
How did they design this game? Swish: complexity
and unplayable positions
Antoine Dailly #

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS,
63000 Clermont-Ferrand, France

Pascal Lafourcade #

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS,
63000 Clermont-Ferrand, France

Gaël Marcadet #

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS,
63000 Clermont-Ferrand, France

Abstract
Swish is a competitive pattern recognition card-based game, in which players are trying to find a
valid cards superposition from a set of cards, called a “swish”. By the nature of the game, one may
expect to easily recover the logic of the Swish’s designers. However, no justification appears to
explain the number of cards, of duplicates, but also under which circumstances no player can find
a swish. In this work, we formally investigate Swish. In the commercial version of the game, we
observe that there exist large sets of cards with no swish, and find a construction to generate large
sets of cards without swish. More importantly, in the general case with larger cards, we prove that
Swish is NP-complete.
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1 Introduction

Swish is a pattern recognition card game designed in 2011 by Zvi Shalem and Gali Shimoni
and published by the company ThinkFun [20]. It works as the famous game SET [4, 6, 13],
each player having to find a swish among the 16 cards present on the table before their
opponents do. Swish includes 60 transparent cards where each card contains one points and
one circle, coming in four colors. Players simultaneously try to create a swish by spotting
two or more cards that can be laid on top of one another in some manner so that every point
fits in a circle of the same color as we can see in Figure 1 (no two points or circles can meet).
Create a swish, and you claim the cards used, with new cards then being laid out. Whoever
claims the most cards wins the game.

To play this game, it is important to note that the cards are transparent and can be
rotated or flipped through vertical axial symmetry, horizontal axial symmetry or central
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Figure 1 Swish examples: on the first line a Swish with 2 cards on the left, and a 3 cards Swish.
On the second line a 4 cards Swish and on the last line a 5 cards Swish.

symmetry, as described in Figure 2 where one card card be rotated or flipped in three other
positions.

Figure 2 Example of flipping and rotating a card.

1.1 Swish cards
There are 60 transparent cards in the commercial version of Swish, following a grid structure
of height 4 and width 3. The cards are obtained by placing a point in each of the four
possible positions (accounting for symmetries), and then a circle in each of the other possible
positions. For the points in the left column, the circle can be in 11 positions. For the points
in the middle column, due to axial symmetry, the circle can be in 7 positions. Note that this
only generates 36 cards, but there are 24 cards which are duplicated, reaching a total of 60
cards.

Each position of the grid is associated with a particular color. The colors represent the
position of a point or a circle (blue is for a corner, green for the middle column and the top
and bottom rows, purple for the middle column and the middle rows, orange for the middle
rows and the left and right columns), so they are here to help the player. The game can be
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played with single-colored cards.

We present all 60=16+12+12+10+10 transparent cards of the board game Swish.

Same color cards

First, we have all cards where the circle and the point are of the same color, which appear
twice in the deck (16 cards). These cards exist in double in order to form swish of size 2.

We then have cards where the point and the circle are of different colors.

12 blue point cards

We give all bicolored with a single blue point. The cards on the first row appear twice in the
deck (8 cards) and the ones on the second row appear once (4 cards) for a total of 12 cards.

12 orange point cards

We give all bicolored with a single orange point. The cards on the first row appear twice in
the deck (8 cards) and the ones in the second row appear once (4 cards) for a total of 12
cards.

FUN 2024
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10 purple point cards

We give all bicolored with a single purple point. The first four cards on the left appear twice
in the deck (8 cards) and the two last cards on the right appear once (2 cards) for a total of
10 cards.

10 green point cards

We give all bicolored with a single green point. The first four cards on the left appear twice
in the deck (8 cards) and the two last ones on the right appear once (2 cards) for a total of
10 cards.

1.2 Generalizing Swish
Since the board game Swish is played on cards of height 4 and width 3, it is trivial to find
a large swish among a given set of cards with a brute-force algorithm (even though it can
be difficult for human players). Hence, we propose a generalization of Swish in order to
explore the computational complexity of the game. Creating general version of games is
a standard way of studying their complexity outside of the often small and thus solvable
standard positions, as this was done for SET itself [6, 13], and other commercial games such
as Othello [12], Scrabble [14], Hanabi [2], Kingdomino [16], Backgammon [21], The Crew [18];
but also for already complex games such as Hex [9], Chess [10], Go [15, 19, 22] or Shogi [1].
For more results on the complexity of games, either combinatorial or commercial, and either
standard or generalized, we refer the reader to [3, 5, 7, 11].
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The generalized version of Swish is played on cards of height h and width w. Cards can
have one or several symbols, which can be points or circles. For a given card C and two
integers a and b (with 1 ≤ a ≤ h and 1 ≤ b ≤ w), we denote by C[a][b] the spot in row a

and column b. Other than that, the generalized version is played the exact same way as
the board game version: from a set C of cards, the players try to create a swish, that is, a
subset S ⊆ C such that every point meets a circle, every circle meets a point, and no two
points or two circles meet. The cards can still be flipped or rotated, which can also be seen
as applying axial (vertical or horizontal) or central symmetry.

Since the cards are drawn from the deck at random, the players cannot anticipate what is
going to come next. Hence, we will assume that they will try to maximize their given score
at each round of the game. Thus, the question that we ask is the following: given a set of
cards, can we find a swish that is as large as possible? This optimization question leads to
the following decision problem:

Swish
Instance: A set C of cards, an integer k.
Question: Is there a swish S ⊆ C such that |S| ≥ k?

1.3 Contributions and outline
Our results are twofold. First, in Section 2, we study the computational complexity of Swish.
We begin with the most basic case of Swish, that is, if there is only one symbol per card:

▶ Theorem 1. Swish can be solved in polynomial time if there is one symbol per card.

We then prove that Swish is NP-complete in the general case, even with as few as three
symbols per card. The proof uses an intermediary step through a more constrained variant
of Swish.

▶ Theorem 2. Swish is NP-complete, even if there are at most three symbols per card.

This leaves only the case of two symbols per card open. Then, in the same line as [4],
we study in Section 3 how many cards there can be in a no-swish position, that is, a set
that does not contain any swish. Note that, for the base game, the rules are to play with
a set of 16 cards at a time, implying that this is enough to guarantee finding a swish, but
we found a no-swish position of 28 cards. Furthermore, we construct no-swish positions for
the generalized version of Swish with no duplicate cards, that contain a very high fraction
(depending on the parity of the width and length, roughly half in the worst case) of the total
possible cards.

2 The computational complexity of Swish

We first prove the following result, which covers the most basic case for Swish:

▶ Theorem 1. Swish can be solved in polynomial time if there is one symbol per card.

Proof of Theorem 1. The algorithm is as follows. First, associate the cards by duplicates.
Two cards are duplicates if, after applying an axial or a central symmetry to one of them,
they are identical. For any set of duplicates of size more than 4, remove duplicate cards until
there are exactly 4 of them (this is because no more than 4 duplicates can be used in the
same swish). Then, construct the compatibility graph G: each card C is a vertex, and there is
an edge CiCj if (wlog) there is a point in Ci[a][b] and a circle in Cj [a][b]. Now, we just have
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to find a maximum-size matching M of G; if |M | ≥ k, then we answer YES, otherwise, we
answer NO. Note that this only works since each card has exactly one symbol: once a card
has been paired with another card, it cannot be paired with another card, except through
flipping or rotating it if it has a duplicate.

The algorithm clearly is polynomial-time, since trimming the duplicates can be done in
linear time through a hash table, constructing the compatibility graph takes polynomial time,
and the maximum matching is polynomial-time solvable [8]. ◀

We now focus on the NP-hardness of the generalized version of Swish. We are interested
in minimizing the number of symbols per card, to get closer to the commercial version of
Swish. In order to prove Theorem 2, we are going to go through three intermediary lemmas.
First, we are going to prove that a more constrained variant, Simple-Swish, is NP-complete,
even with at most four symbols per card. Then, we are going to show how to adapt the
reduction in order to have the cards have at most three symbols. Finally, we are going to
reduce Simple-Swish to Swish.

The game Simple-Swish is a restricted variant of Swish. The rules are exactly the
same, except that we fix a top and a left side for the cards, and that we can neither flip nor
rotate them (hence, it is forbidden to apply symmetry to cards). This gives us the following
decision problem:

Simple-Swish
Instance: A set C of cards, an integer k.
Question: Is there a simple-swish S ⊆ C such that |S| ≥ k?

▶ Lemma 3. Simple-Swish is NP-complete, even if there are at most four symbols per card.

Proof. We will reduce from Max-(2,3)-SAT, a restriction of the classical MAX-SAT
problem, which was proved NP-complete in [17].

Max-(2,3)-SAT
Instance: A formula ϕ in CNF such that every clause is of size 2 and every variable appears
in at most 3 clauses, an integer k.
Question: Is there an assignment of the variables such that at least k clauses are verified?

Let ϕ be a Max-(2,3)-SAT formula with n variables x1, . . . , xn and m clauses c1, . . . , cm,
and assume that the variables are ordered within a clause (so each clause has a first variable
and a second variable). We will create a set C of cards the following way. Each card has
height h = max(m, n) and width w = 6 (note that we can assume h≫ 6).

For every variable xi, create the following cards:
A card Xi with a point in Xi[i][1] and a circle in Xi[i][3];
A card Xi with a point in Xi[i][2] and a circle in Xi[i][3].

Those two cards are called the variable cards, which represent the assignment of the
variable xi.
For each variable xi that appears in clauses cj1 , cj2 and cj3 , for each subset J ⊆ {j1, j2, j3}
(including the empty set), create a card Xi,J with a point in Xi,J [i][3] and circles in
Xi,J [j][3] for each j ∈ J .
Those eight cards are called the linkage cards, which represent which clause(s) the variable
xi satisfies.
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For each variable xi that appears positively in clauses cj for j ∈ J (we may have J = ∅),
create a card Xi,c with a circle in Xi,c[i][1] and points in Xi,c[j][4] for each j ∈ J such
that xi is the first variable of cj and in Xi,c[i][5] for each j ∈ J such that xi is the second
variable of cj .
For each variable xi that appears negatively in clauses cj for j ∈ J (we may have J = ∅),
create a card Xi,c with a circle in Xi,c[i][1] and points in Xi,c[j][4] for each j ∈ J such
that xi is the first variable of cj and in Xi,c[i][5] for each j ∈ J such that xi is the second
variable of cj .
Those two cards are called the satisfying cards, which represent the fact that the assignment
of the variable satisfies some clauses it is in.
For each clause cj , create three cards C1

j , C2
j and C1,2

j with a point in C1
j [j][6], C2

j [j][6]
and C1,2

j [j][6], and circles in C1
j [j][4], C2

j [j][5], C1,2
j [j][4] and C1,2

j [j][5].
Those three cards are called the clause cards, which represent the fact that the clause cj

is satisfied by its first, second or both variables.

The set C contains every variable, clause, linkage and satisfying card as described above,
so 12n + 3m cards in total. All those cards have at most four symbols. This reduction is
depicted on Figure 3. Let ℓ = 3n + k. We claim that there is an assignment of the variables
satisfying at least k clauses of ϕ if and only if there is a simple-swish on C of size at least ℓ.
Note that the reduction is clearly polynomial.

(⇒) Assume that there is an assignment of the variables satisfying at least k clauses of ϕ.
We construct the following simple-swish S:

For every variable xi which is assigned as True, add the variable card Xi and the satisfying
card Xi,c to S;
For every variable xi which is assigned as False, add the variable card Xi and the
satisfying card Xi,c to S;
For every variable xi, denote by J the set of indices of clauses that are satisfied by the
assignment of xi (we may have J = ∅), and add the linkage card Xi,J to S;
For every clause cj satisfied by the assignment, add the clause card C1

j (resp. C2
j , C1,2

j )
to S if cj is satisfied by its first (resp. second, both) variable.

It is clear that S is a simple-swish. First, two points and circles cannot meet. Then, every
point meets a circle and every circle meets a point: the point of each variable card meets the
circle of the associated satisfying card, the circle of each variable card meets the point of
the associated linkage card, the point of each satisfying card meets the circles of each clause
card that are satisfied by the given variable, and the point of each satisfied clause card meets
the circle of one of the linkage cards of one of the variables satisfying it. Furthermore, S

contains exactly one variable, one linkage and one satisfying card for each variable, as well
as one clause card for each satisfied clause, and hence |S| ≥ 3n + k = ℓ.

(⇐) Assume that there is a simple-swish S of size at least ℓ. Due to the construction of
the cards, S can contain at most one variable card, one linkage card and one satisfying card
for each variable, as well as at most one clause card for each clause. Hence, there are at least
k clause cards in S. For each variable xi, if Xi ∈ S assign xi as True and if Xi ∈ S assign xi

as False (if none of Xi, Xi is in S, then assign xi as True by default). Now, every clause
card Cj ∈ S can only be there if some variable card Xi (resp. Xi) such that xi ∈ cj (resp.
xi ∈ cj). This implies that, for every clause card Cj ∈ S, at least one of the two variables in
cj will be assigned in such a way that cj will be satisfied. Hence, at least k clauses of ϕ will
be satisfied. ◀
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• •

Variable cards for x1

• •

Variable cards for x2

• • •

Clause cards for c1

• • •

Clause cards for c2

• • •

Clause cards for c3

•
•

•

Satisfying cards for x1

•
•

•

Satisfying cards for x2

• • • • •
. . . . . .

Five of the eight linkage cards for x1

• • • • •. . . . . .

Five of the eight linkage cards for x2

Figure 3 An example of the reduction of Lemma 3, with c1 = (x1∨x2), c2 = (x2∨x1), c3 = (x1∨x2).
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▶ Lemma 4. Simple-Swish is NP-complete, even if there are at most three symbols per
card.
Proof of Lemma 4. Assume that there are n Simple-Swish cards of height h and width w

with at most four symbols per card. We will create 4n cards with at most three symbols per
card. Those cards will be of height h + n and width w (note that we can assume h ̸= w and
h + n ̸= w).

For each card Ci with symbols on Ci[j1][k1], Ci[j2][k2], Ci[j3][k3] and Ci[j4][k4] (including
no symbol), create the four following cards:

C1
i with a point in C1

i [h + i][1], and C1
i [j1][k1] = Ci[j1][k1];

C2
i with a circle in C2

i [h + i][1], a point in C2
i [h + i][2], and C2

i [j2][k2] = Ci[j2][k2];
C3

i with a circle in C3
i [h + i][2], a point in C3

i [h + i][3], and C3
i [j3][k3] = Ci[j3][k3];

C4
i with a circle in C4

i [h + i][3], and C4
i [j4][k4] = Ci[j4][k4].

For (C, k) an instance of Simple-Swish, create a set C ′ of cards as described above, and let
(C ′, 4k) be a new instance of Simple-Swish. Clearly, there is a simple-swish of size at least
k in C if and only if there is a simple-swish of size at least 4k in C ′, and each card in C ′ has
at most three symbols. ◀

▶ Observation 5. The reduction of Lemma 4 can start from cards with at most n symbols,
where n is a constant integer.

We are now ready to prove our main result:
▶ Theorem 2. Swish is NP-complete, even if there are at most three symbols per card.
Proof. We will reduce from Simple-Swish. Let (C, k) be a Simple-Swish position, with C

containing cards of height h and width w with at most three symbols per card. We create
the set C ′ as follows. For every card Ci ∈ C, add to C ′ four cards C1

i , C2
i , C3

i and C4
i of

height 2h and width 2w (the construction assumes that h ̸= w; if h = w, we can adapt it by
adding an empty buffer column in the middle of C1

i , C2
i , C3

i and C4
i ). Set C1

i [a][b] = Ci[a][b]
for a ≤ h and b ≤ w, and no other symbol on C1

i . Set C2
i [a][w + 1− b] = Ci[a][b] for a ≤ h

and b ≤ w, and no other symbol on C2
i . Set C3

i [h + 1− a][b] = Ci[a][b] for a ≤ h and b ≤ w,
and no other symbol on C3

i . Set C4
i [h + 1− a][w + 1− b] = Ci[a][b] for a ≤ h and b ≤ w, and

no other symbol on C4
i . In other words, each of the four cards is divided in four parts, C1

i

contains Ci in the top left, C2
i contains the vertical axial symmetry of Ci in the top right,

C3
i contains the horizontal axial symmetry of Ci in the bottom left, and C4

i contains the
central symmetry of Ci in the bottom right. We now prove that there is a simple-swish of
size at least k in C if and only if there is a swish of size at least 4k in C ′.

(⇒) Let S be a simple-swish of size at least k in C. We construct S′ by taking, for every
card Ci ∈ S, the four cards C1

i , C2
i , C3

i and C4
i . By leaving them in their original position,

we obtain a swish of size at least 4k in C.
(⇐) Let S′ be a swish of size at least 4k in C ′. First, we can assume that every card in S′

is in its original position. Indeed, using symmetry or a rotation on a card Cj
i ∈ C ′ changes it

to another card of C ′ (for instance, using vertical axial symmetry on C2
i gives C4

i ). However,
when there are two identical cards in a set, only one of them can be used in a swish without
using symmetries or rotation. Hence, if a card in S′ was used after a symmetry or a rotation,
then, we can replace it in S′ by the equivalent card with no symmetry or rotation.

Now, there are 4k cards in S′, all in their original positions (i.e., no symmetry or rotation
was applied to any card). Hence, S′ can be subdivided in four subsets S′

1, S′
2, S′

3 and S′
4,

such that S′
j = {Sj

i | Sj
i ∈ S′}. Each of the S′

j ’s is a swish, since the cards in each subset do
not interact with each other by construction. By the pigeonhole principle, at least one of the
sets S′

j is of size at least k. Let S = {Si | Sj
i ∈ S′

j}, S is a swish of size at least k in C. ◀
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3 Swish has large unplayable positions

In Swish, an unplayable position, or no-swish position, is a set of cards where no swish
exists. Large no-swish positions are particularly interesting for Swish, since other games
tend to not have them (in particular, it is well-known that the commercial version of SET
has no unplayable position). In this section, we will be studying no-swish positions for both
the commercial and the generalized version of Swish. We thus focus on cards with exactly
two symbols (one circle and one point). Furthermore, for simplification, we assume that no
card appears twice (accounting for its possible configurations) in the generalized version.

Finding the largest unplayable position for the generalized version is hard, since there
are many possible combinations. However, finding the largest no-swish position for the
commercial version of the game, containing 60 cards (described in the introduction) is a more
achievable challenge. We will present the largest no-swish position of the commercial version
of Swish, before presenting a construction of a large no-swish position for the generalized
version, of which a commercial no-swish position that we found (removing duplicates) is a
direct application.

Note that our analysis holds for rectangular cards, that is, cards where the height and
width differ. Indeed, if the height and width are the same, then there are four more operations
that can be applied to change the configuration of the card, which changes the game.

3.1 Commercial no-swish
First of all, we need to give an algorithmic-friendly representation of Swish, including cards,
rotations but also handling the definition of compatibility between two cards, at the heart
of a swish. By the nature of the game, two cards are said to be compatible if the point of
the first card meets the circle of the second card. Observe that the compatibility between
two cards, generalized to all the cards in Swish, is very close to a directed graph structure,
the nodes of the graph being the cards and the arcs being the compatibility between the
cards. Following this idea of graph structure to represent compatibility between cards, a
swish essentially corresponds to a cycle in the graph, as depicted in Figure 4.

Figure 4 Example of a swish of 3 cards, with explicit compatibility using ordinary directed graph.

At this point, the definition of a swish becomes clearer: A swish is a cycle of length 2 or
higher in a graph (that will be constructed from the compatibility relation), each node of the
cycle representing the card involved in the swish, and each arc of the cycle corresponding to
the compatibility between two consecutive cards. Such a cycle C can be written formally
as the set of traversed nodes or cards c1, . . . , cn, where for each couple of cards ci and ci+1,
there is a directed arc between ci and ci+1 (with cn+1 = c1).

However, this seemingly intuitive graph structure is not sufficient. Recall that in Swish,
a card contains four possible configurations as depicted in Figure 2, and since all four
configurations of the card are modeled as a single node, then a cycle may represent a false
swish: let c1, c2, c3 be three cards where c1 and c2 are compatible with respect to some
configuration r1 and r2, whereas c2 and c3 are compatible with respect to some configuration
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r′
2 and r3 with r2 different from r′

2. Clearly, the cards c1, c2, c3 do not constitute a swish since
a swish is composed of a set of cards and a single configuration for each card composing the
swish. Hence, c1 either matches c2 using configuration r2 or c2 matches c3 using configuration
r′

2, but both statement cannot be achieved using the same configuration for c2.
To fix this issue, we rely on directed hypergraph, rather than ordinary directed graph, as

depicted in Figure 5. This has the following two major modifications: first, four nodes are
used to represent each card, one node for each configuration of the card. For the sake of
clarity, such a node representing the configuration of a card is called a configuration node.
Second, a hyper-node of the hypergraph represents a card including all its configuration
nodes. Said differently, an hyper-node corresponds to a set of exactly four configuration
nodes. We are now ready to focus on the formal hypergraph-based representation of Swish.

Hyper-node

1

1

2

2

3

3

4

4

2 1

3

4

Figure 5 Example of a Swish-focused hypergraph containing 3 cards. Four possible swishs
(identified by numbers on the arcs) are represented.

Formalization of Swish.

In Swish, a card ci is defined by the position of the point and the circle, and a card has
four possible configurations, denoted by {ri,1, ri,2, ri,3, ri,4}. Remark that among these
configuration nodes, one of them is isomorphic to ci. In order to be agnostic of the
card representation, we denote by D the domain in which a configuration node ri,j is
represented. To obtain information on the compatibility between configuration nodes, we
define a Match : D ×D 7→ {true, false} algorithm allowing us to identify if two configuration
nodes ri,j and ri′,j′ match, meaning that the point in ri,j meets the circle in ri′,j′ . Obviously,
the exact definition of the Match algorithm highly depends on the representation of the
configuration node space D. We also define two configuration node manipulation algorithms
FlipLeft : D 7→ D and FlipUp : D 7→ D, allowing respectively to apply axial symmetries to a
configuration node on the left-side and on the up-side, respectively. Observe that the set of
four configuration nodes {ri,1, ri,2, ri,3, ri,4} derived from the same card ci, can be rewritten
as {ri,1, FlipLeft(ri,1), FlipUp(ri,1), FlipLeft(FlipUp(ri,1))} with ri,1 = ci.

We define a Swish-focused hypergraph G = (V, E , m) as follow:
The set V ⊆ D corresponds to the set of configuration nodes ri,j associated to the j-th
configuration of the card ci.

FUN 2024
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The set E ⊆ V × V corresponds to the set of compatibility between configuration nodes,
where each e ∈ E , described as the couple (ri,j , ri′,j′) ∈ V × V, must be read as the point
of the j-th rotation of the card ci meets the circle of the j′-th rotation of the card ci′ .
An additional mapping function m : V 7→ N which maps a configuration node ri,t to an
identifier in N. We implement m such that for a configuration node ri,j , the mapping
function m outputs i. We rely on this mapping function to identify if two configuration
nodes ri,j and ri′,j′ are representing the same card, by testing whether m(ri,j) = m(ri′,j′).
Transposing a set of cards C = {c1, . . . , cn} into a Swish-focused hypergraph can be

achieved as follow: for each card ci ∈ C, denote all four possible configurations of ci by
ri,1, ri,2, ri,3 and ri,4. The set of arcs E of the hypergraph can easily be computed by adding,
for two configuration nodes ri,j and ri′,j′ , the arc (ri,j , ri′,j′) in E if Match(ri,j , ri′,j′) returns
true. The mapping function is used in our representation to limit the use of each card at
most once, by restricting the evaluation of m(ri,j) for every configuration node ri,j ∈ V to
return i. Observe that at most four configuration nodes can produce the same identifier i ∈ N,
since a card as at most four possible configurations. These configuration nodes associated
with the same identifier compose what we call a hypernode. In the following, we denote by
ConstructHGraph the algorithm which, from a given set of cards C, outputs the associated
Swish-focused hypergraph G = (V, E , m), working as explained above. By construction,
the ConstructHGraph algorithm has an asymptotic complexity of O(|C|2), since we have to
execute the Match algorithm for every distinct configuration nodes ri,j and ri′,j′ .

Finding a swish in such hypergraph remains very similar to searching a cycle in an
ordinary graph: in a cycle with nodes r1,j1 , . . . , rn,jn , the point of each configuration node
ri,ji

has to meet the circle in ri+1,ji+1 , which can be checked by testing Match(ri,ji
, ri+1,ji+1).

The only one additional constraint is that the set of configuration nodes r1,j1 , . . . , rn,jn

contained in the cycle has to respect the condition that for all i, i′ ∈ {1, . . . , n} with i ̸= i′,
we have m(ri,ji) ̸= m(ri′,ji′ ), ensuring the cycle to traverse each hyper-node at most once
and hence preventing the use of the same card several times.

Computation of large no-swish positions.

Thanks to the ConstructHGraph algorithm, we are able to define the NoSwishSet algorithm
which, given a set of cards C = {c1, . . . , cn}, outputs a subset C′ ⊆ C where C′ contains no
swish of any length. Following the hypergraph modelization, deciding if a given set of cards
does not contain any swish can be trivially formalized as HasNoSwish(C) = ¬HasSwish(C),
which must be read as “check if the given set of cards contains a swish and return the negation
of the result”. To verify if a set of cards C contains a swish, the set of cards will be encoded
as a Swish-focused hypergraph, since the behavior of HasSwish is to decide if there exists
some cycle in the hypergraph visiting at most once (and possibly not) each hypernode. In the
following, we denote by FindCycle the algorithm which, given a Swish-focused hypergraph
G = (V, E , m) and a starting configuration node ri,j ∈ V used to start the cycle search,
outputs a cycle C respecting the above conditions, or ⊥ if no cycle can be found.

Let us explain the internal behavior of HasSwish, taking as an input a set of cards C. First,
the algorithm constructs the Swish-focused hypergraph G ← ConstructHGraph(C) where
G = (V, E , m). Then, since we do not know in advance a configuration node being in a
cycle (if one exists), we have to test every configuration node of the G as the starting point
for a cycle, leading to repeat the FindCycle algorithm |V| times. If, for every configuration
node, no cycle can be found, then it is clear that no swish exists and hence HasSwish returns
⊥. Otherwise, one cycle has been found and we end the algorithm by returning ⊤. The
asymptotic complexity of HasSwish is O(|V|2 + |V| · (|V|+ |E|)) = O(|V|2 + |V| · |E|).
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Since HasNoSwish simply negates the output of HasSwish, then the HasNoSwish algorithm
has a quadratic asymptotic complexity. However, our problem is not limited to find a swish,
but rather to find a subset C′ of the set C such that C′ does not contain any swish. Since we
are working on the commercial version of Swish, which has 60 cards in total, we can use the
naive approach consisting of checking for each possible subset C′ of C if it contains a swish,
and exclude this subset if it is the case. This exhaustive search is implemented in practice
by using divide-and-conquer: a recursive algorithm taking as parameters a current set of
cards C and the set of remaining cards R, first extracts from R a card c and calls itself a
first time with the parameters C ∪ {c} and R\ {c}, and a second time with the parameters C
and R \ {c}. When the set R is empty, then the algorithm runs HasNoSwish(C) and returns
the set {C} if it does not contain any swish, and returns ⊥ otherwise.

Furthermore, we are able to optimize the no-swish set search using the following heuristic:
suppose that C is a set of cards such that HasNoSwish(C) fails, meaning that C contains
a swish. Then, for any set of cards C′, the execution of HasNoSwish(C ∪ C′) also fails.
This remark holds since adding a card in the set of cards C is the same as inserting new
configuration nodes and arcs in the hypergraph. As a result, possibly one or more swish are
created, but certainly do not delete any exisiting swish (i.e., cycle) from the hypergraph.
We take advantage of this remark to prune the recursive call tree, by checking during the
recursion if C contains a swish, and halt the recursion if a swish is detected.

Results.

With our algorithm, we have obtained a largest no-swish position containing 28 cards, which
is close to half the number of cards in the commercial version of Swish. This no-swish
position is depicted in Figure 6. Note that it contains duplicates.

Figure 6 No-swish set of cards.
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3.2 Generalized no-swish
We begin by focusing on rectangular cards. The basis of our method consists in dividing
the cards in four quarters. For one quarter, we fix a point in some position. We then lock
its four symmetric positions in the other quarters. This defines a "cross" in the middle of
the card, cornered by the four locks. We then generate one card by position in this cross,
with a circle in each. Finally, we add one circle on two of the three locks, generating two
more cards. For the odd width and height cases, we also have to manage the middle row and
column independently. We will, for each possible parity of height and width, give the total
number of cards; then explain our strategy to create a large no-swish set, and compute the
ratio between those two numbers.

Subdivision of the cards into quarters.

We assume that the cards are rectangular. Each card is divided in four quarters, each of size
hw. If h or w is odd, then, there is an additional row or column in-between the quarters.
The top left quarter is denoted by Q1, the top right by Q2, the bottom left by Q3 and the
bottom right by Q4. Note that there is a bijection between the coordinates (a, b) in Q1 and
the set {1, . . . , hw}, with i = (a− 1)w + b.

Even-even cards.

Assume first that the cards have width 2w and height 2h. The set T containing all possible
cards has size:

|T | =
hw∑
i=1

(4hw − 1) = 4(hw)2 − hw.

We construct the following set S of cards. For each i ∈ {1, . . . , hw} with i = (a− 1)w + b,
we create the 4(hw − i) + 2 following cards, all with a point in C[a][b]:

For each j ∈ {i + 1, . . . , hw} with j = (c− 1)w + d, we create four cards, one with a circle
in C[c][d] (so in Q1), one with a circle in C[c][2w + 1− d] (so in Q2), one with a circle in
C[2h + 1− c][d] (so in Q3), and one with a circle in C[2h + 1− c][2w + 1− d] (so in Q4);
We create two additional cards, one with a circle in C[c][2w + 1− d] and one with a circle
in C[2h + 1− a][d].

It is easy to see that S is a no-swish set. Indeed, to create a swish using a card created at
step i = (a− 1)w + b, one cannot use any card created at step i′ > i, since none of them has
a circle in (a, b), even using the symmetries. Furthermore, there is no swish using only cards
created at step i, since there are only three of them meeting in (a, b) after some symmetries,
but they do not form a swish, and thus leave an uncovered point in (a, b). Hence, a swish
using such a card would need to use cards from some step i′ < i, but doing so will again
leave an uncovered point, which will need to be covered using a card from some step i′′ < i′,
and so on until we reach step 1, for which no card can cover the point in the corner.

The construction of S is depicted on Figure 7. Let us now evaluate its size:

|S| =
hw∑
i=1

(4(hw − i) + 2) = 2(hw)2.

Hence, the ratio |S|
|T | tends to 1

2 when h and w tend to infinity, so we constructed a no-swish
set containing roughly half of the possible cards.
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h

w

Q1 Q2

Q3 Q4

• +

+ x

Figure 7 Construction of a no-swish set for even-even cards. We place a point in the dotted
position, and one card for each possible circle in the area filled with lines, as well as two cards with
circles in the two positions with a +. We repeat this for every position in Q1.

Even-odd cards.

Assume now that the cards have width 2w + 1 and height 2h. The set T containing all
possible cards has size:

|T | =
hw∑
i=1

(2h(2w + 1)− 1) +
h∑

i=1
(2hw + 2h− 1) = 2h2(2w2 + 2w + 1)− h(w + 1).

Note that this coincides with the described cards of the commercial version of Swish.
We construct the following set S of cards. For each i ∈ {1, . . . , hw} with i = (a− 1)w + b,

we create the 4(hw − i) + 2(h + 1− i) + 2 following cards, all with a point in C[a][b]:
For each j ∈ {i + 1, . . . , hw} with j = (c− 1)w + d, we create four cards, one with a circle
in C[c][d] (so in Q1), one with a circle in C[c][2w + 2− d] (so in Q2), one with a circle in
C[2h + 1− c][d] (so in Q3), and one with a circle in C[2h + 1− c][2w + 2− d] (so in Q4);
For each j ∈ {a, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one
with a circle in C[2h + 1− j][w + 1] (so both circles are in the middle column);
We create two additional cards, one with a circle in C[c][2w + 2− d] and one with a circle
in C[2h + 1− a][d].

Furthermore, for each i ∈ {1, . . . , h}, we create the 2(hw−wi) + 2(h− i) + 1 following cards,
all with a point in C[i][w + 1]:

For each j ∈ {i + 1, . . . , h} and k ∈ {1, . . . , w}, we create two cards, one with a circle in
C[j][k] (so in Q1) and one with a circle in C[2h + 1− j][k] (so in Q3);
For each j ∈ {i + 1, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one
with a circle in C[2h + 1− k][w + 1] (so both circles are in the middle column);
We create one additional card with a circle in C[2h + 1− i][w + 1].

Again, it is easy to see that S is a no-swish set (the proof follows the same arguments as
above).

The construction of S is depicted on Figure 8. Let us now evaluate its size:

|S| =
hw∑
i=1

(4(hw − i) + 2(h + 1− i) + 2)+
h∑

i=1
(2(hw − wi) + 2(h− i) + 1) = h2(w2+3w+1).
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h

w

Q1 Q2

Q3 Q4

• +

+ x

(a) We place a point in the dotted position, and
one card for each possible circle in the area filled
with lines, as well as two cards with circles in
the two positions with a +. We repeat this for
every position in Q1.

h

w

Q1 Q2

Q3 Q4

•

+

(b) We place a point in the dotted position, and
one card for each possible circle in the area filled
with lines, as well as one card with a circle in
the position with a +. We repeat this for every
position in the first half of the middle column.

Figure 8 Construction of a no-swish set for even-odd cards. There are two sub-constructions.

Note that, by using h = 2 and w = 1, we obtain |S| = 20, which corresponds to the optimal
no-swish position found by the NoSwishSet algorithm on the commercial version of Swish
(excluding duplicates). Hence, the ratio |S|

|T | tends to 1
4 when h and w tend to infinity, so we

constructed a no-swish set containing roughly a quarter of the possible cards.

Odd-odd cards.

Assume finally that the cards have width 2w + 1 and height 2h + 1. The set T containing all
possible cards has size:

|T | =
hw∑
i=1

((2h + 1)(2w + 1)− 1) +
h∑

i=1
((2h + 1)w + 2h)

+
w∑

i=1
(h(2w + 1) + 2w) + wh + w + h

= 4(hw)2 + hw(4w + 4h + 3) + h(2h + 1) + w(2w + 1).

We construct the following set S of cards. For each i ∈ {1, . . . , hw} with i = (a− 1)w + b,
we create the 4(hw − i) + 2(h + 1− i) + 2w + 3 following cards, all with a point in C[a][b]:

For each j ∈ {i + 1, . . . , hw} with j = (c− 1)w + d, we create four cards, one with a circle
in C[c][d] (so in Q1), one with a circle in C[c][2w + 2− d] (so in Q2), one with a circle in
C[2h + 2− c][d] (so in Q3), and one with a circle in C[2h + 2− c][2w + 2− d] (so in Q4);
For each j ∈ {a, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one
with a circle in C[2h + 2− j][w + 1] (so both circles are in the middle column);
For each j ∈ {1, . . . , 2w + 1}, we create one card with a circle in C[h + 1][j] (so the circle
is in the middle row);
We create two additional cards, one with a circle in C[c][2w + 2− d] and one with a circle
in C[2h + 2− a][d].
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h

w

Q1 Q2

Q3 Q4

• +

+ x

(a) We place a point in the
dotted position, and one card
for each possible circle in the
area filled with lines, as well as
two cards with circles in the two
positions with a +. We repeat
this for every position in Q1.

h

w

Q1 Q2

Q3 Q4

•

+

(b) We place a point in the
dotted position, and one card for
each possible circle in the area
filled with lines, as well as one
card with a circle in the position
with a +. We repeat this for
every position in the first half of
the middle column.

h

w

Q1 Q2

Q3 Q4

• +

(c) We place a point in the
dotted position, and one card for
each possible circle in the area
filled with lines, as well as one
card with a circle in the position
with a +. We repeat this for
every position in the first half of
the middle row.

Figure 9 Construction of a no-swish set for odd-odd cards. There are three sub-constructions.

Furthermore, for each i ∈ {1, . . . , h}, we create the 2(hw − wi) + 2(h− i) + w + 2 following
cards, all with a point in C[i][w + 1]:

For each j ∈ {i + 1, . . . , h} and k ∈ {1, . . . , w}, we create two cards, one with a circle in
C[j][k] (so in Q1) and one with a circle in C[2h + 2− j][k] (so in Q3);
For each j ∈ {i + 1, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one
with a circle in C[2h + 2− k][w + 1] (so both circles are in the middle column);
For each j ∈ {1, . . . , w + 1}, we create one card with a circle in C[h + 1][j] (so the circle
is in the middle row);
We create one additional card with a circle in C[2h + 2− i][w + 1].

Finally, for each i ∈ {1, . . . , w}, we create the 2(w − i) + 2 following cards, all with a point
in C[h + 1][i]:

For each j ∈ {i + 1, w}, we wreate two cards, one with a circle in C[h + 1][j] and one
with a circle in C[h + 1][2h + 2− j] (so both circles are in the middle row);
We create two additional cards, one with a circle in C[h + 1][2w + 2− i] and one with a
circle in C[h + 1][w + 1].

Again, using the same argument as above, S is a no-swish set.
The construction of S is depicted on Figure 9. Let us now evaluate its size:

|S| =
hw∑
i=1

(4(hw − i) + 2(h + 1− i) + 2w + 3) +
h∑

i=1
(2(hw − wi) + 2(h− i) + w + 2)

+
w∑

i=1
(2(w − i) + 2)

= hw(hw + 3h + 2w + 2) + h(h + 1) + w(w + 1).

Hence, the ratio |S|
|T | tends to 1

4 when h and w tend to infinity, so we constructed a no-swish
set containing roughly a quarter of the possible cards.
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3.3 Large no-swish positions
In the above subsection, we presented how to construct large no-swish positions for the
general version of Swish with rectangular cards, up to half the total number of cards for
the even-even case. Note that the even-odd construction does give a set of the maximum
possible size for the commercial version, as found with the NoSwishSet algorithm. However,
we only know that those positions are maximal (i.e., adding any card creates a swish), not
whether they are of maximum size. Since they do contain a very high ratio of all possible
cards, we conjecture that our method is optimal, in that no no-swish set of a size highest
than the ones we construct can exist.

Furthermore, note that the case where h = w is still open, but that in this case no-swish
positions should be of a smaller size, since more rotations and symmetries can be applied to
the cards, and thus it is easier to create a swish. We leave this case for future consideration.

4 Conclusion & Open Problems

In this work, we initiated a study of Swish and showed interesting properties. First,
by studying Swish with cards of arbitrary size with three or more symbols, we proved
that the complexity of finding a swish is NP-complete. Then, we proposed two distinct
algorithms to find large no-swish positions: an exponential algorithm to find the largest set
of commercial cards (i.e., cards of original game Swish), finding a large set of 28 cards, but
also a polynomial-time algorithm to construct a set of arbitrarily sized, rectangular cards
having two symbols, returning almost half of the possible set of cards.

Some questions remains unanswered, that we leave as open problems. The complexity
of solving Swish, being shown to be polynomial for cards of one symbol and NP-complete
for cards with three symbols, remains unclear for cards having 2 symbols. In addition, the
optimality of the returned no-swish positions using our algorithm for the generalized Swish
has not been proven and it remains open whether or not it is possible to find a larger no-swish
set. As an independent topic of interest, we still hardly understand how the game has been
constructed, in particular the motivation to duplicate some cards and not others.
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