID = 2.

Fig. 6: Our evaluation setup for the embedded evaluation board
STM32WBA55CG (to the right). We toggle General Purpose Input/Output

pins and record execution times using a logic analyzer (to the left) which runs
on a PC.
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