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Abstract
Akari, Takuzu, Kakuro and KenKen are logic games similar to Sudoku. In Akari, a labyrinth on
a grid has to be lit by placing lanterns, respecting various constraints. In Takuzu a grid has to
be filled with 0’s and 1’s, while respecting certain constraints. In Kakuro a grid has to be filled
with numbers such that the sums per row and column match given values; similarly in KenKen
a grid has to be filled with numbers such that in given areas the product, sum, difference or
quotient equals a given value. We give physical algorithms to realize zero-knowledge proofs for
these games which allow a player to show that he knows a solution without revealing it. These
interactive proofs can be realized with simple office material as they only rely on cards and
envelopes. Moreover, we formalize our algorithms and prove their security.
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1 Introduction

Akira and Totoro, close friends and both great fans of logical games, decide to challenge
each other on their favorite games. Akira is an expert in Akari, and Totoro is a specialist
of Takuzu. Each one proposes a grid of his favorite game to the other one as a challenge.
However, as both are extremely competitive, they choose grids that are so difficult that the
other is not able to solve them, as they are less experienced in the other game. Totoro,
working in security, immediately supposes that something went wrong, and wants a proof
from Akira that his grid actually has a solution. Akira, feeling hurt by this distrust, directly
asks Totoro the same question. Obviously both of them do not want to reveal the solution,
as this would render the challenge pointless. So they decide to ask Ken, a common friend,
for help. However, Ken, a grand master of KenKen, has the same problem. He and his best
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friend Kakarotto exchanged challenges for KenKen and Kakuro, and want to show each other
that they know the solution without revealing it. But then Kakarotto has the idea to ask
Cobra, a computer scientist and cryptographer and common friend, for help. Cobra directly
sees a solution: a zero knowledge proof of knowledge of the solution (ZKP). A ZKP is a
protocol that allows a prover P to convince a verifier V that he knows some solution s to
the instance I of a problem P, without revealing any information about s. Such a protocol
satisfies three properties1:
Completeness: If P knows s, then he is able to convince V .
Soundness: If P does not know s, then he is not able to convince V except with some “small”

probability2.
Zero-knowledge: V learns nothing about s except I, i.e. there exists a probabilistic polyno-

mial time algorithm Sim(I) (called the simulator) such that outputs of the real protocol
and outputs of Sim(I) follow the same probability distribution.

Yet, ZKPs are usually executed by computers, which Totoro (a very skeptical security expert)
does not trust. However, Cobra is still able to help them, by inventing a ZPK that relies only
on physical objects such as cards and envelopes. In this paper, we present Cobra’s solution
to Akira’s, Totoro’s, Ken’s and Kakarotto’s dilemma.

Contributions: We construct physical ZKP for Akari, Kakuro, KenKen and Takuzu.
For Akari, our ZKP construction uses special cards and envelopes. Moreover, the prover
needs to interact with the verifier to construct the proof.
For Takuzu, we propose an interactive construction using cards, paper and envelopes.
For Kakuro, we use red and black cards and envelopes to implement an addition operation.
For KenKen, we also rely on red and black cards and envelopes, but the interactive proof
is more complex due to the different operations (sum, difference, product, quotient).

We also prove the security of our constructions.

Related Work: Sudoku, introduced under this name in 1986 by the Japanese puzzle
company Nikoli, and similar games such as Akari, Takuzu, Kakuro and Ken-Ken have gained
immense popularity in recent years. Following the success of Sudoku, generalizations such
as Mojidoku which uses letters instead of digits, and other similar logic puzzles like Hitori,
Masyu, Futoshiki, Hashiwokakero, or Nurikabe were developed. Many of them have been
proved to be NP-complete [12, 5].

Interactive ZKPs were introduced by Goldwasser et al. [8], and it was then shown that
for any NP-complete problem there exists an interactive ZKP protocol [7]. An extension
by Ben-Or et al. [1] showed that every provable statement can be proved in zero-knowledge.
They also showed that physical protocols using envelopes exist, yet their construction is –
due to its generality – rather involved an often impractical for real problem instances. Proofs
can also be non-interactive in the sense that the prover and verifier do not need to interact
during the protocol [3]. For more background on ZKPs see for example [15].

As ZKPs have always been difficult to explain, there are works on how to explain the
concepts to non experts, partly using physical protocols as illustrations. For example, in
their famous paper [18], Quisquater et al. propose “Ali Bababa’s cave” as a tool to explain

1 Moreover, if P is NP-complete, then the ZKP should be polynomial. Otherwise it might be easier to
find a solution than proving that a solution is a correct solution, making the proof pointless.

2 More precisely, we want a negligible probability, i.e., the probability should be a function f of a security
parameter K (for example the number of repetitions of the protocol) such that f is negligible, that is for
every polynomial P , there exists n0 > 0 such that ∀ x > n0, f(x) < 1/P (x).
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Zero-Knowledge Proof to kids. In [20], ZKP’s are illustrated using a magician that can count
the number of sand grains in a heap of sand. Naor et al. used the well-known “Where’s
Waldo?” cartoons to explain the concept of ZKP to kids, and also proposed an efficient
physical protocol for the problem in [17].

In 2007, the same authors proposed a ZKP for Sudoku using cards [9], which partly
inspired Cobra’s solution in our paper. This was later extended for Hanjie [4].

As in [9], we here also assume an abstract shuffle functionality which is essentially an
indistinguishable shuffle of a set of sealed envelopes or of face down cards. This functionality
is necessary to prevent information leakage, and cannot be realized neither by the verifier
nor the prover. The verifier cannot perform this action, as otherwise he could be perform a
shuffle that is not random, and break zero-knowledge. Moreover, in a physical protocol the
prover cannot perform this action either, as he might be able to tamper with the packets at
this step, similar to a magician performing a card trick. A possible realization would be to
rely on a trusted third party (Cobra for instance), or trying to ensure that the prover cannot
mess with the cards.

Moreover, there is work on implementing cryptographic protocols using physical objects,
for example in [16], where the authors use cards to perform multi-party computations, or
in [6] where a physical secure auction protocol is proposed.

Outline: For all games, we first present the rules followed by our ZKP construction and
then the security analysis. In Section 2, we present Akari, in Section 3, Takuzu, in Section 4
Kakuro, and in Section 5 KenKen. In Section 6, we conclude the paper.

2 Akari

Akari is a logic puzzle first published in 2001 by Nikoli, a Japanese games and logic puzzles
publisher. It is also called Light up3. The goal of the game is to illuminate all the cells of a
rectangular grid by placing some lights. The lights illuminate horizontally and vertically all
adjacent white cells. The grid also contains black cells, which represent walls that the light
cannot cross. Some black cells can contain an integer between 0 and 4. To illuminate all the
cells, lights have to be added in the white cells according to the following constraints:
1. Two lights cannot illuminate each other.
2. The number in a black cell indicates how many lights are present in the adjacent white

cells, i.e., in the white cells directly above, below, left and right of the number.
3. All the white cells are illuminated by at least one light.
In Figure 1, we give a simple example of an Akari game. It is easy to verify that the three
constraints are satisfied, but solving Akari was shown to be NP-complete via a reduction
from Circuit-SAT [14].

2.1 ZKP Construction for Akari
Our aim is to give a ZKP proof such that Akira, the prover denoted by P , proves to Totoro,
the verifier denoted by V , that he knows a solution of a given Akari grid G. We assume that
the grid is printed on a sheet of paper, and that we can use a shuffle functionality. We use
two kinds of cards to model the fact that there is one light or not in one cell of the solution.
The symbol © represents the presence of a light, and an empty card the absence of a light.

3 https://en.wikipedia.org/wiki/Light_Up_(puzzle)
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Figure 1 Example of an Akari grid and its solution.
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Figure 2 Illustrations for steps 1 to 3 in the Akari ZKP construction. From left to right: Step
1: two cards added on all white cells. Step 2: cards added around black cells with number. Step
3: cards added per cell as a function of adjacent cells.

Setup: According to his solution, the prover P places, face down on each white cell, ©
cards when there is a light, and empty cards when there is none. Note that all the cards in
the packet on the same cell are thus identical. Placing the cards happens in three phases:
1. In all white cells, P adds 2 cards face down (first illustration in Figure 2).
2. P adds an additional card for all white cells adjacent to a black cell that contains a

number. For instance, in the second illustration in Figure 2, for the black cell containing
the number 4, P adds one card in all positions with a grey background, and similarly for
the black cells containing 0 and 2.

3. Finally, for each white cell in the grid, P places a card on the cell and all horizontally
and vertically adjacent white cells. The third illustration in Figure 2 shows this for the
top left cell: P adds a card to the cell itself, and to the six adjacent cells (all marked in
grey, two below and four to the right). This has to be done for all white cells.

4. The same three steps are repeated once more to build a dual second grid, i.e., a grid
where all empty cards are replaced by light cards and vice-versa.

At the end of the algorithm, P has added multiple cards face down on each cell of the grid
G and its dual grid Ĝ.

Verification: To check the correctness of the solution, the verifier picks a random bit c in
{0, 1} and executes the following verifications:
if c = 0: For each cell of the grid G the verifier places the packet of cards in an envelope,

then he does the same for each cell of grid Ĝ. He shuffles the envelopes using the shuffle
functionality, and then opens each envelope to check whether it contains only light cards
or only empty cards. With this he is sure that all the cards on a given cell were identical.

if c = 1: The verifier discards all the cards on the dual grid Ĝ and checks whether the 3
constraints that a solution should satisfy are respected using the cards on the grid G:
1. No two lights see each other: For each row or column of adjacent white cells, V

randomly picks one card per cell to form a packet. Then V passes the cards to the
shuffle functionality who shuffles them, and passes them on to P . If all cards are empty
cards then P adds a © card, otherwise he adds an empty card. P returns the cards,
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once again shuffled, to V , who checks that there is exactly one light card in the packet.
2. Black cells: For each black cell that contains a number l, V picks one card in all

adjacent cells and gives them to the shuffle functionality. He then looks at the cards
and checks that the number l corresponds to the number of © cards. In second
illustration of Figure 2, a card from all grey cells has to be collected to verify the black
cell containing the number 4.

3. All cells are illuminated: For each cell, V picks one card from the cell plus one
card from all horizontally and vertically adjacent white cells (for example, for the
top left cell in Figure 2, he takes one card from all grey cells). V passes all collected
cards face down to P . If there are two light cards in the received cards, then P adds
one empty card, otherwise he adds one © card. P passes the cards to the shuffle
functionality, and returns them to V . Then V opens the cards and checks that there
is exactly two light cards in the packet.

This protocol is repeated K times where K is a chosen security parameter. Note that the
number of cards to place on the grid and the number of verification steps is polynomial in
the size of the grid, making our ZKP polynomial both for the prover and the verifier.

2.2 Security Proofs for Akari
We now prove the security of our construction.

I Lemma 1 (Akari Completeness). If P knows a solution of a given Akari grid, then he is
able to convince V .

Proof. If P knows the solution of an Akari grid, he can place the cards on the grids (G
and Ĝ) following our ZKP algorithm. Then on each cell of both grids there is a packet of
identical cards, showing either nothing or a light, depending on whether there is a light in
the solution. The verifier picks c among {0, 1}.
if c = 0: The verifier V puts each packet on each cell for the two grids into envelopes and

shuffles them. Since all the packets on cells on both grids contain the same kind of card,
the verifier accepts.

if c = 1: In the following, when taking a card from a cell, the verifier V randomly picks one
card among all the cards in that cell. This has no effect when the prover is honest since
all of them are identical. Using these cards, the verifier checks the three properties that a
solution should satisfy.

To check that two lights cannot see each other, for all lines and columns the verifier
takes one card from each cell inside the line or column and asks the prover to add one
extra card. The resulting selection is then shuffled. As the solution is correct, there
can be either no light or one light, but not more, as otherwise two lights would see
each other. If there is none, P adds one, otherwise he adds an empty card. Thus the
cards contain exactly one light, which V will successfully verify.
For all black cells that contain a number, the verifier picks one card in all adjacent
white cells, uses the shuffle functionality on the selected cards, and then verifies that
they contain the same number of lights as is written in the black cell. As P ’s solution
is correct, the verification will succeed.
To verify that each cell of the grid is illuminated by a light, for each cell the verifier
picks one card from all white cells which are horizontally and vertically adjacent.
He asks P to add exactly one card according to the algorithm and uses the shuffle
functionality on the remaining cards. As the solution is correct, there will be either
one or two lamps in the packet since each cell is illuminated, so after adding the right
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card there will be exactly two. Then V verifies that the set of cards contains exactly
two lights, which will succeed. J

I Lemma 2 (Akari Soundness). If P does not know a solution of a given Akari’s grid of size
n then he is not able to convince V except with a negligible probability lower than p = ( 1

2 )K
when the protocol is repeated K times.

Proof. We call a cell-packet the set of cards that are placed in one cell. When the verifier is
collecting some cards during the verification phase for one cell, we also call a row-packet the
set of cards that are collected in an horizontal line, a column-packet the set of cards that are
collected in a vertical line and cross-packet the set of cards that are collected in horizontally
and vertically adjacent white cells of a given cell.

Given a grid of size n, we show that if P is able to perform the proof for any challenge c,
then he has a solution of the grid. This implies by contraposition that if the prover does not
have a solution, then he fails the procedure for either c = 0, or c = 1, or both. In that case
the probability that the verifier asks him a challenge for which he does not have a solution is
at least 1

2 , which results in the probability of p = ( 1
2 )K as the protocol is repeated K times.

Thus it suffices to show that if P is able to perform the proof for c = 0 and c = 1, then
he has a solution of the grid.

If P is able to perform the proof for c = 0, then his commitment is well-formed, i.e., all
the cards in each cell-packet are the same.

If P is able to perform the proof for c = 1, then his solution passes all the verifier’s checks.
Moreover, we show that if the commitment of the prover is well-formed (which we know from
the above), and this commitment does not correspond to a solution, then the verifier detects
it with our ZKP algorithm. This implies that the prover has a solution to the grid, which is
what we need to show to conclude the proof.

Suppose now that the commitment is well-formed, and that it does not correspond to a
solution. Then we can distinguish three cases for the commitment, each corresponding to
one constraint of the game that is not respected:

There are two lights that can see each other. According to our ZKP, the verifier picks a
row-packet or a column-packet for each row or column and passes it to the prover. The
prover adds one card and gives it back to the verifier. Then the verifier checks that there
is exactly one light in the packet. If there are two lights that can see each other, the
prover cannot cheat and the verifier will see at least two lights.
There is not the right number of lights close to a black cell containing a number. Then
the verifier discovers that the number of lights does not match when he performs the
second point of our ZKP algorithm.
A cell is not illuminated. According to our algorithm, the verifier picks a cross-packet
for this cell. Then he gives the packet to the prover who adds one extra card. Then the
verifier checks that there are exactly two lights in the packet. If the cell is not illuminated,
he will have at most one light in the packet and thus detect the error.

Thus, if the commitment is well-formed and does not correspond to a solution, the verifier
will detect it. Hence, if the prover passes all the verifier’s checks, he has a solution, which
concludes the proof. J

Note that an optimal soundness of 0 can be obtained using a stronger model, namely the
triplicate functionality of [9, § 4.2]. Instead of the challenge c = 0, one uses cards that can be
cut in k equal parts (a “k-plicate functionality”), thus guaranteeing identical parts.

I Lemma 3 (Akari Zero-Knowledge). V learns nothing about P ’s solution of a given Akari
grid.
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Proof. We use the proof technique described in [9, Protocol 3]: to show zero-knowledge, we
have to describe an efficient simulator that simulates any interaction between a cheating
verifier and a real prover. The simulator does not have a correct solution, but it does have
an advantage over the prover: when shuffling decks, it is allowed to swap the packets for
different ones. We thus show how to construct a simulator for each challenge c in {0, 1} in
the Akari ZKP.
if c = 0: The simulator simulates the prover P as follows: it fills the grid G only with empty

cards and the dual grid Ĝ only with light cards. If the verifier chooses the challenge
c = 0, the verifier puts each packet of cards in an envelope of both grids and shuffles them.
Then he checks that all packets contain only the same card. This perfectly simulates an
interaction with the real prover because there are two packets for each cell: one with only
light cards and one with only empty cards.

if c = 1: The simulator first prepares the following packets:
For each white cell in a row of r white cells and in a column of c white cells, the
simulator sets:

A packet containing (c) empty cards (denoted type 1).
A packet containing (r) empty cards (denoted type 2).
A packet containing (c+ r − 3) empty cards and 2 © cards (denoted type 3).

For each black cell with number l, the simulator sets a packet containing l © cards
and 4− l empty cards. Such a packet is of type 4.

Then, still when the verifier has chosen the challenge c = 1, the verifier discards the dual
grid Ĝ and execute the following checks:

No two lights see each other: for each horizontal (resp. vertical) line of adjacent
white cells, V randomly picks one card per cell to form a packet. Then the simulator,
acting as the the shuffle functionality, replaces this packet by the type 1 (resp. 2)
packet corresponding to the same cell. The simulator, now acting as P , adds one ©
card to the packet and returns the cards to V , who can check that there is exactly one
light card in the packet.
Black cells: for each black cell that contains a number l, V picks one card in all
adjacent cells to form a packet. Then the simulator, acting as the shuffle functionality,
replaces this packet by the type 4 packets corresponding to the same cell. V looks at
the cards and can check that l corresponds to the number of © cards.
All cells are illuminated: for each cell, V picks one card from the cell plus one card
from all horizontally and vertically adjacent white cells. Then the simulator, acting as
the shuffle functionality, replaces this packet by the type 3 packet corresponding to
the same cell. The simulator, now acting as P , adds one empty card to the packet and
returns the cards to V , who can check that there are exactly two light cards in the
packet.

For each cell, all cards are face down before the last shuffle of all packets and the simulated
proofs and the real proofs are indistinguishable. Therefore, V learns nothing from the
verification phases and the protocol is zero-knowledge. J

3 Takuzu

Takuzu is a puzzle invented by Frank Coussement and Peter De Schepper in 20094. It was also
called Binero, Bineiro, Binary Puzzle, Brain Snacks or Zernero. A similar game (using crosses

4 https://en.wikipedia.org/wiki/Takuzu

FUN 2016

https://en.wikipedia.org/wiki/Takuzu


8:8 Physical Zero-Knowledge Proofs for Akari, Takuzu, Kakuro and KenKen
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Figure 3 Example of a Takuzu grid and its solution.

and circles) was proposed in 2012 by Aldolfo Zanellat under the name of Tic-Tac-Logic. The
goal of Takuzu is to fill a rectangular grid of even size with 0’s and 1’s. An initial Takuzu
grid already contains a few filled cases. A grid is solved when it is full (i.e., no empty cases)
and respects the following constraints:
1. Each row and each column contains exactly the same number of 1’s and 0’s.
2. Each row is unique among all rows, and each column is unique among all columns.
3. In each row and each column there can be no more than two same numbers adjacent to

each other; for example 110010 is possible, but 110001 is impossible.
Figure 3 contains a simple 4× 4 Takuzu grid and its solution. We can verify that each

row and column is unique, contains the same number of 0’s and 1’s, and there are never
three consecutive 1’s or 0’s. The problem of solving a Takuzu grid was proven to be NP
complete in [2, 23].

3.1 ZKP Construction for Takuzu
Similar to Akari, our aim is to give a ZKP proof such that the prover P , now Totoro, proves
to the verifier V , now Akira, that he knows a solution of a given Takuzu grid. We assume
that the grid is printed on a sheet of paper, and use two kinds of cards: cards with a 0 or a 1
printed on them. Moreover, we also use a second grid, a piece of paper, and an envelope.

Setup: Let G be the n×n Takuzu grid and S its solution known by P . The prover chooses
uniformly at random two permutations: πR for the rows, and πC for the columns. He then
computes S′ = πR(πC(S)), and writes the two permutations πC and πR on a paper, and
inserts it into an envelope E. Then P places cards face down on the second grid according
to S′. We denote these cards S̃′.

Verification: The verifier V picks c randomly among {0, 1, 2, 3}.
If c = 0: P opens the envelope E. Then V takes the initial grid G and computes G′ =

πR(πC(G)). V reveals those cards in S̃′ that are in places of initial values of the grid in
G′. He checks that the all revealed cards are equal to the initial values given in G′.

If c = 1: The verifier V picks d randomly among {0, 1}. If d = 0 (resp. d = 1), for each row
(resp. column), the verifier takes all the cards in the row (resp. in the column) without
looking at them. Each one of these n decks is shuffled by the shuffle functionality and
then the verifier opens all cards and checks that each deck contains exactly the same
number of 1’s and 0’s.

If c = 2: The verifier checks that a randomly chosen row or column is different from all
other rows or columns. For this, the verifier picks randomly one row or one column. The
verifier opens all the cards of his chosen row (or column). For each of the n− 1 other rows
(or columns) the verifier takes all the cards that are in the same column (or row) as a 0
in the revealed row (or column), without looking at them. Each one of these n− 1 sets of
cards is shuffled by the shuffle functionality and given back to the prover, who reveals
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one card per set that is a 1. Thus each one of the other n− 1 rows (or columns) has a 1
where the revealed row (or column) has a 0, they are thus different from the revealed
row. If there are several 1’s in a deck, the prover randomly chooses which one to reveal.

If c = 3: P opens E. Then V permutes (face down) the cards of S̃′ to obtain S̃ =
π−1

c (π−1
R (S̃′)). Then, V picks d randomly among {0, 1} and e randomly among {1, 2, 3}.

If d = 0: For each row, V sets x = bn−e
3 c decks of three cards {(e+ 3 · i+ 1, e+ 3 · i+

2, e+ 3 · i+ 3)}{0≤i<x} where the triplet (i, j, k) denotes a deck containing the ith, the
jth and the kth cards of the row.

If d = 1: For each column, V sets x = bn−e
3 c decks of three cards {(e+ 3 · i+ 1, e+ 3 ·

i+ 2, e+ 3 · i+ 3)}{0≤i<x} where the triplet (i, j, k) denotes a deck containing the ith,
the jth and the kth cards of the column.

Then, V gives the decks to P one by one. For each deck, the prover discards one of the
two identical cards (e.g., a 1 if he has 101, and a 0 in case of e.g., 001). Then P reveals
the cards to V , who accepts only if he sees two different cards. Note that it is possible to
do this verification step for several sequences of three cards.

To have the best security guarantees, the verifier should choose his challenges c, d, etc. such
that each combination of challenges at the end has the same probability. This protocol
is repeated K times where K is a chosen security parameter. Note that the ZKP is again
polynomial in the size of the grid, as shown next.

3.2 Security Proofs for Takuzu

We now prove the security of our construction.

I Lemma 4 (Takuzu Completeness). If P knows a solution of a given Takuzu grid, then he
is able to convince V .

Proof. Suppose that P , knowing the solution S of the grid G, runs the setup algorithm as
described in Section 3.1. Then we show that P is able to perform the proof for any challenge
c ∈ {0, 1, 2, 3}.
If c = 0: Since S is the solution of G, G′ = πR(πC(G)) and S′ = πR(πC(S)), the values of

the cards in S̃′ that are in places of non empty cells of G′ are equal to the corresponding
values of the grid in G′.

If c = 1: S has (n/2) occurrences of 1 and (n/2) occurrences of 0 on each row and column.
Column and row permutations do not change this property. Therefore, since S′ =
πR(πC(S)), S′ has (n/2) occurrences of 1 and (n/2) occurrences of 0 on each row and
column.

If c = 2: If a row (resp. column) of S is unique and all rows (resp. columns) have the same
number of 0’s, then no other row of S can have its 0’s at the exact same places. Column
and row permutations in S′ do not change this property.

If c = 3: Since S′ = πR(πC(S)), S̃ = π−1
C (π−1

R (S̃′)) is the solution S hidden with cards face
down, and three consecutive cells of S are never the same since S is a valid solution.
Then, using three consecutive cards, the prover is always able to discard one out of three
cards such that two different cards remain. J

I Lemma 5 (Takuzu Soundness). If P does not provide a solution of a given n× n Takuzu

grid G, then he is not able to convince V except with a negligible probability
(

1− 1
2n+9

)K
when the protocol is repeated K times.
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Proof. We show that if P is able to perform the proof of a solution of G for any challenge (c
and the sub-challenges d, e, etc. depending on c), then he knows a solution to the Takuzu
grid. During the setup phase, P commits:

An envelope E containing two permutations πC and πR.
A grid of face down cards S̃′.

We set S = π−1
C (π−1

R (S′)). Since P is able to perform the proof for any challenge, we observe
that:

Non empty cells of G′ = πR(πC(G)) are equal to corresponding cells of S′. Then non
empty cells of G are equal to corresponding cells of S.
Rows and columns of S′ have the same number of 0s and 1s, and each row and each
column of S′ is unique. Then, rows and columns of S have the same number of
0s and 1s, and each row and each column of S is unique.
Three consecutive cells of S do not contain the same value.

We deduce that S is a solution of G. Hence, if P does not provide a solution of G, then he
fails the proof for at least one of the challenges. To compute the probability, we enumerate
the possible challenges for all values of c:
If c = 0: In this case there is only one possible challenge.
If c = 1: There are two possibilities, verifying the rows, or verifying the columns.
If c = 2: There are 2n choices for the verifier, n rows and n columns.
If c = 3: There are two possible values for the challenge d and three possible values for the

challenge e, then, there is 2× 3 = 6 combinations for the pair (d, e).
Overall, P receives a challenge out of 1 + 2 + 2n+ 6 = 2n+ 9 possibilities. We suppose that
the verifier selects any one of these challenges uniformly at random. If the prover gives a
wrong grid, then at least one of the checks will fail, and this check will have been selected
with probability 1

2n+9 . As the protocol is repeated K times, the probability that P convinces

V without the solution is at least
(

1− 1
2n+9

)K
. J

I Lemma 6 (Takuzu Zero-Knowledge). During the verification phase, V learns nothing about
P ’s solution for a given Takuzu grid.

Proof. Similar to the proof for Akari, we show how to construct a simulator for each challenge
c ∈ {0, 1, 2, 3}:
c = 0: The simulator completes the grid G with random bits to obtain the grid S, and

randomly chooses the two permutations πR and πC . It then puts πR and πC in an envelope
E and it commits S′ = πR(πC(S)) using cards face down (we denote this commitment
S̃′). Then it simulates the prover and the verifier as follows: the prover commits (E, S̃′).
Then the verifier can open E and use πR and πC to compute G′ = πR(πC(G)). V can
then return those cards in S̃′ that are in places of initial values of the grid in G′ and
check that all returned cards are equal to the initial values given in G′. Since πR and πC

are randomly chosen, and since the values of cards in S̃′ that are in places of non empty
cells G′ = πR(πC(G)) are equal to the corresponding values of the grid in G′ (the other
cards of S̃′ remain face down), the simulated proofs and real proofs are indistinguishable.

c = 1: When the verifier shuffles the decks of cards taken in a single row or column using
the shuffle functionality, the simulator returns (n/2) cards with 1’s and (n/2) cards with
0’s, shuffled. This is indistinguishable from a shuffled deck with the same number of 1’s
and 0’s.

c = 2: When the verifier selects a row or column, the simulator randomly chooses to position
(n/2) 1’s and (n/2) 0’s. Given the random permutations πR and πC , the permuted chosen
row is indistinguishable from a randomly chosen one. Then, when the verifier shuffles
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Figure 4 Simple example of a Kakuro grid and its solution.

the deck corresponding to selected cards in the other rows (or columns), the simulator
places one card with a 1, and (n/2− 1) randomly selected other cards. Once again this is
indistinguishable from the given decks, as the verifier only sees one card with a 1.

c = 3: The simulator chooses randomly S such that three cells of S never contain the
same bit. It randomly chooses the two permutations πR and πC and puts πR and πC

in an envelope E. It commits S′ = πR(πC(S)) using cards face down (we denote this
commitment S̃′). Then it simulates the interaction between the prover and the verifier
as follows: the prover commits (E, S̃′). The verifier opens E and uses πR and πC to
compute S̃ = π−1

C (π−1
R (S̃′)), where S̃ is the commitment of S using face down cards. The

verifier then randomly chooses d and e and collects the cards according to the verification
algorithm. V then gives each deck of three cards to the prover. For each deck, the prover
thus obtains three cards such that (exactly) two cards are identical. He discards one
of these two cards and returns the two different cards. Since πR and πC are randomly
chosen, then simulated proofs and real proofs are indistinguishable. J

Therefore, our protocol for Takuzu is complete, sound and zero-knowledge.

4 Kakuro

Kakuro can been seen as a numerical version of crosswords. According to [21], it was proposed
for the first time in the 1950’s as a logic puzzle in “Official Crossword Puzzles” by Dell
Publishing Company. It is also known by its the original English name Cross Sums.

A Kakuro grid contains square and triangular white cells, and sometimes also black cells.
The goal is to fill in the white cells on the grid with digits from 1 to 9, such that the sum of
each line and each column corresponds to the total given in each triangular cell. Moreover, in
each line and in each column a number can appear only once. An example of the game with
its the solution is given in Figure 4. This game has been proven NP-complete in [12, 22].

4.1 ZKP Construction for Kakuro
In this game, the main challenge is to be able to verify that a sum of some numbers is correct
without revealing any other information.

Setup: In this construction, we use black and red playing cards. To represent a number l,
for instance 3, we put 9 cards into an envelope: l = 3 black cards and 9− l = 6 red cards.
Using this trick, we can construct a ZKP as follows:
1. In each cell, we place 4 identical envelopes containing some cards that correspond to the

number contained in the cell of the solution. The number is encoded using some cards as
explained above.
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2. Next to each triangular cell, we place envelopes containing cards for all missing numbers
in this line or column. For instance, for the first line of Figure 4, we place 7 envelopes
containing black and red cards corresponding to the numbers 3, 4, 5, 6, 7, 8, 9.

Verification: We proceed as follows:
To verify that a number appears only once per line and per column, the verifier proceeds
as follows: For each line and each column, he randomly picks an envelope per cell plus
all the envelopes next to the triangular cell. The packet of envelopes is shuffled by the
shuffle functionality, and then the verifier opens all the envelopes and verifies that all
numbers appear only once, and that all numbers between 1 and 9 are present.
To verify that the sum per line and per column corresponds to the number in the triangular
cell, the verifier randomly picks one envelope per cell in the line (resp. in the column) and
opens (face down) the content of each envelope. All the cards are shuffled by the shuffle
functionality and then the verifier returns them. He can then check that the number of
black cards corresponds to the number given in the triangular cell.

This protocol is repeated K times where K is a chosen security parameter. It is easy to see
that the ZKP is polynomial in the size of the grid as we only need a polynomial number of
cards and verification steps.

4.2 Security Proofs for Kakuro
We prove the security of our ZKP protocol for Kakuro.

I Lemma 7 (Kakuro Completeness). If P knows a solution of a given Kakuro grid, then he
is able to convince V .

Proof. After a correct setup each cells contains identical envelopes.
The unicity of numbers per row or column is given by the fact that all n numbers are
present exactly once between the envelopes within the cell and next to the triangle of the
row/column.
The correctness of the sum is given by the fact that when mixed the number of black
cards is exactly the value within the triangle. J

I Lemma 8 (Kakuro Soundness). If P does not provide a solution of a given Kakuro grid,
then he is not able to convince V except with a negligible probability lower than p = (1/4)K
when the protocol is repeated K times.

Proof. The proof follows the same line as in [9, Lemma 1]. Each rule is separately verified
(unicity in row/column, correct sum in row/column).

Assume that the prover does not know a valid solution for the puzzle. Then he is always
caught by the protocol as a liar if he places the cards such that each cell has four cards of
identical value. The only way a prover can cheat is by placing on a cell, say cell a, four
envelopes that do not all contain the same value. This means that in this cell at least one
envelope contains a value y different from at least 2 of the other 3 numbers. Given any
assignment of envelopes to the unicities and sums for all other cells, there is either only
one envelope with value y in the cell and thus for the (cheating) prover exactly one of the
unicities/sums rules that requires y in this cell, or there are two envelopes with value y in
the cell and exactly two of the unicities/sums rules require y in this cell. In the first case,
the probability that for cell a the verifier assigns y to the one rule needing it is 1/4. When
there are two envelopes encoding y in the cell, the probability to assign y to the first rule
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needing it is 1/2 and then the probability to assign the second y to the second rule needing
it is 1/3, overall this is 1/6 < 1/4. As the protocol is repeated K times, the probability that
P convinces V without the solution is bounded by (1/4)K, which is negligible. J

I Lemma 9 (Kakuro Zero-Knowledge). V learns nothing about P ’s solution of a given Kakuro
grid.

Proof. As in the proof for Akari (Lemma 3) we use the advantage of the simulator over the
prover: when shuffling packets (of selected envelopes to show unicity; or collected cards for
sums) it is allowed to swap the packets for different ones. The simulator acts as follows:

The simulator places four arbitrary envelopes on each cell.
The verifier randomly picks the envelopes for the corresponding packets.
Then there are two cases:

When verifying the unicity of a number, the envelopes in a packet are shuffled. The
simulator swaps the packets with a randomly shuffled packet of envelopes, in which
each value appears once.
When verifying the sums, the envelopes are opened and mixed by the verifier. Then all
the cards are shuffled. The simulator swaps the set of cards with a randomly shuffled
packet with the same number of cards, in which the number of black cards corresponds
to the sum.

The final packets are indistinguishable from those provided by an honest prover assuming
that the shuffle functionality guarantees that the packets each contain randomly shuffled
sets. J

5 Ken-Ken

KenKen is a Japanese game invented by Tetsuya Miyamoto, also known as Calcudoku,
Mathdoku or Kendoku. It combines ideas from Sudoku and Kakuro. A KenKen grid is a
square grid of size n× n. To solve a KenKen grid, like in Sudoku, each row and each column
must contain exactly once all numbers between 1 and n. Moreover, a KenKen grid is divided
in groups of cells called cages. The example given in Figure 5 contains 3 cages: one vertical
line of 3 cells, one horizontal line of 2 cells and a square of 4 cells. Each cage contains a
target number that has to be produced using the numbers in the cells (in any order) and
the mathematical operation (addition, subtraction, multiplication or division) given after
the target number. For example in Figure 5, the vertical three-cell cage with the addition
operator and a target number of 6 is satisfied with the digits 1, 2, and 3, as 3 + 1 + 2 = 6.
The target number and the operator are given in the upper left corner of a cage. The target
must be a positive integer. KenKen is known to be NP-complete [13, 11, 10].

In most KenKen grids, division and subtraction operators are restricted to cages of only
two cells. For instance in the grid given in Figure 5, the cage with the subtraction operator
and the target of 1 has four possible solutions when analyzed in isolation: (1, 2), (2, 1), (2, 3)
or (3, 2). In general grids do not need to respect this hypothesis, and there are puzzles that
use more than two cells for these operations. In any case, for each subtraction or division
cage, there is at least one maximal element of which the other elements in the cage are
subtracted or divided.

5.1 ZKP Construction for KenKen
We use the same idea as in Sudoku [9] to verify that all numbers appear only once per row
and column. We also use the same representation of numbers as in Kakuro, and the same
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Figure 5 Simple example of a KenKen grid and one possible solution.

technique to verify the addition cages. For multiplications, the idea is to check the sum of
the exponents of the prime factors of the target. Indeed, in a n×n grid, all prime factors are
below n and there are at most O(n/ log(n)) of those (see, e.g., [19]), so we need at most that
number of parallel exponent addition protocols. There we need to encode each integer by
its prime factor exponents: for this we use small envelopes marked with the prime factor p,
called p-envelopes, and containing the black/red cards encodings for the associated exponent.
The maximum possible exponents have to be found among the factors of the integers between
1 and n. For instance, with n = 9, all the integers are encoded with the primes 2, 3, 5, 7,
with respective exponents between 0 and 3, between 0 and 2, and between 0 and 1 for both
5 and 7. Therefore the 2-envelopes contain exactly 3 cards, the 3-envelopes 2 cards and the
5- and 7-envelopes, 1 card.

To deal with subtractions and divisions, we need an extra interactive round to identify
the largest integer in a cage, and then we reduce to either an addition or a multiplication
verification. To remain zero-knowledge even after the identification of the maximal element,
the solution of the cage is mixed with other solutions, with all the other possible maximal
elements, before the verifier checks them. Finally, to be able to deal with both addition-
s/subtractions and multiplications/divisions, we need larger envelopes containing both kind
of encodings per cell. The encodings must match. For instance, a 6 in a grid of size 9 is
encoded by a large envelope containing: 6 black cards and 3 red cards (just like for Kakuro);
but also a small 2-envelope marked with a 2 and containing 1 black card and 2 red cards;
similarly, a small 3-envelope with 1 black card and 1 red card; a small 5-envelope with 1 red
card and a small 7-envelope with 1 red card. This works also for the value 1, encoded with
p-envelopes containing only red cards.

Setup: Our ZKP scheme works as follows for a grid of size n:
In each cell, we place three identical envelopes encoding the number of the solution, in
both encodings.
For each subtraction cage with c ≥ 2 cells of target t, let max be the maximal value in the
c cells and ci ≥ 1, i = 1, . . . , c−1, the other values in any order. Then t = max−

∑c−1
i=1 ci

and n ≥ max = t+
∑c−1

i=1 ci ≥ t+ (c− 1). We thus place at most (n− t− c+ 1) large
envelopes next to the grid. Each of these envelopes contains: one marked small envelope
(itself containing n cards) and n(c− 1) other black or red cards. The number of black
cards in the small envelope minus the number of other black cards must match the target.
These (n− t− c+ 1) large envelopes contain all combinations (corresponding to distinct
maximal elements) except the one from the solution.
Each division cage with c cells of target t must contain a maximal element divisible by
t and by the c− 1 other elements. This maximal element must be less or equal than n
and larger or equal than t. We denote by u the number of possible maximal elements,
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u = |{m,n ≥ m ≥ t and m/t ∈ N}| ≤ (n−t+1). Then we place u−1 large envelopes next
to the grid. Each of these large envelopes contains: a full set of p-envelopes and another
envelope, marked, itself containing a full set of p-envelopes, for all primes p ≤ n. For
each prime p, the number of black cards in the p-envelopes of the marked envelope minus
the number of black cards in the other p-envelope equals the exponent of p within the
factorization of the target t. For instance if the target is 4 and the 2-envelope within the
marked envelope contains 3 black cards, then the other 2-envelope in the large envelope
must contain exactly 1 black card. A complete example for a division cage is given below.

Verification: Once all placements are done, the verifier randomly picks envelopes placed on
each cell and perform the following verifications:

To verify that each number appears only once per row and column, the verifier randomly
picks for each line and for each column one envelope per cell. This packet is shuffled by
the shuffle functionality, and then the verifier opens all the envelopes and check that all
numbers appear exactly once. Moreover, the verifier checks that both encodings coincide,
that is that the exponents within the p-envelopes coincide with the factorization of the
number of black cards.
For each addition cage, the verifier randomly picks one envelope per cell. Then he opens
all the envelopes and discards (or gives back to the prover) all its p-envelopes without
opening them. Finally, as in Kakuro, the verifier mixes the black and red card from all
envelopes face down, asks the shuffle functionality to shuffle them and then verifies that
the number of black cards corresponds to the target number.
For each subtraction cage, there is an extra interactive round:
1. The verifier randomly picks one envelope per cell in the cage, and asks the shuffle

functionality to shuffle them;
2. The verifier gives to the prover these envelopes, one at a time, after discarding (or

giving back to the prover);
3. The prover looks inside, and has two possibilities:

If the envelope does not contain the maximum of the cage, the prover gives back
the envelope unmodified to the verifier.
Otherwise the prover marks the envelope (in view of the verifier, for instance with
a pencil) and gives the marked envelope back to the verifier.

If there are multiple copies of a maximum element in the cage, the prover randomly
chooses which one to mark.

4. The verifier empties all the envelopes, but the one marked by the prover, into a
larger envelope (all these cards are shuffled using the functionality) and discard all
the p-envelopes.

5. The verifier adds the marked envelope, still sealed, to the same larger envelope.
6. The verifier asks the shuffle functionality to shuffle this larger envelope with the (n− t)

other large envelopes associated to the subtraction cage. Then the verifier opens all
large envelopes, checks that each large envelope satisfies the target (black cards in the
marked envelope minus the free black cards in the large envelope equals the target)
and checks that the n− t+ 1 possible combinations are present exactly once.

For each multiplication cage of target t, the verifier randomly picks one envelope per cell
and opens them all. He discards (or gives back to the prover) the free black and red
cards without returning them. Then, one prime p at a time, he empties all the associated
small p-envelopes, mixes all the black and red cards, asks the shuffle functionality to
shuffle them and then verifies that the number of black cards is the exponent of the prime
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Figure 6 A 2× 2 division cage and one solution within a 9× 9 KenKen grid.

factor p in the factorization of t.
For each division cage, we mix the subtraction and multiplication protocols: as in the
subtraction, the prover and the verifier enter an interactive extra round to mark an
envelope containing a maximal element; then for each of the u possible maximal elements,
there is a set of possible multiplicative solutions. There is a complete example below.

This protocol is repeated K times where K is a chosen security parameter. The protocol can
be verified in polynomial time. This stems from the fact that the prime factors are all lower
than n. Therefore, even factoring the target numbers is just looking at greatest common
divisors between t and values from 2 to n.

5.2 Example of a division cage setup for KenKen
To illustrate our construction, we use the division cage with c = 4 cells given in Figure 6.
Suppose the cage in the figure is part of an 9× 9 grid and that the solution is the one given,
that is 2 = 6/3/1/1. As 9 = 32 and 8 = 23, the maximal exponents for 2, 3, 5 and 7, will be
bounded by 3, 2, 1 and 1, respectively, and denoted by e2, e3, e5 and e7, respectively. There
are u = 4 possible maximal elements (2, 4, 6, and 8) because n = 9 and the target number is
2. Moreover, as this cage contains c = 4 cells, the maximal elements are divided by 3 numbers.
For instance, not counting orders, the target can be obtained with the following solutions
(one per possible maximum): 2 = 8/2/2/1; 2 = 6/3/1/1; 2 = 4/2/1/1; 2 = 2/1/1/1.

Setup: For each cell of the initial cage the prover places, according to his solution, the
following envelopes, where the number of cards contained in a p-envelope is ep:

1. For each one of the two 1’s he places three identical envelopes containing each:

To verify addition and subtraction: 1 black card and 8 red cards,
To verify multiplication and division: a 2-envelope with e2 = 3 red cards, a 3-envelope
with e3 = 2 red cards, a 5-envelope with e5 = 1 red card, a 7-envelope with e7 = 1 red
cards;

2. For the 3 he places three identical envelopes containing each:

To verify addition and subtraction verification: 3 black cards and 6 red cards,
To verify multiplication and division: a 2-envelope with e2 = 3 red cards, a 3-envelope
with 1 black card and e3 − 1 = 1 red card, a 5-envelope with e5 = 1 red card, a
7-envelope with e7 = 1 red card;

3. For the 6: three identical envelopes containing each:

To verify addition and subtraction: 6 black cards and 3 red cards,
To verify multiplication and division: a 2-envelope with 1 black card and e2 − 1 = 2
red cards, a 3-envelope with 1 black card and e3 − 1 = 1 red card, a 5-envelope with
e5 = 1 red card, a 7-envelope with e7 = 1 red card;
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Furthermore, the prover prepares three large envelopes next to the grid:

1. One for the maximal element 8, containing the encoding of 21 · 21 · 1:

A 2-envelope that contains 3 · e2 = 9 cards including 2 black and 3 · e2 − 2 = 7 red
cards.
A 3-envelope that contains 3 · e3 = 6 cards including 0 black card and 3 · e3 red cards.
A 5-envelope that contains 3 · e5 = 3 cards including 0 black card and 3 · e5 red cards.
A 7-envelope that contains 3 · e7 = 3 cards including 0 black card and 3 · e7 red cards.
A marked envelope containing the encoding of 8 = 23 · 30 · 50 · 70:

A 2-envelope that contains e2 = 3 cards including 3 black cards and 0 red card.
A 3-envelope that contains e3 = 2 cards including 0 black card and 2 red cards.
A 5-envelope that contains e5 = 1 cards including 0 black card and 1 red card.
A 7-envelope that contains e7 = 1 cards including 0 black card and 1 red card.

2. One for the maximal element 4, containing the encoding of 21 · 1 · 1:

A 2-envelope that contains 3 · e2 = 9 cards including 1 black card and 3 · e2 − 1 = 8
red cards.
A 3-envelope that contains 3 · e3 = 6 cards including 0 black card and 3 · e3 red cards.
A 5-envelope that contains 3 · e5 = 3 cards including 0 black card and 3 · e5 red cards.
A 7-envelope that contains 3 · e7 = 3 cards including 0 black card and 3 · e7 red cards.
A marked envelope containing the encoding of 4 = 22 · 30 · 50 · 70:

A 2-envelope that contains e2 = 3 cards including 2 black cards and 1 red card.
A 3-envelope that contains e3 = 2 cards including 0 black card and 2 red cards.
A 5-envelope that contains e5 = 1 cards including 0 black card and 1 red card.
A 7-envelope that contains e7 = 1 cards including 0 black card and 1 red card.

3. One for the maximal element 2, containing the encoding of 1 · 1 · 1:

A 2-envelope that contains 3 · e2 = 9 cards including 0 black card and 3 · e2 red cards.
A 3-envelope that contains 3 · e3 = 6 cards including 0 black card and 3 · e3 red cards.
A 5-envelope that contains 3 · e5 = 3 cards including 0 black card and 3 · e5 red cards.
A 7-envelope that contains 3 · e7 = 3 cards including 0 black card and 3 · e7 red cards.
A marked envelope containing the encoding of 2 = 21 · 30 · 50 · 70:

A 2-envelope that contains e2 = 3 cards including 1 black card and 2 red cards.
A 3-envelope that contains e3 = 2 cards including 0 black card and 2 red cards.
A 5-envelope that contains e5 = 1 cards including 0 black card and 1 red card.
A 7-envelope that contains e7 = 1 cards including 0 black card and 1 red card.

Verification: The cards that are intended for addition or subtraction are discarded. The
verifier and the prover start the round to mark the envelope of the 6. Then the verifier
merges the remaining p-envelopes. Thus, the large envelope contains at the end:

A 2-envelope that contains 3 · e2 = 9 cards including 0 black card and 9 red cards,
encoding the sum of exponents of 2 for 31 · 1 · 1;
A 3-envelope that contains 3 · e3 = 6 cards including 1 black card and 5 red cards,
encoding the sum of exponents of 3 for 31 · 1 · 1;
A 5-envelope that contains 3 · e5 = 3 cards including 0 black card and 3 red cards,
encoding the sum of exponents of 5 for 31 · 1 · 1;
A 7-envelope that contains 3 · e7 = 3 cards including 0 black card and 3 red cards,
encoding the sum of exponents of 7 for 31 · 1 · 1;
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A marked envelope containing the encoding of 6 = 21 · 31 · 50 · 70:

A 2-envelope that contains e2 = 3 cards including 1 black card and 2 red cards.
A 3-envelope that contains e3 = 2 cards including 1 black card and 1 red card.
A 5-envelope that contains e5 = 1 cards including 0 black card and 1 red card.
A 7-envelope that contains e7 = 1 cards including 0 black card and 1 red card.

This large envelope is then shuffled by the shuffle functionality with the 3 other large envelopes
prepared in the setup phase. Then the verifier checks that those 4 envelopes encode one
possible cage solution for each maximum number, namely, 8, 6, 4 and 2. That is, in each of
those four large envelopes, for each prime p, the differences in terms of black cards between
both p-envelopes always gives the prime factor decomposition of the target, 2.

5.3 Security Proofs for KenKen
Now we prove the security of our algorithm.

I Lemma 10 (KenKen Completeness). If P knows a solution of a given KenKen grid, then
he is able to convince V .

Proof. Unicity in rows/columns as well as correctness of addition cages follows from the
completeness of the Kakuro protocol in Lemma 7. Correctness for the subtraction comes
from the fact that if k is a maximal element in a cage, then the sum of all the remaining
elements in the cage is equal to k − t (note that this implies that k must be larger than t).
Correctness for the multiplication of target t is guaranteed for each prime p: when mixed, the
number of black cards in all the p-envelopes is exactly the exponent of p in the factorization
of the target t. Similarly, for the division, for each possible maximal element k, the verifier
checks by multiplications that the set of factors always yield k/t. J

In order for the protocol to be acceptable its verification phase should at least remain
polynomial with the size of the grid. We show that this is indeed the case in Lemma 11.

I Lemma 11 (KenKen Complexity). The number of operations to verify a KenKen grid is
polynomial in the size n of the grid.

Proof. It is easy to see that the addition and subtraction protocols are linearly checked.
For the unicity checks, as well as for the multiplication and division cages, we have to
consider the number of distinct possible prime factors. By classical number theory (see for
instance, [19, (2.18)]) the number of prime factors below n is O(n/ log(n)). So checking a
multiplication cage can be done with that number of prime exponent checks, just like checking
the correspondence of the encodings in each cell, and checking a division is performed with
at most n multiplication checks (one for each possible maximal element in a cage). Then
each target t is at most (n!)n, so each exponent is at most log2(t) ≤ n log2(n!) ≤ n2 log2(n).
Finally the number of cages in a grid is at most n2, so a very rough bound on the number of
operations for the verifier is n5+o(1). J

I Lemma 12 (KenKen Soundness). If P does not provide a solution of a given KenKen grid,
then he is not able to convince V except with a negligible probability p = (1/3)K when the
protocol is repeated K times.

Proof. As for Kakuro, separately checking unicity rules, addition or multiplication is perfectly
sound. For subtraction, the prover could mark an element of the cage which is not maximal.
But then the subtraction would yield a negative result, necessarily different from the target.
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Therefore checking the subtraction alone is also perfectly sound. A similar argument works
for the division. Therefore, in a similar way as for Kakuro (Lemma 8) the prover is always
caught by the protocol as a liar if he places the large envelopes such that each cell has three
identical envelopes. Thus again, the only way a cheating prover can cheat is by placing on a
cell, say cell a, three envelopes that do not all contains the same value. Then at least one
value is distinct form the other two, and the probability to randomly pick it for the rule
needing it is lower than 1/3. As the protocol is repeated K times, the probability that P
convinces V without the solution is bounded by (1/3)K, which is negligible. J

I Lemma 13 (KenKen Zero-Knowledge). V learns nothing about P ’s solution of a given
KenKen grid.

Proof. The same kind of simulator as for Lemma 9 can be used: for unicity and addition
rules the simulator is directly that of Kakuro. Similarly, for multiplication, subtraction and
division cages, the verifiers look at the colors of the cards only during the final step of the
verification phase, and only after a last shuffle by the prover. Therefore, in this penultimate
step, the simulator can use its ability to replace shuffles by his choice of envelopes that satisfy
the expected rule. Once again, this indistinguishable from those provided by an honest
prover. J

6 Conclusion

In this paper, we devised a solution that allows Cobra to solve his friend’s dilemma for
both games. Akira can now prove to Totoro that she knows a solution to his Akari problem
without revealing his solution, and Totoro can prove to Akira that he knows a solution to
his Takuzu problem without revealing it either. The same is true for Ken and Kakarotto
playing Kakuro and KenKen.

We showed that our solutions are secure, that is complete, sound and zero-knowledge.
Moreover, we do not use any cryptographic primitives, but only cards, paper and envelopes.

As future work, we would like to investigate other similar games. For example, we
would like to analyse Futoshiki, which can be seen has a variation of Sudoku with additional
constraints on the order of the numbers, or Hitori, which has the constraint that all unmarked
cells need to be connected, unlike any constraint in the games analysed in this paper.
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