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Abstract. In this paper, we improve on a previous result by Gagné et al.
[9] for automatically proving the semantic security of symmetric modes
of operation for block ciphers. We present a richer assertion language
that uses more flexible invariants, and a more complete set of rules for
establishing the invariants. In addition, all our invariants are given a
meaningful semantic definition, whereas some invariants of the previous
result relied on more ad hoc definitions. Our method can be used to
verify the semantic security of all the encryption modes that could be
proven secure in [9], in addition to other modes, such as Propagating
Cipher-Block Chaining (PCBC).

1 Introduction

Block ciphers are among the most basic building blocks in cryptography. They
can be used to construct primitives as varied as message authentication codes,
hash functions and, their main application, symmetric encryption. Block ciphers
are deterministic, and have fixed-size input and output, so protocols, called
modes of operation, are required to encrypt messages of arbitrary length. The se-
curity of these modes of operation is then proven by reduction from the security
of the mode of operation to some security property of the block cipher.

Automated verification tools can help increase our confidence in the security
of these modes of operation by providing an independent argument for their
security. Gagné et al. [9] first initiated the study of automatic verification tech-
niques for symmetric modes of operation. They presented an assertion language,
invariants and rules for a Hoare logic which can be used to verify the security
of most of the traditional modes of operation. However, due to the rather ad
hoc nature of the description of certain invariants, and to the restrictiveness of
their rule set, the resulting automated verifier was limited and its results could
sometimes depend on the order in which the commands of the mode of operation
were written.

Contributions: We improve on the result of Gagné et al. [9] by presenting a
Hoare logic with a richer assertion language and invariants, which allow us to
verify more modes of operation. For example, our new logic is able to verify the
security of Propagating Cipher-Block Chaining (PCBC) — an encryption mode
that was introduced for Kerberos version 4 — while [9] could not.
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The programming language and assertion language are essentially the same as
[9], but our invariants are much more precise. We use only three predicates: one
that states that the value of a variable is indistinguishable from a random value,
one that states that the block cipher has never been computed at the value of
a variable, and one that keeps track of the most recent value of a counter. Our
predicates are also much more satisfying than those in [9] since they can all be
described using a clear semantic definition, whereas some predicates in [9] were
rather ad hoc, particularly when it came to the predicate used to keep track of
counters.

Using our logic as a set of rules for propagating the invariants though the
code of each mode of operation, we can verify the semantic security of all the
encryption modes which could be shown secure in [9], together with other modes,
such as PCBC.

Related Work: Many new modes of operation have been developped in the
last decade (IACBC, IAPM [17], XCB [20], TMAC [16/18], HCTR [4], HCH [6],
EMU [13], EMU* [10], PEP [5], OMAC [14/15], TET [11], CMC [12], XEX [21],
TAE, TCH, TBC [19/22] to name only a few). These new modes of operation
often offer new security functionalities that early modes did not possess, but
these properties come at the cost of increased complexity of the mode of oper-
ation, and increased complexity of the proof of security. We believe that auto-
mated verification of these modes would greatly increase our confidence in those
arguments.

An extensive discussion on different security notions for symmetric encryption
and a proof of the CBC mode of encryption is presented in [3]. They also present a
security proof of the CBC mode of operation through a reduction to the security
of the block cipher.

An automatic method for proving the semantic security for asymmetric en-
cryption schemes in the random oracle model was presented in [7]. A similar
method is used in [9] to verify the security of symmetric encryption modes. Our
work here is a continuation of these efforts.

Other works in automated verification of cryptographic protocols include [1],
which presents a new logic for reasoning about cryptographic primitives, and
uses this logic to formally analyze the security of the signature scheme PSS, and
[2], which provides a machine-checked proof of OAEP.

We refer the reader to our technical report [§] for the complete details on this
result, definitions, rule set and proofs. We will focus here on the new semantics
and our new definition for the invariants, and explain how they improve our
verifier.

2 Definitions

The encryption modes verified using our method must be written using the
language described by the grammar of Figure [I, where:
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Fig. 1. Language grammar

o <& U denotes uniform sampling of a value and assigning it to x.

x = E(y) denotes application of the block cipher £ to the value of y and

assigning the result to z.

Similarly for  := £71(y), where £~ denotes the inverse function of £.

— x := y ® z denotes application of the exclusive-or operator to the values of

y and z and assigning the result to z.

x := yl||z represents the concatenation of the values of y and z.

x := y[n,m| assigns to x the bits at positions between n and m in the

bit-string value of y. L.e., for a bit-string bs = by ...bx, where the b;’s are

bits, bs[n,m] denotes the bits-string by, ... bpl). Then, z := y[n, m| assigns

bs[n,m] to x, where bs is the value of y. Here, n and m are polynomials in

the security parameter 7.

— x =y + 1 increments by one the value of y and assigns the result to . The
operation is carried modulo 27

— c1; ¢o is the sequential composition of ¢; and co

We can now formally define a mode of encryption as follows:

Definition 1 (Generic Encryption Mode). A generic encryption mode M
is represented by Epr(ma|...|m4,col...|ci) : var x;; ¢, where x; is the set of
variables used in ¢;, all commands of ¢; are built using the grammar described
in Figure[l, each m; is a message blocks, and each c; is a cipher block, both of
size n according to the input length of the block cipher E.

2.1 Semantics

A state in our semantics consists of an assignment of value to each variable used
in the program (a set denoted by Var) in addition to a list £g which keeps track
of all the values on which the block cipher has been computed. We also use a
table 7 which keeps track of all the variables which are used as countersd. Our
new semantics are described in Table [I1

2.2 New Invariants

We introduce a new invariant, lcounter() which is defined using our new table
T, and make small modifications to the other invariantdd. Of particular interest:
weaugment the invariant Indis so that it is now possible to indicate that the value

! Notice that bs[n, m] = €, when m < n and bs[n, m] = bs[n, k], when m > k.

2 We drop the sets F and C, which were an ad hoc attempt at keeping track of fresh
variables and counters.

3 We do away with invariants F' and RCounter, which were defined using the also-
removed sets F' and C from the semantics.
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Table 1. The semantics of the programming language

[t &“UN(S,E)=u L& U: (S{x—u, T — TU{T},&))
[z :=EWI(S,E) =
0(S{z — v, T,E) if (S(y),v) € L¢
0(S{z = v, T = TU{T:},Le— S(Le) - (S(y),v)},E)
if (S(y),v) & Le and v =E(S(y))
[z :=y®z[(S,€) =8(5H{z— S(y) & 5(2), T, €)
E)=6(8{z— SW)||S(2),T,E)

[z := yll21(S,
[z = gl mll(5, €) = 6(S{z > S(y)[mm], T, €)
[c =y + 1](S, &) =
Sz S+ 1, T—TU{T = Tli+1]=z},&) ify=T (] AT[i + 1]=L
{ 0(S{x — S(y)+1,T,E) otherwise
[er; 2] = [e2] o [ei]

of a variable is indistinguishable from a random value when given all the values
in L¢. This small modification is crucial to the Lemma below, and is one of the
main reasons for the improved capacity of our automated prover.

Icounter(z; V'): means that z is the most recent value of a counter that started
at a random value, and that the set V' contains all the variables with previous
values of the counter.

E(&;x;V): means the probability that the value of z is neither in L£¢ nor in V'
is negligible.

Indis(vx; V): means that no adversary has non-negligible probability to distin-
guish the value of z from a random value, when he is given the values of
the variables in V. In addition to variables in Var, the set V' can contain
a special variable Lg, in which case the invariant means that no adversary
has non-negligible probability to distinguish whether he is given results of
computations performed using the value of x or a random value, when he is
given the values of the variables in V and Lg¢.

More formally, for each invariant ¢, we define that a distribution X satisfies v,
denoted X = 4 as follows:

— When Lg ¢V, X = Indis(va; V) iff [(S,€) & X : (S(z,V),E)] ~ [(S,€) &
X;u&U; S =S{z—u): (S (z,V),E)
— When Lg € V, X = Indis(va; V) iff [(S,€) < X : (S(z,V U Le.dom),E)] ~
[(8,6) & Xsu & U; 8" = S{x v u} : (8" (2,V U Le.dom), E)]
-~ X EE(&z; V) iff Pr[(S,€) & X : S(z) € S(Le).dom U S(V)] is negligible.
— X [= Icounter(z; V') iff Indis(z; Var \ V) and V = T (z).
where Lg.dom = {v1 | (v1,v2) € Le} and T(z) = {zx € Var | Ji,j e Nand y €
Var such that 7,[i] = = and T,[j] = y}.
Notation: For a set V and a variable, we write V, z as a shorthand for VU {z}
and V — z as a shorthand for V' \ {}. We denote by Var® the set VarU L¢ and
use Indis(vz) as a shorthand for Indis(va; Var®).
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The relation between these invariants are described in the following Lemma.

Lemma 1. For any set V C Var and variables x,y with x # y, we have

1. Indis(va; VU Lg) = E(&; 2,V \ {z})
2. lcounter(xz; V') = Indis(x; Var\ V)
3. E(&;x;V) AlIndis(va; {y}) = E(&;x;V,y)

The first line of this Lemma is particularly important, because it links the Indis
invariant to the E invariant. This is of interest because the invariant Indis is quite
a bit easier to deal with than the invariant E alone, so this enables us to infer
that quite a few more variables have never been queried to the block cipher than
in our previous paper (however, we have to be careful to handle correctly rules
for commands that add elements to Lg, but this is also done relatively easily).
As a result of this, it is possible, for example, to ‘pass along’ the invariant E
to multiple values in a chain of Xor operations — whereas it was only possible
to pass it once in our previous paper — which is what makes it now possible to
prove the security of the PCBC mode of operation.

2.3 Encryption Security

We prove the modes of encryption secure in the ideal cipher model. That is, we
assume that the block cipher is a pseudo-random functiond This is a standard
assumption for proving the security of any block-cipher-based scheme.

The semantic security for a mode of encryption is defined as follows.

Definition 2. Let Eyr(ma|...|mi,col...|c;) : var @;; ¢ be a generic encryption
mode. A = (A1, A2) be an adversary and X € Di1sT(I',E). Forn € N, let

Advfff]l\/;CPA (n, X)
= 2x Pr(S,8) & X;
(‘TOa x1,P, S) (L A?l (77)7 b <L {Oa ]-}v
S" L] (S{mal ... Imy = a3}, E) :
A;Qz(éﬂ(),xh&s’(q)l te |CZ7)) = b] -1

where O1 = O are oracles that take a pair (m,j) as input, where m is a string
and j 1is the block length of m, and answers using the j'h algorithm in Eyr. Ax
outputs xg,x1 such that |xo| = |z1| and are composed of p blocks. The mode of
operation M is semantically (IND-CPA) secure ifAdeﬁ‘]i\ZCPA (n, X) is negligible
for any constructible distribution ensemble X and polynomial-time adversary A.

Our method verifies the security of an encryption scheme by proving that the
ciphertext is indistinguishable from random bits. It is a classical result that this
implies semantic security. More precisely:

4 While block ciphers are really families of permutations, it is well known that pseudo-
random permutations are indistinguishable from pseudo-random functions if the
block size is large enough.
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Proposition 1. Let Epr(ma]...|m4,col...|c;) @ var x;;¢; be a generic encryp-
tion mode. If, after execution of ¢; the invariant /\;-:O Indis(vcy, 10) holds, where
10 = {mq,...,m4,co...,¢;}, then the encryption mode is semantically secure.

3 Hoare Logic Rules

In the following, the notation {p}c{¢’} means that execution of command c in
any distribution that satisfies ¢ leads to a distribution that satisfies ¢’. Using
Hoare logic terminology, this means that the triple {¢}c{¢’} is valid. We group
rules together according to their corresponding commands. We do not provide
rules for the commands = := £71(y) or = := y[n,m] since those commands are
only used during decryption.

In all the rules below, unless indicated otherwise, we assume that ¢ & {x,y, 2}
and z ¢ {y, z}. In addition, for all rules involving the invariant Indis, L¢ can be
one of the elements in the set V.

Random Assignment
— (R1) {true} z Eu {Indis(vz) A lcounter(z; {z})}
— (R2) {Indis(vt; V)} 2 < U {Indis(vt; V, z)}
- (R3) {E(E:1:V)} = & U {E(E: 1V, 2))

Xor Operator
— (X1) {Indis(vy; V,y,2)} © :=y @ z {Indis(va; V,z,2)} if y Az and y € V
— (X2) {Indis(vt; V)} 2 : =y @z {Indis(vt; V)} if ¢V, evenift =y or t = z
— (X3) {Indis(vt; V,y,2)}  := y ® z {Indis(vt; V, x,y, 2)}

Due to the commutativity of the Xor operation, the role of ¥y and z can be
reversed in all the rules above.

Concatenation
— (C1) {Indis(vy; V, y, z) AIndis(vz; V,y, 2)} @ := y||z {Indis(va; V,z)} if y, 2z &
14
= (C2) {Indis(vt; V. y, 2)} @ := y| 2 {Indis(vt; V, 2, y,2)}
— (C3) {Indis(vt; V)} x :=y||z {Indis(vt; V)} if ¢ V, evenift =y ort =z

Increment

— (I1) {lcounter(y; V)} x := y + 1 {lcounter(z; V,z) AN E(E; z;Var — x)}

— (I2) {Indis(vy; V)} 2 :=y + 1 {Indis(va; V) } if y ¢ V

— (I3) {Indis(vt; V)} z:=y+ 1 {Indis(vt; V)} if t ¢ V evenift =y

— (I4) {Indis(vt; V,y)} = :==y+ 1 {Indis(vt; V,z,y)} if ¢ V

— (I5) {lcounter(y; V1) AE(E;t;Va)} x:=y + 1 {E(E;t; Vo, )} even if t =y
Block Cipher

— (B1) {E(&;y;0)} x := E(y) {Indis(vx) A lcounter(z; {z})}

— (B2) {Indis(vt; V) AE(E;9;0)} x := E(y) {Indis(vt; V,2)} provided Le & V
even if t =y
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— (B3) {Indis(vt; V, Le,y) NE(E;y;0)} x =
— (B4) {lcounter(t; V) ANE(&;y;0)} x:= E(y
— (B5) {E(&:t;V,y)} == E(y) {E(& 15V y)}

E(y) {Indis(vt; V, Le, z,y)}
) {lcounter(t; V')} even if t = y

Finally, we add a few rules whose purpose is to preserve invariants that are
unaffected by the command.

Generic Preservation Rules ;
Assume that t # x,y, z and c is either < U, z 1= y||z, x := yDz,or ;== w+1:

— (G1) {lcounter(t; V')} ¢ {lcounter(t;V)} if y, 2 ¢ V
- (G2) {E(&; V) c{EE V) ifa gV, evenif t =y ort =2

4 Example

We show in Figure 2l how our new rules can be used to prove the security of the
PCBC encryption mode. We only consider messages consisting of 3 blocks, as it
would be clear that the propagaion of invariants would continue for any finite
number of blocks.

To simplify the exposition, we only show the invariants that are necessary for
the proof of security. An automated verifier would obtain the proof of security
by applying every applicable rule at each execution step. In all the examples, we
denote by, say, (L3) the use of the third part of Lemma [Il

Epcpc(mi|mz|ms, IV |c1|cz|es)
var IV, z1, 22, 23, Y2, Y3;

v eu, {Indis(vIV)} (R1)
z1 = IV @ my; {Indis(vIV;Var® — z1) A Indis(vzy; Var* — IV) (X1)(X2)
A E(E;z1;Var— IV — z1)} (L1)
a1 = E(z); {Indis(vIV;Var — z1) A Indis(ver) } (B1)(B2)
y2 :=c1 @my; {Indis(vIV;Var — z1) A Indis(ver; Var™ — y2) (X2)(X3)
A Indis(vysz; Var® — c1)} (X1)
z2 1= y2 @ my; {Indis(vIV;Var — z1) A Indis(ver; Var® — ya — 22) (X2)(X3)
A Indis(vza; Var® —c1 — y2) AE(E; z2; Var — e — y2 — 22)} (X1)(L1)
c2 = E(z2); {Indis(vIV;Var — z1) A Indis(ver; Var — ya — 22) (B2)
A Indis(vez) } (B1)
y3 := c2 ®my; {Indis(vIV;Var — z1) A Indis(ver; Var — ya — 22) (X3)
A Indis(veg; Var® — y3) A Indis(vys; Var® — c2) } (X1)(X2)
z3 1= ys @ ms; {Indis(vIV;Var — z1) A Indis(ver; Var — y2 — 22) (X3)
A Indis(vez; Var® — ys — z3) AlIndis(vzz; Var® — e —y3)  (X1)(X2)
N E(E; z3;Var — ca — y3 — 23) (L1)
cs = E(z3); {Indis(vIV;Var — z1) A Indis(ver; Var — ya — 22) (B2)
A Indis(vez; Var® — ys — z3) A Indis(ves) } (B1)(B2)

Fig. 2. Analysis of PCBC encryption mode
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5 Conclusion

We improved on the result of Gagné et al. [9] by proposing a new Hoare logic with
more precise invariants and more complete rule set. This logic can be used to
construct an automated verification tool that can successfully verify the security
of all the symmetric encryption modes that could be verified by [9], in addition
to many more that it could not.

Future directions to this work include the addition of loops to our grammar
to remove the necessity of having a different program for each message length.
We would also like to use a similar system to model other security properties,
such as unforgeability (for message authentication codes) and collision-resistance
(for hash functions). We believe that the study of message authentication codes
would be of particular interest since, combined with semantically secure encryp-
tion, it would allow us to prove the chosen-ciphertext (CCA) security of certain
symmetric authenticated encryption modes.
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