
Finding Water on Poleless using Melomaniac
Myopic Chameleon Robots
Quentin Bramas
University of Strasbourg, ICUBE
bramas@unistra.fr

Pascal Lafourcade
LIMOS, University Clermont Auvergne, Aubière, France
pascal.lafourcade@uca.fr

Stéphane Devismes
Université Grenoble Alpes, VERIMAG
Stephane.Devismes@univ-grenoble-alpes.fr

Abstract
In 2042, the exoplanet exploration program,1 launched in 2014 by NASA, finally discovers a new
exoplanet so-called Poleless, due to the fact that it is not subject to any magnetism. A new generation
of autonomous mobile robots, called M2C (for Melomaniac Myopic Chameleon), have been designed
to find water on Poleless. To address this problem, we investigate optimal (w.r.t., visibility range
and number of used colors) solutions to the infinite grid exploration problem (IGE) by a small
team of M2C robots. Our first result shows that minimizing the visibility range and the number
of used colors are two orthogonal issues: it is impossible to design a solution to the IGE problem
that is optimal w.r.t. both parameters simultaneously. Consequently, we address optimality of these
two criteria separately by proposing two algorithms; the former being optimal in terms of visibility
range, the latter being optimal in terms of number of used colors. It is worth noticing that these
two algorithms use a very small number of robots, respectively six and eight.
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1 Introduction

Poleless is a far-off exoplanet discovered in 2042 that is not subject to any magnetism. Hence,
all terrestrial compasses are ineffective on this planet. After the discovery of Poleless, the
National Aeronautics and Space Administration (NASA) has decided to launch a robotic
spacecraft mission toward it in order to evaluate the possibility of a future human presence.
For this purpose, they have designed a new generation of autonomous mobile robots called
M2C, for Melomaniac Myopic Chameleon. These robots are melomaniac: in order to
synchronously move and to easily coordinate their actions they continuously play and listen
the same melody. Of course, the choice of the right song was critical. After a huge campaign
of experiments, an international expert panel (notably including several Nobel prizes) has
selected the song “Heigh-ho” of the Seven Dwarfs.2 The M2C robots are also myopic, i.e.,

1 https://exoplanets.nasa.gov/
2 See https://www.youtube.com/watch?v=HI0x0KYChq4
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they are equipped with visibility sensors of typically small range. The choice of this feature
has been led by several concerns, mainly reducing both the manufacturing costs (still in
2042, NASA has to endure important cuts in its budget) and the energy consumption (of
course, no human intervention can be envisioned to recharge their batteries). Additionally,
the researchers thought to these two technologies (myopia and melomania) to make the
design of the robots as simple as possible. Indeed, simplicity usually implies more robustness
and allows to decrease the weight of robots by avoiding the use of fancy, heavy, and costly
components. Finally, the M2C robots are chameleons meaning that they have the ability to
change their color whenever they want. These colors are used for two main reasons:
1. robot intercommunication, since the colors are captured by the visibility sensor of others

robots in their surroundings, and
2. persistent memory; actually, colors are the only available persistent memory.
Notice since any modulation in the melody playing may cause an irreversible disynchronization,
robots can only use their colors to exchange information.

By analyzing the light spectrum of Poleless, researchers have established the presence
of water and a breathable atmosphere with high probability. However, in order to be sure
of these facts, an exploration mission is mandatory. Once robots will have landed on the
planet, it will be easy for them to test the chemical composition of the atmosphere. Now, to
confirm the presence of water, they will have to explore exhaustively the ground of Poleless.
Especially since the second important goal of the mission is to find an appropriate place,
near a water source, where a future human mission could land. Again, for cost issues, only a
typically small team of M2C robots can be used to achieve this task. Basically, they have to
coordinate together to explore the planet until (at least) one of them find water. Once it will
happen, the robot will both stop moving and singing (informing then the others of the task
completion so that they all stop in turn), and send a signal to Earth in order to be precisely
localized.

The exact size and the relief of Poleless is unknown, even if it seems to be quite flat.
Hence, the surface of Poleless is conveniently discretized as grid of unbounded size, where
nodes represent locations that can be sensed by robots and edges represent the possibility
for a robot to move from one location to another. Hence, the task to be solved by the team
of robots is the treasure search problem in a grid of unbounded size [11]. Now, this problem
is known to be equivalent to the Infinite Grid Exploration (IGE) problem [7], which requires
each node of an infinite grid to be visited within finite time by at least one robot.

We have decided to answer the NASA call for bids by designing new solutions to the IGE
problem that are well-suited to the NASA requirements. Notice, in particular, that despite
the scientific progress, physical boundaries are still in the agenda in 2042. Namely, the M2C
robots are opaque, i.e., a robot is able to see another robot if and only if no other robot
lies in the line segment joining them. Moreover, any solution to the IGE problem should
achieve exclusiveness [2], meaning that, in the grid, any two robots cannot simultaneously
occupy the same node nor traverse the same edge. Indeed, even if in 2042 holograms and
teleportation techniques are commonly used, they are still not mature enough to be used in
a long distance spacecraft mission.

1.1 Contribution

We address the NASA call for bids by investigating low-cost solutions to the IGE problem,
i.e., we try as much as possible to limit the necessary visibility range, the number of used
colors, and the size of the team.
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We first show that minimizing the visibility range and the number of used colors are two
orthogonal issues: it is impossible to design an algorithm solving the IGE problem that does
not use different colors and that assumes visibility range 1.

Hence, we address the optimality of these two criteria separately. Precisely, we provide
two algorithms for the IGE problem:
1. The first algorithm uses only six M2C robots with visibility range 1 and three colors.
2. The second algorithm uses only eight M2C robots with visibility range 2, yet no color (in

other word, it assumes oblivious anonymous robots).

1.2 Roadmap

In the next section, we define the model associated to M2C robots and Poleless. In Section 3,
we present our impossibility result. In Section 4, we describe our two algorithms. Section 5
is dedicated to related work. We conclude in the last section.

2 Preliminaries

As justified in the introduction, we model the ground of Poleless by an infinite grid with
vertex set in Z×Z, i.e., there is an edge between two nodes (i, j) and (k, l) if and only if the
Manhattan distance between those two nodes, i.e., |i − k| + |j − l|, is one. The coordinates
are used for the analysis only, i.e., robots cannot access them.

We assume a team R of n > 0 M2C robots evolving on (nodes of) the grid. Recall that
M2C robots are melomaniac, i.e., they compute and move synchronously by continuously
singing Heigh-ho. Precisely, at each beat (or round), they all perform an atomic dance step
as follows. First, they look at their surroundings. Then, they compute a destination among
their current position and the four neighboring ones. Finally, they move to the computed
destination.

M2C robots are chameleons, i.e., they may change their color, which can be seen by other
robots in their surroundings. Let Cl be the set of possible colors. Recall that robots cannot
simultaneously occupy the same node nor traverse the same edge. In such a context, a node
is occupied when a robot is located at the node, otherwise it is empty. The state of a node is
either the color of the robot located at this node, if it is occupied, or ⊥ otherwise. When a
robot looks around, it can only see the states of the node that are within distance Φ ∈ N∗

from its position. Φ is called the visibility range of the robots. The value of Φ depends on
the quality (and so the price) of the robots’ lenses. If the visibility range is one, a robot sees
its own location and the four neighboring nodes of the grid. After looking around, a robot
computes the next destination based only on what it sees and on its own color. During the
compute phase, a robot may also decide to change its color.

2.1 Configurations

A configuration C is a set of pairs (p, c) where p ∈ Z × Z is an occupied node and c ∈ Cl
is the color of the robot located at p. A node p is empty if and only if ∀c, (p, c) /∈ C. We
sometimes just write the set of occupied nodes when the colors are clear from the context.
Also, by a slight abuse of notation, we sometimes partition the configuration into several
subsets C1, . . . , Ck and write C = {C1, . . . , Ck} instead of writing (C = C1 ∪ . . . ∪ Ck) ∧
(∀i ̸= j, Ci ∩ Cj = ∅).

FUN 2020
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2.2 Views

We denote by Gr the globally oriented view centered at Robot r, i.e., the subset of the
configuration containing the states of the nodes at distance at most Φ from r, translated
so that the coordinates of r is (0, 0). We use this globally oriented view in our analysis to
describe the movements of the robots: when we say “the robot moves Up”, it is according
to the globally oriented view. However, since M2C robots are designed to explore Poleless,
they do not have any compass and so, they have no access to the globally oriented view.
When a robot looks at its surroundings, it obtains a local view. To model the absence of
compass, we assume that any local view acquired by a robot r is the result of an arbitrary
indistinguishable transformation on Gr. The set IT of indistinguishable transformations
contains:
1. the rotations of angle 0 (to have the identity), π/2, π and 3π/2, centered at r,
2. the mirroring (robots cannot distinguish between clockwise and counterclockwise), and
3. any combination of rotation and mirroring.
Moreover, since robots may obstruct visibility, the function that removes the state of a node
u if there is another robot between u and r is systematically applied to obtain the local view.
Here, we assume that robots are self-inconsistent, meaning that different transformations
may be applied at different rounds.

It is important to note that when a robot r computes a destination d, it is relative to
its local view f(Gr), which is the globally oriented view transformed by some f ∈ IT . So,
the actual movement of the robot in the globally oriented view is f−1(d). For example, if
d = Up but the robot sees the grid upside-down (f is the π-rotation), then the robot moves
Down = f−1(Up). In a configuration C, VC(i, j) denotes the globally oriented view of a
robot located at (i, j).

2.3 Algorithm

An algorithm A is a tuple (Cl, I, T ) where Cl is the set of possible colors, I is the initial
configuration, and T is the transition function Views → {Idle, Up, Left, Down, Right} ×
Cl, where Views is the set of local views. When the robots are in Configuration C, the
configuration C ′ obtained after one round satisfies: for all ((i, j), c) ∈ C ′, there exists a
robot in C with color c′ ∈ Cl and a transformation f ∈ IT such that one of the following
conditions holds:

((i, j), c′) ∈ C and f−1(T (f(VC(i, j)))) = (Idle, c),
((i − 1, j), c′) ∈ C and f−1(T (f(VC(i − 1, j)))) = (Right, c),
((i + 1, j), c′) ∈ C and f−1(T (f(VC(i + 1, j)))) = (Left, c),
((i, j − 1), c′) ∈ C and f−1(T (f(VC(i, j − 1)))) = (Up, c), or
((i, j + 1), c′) ∈ C and f−1(T (f(VC(i, j + 1)))) = (Down, c).

We denote by C 7→ C ′ the fact that C ′ can be reached in one round from C (n.b., 7→ is
then a binary relation over configurations). An execution of Algorithm A is then a sequence
(Ci)i∈N of configurations such that C0 = I and ∀i ≥ 0, Ci 7→ Ci+1.

2.4 Poleless Exploration

An algorithm A solves the Poleless exploration if for every execution (Ci)i∈N of A and every
node (i, j) ∈ Z × Z of the grid, there exists t ∈ N such that (i, j) is occupied in Ct.
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Figure 1 Example of four views. V1 and V ′
1 are indistinguishable. Similarly, V2 and V ′

2 are
indistinguishable.

2.5 An Algorithm as a Set of Rules

We write an algorithm as a set of rules, where a rule is a triplet (V, d, c) ∈ V iews ×
{Idle, Up, Left, Down, Right} × Cl.

We say that an algorithm (Cl, I, T ) includes the rule (V, d, c), if T (V ) = (d, c). By
extension, the same rule applies to indistinguishable views, i.e., ∀f ∈ IT , T (f(V )) = (f(d), c).
Consequently, we forbid an algorithm to contain two rules (V, d, c) and (V ′, d′, c′) such that
V ′ = f(V ) for some f ∈ IT .

As an illustrative example, consider local views given in Figure 1. A rule R can associate
View V1 with the direction Up. Since Up is relative to the view, it means for the robot “I
move towards the only robot I see”. View V ′

1 is obtained by rotation from V1, so a robot
cannot distinguish V1 and V ′

1 , so the same rule R applies in V ′
1 and the robot moves Left

towards the only robot it sees. However, if in V1 a robot decides to move to the right
towards an empty node, then, since it does not distinguish its right from its left, the actual
destination between left and right will be decided according to the applied indistinguishable
transformation f ∈ IT . Similarly, Views V2 and V ′

2 are indistinguishable for the robots (one
is the mirror of the other), so any rule that applies to V2 also applies to V ′

2 , and conversely.
For example, if a robot decides to move towards its blue neighbor B in V2, it will also move
towards its blue neighbor in V ′

2 .

2.6 Well-defined Algorithms

Recall that robots are assumed to be self-inconsistent. In this context, we say that an
algorithm (Cl, I, T ) is well-defined if the global destination computed by a robot does not
depend on the applied indistinguishable transformation f , i.e., for every globally oriented
view V , and every transformation f ∈ IT , we have T (V ) = f−1(T (f(V ))). Every algorithms
we will propose will be well-defined. However, to be as general as possible, we will not make
such an assumption in our impossibility results. Finally, remark that a well-defined algorithm
has a unique execution.

2.7 Notations

t⃗(i,j)(C) denotes the translation of the configuration C of vector (i, j).

FUN 2020
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3 Impossibility Result

3.1 The Fence Crossing Lemma
In order to explore Poleless, M2C robots regularly cross what we call fences. A fence L is
composed of two infinite adjacent vertical lines L = (l1, l2) with l1 = {(iL, j)|j ∈ Z} and
l2 = {(iL + 1, j)|j ∈ Z}, for some iL ∈ Z, such that each robot is initially located at some
coordinates (x0, y0) satisfying x0 < iL; see Figure 2. Informally, this means that a fence
is made of two infinite adjacent vertical lines that are initially at the right of all robot’s
positions.

We say that a set of robots have crossed a fence when they are all at the right of the
fence at a given time; see Figure 3. Notice that this does not mean that the robots always
stays on the right of the fence afterward.

Formally, we say that a set of robots S has crossed the fence L = (l1, l2) at Round t if
there exists t′ ≤ t such that every robot r ∈ S is located at some coordinates (x1, y1) with
x1 > iL + 1 at Round t′.

We say a set of robots S single-handed crosses the fence L between t and t′ if for every
robot r ∈ S, (1) r is located at some coordinates (x0, y0) satisfying x0 < iL at Round t (see
Figure 2); (2) r is located at some coordinates (x1, y1) with x1 > iL + 1 at Round t′ (see
Figure 3); and (3) only robots of S are within distance one of r between Round t and Round
t′.

We say that a set of robots S has single-handed crossed the fence L at Round t if
∃t′ < t′′ ≤ t such that S single-handed crosses the fence L = (l1, l2) between t′ and t′′.

To be more general, we now consider any algorithm, i.e., well-defined or not. We first
prove that if robots explore Poleless, then there is a fence that is single-handed crossed by
a subset of robots; see Lemma 1. This latter result will be used to show that, if robots
are anonymous and cannot change their color, the Poleless exploration is impossible under
visibility range 1, whatever the number of robots is; see Theorem 2.

fence
l1 l2

R

R

Figure 2 A team of robots in front of a fence.

fence
l1 l2

R

R

Figure 3 A team of robots has crossed a fence.

▶ Lemma 1 (The test of the fence). If n robots can explore Poleless, then in every execution
there exists a fence L and a subset of robots S such that S single-handed crosses L within a
finite number of rounds.

Proof. If n robots successfully explore Poleless, then any node is eventually visited by at
least a robot. So, we can choose a node u = (i, j) where i is arbitrarily large: u should
be visited within finite number of rounds despite an arbitrary number of fences have to be
crossed before. If there is an execution where no subset of robots single-handed crosses at
least one of them, then this means that each time a fence is crossed in the execution, some
robots are not crossing and are left behind. If i is large enough (i > n), then there is not
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enough robots to cross all the fences to reach u. Hence, a subset of robots single-handed
crosses a fence in a finite number of rounds. ◀

3.2 The Impossibility Result
With only one color and under visibility one, at each round there is at most six possible (local)
views since every node should contain at most one robot (by exclusiveness), see Figure 4.
One can see that any rule associated with view V0 and a non-idle movement is ambiguous,
i.e., the destination depends on the indistinguishable transformation applied to the view.
Indeed, the robot in V0 has no way to distinguish between the four neighboring nodes. The
same is true for V2, V ′

2 , and V4. Now, as we do not require algorithms to be well-defined, an
algorithm may include some ambiguous rules. Actually, there are only two views that can
result in non-ambiguous non-idle movement: V1 where a robot sees only one robot around it
and V3 where a robot sees three robots around it. We denote by Rin

1 , resp. Rout
1 , the rule

that orders a robot with view V1 to move towards the neighboring robot, resp. away from
the neighboring robot. Similarly, we denote by Rin

3 , resp. Rout
3 , the rule that orders a robot

with view V3 to move towards the center robot, resp. towards the empty node; see Figure 5.
Note that, since Rin

1 and Rout
1 (resp. Rin

3 and Rout
3 ) are associated with the same view, they

cannot be part of the same algorithm.

V0 V1 V2 V ′
2 V3 V4

R

R

R

R

R R

R

R

R

R

R R R

R

R R R

R

Figure 4 The possible views of a robot with visibility one and without colors.

Rin
1 Rout

1 Rin
3 Rout

3

R

R

R

R

R

R R R

R

R R R

Figure 5 Non-ambiguous and non-idle rules, with visibility one and no color

▶ Theorem 2. There is no algorithm that solves the Poleless exploration problem with
single-color robots and assuming visibility range one.

Proof. Assume, by contradiction, that an algorithm A solves the Poleless exploration problem
with single-color robots and assuming visibility range one. We show the contradiction by
proving that using A, the robots fail the test of the fence (Lemma 1).

To that goal, we first construct an execution by choosing carefully which indistinguishable
function is applied to views that are associated with ambiguous rules. If a robot r has a view
V where an ambiguous rule applies we do the following:
1. if V = V0, then we apply f such that the global destination is Left.

FUN 2020
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2. if V = V2, and the rule dictates the robot to move toward an empty node, then we apply
f such that the global destination is the unique empty node that is either Up or Down.

3. if V = V2, and the rule dictates the robot to move toward an occupied node, then we
apply f such that the global destination is the unique occupied node that is either Up or
Down.

4. if V = V ′
2 , and the rule dictates the robot to move toward an empty node, then we apply

f such that the global destination is the unique empty node that is either Up or Left.
5. if V = V ′

2 , and the rule dictates the robot to move toward an occupied node, then we
apply f such that the global destination is the unique occupied node that is either Up or
Left.

6. if V = V4, then we apply f such that the global destination is Left.
We will see that A cannot contain ambiguous rules for V1 and V3. By choosing those
indistinguishable transformations, we obtain a unique execution E. According to Lemma 1,
there exists a fence L = (l1, l2) and a subset of robots S such that S has single-handed
crossed L at time t.

By Definition, robots in S are initially located on the left of the fence. We define the
Round t1, resp. t2, as the last round, before t, when there is a robot of S on l1, resp. on l2.
Hence, we have, t1 < t2 < t.

Claim 1: A includes at least one out-rule, i.e., Rout
1 or Rout

3 .
Proof of the claim: The first robots that enter l1 move Right (in the global view)
towards empty nodes. Moreover, they do so using a non-ambiguous rule since the chosen
indistinguishable transformation forces any robot with such rules to move either Up,
Down or Left. Thus, A must include at least one out-rule, i.e., Rout

1 or Rout
3 .

Claim 2: A includes at least one in-rule, i.e., Rin
1 or Rin

3 .
Proof of the claim: At Round t2, all the robots on l2 move Right to complete the fence-
crossing. Again, they do so using a non-ambiguous rule since the chosen indistinguishable
transformation forces any robot with such rules to move either Up, Down or Left. Thus,
A must include at least one in-rule, i.e., Rin

1 or Rin
3 .

Claim 3: A includes Rules Rin
1 and Rout

3 , but neither Rin
3 nor Rout

1 .
Proof of the claim: Since an algorithm cannot have two rules based on the same view, A
either includes Rules Rin

1 and Rout
3 , or Rules Rin

3 and Rout
1 , by Claims 1 and 2. So, assume,

by contradiction, that A includes Rin
3 and Rout

1 , but neither Rin
1 , nor Rout

3 . At Round
t2, all robots on l2 (at least one) leave it. Again, in this case, these robots necessarily
execute a non-ambiguous rule: the only available rule is Rin

3 . Yet, this implies that there
is an infinite chain of robots on l2, which contradicts the fact that there is a finite number
of robots.

Using Claim 3 we can show the following Claim.
Claim 4: There are two adjacent robots ra and r′

a (of S) on l2 at Round t1 + 1.
Proof of the claim:
At Round t1, let ra be any robot on l1. Then, ra leaves l1 towards l2. Again, ra should
execute a non-ambiguous rule at Round t1, i.e., Rin

1 , by Claim 3. So, ra moves towards a
robot rd. This implies that rd ∈ S is not idle at Round t1 since otherwise this would create
a collision, violating then exclusiveness. So, rd has only the three following possibilities
at Round t1: (a) rd executes Rin

1 or an ambiguous rule toward an occupied node, (b) rd

executes an ambiguous rule towards an empty node or (c) rd executes Rule Rout
3 . We

now show that in all theses cases, we either obtain a contradiction, or we show that there
are two adjacent robots ra and r′

a (of S) on l2 at Round t1 + 1.
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fence
l1 l2

? ? ?

? ?

ra rd ?

? ?

Figure 6 Case (a), reaching a contra-
diction.

fence
l1 l2

? ? ?

?

ra rd ?

? ?

Figure 7 Case (b), ra and rd are
neighbors at Round t1 + 1.

In Case (a), illustrated in Figure 6, if Rin
1 is executed by rd, then ra and rd exchange

their positions, violating then exclusiveness, a contradiction. If an ambiguous rule
orders rd to move towards an occupied destination, then there is an indistinguishable
transformation that makes move rd to the Left. Hence, there is a possible execution
that behaves as E until Round t1 − 1, but where ra and rd exchange their positions
during Round t1, violating then exclusiveness, a contradiction.
In Case (b), illustrated in Figure 7, rd sees either V2 or V ′

2 (the only ambiguous views
with at least one occupied neighbor and one empty neighbor). So rd has two neighbors,
one of which is ra. So, the chosen indistinguishable transformation makes it moves Up
or Down towards an empty node on l2 and becomes a neighbor of ra at Round t1 + 1.
So, by letting rd = r′

a, we obtain that there are two adjacent robots ra and r′
a (of S)

on l2 at Round t1 + 1.

fence
l1 l2

? ? ?

r′
a ?

ra rd ?

? ?

Figure 8 Case (c), ra and r′
a are

neighbors at Round t1 + 1.

fence
l1 l2

? ?

r′
a ?

ra ?

? ?

Figure 9 Robots ra and r′
a are stuck

on the fence.

In Case (c), illustrated in Figure 8, one of rd’s neighbor, denoted r′
a, is also located on

l2. r′
a cannot execute Rin

1 to move towards rd, otherwise it would create a collision
with ra, violating then exclusiveness. Also, r′

a does not have a neighbor on l1 because
that would prevent ra from applying Rule Rin

1 . So, if Rout
3 applies to r′

a, it moves
towards l1, contradicting the definition of t1. An ambiguous rule cannot apply to r′

a

either. Indeed, if an ambiguous rule with an empty destination applies, the chosen
indistinguishable transformation makes r′

a moves towards l1 (and so violating the
definition of t1), and if an ambiguous rule with an occupied destination applies, then
there is an indistinguishable transformation that makes r′

a move toward rd. So, again,
there is an execution that behaves as E until Round t1 − 1 but where both ra and

FUN 2020
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r′
a move to the same position during Round t1, creating a collision with ra at Round

t1 + 1, a contradiction. Hence, r′
a stays idle and r′

a and ra are adjacent on l2 at Round
t1 + 1, and we are done.

From Claim 4, we have an execution where ra and r′
a are adjacent on l2 at Round t1 + 1

(Figure 9). To conclude the proof, we show that if two robots are adjacent on l2 at Round t′

with t1 < t′ ≤ t2, then they are adjacent on l2 Round t′ + 1. This contradicts the fact all the
robots leave l2 at Round t2.

When ra and r′
a are adjacent on l2 at time t′ (with ra below r′

a), one can observe that Rout
3

cannot apply to any of them, nor any ambiguous rule with an empty destination, otherwise
the chosen transformation would make them move toward l1, violating the definition of t1.

Now either ra executes (i) Rin
1 , (ii) an ambiguous rule towards an occupied destination,

or (iii) stays idle. If ra executes Rin
1 or an ambiguous rule towards an occupied destination,

it moves UP towards r′
a. r′

a cannot stay idle (since otherwise it would create a collision),
and cannot execute Rin

1 , otherwise it would violates the exclusiveness, so it executes an
ambiguous rule toward an occupied destination and moves UP. At Round t′ + 1, ra and r′

a

are still adjacent on l2. If ra stays idle, r′
a cannot execute Rin

1 , otherwise it would create a
collision, nor an ambiguous rule towards an occupied destination, otherwise we can construct
a possible execution that behaves as E until Round t′, but where r′

a moves towards ra to
create a collision, using the appropriate indistinguishable transformation. So r′

a stays idle as
well. At Round t′ + 1, ra and r′

a are still adjacent on l2.
This contradicts the fact that all the robots on l2 at Round t2 move Right. In the execution

E, fence L is never single-handed crossed, which contradicts our initial assumption. ◀

4 Algorithms

In this section, we give two algorithms, respectively called A1
(6,3) and A2

(8,1), for solving the
Poleless exploration. Algorithm A1

(6,3) (presented in Subsection 4.1) assumes visibility one
and uses six robots and three colors. Algorithm A2

(8,1) requires visibility two and uses eight
anonymous oblivious robots, i.e., indistinguishable robots. The animations of these two
algorithms are available in our complementary material [6]. The fact that the rules of these
algorithms are well-defined has been checked by the script that generated those animations.
This has been done by making sure that (1) the view of any rule cannot be transformed
into the view of another rule using mirroring, rotation, or a combination of the two, and (2)
for each rule, the global destination does not depend on the applied local indistinguishable
transformation.

4.1 Six Robots with Three Colors under Visibility Range One
The six robots are divided into two categories: the beacon robots and the moving group.
There are four beacon robots, each of those being B-colored in the following. The moving
group is made of two robots: one L-colored leader and one F -colored follower. However,
some robots change their role (by changing their color) along the execution.

Initially, all the robots are close together and organized as shown in Figure 10. The
beacons are used to delimit the area which has been already explored. The moving group
aims at reaching the beacons one by one. Each time the moving group reaches a beacon,
robots make an adjustment. At the end of the adjustment, the new beacon position is in
the diagonal (two hops) of the previous one and the moving group has made a turn toward
the next beacon. This adjustment, in particular, allows to take the newly explored nodes
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smallest enclosing rectangle

B

L F B

B B

Figure 10 Initial configuration of Algorithm A1
(6,3).

into account. The moving group then continues toward the next beacon, and so on. Each
time the moving group comes back to the first beacon, a so-called phase terminates: the
border of the area initially delimited by the four beacons is now fully visited, and the area
newly delimited by the beacons is bigger; see Figure 11 to visualize the increasing area that
is explored by the moving group.

Nodes visited in Phase 1

Nodes visited in Phase 2

Nodes visited in Phase 3

Node visited at Round 0

B

L F

B

B

B

Figure 11 Visited area after the first three phases for A1
(6,3). The positions of the robots at those

at the beginning of the second phase.

During an adjustment, the leader becomes the beacon, the beacon becomes the leader,
and after that, the new moving group travels toward the next beacon. Figure 15 shows the
sequence of moves of an adjustments occurring at the top-right beacon.

The moving group successfully performs a phase independently of the distance between
the beacons, so that infinitely many growing phases are achieved in sequence. The Poleless
exploration problem is then solved as any node of the grid is eventually included in the area
delimited by the beacons. Note that we use the same technique for the second algorithm.

The rules that allow the moving group to travel along a straight line are shown in
Figure 12. The rules to make an adjustment are shown in Figure 13. In order for the two
first rounds to work as expected, three more rules (Figure 14) are necessary. Those rules are
similar to the previous rules, but consider cases where more robots appear in view. This
actually occurs at the beginning of the algorithm only, when all the robots are close together.
For instance, the follower robot should move towards the leader, even if it sees beacon robots
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L

F

L

F

Figure 12 The two rules that make the moving group travel along a straight line.

B L

L

B L

F

B

Figure 13 The two rules that perform an adjustment.

around it.

▶ Theorem 3. Algorithm A1
(6,3) solves the Poleless exploration problem using six robots,

three colors and visibility range of one.

Proof. In the following we assume, w.l.o.g., that Node (0, 0) is the one where the bottom-
left-most beacon robot is located in the initial configuration; see Figure 10. Recall that these
global coordinates are used for the analysis only: robots cannot access those coordinates.

Using this coordinate system, the initial configuration is denoted C0 and is decomposed as
follow: C0 = {M0, C0

0 , C0
1 , C0

2 , C0
3 }, where M0 = {((0, 1), L), ((1, 1), F )}, C0

0 = {((0, 0), B)},
C0

1 = {((1, 0), B)}, C0
2 = {((2, 1), B)}, and C0

3 = {((1, 2), B)}. We define the configuration
Ci = {M i, Ci

0, Ci
1, Ci

2, Ci
3} in Phase i, where M i = t⃗(−i,i)(M0), Ci

0 = t⃗(−i,i)(C0
0 ), Ci

1 =
t⃗(−i,−i)(C0

1 ), Ci
2 = t⃗(i,−i)(C0

2 ), and Ci
3 = t⃗(i,i)(C0

3 ). Informally, the configuration in Phase i is
obtained by diagonally translating i times the positions of the beacons and the moving group
in the initial configuration. We now prove that starting from Configuration Ci, Configuration
Ci+1 is eventually reached. Since the initial configuration of our algorithm is C0, this implies
that every configuration Ci, for every i ≥ 0, is gradually reached. By doing so, the leader
robot visits all the edges of growing rectangles. The illustration of one cycle is presented in
Figure 16.

Assume we reach the first configuration Ci of Phase i at time t. Recall that
Ci = {((−i, i + 1), L), ((1 − i, i + 1), F ), Ci

0, Ci
1, Ci

2, Ci
3}. After one round, the configuration

is {((−i, i), L), ((−i, i + 1), F ), Ci+1
0 , Ci

1, Ci
2, Ci

3}.
Then, the moving group travels along a straight line during 2i rounds until robot with

B L

B

L
L

B F B

B

L

F B

Figure 14 The three rules similar the the previous rules, but used at the beginning of the
algorithm, when the robots close together.
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B

L

F

B L

F

BL
B

L F

Figure 15 Sequence of moves for an adjustment at the top left beacon robot.

adjustment in 1 round

2i rounds

adjustment in 1 round

2i + 1 rounds
adjustment in 1 round

2i + 1 rounds

adjustment in 1 round2i + 2 rounds

B

L F

B

B

BL

F

LF

L

F

Figure 16 Visualization of one phase.

Color L sees the second beacon robot. Indeed, at time t + 1, it is located at (−i, i) and the
second beacon robot is at (1 − i, −i).

At time t + 2i + 1, when the robot with Color L sees the second beacon robot, the second
adjustment occurs. At time t+2i+2, the configuration is {((1−i, −i), L), ((−i, −i), F ), Ci+1

0 ,

Ci+1
1 , Ci

2, Ci
3}. Then, the moving group travels during 2i + 1 rounds until it reaches the third

beacon robot. Indeed, the robot with Color L is at (1 − i, −i) at time t + 2i + 2 and the
third beacon is at (2 + i, 1 − i).

When the robot with color L sees the third beacon, the third adjustment occurs and the
reached configuration is {((2 + i, 1 − i), L), ((2 + i, −i), F ), Ci+1

0 , Ci+1
1 , Ci+1

2 , Ci
3}.

Then, the moving group travels during 2i + 1 rounds until the robot with Color L sees
the fourth beacon robot. The last adjustment is performed to obtain the configuration
{((1 + i, 2 + i), L), ((2 + i, 2 + i), F ), Ci+1

0 , Ci+1
1 , Ci+1

2 , Ci+1
3 }. Finally, after 2i + 2 rounds,

the moving group comes back to the first beacon robot and the configuration is exactly Ci+1

at time t + 8i + 5.
Inductively, the robots start from configuration C0 and reach configuration Ci within

finite time, for any i ≥ 0. Also, Node (1, 1) is visited at Round 0, and the set Vi of nodes
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visited by the robot with Color L between Phase i and i+1 contains the edges of the rectangle{
t⃗(−i,−i)(0, 0), t⃗(i,−i)(2, 0), t⃗(i,i)(2, 2), t⃗(−i,i)(0, 2)

}
; see Figure 11. Since {(1, 1)} ∪

⋃
i≥0 Vi =

Z × Z, Algorithm A1
(6,3) solves the Poleless exploration problem. ◀

4.2 Eight Anonymous Oblivious Robots under Visibility Two
Algorithm A2

(8,1) is based on principles similar to those used in Algorithm A1
(6,3): four beacon

robots delimit the visited area, and there is a moving group, this time made of four robots,
to travel from one beacon to another. The initial configuration of A2

(8,1) is described in
Figure 17. Since robots are anonymous, the only way to distinguish them is to use their
relative locations. Notice that, this time, beacon robots are always the same. To maintain
this property, we ensures that beacon robots are never adjacent to any other robot. Since
the visibility range is two, a beacon can see other robots and move before becoming their
neighbor.

R

R

R

R R R

R

R

Figure 17 Initial configuration I of A2
(8,1).

Observe that since the visibility range is two, the obstructed visibility can impact the
local view of a robot because a robot at distance one can hide a robot behind it at distance
two. So, the rules of A2

(8,1) should not depend on the states of the nodes that are hidden by
a robot. To make it clear, those nodes will be crossed out in the illustrations of our rules;
see, e.g., Figure 18.

R

R R R

R

R R R

R

R R

Figure 18 Rules to move along a straight line.

The first three rules (see Figure 18) allow the moving group to move along a straight line.
The moving group always forms a spaceship shape where one robot is at the bow, one robot
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is at the stern, and there is one robot on each side, adjacent to the stern. When in formation,
each robot knows whether it is at the bow, the stern, or at a side of the spaceship. However,
the robots on the side do not know on which side they are, since there is no common chirality.
The first rule orders the bow robot to move away from the other robots, the second rule
orders the stern robot to move towards the bow robot, and the third rule orders the side
robots to move to the same direction as the stern robot.

R

R

R R R

R

R

R R R

R

R

Figure 19 Rules to make the spaceship moving along a straight line when seeing the beacon, and
to make the beacon move away.

Then, when the moving group meets a beacon robot, an adjustment is made in two
rounds. The first round of the adjustment, robots execute the rules defined in Figure 19.
The first two rules order the moving group to act as if the beacon was not there i.e., they
continue to move in the same direction. The third rule orders the beacon to move away from
the bow robot. The beacon robot can distinguish the correct direction because it also sees
a side robot. In the second round of the adjustment, the two rules given in Figure 20 are
used. The first rule orders the bow robot to continue as usual (i.e., as if the beacon was not
here) and the second rule orders the side robot that sees the beacon robot in diagonal to
move towards the stern robot. After the execution of those rules, the spaceship shape is
preserved, but the bow robot has become a side robot, and this side robot has become the
bow robot. In the same round, the beacon robot executes the same rule as in the first round
of the adjustment (the third rule of Figure 19) to move away from the group. The view is
mirrored from the first round of the adjustment, so after the two rounds of the adjustment,
the beacon has moved diagonally.

The last rule given in Figure 21 is necessary to make moving as expected the side robot
that still sees the beacon robot right after an adjustment.

R R

R R R

R R

R R

Figure 20 The leader moves in straight line again to become a side follower, the side follower
that sees the beacon moves left (the beacon move away again using the same rule as before).

▶ Theorem 4. Algorithm A2
(8,1) solves the exclusive Poleless exploration problem using eight

robots without color and visibility range of two.
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R R

R R

Figure 21 The moving group moves away from the beacon. The side follower that still see the
beacon moves away from it.

Proof. The proof of this theorem is similar to the proof of Theorem 4: we decompose the
execution into phases, show by induction that each phase is eventually reached, and finally a
particular rectangle is visited during each phase.

We fix a global coordinate system, not accessible to the robots, where the initial con-
figuration, denoted by C0, is split as follows: C0 = {M0, C0

0 , C0
1 , C0

2 , C0
3 }, where M0 =

{(3, 2), (4, 2), (5, 2), (4, 3)}, C0
0 = {(5, 5)}, C0

1 = {(1, 6)}, C0
2 = {(0, 1)}, and C0

3 = {(5, 0)}.
We define the configuration Ci = {M i, Ci

0, Ci
1, Ci

2, Ci
3} in Phase i, where M i = t⃗(i,i)(M0),

Ci
0 = t⃗(i,i)(C0

0 ), Ci
1 = t⃗(−i,i)(C0

1 ), Ci
2 = t⃗(−i,−i)(C0

2 ), and Ci
3 = t⃗(i,−i)(C0

3 ).
Here, Ci

0 contains the first beacon robot visited in Phase i, located at the upper right
corner of the configuration.

Assume we reach the first configuration Ci of Phase i at time t. Recall that Ci =
{(i + 3, i + 2), (i + 4, i + 2), (i + 5, i + 2), (i + 4, i + 3), Ci

0, Ci
1, Ci

2, Ci
3}. After three rounds,

the configuration is {(i + 3, i + 5), (i + 4, i + 4), (i + 4, i + 5), (i + 4, i + 6), Ci+1
0 , Ci

1, Ci
2, Ci

3}.
Then, the moving group has to travel along a straight line during 2i + 1 rounds until the

bow robot sees the second beacon robot. Indeed, at time t + 3, the bow robot is located at
(3 + i, 5 + i) and the second beacon robot is at (1 − i, 6 + i).

At time t+2i+4, when the bow robot sees the second beacon robot, the second adjustment
occurs. At time t + 2i + 6, the configuration is {(1 − i, i + 4), (−i, i + 5), (1 − i, i + 5), (2 −
i, i + 5), Ci+1

0 , Ci+1
1 , Ci

2, Ci
3}. Then, the moving group travels during 2i + 2 rounds until it

reaches the third beacon robot. Indeed, the bow robot is at (1 − i, 4 + i) at time t + 2i + 4
and the third beacon is at (−i, 1 − i).

This continues until the configuration Ci+1 is reached.
Inductively, the robots start from configuration C0 and reach configuration Ci within

finite time, for any i ≥ 0. The set Vi of nodes visited between Phase i and i + 1 includes
the edges of the rectangle

{
t⃗(−i,−i)(0, 1), t⃗(i,−i)(5, 1), t⃗(i,i)(5, 5), t⃗(−i,i)(0, 5)

}
. Also, the set V0

contains the nodes inside rectangle {(0, 1), (5, 1), (5, 5), (0, 5)} as they are visited during the
first phase. Since

⋃
i≥0 Vi = Z × Z, our algorithm solves the Poleless exploration problem.

◀

5 Related Work

The robots we have considered are known as luminous robots in the literature. They have
been introduced by Peleg in [14]. In [8], the authors compare the computational power of
luminous robots with respect to the three main execution models: fully-synchronous, semi-
synchronous, and asynchronous. Solutions for dedicated problems such as weak gathering or
mutual visibility have been respectively investigated in [12] and [13].
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Exploration tasks have been first considered in the context of finite graphs. In this setting,
two main variants, respectively called the terminating and perpetual exploration, have been
considered. The terminating exploration requires every possible location to be eventually
visited by at least one robot, with the additional constraint that all robots stop moving after
task completion. In contrast, the perpetual exploration requires each location to be visited
infinitely often by all or a part of robots. In [9], authors solve terminating exploration of any
finite grid using few asynchronous anonymous oblivious robots, yet assuming unbounded
visibility range. The exclusive perpetual exploration of a finite grid is considered in the same
model in [3].

Various terminating problems have been investigated in infinite grids such as arbitrary
pattern formation [4], mutual visibility [1], and gathering [15, 10].

Emek et al. [11] have investigated the treasure search problem in an unbounded size grid [7].
They consider robots operating in two models: the semi-synchronous and synchronous ones.
However, they do not impose the exclusivity at all since their robots can only sense the states
of the robots located at the same node (in that sense, the visibility range is zero). Moreover,
in contrast with our work, they assume all robots agree on a global compass, i.e., they all
agree on the same directions North-South and East-West. They propose two algorithms
that respectively need three synchronous and four semi-synchronous robots. Moreover, they
exclude solutions for two robots.

In a followup paper [7], Brandt et al. extend the impossibility result of Emek et al.
by showing the impossibility of exploring an infinite grid with three semi-synchronous
deterministic robots that agree on a global compass.

In [5], we have investigated the IGE problem by a swarm of autonomous mobile luminous
synchronous robots. Those robots agree on a common chirality, but have no global compass,
while here we neither assumed a common chirality, nor a global compass. Precisely, we
show that using only three non-modifiable colors, six robots, with a visibility range one, are
necessary and sufficient to solve the IGE problem. We also show that using modifiable colors
with only five states, five such robots, with a visibility range one, are necessary and sufficient
to solve the IGE problem. Finally, assuming visibility range two, we provide an algorithm
that solves the IGE problem using only seven identical robots without light.

6 Conclusion

Thanks to our impossibility results, NASA has been convinced that our two algorithms
with Melomaniac Myopic Chameleon Robots are relevant to explore Poleless. Due to some
restrictions on the budget, they finally decided to use robots with only a visibility range
of one. Then, in 2048, the mission “Finding Water on Poleless” was a great success, and
fortunately thanks to our algorithm water was found on Poleless. Once this great news
has been known, NASA realizes that the time to send some humans to Poleless the water
might have change the place. Hence, they ask a different challenge to the community with
the perpetual exploration of Poleless, in order to regularly update information about water
localizations With this new challenge our roadmap is clear for the next months.
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