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Abstract. In this paper, we propose zero-knowledge proof (ZKP) pro-
tocols using physical objects for four pencil-and-paper puzzles: the well-
known Sudoku as well as Makaro, Futoshiki, and Kakuro. That is, our
protocols allow a prover to convince a verifier that the prover knows a
solution to a puzzle without relying on the use of computers. While pre-
vious physical ZKP protocols for puzzles have mainly relied on decks of
cards, our research introduces a novel approach utilizing a balance scale
and coins to design balance-based ZKP protocols; moreover we show its
flexibility by adapting it to the four different puzzles. We compare the
number of coins and operations in our protocols with the existing card-
based protocols and show that, for certain puzzles, our balance-based
protocol outperforms the card-based method. Finally, we prove that our
protocols achieve perfect completeness, perfect soundness and are per-
fectly zero-knowledge.

Keywords: Card-based cryptography · Zero-knowledge proof · Balance
scale · Pencil-and-paper puzzle · Sudoku.

1 Introduction

Alice, a hungry girl, goes to a fish market in the East Coast of the US with
no money as depicted in Fig. 1. She spots a stand selling fish, with a big sign
claiming “Free fish for anyone who can solve my four puzzles”. She comes closer
and sees that the puzzles are four pencil games: Sudoku, Makaro, Futoshiki, and
Kakuro. She cannot miss such a golden opportunity, and starts searching for the
solutions. After several hours racking her brain without finding any solution, she
screams at the merchant: “Grifter, your puzzles are impossible!”. The merchant
calmly tells her “I can prove I know all of the solutions”. The merchant cannot
give away its solutions, or people would come flocking to its stand asking for free
fish. What he needs to do is a zero-knowledge proof (ZKP) to Alice, allowing to
convince her that he knows a solution without revealing it. He remembers that
Murata et al. [?] proposed similar protocols using a PEZ dispenser. However,
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there are no PEZ dispensers at the fish market; the merchant only has a balance
and coins on his stand, to weigh the fishes he sells. In this research, we propose a
method to assist merchants, designing ZKP protocols using a balance and coins.

1.1 Zero-Knowledge Proof

Zero-knowledge proofs (ZKPs), introduced in 1985 by Goldwasser et al. [9], allow
a prover P to convince a verifier V that a given statement is true without
revealing any further information. ZKPs give a model that is not limited to
computer use, but may also be applied in real life using everyday objects. In
1990, Quisquater et al. [22] published the well-known story of the Ali Baba cave
to illustrate this concept, which made the first instance of a physical ZKP.

A ZKP protocol for a solution to a pencil-and-paper puzzle should satisfy
three properties as follows:
Completeness: If P knows a solution of a given grid, it can convince V .
Soundness: If P does not provide a correct solution of a given grid, V rejects

P with a sufficiently high probability.
Zero-knowledge: The verifier V is not given any information other than that

the prover P can solve the puzzle.
These properties can come in three different flavours: perfect, statistical and

computational. Perfect completeness means that an honest prover will always
convince an honest verifier on a true statement, perfect soundness means that
it is impossible to prove a false statement, and perfect zero-knowledge means
that transcripts can be perfectly simulated and leak no information whatsoever.
Perfect soundness can be relaxed to statistical soundness, where a prover must
have a negligible probability of falsely convincing the verifier. It can be relaxed
further to computational soundness, where any way to cheat must be computa-
tionally infeasible. Completeness and zero-knowledge can be relaxed in the same
way. Our proposed protocols achieve the stronger versions of these properties:
perfect completeness, perfect soundness, and perfect zero-knowledge based on
some physical assumptions.

It was shown that for any NP-complete problem, there exists an interactive
ZKP [8]. An extension by Ben-Or et al. [3] showed that every provable statement
can be proven in zero-knowledge. The puzzles introduced in this paper have all
been proven to be NP-complete: Sudoku and Kakuro in 2003 [32], Makaro in
2018 [14], and Futoshiki in 2021 [16]. Thus, there should exist ZKP protocols

FREE FISH
for anyone that
can solve my
four puzzles

Grifter! They are impossible! I can prove
I know the solutions.

Fig. 1: Alice visits the fish market.
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Table 1: Comparison of the complexity of our balance-based protocols with the
existing card-based ones. We consider n× n grids except for the standard 9× 9
Sudoku grid. In Sudoku, ne is the number of empty cells. In Futoshiki, i is the
number of inequality symbols. In Makaro, ns represents the number of rooms
with size s, 2 ≤ s ≤ s0 for some s0, c is the number of arrow cells, d is the
number of cells adjacent to arrow cells, and e is the number of bold lines between
two adjacent cells in different rooms. In Kakuro, t represents the number of
triangular cells, nh is the number of uninterrupted rows and columns of length
h, 2 ≤ h ≤ h0 < n for some h0, and w is the number of white cells.

Balance-Based Card-Based
Coins Shuffles Comparisons Cards Shuffles

Sudoku 243 27 686 + 2ne 90 [28] 45 [28]
Futoshiki n2 2n 2(n −

1)(
∑n

k=1 k) +
2
(
n
2

)
+ ne + i

– –

Makaro
∑s0

s=2 sns +
2e+ s0

∑s0
s=2 ns + e

∑s0
s=2(ns ×∑s
k=1 k) + d−

c+ 3e

2s0 − 1 +
s0

∑s0
s=2 ns) +

(s0 − 1)s0 [5]

2(
∑s0

s=2 ns +
c+ e) [5]

Kakuro t+ 2w t t +∑ℓ0
ℓ=2(nℓ

(
ℓ
2

)
)+

w

81(t+ 81) [19] 3t+ 1 [19]

for such puzzles; however, a concrete procedure using a balance has not been
addressed.

1.2 Contributions

We propose a new perspective on ZKPs for pencil puzzles, replacing decks of
cards with a balance and coins. To prove our method’s adaptability, we show it
can be applied to four different puzzles. We develop ZKP protocols for Sudoku,
Makaro, Futoshiki, and Kakuro, which all provide perfect completeness, perfect
soundness, and perfect zero-knowledge.

Table 1 indicates the number of coins, shuffles, and comparisons used in our
balance-based protocol, as well as the number of cards and shuffles used in the
existing card-based protocols. In Kakuro, it can be observed that the number of
coins used in the balance-based protocol is less than the number of cards used in
the card-based protocol [19]. In Futoshiki, our balance-based protocol directly
verifies an inequality using the property of a balance, although there is no card-
based protocol yet. From these observations, it can be inferred that in certain
puzzles, balance-based protocols may reduce the number of physical entities and
rounds of operation, making them easier to execute compared to card-based
protocols. We note that a type of shuffle used in card-based ZKP protocols is
costly to implement, while our balance-based protocol uses a common and easy-
to-implement shuffle.
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1.3 Related Work

In 2009, the first physical ZKP applied to Sudoku was proposed [10], using a
deck of cards. This leads to several improvement results [26, 28, 30]. In addition
to Sudoku, there are many card-based ZKP protocols, such as Nurimisaki [25],
Kurodoko [25], Juosan [18], Usowan [?], Herugolf [?], Five cells [?, ?], Nurik-
abe [23], Hitori [23], Heyawake [23], Makaro [5, 26], Nonogram [?, ?], Number-
link [?], Bridges [?], Cryptarithmetic [?], Akari [4], Takuzu [4,18], Kakuro [4,19],
KenKen [4], Shikaku [?], Slitherlink [?], Sumplete [?], Suguru [?], Topswops [?],
Pancake Sorting [?], ABC End View [?,?], Ball Sort [?], Goishi Hiroi [?], Ripple
Effect [27], 15 puzzle [?], graph problems [?], and Moon-or-Sun [11]. However,
few solutions try to incorporate other everyday objects other than cards. Such
examples include: PEZ dispenser [?, 1, 2], coins (where their weights are not
considered, but rather the toss of coins with result either head or tail) [?, 15],
polarizing plates [29], dial lock [20], tamper-evident seals [21], balls in bags [17],
and marbles in an auction protocol [6]. These protocols are not for ZKPs, but for
secure multiparty computations, which enable us to compute a given function
over private inputs without revealing anything. Our study proposes a ZKP pro-
tocol using a balance and coins, which to our knowledge is the first of its kind.
That is, our study explores computations performed by comparisons. It should
be noted that a ZKP protocol for Sudoku can be constructed by comparisons. As
for Futoshiki, we are the first ones to propose a physical ZKP protocol. Our ZKP
protocols using everyday objects could inspire further research. This study, along
with research on card-based cryptography, aims to answer the question: “What
is the easiest way to perform cryptographic tasks, such as secure computation
and zero-knowledge proof systems, without using computers?”

The computational complexity of pencil-and-paper puzzles has been widely
studied [13], and a large number of puzzles are proved to be NP-complete as
shown in a recent survey [31]. To the best of our knowledge, no research has em-
ployed an NP-hardness proof to construct a physical ZKP protocol because such
an NP-hardness proof is shown by a reduction (mostly from the SAT problem),
while a physical ZKP protocol is constructed directly to eliminate overhead.

2 Model

Fig. 2: The Roberval balance.

To describe our ZKP protocols visually, we
introduce our use of coins and balances. We
use balances similar to the Roberval balance,
which is depicted in Fig. 2. We assume an
ideal balance that tilts at a constant angle to-
ward the heavier side regardless of the weight
difference. That is, from seeing how the bal-
ance tilts, we cannot obtain information on
the weights of coins placed on its plates other than which is heavier.
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2.1 Actions

Our protocols use a coin represented as of various weights (their weights
are indistinguishable by just looking at them). We sometimes denote a stack of
several coins by for simplicity. In addition to moving coins, our protocols
make use of two specific operations on coins: Compare and Shuffle.

Compare: We represent a comparison of two stacks of coins using a balance as
follows: | . This operation returns three results: Left, Right, and Even,
referring to the heavier stack between the two stacks, and no more information.

Shuffle: Shuffling several coins is represented as follows: [ 1 2 · · · m] →
[ r(1) r(2) · · · r(m)], where r is a uniformly distributed random permutation
chosen from the symmetric group of degree m. This operation returns the coins
rearranged completely random: after shuffling, the order of m coins is rearranged
according to r (the underscripts number are given to identify the new positions;
however, the coins are indistinguishable in practice).

2.2 Protocol

In our balance-based ZKP protocol for a puzzle, a prover P first places a coin on
a cell of the given grid, such that the weight of the coin represents the number
filled in the cell in a solution P has. This means that P needs to know a specific
weight of a coin beforehand without a verifier V knowing it. This is possible
if P uses a balance without V observing it, and we omit this in a protocol
description. Additionally, only P should handle coins (whose weights directly
represent a solution) throughout protocols, so as not to give V any information
on the weights of the coins.

3 Sudoku

Sudoku is a famous puzzle, which gained popularity in 1986 when it was pub-
lished by the Japanese puzzle company, Nikoli5. In this game, any number from
1 to 9 is placed in an empty cell. A typical Sudoku grid is a 9× 9 grid, divided
into 3× 3 blocks. Initially, some cells are filled with numbers. In Fig. 3, we give
a simple example of a Sudoku grid and its solution. The goal is to fill the cells so
that each row (there are 9 rows), each column (there are 9 columns), and each
block (there are 9 blocks) contains distinct numbers from 1 to 9.

3.1 ZKP Protocol

We present a ZKP protocol for Sudoku using a balance and coins. That is, this
protocol enables a prover P (i.e., the merchant) to convince a verifier V (i.e.,
the hungry girl) that P knows a solution of a given Sudoku puzzle (in the fish
market introduced in Sect. 1). Its security proof is given in Sect. 3.2.
5 https://www.nikoli.co.jp/en/

https://www.nikoli.co.jp/en/
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8 5 1
1 8

4 2 9
3 2

1 2 3 4 6 7 8 9
6 1

8 9 5
2 4
7 6

1

8 3 9 7 6 5 1 2 4
2 6 1 3 9 4 8 7 5
7 4 5 2 8 1 3 9 6
5 9 4 8 3 7 6 1 2
1 2 3 4 5 6 7 8 9
6 7 8 9 1 2 5 4 3
3 8 6 1 4 9 2 5 7
9 1 2 5 7 3 4 6 8
4 5 7 6 2 8 9 3 1

Fig. 3: An example of a Sudoku puzzle and its solution introduced in the Nikoli’s
website: https://www.nikoli.co.jp/en/puzzles/sudoku/.

Setup Phase: According to P ’s solution, the prover P places three s on each
cell so that the weight of each coin placed on a cell is equal to the number filling
the cell. More precisely, the coins are placed in two phases:
1. For each initially filled cell, V places three s, each with the corresponding

weight.
2. For each empty cell, P places three s according to its solution.
3. V checks that P executed the setup honestly, i.e., all the three coins placed on

each empty cell have the same weight. For this, P performs two comparisons
for each empty cell and confirms that they result in even, as follows:

1 2 3 → 1 | 2 & 1 | 3,

where the three coins are specified by the subscripts.

Verification Phase: The prover and the verifier execute the following steps to
confirm that the nine coins placed in the first row (resp. column or block) match
those in each of the other rows (resp. columns or blocks), i.e., the numbers 1
through 9 each appear only once in each row (resp. column or block).
1. P picks a on each cell of the first row and shuffle them: [ ] →

. Let us denote these nine coins by R1 = { 1
1,

1
2, . . . ,

1
9}.

2. V confirms that R1 has all different weights, as follows:
– For each of all possible pairs in R1, i.e., 1

i and 1
j , 1 ≤ i < j ≤ 9, the

prover P compares them as follows:

1
i | 1

j for all i and j such that 1 ≤ i < j ≤ 9.

– If the comparison results in even, then V rejects P ’s solution.
3. P picks a on each cell of another row, say the k-th row, 2 ≤ k ≤ 9,

and shuffle them: [ ] → . Let us denote these coins by Rk =

{ k
1 ,

k
2 , . . . ,

k
9}.

4. V confirms that only a single coin among R1 has the same weight as a coin
among Rk. For this, it proceeds as follows, for each coin 1

i , 1 ≤ i ≤ 9,
among R1.

https://www.nikoli.co.jp/en/puzzles/sudoku/
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(a) P compares 1
i with each coin k

j among Rk, as follows:

1
i | k

j for all k
j ∈ Rk.

– If the comparison results in even, then P returns 1
i to R1 but

removes k
j from Rk.

– Otherwise, P returns the two coins.
(b) If none of the above comparisons result in even, V rejects P ’s solution.

5. Repeat the above steps from step 3 for another k. Note that there is no need
to shuffle R1.

6. Repeat the above steps for columns and blocks.
In this way, the verifier V is convinced that each row (resp. column or block)

contains distinct numbers from 1 to 9, because for any two rows (resp. columns or
blocks), there exists exactly one cell that contains the same number as the one in
the other row (resp. column or block). Note that P is the only one manipulating
the coins associated with the solution, otherwise V could learn information on
their weights when manipulating them.

Efficiency: The numbers of coins, shuffles, and comparisons are summarized
in Table 1. Let ne denote the number of empty cells in a given Sudoku grid.
This protocol uses 243 (= 3 × 81) coins, 27 (= 9 × 3) shuffles, and 1188 + 2ne

comparisons (but will be improved in Sect. 3.3). Let us count the number of
comparisons. First, in the setup phase, two comparisons are performed for each
empty cell, i.e., 2ne comparisons. In the verification phase, we first compare nine
coins in R1 one by one, i.e., 36 (=

(
9
2

)
) comparisons. Then we compare nine coins

in R1 with nine coins in R2 one by one, but the number of coins in R2 decreases
by one after comparing a coin in R1 with all coins in R2. Thus, in the worst
case, we need 45 (=

∑9
k=1 k) comparisons. Because there are eight rows (resp.

columns or blocks) excluding the first row, the number of comparisons becomes
1188 (= 36×3+45×8×3). Therefore, the total number of comparisons becomes
1188 + 2ne. For an n× n Sudoku grid, this protocol uses 3n2 coins and requires
3n shuffles and 3(n − 1)

∑n
k=1 k + 3

(
n
2

)
+ 2ne comparisons. Table 1 shows the

case for n = 9.

3.2 Security

We prove the three properties of ZKP for our proposed protocol.

Lemma 1 (Perfect Completeness – Sudoku). If P provides a correct so-
lution of a given Sudoku grid, V is always convinced.

Proof. If P provides a correct solution, it is clear that both R1 and Rk can
be regarded as {1, 2, . . . , 9}. Therefore, comparing every pair of numbers in R1

cannot result in even, and comparing a number in R1 with each number in Rk

should result in even when the same numbers are compared. ⊓⊔
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Lemma 2 (Perfect Soundness – Sudoku). If P does not provide a correct
solution of a given Sudoku grid, V always rejects P ’s solution.

Proof. Without loss of generality, assume that P gives an incorrect solution
for a row, i.e., there are two or more coins of the same weight ℓ ∈ {1, . . . , 9}
among nine coins in the same row. If such coins are included in R1, then they
are detected when comparing them because every possible pair of coins in R1

is compared in step 2. Otherwise, i.e., they are included in any Rk, 2 ≤ k ≤ 9,
they can be detected in step 4 as follows. The first time that P compares such
a coin of weight ℓ in Rk with a coin of weight ℓ in R1, the coin of weight ℓ is
removed from Rk. Then, since R1 no longer contains a coin of weight ℓ, there
should exist a coin in R1 such that no comparison with it and any coin in Rk

results in even. Therefore, V can always rejects an incorrect solution. ⊓⊔

Lemma 3 (Perfect Zero-Knowledge – Sudoku). The verifier V is not
given any information other than that the prover P can solve a given Sudoku
grid.

Proof. Note that V must not know the weight of even one coin placed on an
empty cell; otherwise, V knows a number filled with the corresponding cell in
the solution. Since the weight of a coin is indistinguishable from its appearance,
once P places a coin on a cell, its weight cannot be known unless V picks it.
Note that our protocol lets P handle the coins when they need to be moved or
touched as noted in Sect. 2.2.

Informally, our protocol is zero-knowledge because it shuffles nine coins in
R1 and Rk in steps 1 and 3, respectively, to hide information about positions
of cells where the nine coins are originally placed. This means that comparisons
in steps 2 and 4 leak no information about the solution, except whether the
placement of coins is valid or not. ⊓⊔

Formally, we construct a simulator not in possession of a solution of a given
puzzle to prove the zero-knowledge property. For this, we refer to [10], where a
simulation-based proof for a card-based ZKP protocol for Sudoku is provided.
Their proof replaces the standard rewind ability for a simulator with the ability
to arbitrarily swap sequences of cards with another at any time. We apply this
technique to construct a simulator for our protocol, ensuring indistinguishability
from an honest prover, i.e., it has the ability to arbitrarily swap coins with
another one. The simulator acts as follows.

– In the setup phase, the simulator places three identical coins of any weight
on each empty cell.

– In step 1 of the verification phase, when R1 is shuffled, the simulator swaps
R1 with nine coins of weights 1 through 9.

– In step 3, when Rk is shuffled, the simulator swaps Rk with nine coins of
weights 1 through 9.

Since a shuffling action provides a randomized order of coins, the comparison
results performed in steps 2 and 4 are completely indistinguishable from those
provided by an honest prover. ⊓⊔



Balance-Based ZKP Protocols for Pencil-and-Paper Puzzles 9

3.3 Discussion

Number of Comparisons: We can further reduce the number of comparisons
by employing a method similar to the binary search when comparing R1 with
R2. This is because after executing step 2, the weight of every coin in R1 is
determined from the 36 comparison results performed in step 2. If we compare a
coin of weight five with every coin in R2, then we can classify R2 into four coins
of weights less than five, four coins of weights greater than five, and the coin of
weight five. This reduces the number of comparisons required, because the four
coins of weights less (greater) than five do not need to be compared with the one
of weight greater (less) than five. Recursively applying this method, the number
of comparisons required for comparing R1 and R2 is 25, which is less than the one
derived in the efficiency paragraph, i.e., 45. The total number of comparisons
is 686 (= 36 + 25 × (8 + 9 + 9), where R1 used for the verification of rows is
also used for columns and blocks (excluding comparisons performed in the setup
phase). Moreover, another improvement can be considered, such as rearranging
the order of comparisons, e.g., comparing R3 and R4 after comparing R1 and
R2 and then comparing R3 and R1 might reduce the number of comparisons.

Card-based Protocol: Placing three identical coins on each cell is the same as
in the existing card-based ZKP protocol proposed by Gradwohl et al. [10], in
which three cards each having the same number are placed on each cell. Note
that this protocol is different from the protocol in Table 1. Their protocol does
not confirm that each of three cards has the same number, and hence, it does
not achieve perfect soundness. In our protocol, since we encode a number with
the weight of a coin, we can confirm that each of three coins has the same weight
using a balance, achieving perfect soundness.

4 Futoshiki

Futoshiki is a puzzle developed by Tamaki Seto in 2001, played on an n × n
square grid. A Futoshiki grid includes white cells and inequality signs. In Fig. 4,
we give an example of a 4 × 4 Futoshiki grid and its solution. The goal is to
place one number in every white cells on the board according to the following
constraints:
1. Each row and each column contains all the numbers 1 through n.
2. The numbers must satisfy the inequality signs.

4.1 ZKP Protocol

The main difference from Sudoku is that the numbers must also satisfy the
inequality rule. We detail our protocol for an n× n grid. Our protocol achieves
perfect completeness, perfect soundness and is perfectly zero-knowledge. The
proofs are given in Sect. 4.2.
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Fig. 4: An example of a Futoshiki puzzle and its solution generated in Fu-
toshiki.com: https://www.futoshiki.com.

Setup: The setup phase is almost the same as in our proposed protocol for
Sudoku (Sect. 3). That is, according to P ’s solution, the prover P places two s
on every cell, and P compares the two s to show V that they have the same
weight.

Verification: P and V execute the following steps:
1. To verify that the numbers on both sides of each inequality sign satisfy the

rule, P compares two s placed on both sides of the sign: | . V observes
that the balance gives the expected result; if not, V rejects P ’s solution. After
performing each comparison, P moves the s to their original positions.

2. To verify that each row and column contains all the numbers from 1 to n,
P and V use the same method as for Sudoku (Sect. 3).

Efficiency: Let i denote the number of inequality sings in a given n × n grid.
This protocol uses n2 coins and performs 2n shuffles and 2(n − 1)(

∑n
k=1 k) +

2
(
n
2

)
+ ne + i comparisons. Compared to Sudoku, the number of comparisons is

reduced by (n−1)
∑n

k=1 k+
(
n
2

)
due to the absence of blocks, but it increases by

i for the inequality verification. The shuffles are also reduced by n compared to
Sudoku due to the absence of blocks. In the inequality verification, because no
shuffling is performed, it does not impact the total number of shuffle operations.

4.2 Security

We prove the security of the Futoshiki protocol. A proof for completeness is
omitted because it is clear from the protocol description.

Lemma 4 (Perfect Completeness – Futoshiki). If P knows a solution of a
given Futoshiki grid, he can always convince V .

Lemma 5 (Perfect Soundness – Futoshiki). If P does not provide a correct
solution of a given Futoshiki grid, V always rejects P .

Proof. When P gives an incorrect solution, the following two situations are pos-
sible:

– A row (resp. column) contains the same number at least twice. In this case,
V will reject P ’s solution in the same way as in Sudoku (see Lemma 2).

https://www.futoshiki.com
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1 2 3 4
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Fig. 5: An example of a Makaro puzzle and its solution introduced in the Nikoli’s
website: https://www.nikoli.co.jp/en/puzzles/makaro/.

– A pair of numbers does not verify the inequality sign between them. In this
case, when V observes the result of the comparison, it will notice that the
inequality is not satisfied and V will reject P ’s solution.

Therefore, V will always reject an invalid solution. ⊓⊔

Lemma 6 (Perfect Zero-Knowledge – Futoshiki). The verifier V is not
given any information other than that the prover P can solve the Futoshiki grid.

Proof. We show that no information has been leaked other than that the prover
P can solve the Futoshiki grid in both of the verification phases:

– In step 1, when V checks whether the numbers satisfy the inequality rule,
as V does not touch the coins but only observes the result of the balance, V
can only learn which coin is heavier (the coins are visually indistinguishable).
Hence V still does not learn anything on P ’s solution except that it is correct.

– In step 2, V cannot learn anything on the numbers P placed on each cell for
the same reason as in the Sudoku ZKP protocol (Lemma 3).

Therefore, V cannot learn anything throughout the whole process, except whether
the solution is valid or not.

Formally, a simulator acts as follows.

– In the setup phase, the simulator arbitrarily places two identical coins on
each empty cell.

– In step 1, before comparing two coins, it swaps the two coins so that the
comparison result matches the inequality sign.

– In step 2 of the verification phase, it acts in the same way as in the proof
for Lemma 2.

Since the simulator places coins to respect the inequality signs, the comparison
results performed in step 1 are indistinguishable from those provided by an
honest prover. ⊓⊔

5 Makaro

Makaro is another grid game proposed by Nikoli. A Makaro grid is made of white
cells, and black cells filled with an arrow. In Fig. 5, we give an example of a 5×5

https://www.nikoli.co.jp/en/puzzles/makaro/
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Makaro grid. The goal is to place one number in every white cells on the grid
according to the following constraints:
1. The areas separated by bold lines are called rooms, and each room is filled

with one number from 1 to the number of cells in that room.
2. In the case of a black cell with an arrow, the cell to which the arrow points

must be the cell with the highest number out of the vertically and horizon-
tally adjacent cells to that black cell.

3. Adjacent cells cannot have the same number.

5.1 ZKP Protocol

The main difference from Sudoku is that the cells must be filled according to the
arrow rule, i.e., the number pointed by the arrow must be the highest among
the adjacent cells. This property is easy to verify using a balance. Our protocol
achieves perfect completeness, perfect soundness and is perfectly zero-knowledge.
The proofs are given in Sect. 5.2.

Setup: As in the protocol for Sudoku (Sect. 3), according to P ’s solution, the
prover P places several s each of the corresponding weight on every cell, and
P compares them to show V that they have the same weight. In the following,
we assume that the number of coins placed is sufficient for clarity. The correct
number of coins is computed later.

Verification: The prover P and the verifier V execute the following steps:
1. To verify that a on each cell pointed by an arrow is the heaviest, P com-

pares it with each other adjacent around the arrow: | . If the coin
pointed by the arrow is ever found lighter than another, V rejects P ’s solu-
tion. The coins are moved to their original positions after each comparison.

2. Let s0 (≥ 2) denotes the size of the largest room in the given grid. To verify
that each room contains different coins with weight from 1 to the size of the
room, it proceeds as follows.
(a) V prepares additional s0 coins with weight from 1 to s0.
(b) For a room of size s, 1 ≤ s ≤ s0, the prover P picks a from each cell

and shuffle the s coins: [ ]. Let R denote these s coins.
(c) Let R0 denote the s coins with weight from 1 to s among the s0 coins

prepared. Using R0 and R, the verifier V confirms that they are identical
in the same way as for Sudoku (Sect. 3) as follows.
i. P compares a coin in R0 with each coin in R.

– If the comparison results in even, then P returns to R0 but
removes from R.

– Otherwise, P returns the two coins.
ii. If none of the above comparisons result in even, V rejects P ’s solu-

tion.
iii. Repeat step 2(c)i for another coin in R0 until all the coins in R0 are

compared.
(d) Repeat step 2(b) for another room until all the rooms are confirmed.



Balance-Based ZKP Protocols for Pencil-and-Paper Puzzles 13

Table 2: The numbers required for each verification in our Makaro protocol
Coins Shuffles Comparisons

Setup – – 2e
Arrow – – d− c
Room

∑s0
s=2 sns + s0

∑s0
s=2 ns

∑s0
s=2(ns

∑s
k=1 k)

Adjacency 2e e e

Total
∑s0

s=2 sns + s0 + 2e
∑s0

s=2 ns + e
∑s0

s=2(ns

∑s
k=1 k) +

d− c+ 3e

3. To verify that no identical coins are next to each other, for each of such a
pair of coins, P shuffles the two s: [ ] , and compares them: | . If
the balance shows even, V rejects P ’s solution. The two coins are no longer
used and are removed.

Efficiency: Let ns denote the number of rooms with size s, 2 ≤ s ≤ s0 for some
s0, c the number of arrows, d the number of cells adjacent to arrow cells, and
e the number of bold lines between two adjacent cells in different rooms. This
protocol uses

∑s0
s=2 sns + s0 + 2e coins and performs

∑s0
s=2 ns + e shuffles and∑s0

s=2(ns

∑s
k=1 k) + d− c+ 3e comparisons. Table 2 summarizes those numbers

required for each verification in the protocol. We first note that the number of
rooms is represented as

∑s0
s=2 ns and the number of cells is

∑s0
s=2 sns. Therefore,

in the room verification, the protocol uses a coin placed on every cell as well as
the additional s0 coins, i.e.,

∑s0
s=2 sns + s0 coins, and shuffles coins placed on

each room, i.e.,
∑s0

s=2 ns shuffles. The number of comparisons follows the same
approach as for Sudoku: for a room of size s, the number of comparisons is∑s

k=1 k in the worst case, and since there are ns rooms of size s for 2 ≤ s ≤ s0,
the total number of comparisons is

∑s0
s=2(ns

∑s
k=1 k). In the arrow verification,

the number of comparisons is d− c because the cells indicated by the arrows are
compared with other cells, i.e., d− c equals to the number of such other cells. In
the adjacency verification, the protocol uses a coin placed on each of two cells
separated by a bold line, shuffles the two coins, and compares them. Thus, the
numbers of coins, shuffles, and comparisons are 2e, e, and e, respectively. Finally,
in the setup, the protocol compares coins placed on the same cell each other if
there are multiple coins placed on the same cell. Since the room verification needs
a coin placed on every cell, the number of comparisons is equal to the number
of coins placed on cells for the other verifications. The adjacency verification
needs such 2e coins placed on cells, and hence, the setup should perform 2e
comparisons.

5.2 Security

We prove the security of the Makaro protocol. A proof for completeness is omit-
ted because it is clear from the protocol description.

Lemma 7 (Perfect Completeness – Makaro). If P knows a solution of a
given Makaro grid, he can always convince V .
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Lemma 8 (Perfect Soundness – Makaro). If P does not provide a collect
solution of a given Makaro grid, V always rejects P .

Proof. When P gives an incorrect solution, the following three situations are
possible.

– A room of size s contains twice the same number, or a number not in
{1, . . . , s}. In this case, V will reject P ’s solution as in Sudoku (see Lemma 2).

– The number in the cell pointed by the arrow is not the highest. In this case,
a comparison using the balance reveals that the coin in that cell is not the
heaviest, and V rejects P ’s solution.

– Adjacent cells contains the same number. In this case, the balance will re-
sult in even when comparing the coins in these cells, and V will reject P ’s
solution.

Therefore, when P does not give the correct answer, V will always reject. ⊓⊔

Lemma 9 (Perfect Zero-Knowledge – Makaro). The verifier V is not
given any information other than that the prover P can solve the Makaro grid.

Proof. We show that no information has been leaked other than that the prover
P can solve the Makaro grid through the following three checks in the verification
phase:

– In step 1, when comparing the coins around the arrow cell, V does not learn
anything except for which is the heaviest because the coins are visually
indistinguishable and V never touches them and only observes the balance
results.

– In step 2, V does not learn anything except that each room of size s contains
one and only one number i for all i ∈ {1, . . . , s} for the exact same reason
as for Sudoku (see Lemma 3).

– In step 3, when V checks that no adjacent cells contain the same number,
as the coins are shuffled before the comparison and never reused after, V
cannot learn anything except whether they are of different weight.

Therefore, V cannot learn anything throughout the whole process, except whether
the solution is valid or not.

Formally, a simulator acts as follows.

– In the setup phase, the simulator places coins such that two identical coins
are placed on the same cell if two coins should be placed on the same cell.

– In step 1, before comparing two coins, it swaps the coin placed on the cell
pointed by an arrow with a coin of weight 2 and swaps the other coin with
a coin of weight 1.

– In step 2(b), when s coins are shuffled, it swaps them with s coins weighted
from 1 to s.

– In step 3, when two coins are shuffled, it swaps them with two coins of
different weights.

This should make the comparison results performed in the protocol indistin-
guishable from those provided by an honest prover. ⊓⊔
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Fig. 6: An example of a Kakuro puzzle and its solution introduced in the Nikoli’s
website: https://www.nikoli.co.jp/en/puzzles/kakuro/.

6 Kakuro

Kakuro (or Kakkuro) was the most popular logic puzzle in Japanese printed
press until 1992, when Sudoku took the top spot. The Kakuro grid has white
cells and gray cells separated by diagonal lines into two triangular rooms. In
Fig. 6, we give an example of a 6 × 6 Kakuro grid and its solution. The goal is
to place one number in every white cells on the grid according to the following
constraints:
1. The number in the upper right corner of the oblique line represents the sum

of the numbers entering the consecutive white cells to its right.
2. The number in the lower left corner of the oblique line represents the sum

of the numbers entering the consecutive white cells below it.
3. Each connected (i.e., uninterrupted by a gray cell) row or column cannot

contain twice the same number.

6.1 ZKP Protocol

By using a balance, it is easy to compare the numbers in the cells separated by
diagonal lines with the sum of the numbers in the continuously connected cells.
We detail our ZKP protocol. It achieves perfect completeness, perfect soundness
and is perfectly zero-knowledge. The proofs are given in Sect. 6.2.

Setup: P and V fill the grid in two steps:
1. For each triangular cell, V places a coin of the indicated weight.
2. According to its solution, P places two coins s on each white cell.

Verification: P and V execute the following steps:
1. For each triangular cell with a number, to verify if the weight of the coin on

the cell is equal to the sum of the weights of the coins on consecutive white
cells from the triangle cell, P and V follow these steps:
– P compares the representing the number on the triangular cell with

the s on the consecutive white cells: | .
– If the comparison does not result in even, then V rejects P ’s solution.

https://www.nikoli.co.jp/en/puzzles/kakuro/
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– P moves the s to their original positions.6
2. For each uninterrupted row (or column), V verifies that the coin placed on

each cell is of a different weight than those placed on the other cells in the
same way as steps 1 and 2 for Sudoku (Sect. 3).

Efficiency: Let t denote the number of triangular cells, nℓ the number of un-
interrupted rows and columns of length ℓ, 2 ≤ ℓ ≤ ℓ0 for some ℓ0, and w the
number of white cells. This protocol uses a total of t + 2w coins and performs
t shuffles because in step 2, it applies a shuffle for each of uninterrupted rows
and columns. The number of comparisons is t +

∑ℓ0
ℓ=2

(
nℓ

(
ℓ
2

))
+ w because in

step 2, it performs comparisons for all possible pairs of cells within each of un-
interrupted rows and columns (and in step 1, a comparison is needed for each of
triangular cells).

6.2 Security

We prove the security of the Kakuro protocol. A proof for completeness is omitted
because it is clear from the protocol description.

Lemma 10 (Perfect Completeness – Kakuro). If P knows a solution of a
given Kakuro grid, he can always convince V.

Lemma 11 (Perfect Soundness – Kakuro). If P does not provide a correct
solution of a given Kakuro grid, V always rejects P ’s solution.

Proof. When P gives an incorrect solution, the following two situations are pos-
sible.

– A number in a triangular cell and the sum of the subsequent numbers from
that triangle cell are not equal. In this case, the weight of the coin repre-
senting the triangular cell number and the sum of the weights of the coins
in the consecutive white cells from that triangle cell are not equal, causing
the balance to be unbalanced. Hence, V will reject P ’s solution.

– The same number is included twice in a block formed by consecutive white
cells either vertically or horizontally. In this case, during the comparison of
the coins in the white cells of the block, the weights of two coins are
equal, resulting in the balance being even. Hence, V will reject P ’s solution.

Therefore, when P does not give the correct answer, V will always reject its
solution. ⊓⊔

Lemma 12 (Perfect Zero-Knowledge – Kakuro). The verifier V cannot
learn any information other than that the prover P can solve the Kakuro grid.

Proof. We show that no information has been leaked other than that the prover
P can solve the Kakuro grid through each step of the verification phase:
6 For this, P and V should memorize the order of s when they are placed on the

balance.
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– In step 1, V checks that the number in the triangular cell is equal to the sum
of the subsequent numbers. The coins s from consecutive white cells are
stacked before placing them on the scale. Hence V does not learn anything
on their individual weight (they are visually indistinguishable), except that
the sum of their weight is the same as the weight of the corresponding coin

.
– In step 2, V ensures that uninterrupted rows and columns do not contain

twice the same number. The coins s are shuffled, and each pair of coins
is compared. Since the initial positions of each coin cannot be identified, V
cannot determine the numbers on the white cells.

Hence, V cannot learn anything on P ’s solution throughout the whole protocol.
Formally, a simulator acts as follows.

– In the setup phase, the simulator arbitrarily places two identical coins on
each white cell.

– In step 1 of the verification phase, before comparing, it swaps the coins
placed on the consecutive white cells with the same number of coins such
that the total weight of them is equal to the number on the triangular cell.

– In step 2, it acts in the same way as in the proof for Lemma 2.

This should make the comparison results performed in the protocol indistin-
guishable from those provided by an honest prover. ⊓⊔

7 Concluding Remarks

In this paper, we constructed ZKP protocols using a balance scale for four pencil-
and-paper puzzles. We demonstrated the security of our proposed solutions,
showing that they are perfectly complete, sound, and zero-knowledge. As a future
work, we aim to explore other similar games. Additionally, we would like to
investigate improvements that allow for the execution of the protocol with fewer
coins and steps for the puzzles presented in this paper.

An analogous verification was considered in [7], where one confirms whether
two cups contain the same number of marbles, say X = Y or not. Because our
model employs a balance to confirm which is heavier, say X ≥ Y or not, we
considered an entirely different mechanism to construct a ZKP protocol. As can
be observed from our ZKP protocols, Sudoku ZKP can be conducted only based
on verifying X = Y because it involves repeating the verification of whether a
coin in a set is equal to each one in the other set.
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