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Abstract

I n this document, we formally analyze security in electronic voting and electronic
auctions. On-line voting is now available in several countries, for example in

Estonia [Est] or parts of Switzerland [Gen13, Reg13]. Similarly, electronic auctions
are increasingly used: eBay had over 112 million active users and over 350 million
listings in 2012, and achieved a revenue of more than 14 billion US Dollars [Don12].
In both applications, security is a main concern, as fairness is important and
money is at stake.

In the case of voting protocols, privacy is crucial to ensure free elections.
We propose a hierarchy of privacy notions in the Applied π-Calculus, including
different levels of coercion, special attacks such as forced-abstention attacks, and
inside attackers. We also provide generalized notions for situations where votes
are weighted (e.g. according to the number of shares in a company), and show
that for many protocols the case with multiple coerced voters can be reduced
to the case with one coerced voter. This result is made possible by a unique
decomposition result we proved in the Applied π-Calculus, showing that any finite
process has a unique normal form with respect to labeled bisimilarity. Moreover
we provide multiple case studies illustrating how our taxonomy allows to assess
the level of privacy ensured by a voting protocol.

In the case of auction protocols we also consider a hierarchy of privacy notions,
and several fairness and authentication properties such as Non-Interference, Non-
Cancellation and Non-Repudiation. We analyze all these properties automatically
using ProVerif on three case studies, and identify several flaws. Moreover we give
an abstract definition of verifiability in auctions and provide case studies in the
symbolic and computational model using ProVerif and CryptoVerif respectively.
Again, we identify several shortcomings, but also give a computational proof for
one protocol.

Finally we explore the idea of “true bidder-verifiable auctions”, i.e. auctions
that can be verified by a non-expert, as the property is ensured through physical
properties instead of complex cryptography. We propose two such protocols,
discuss how to model the underlying physical properties, and provide a formal
analysis of both protocols using ProVerif.

Keywords: Privacy, Electronic Voting, Electronic Auctions, Authentication,
Fairness, Formal Verification, Symbolic Model, Computational Model, ProVerif,
CryptoVerif, Applied Pi-Calculus, Unique Decomposition, Normal Form
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Résumé

D ans cette thèse nous étudions formellement la sécurité des protocoles de vote
et d’enchère en ligne. Le vote en ligne est utilisé en Estonie [Est] et dans

certaines régions de la Suisse [Gen13, Reg13]. D’autre part, les enchères en ligne
sont de plus en plus populaires : eBay comptait plus de 112 millions utilisateurs
actifs et plus de 350 millions d’objets à vendre en 2012, avec un chiffre d’affaires
de 14 milliards de dollars [Don12]. Dans ces deux applications, la sécurité est
primordiale, à cause d’enjeux financiers et politiques.

Dans le cas des protocoles de vote, le secret du vote est crucial pour le libre
choix des votants. Nous proposons une hiérarchie des notions de secret du vote
par rapport à plusieurs niveaux de coercition, des attaques spécifiques (comme
l’abstention forcé), et des votants corrompus. Nous généralisons ces notions pour
le cas des votes pondérés (par exemple par rapport au nombre d’actions dans
une société). Nous montrons aussi que sous certaines conditions le cas avec
plusieurs votants sous attaque se réduit au cas avec un seul votant sous attaque.
Ce résultat a été obtenu grâce à un autre résultat démontré dans le Π-calcul
appliqué, montrant que tout processus fini peut se décomposer de manière unique
en processus premiers. Nous illustrons notre hiérarchie sur plusieurs exemples,
soulignant comment elle permet d’évaluer le niveau d’anonymat d’un protocole
donné.

Dans le cas des protocoles d’enchère en ligne, nous proposons aussi une
hiérarchie de notions d’anonymat, et plusieurs notions d’équité et d’authentification
comme la non-interférence, la non-annulation et la non-répudiation. Nous analysons
ces propriétés automatiquement à l’aide de l’outil ProVerif sur trois exemples, et
découvrons plusieurs faiblesses. De plus, nous proposons une définition abstraite
de la vérifiabilité, et l’appliquons sur des exemples aussi bien dans le modèle
calculatoire que dans le modèle symbolique en utilisant CryptoVerif et ProVerif
respectivement. Nous démontrons dans le modèle calculatoire qu’un des protocoles
est vérifiable, et découvrons plusieurs faiblesses sur les autres exemples.

Finalement nous étudions le concept d’«enchères vraiment vérifiable par les
enchérisseurs», c’est-à-dire des protocoles d’enchère où le bon déroulement peut
être vérifié par un non-expert, car la sécurité est assurée par des moyens physiques,
et non cryptographiques. Nous proposons deux tels protocoles, et une analyse
formelle de ces protocoles grâce à une modélisation des propriétés physiques avec
ProVerif.

Mots-clés : vie privée, vote électronique, enchère en ligne, authentification,
équité, vérification formelle, modèle symbolique, modèle calculatoire, ProVerif,
CryptoVerif, pi-calcul appliqué, décomposition unique, forme normale
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Chapter 1
Introduction

I n this chapter we introduce the context of the thesis and motivate our work. We
also give an overview of related work, and outline the thesis and its contributions.

Finally we list previous publications of preliminary results concerning the work
presented in this thesis.
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1. Introduction

1.1 Introduction and Motivation

More and more commerce is done using the Internet, for example on-line shop-
ping – Amazon.com achieved a revenue of more than 61 billion US Dollars in
2012 [Ama13] – or on-line auctions (eAuctions) such as eBay with a revenue
of more than 14 billion US Dollars in 2012 [Don12]. Moreover administration
and government rely more and more on computer system for electronic govern-
ment (eGovernment) applications or electronic voting (eVoting), which is used for
example in Estonia [Est] or parts of Switzerland [Gen13, Reg13].

To connect different systems or to implement such distributed applications,
many protocols are developed. These protocols specify how the different par-
ticipants interact, and are designed to ensure security properties (for example
authentication or secrecy of the exchanged messages) as well as functional proper-
ties (for example to fulfill efficiency or real-time constraints).

However, the design of complex protocols is notoriously difficult and error-
prone. One approach to tackle this problem is the use of formal methods. Formal
methods rely on the use of formal models such as dedicated logics, process algebras
or probabilistic arguments to analyze the security of systems or protocols. They
can be used to find bugs, but also to prove that a system is secure within a given
model and with respect to given security properties. The Common Criteria for
Information Technology Security Evaluation [Com12a], an international standard
for the certification of security critical information systems, requires formal analysis
for its two highest Evaluation Assurance Levels (EALs) 6 and 7 [Com12b].

The use of formal methods has achieved many results in recent years. Since
the seminal works by Dolev and Yao [DY81, DY83] and Millen [Mil84] on public
key protocols, the development of the BAN-logic [BAN90], and the famous results
by Lowe [Low96] on the automatic analysis of the Needham-Schroeder protocol,
many weaknesses in existing and deployed protocols and standards have been
identified. For example Mitchell, Shmatikov and Stern [MSS98] found anomalies
in SSL (Secure Socket Layer) 3.0 using finite-state analysis. Moreover, Delaune,
Kremer and Steel [DKS10] discovered several flaws in the PKCS#11 standard for
cryptographic tokens using a formal model and an automated decision procedure.
Similarly Smyth and Cortier [SC11] identified weaknesses concerning the voter’s
privacy in the Helios voting system [Adi08], again using formal analysis. More
issues with Helios were discovered by Bernhard et al. [BCP+11, BPW12]. Finally
the automated analysis of the YubiHSM hardware security module, designed to
protect secret keys even when an intruder corrupted the rest of the machine, also
revealed a flaw, leading to a redesign of the protocol [KS12].

Formal methods cannot only be used to discover attacks, but also to obtain se-
cure and certified protocols and implementations. For example He et al. [HSD+05]
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1.1. Introduction and Motivation

completed a modular proof of IEEE 802.11i and Transport Layer Security (TLS),
one of the most widely used security protocols on the internet. More recently, a
verified reference implementation of TLS was completed [BFK+13].

The main challenges however in both situations (certification and verification)
remain the choice of the model, the formalization of complex security properties,
and the development of automated verification tools.

In this thesis we discuss two main applications: electronic voting (eVoting)
and electronic auctions (eAuction). Electronic Voting systems have been used in
many countries all over the world, and even on-line voting is available in some
countries such as Estonia [Est], parts of Switzerland [Gen13, Reg13] or for French
expatriates [Min13]. As voting is a crucial act in modern democracies, the security
requirements are high and complex, and there have been controversial discussions
about the security of such systems [Par07, UK 07, Min08, Bun09].

As our second application we discuss electronic auctions. They are widely
used, for example eBay had over 112 million active users and over 350 million
listings in 2012 [Don12]. Since an auction includes several competing parties –
multiple bidders striving for the lowest possible price, and the seller looking to
achieve the highest possible price – and money is at stake, security is a major
concern in such transactions as frauds are common [NTJ13].

In both applications we deal with complex systems and non-trivial properties
such as Privacy, Fairness, and Verifiability. Privacy can simply mean the secrecy
of the vote (or bid), but also unlinkability of the voter and his vote, or anonymity
of the winning bidder. Fairness often is related to Privacy, since for example
preliminary results in an election can influence the choice of the remaining voters.
Yet fairness also includes robustness against cheating, for example by ensuring
that a voter cannot vote twice, or that a bidder cannot modify or cancel his
bid (depending on the rules of the auction). Finally Verifiability ensures that
a participant can verify the correct behavior of some (un-)trusted parties, for
example of the tallier in a voting protocol. In such a case a voter can check the
correctness of the result after the election is over, without having to trust the
authorities. This is particularly interesting if the systems are complex and difficult
to understand for the participants, as the verification can be noticeably easier
than the protocol execution.

As the definitions in natural language tend to contain imprecisions, one of the
main challenges in formal verification is the development of formal definitions for
the different properties. These definitions need to be precise, and should ideally
also be suitable for automated verification, as human proofs tend to be error-prone
as complexity increases. Finally the definitions should also be as complete (i.e.
containing all aspects and covering all possible attacks) as possible, yet this is
often difficult to achieve – how to include types of attacks which are not yet

7



1. Introduction

known?
The goal of this thesis is to propose models and definitions to express and

verify such security properties in both contexts. For voting we focus on Privacy
properties including Receipt-Freeness and Coercion-Resistance. Receipt-Freeness
means that a voter cannot construct a receipt proving to an attacker that he
voted for a particular candidate, to prevent vote-buying. Coercion-Resistance
allows a voter to vote for a candidate of his choice, even if the attacker tries to
force him to vote for a certain candidate by interacting with him throughout
the entire voting process. For auctions, we propose models and definitions for
Privacy (also including Receipt-Freeness and Coercion-Resistance), Fairness and
Verifiability. We also discuss several case studies to test our models on existing
examples. In particular we prove one protocol secure with respect to our model
and definitions, but also identify multiple flaws with other protocols. Moreover
we provide a theoretical result in the Applied π-Calculus which allows us to show
that some privacy notions coincide.

1.2 Related Work

Here we give only a high-level overview of the different approaches, models and
tools used for formal verification of protocols. In each chapter we discuss in more
detail the work related to the chapter’s content.

Now we start by discussing the symbolic and computational models as well as
their relationship, then we give an overview of the techniques and tools used in
the symbolic model. Finally we also give a short overview over tools supporting
computationally sound proofs.

In general, we distinguish two main approaches for the formal verification of
protocols: the symbolic and computational models.

The Symbolic Model. In the symbolic model, cryptographic building blocks
such as encryption, signatures, commitments etc. are treated as black boxes and
assumed to be perfectly secure. This means that for example the decryption of
an encrypted message is only possible if one knows the key, or that the only way
generate a valid signature is using the secret key. Usually the intruder has full
control of the network, i.e. can intercept, create, modify and delete messages,
which are terms. Then there are rules specifying which operations the intruder
can apply on these terms. Such a formal model was first proposed by Dolev
and Yao [DY81, DY83]1, and their technique allows for automatic verification of
reachability properties such as “Can the intruder access this secret value?”.

1An attacker with similar capabilities was previously discussed informally, e.g. in [NS78].
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1.2. Related Work

The Computational Model. In the computational model on the contrary,
messages are bitstrings, and the intruder is a (usually probabilistic polynomial-
time) Turing-machine. Security properties are then typically defined as games
played by the intruder. If he manages to win the game, he breaks the property.
The goal is then to prove that the probability of the adversary winning the game
is very low, for example close to random guessing. Usually one shows that his
advantage is negligible, i.e. smaller than the inverse of any positive polynomial
function of the security parameter (for example the key length). The common
technique to prove such statements is a proof by reduction, i.e. one proves that
if the adversary is able to win the security game with a high probability, he can
break a supposedly hard mathematical problem such as the factorization of large
numbers or computing the discrete logarithm. These proofs are often realized as
a “sequence of games”, where the first game corresponds to the initial security
game, and the last game corresponds to the supposedly hard problem, which
concludes the proof. In between these two games there can be many intermediate
games, and each two games in the sequence differ only in a small detail. This is
to decompose the proofs, as one proves that in each game the adversary has the
same advantage as in the previous one, or that there is only a negligible difference.
Such computational proofs tend to be more difficult to automate, in particular
the sequence of games is often difficult to generate automatically.

Links between the Symbolic and Computational Model. Although both
models are quite different, there are soundness results showing a link between
both. In 2000 Abadi and Rogaway [AR00] showed that a protocol using en-
cryption shown secure in the symbolic model with respect to certain properties,
is also secure in the computational model with respect to the computational
equivalent of these properties. Since then many more results have been obtained
for various properties and combinations of different cryptographic primitives
(e.g. [BP05, BDK07, CLC08, KT09b, BMU12, CLHKS12, BBU13] or [CKW11]
for an overview), however also some limitations of this approach were discov-
ered [BPW06].

Symbolic Techniques and Tools. Within the symbolic model there is a
big variety of techniques. There is the initial Dolev-Yao model [DY83] based
on deduction rules, there are logics such as the BAN-logic [BAN90] to model
authentication, process algebras such as the Spi-Calculus [AG97] or the Applied
π-Calculus [AF01], and methods based on typing such as F7 [BFG10, BBF+11].

Although protocol verification problems are often undecidable in the general
case [EG82, DLMS04] – in particular with unbounded message length and and
an unbounded number of instances in parallel – there are various tools support-
ing automated protocol verification in different symbolic models. To deal with
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1. Introduction

such undecidable problems, they employ various techniques: approximations,
restrictions to the case with a bounded number of instances or limited attacker
capabilities, or algorithms that do not always terminate. We now discuss several
tools that employ such techniques.

AVISPA [ABB+05] is a tool supporting four different back-ends for protocol
verification with different techniques:

— the On-the-fly Model-Checker (OFMC) [BMV05] works by exploring the
transition system of the protocol in a demand-driven way.

— the Constraint-Logic-based Attack Searcher (CL-AtSe) [Tur06] analyzes a
bounded number of instances of the protocol using constraint logic.

— the SAT-based Model-Checker (SATMC) [AC04] translates the possible (finite)
protocol runs into a logical formula, which is then solved by a SAT-solver.

— Finally Tree Automata based on Automatic Approximations for the Analysis
of Security Protocols (TA4SP) [BHKO04] is the only back-end supporting an
unbounded number of sessions by over-approximation.

AVISPA can analyze authentication as well as (weak) secrecy, modeled as reach-
ability. We distinguish weak secrecy, i.e. “Can the secret value be computed
by an adversary?”, from strong secrecy, i.e. “Can the adversary distinguish two
instances which only differ in the secret value?”. The latter is stronger in the sense
that the adversary might be incapable of computing the exact value, but still
be able to test if it is equal to a specific value, for example zero. Strong secrecy
can be expressed using observational equivalence. AVISPA was extended in the
AVANTSSAR [AAA+12] project, but still relies on the same (although improved)
back-ends.

Scyther [Cre08a, Cre08b] verifies protocol using a symbolic backwards search
based on patterns. It supports bounded and unbounded number of runs, however
it does not always conclude for the unbounded case. In such a situation however
it still gives a verdict for the bounded case. It supports authentication and weak
secrecy (i.e. reachability) properties. A variant of Scyther can also be used to
generate machine-checked proofs [MCB10].

Recently the Tamarin prover [SMCB12, MSCB13] was developed, it supports
verification of security protocols with an unbounded number of sessions. The
security properties can be expressed with respect to a special subset of (temporal)
first-order logic. It also supports Diffie-Hellman exponentiation and a user-defined
subterm-convergent rewriting theory.

ProVerif is an automatic verification tool based on Horn clauses originally
developed by Bruno Blanchet [Bla01]. It features a mechanical translation from
the Applied π-Calculus to Horn clauses, so it can directly verify a protocol given
in the Applied π-Calculus. ProVerif uses approximations and is sound but not

10



1.3. Contributions and Organization of the Thesis

complete, and sometimes does not terminate. Originally designed to verify weak
secrecy, it was extended to support correspondence properties between events
to verify authentication properties [Bla02] and strong secrecy [Bla04a]. Another
extension was made to reconstruct attack traces if possible to help identifying
false attacks [AB05b]. Finally support for the verification of equivalences [BAF08]
was added, which was recently improved to obtain a finer approximation [CB13b].
It also supports user-defined equational theories [AB05a].

AKISS [CCK12] is a recent tool that allows to prove trace equivalence prop-
erties for bounded processes, featuring user-defined equational theories. It is
based on KISS [CDK12], a tool allowing to prove static equivalence for complex
equational theories.

For a comparison of the performance of different tools (in particular Scyther,
ProVerif and the different AVISPA backends) see [CLN09]. We chose ProVerif
for many verification tasks throughout the thesis because of its performance, its
support for authentication and equivalence properties (to analyze different notions
of Privacy) and its support of user-defined equational theories (to model special
cryptographic operations as well as the properties of physical objects).

Computational Tools. There are also tools working in the computational
model. CryptoVerif [Bla06a, BP06, Bla07, Bla08] is a tool supporting proofs
based on sequences of games. It allows for manual or (semi-)automatic proofs.
CryptoVerif provides an exact upper bound on the probability of the adversary
winning the game in terms of how often he calls the oracles (called concrete
security). Recently it was extended to also directly provide implementations based
on the verified protocol model [CB13a].

CertiCrypt [BGZB09] allows for certified cryptographic proofs in the computa-
tional model using the Coq proof assistant [Coq, CH88]. It also uses a sequence of
games and provides strong guarantees, however the proofs are manual and tend to
be cumbersome. To address this, EasyCrypt [BGHZB11] was developed. In Easy-
Crypt the user specifies the sequence of games, and the tool tries to automatically
prove the equivalences between the games using SMT2-solvers. When it succeeds,
it also provides a proof that can be checked using the Coq proof assistant.

A different approach is used by the Computational Indistinguishability Logic
(CIL) [BDKL10], allowing to formalize computational indistinguishability proofs
based on a special logic, which can also be implemented in the Coq assistant.

A recent extension to F7 also permits computationally sound proofs [FKS11].
In our computational proofs, we use CryptoVerif because of its high grade of

automation, and syntactical similarity to ProVerif, which allows us to re-use big
parts of the models.

2Satisfiability Modulo Theories

11



1. Introduction

1.3 Contributions and Organization of the Thesis

In Chapter 2, we recall the Applied π-Calculus, which is used throughout the
thesis. We also present two results on the unique decomposition of processes. We
start by defining the subclasses of finite and normed processes, i.e. processes
where all complete traces are finite, and processes where there exists at least one
complete finite trace respectively. In the first result we show that any process in
the subclass of normed processes can be rewritten as a composition of parallel
factors in a unique (up to permutation and strong labeled bisimilarity) way, i.e.
we can decompose a normed process P into factors P1| . . . |Pn, where each Pi is
prime in the sense that it cannot be further decomposed without obtaining trivial
(i.e. equivalent to 0) factors. In our second result, we show that similarly any
finite process can be rewritten in a unique (up to permutation and weak labeled
bisimilarity) way as a composition of parallel prime factors. Such results are
handy as they provide a normal form, and a cancellation result in the sense that
A|B ∼ C|B implies A ∼ C. We use our second decomposition result in Chapter 3
in a proof showing the equivalence of two privacy notions.

In Chapter 3, we discuss privacy in electronic voting (eVoting). In a first
contribution we provide a formal taxonomy of privacy in the Applied π-Calculus.
This taxonomy accounts for different attacker capabilities (such as an inside or
outside attacker), particular attacks (forced-abstention attacks) as well as the
level of coercion possible by the attacker (simple privacy, receipt-freeness, or
full coercion-resistance). We apply this taxonomy on several existing protocols
(the protocol by Fujioka et al. [FOO92], the protocol by Okamoto [Oka96], the
protocol by Lee et al [LBD+03], and Bingo Voting [BMQR07]) to illustrate the
different levels of privacy achieved by these protocols.

In our second contribution, we generalize the privacy definition to accommodate
protocols with weighted votes, for example according to the percentage of shares
in a company. In such a case the previous definitions based on two voters swapping
their votes are unsuitable as swapping votes can lead to different outcomes and
hence trivially distinguishable situations. Our solution is to abstract away from
the result, and simply consider all distributions of votes giving the same result.
We apply these new notions on a protocol implementing weighted votes (based
on the protocol by Eliasson and Zúquete [EZ06]). We also establish precise
links between these new notions and the notions from our taxonomy: we can
show that the corresponding notions coincide if the votes are not weighted. In
a next step, we can also show that if the protocol ensures a certain modularity
condition (which is the case for most of our examples), single-voter coercion
(i.e. only one voter under coercion by the attacker) and multi-voter coercion
(i.e. several voters simultaneously under coercion) are equivalent. This means
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that a modular protocol ensuring single-voter coercion-resistance also ensures
multi-voter coercion-resistance. We can also show that for modular protocol we
do not need to consider corrupted voters, a situation including corrupted voters
can be reduced to a situation without corrupted voters.

In Chapter 4, we consider electronic auctions (eAuctions). In the first part, we
provide formal definitions of authentication properties such as Non-Repudiation
and Non-Cancellation, fairness properties such as Weak or Strong Non-Interference
and “Highest Price Wins” as well as different notions of privacy and anonymity,
including receipt-freeness and coercion-resistance in the Applied π-Calculus. We
then consider three case studies: The protocol by Curtis et al. [CPS07], the
protocol by Brandt [Bra06] and the protocol by Sako [Sak00]. We identify several
problems for the first two protocols automatically using ProVerif, and provide
automated proofs for all properties except receipt-freeness and coercion-resistance
for the latter protocol.

In the second part of the chapter we analyze verifiability in eAuctions. We
introduce a high-level model and definition, which allows for instantiations in
the symbolic and computational model. Then we provide two case studies:
the protocols by Sako and Curtis et al. For the protocol by Sako, we give a
symbolic proof in the Applied π-Calculus with help of ProVerif (and some manual
generalizations), and also a computational proof using CryptoVerif (and one
manual proof). For the protocol by Curtis et al. we use ProVerif to analyze
verifiability, and identify several shortcomings.

In the last part, we explore the idea of “true bidder-verifiable auctions”, i.e.
auction protocols that achieve verifiability without relying on complex cryptogra-
phy, and can hence be verified without any specialist knowledge. To achieve such
a property we propose to exploit the physical properties of certain objects, and
develop two protocols inspired by Sako’s protocol. The first one, called “Cardako”,
only uses office material, i.e. cardboard and envelopes. The second one, called
“Woodako”, uses a wooden box, that determines the winner in a private, secure
and verifiable way. Although these protocols have their limitations with respect
to scalability, they illustrate how we can realize secure auctions by exclusively
relying on physical objects and their properties. We also discuss how we can
apply the formal models and definitions we developed before on these protocols,
and investigate a first possibility using special equational theories in ProVerif to
model the physical properties. Using this model, we can automatically verify both
protocols, and show that they achieve the desired security properties.

We sum up our results in Chapter 5 and discuss directions for future work.
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1.4 Publications

Much of the work presented in this thesis has already been published at different
conferences.

The unique decomposition results of Chapter 2 were presented at FoSSaCS
2013 [DELL13]. Preliminary results of the work presented in Chapter 3 were pub-
lished at several occasions: the notion of Vote-Independence was presented at FPS
2011 [DLL11], the hierarchy of privacy notions at ICC-SFCS 2012 [DLL12b] and
the work on weighted votes and multi-voter coercion at ESORICS 2012 [DLL12a].
Many of the results of Chapter 4 have also been presented before: the work on
authentication, fairness and privacy at POST 2013 [DLL13], and the definition of
verifiability at ASIACCS 2013 [DJL13].

Although not included in this thesis, we also provided a detailed cryptanalysis
of Brandt’s auction protocol [Bra06], identifying several shortcomings. This work
was presented at Africacrypt 2013 [DDL13].
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Chapter 2
The Applied π-Calculus and Unique
Parallel Decomposition of Processes

T he Applied π-Calculus is a process calculus designed for the verification
of cryptographic protocols. In this chapter we recall its syntax and the

semantics, as it is used throughout the rest of the thesis. We also present two
results concerning the unique parallel decomposition of processes. In the first
result we show that any normed process can be rewritten as a composition of
(prime) parallel factors in a unique way up to strong labeled bisimilarity, i.e. we
can decompose a finite process P into factors P1| . . . |Pn. In our second result we
show that similarly any finite process can be decomposed uniquely up to (weak)
labeled bisimilarity.
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2. The Applied π-Calculus and Unique Parallel Decomposition of Processes

2.1 Introduction

Process Algebras or Calculi are used to formally model and analyze distributed
systems. Famous examples include the Calculus of Communicating Systems (CCS)
due to Milner [Mil89], or Basic Parallel Processes (BPP) [Chr93]. These calculi
contain basic operations such as emission and reception of messages as well as
parallel composition or interleaving. In an extension to CCS, Milner, Parrow
and Walker developed the π-Calculus [MPW92], which also features channel
passing and scope extrusion. Abadi and Fournet [AF01] subsequently proposed
the Applied π-Calculus, a variant of the π-Calculus designed for the verification
of cryptographic protocols. It additionally features equational theories and active
substitutions.

2.1.1 — Outline of the Chapter

In the next section we recall the syntax and semantics of the Applied π-Calculus.
In Section 2.3 we present several equivalence and bisimilarity notions. We then
discuss related work concerning unique decomposition of processes in Section 2.4.1,
and define the depth and norm of a process in Section 2.4.2. Finally we present our
unique decomposition for strong and weak bisimilarity in Section 2.4.3 and 2.4.4,
respectively. Finally we conclude the chapter.

2.2 Syntax and Semantics

The Applied π-Calculus relies on a type or sort system for terms. It includes a
set of base types such as Integer, Key or Data. Additionally, if τ is a type, then
Channel〈τ〉 is a type (intuitively the type of a channel transmitting terms of type
τ).

We suppose a signature Σ of functions, which consists of a finite set of function
symbols with the associated arity and sorts. For example enc(message, key),
dec(message, key) are of arity two with two parameters of sorts Data and Key,
returning a value of type Data. A function with arity zero is a constant.

M , N := terms
a, b, c, n,m, k names
x, y, z variables
f(M1, . . . ,Ml) function application

Figure 2.1 – Grammar for terms

Terms in the Applied π-Calculus are combinations of names (which typically
correspond to data or channels), variables and function symbols from the signature
Σ following the grammar depicted in Figure 2.1. These combinations have to
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be correct with respect to arity and sorts of the function symbols, variables and
names. Variables and names can have any type, and functions take and return
only values of base types. We assume infinite sets of names and variables.

Functions typically include encryption and decryption, hashing, signing and
so on. Equalities are modeled using an equational theory E which defines a
relation =E . A classical example, which describes the correctness of symmetric
encryption, is dec(enc(message, key), key) =E message. To simplify the notation
we sometimes omit the subscript E if this is clear from the context.

Tuples can be implemented e.g. using a function tuplen(M1, . . . ,Mn) and
the equations

∀i : proji(tuplen(M1, . . . ,Mn)) = Mi

To simplify notation we also write (M1, . . . ,Mn) for tuplen(M1, . . . ,Mn), this
assumes the function tuplen and the destructors proji with the equations as
defined above.

P , Q := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional (M , N terms)
in(u, x).P message input
out(u,M).P message output

Figure 2.2 – Grammar for Plain Processes

A, B, P , Q := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Figure 2.3 – Grammar for Extended Processes

There are two types of processes in the Applied π-Calculus: plain processes and
extended or active processes. Plain processes are constructed using the grammar
depicted in Figure 2.2. The null process 0 does nothing, the parallel composition
P |Q executes P and Q in parallel, and the replication !P executes infinitely many
copies of P in parallel. νn.P creates a new, private name n and continues as P .
if M = N then P else Q behaves as P if N =E M or as Q otherwise. Note
the equality with respect to the equational theory, and that we require M and N
to have the same type. The process in(u, x).P inputs a message on channel u,
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2. The Applied π-Calculus and Unique Parallel Decomposition of Processes

assigns it to the variable x of type τx and continues as P . We assume that u is
of type Channel〈τx〉. Finally out(u,M).P outputs M (of type τM ) on channel u
and continues as P . Again, u has to be of of type Channel〈τM 〉.

Active or extended processes are plain processes or active substitutions as shown
in Figure 2.3. Note that the Applied π-Calculus does not include the “+”-operator
which implements a nondeterministic choice, yet we can implement something
similar using a restricted channel (see Example 7 on page 28). For more details
on encoding the operator with respect to different semantics, see [NP00, PH05].

The substitution {M/x} replaces the variable x with a term M . Note that we
do not allow two active substitutions to define the same variable, as this might
lead to situations with unclear semantics. We also require substitutions to be
well-sorted and circle-free, and only allow active substitutions on variables of
base sorts. We denote by fv(A), bv(A), fn(A), bn(A) the free variables, bound
variables, free names or bound names respectively. A name n is bound if it is
in the scope of a restriction νn, a variable x is bound if it is in the scope of a
restriction νx or of an input in(u, x). All unbound names and variables are free.

As an additional notation we write νS.A for νs1.νs2 . . . νsn.A where s1, . . . sn

are the elements of a set of variables and names S. By abuse of notation we
sometimes leave out “.0” at the end of a process. We also write Ak for A| . . . |A
(k times), in particular A0 = 0 as 0 is the neutral element of parallel composition.
Inspired by ProVerif’s syntax, we write let x = M in P for νx. (P {M/x}), or even
let (x1, . . . , xn) = (M1, . . . ,Mn) in P for νx1 . . . νxn. (P {M1/x1, . . . ,Mn/xn}).

The frame Φ(A) of an active process A is obtained by replacing all plain
processes in A by 0. This frame can be seen as a representation of what is
statically known to the environment about a process. The domain dom(Φ) of a
frame Φ is the set of variables for which Φ defines a substitution. By abuse of
notation, we also write dom(A) to denote the domain of the frame Φ(A) of an active
process A. Note that dom(A) ⊆ fv(A), and that as we cannot have two active
substitutions for the same variable, P = Q|R implies dom(P ) = dom(Q)∪dom(R)
and dom(Q)∩ dom(R) = ∅. A frame or process is closed if all variables are bound
or defined by an active substitution. An evaluation context C[_] denotes an
active process with a hole for an active process that is not under replication, a
conditional, an input or an output.

The semantics of the calculus presupposes a notion of Structural Equivalence
(≡), which is defined as the smallest equivalence relation on extended processes
that is closed under application of evaluation contexts, α-conversion on bound
names and bound variables such that the rules in Figure 2.4 on the next page
hold. Note the contagious nature of active substitutions: by rule SUBST they
apply to any parallel process.

Example 1 Consider the following running example, where x and y are variables,
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PAR-0 A|0 ≡ A
PAR-A A|(B|C) ≡ (A|B)|C
PAR-C A|B ≡ B|A
NEW-0 νn.0 ≡ 0
NEW-C νu.νv.A ≡ νv.νu.A
NEW-PAR A|νu.B ≡ νu.(A|B) if u /∈ fn(A) ∪ fv(A)
REPL !P ≡ P |!P
REWRITE {M/x} ≡ {N/x} if M =E N
ALIAS νx. {M/x} ≡ 0
SUBST {M/x} |A ≡ {M/x} |A {M/x}

Figure 2.4 – Structural Equivalence

and c, d, k, l, m and n are names:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))

We have dom(Pex) = {y}, fv(Pex) = {y}, bv(Pex) = {x}, fn(Pex) = {n, c},
bn(Pex) = {k, l,m, d} and

Φ(Pex) = νk.νl.νm.νd. ({l/y} |0|0|0) ≡ νk.νl.νm.νd. ({l/y})

Internal Reduction ( τ−→) is the smallest relation on extended processes closed by
structural equivalence and application of evaluation contexts such that the rules
in Figure 2.5 hold. Note that in accordance with the original notations [AF01],
we sometimes omit the labels τc, τt and τe, and write P → P ′ for P γ−→ P ′ with
γ ∈ {τc, τt, τe}. We also write P →∗ P ′ for P → . . .→ P ′.

COMM out(a, x).P | in(a, x).Q τc−→ P | Q
THEN if M = M then P else Q τt−→ P

ELSE if M = N then P else Q τe−→ Q
for any ground terms such that M 6=E N

Figure 2.5 – Internal Reduction

Interactions of extended processes are described using labeled operational
semantics ( α−→, see Figure 2.6 on the following page), where α can be an input or
an output of a channel name or variable of base type, e.g. out(a, u) where u is a
variable or a name.

Labeled external transitions are not closed under evaluation contexts. Note
that a term M (except for channel names and variables of base type) cannot be
output directly. Instead, we have to assign M to a variable, which can then be
output.
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IN in(a, x).P in(a,M)−−−−−→ P {M/x}
OUT-ATOM out(a, u).P out(a,u)−−−−−→ P

OPEN-ATOM A
out(a,u)−−−−−→ A′ u 6= a

νu.A
νu.out(a,u)−−−−−−−→ A′

SCOPE A
α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

PAR A
α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B α−→ A′ | B

STRUCT A ≡ B B
α−→ B′ B′ ≡ A′

A
α−→ A′

Figure 2.6 – Labeled semantics

Example 2 Consider our running example process Pex.

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))

Using an internal reduction, we can execute the following transition1:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))
≡ νk.νl.νm.νd.({l/y} |out(c, enc(n, k))|νx.({m/x})|out(d,m)|

in(d, x).out(c, x)) by PAR-0, ALIAS
≡ νk.νl.νm.νd.({l/y} |out(c, enc(n, k))|νx.( {m/x} |out(d,x)|

in(d, x).out(c, x))) by SUBST, NEW-PAR
τc−→ νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|νx. ({m/x} |out(c, x)))
≡ νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(c,m))

by SUBST, ALIAS, NEW-PAR, PAR-0

Similarly, we can also execute an external transition:

Pex ≡ νk.νl.νm.νd.({l/y} |νz. ({enc(n,k)/z} |out(c, z)) |out(d,m)|
in(d, x).out(c, x))

νz.out(c,z)−−−−−−−→ νk.νl.νm.νd. ({l/y} | {enc(n,k)/z} |out(d,m)|in(d, x).out(c, x))

We can also see that external transitions are not closed under evaluation contexts:
by rule SCOPE νc.Pex cannot execute the transition νz.out(c,z)−−−−−−−→ any more.

1Here and throughout the rest of the thesis we mark the differences between the steps in
bold for better readability.
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2.3 Observational Equivalence and Labeled Bisimilar-
ity

The Applied π-Calculus has two equivalence notions for processes: Observational
Equivalence and Labeled Bisimilarity. They can be used to express strong secrecy
or other privacy properties. Let A ⇓ a denote that A can send a message on the
channel a, i.e. when A→∗ C[out(a,M).P ] for some evaluation context C[_].

Definition 1 (Observational Equivalence [AF01]) Observational Equivalence
(≈) is the largest symmetric relation relation R between closed extended processes
with the same domain such that A R B implies:

1. if A ⇓ a, then B ⇓ a
2. if A→∗ A′, then B →∗ B′ and A′ R B′ for some B′

3. C[A] R C[B] for all closing evaluation contexts C[_]

The intuition is that two processes are observationally equivalent if each output
or internal transition of one processes can be simulated by the other, and this
holds for any context (corresponding for example to an attacker).

Example 3 Consider the following processes, where f is a function of arity one:

P0 = νa.out(c, a)
P1 = νa.νd.(out(d, a)|(in(d, y).out(c, y)))
P2 = νa.νd.(out(d, a)|(in(d, y).out(c, (y, f(y)))))

Then we have P0 ≈ P1 as P0 ⇓ c and P1 ⇓ c, P1 → νa.νd.out(c, a) ≡ P0, but
neither P0 ≈ P2 nor P1 ≈ P2 as P2 outputs a tuple instead of a single value, which
can be tested by a context.

As Observational Equivalence can be difficult to prove due to the all-quantified
context, we often use Labeled Bisimilarity instead. Labeled Bisimilarity is defined
using the notion of Static Equivalence, which is based on the equivalence of two
terms in a given frame.

Definition 2 (Equivalence in a Frame [AF01]) Two terms M and N are
equal in the frame φ, written (M = N)φ, if and only if for any names ñ and
substitution σ such that φ ≡ νñ.σ and {ñ} ∩ (fn(M) ∪ fn(N)) = ∅ we have
Mσ =E Nσ.

Note that any frame φ can be written as νñ.σ modulo structural equivalence, i.e.
using rule NEW-PAR.

Definition 3 (Static Equivalence (≈s) [AF01]) Two closed frames φ and ψ
are statically equivalent, written φ ≈s ψ, when dom(φ) = dom(ψ) and when for
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all terms M and N we have (M = N)φ if and only if (M = N)ψ. Two extended
processes A and B are statically equivalent (A ≈s B) if their frames are statically
equivalent.

The intuition behind this definition is that two processes are statically equivalent if
the messages exchanged previously with the environment cannot be distinguished
with respect to the equational theory, i.e. all operations on both sides were
indistinguishable. Note that this only concerns what is statically known to the
environment, not the possible interactions.

Example 4 ([AF01]) Consider the following frames, where f and g are two
functions with no equations (corresponding intuitively to two independent one-way
hash functions):

φ0 = νk. {k/x} |νs. {s/y}
φ1 = νk. {f(k)/x, g(k)/y}
φ2 = νk. {k/x, f(k)/y}

Then φ0 ≈s φ1, but φ1 6≈s φ2 and φ1 6≈s φ2 as (f(x) = y)φ2, but neither (f(x) =
y)φ0 nor (f(x) = y)φ1. Intuitively this expresses that the attacker is unable to
distinguish the output of two independent one-way hash functions from two random
values. In the last frame there is a link between the two values that an attacker
can check, making it distinguishable from the other two frames.

We can then define (Weak)2 Labeled Bisimilarity.

Definition 4 ((Weak) Labeled Bisimilarity (≈l) [AF01]) (Weak) Labeled
Bisimilarity is the largest symmetric relation R on closed active processes, such
that A R B implies:

1. A ≈s B,
2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′,
3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, then B →∗ α−→→∗ B′

and A′ R B′ for some B′.

As hinted above, Labeled Bisimilarity is often easier to prove than Observational
Equivalence since there is no quantification over all contexts. However Observa-
tional Equivalence and Labeled Bisimilarity do not coincide if active substitutions
are allowed on variables of channel type [Liu11, LL12], this being the reason why
we restrict active substitutions to variables of base sort. In this case, (Weak)
Labeled Bisimilarity coincides with observational equivalence [Liu11], and is thus
is closed under the application of evaluation contexts.

In our work on unique decomposition of processes we also consider a stronger
version of labeled bisimilarity.

2Originally this bisimilarity notion was only called “Labeled Bisimilarity” by Abadi and
Fournet [AF01], however we also call it “Weak Labeled Bisimilarity” to distinguish it from
“Strong Labeled Bisimilarity”.
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Definition 5 (Strong Labeled Bisimilarity (∼l)) Strong Labeled Bisimilar-
ity is the largest symmetric relation R on closed active processes, such that A R B

implies:
1. A ≈s B,
2. if A→ A′, then B → B′ and A′ R B′ for some B′,
3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B α−→ B′ and

A′ R B′ for some B′.

This notion is stronger than Weak Labeled Bisimilarity in the sense that each
step on one side has to be matched by exactly one on the other side, whereas in
the case of Weak Labeled Bisimilarity a single transition could be simulated using
several (internal) transitions.

Example 5 Consider again the processes from Example 3 on page 21, where f
is a function:

P0 = νa.out(c, a)
P1 = νa.νd.(out(d, a)|(in(d, y).out(c, y)))
P2 = νa.νd.(out(d, a)|(in(d, y).out(c, (y, f(y)))))

Then we have P0 ≈l P1 as P0
νa.out(c,a)−−−−−−−→ 0 and P1 → νa.νd.out(c, a) νa.out(c,a)−−−−−−−→ 0

and P1 → νa.νd.out(c, a) ≈l P0. Yet neither P0 ≈ P2 nor P1 ≈ P2 as P2 →
νa.νd.out(c, (a, f(a))) ≡ νa.νd.νz. {a,f(a)/z} out(c, z) νz.out(c,z)−−−−−−−→ νa.νd. {(a,f(a))/z}
but neither P0 nor P1 can produce a frame that is statically equivalent. Note also
that P0 6∼l P1 and P0 6∼l P2 as P0

νa.out(c,a)−−−−−−−→ 0 but P1 and P2 cannot do any
external transition without a previous internal reduction. Similarly P1 6∼l P2 as
P1 cannot produce a frame that is statically equivalent to νa.νd. {(a,f(a))/z}.

Note that restrictions can only forbid transitions, but not create new ones.

Lemma 1 Let A be a closed extended process and X ⊆ dom(A). Then νX.A µ−→
νX.A′ implies A µ′

−→ A′ where µ can be a silent or a visible transition, and we
have either
— µ′ = µ or

— for x ∈ X and µ = νx.out(a, x), µ′ = out(a, x)

Proof Any transition by νX.A can be executed by A as the SCOPE-rule may
only forbid certain transitions. Note that the STRUCT-rule allows to apply
structural equivalence rules, yet none of these can enable transitions that could
not be enabled without the restriction on X. The second case where µ and µ′ differ
is more of a syntactical corner case: a transition revealing one of the restricted
values corresponds to an output of an unrestricted term in the unrestricted case,
yet the underlying out is the same. �

23



2. The Applied π-Calculus and Unique Parallel Decomposition of Processes

2.4 Unique Parallel Decomposition of Processes

In a process algebra the question of unique process decomposition naturally arises:
can we rewrite a process P as P =3 P1|P2| . . . |Pn, where each Pi is prime in the
sense that it cannot be rewritten as the parallel composition of two non-zero
processes?

Such a decomposition provides a maximally parallelized version of a given
program P . Additionally, it is useful as it provides a normal form, and a cancel-
lation result in the sense that P |Q = P |R implies Q = R. This is convenient in
proofs, for example when proving the equivalence of different security notions in
electronic voting (see Chapter 3.5).

If there is an efficient procedure to transform a process into its normal form,
such a decomposition can also be used to verify the equivalence of two pro-
cesses [GM92]: once the processes are in normal form, one only has to verify if
the factors on both sides are identical.

In the next section, we discuss related work. We then define the depth and
norm of a process, and provide our first unique decomposition result with respect
to strong bisimilarity. In the following section, we show the second result w.r.t.
weak bisimilarity.

2.4.1 — Related Work

Unique decomposition (or factorization) has been a field of interest in process
algebra for a long time. The first results for a subset of CCS were published
by Moller and Milner [Mol89, MM93]. They showed that finite processes with
interleaving can be uniquely decomposed with respect to strong bisimilarity. The
same is true for finite processes with parallel composition, where – in contrast
to interleaving – the parallel processes can synchronize. They also proved that
finite processes with parallel composition can be uniquely decomposed w.r.t. weak
bisimilarity.

Later on Christensen [Chr93] proved a unique decomposition result for normed
processes (i.e. processes with a finite shortest complete trace) in BPP with
interleaving or parallel composition w.r.t. strong bisimilarity.

Luttik and van Oostrom [LvO05] provided a generalization of the unique
decomposition results for ordered monoids. They show that if the calculus satisfies
certain properties, the unique decomposition result follows directly. Recently
Luttik also extended this technique for weak bisimilarity [Lut12].

However, these existing results focus on “pure” calculi such as CCS or BPP or
variants thereof. The Applied π-Calculus, as an “impure” variant of the π-Calculus

3Here = does not designate syntactical identity, but rather some behavioral equivalence or
bisimilarity relation.
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Figure 2.7 – Channel/Link Passing in the Applied π-Calculus
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Figure 2.8 – Scope extrusion in the Applied π-Calculus

designed for the verification of cryptographic protocols, has a more complex
structure and semantics. The main differences are the equational theory to model
cryptographic primitives and the active substitutions. As active substitutions are
minimal elements (with respect to the transition relation) different from 0, we
cannot apply the general results by Luttik et al. [LvO05, Lut12].

Additionally, the Applied π-Calculus inherits the expressive power of the
π-Calculus including channel or link passing (sometimes also called mobility) and
scope extrusion. Consider three parallel processes P , Q and R, where P and Q
synchronize using an internal reduction τc, i.e. P |Q|R

τc−→ P ′|Q′|R (see Figures 2.7
and 2.8). Channel passing allows a process P to send a channel y he shares
with R to process Q (Figure 2.7). Scope extrusion arises for example when P
sends a restricted channel y he shares with R to Q, since the scope after the
transition includes Q′ (Figure 2.8). This is of particular importance for unique
decomposition since two parallel processes sharing a restricted channel might not
be decomposable and hence a simple reduction might “fuse” two prime factors,
which is not possible in BPP or CCS.

2.4.2 — Depth and Norm of Processes

In the following we prove unique decomposition for different subsets of processes,
namely finite and normed processes. This requires to formally define the length of
process traces. Let Int = {τc, τt, τe} denote the set of labels corresponding to inter-
nal reductions or silent transitions, and Act = {in(a,M), out(a, u), νu.out(a, u)}
for any channel name a, term M and variable or name u, denote the set of labels
of possible external or visible transitions. By construction we have Act ∩ Int = ∅.
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The visible depth is defined as the length of the longest trace of visible actions,
i.e. labeled transitions, excluding internal reductions. Note that this may be
infinite for processes including replication. We write P 6→ if P cannot execute
any transition, and P µ1µ2...µn−−−−−−→ P ′ for P µ1−→ P1

µ2−→ P2
µ3−→ . . .

µn−→ P ′.

Definition 6 (Visible Depth) Let lengthv : (Act ∪ Int)∗ 7→ N be a function

where lengthv(ε) = 0 and lengthv(µw) =

1 + lengthv(w) if µ ∈ Act

lengthv(w) otherwise
Then the visible depth |P |v ∈ (N∪{∞}) of a closed process P is defined as follows:

|P |v = sup
{
lengthv(w) : P w−→ P ′, w ∈ (Act ∪ Int)∗

}
The total depth is defined as the length of the longest trace of actions (including
internal reductions).

Definition 7 (Total Depth) Let lengtht : (Act∪Int)∗ 7→ N be a function where
lengtht(ε) = 0 and lengtht(µw) = 1+ lengtht(w). The total depth |P |t ∈ (N∪{∞})
of a closed process P is defined as follows:

|P |t = sup
{
lengtht(w) : P w−→ P ′, w ∈ (Act ∪ Int)∗

}
The norm of a process is defined as the length of the shortest complete trace,
including internal reductions, where communications are counted as two. This is
necessary to ensure that the norm of P |Q is the sum of the norm of P and the
norm of Q.

Definition 8 (Norm of a Process) Let lengthn : (Act ∪ Int)∗ 7→ N be a func-

tion where lengthn(ε) = 0 and lengthn(µw) =

1 + lengthn(w) if µ 6= τc

2 + lengthn(w) if µ = τc
The norm N (P ) ∈ (N ∪ {∞}) of a closed process P is defined as follows:

N (P ) = inf
{
lengthn(w) : P w−→ P ′ 6→, w ∈ (Act ∪ Int)∗

}
Example 6 Consider the processes from our running example (Example 1 on
page 18). We have |Pex|v = 2, |Pex|t = 3 and N (Pex) = 4.

The above definitions admit some simple properties.

Lemma 2 For any closed extended processes P , Q and R we have
1. |P |v ≤ |P |t
2. P = Q|R implies |P |v = |Q|v + |R|v
3. P = Q|R implies |P |t = |Q|t + |R|t
4. P = Q|R implies N (P ) = N (Q) +N (R)
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5. P ≈l Q implies |P |v = |Q|v
6. P ∼l Q implies |P |t = |Q|t
7. P ∼l Q implies N (P ) = N (Q)

Proof Let P , Q and R be closed extended processes.

1. By definition of the lengtht and lengthv functions.
2. Suppose P = Q|R. Let wP denote a maximal (with respect to lengthv)

complete (i.e. no further transitions are possible) sequence of transitions of P ,
i.e. lengthv(wP ) = |P |v. By definition of the function lengthv we only count
external transitions in w, which by rule PAR can originate either from Q or
R, hence |P |v ≤ |Q|v+ |R|v. Similarly, let wQ and wR denote maximal (with
respect to lengthv) complete sequences of transitions of Q and R respectively,
i.e. lengthv(wQ) = |Q|v and lengthv(wR) = |R|v. Then wP = wQwR is
a complete sequence of transitions of P , hence |P |v ≥ |Q|v + |R|v, thus
|P |v = |Q|v + |R|v.

3. Suppose P = Q|R. Let wP denote a maximal (with respect to lengtht)
complete sequences of transitions of P , i.e. lengtht(wP ) = |P |t. As the
length is maximal, there can be no synchronizations between Q and R, as
otherwise we can build a longer trace by replacing this synchronization with
two external reductions. Hence all transitions originate either from Q or R,
hence |P |v ≤ |Q|t + |R|t. Similarly, let wQ and wR denote maximal (with
respect to lengtht) complete sequences of transitions of Q and R respectively,
i.e. lengtht(wQ) = |Q|t and lengtht(wR) = |R|t. Then wP = wQwR is
a complete sequence of transitions of P , hence |P |t ≥ |Q|t + |R|t, thus
|P |t = |Q|t + |R|t.

4. Suppose P = Q|R. Let wQ and wR denote (one of) the smallest (with respect
to lengthn) complete (i.e. no further transitions are possible) sequences
of transitions of Q and R respectively. Then wP = wQwR is a complete
sequence of transitions of P , hence N (P ) ≤ N (Q)+N (R). Assume N (P ) <
N (Q) + N (R). Then there is a complete trace w′P with lengthn(w′P ) <
lengthn(wP ). If w′P contains no synchronizations of Q and R, each transition
originates either from Q or R, hence giving shorter complete traces for Q
and/or R, contradicting the minimality of wQ and wR. If w′P contains
a synchronization of Q and R, this can be rewritten into two external
transitions of Q and R, resulting in a complete trace of the same length
(by construction of lengthn), leading to a contradiction. Hence N (P ) =
N (Q) +N (R).

5. Assume P ≈l Q, but w.l.o.g. |P |v > |Q|v. Let ws be a sequence of transitions
of P with maximal number of visible transitions, i.e. lengthv(ws) = |P |v.
By the definition of ≈l each visible transition of P can be matched by a
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visible transition by Q, giving a trace with more visible transitions than
|Q|v, leading to a contradiction. Hence |P |v = |Q|v.

6. Assume P ∼l Q, but w.l.o.g. |P |t > |Q|t. Let ws be a sequence of transitions
of P with maximal number of transitions, i.e. lengtht(ws) = |P |t. By the
definition of ∼l each transition of P can be matched by a transition by Q,
giving a trace with more transitions than |Q|t, leading to a contradiction.
Hence |P |t = |Q|t.

7. Assume P ∼l Q but w.l.o.g. N (P ) < N (Q). Let wi be a sequence of
transitions of P with minimal number of transitions, i.e. lengthn(wi) =
N (P ), and ending in a state P ′ 6→. By the definition of ∼l each transition of
P can be matched by a transition by Q, giving a trace with less transitions
than N (Q) and ending in a state Q′ 6→ as Q′ ∼l P ′ by definition, leading to
a contradiction. Hence N (P ) = N (Q). �

Now we can define two important subclasses of processes: finite processes, i.e.
processes with a finite longest complete trace, and normed processes, i.e. processes
with a finite shortest complete trace.

Definition 9 (Finite and normed processes) A closed process P is called
finite if |P |t is finite (which implies |P |v is finite). A closed process P is called
normed if N (P ) is finite.

It is easy to see that any finite process is normed, but not all normed processes
are finite, as the following example illustrates.

Example 7 Consider P = νa.(out(a,m)|(in(a, x).(!in(b, y)))|in(a, x)). Then we
have P → P ′ ∼l 0, hence P is normed. However we also have P → P ′′ ∼l!in(b, y),
which has infinite traces. Hence P is not finite.

It is also clear that not all processes are normed. Consider the following example.

Example 8 Consider P =!(νx.out(c, x)). It is easy to see that for no sequence
of transitions s we have P s−→ P ′ 6→, i.e. P has no finite traces.

Note however that any process without replication (“!”) is finite, as no other
syntactic element allows to construct infinite traces.

2.4.3 — Decomposition w.r.t. Strong Labeled Bisimilarity

We begin with the simpler case of Strong Labeled Bisimilarity. Note that P ∼l Q
implies |P |t = |Q|t and N (P ) = N (Q) for any closed processes P and Q.

We define strong parallel primeness as follows: a process is prime if it cannot
be decomposed into non-trivial subprocesses (w.r.t. strong labeled bisimilarity).
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We require the processes to be closed, which is necessary as our bisimulation
relation is only defined on closed processes.

Definition 10 (Strongly Parallel Prime) A closed process P is strongly par-
allel prime if
— P 6∼l 0 and

— for any two closed processes Q and R such that P ∼l Q|R, we have Q ∼l 0 or
R ∼l 0.

Example 9 Consider our running example:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))

We can decompose Pex as follows:

Pex ∼l (νl. {l/y})|(νk.out(c, enc(n, k)))|(νd.(νm.out(d,m)|in(d, x).out(c, x)))

The first factor S1 = νl. {l/y} is prime since it defines only one variable, and we
cannot have two substitutions defining the same variable.

It is easy to see that the second factor S2 = νk.out(c, enc(n, k)) is prime, as
it can only perform one external transition.

The third factor

S3 = νd.(νm.out(d,m)|in(d, x).out(c, x))

is prime because its two parts can synchronize using a shared restricted channel and
then perform a visible external transition. Since dom(S3) = ∅ any decomposition
into two factors, i.e. such that S3 ∼l S′3|S′′3 , would mean that both factors can
execute one transition each (otherwise they would be equivalent to 0 as they have
an empty domain). However in that case both transitions of S′3|S′′3 can be executed
in any order, whereas in S3 we have to start with the internal reduction. Hence
no such decomposition exists.

Remark With respect to applications in protocol analysis, Example 9 illustrates
that shared restricted names, for example private channels or shared keys, can
prohibit decomposition. This is unavoidable, since a decomposition should not
change the behavior of the processes (up to ∼l). As our definition is solely based
on the semantics and the bisimilarity notion, it allows to decompose a process
as far as possible without changing the observed behavior, and thus any further
decomposition will change the behavior. As a side-effect, the decomposition shows
where shared restricted names (modeling for example keys) are actually used in a
noticeable (w.r.t. to ∼l) way, and where they can be ignored and processes can
be further decomposed.
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Remark Note also that within a prime factor we can recursively apply the
decomposition as our bisimilarity notion is closed under the application of contexts.
For example if we have a prime factor P = νa.P ′, we can bring P ′ into normal
form, i.e. P ′ ∼l P ′1|...|P ′n, and rewrite P = νa.P ′ as P ∼l νa.(P ′1|...|P ′n).

It is clear that not all processes can be written as a unique decomposition of
parallel primes according to our definition.

Example 10 Consider !P for a process P 6∼l 0. By definition we have !P = P |!P ,
hence !P is not prime. At the same time any such decomposition contains again
!P , a non-prime factor, which needs to be decomposed again. Thus there is no
decomposition into prime factors.

However we can show that any closed normed process has a unique decomposition
with respect to strong labeled bisimilarity. To achieve this, we need some prelim-
inary lemmas about transitions and the domain of processes. The first lemma
captures the fact that any process which cannot perform any transition and has
an empty domain, is bisimilar to 0 (the empty process).

Lemma 3 For any closed process A with dom(A) = ∅ and N (A) = 0, we have
A ∼l 0.

Proof Consider the relation R = {(A, 0)}. We show that it fulfills the conditions
of strong labeled bisimilarity:

1. We have dom(A) = ∅ = dom(0), hence A ≈s 0.
2. Let (A, 0) ∈ R. Obviously 0 cannot do any transition. Since N (A) = 0,

there exists a complete trace of length 0. Thus we have A 6→, i.e. A cannot
do any transition either and the remaining conditions are trivially satisfied.

As we have (A, 0) ∈ R, this gives A ∼l 0, which we wanted to show. �

We also need to show that if a normed process can execute a transition, it can
also execute a norm-reducing transition.

Lemma 4 Let A be a closed normed process with A µ−→ A′ where µ is an internal
reduction or visible transition. Then A µ′

−→ A′′ with N (A′′) < N (A).

Proof As A is normed, we have∞ > N (A). Moreover, A µ−→ A′ impliesN (A) > 0,
as this transition contradicts a complete trace of length 0. Hence the shortest
complete trace w has ∞ > lengthn(w) > 0. Hence there is a transition µ′ with
w = µ′w′ which reduces norm, i.e. A µ′

−→ A′′ with N (A′′) < N (A). �

In a first step, we prove the existence of a decomposition.
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Theorem 5 (Existence of Factorization) Any closed normed process P can
be expressed as the parallel product of strong parallel primes, i.e. P ∼l P1| . . . |Pn
where for all 1 ≤ i ≤ n, Pi is strongly parallel prime.

Proof By induction on the norm of P , and on the size of the domain dom(P ).

— If N (P ) = 0:
– If |dom(P )| = 0, then P ∼l 0 (by Lemma 3), hence the factorization is the

empty product.

– If |dom(P )| > 0, then P 6∼l 0, hence P is either strongly parallel prime itself
(in which case we are done), or can be written as P ∼l Q|R (by the definition
of strongly parallel prime). As we have dom(P ) = dom(Q) ∪ dom(R) with
dom(Q) ∩ dom(R) = ∅ and |dom(Q)| > 0, |dom(R)| > 0 (since Q 6∼l 0 and
R 6∼l 0), we have |dom(Q)| < |dom(P )|, |dom(R)| < |dom(P )|, hence we
can use the induction hypothesis to conclude.

— If N (P ) > 0:
– If |dom(P )| = 0: P is either strongly parallel prime itself, or can be written

as P ∼l Q|R. Then we have dom(P ) = dom(Q) = dom(R) = ∅, and
N (Q) > 0, N (R) > 0 by Lemma 3, hence N (Q) < N (P ), N (R) < N (P )
by Lemma 2 and we can apply the induction hypothesis.

– If |dom(P )| > 0, then P 6∼l 0, hence P is either strongly parallel prime
itself, or can be written as P ∼l Q|R. Suppose N (Q) > 0 and N (R) > 0,
hence N (Q) < N (P ), N (R) < N (P ) and we can apply the induction
hypothesis. Suppose w.l.o.g. N (Q) = 0 < N (P ), then N (R) = N (P ) by
Lemma 2. Since Q 6∼l 0 this implies |dom(Q)| > 0 by Lemma 3, hence
|dom(R)| < |dom(P )|, and we can use the induction hypothesis to conclude.
�

We now show the uniqueness of the decomposition. As an additional notation, let
exp(A,R) denote the exponent (i.e. the number of occurrences) of prime A in the
unique factorization4 of R.

Theorem 6 (Uniqueness of Factorization) The strong parallel factorization
of a closed normed process P is unique up to ∼l and permutation of the prime
factors.

Proof By induction on N (P ), and on the size of the domain dom(P ).

— If N (P ) = 0:
– If |dom(P )| = 0, then P ∼l 0 (by Lemma 3), hence the factorization is the

unique empty product.
4This notation only makes sense if we know that R has a unique decomposition, which however

holds in the cases where we employ it during the proof and later on.
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– If |dom(P )| > 0, P 6∼l 0. Suppose P ∼l Q, but P and Q have different
factorizations:

P ∼l Ak1
1 |A

k2
2 | . . . |Aknn

Q ∼l Al11 |A
l2
2 | . . . |Alnn

where the Ai’s are distinct (i.e. for i 6= j we have Ai 6∼l Aj) and ki ≥ 0,
li ≥ 0.
Note that since all factors Ai are prime we have ∀i Ai 6∼l 0, and since we
also know N (P ) = 0 we have ∀i N (Ai) = 0. By Lemma 3 we then have
dom(Ai) 6= ∅, which implies ki, li ≤ 1 as we cannot have two substitutions
defining the same variable.
Let m be such that km 6= lm. Without loss of generality we assume
1 = km > lm = 0.
Obviously we have dom(P ) = dom(Q). Let ṽ = dom(P ) \ dom(Am). Then
we have (by Lemma 2 and rules ALIAS and NEW-PAR):

νṽ.P ≡ Am|νṽ.P ′ ∼l Am

where P ′ is P without the factor Am, since dom(νṽ.P ′) = ∅ andN (νṽ.P ′) =
0. Similarly

νṽ.Q ≡ |i∈I νṽi.Ai|i/∈I νṽi.Alii ∼l |i∈I νṽi.Ai

where I = {i|dom(Ai) ∩ dom(Am) 6= ∅ and li = 1} and ṽi = dom(Ai) ∩ ṽ.
By νṽ.P ∼l νṽ.Q we have Am ∼l |i∈I νṽi.Ai. If |I| = 0, we have Am ∼l 0
which contradicts the hypothesis that Am is prime. Similarly for |I| > 1,
we have a factorization for Am into several processes, which also contradicts
Am prime.
For |I| = 1 we have the following cases: Let i denote the only index in I.
If ṽi = ∅, we have a contradiction to the distinctness hypothesis of the Aj ’s
since Am ∼l Ai with m 6= i as lm = 0 6= li = 1.
If ṽi 6= ∅ we have dom(Am) ⊂ dom(Ai), but dom(Am) 6= dom(Ai). Now
consider ṽ′ = dom(Q) \ dom(Ai). Then - as above - we have:

νṽ′.Q ≡ Ai|νṽ′.Q′ ∼l Ai

where Q′ is Q without the factor Ai. Similarly

νṽ′.P ≡ |j∈I′ νṽ′j .Aj |j /∈I′ νṽ′j .A
lj
j ∼l |j∈I′ νṽ′j .Aj

where I ′ = {j|dom(Aj) ∩ dom(Ai) 6= ∅ and kj = 1} and ṽ′j = dom(Aj) ∩
ṽ′. Since dom(Am) ⊂ dom(Ai), dom(Am) 6= dom(Ai) and dom(Ai) =
dom(|j∈I′ νṽ′j .Aj) we have |I ′| > 1, hence Ai ∼l |j∈I′ νṽ′j .Aj gives a
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factorization of Ai, which contradicts the hypothesis that it is prime.

— If N (P ) > 0:
– If |dom(P )| = 0: Suppose P ∼l Q, but P and Q have different factoriza-

tions:
P ∼l Ak1

1 |A
k2
2 | . . . |Aknn

Q ∼l Al11 |A
l2
2 | . . . |Alnn

where the Ai’s are distinct (i.e. for i 6= j we have Ai 6∼l Aj) and ki, li ≥ 0.
By induction hypothesis we have that for every process R with N (R) <
N (P ) the factorization is unique.
Let m be such that km 6= lm, and that N (Aj) > N (Am) implies kj = lj

(i.e. Am has the maximal norm among the factors in which P and Q differ).
Without loss of generality we assume km > lm.
In the following we use the fact that P ∼l Q and hence Q can simulate
each transition of P and vice versa.
We now analyze different cases:
∗ If P = Akmm , i.e. P is the power of a prime:

Note that Q cannot contain any prime factor Ar, r 6= m with N (Ar) >
N (Am): Suppose lr > 0. By assumption, Am is the maximal (w.r.t.
norm) prime factor in which P and Q differ, hence kr = lr > 0. This
contradicts P = Akmm .
If km = 1 (i.e. P is prime), then Q is prime as well, and since 1 = km >

lm we have Q ∼l Aj for some j 6= m, which gives Am ∼l Aj , which
contradicts the distinctness of the prime factors.
If km > 1:
Assume lm = 0. Then – since dom(Am) = ∅ – for some µ Am

µ−→ R,
P

µ−→ P ′ with exp(Am, P ′) = km − 1 > 0 and N (P ′) < N (P ) by
Lemma 4. Since P ∼l Q, there exists a Q′ with Q

µ−→ Q′. For any
such Q′ we have exp(Am, Q′) = 0 since lm = 0, Am has maximal norm,
and li = 0 for all Ai with N (Ai) > N (Am). Note that if µ = τc two
smaller factors in Q could fuse using scope extrusion (cf. Figure 2.8
on page 25), however no two prime factors share a secret channel (cf.
the structure of P and Q). Hence the existence of such a transition
τc fusing two factors would imply the existence of a µ 6= τc that we
can chose instead. Since Q ∼l P we also know that Am can execute µ,
which we can thus choose to ensure the above reasoning holds.
As P ′ and Q′ have a unique prime factorization by induction hypothesis,
we have a contradiction with exp(Am, P ′) = km − 1 > 0 = exp(Am, Q′).
Hence assume lm > 0: If Am

µ−→ R with N (R) < N (Am) for µ 6= τc,
we have Q µ−→ Q′ and since P ∼l Q there exists P ′ with P µ−→ P ′. We
have exp(Am, P ′) ≥ km − 1 > lm − 1 = exp(Am, Q′) which contradicts
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P ∼l Q using the induction hypothesis.
If no such transition µ exists, we have Am

τc−→ R, hence Q τc−→ Q′ and
since P ∼l Q there exists P ′ with P τc−→ P ′. We know that P cannot
simulate this transition using synchronization between the different
copies of Am as this would imply the existence of a visible norm-reducing
transition µ (as the transition τc is norm-reducing as well). Hence we
have again exp(Am, P ′) ≥ km − 1 > lm − 1 = exp(Am, Q′) which
contradicts P ∼l Q using the induction hypothesis.

∗ If there exists j 6= m such that kj > 0:
Let µ, T be such that P µ−→ T and N (T ) < N (P ) and for all ν such
that P ν−→ P ′ with N (P ′) < N (P ) we have exp(Am, P ′) ≤ exp(Am, T ).
We now show that such µ, T exist.
Note because of Lemma 2 and N (P ) <∞ we have N (Ai) <∞. This
gives that if Ai

µ−→ A′i then Ai
µ′
−→ A′′i with N (A′′i ) < N (Ai) by Lemma 4.

Suppose no such µ, T exist. Hence for no Ai with ki > 0, i 6= m we
have Ai

µ−→ A′i, otherwise this allows a transition that would fulfill
the above conditions. Hence (by Lemma 3) we have dom(Ai) 6= ∅ for
any i with ki > 0, i 6= m, which contradicts |dom(P )| = 0. Note that
exp(Am, T ) ≥ km, as any transition by a factor different from Am does
not decrease the number of Am’s.
If we have a µ 6= τc, then - as P ∼l Q - there exists Q′ with Q µ−→ Q′

and Q′ ∼l T . Hence N (Q′) < N (Q) and ∃At with At
µ−→ R.

If N (At) ≤ N (Am) then exp(Am, Q′) ≤ lm < km ≤ exp(Am, T ), which
gives the contradiction to the induction hypothesis,
If N (At) > N (Am) then exp(Am, Q′) = lm + exp(Am, R), t 6= m

and kt = lt > 0 as Am is maximal. Consider now P
µ−→ P ′ =

Ak1
1 | . . . |A

kt−1
t | . . . |Aknn |R with exp(Am, P ′) = km + exp(Am, R). Hence

exp(Am, Q′) = lm + exp(Am, R) < km + exp(Am, R) = exp(Am, P ′),
which contradicts Q′ ∼l P ′. Hence the only option for Q to match
this transition would be to use a ever bigger As, in which case we can
however apply the same argument (ks = ls). As the number of prime
factors is finite, we have that Q 6∼l P which gives the contradiction.
If no µ 6= τc exists, choose a µ = τc. We distinguish two different
cases: If the transition is matched by only one factor, we can argue
as above. If the transition is matched by the synchronization of two
factors (Ar

α−→ A′r and As
ᾱ−→ A′s), this implies that we have two visible

actions on two different factors. As all transitions that do not reduce the
number of Am’s are τc-transitions, these actions can only be matched
by Am, thus Am

α−→ A′m. Hence Q
α−→ Q′ with exp(Am, Q′) = lm−1 and

for any P α−→ P ′ we have exp(Am, P ′) ≥ km−1 > lm−1 = exp(Am, Q′),
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which contradicts P ′ ∼l Q′.

– If |dom(P )| > 0: This is essentially the same proof as above. In the first
case (P is a power of a prime), we only have to consider the case km = 1
as dom(Am) 6= ∅. Hence P is prime, and then Q is prime as well, and since
1 = km > lm we have Q ∼l Aj for some j 6= m, which gives Am ∼l Aj ,
which contradicts the distinctness of the prime factors.
In the second case we have to be more careful when proving that µ and T
with the desired properties exist. Once again, we suppose that they do not
exist, hence for no Ai with ki > 0, i 6= m we have Ai

µ−→ A′i, otherwise this
allows a transition that would fulfill the conditions. Hence for any i with
ki > 0, i 6= m we have N (Ai) = 0, and by Lemma 3 we have dom(Ai) 6= ∅.
Let ṽ = dom(P ) \ dom(Am) and consider

νṽ.P ≡ Akmm |νṽ.P ′ ∼l Akmm

where P ′ is P without the factor Akmm . Similarly

νṽ.Q ≡ |i νṽi.Alii

where ṽi = dom(Ai) ∩ ṽ.
As |dom(Akmm )| < |dom(P )| by induction hypothesis the factorization is
unique. We cannot have ṽi = ∅ for any i 6= m, as this contradicts the
uniqueness of the factorization as Ai 6∼l Am. Hence dom(Ai) 6= ∅ and
li = 1.
As Am is prime, we have that Am|R ∼l νṽi.Ai for some i 6= m and R. More
precisely, we have νṽi.Ai ∼l Alm for some l ≥ 1, as any other factorization
of R would contradict the primeness of Am. In fact, since Am is the biggest
factor in which P and Q differ and by Lemmas 1 and 3, we have l = 1.
We cannot have Q ∼l Ai as this would directly give a factorization of Ai.
Hence there has to be another factor Ar which – by Lemma 3 – has either
dom(Ar) 6= ∅ or can execute a transition (or both).
If dom(Ar) 6= ∅, consider ṽ′ = dom(Q) \ dom(Ai). Then – as above – we
have:

Q1 = νṽ′.Q ≡ Ai|νṽ′.Q′ ∼l νṽ′.P = P1

where Q′ is Q without the factor Ai.
If Ar

η−→ A′r, we have

Q ∼l Ai|Ar|S
η−→ Ai|A′r|S = Q1

where S is Q without Ai and Ar. By P ∼l Q there exists P1 with
P

η−→ P1 ∼l Ai|A′r|S.
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In both cases, we have a unique factorization by induction hypothesis.
Additionally exp(Ai, Q1) = 1, and by the uniqueness of the factoriza-
tion exp(Ai, P1) = exp(Ai, Q1) = 1. Let s be such that dom(As) ∩
dom(Ai) 6= ∅, ks > 0. Such s exists because of dom(Am) ( dom(Ai)
and dom(P ) = dom(Q). Then by hypothesis As cannot do any transition,
and exp(As, P1) = exp(As, P ) = 1, which contradicts exp(Ai, P1) = 1
because of the conflicting domains.
Hence µ and T with the desired properties exist, and the rest of the proof
is the same as above. �

As a direct consequence, we have the following cancellation result.

Lemma 7 (Cancellation Lemma) For any closed normed processes A, B and
C, we have

A|C ∼l B|C ⇒ A ∼l B

Proof As A, B and C are closed and normed, there exists a unique paral-
lel factorization for each of them, i.e. A ∼l A1| . . . |Ak, B ∼l B1| . . . |Bl and
C ∼l C1| . . . |Cm. Thus we have A|C ∼l A1| . . . |Ak|C1| . . . |Cm and B|C ∼l
B1| . . . |Bl|C1| . . . |Cm. These are prime factorizations, and by Theorem 6 they are
unique. As A|C ∼l B|C, they have to be identical. Hence k +m = l +m, thus
k = l. We show that this implies that the factorizations of A and B have to be
identical (up to ∼l), which implies A ∼l B. Consider the following cases:

If k = 0, A ∼l 0. As l = k = 0, B ∼l 0, and A and B have the same prime
factorization.

If k > 0, we have A ∼l A1| . . . |Ak. Suppose that there exists a prime factor
Ai with exp(Ai, A) 6= exp(Ai, B), then exp(Ai, A|C) = exp(Ai, A) + exp(Ai, C) 6=
exp(Ai, B) + exp(Ai, C) = exp(Ai, B|C), which contradicts the fact that A|C and
B|C have the same prime factorization. �

2.4.4 — Decomposition w.r.t. Weak Labeled Bisimilarity

In this part, we discuss unique decomposition with respect to (weak) labeled
bisimilarity. Note that P ≈l Q implies |P |v = |Q|v for any closed processes P and
Q (cf. Lemma 2 on page 26).

To obtain our unique decomposition result for weak labeled bisimilarity, we
need to define parallel prime with respect to weak labeled bisimilarity.

Definition 11 (Weakly Parallel Prime) A closed extended process P is weakly
parallel prime, if
— P 6≈l 0 and

— for any two closed processes Q and R such that P ≈l Q|R, we have Q ≈l 0 or
R ≈l 0.
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This definition is analogous to strongly parallel prime. However, as the following
example shows, in contrast to strong bisimilarity, not all normed processes have a
unique decomposition w.r.t. to weak bisimilarity.

Example 11 Consider P = νa.(out(a,m)|(in(a, x).(!in(b, y)))|in(a, x)). Then
we have P ≈l P |P , hence we have no unique decomposition. Note that this example
does not contradict our previous result, as we have P 6∼l P |P , as P → P ′ ∼l 0, but
P |P → P ′′ ∼l P and P |P 6→ P ′′′ for any P ′′′ ∼l 0. Hence, w.r.t. strong labeled
bisimilarity, P is prime.

If however we consider normed processes that contain neither restriction (“ν”) nor
conditionals, we have that any normed process is finite (and hence has a unique
decomposition, as we show below).

Lemma 8 For any process P that does not contain restriction (“ν”) or condi-
tionals (“if then else”), we have that P is finite if and only if P is normed.

Proof It is easy to see that any finite process is normed. To show the converse,
we use induction on the structure of P .
— P = 0: P is obviously finite and normed.

— P = {M/x}: P is finite and normed.

— P = Q|R: If N (P ) < ∞ then N (Q) < ∞ and N (R) < ∞. By induction
hypothesis |Q|t <∞ and |R|t <∞, hence |P |t <∞.

— P = !Q: If N (P ) <∞ then |Q|t = 0, hence |P |t <∞.

— P = in(u, x).Q or P = out(u,M).Q: If N (P ) < ∞ then N (Q) < ∞. By
induction hypothesis |Q|t <∞, hence |P |t <∞. �

Similarly any process that does not contain replication is finite.
In the following we show that all finite processes have a unique decomposition

w.r.t. to (weak) labeled bisimilarity. To prove this, we need some preliminary
lemmas about transitions and the domain of processes.

Lemma 9 For any closed process A with A→∗ A′, we have dom(A) = dom(A′).

Proof The domain of a process is the set of variables for which it defines a
substitution. No transition can destroy an existing active substitution. Similarly,
if A executes only internal reductions, A cannot create any new active substitutions,
hence dom(A) = dom(A′). �

Lemma 10 For any closed process A for which no sequence of transitions A→∗ α−→
A′ exists, we have A ≈l A′ for any A′ with A→∗ A′.
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Proof Consider the relation R = {(X,Y )|A→∗ X and A→∗ Y }. We will show
that it fulfills the conditions of labeled bisimilarity:

1. Obviously we have A ≈s A, which is closed under internal reductions (as
they do not change the active substitutions). Hence for any (C,D) ∈ R we
have C ≈s D.

2. Let (C,D) ∈ R. Hence A→∗ C and A→∗ D. If C → C ′, we have A→∗ C ′,
hence (C ′, D) ∈ R (and symmetrically for D → D′).

3. The last condition is trivially true. Suppose there exists (C,D) ∈ R such
that C α−→ C ′, then we have A →∗ α−→ C ′, which contradict the hypothesis.
The symmetrical case is analogous.

Obviously we have (A,A′) ∈ R for any A′ with A→∗ A′. �

The next lemma captures the fact that any process which cannot perform any
visible transition and has an empty domain, is weakly bisimilar to 0 (the empty
process).

Lemma 11 If for a closed process A with dom(A) = ∅ there does not exist a
sequence of transitions A→∗ α−→ A′, then we have A ≈l 0.

Proof Suppose there is no sequence of transitions A →∗ α−→ A′. We show that
this implies A ≈l 0. Consider the relation R = {(A′, 0)|A→∗ A′}. We show that
it fulfills the conditions of labeled bisimilarity:

1. By hypothesis for any (C,D) ∈ R we have ∅ = dom(A) = dom(C) (as
internal reductions do not change the active substitutions, Lemma 9) and
dom(D) = dom(0) = ∅, hence C ≈s D.

2. Let (C,D) ∈ R. Hence A→∗ C and D = 0. If C → C ′, we have A→∗ C ′,
hence (C ′, 0) ∈ R with 0→∗ 0. Note that symmetrically 0 cannot perform
any transition, hence the condition is trivially true.

3. The last condition is trivially true. Suppose there exists (C,D) ∈ R such
that C α−→ C ′, then we have A→∗ α−→ C ′, which contradicts the hypothesis.
Symmetrically by definition 0 cannot perform any transitions at all.

As we have (A, 0) ∈ R, this gives A ≈l 0, which we wanted to show. �

As a direct consequence, this gives us that any non-zero process with empty
domain can do a visible transition.

Corollary 12 For every closed process A with dom(A) = ∅ and A 6≈l 0 there
exists a sequence of transitions A→∗ α−→ A′.

Now we can show in a first step that a decomposition into prime factors exists.

Theorem 13 (Existence of Factorization) Any closed finite active process P
can be expressed as the parallel product of parallel primes, i.e. P ≈l P1| . . . |Pn
where for all 1 ≤ i ≤ n Pi is weakly parallel prime.
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Proof By induction on the visible depth of P , and on the size of the domain
dom(P ).

— If |P |v = 0:
– If |dom(P )| = 0, then P ≈l 0 (by Lemma 11), hence the factorization is

the empty product.

– If |dom(P )| > 0, then P 6≈l 0, hence P is either parallel prime it-
self (in which case we are done), or can be written as P ≈l Q|R with
Q 6≈l 0 and R 6≈l 0 (by the definition of parallel prime). As we have
dom(P ) = dom(Q)∪dom(R) with dom(Q)∩dom(R) = ∅ and |dom(Q)| > 0,
|dom(R)| > 0 (by Lemma 11 since Q 6≈l 0 and R 6≈l 0), we have
|dom(Q)| < |dom(P )| and |dom(R)| < |dom(P )|, hence we can use the
induction hypothesis to conclude.

— If |P |v > 0:
– If |dom(P )| = 0: P is either parallel prime itself, or can be written as
P ≈l Q|R. Then we have dom(P ) = dom(Q) = dom(R) = ∅, and |Q|v > 0,
|R|v > 0 (by Corollary 12), hence |Q|v < |P |v, |R|v < |P |v and we can
apply the induction hypothesis.

– If |dom(P )| > 0: P is either parallel prime itself, or can be written as
P ≈l Q|R. Suppose |Q|v > 0, |R|v > 0, hence |Q|v < |P |v, |R|v < |P |v and
we can apply the induction hypothesis. Suppose w.l.o.g. |Q|v = 0 < |P |v,
then |R|v = |P |v. Since Q 6≈l 0 by Lemma 11 this implies |dom(Q)| > 0,
hence |dom(R)| < |dom(P )|, and we can use the induction hypothesis to
conclude. �

To prove uniqueness we use the following relation on processes.

Definition 12 (“�”) For two finite processes P and Q we have P � Q iff
— |P |v > |Q|v or

— |P |v = |Q|v and P →∗ Q
i.e. P has either a longer visible trace than Q or P can be reduced to Q using
internal reductions.

This is a partial order on finite processes modulo static equivalence. The relation
is reflexive as we have P →∗ P , and transitive. It is also antisymmetric: Suppose
P � Q and Q � P , then |P |v = |Q|v, P →∗ Q and Q→∗ P . Since P and Q are
finite, we cannot have P →∗ Q →∗ P for P 6≡ Q as this allows to construct an
infinite trace.

Now we can show the uniqueness of the decomposition.

Theorem 14 (Uniqueness of Factorization) The parallel factorization of a
closed finite process P is unique (up to ≈l).
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Proof We will prove a slightly different statement which implies the uniqueness
of the factorization: Any closed finite processes Pf and Qf with Pf ≈l Qf have
the same factorization (up to ≈l).

Suppose Pf ≈l Qf , but Pf and Qf have different factorizations:

Pf = P1|P2| . . . |Po1

Qf = Q1|Q2| . . . |Qo2

We can rewrite this factorization as follows:

P = Ak1
1 |A

k2
2 | . . . |Aknn

Q = Al11 |A
l2
2 | . . . |Alnn

where P ≈l Pf and Q ≈l Qf , the Ai’s are distinct (i.e. for i 6= j we have Ai 6≈l Aj)
and ki, li ≥ 0.

We will show that this leads to a contradiction by induction on a = |P |t+ |Q|t,
and inside each case by induction on the size of the domain b = |dom(P )| =
|dom(Q)|.

— If a = 0:
– If b = 0, then P ≈l 0 (by Lemma 11), hence the factorization is the unique

empty product.

– If b > 0, then P 6≈l 0.
Note that since ∀i Ai 6≈l 0 and a = |P |t + |Q|t = 0, we have dom(Ai) 6= ∅
by Lemma 11, which implies ki, li ≤ 1 as we cannot have two substitutions
defining the same variable.
Let m be such that km 6= lm. Without loss of generality we assume
1 = km > lm = 0.
Obviously we have dom(P ) = dom(Q). Let ṽ = dom(P ) \ dom(Am). Then
we have (by Lemma 2 and rules ALIAS and NEW-PAR):

νṽ.P ≡ Am|νṽ.P ′ ≈l Am

where P ′ is P without the factor Am. Similarly

νṽ.Q ≡ |i∈I νṽi.Ai|i/∈I νṽi.Alii ≈l |i∈I νṽi.Ai

where I = {i|dom(Ai) ∩ dom(Am) 6= ∅ and li = 1} and ṽi = dom(Ai) ∩ ṽ.
By νṽ.P ≈l νṽ.Q we have Am ≈l |i∈I νṽi.Ai. If |I| = 0, we have Am ≈l 0
which contradicts the hypothesis that Am is prime. Similarly for |I| > 1,
we have a factorization for Am into several processes, which also contradicts
Am prime.
For |I| = 1, i.e. Am ≈l νṽi.Ai for the only index i in I, we have the
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following cases: If ṽi = ∅, we have a contradiction to the distinctness
hypothesis of the Aj ’s since Am ≈l Ai with m 6= i as lm = 0 6= li = 1.
If ṽi 6= ∅ we have dom(Am) ( dom(Ai). Now consider ṽ′ = dom(Q) \
dom(Ai). Then - as above - we have:

νṽ′.Q ≡ Ai|νṽ′.Q′ ≈l Ai

where Q′ is Q without the factor Ai. Similarly

νṽ′.P ≡ |j∈I′ νṽ′j .Aj |j /∈I′ νṽ′j .A
lj
j ≈l |j∈I′ νṽ′j .Aj

where I ′ = {j|dom(Aj) ∩ dom(Ai) 6= ∅ and kj = 1} and ṽ′j = dom(Aj) ∩
ṽ′. Since dom(Am) ( dom(Ai) and dom(Ai) = dom(|j∈I′ νṽ′j .Aj) (by
dom(P ) = dom(Q)) we have |I ′| > 1, hence Ai ≈l |j∈I′ νṽ′j .Aj gives a
factorization of Ai, which contradicts the hypothesis that it is prime.

— If a > 0:
– If b = 0: If P ≈l 0 then the (empty) factorization is unique. Hence suppose

0 6≈l P ≈l Q.
Let m be such that Am is a maximal (w.r.t. �) Ai with ki 6= li (hence
km 6= lm). Without loss of generality we assume km > lm.
In the following we will use the fact that P ≈l Q and hence Q can
simulate each transition of P and vice versa. Assume P →∗ µ−→ P ′ such
that |P |v = |P ′|v + 1, then the labeled bisimilarity gives us Q→∗ µ−→→∗ Q′

with P ′ ≈l Q′. For our proof it will be important that to simulate this
transition in Q the prime factors cannot communicate. Suppose two
prime factors Ar

β−→ R and As
β̄−→ S communicated (through an internal

reduction), then this has consumed at least two visible actions, hence
|Q′|v ≤ |Q|v−2 = |P |v−2 = |P ′|v−1 < |P ′|v. Thus P ′ and Q′ do not have
the same visible depth, which contradicts that fact that they are bisimilar.
We now analyze different cases:
∗ If P ≈l Akmm , i.e. P is the power of a prime:

Note that Q cannot contain any prime factor Ar, r 6= m with Ar � Am:
Suppose lr > 0. By assumption, Am is a maximal (w.r.t. �) prime
factor in which P and Q differ, hence kr = lr > 0. This contradicts
P ≈l Akmm .
If km = 1 (i.e. P is prime), then Q is prime as well, and since 1 = km >

lm we have Q ≈l Aj for some j 6= m, which gives Am ≈l Aj , which
contradicts the distinctness of the prime factors.
If km > 1:
Note that this implies dom(Am) = ∅ as otherwise we would have several
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substitutions defining the same variables. Assume lm = 0, then for
some µ ∈ Act Am →∗

µ−→ R (by Am 6≈l 0 and Corollary 12) with
|R|v = |Am|v − 1, so P →∗ µ−→ P ′ with exp(Am, P ′) = km− 1 > 0. Since
P ≈l Q, there exists a Q′ with Q→∗ µ−→→∗ Q′. For any such Q′ we have
exp(Am, Q′) = 0 since Am is maximal (w.r.t. �), li = 0 for all Ai with
|Ai|v > |Am|v and since communication between different prime factors
– which could through the exchange of secret channels lead to bigger (in
the sense of visible depth) new prime factors – is not possible. As P ′

and Q′ have a unique prime factorization by induction hypothesis, we
have a contradiction with exp(Am, P ′) = km − 1 > 0 = exp(Am, Q′).
Hence assume lm > 0:
Suppose lm < km − 1: As Am →∗

µ−→ R, we have P →∗ µ−→ P ′ with
exp(Am, P ′) = km−1 and since P ≈l Q there exists Q′ with Q→∗ µ−→→∗

Q′. Hence we have exp(Am, P ′) = km − 1 > lm ≥ exp(Am, Q′) which
contradicts P ≈l Q using the induction hypothesis.
Hence assume lm = km − 1:
We can write Q = S|Almm , where S is composed of prime factors. We
have S 6≈l Am as the opposite contradicts either the distinctiveness of
the prime factors or the fact that Am is prime. Since ∅ = dom(Am) =
dom(P ) = dom(Q) = dom(S) we have S ≈s Am, hence either S or Am
can do a transition the other cannot match. This transition can be a
visible transition or an internal reduction.
Suppose S µ−→ S′ with |S′|t < |S|t such that Am cannot match the
transition. As we have P ≈l Q, S|Almm

µ−→ S′|Almm = Q′ gives us
that P →∗ µ−→→∗ P ′ (w.l.o.g., when µ = τ we have P →∗ P ′). Since
this transition reduced the total depth, we can apply the induction
hypothesis and both Q′ and P ′ have a unique prime factorization,
hence P ′ = R|Akm−1

m where Am →∗
µ−→→∗ R (or Am →∗ R respectively).

By the uniqueness of the factorization we also have R ≈l S′, which
contradicts the assumption that the transition cannot be simulated.
Suppose Am

µ−→ R with |R|t < |Am|t such that S cannot match the
transition. As we have P ≈l Q, P = Akmm

µ−→ R|Akm−1
m = P ′ gives us

that Q→∗ µ−→→∗ Q′ (w.l.o.g., otherwise Q→∗ Q′). Since this transition
reduced the total depth, we can apply the induction hypothesis and both
Q′ and P ′ have the same unique prime factorization, hence S′|Akm−1

m =
Q′ ≈l P ′ = R|Akm−1

m . Thus R ≈l S′. Since Am is the biggest factor in
which P and Q differ, all other factors in S cannot be reduced to Am,
and we have S →∗ µ−→→∗ S′ (or S →∗ S′ respectively), which contradicts
the assumption.

∗ If there exists j 6= m such that kj > 0:
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Let µ ∈ Act, T be such that P →∗ µ−→ T and |P |v = |T |v + 1 and for all
ν such that P →∗ ν−→ P ′ with |P |v = |P ′|v + 1 we have exp(Am, P ′) ≤
exp(Am, T ). We now show that such µ, T exist.
Suppose no such µ, T exist. Hence for no Ai with ki > 0, i 6= m we
have Ai →∗

µ−→ A′i, otherwise this allows a transition that would fulfill
the above conditions. Hence (by Lemma 11) we have dom(Ai) 6= ∅ for
any i with ki > 0, i 6= m, which contradicts |dom(P )| = 0. Note that
exp(Am, T ) ≥ km, as any transition by a factor different from Am does
not decrease the number of Am’s.
As P ≈l Q there exists Q′ with Q →∗ µ−→→∗ Q′ and Q′ ≈l T . Hence
|Q|v = |Q′|v + 1 and ∃At with At →∗

µ−→→∗ R as there can be no
communication between the Ai’s (as shown above).
If |At|v ≤ |Am|v then exp(Am, Q′) ≤ lm < km ≤ exp(Am, T ), which
gives the contradiction to the induction hypothesis. Note that as Am is
the maximal prime factor in which P and Q differ, Aj →∗ Am implies
kj = kl, hence Q′ cannot contain additional Am as a result of internal
reductions - this would imply exp(Aj , Q′) 6= exp(Aj , P ′).
If |At|v > |Am|v then t 6= m, and kt = lt > 0 (as Am is maximal). Con-
sider P →∗ µ−→→∗ P ′ = Ak1

1 | . . . |A
kt−1
t | . . . |Aknn |R with exp(Am, P ′) =

km + exp(Am, R). Hence exp(Am, Q′) ≤ lm + exp(Am, R) < km +
exp(Am, R) = exp(Am, P ′), which contradicts Q′ ≈l P ′. Hence the only
option for Q to match this transition would be to use a ever bigger As,
in which case we can however apply the same argument (ks = ls). As
the number of prime factors is finite, we have that Q 6≈l P which gives
the contradiction. Note that – as above – Q′ cannot contain additional
Am as a result of internal reductions.

– If b > 0: This is essentially the same proof as above. In the first case
(P is a power of a prime), we only have to consider the case km = 1 as
dom(Am) 6= ∅. Hence P is prime, and then Q is prime as well, and since
1 = km > lm we have Q ≈l Aj for some j 6= m, which gives Am ≈l Aj ,
which contradicts the distinctness of the prime factors.
In the second case we have to be more careful when proving that µ and T
with the desired properties exist. Once again, we will suppose that they
do not exist, hence for no Ai with ki > 0, i 6= m we have Ai →∗

µ−→ A′i,
otherwise this allows a transition that would fulfill the conditions. Hence
(by Lemma 11) we have dom(Ai) 6= ∅ for any i with ki > 0, i 6= m. Let
ṽ = dom(P ) \ dom(Am) and consider

νṽ.P ≡ Akmm |νṽ.P ′ ≈l Akmm
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where P ′ is P without the factor Akmm . Similarly

νṽ.Q ≡ |i νṽi.Alii

where ṽi = dom(Ai) ∩ ṽ.
As |dom(Akmm )| < |dom(P )| by induction hypothesis the factorization is
unique. We cannot have ṽi = ∅ for any i 6= m, as this contradicts the
uniqueness of the factorization as Ai 6≈l Am. Hence dom(Ai) 6= ∅ and li = 1
for i 6= m.
As Am is prime, we have that Am|R ≈l νṽi.Ai for some i 6= m and R. More
precisely, we have νṽi.Ai ≈l Alm for some l ≥ 1, as any other factorization
of R would contradict the primeness of Am. In fact, since Am is the biggest
factor in which P and Q differ and by Lemmas 11 and 1, we have l = 1.
We cannot have Q ≈l Ai as this would directly give a factorization of Ai.
Hence there has to be another factor Ar which – by Lemma 11 – has either
dom(Ar) 6= ∅ or can execute a visible transition (or both).
If dom(Ar) 6= ∅, consider ṽ′ = dom(Q) \ dom(Ai). Then – as above – we
have:

νṽ′.Q ≡ Ai|νṽ′.Q′ = Q1 ≈l νṽ′.P = P1

where Q′ is Q without the factor Ai.
If Ar →∗

η−→ A′r, we have

Q ≈l Ai|Ar|S →∗
η−→ Ai|A′r|S = Q1

where S is Q without Ai and Ar. By P ≈l Q there exists P1 with
P →∗ η−→→∗ P1 ≈l Ai|A′r|S.
In both cases, we have a unique factorization by induction hypothesis.
Additionally exp(Ai, Q1) = 1, and by the uniqueness of the factorization
exp(Ai, P1) = exp(Ai, Q1) = 1. Let s be such that dom(As)∩dom(Ai) 6= ∅,
ks > 0. Such s exists because of dom(Am) ( dom(Ai) and dom(P ) =
dom(Q). Then by hypothesis As cannot do any visible transition, and by
Lemma 10 exp(As, P1) = exp(As, P ) = 1, which contradicts exp(Ai, P1) =
1 because of the conflicting domains.
Hence µ and T with the desired properties exist, and the rest of the proof
is the same as above. �

Again we have a cancellation result using the same proof as above.

Lemma 15 (Cancellation Lemma) For any closed finite processes A, B and
C, we have

A|C ≈l B|C ⇒ A ≈l B

Proof Similar to the proof of Lemma 7. �
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2.5. Conclusion

Type of Process Strong Bisimilarity (∼l) Weak Bisimilarity (≈l)
finite Theorem 5 Theorem 13

normed Theorem 5 (Counter-)Example 7
general (Counter-)Example 10 (Counter-)Example 10

Table 2.1 – Summary of unique factorization results for the Applied π-Calculus

2.5 Conclusion

In this chapter we recalled the Applied π-Calculus, in particular its syntax,
semantics and equivalence notions. We then presented two unique decomposition
results for subsets of the Applied π-Calculus. We showed that any closed finite
process can be decomposed uniquely with respect to weak labeled bisimilarity,
and that any normed process can be decomposed uniquely with respect to strong
labeled bisimilarity. Table 2.1 sums up our results.

As the concept of parallel prime decomposition has its inherent limitations
with respect to replication (“!”, see Example 10), a natural question is to find an
extension to provide a normal form even in cases with infinite behavior. A first
result in this direction has been obtained by Hirschkoff and Pous [HP10] for a
subset of CCS with top-level replication. They define the seed of a process P as
the process Q, Q bisimilar to P , of least size (in terms of prefixes) whose number
of replicated components is maximal (among the processes of least size), and show
that this representation is unique. They also provide a similar normal form result
for the Restriction-Free-π-Calculus (i.e. no “ν”). It remains however open if a
similar result can be obtained for the full calculus.

Another interesting question is to find an efficient algorithm that converts a
process into its unique decomposition. It is unclear if such an algorithm exists
and can be efficient, as simply deciding if a process is finite can be non-trivial.
Such an algorithm could however allow to verify the bisimilarity of two given
processes by transforming them into their normal form, and then simply checking
if the normal forms are identical.

Finally we did not show formally that Strong Labeled Bisimilarity is closed
under the application of contexts. Due to its close relation to Weak Labeled
Bisimilarity we expect the result to hold (which is important for our decomposition
to be meaningful), yet we estimate that the full formal proof will be at least
similarly as complex as the proof for Weak Labeled Bisimilarity [Liu11, Liu13].
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Chapter 3
eVoting

P rivacy is a major concern in electronic voting, as it is crucial to ensure the
fairness of the voting process by protecting voters from coercion.
In this chapter we propose a taxonomy of privacy for voting protocols consider-

ing different attacker capabilities (insider or outsider), different attacks (including
forced abstention) and different levels of coercion (simple Privacy, Receipt-Freeness
and Coercion-Resistance). As case studies we analyze several protocols to assess
which levels of privacy they achieve.

The taxonomy is based on definitions where two voters swap votes, which is
unsuitable for situations where votes are weighted. To address this, we propose
generalized definitions and establish a precise formal link between the two ap-
proaches. We also show that in the generalized model multi-voter coercion can
be (under certain conditions) reduced to single-voter coercion. This holds for
Receipt-Freeness and Coercion-Resistance. Additionally we show that under the
same conditions a situation with multiple corrupted voters can be reduced to a
situation without corrupted voters. We also provide a case study of a protocol
supporting weighted votes.
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3.1. Introduction

3.1 Introduction

Electronic voting systems have been designed and employed in practice for several
years, mainly in the form of direct-recording electronic (DRE) voting machines.
More recently, some countries started to offer the possibility to vote over the
Internet, e.g. in Estonia [Est], parts of Switzerland [Gen13, Reg13] or for French
expatriates [Min13].

As voting is a central act of participation in modern democracies, the use
of such systems in general elections requires high security standards and re-
mains controversial [Par07, UK 07, Min08, Bun09]. Consequently many security
requirements for electronic voting systems have been proposed:
— Correctness: The announced result corresponds to the sum of all submitted

votes.

— Eligibility: Only the registered voters can vote, and nobody can submit more
votes than allowed (typically only one).

— Fairness: The election process is fair, in particular no preliminary results that
could influence other voters’ decisions are available.

— Robustness: The protocol can tolerate some misbehaving voters.

— Verifiability: Voters are provided with evidence that allows them to verify the
correctness of the election process.

— Privacy: All votes remain private.
The last requirement is crucial to ensure that the voters are free in their choice
and cannot be coerced. In the literature, it is often split into several notions (e.g.
[DKR09, LSB+09, SC11, SB13, Jon09, DHvdG+13]):
— Vote-Privacy: The votes are kept private with respect to an outside observer.

This can also be expressed as an unlinkability between the voter and his vote.

— Receipt-Freeness: A voter cannot construct a receipt which allows him to
prove to a third party that he voted for a certain candidate. This is to prevent
vote-buying.

— Coercion-Resistance: Even when a voter interacts with a coercer during the
entire voting process, the coercer cannot be sure whether he followed his
instructions or actually voted for another candidate.

— Security against Forced Abstention Attacks: A coercer cannot force a voter to
abstain from voting.

— Vote-Independence: No voter can relate his vote to any other voter’s vote1.
1Being able to copy votes can compromise privacy if the number of participants is small or a

noticeable fraction of voters can be corrupted. Consider a case with three voters: the third voter
can copy the first voter’s vote and submit it as his vote. This results in (at least) two votes for
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— Everlasting Privacy: Privacy is not only ensured at the time of the election,
but also in the long term when computationally secure encryptions might turn
insecure due to increased computational power.

As we argued in Chapter 1, the design of complex protocols to fulfill all these
partly antipodal requirements [CMFP+06] is notoriously difficult and error-prone.
Consequently many efforts have been undertaken to formally define and verify
these properties (e.g. [JCJ05, MN06b, BHM08, DKR09, Jon09, KRS10, SC11]).

3.1.1 — Contributions

Generalizing the existing work, we provide the following contributions in this
chapter:

1. We propose a taxonomy of privacy notions which allows to assess the level of
privacy provided by a voting protocol against various attacks. The taxonomy
is based on formal definitions of the classical notions (Vote-Privacy, Receipt-
Freeness and Coercion-Resistance) in the Applied π-Calculus originally
proposed by Delaune et al. [DKR09], but extends their work in several
ways to include insider attacks as well as specialized attacks such as forced-
abstention or vote-copying attacks.

2. We illustrate our model using several case studies: the protocol by Fujioka
et al. [FOO92], the protocol by Okamoto [Oka96], the protocol by Lee et
al. [LBD+03] and Bingo Voting [BMQR07].

3. Most existing symbolic definitions of Privacy are based on the idea of
swapping votes. If the votes are private, a case where Alice votes “yes”
and Bob votes “no” should be indistinguishable from a case where Alice
votes “no” and Bob votes “yes”. Yet this definition is unsuitable for some
situations, for example in companies where votes are weighted according to
the proportion of shares held by each shareholder. Consider the following
example: Alice owns 50% of the stocks, and Bob and Carol each hold 25%.
The cases where Alice and Bob swap votes are now easily distinguishable
if Carol votes “yes” all the time, as the result of the vote is different: 75%
vs. 50% vote for “yes”. Note that there are still situations where privacy is
ensured in the sense that different situations give the same result. The last
outcome (50% yes, 50% no) could - for example - also be announced if Alice
votes “yes” and Bob and Carol vote “no”.
Protocols supporting vote weights have been proposed, for example Eliasson
and Zúquete [EZ06] developed a voting system supporting vote weights based
on REVS [JZF03], which itself is inspired by the protocol by Fujioka et
al. [FOO92]. We provide a generalized definition of privacy to accommodate

the candidate chosen by the first voter and his choice can thus be inferred from the result.
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weighted votes, and show under which conditions the generalized notions
coincide with the notions from the first taxonomy. We also provide a case
study to illustrate our approach.

4. In the previous definitions of Receipt-Freeness and Coercion-Resistance, we
only consider one voter under coercion. We provide a generalized definition
for multiple coerced voters, and show that single-voter and multi-voter
coercion coincide under certain assumptions using a unique decomposition
result from Chapter 2.

3.1.2 — Outline of the Chapter

In the following section we review related work on formal verification of privacy
in electronic voting. In Section 3.3, we present our taxonomy of privacy in voting,
and discuss several case studies. To deal with weighted votes, we provide a
generalized model in Section 3.4, discuss a case study, and establish a link to our
taxonomy. Finally, in Section 3.5, we show that the case of multiple coerced voters
can be reduced to a single coerced voter under some reasonable assumptions, and
again establish a link to our taxonomy. In Section 3.6 we conclude this chapter.

3.2 Related Work

As the amount of work on electronic voting is huge, we concentrate here on
related work concerning the specification and verification of privacy. We start
by discussing application-independent privacy notions, followed by work on the
specification and certification – including privacy – of voting protocols and systems.
Then we discuss work on voting protocols in the computational model, and finally
in the symbolic model.

Canetti and Gennaro [CG96] proposed computational definitions of receipt-
freeness that can be applied to many different applications. Similarly Unruh
and Müller-Quade defined coercion-resistance [UMQ10] in the (computational)
Universal Composability (UC) framework [Can01]. Application-independent
anonymity notions were also proposed by Bohli and Pashalidis [BP09]. Although
these definitions are very general, the application to voting protocols often results
in – for this context – unusual privacy notions (Pseudonymity etc.), compared to
the classic properties such as vote-privacy that we discuss here.

Volkamer et al.[VM07] worked towards developing requirements and evalua-
tion procedures for the certification of eVoting systems in the common criteria
framework. They give a formalization of the different requirements in a high-level
way, similar to a technical standard, i.e. in “formalized” natural language. Yet
this specification still lacks precise semantics.
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Kramer and Ryan [KR11] propose a modular specification of voting systems
which includes (among many other properties) privacy and receipt-freeness. It
is expressed in a multi-modal logic featuring time. Such a logic framework is
very expressive and hence suitable for the specification of systems, but difficult to
handle for automatic verification tools. Concerning privacy, they define coercion-
resistance as the conjunction of privacy and receipt-freeness, differing from the
original definition by Juels et al. [JCJ05] which includes resistance against force
abstention attacks, and allows a coercer to instruct the voter to deviate from the
protocol. We employ the Applied π-Calculus as the basis for our definitions as it
has powerful tool support e.g. using ProVerif.

In the computational model, Juels et al. [JCJ05] were the first to give a
formal definition of coercion-resistance. They showed that their protocol (which
became the basis for Civitas [CCM08]) is secure with respect to their definition.
However – as their protocol is based on voting “credentials” – credentials also
appear in the definition. Their model is thus unsuitable for protocols that do
not use credentials (e.g. Bingo Voting [BMQR07] or the protocol by Lee et
al. [LBD+03]), which we can accommodate in our model. A first computational
definition of privacy for voting was given by Cohen/Benaloh and Fischer [CF85],
a first computational definition of receipt-freeness for voting by Benaloh and
Tuinstra [BT94] (although their protocol suffered from an issue with the underlying
encryption scheme [FLA11]). A first computational definition within the UC-
framework was given by Moran and Naor [MN06b].

De Marneffe, Pereira, and Quisquater [dMPQ07a, dMPQ07b] proposed a
computational security definition based on the simulation of an ideal functionality
of a fair and secure voting system by the real-world system. Although not
impossible [DKP09], such an approach is rarely employed in symbolic models.

Based on similar definitions [BCP+11, CPP13], Smyth and Bernhard [SB13]
recently proposed computational definitions of ballot secrecy (similar to vote-
privacy) and ballot independence, and showed that they coincide under some
reasonable assumptions. In our symbolic model, we have a similar result (see
Section 3.4.4).

A different computational game-based definition including coercion was pro-
posed by Küsters, Truderung, and Vogt [KTV10b]. They applied it to Scantegrity
II [KTV10c] as well as ThreeBallot and VAV [KTV11]. In their definition they
consider the overall advantage of an attacker trying to guess a voter’s vote, which
is always non-negligible as in certain situations the votes are revealed, e.g. in
the case of an unanimous vote. We employ a different approach by comparing
different situations that lead to the same outcome: In such a case, the attacker
should not have a (non-negligible) advantage.

Along similar lines to Küsters et al., Bernhard et al. [BCPW12] proposed to
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measure vote-privacy using (computational) entropy. The idea is to compute
how much privacy remains after an election, i.e. given a certain protocol, vote
distribution and counting function. This can be computed after a concrete election
(i.e. using the actually the submitted votes), or given a certain vote distribution
to compute a metric giving an expectation of the level of privacy provided. They
also establish a link between their information-theoretic approach and a previous
computational definition [BCP+11].

In the symbolic model, Jonker [Jon09] defines privacy by analyzing a voter’s
choice group, i.e. the set of candidates the voter could have voted for given
the attackers knowledge about the protocol execution. For maximal privacy the
choice group should be as large as possible. If it contains only one option, the
attacker knows the exact vote and all privacy is lost. This is somewhat similar
to the work by Küsters et al. in the computational model, but Jonker does not
consider probabilities: even if a choice is very unlikely, it is still considered in the
choice group. In our work, we employ a different approach: we explicitly identify
situations that should be inside the same choice group given only the result, and
then require these situations to be observationally equivalent.

Langer et al. [LJP10] developed verifiability definitions and privacy notions
based on (un-)linkability between a voter and his vote. They define (un-)linkability
as a property on traces, whereas we consider bisimulations.

Küsters and Truderung [KT09a] proposed a high-level model independent
definition of coercion-resistance for voting protocols. Their definition has to be
instantiated with a concrete formal model. The exact security level can be defined
with respect to certain chosen goals, and excluding explicit special cases. In
contrast to our model, their definition is based on traces and not bisimulations,
and they only define coercion-resistance (in particular no simple vote-privacy).
They also explicitly consider multi-voter coercion. In their abstract model, Single-
Voter Coercion and Multi-Voter Coercion turned out to be different in general.
Subsequently they proposed a modified definition of Coercion-Resistance that
implies both Single- and Multi-Voter Coercion-Resistance, but they did not provide
a precise analysis of the link between these notions. In our model we can show
that Single- and Multi-Voter Coercion are equivalent under certain conditions
on the protocol. Hence we do not need to change the initial definition, and the
conditions allow us to precisely characterize the difference between both notions.

Langer et al. also worked towards a high-level taxonomy of privacy [LSB+09,
LSBV10] based on different levels of secrecy with respect to different attacker
capabilities. This has some similarities to our taxonomy approach, however their
definitions are abstract and have to be instantiated with a concrete formal process
and attacker model, whereas we directly give the operational definitions in the
Applied π-Calculus.
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Backes et al. [BHM08] translated the definition by Juels et al. [JCJ05] to the
Applied π-Calculus and provided an automated verification using ProVerif. Their
approach has the same limitations as the original, computational definitions: they
are difficult to apply to protocols using different techniques.

More general definitions were developed by Delaune, Kremer and Ryan [DKR09]
(the so-called DKR-model). They express different levels of privacy as observa-
tional equivalence in the Applied π-Calculus. An attacker should not be able to
distinguish one case in which the voter complies with the coercer’s instructions
and another in which he only pretends to do so and votes as he wishes. Our
definitions are based on their model, but we extend it in several ways: we include
forced abstention, corrupted voters and generalize it to accommodate protocols
with weighted votes.

Smyth and Cortier [SC11] showed that being able to copy votes can compromise
privacy if the number of participants is small or a noticeable fraction of voters
can be corrupted. For example in the case of three voters, the third voter can try
to copy the first voter’s vote and submit it as his vote. If this succeeds, it will
result in (at least) two votes for the candidate chosen by the first voter and his
choice can thus be inferred from the result. They also formally analyzed ballot
secrecy in Helios using an adaption of the model by Delaune, Kremer and Ryan.
However we show that, in general, the DKR model is not sufficient to capture
vote-independence. For example the protocol by Lee et al. [LBD+03] was shown
to be coercion-resistant in this model, despite its vulnerability to vote-copy attacks
(see Section 3.3.5.4).

Recently Arapinis et al. [ACKR13] proposed a formal model in the Applied
π-Calculus to verify everlasting privacy.

3.3 A Formal Taxonomy of Privacy in Voting

In this section we present our formal taxonomy of privacy in electronic voting. We
start by giving a formalization of voting protocols, then explain our definitions
informally and give the detailed definitions in the Applied π-Calculus. We present
the hierarchy of notions, and discuss several case studies: the protocols by Fujioka,
Okamoto and Ohta (FOO) [FOO92], by Okamoto [Oka96], by Lee et al. [LBD+03]
and Bingo Voting [BMQR07].

3.3.1 — Formalizing Voting Protocols

In this section we describe our model of voting protocols in the Applied π-Calculus.
It is inspired by the model used by Delaune, Kremer and Ryan [DKR09].

First of all, we define the notion of a voting protocol. Informally, a voting
protocol specifies the processes executed by voters and authorities.
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Definition 13 (Voting Protocol) A voting protocol is a tuple (V,A1, . . . , Am,

c̃) where V is the process that is executed by the voter, the Aj’s are the processes
executed by the election authorities, and c̃ is a set of private channels.

Note that the protocol only defines one process V , which is instantiated for each
voter. Yet here may be several authorities, for example a registrar, a bulletin
board, a mixer, a tallier, . . .

In our definitions we reason about privacy using concrete instances of a voting
protocol. An instance is called a Voting Process.

Definition 14 (Voting Process) A voting process of a voting protocol (V, A1,

. . . , Am, c̃) is a closed plain process

νñ.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Al)

where l ≤ m, ñ includes (some of) the secret channel names, V σidiσvi are the
processes executed by the voters where:
— σidi is a substitution assigning the identity to a process (this determines for

example the secret keys),

— σvi specifies the vote(s) and if the voter abstains,
and Ajs are the election authorities which are required to be honest.

As an extension to the model by Delaune et al. [DKR09], the substitution de-
termining the vote of the voter can also specify abstention or other (correct)
behaviors. In this case V includes all the possible behaviors, and σvi determines
which of them is executed. In our model an abstaining voter does not participate
at all in the election, we define this formally below.

Note that each voter runs the same process V , which is instantiated with a
different σidi (his identity) and σvi (his vote(s)). Note also that we have l ≤ m

as not all authorities might be trusted. If an authority is not trusted, it is not
modeled and left to the context, i.e. the attacker. In such a case also a private
channel to this untrusted authority can be modeled as a public channel, i.e. left
out in ñ.

Moreover, note that our definition does not specify how the result is computed,
nor what information it contains. For example, the result could be only the name
of the winning candidate(s) – which might be computed in a complex way, e.g.
in a Single Transferable Vote (STV) system as used in Ireland [Cit13] –, or also
the number of votes for each candidate. We implicitly assume the latter case for
most of our examples, but our notions (and in particular the generalizations in
Sections 3.4 and 3.5) can also be applied to protocols implementing more complex
counting algorithms.
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Example 12 As a running example, we consider the following simple voting
protocol.

Informal description: To construct his ballot, each voter encrypts his vote with
the administrator’s public key and signs it using his secret key. The resulting ballot
is posted on the bulletin board. After the voting deadline is over, the administrator
checks if each ballot is signed by an eligible voter. He then decrypts the correct
ballots and publishes the result.

Formal description in our model: The protocol uses probabilistic public-key
encryption and signatures, which we model using the following equational theory:

dec(enc(m, pk(sk), r), sk) = m

checksign(sign(m, sk), pk(sk)) = m

The first equation states that a message m encrypted using a public key can
be decrypted correctly using the corresponding secret key. The second equation
states that the verification with a public key succeeds if it was created using the
corresponding secret key.

The protocol is then a tuple (V,A, ∅) where

A = A′ {pkv1/pkv} | . . . |A′ {pkvn/pkv}
A′ = in(ch, (sig, vote)).

if checksign(sig, pkv) = vote

then sync 1.out(chR, dec(vote, ska))
else 0

V = νr.let evote = enc(v, pka, r) in
out(ch, (sign(evote, skv), evote))

In this example we use another important syntactical extension of the Applied
π-Calculus: sync 1 is a synchronization point with the following semantics: No
process can continue until all other processes have reached the synchronization
point. Such a behavior can directly be expressed in the standard Applied π-Calculus
as follows (similarly to the idea of Delaune et al. [DKR09]): The synchronization
command is replaced with an output of a message 1 on a restricted channel chSync1
(out(chSync1, 1)), followed by an input on a different restricted channel chSync2
(in(chSync2,m)). An additional synchronization process is added, receiving all
messages on the private channel, and outputting messages on the second channel
once all messages have been received:

Psync = in(chSync1, x1) . . . in(chSync1, xn).
(out(chSync2, 1)| . . . |out(chSync2, 1))

This ensures that the processes can only continue once all n processes have reached
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the synchronization point, as they have to wait for the answer by synchronization
process. The context cannot interfere with the synchronization, as both channels
chSync1 and chSync2 are restricted. ProSwapper [KSR10], a preprocessor for
ProVerif, implements similar synchronization points, but also allows to swap the
entire data of the synchronizing processes to help ProVerif proving observational
equivalences.

Sometimes we need to model a synchronization where k out of n processes
are sufficient to enable continuation. In that case we write synck 1, and the
implementation is similar:

Psynck = in(chSync1, x1) . . . in(chSync1, xk).
(out(chSync2, 1)| . . . |out(chSync2, 1))

In this example the substitution determining the identity of a voter assigns the
secret key, e.g. σidk = {skk/skv}. The substitution specifying the vote as for
example a vote for candidate a would be σvk = {a/v}.

In some of our definitions we also need to reason about instances where all parties,
in particular all authorities, are honest.

Definition 15 (Honest Voting Process) An Honest Voting Process of a vot-
ing protocol (V, A1, . . . , Am, c̃) is a closed plain process

νñ.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Am)

where ñ includes the secret channel names, V σidiσvi are the processes executed by
the voters where:
— σidi is a substitution assigning the identity to a process (this determines for

example the secret keys),

— σvi specifies the vote(s) and if the voter abstains,
and Ajs are the election authorities.

Given a voting process

V P = νñ.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Al)

we denote by V PH the corresponding honest voting process, i.e.

V PH = νñ.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Am)

Note that for our running example a voting process and its corresponding honest
voting process coincide, as the one and only authority is required to be honest
anyway.
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We also often need to replace some voters inside a voting process. For this we
use Voting Contexts.

Definition 16 ((Honest) Voting Context) Given a voting process

V P = νñ.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Al)

and a subset of voters I we define the Voting Context V PI [_] as follows:

V PI [_] = νñ.( |
i/∈I
V σidiσvi |_|A1| . . . |Al)

Similarly for an honest voting process

V PH = νñ.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Am)

and a subset of voters I we define the Honest Voting Context V PHI [_] as follows:

V PHI [_] = νñ.( |
i/∈I
V σidiσvi |_|A1| . . . |Am)

Consider the following example.

Example 13 An instance of our simple voting protocol (Example 12 on page 55)
with two voters A and B looks as follows:

V P = νskA.νskB.νskAd.(V {skA/skv, pk(skAd)/pka} {a/v} |

V {skB/skv, pk(skAd)/pka} {b/v} |A′ {skAd/ska, pk(skA)/pkv} |A′ {skAd/ska, pk(skB)/pkv})

The corresponding voting context V P{A} then looks as follows:

V P{A} = νskA.νskB.νskAd.(_|V {skB/skv, pk(skAd)/pka} {b/v} |

A′ {skAd/ska, pk(skA)/pkv} |A′ {skAd/ska, pk(skB)/pkv})

Finally, we define abstention for a voting process. An abstaining voter does not
send any message on any channel, in particular no ballot. In the real world, this
would correspond to a voter that does not even go to polling station. This is
different from just voting for a particular “null” candidate denoted ⊥, which still
results in sending a ballot (a blank vote).

However, we need to allow it to execute synchronization points, because
synchronization is essential to ensure privacy, as otherwise an attacker in control
of the network can simply keep track of a ballot and break privacy by linking
the vote to a voter. Synchronization allows to break such links. Yet, if we allow
abstention, we have to allow the non-abstaining voters to synchronize normally,
otherwise they will block and no result can be announced. Hence we allow
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abstaining voters to execute synchronization operations, and obtain the following
definition.

Definition 17 (Abstention) Let A \ sync denote the process A where all sync
instructions have been removed. Then a substitution σvi makes a voter V σidi
abstain if (V σidiσvi) \ sync ≈l 0.

In our privacy definitions we also consider (partly) corrupted voters. To formally
define corrupted parties or voter revealing secrets to the attacker, we use the
following two definitions. The first one turns a process P into another process
P ch that reveals all its inputs and secret data on the channel ch. This can be
seen as trying to construct a receipt.

Definition 18 (Process P ch [DKR09]) Let P be a plain process and ch be a
channel name. We define P ch as follows:
— 0ch =̂ 0,

— (P |Q)ch =̂ P ch|Qch,

— (νn.P )ch =̂ νn.out(ch, n).P ch when n is a name of base type,

— (νn.P )ch =̂ νn.P ch otherwise,

— (in(u, x).P )ch =̂ in(u, x).out(ch, x).P ch when x is a variable of base type,

— (in(u, x).P )ch =̂ in(u, x).P ch otherwise,

— (out(u,M).P )ch =̂ out(u,M).P ch,

— (!P )ch =̂ !P ch,

— (if M = N then P else Q)ch =̂ if M = N then P ch else Qch.

In the remainder we assume that ch /∈ fn(P ) ∪ bn(P ) before applying the trans-
formation.

The second definition does not only reveal the secret data, but also takes
orders from an outsider before sending a message or branching, i.e. the process is
under complete remote control.

Definition 19 (Process P c1,c2 [DKR09]) Let P be a plain process and c1, c2

be channel names. We define P c1,c2 as follows:
— 0c1,c2 =̂ 0,

— (P |Q)c1,c2 =̂ P c1,c2 |Qc1,c2,

— (νn.P )c1,c2 =̂ νn.out(c1, n).P c1,c2 when n is a name of base type,

— (νn.P )c1,c2 =̂ νn.P c1,c2 otherwise,

— (in(u, x).P )c1,c2 =̂ in(u, x).out(c1, x).P c1,c2 when x is a variable of base type
and x is a fresh variable,
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— (in(u, x).P )c1,c2 =̂ in(u, x).P c1,c2 otherwise,

— (out(u,M).P )c1,c2 =̂ in(c2, x).out(u, x).P c1,c2,

— (!P )c1,c2 =̂ !P c1,c2,

— (if M = N then P else Q)c1,c2 =̂ in(c2, x).if x = true then P c1,c2

else Qc1,c2 where x is a fresh variable and true is a constant.

To hide the output of a process, we use the following definition.

Definition 20 (Process A\out(ch,·) [DKR09]) Let A be an extended process.
We define the process A\out(ch,·) as νch.(A|!in(ch, x)).

Given these definitions, we recall two lemmas by Delaune et al. [DKR09] used in
our proofs.

Lemma 16 ([DKR09]) Let P be a closed plain process and ch a channel name
such that ch /∈ fn(P ) ∪ bn(P ). We have (P ch)\out(ch,·) ≈l P .

Lemma 17 ([DKR09]) Let C1 = νũ1.(_|B1) and C2 = νũ2.(_|B2) be two
evaluation contexts such that ũ1 ∩ (fv(B2) ∪ fn(B2)) = ∅ and ũ2 ∩ (fv(B1) ∪
fn(B1)) = ∅. Then we have C1[C2[A]] ≡ C2[C1[A]] for any extended process A.

3.3.2 — Defining Privacy: A Modular Approach

Privacy in eVoting is notoriously difficult to define. As discussed above, many
different types of attacks and different attacker capabilities are considered. To
systematize the existing approaches, we propose a modular definition, trying to
factor out the different independent types of attacks and attacker capabilities.

In our setting, the attacker targets one voter (the targeted voter) and tries
to extract information about the targeted voter’s vote(s). If the attacker knows
the votes of all other voters, he can infer the targeted voter’s vote from the result.
Thus we suppose that he is unsure about the vote of one other voter. This voter
is called the counterbalancing voter, as he counterbalances different votes by the
attacked voter to ensure that the result remains unchanged.

We express privacy as an observational equivalence. Intuitively, an attacker
should not be able to distinguish between an execution in which the targeted voter
behaves and votes as the attacker wishes, and another execution where he only
pretends to do so and votes differently. To ensure that the attacker cannot tell the
difference by just comparing the result, the counterbalancing voter compensates
by simply swapping votes with the targeted voter.

Starting from the definitions of Coercion-Resistance, Receipt-Freeness, and
Vote-Privacy in the literature we propose to factor out the three following dimen-
sions: Communication between the attacker and the targeted voter, insider or
outside attacker, and security against forced-abstention-attacks.
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1. Communication between the attacker and the targeted voter: We define three
different levels, corresponding to different attacker capabilities:
(a) In the simplest case, the attacker only observes publicly available data

and communication. We call this case Swap-Vote-Privacy2, denoted
SwV P .

(b) In the second case, the targeted voter tries to convince the attacker
that he voted for a certain candidate by revealing his secret data. Yet
the attacker should not be able to determine if he actually sent his
real data, or a fake receipt. We call this case Swap-Receipt-Freeness,
denoted SwRF .

(c) In the strongest case, the voter pretends to be completely under the
control of the attacker, i.e. to reveal his secret data and to follow the
intruder’s instructions. Yet the attacker should be unable to determine
if he actually complied with his instructions or if he only pretended to
do so. We call this case Swap-Coercion-Resistance, denoted SwCR.

Intuitively Swap-Coercion-Resistance is stronger than Swap-Receipt-Freeness,
which is stronger than Swap-Vote-Privacy (SwCR > SwRF > SwV P ).

2. Inside or outside attacker: The attacker may control another legitimate
voter (neither the targeted nor the counterbalancing voter). In that case
he could be able to compromise privacy by trying to relate the corrupted
voter’s vote to the targeted voter’s vote (e.g. by copying it as in the attack
by Smyth and Cortier [SC11]) or using the corrupted voter’s secret data,
such as his credentials or keys3. In our definitions, we distinguish two cases
for the Attacker, corresponding again to different attacker capabilities:
(a) Attacker is an Outsider (denoted O): The attacker is an external

observer.
(b) Attacker is an Insider (denoted I): The attacker has corrupted a

legitimate voter.
Again, Insider is intuitively the stronger setting (I > O).

3. Security against forced-abstention-attacks: A protocol can ensure that a
voter can still vote as intended, although a coercer wants him to abstain.
Note that in contrast to the literature [JCJ05, BHM08], we define this
property independent of Coercion-Resistance, as we also want to apply it
in the case of Vote-Privacy. This is because we see it as a different type of
attack, that can be combined with the different attacker capabilities defined
above. Our model expresses (in)security against forced-abstention attack by
requiring the observational equivalence to hold:

2We include “swap” in the name to distinguish these notions based on swapping votes from
the generalized notions in Section 3.4.

3Here we only consider a single corrupted voter, the generalization to multiple corrupted
voters is discussed in Section 3.4.4.
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(a) in any case, i.e. even if the voter is forced to abstain. We call this case
security against Forced-Abstention-Attacks, denoted FA.

(b) if the targeted voter does not abstain from voting (i.e. always partici-
pates). We call this case Participation Only, denoted PO.

In this dimension security against Forced-Abstention-Attacks is a stronger
property than Participation Only (FA > PO).

The strongest possible property is thus SwCRI,FA, the weakest SwV PO,PO. If
we leave out the parameter, we take the weakest setting as a default, i.e. SwV P
denotes SwV PO,PO.

3.3.3 — Definitions in the Applied π-Calculus

Our definition is parameterized using the following parameters (as explained
above):
— Privacy = {SwCR,SwRF, SwV P} (“Swap-Coercion-Resistance”, “Swap-

Receipt-Freeness” or “Swap-Vote-Privacy”).

— Attacker = {I,O} (“Insider” or “Outsider”).

— Abs = {FA,PO} (“Security against Forced-Abstention-Attacks”or “Participa-
tion Only”).

Definition 21 (PrivacyAttacker,Abs) A protocol fulfills PrivacyAttacker,Abs if for
any voting process

V P = νñ.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Al)

there exists a process V ′ such that for all votes σvA and σvB where V σvB does not
make a voter abstain4, one of the following holds depending on the privacy setting:
— if Privacy is Swap-Vote-Privacy (SwV P ):

V PI [V σidAσvA |V σidBσvB |VC ] ≈l V PI [V σidAσvB |V σidBσvA |VC ]

— if Privacy is Swap-Receipt-Freeness (SwRF ):
– V ′\out(chc,·) ≈l V σidAσvB

– V PI
[
(V σidAσvA)chc|V σidBσvB |VC

]
≈l V PI [V ′|V σidBσvA |VC ]

— if Privacy is Swap-Coercion-Resistance (SwCR):
For any context C = νc1.νc2.(_|P ′) with ñ ∩ fn(C) = ∅ and
V PI [C [(V σidA)c1,c2 ] |V σidBσvB |VC ] ≈l V PI

[
(V σidAσvA)chc|V σidBσvB |VC

]
we have
– C [V ′]\out(chc,·) ≈l V σidAσvB

4This condition is needed to ensure that in the case PO no voter can abstain.
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– V PI [C [(V σidA)c1,c2 ] |V σidBσvB |VC ] ≈l V PI [C [V ′] |V σidBσvA |VC ]
where
— If Attacker is:

– Insider(I): I := {A,B,C} and VC := (V σidC )c1,c2

– Outsider (O): I := {A,B} and VC := 0

— If Abs is:
– Participation Only (PO): V σidA does not abstain

– Security against Forced-Abstention-Attacks (FA): he may abstain.

As we require the conditions to hold for any voting process V P , they have to hold
for any number of honest voters5.

The following examples illustrate how the parameter values instantiate the
definition and give corresponding intuitions. We start with simple privacy.

Example 14 (SwV PO,PO) A protocol fulfills SwV PO,PO if for any voting pro-
cess V P such that for all votes σvA and σvB where σvB and σvA does not make a
voter abstain we have:

V P{A,B} [V σidAσvA |V σidBσvB |0] ≈l V P{A,B} [V σidAσvB |V σidBσvA |0] (3.1)

This coincides with the definition of Vote-Privacy given by Delaune et al. [DKR09]:
Two situations where two voters swap votes are bisimilar. We also note that
Receipt-Freeness in the DKR-model corresponds to SwRFO,PO in our model, and
Coercion-Resistance in the DKR-model corresponds to SwCRO,PO in our model.

In our next example, we apply the above definition on our running example, the
simple voting protocol.

Example 15 (Application) Consider our running example of a simple voting
protocol. We show that it ensures SwV PO,PO as defined above using ProVerif. We
assume the secret keys to be private (hence ñ includes the secret keys of the voters
and the administrator), and the administrator to be honest. In that case, ProVerif
is able to prove the bisimilarity in equation (3.1)6, which gives that the simple

5In our proofs we usually only consider the case of two or three voters, respectively, as this
is the base case. These proofs do however generalize in a straightforward way to any number
of participants. Additionally, if the protocol is modular, i.e. if instances can be composed (cf.
Definition 29 on page 128 in Section 3.4.4), then the problem of many honest voters automatically
reduces to the base case of two or three voters.

6Note that the calculus used by ProVerif differs in some technical details from the original
Applied π-Calculus. This is mainly due to the different extensions included in ProVerif, but also
the semantics have been slightly simplified as the original semantics are often non-deterministic
and hence difficult to reason about. Although the simplified semantics appear to be sound,
there is no formal proof [Bla13], thus technically we cannot claim that the result also holds
in the Applied π-Calculus. Yet we argue that ultimately our model and definitions remain as
meaningful in the ProVerif-calculus as in the Applied π-Calculus.
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voting protocol ensures SwV PO,PO. The code used is available online [Dre13].
It is easy to see that this protocol does not guarantee Swap-Vote-Privacy for

an inside attacker (SwV P I,PO), as he can simply access the votes on the bulletin
board and copy them7. He can identify which vote was posted by which voter using
the signatures.

The protocol is not receipt-free (SwRFAttacker,Abs) either as the randomness
used for encrypting the vote can be used as a receipt. Since the bulletin board
reveals which voters participated through the signatures, it is not resistant against
forced-abstention attacks.

In the following example we illustrate how security against Forced-Abstention-
Attacks is captured by our definition.

Example 16 (SwV PO,FA) A protocol fulfills SwV PO,FA if for any voting pro-
cess V P such that for all votes σvA and σvB where σvB does not make a voter
abstain we have:

V P{A,B} [V σidAσvA |V σidBσvB |0] ≈l V P{A,B} [V σidAσvB |V σidBσvA |0]

In this case, σvA can make a voter abstain. As σvB may not specify abstention,
we have an observational equivalence between a situation where the targeted voter
abstains, and a situation where he votes and the counterbalancing voter abstains.
This captures the security against forced-abstention-attacks.

Now we illustrate how we capture Receipt-Freeness, and how the inside attacker
is modeled.

Example 17 (SwRF I,PO) A protocol fulfills SwRF I,PO if for any voting process
V P there exists a process V ′ such that for all votes σvA and σvB where σvB and
σvA do not make a voter abstain we have

V ′\out(chc,·) ≈l V σidAσvB

and

V P{A,B,C}
[
(V σidAσvA)chc|V σidBσvB |(V σidC )c1,c2

]
≈l V P{A,B,C}

[
V ′|V σidBσvA |(V σidC )c1,c2

]
.

7Technically the attacker copies the vote from the bulletin board, and sends it to his corrupted
voter using the channel c2. The corrupted voter then submits the signed vote to the bulletin
board. Since in our modeling everybody can post on the bulletin board, the attacker can also
copy the vote, sign it using the key of his corrupted voter (which he received on channel c1) and
then submit it directly.
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The main idea of this Receipt-Freeness definition is the following: a protocol is
receipt-free if an attacker cannot distinguish between a voter revealing honestly
all his secret data as a receipt, and a voter only giving away fake information
and voting differently. This counter-strategy is expressed here by the process V ′.
The labeled bisimilarity then has to hold for a situation where voter idA votes
vA and reveals all his secret data honestly, and a situation where he employs the
counter-strategy V ′. The first equation ensures that he votes vB in the case of the
counter-strategy.

To account for an inside attacker we include a corrupted voter idC . The
adversary can hence try to execute vote-copy attacks, or employ insider knowledge.

Finally we discuss Coercion-Resistance.

Example 18 (SwCRO,FA) A protocol fulfills SwCRO,FA if for any voting pro-
cess V P there exists a process V ′ such that for all votes σvA and σvB where
V σvB does not make a voter abstain, the following holds: For any context
C = νc1.νc2.(_|P ′) with ñ ∩ fn(C) = ∅ and

V P{A,B} [C [(V σidA)c1,c2 ] |V σidBσvB |0] ≈l V P{A,B}
[
(V σidAσvA)chc|V σidBσvB |0

]
we have
— C [V ′]\out(chc,·) ≈l V σidAσvB

— V P{A,B} [C [(V σidA)c1,c2 ] |V σidBσvB |0] ≈l V P{A,B} [C [V ′] |V σidBσvA |0]
The intuition behind this definition is the following: the context C also belongs to
the attacker and tries to force the targeted voter to vote for a certain candidate
or to make him abstain (depending on σidA), whereas V ′ tries to vote differently
and to escape coercion. The condition on the context C ensures that the voter
is actually forced to vote for the candidate σvA to ensure that both sides give the
same result, and hence are not trivially distinguishable.

3.3.4 — Hierarchy

As already announced in the informal description in Section 3.3.2, we have a
hierarchy of notions in each of the three dimensions.

Lemma 18 For Privacy ∈ {SwV P , SwRF, SwCR} , Attacker ∈ {I,O} and
Abs ∈ {FA,PO} we have:

1. Any attack that works for an outsider can also be used for an insider: If a
protocol respects PrivacyI,Abs, then it also respects PrivacyO,Abs.

2. If a protocol is secure against Forced-Abstention attacks, it is also secure in
the “Participation Only” case: If a protocol respects PrivacyAttacker,FA, it
also respects PrivacyAttacker,PO.
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3. Coercion-Resistance is stronger than Receipt-Freeness, which is stronger
than Vote-Privacy:
— If a protocol respects SwCRAttacker,Abs, it also respects SwRFAttacker,Abs.

— If a protocol respects SwRFAttacker,Abs, it also respects SwV PAttacker,Abs.

Proof We consider the different propositions independently.

1. We detail the case SwV P I,Abs, the other cases are analogous. We use a
proof by contradiction: suppose that a protocol does not ensure SwV PO,Abs,
but SwV P I,Abs holds. Then we have an instance where

V P{A,B} [V σidAσvA |V σidBσvB ] 6≈l V P{A,B} [V σidAσvB |V σidBσvA ]

which we can rewrite as

V P{A,B,i} [V σidAσvA |V σidBσvB |V σidiσvi ]

6≈l V P{A,B,i} [V σidAσvB |V σidBσvA |V σidiσvi ]

for some honest voter V σidiσvi . This yields the contradiction for an attacker
enforcing that the corrupted voter behaves like an honest voter, i.e. a context
C = νc1.νc2.(P |_) such that C[V σc1,c2

idC
] ≈l V σidiσvi , as we have an instance

violating the definition of SwV P I,Abs. Note that technically this also works
if the instance violating privacy contains only two voters, in this case the
intruder forces the corrupted voter to do nothing.

2. This holds by definition: in the case FA we consider all σvA , whereas we
exclude some in the case PO. Thus, if the bisimilarity holds for FA, it also
holds for PO.

3. Coercion-Resistance is stronger than Receipt-Freeness, which is stronger
than Vote-Privacy:
— The proof is similar to the proof showing that Coercion-Resistance

implies Receipt-Freeness in the DKR model [DKR09]:
Assume that we have a protocol ensuring SwCRAttacker,Abs. Let C be an
evaluation context such that C = νc1.νc2.(_|P ) for some plain process
P which fulfills

V PI
[
C
[
V σc1,c2

idA

]
|V σidBσvB |VC

]
≈l V PI

[
V σidAσ

chc
vA
|V σidBσvB |VC

]
(3.2)

Note that such a C can be constructed directly from the vote process
V . By the definition of SwCRAttacker,Abs we know that there is a closed
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plain process V ′ such that

C
[
V ′
]\out(chc,·) ≈l V σidAσvB (3.3)

and

V PI
[
C
[
V σc1,c2

idA

]
|V σidBσvB |VC

]
≈l V PI

[
C
[
V ′
]
|V σidBσvA |VC

]
(3.4)

To prove that the protocol ensures SwRFAttacker,Abs we have to find
another process V ′′ such that

V ′′\out(chc,·) ≈l V σidAσvB (3.5)

and

V PI
[
V σidAσ

chc
vA
|V σidBσvB |VC

]
≈l V PI

[
V ′′|V σidBσvA |VC

]
(3.6)

Let V ′′ = C[V ′]. This directly fulfills the first requirement (3.5) by (3.3).
By the condition (3.2) on C we have:

V PI
[
C
[
V σc1,c2

idA

]
|V σidBσvB |VC

]
≈l V PI

[
V σidAσ

chc
vA
|V σidBσvB |VC

]
The second hypothesis (3.4) gives

V PI
[
C
[
V σc1,c2

idA

]
|V σidBσvB |VC

]
≈l V PI

[
C
[
V ′
]
|V σidBσvA |VC

]
As labeled bisimilarity is transitive, we can conclude

V PI
[
V σidAσ

chc
vA
|V σidBσvB |VC

]
≈l V PI

[
C
[
V ′
]
|V σidBσvA |VC

]
which gives us the desired result for V ′′ = C[V ′].

— The proof is similar to the proof of Receipt-Freeness implies Vote-Privacy
in the DKR-model [DKR09]:
Assume that we have a protocol ensuring SwRFAttacker,Abs. By hypoth-
esis there is a closed plain process V ′ so that

V ′\out(chc,·) ≈l V σidAσvB (3.7)

and

V PI
[
V σidAσ

chc
vA
|V σidBσvB |VC

]
≈l V PI

[
V ′|V σidBσvA |VC

]
.

We apply the context νchc.(_|!in(chc, x)) (cf. Definition 20 on page 60)
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on both sides, which gives

V PI
[
V σidAσ

chc
vA
|V σidBσvB |VC

]\out(chc,·)
≈l V PI

[
V ′|V σidBσvA |VC

]\out(chc,·)
.

By using Lemma 17 on page 60 on both sides of the equivalence we
obtain

V PI
[
V ′|V σidBσvA |VC

]\out(chc,·) ≡ V PI [V ′\out(chc,·)|V σidBσvA |VC]
and

V PI
[
V σidAσ

chc
vA
|V σidBσvB |VC

]\out(chc,·)
≡

V PI

[(
V σidAσ

chc
vA

)\out(chc,·)
|V σidBσvB |VC

]
.

We can now apply Lemma 16 on page 60 and use the fact that labeled
bisimilarity is closed under structural equivalence to obtain

V PI [V σidAσvA |V σidBσvB |VC ] ≈l V PI
[
V ′\out(chc,·)|V σidBσvA |VC

]
where we can apply (3.7) to conclude

V PI [V σidAσvA |V σidBσvB |VC ] ≈l V PI [V σidAσvB |V σidBσvA |VC ]

i.e. that the protocol ensures SwV PAttacker,Abs. �

Taking these properties together, we arrive at the hierarchy shown in Figure 3.1
on the facing page.

3.3.5 — Case Studies

We applied our family of notions on several case studies, chosen to show that
each of our dimensions corresponds to a different property of existing protocols.
The results are summed up in and Table 3.1 on page 114, the position of the case
studies within our hierarchy is shown in Figure 3.1 on the facing page.

§ 3.3.5.1. Protocol by Fujioka, Okamoto and Ohta (FOO). The pro-
tocol by Fujioka, Okamoto and Ohta [FOO92] is based on blind signatures and
commitments. It was shown to ensure Vote-Privacy [DKR09] in the DKR-model,
but is not receipt-free as the randomness of the commitment can be used as a
receipt. We show that it ensures SwV P I,PO (i.e. Swap-Vote-Privacy against an
insider, but just in the Participation Only case).
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SwCRO,FA
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��
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SwV PO,PO• SwV P I,PO[FOO92]oo

Figure 3.1 – Hierarchy of privacy notions with examples: The simple voting
protocol, our running example (•); Bingo Voting [BMQR07]; Bingo
Voting with voter lists (∗); Okamoto [Oka96]; Okamoto with a
private channel to the honest administrator (�); FOO [FOO92];
FOO with a private channel to the honest administrator (†); and
Lee et al. [LBD+03]. A→ B means that a protocol ensuring A also
ensures B.

Protocol Description. The protocol is split into three phases. In the first
phase the administrator signs the voter’s commitment to his vote:

— Voter Vi chooses his vote vi and computes a commitment xi = ξ(vi, ri) for a
random key ri.

— He blinds the commitment using a blinding function χ, a random value bi and
obtains ei = χ(xi, bi).

— He signs ei and sends the signature si = σVi(ei) together with ei and his
identity to the administrator.

— The administrator checks if Vi has the right to vote and has not yet voted,
and if the signature si is correct. If all tests succeed, he signs di = σA(ei) and
sends it back to Vi.

— Vi checks the signature, and unblinds the signature to obtain yi = δ(di, bi) =
σA(xi).

In the second phase, the voter submits his ballot:

— Voter Vi sends (xi, yi) to the collector C through an anonymous channel.

— The collector checks the administrator’s signature and enters (xi, yi) as the
l-th entry into a list.

When all ballots are cast or when the deadline is over, the counting phase begins:

— The collector publishes the list of correct ballots.

— Vi verifies that his commitment appears on the list and sends (l, ri) to C using
an anonymous channel.
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— The collector C opens the l-th ballot using ri and publishes the vote.

Model in the Applied π-Calculus. We use the following equational theory:

open(commit(m, r), r) = m

checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), sk), r) = sign(m, sk)

We can then express the behavior of the different parties using the following
processes.

1 (∗ pr i va t e keys ∗)
2 ν ska . ν skva . ν skvb . ν skvc .
3 (∗ pub l i c keys ∗)
4 l e t ( pka , pkva , pkvb , pkvc )
5 = (pk ( ska ) , pk ( skva ) , pk ( skvb ) , pk ( skvc ) ) in
6 (∗ pub l i c key d i s c l o s u r e ∗)
7 out ( ch , pka ) . out ( ch , pkva ) . out ( ch , pkvb ) . out ( ch , pkvc ) .
8 (∗ admin i s t r a to r s ∗)
9 ( ( l e t pkv = pkva in processA ) |

10 ( l e t pkv = pkvb in processA ) |
11 ( l e t pkv = pkvc in processA ) |
12 processC | processC | processC |
13 (∗ vo t e r s ∗)
14 ( l e t skv = skva in l e t v = a in processV ) |
15 ( l e t skv = skvb in l e t v = b in processV ) |
16 ( l e t skv = skvc in l e t v = c in processV ) )

Listing 3.1 – The main process

The main process (Listing 3.1) sets up the keys and executes the participation
processes (three voters, three administrators and three collectors – one for each
voter –) in parallel. Note that (* ... *) are comments, inspired by ProVerif’s
syntax, and that processA, processK, processC and processV are variables for
the processes of the administrator, keying process, collector and voter as defined
below. Note also that although much of this syntax is inspired by ProVerif, we
still rely on the original Applied π-Calculus.

The voter ’s process (Listing 3.2 on the facing page) starts by deciding if he
abstains: If yes, he does nothing except for the synchronization points. This is
necessary as otherwise he blocks the other voters. If he does not abstain, he votes
following the protocol described informally before.

A voter controlled by the attacker is modeled by the process given in Listing 3.3
on page 72. This process is obtained when computing processVc1,c2 as defined in
Definition 19 on page 59.
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1 processV =
2 i f v = absta in then
3 sync 1 .
4 sync 2
5 e l s e
6 νb . ν r .
7 l e t commitedvote = commit (v , r ) in
8 l e t b l indedvote = b l ind ( commitedvote , b ) in
9 out ( ch1 , ( pk ( skv ) , s i gn ( b l indedvote , skv ) , b l indedvote ) ) .
10 in ( ch2 ,m2) .
11 l e t r e s u l t = checks ign (m2, pka ) in
12 i f r e s u l t = bl indedvote then
13 l e t s i gnedvote = unbl ind (m2, b) in
14 sync 1 .
15 out ( ch3 , ( commitedvote , s i gnedvote ) ) .
16 in ( ch4 , ( l , commitedvote ’ , s ignedvote ’ ) ) .
17 i f commitedvote ’ = commitedvote then
18 i f s ignedvote ’ = s ignedvote then
19 sync 2 .
20 out ( ch5 , ( l , r ) )

Listing 3.2 – The voting process

When the administrator (Listing 3.4 on the next page) receives the blinded
commitment, he checks the signature, signs, and sends the result back.

The collector (Listing 3.5 on the following page) verifies the signature on
incoming commitments using the administrator’s public key. If the signature is
correct, he creates a new bounded name l (the number in the list) and sends it
together with the signed commitment back to the voter. The voter then reveals
his randomness, which the collector uses to open the commitment.

Analysis. Delaune et al. showed that the protocol ensures Vote-Privacy in their
model [DKR09] (which corresponds to SwV PO,PO in our model, as they do not
consider inside attackers). We show that it also ensures Vote-Independence, i.e.
the stronger notion of Vote-Privacy for inside attackers: SwV P I,PO.

Theorem 19 FOO respects SwV P I,PO.

Proof We show that

processV {skva/skv, pk(ska)/pka} {a/v} |processV {skvb/skv, pk(ska)/pka} {b/v} |
processVc1c2 {skvc/skv, pk(ska)/pka}

≈l
processV {skva/skv, pk(ska)/pka} {b/v} |processV {skvb/skv, pk(ska)/pka} {a/v} |

processVc1c2 {skvc/skv, pk(ska)/pka}
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1 processVc1c2 =
2 in ( c2 , y1 ) .
3 i f y1 = true then
4 sync 1 .
5 sync 2
6 e l s e
7 νb . out ( c1 , b ) . ν r . out ( c1 , r ) .
8 l e t commitedvote = commit (v , r ) in
9 l e t b l indedvote = b l ind ( commitedvote , b ) in

10 in ( c2 , y2 ) . out ( ch1 , y2 ) .
11 in ( ch2 ,m2) . out ( c1 ,m2) .
12 l e t r e s u l t = checks ign (m2, pka ) in
13 in ( c2 , y3 ) .
14 i f y3 = true then
15 l e t s i gnedvote = unbl ind (m2, b) in
16 sync 1 .
17 in ( c2 , y4 ) . out ( ch3 , y4 ) .
18 in ( ch4 ,m3) . out ( c1 ,m3) .
19 l e t ( l , commitedvoter ’ , s i gnedvoter ’ ) = m3 in
20 in ( c2 , y5 ) .
21 i f y5 = true then
22 in ( c2 , y6 ) .
23 i f y6 = true then
24 sync 2 .
25 in ( c2 , y7 ) . out ( ch5 , y7 )

Listing 3.3 – The voting process under control of the attacker

1 processA =
2 in ( ch1 ,m1) .
3 l e t ( pubkeyv , s ig , b l indedvote ) = m1 in
4 i f pubkeyv = pkv && checks ign ( s ig , pkv ) = bl indedvote then
5 out ( ch2 , s i gn ( b l indedvote , ska ) )

Listing 3.4 – The administrator process

1 processC =
2 in ( ch3 , (m3,m4) ) .
3 i f checks ign (m4, pka ) = m3 then
4 ν l . out ( ch4 , ( l ,m3,m4) ) .
5 in ( ch5 , ( l ’ , rand ) ) .
6 i f l = l ’ then
7 l e t voteV = open (m3, rand ) in
8 out ( res , voteV )

Listing 3.5 – The collector process

72



3.3. A Formal Taxonomy of Privacy in Voting

As labeled bisimilarity is closed under the application of contexts, it is sufficient
to show that

processV {skva/skv, pk(ska)/pka} {a/v} |processV {skvb/skv, pk(ska)/pka} {b/v}
≈l

processV {skva/skv, pk(ska)/pka} {b/v} |processV {skvb/skv, pk(ska)/pka} {a/v}

This is different from the model and proof used in [DKR09], and more similar to
the proofs by Kremer and Ryan [KR05] or Smyth [Smy11]: all keys are modeled
as free names, and hence not secret. Note also that we consider only two honest
voters and one voter under control of the attacker. However, as labeled bisimilarity
is closed under the application of contexts, this immediately generalizes to an
arbitrary number of honest or corrupted voters as we do not need any secret
channel or key.

The intuition is the following: thanks to the blinding nobody can link the
ballot, which is sent to the administrator, to the commitment, published later on
over the anonymous channel.

We call the left hand side process P and the right hand side process Q. Note
that we do not consider abstention of the honest voters here, hence the test
v=abstain is always false. We write VA for processV {skva/skv, pk(ska)/pka} and
VB for processV {skvb/skv, pk(ska)/pka}. We now discuss the possible transitions.
The honest voters construct the blinded and committed votes and send them to
the administrator. We have the following transitions:

P
out(ch1,x1)−−−−−−−→ νbA.νrA.(P1|
{(pk(skva),sign(blind(commit(a,rA),bA),skva),blind(commit(a,rA),bA))/x1})
out(ch1,x2)−−−−−−−→ νbB.νbA.νrA.νrB.(P2|
{(pk(skva),sign(blind(commit(a,rA),bA),skva),blind(commit(a,rA),bA))/x1} |
{(pk(skvb),sign(blind(commit(b,rB),bB),skvb),blind(commit(b,rB),bB))/x2})

Similarly

Q
out(ch1,x1)−−−−−−−→ νbA.νrA.(Q1|
{(pk(skva),sign(blind(commit(b,rA),bA),skva),blind(commit(b,rA),bA))/x1})
out(ch1,x2)−−−−−−−→ νbB.νbA.νrA.νrB.(Q2|
{(pk(skva),sign(blind(commit(b,rA),bA),skva),blind(commit(b,rA),bA))/x1} |
{(pk(skvb),sign(blind(commit(a,rB),bB),skvb),blind(commit(a,rB),bB))/x2})

Until this point, it is easy to see that the frames are statically equivalent: both
voters sent a signed commitment, but because of the blinding they are indistin-
guishable. Note that the messages can appear in the inverse order, however the
frames remain statically equivalent. The next step depends on the context. If
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the attacker returns correctly signed votes to the two voters, the processes can
synchronize and go on. Otherwise at least one of them blocks and they are unable
to synchronize.

If they are able to synchronize, they will output their unblinded vote to the
collector. From this point on, the voters swap their roles, i.e. VB {a/v} simulates
the behavior of VA {a/v}. We obtain the following frames:

φl = νbB.νbA.νrA.νrB.(
{(pk(skva),sign(blind(commit(a,rA),bA),skva),blind(commit(a,rA),bA))/x1} |
{(pk(skvb),sign(blind(commit(b,rB),bB),skvb),blind(commit(b,rB),bB))/x2} |

{(commit(a,rA),sign(commit(a,rA),ska))/x3} |
{(commit(b,rB),sign(commit(b,rB),ska))/x4})

φr = νbB.νbA.νrA.νrB.(
{(pk(skva),sign(blind(commit(b,rA),bA),skva),blind(commit(b,rA),bA))/x1} |
{(pk(skvb),sign(blind(commit(a,rB),bB),skvb),blind(commit(a,rB),bB))/x2} |

{(commit(b,rA),sign(commit(b,rA),ska))/x3} |
{(commit(a,rB),sign(commit(a,rB),ska))/x4})

These frames are again statically equivalent, as the blinding breaks any link of
the commitments to the first messages. Then it depends again on the input of
the attacker. If either of the voters gets a wrong input, they cannot synchronize.
If both voters receive a correct input, they reveal their random values with the
corresponding l. This yields the following frames:

φ′l = νbB.νbA.νrA.νrB.νlA.νlB.(
{(pk(skva),sign(blind(commit(a,rA),bA),skva),blind(commit(a,rA),bA))/x1} |
{(pk(skvb),sign(blind(commit(b,rB),bB),skvb),blind(commit(b,rB),bB))/x2} |

{(commit(a,rA),sign(commit(a,rA),ska))/x3} |
{(commit(b,rB),sign(commit(b,rB),ska))/x4} |

{(lA,rA)/x5} | {(lB ,rB)/x6})

φ′r = νbB.νbA.νrA.νrB.νlA.νlB.(
{(pk(skva),sign(blind(commit(b,rA),bA),skva),blind(commit(b,rA),bA))/x1} |
{(pk(skvb),sign(blind(commit(a,rB),bB),skvb),blind(commit(a,rB),bB))/x2} |

{(commit(b,rA),sign(commit(b,rA),ska))/x3} |
{(commit(a,rB),sign(commit(a,rB),ska))/x4} |

{(lA,rA)/x5} | {(lB ,rB)/x6})

These frames are statically equivalent, giving us the desired result. �
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This result can also be obtained automatically using ProSwapper8 and ProVerif.
The code is available on our website [Dre13].

Moreover note that using the recently developed tool AKISS, a similar proof
of privacy [CCK12] for this protocol was made. The proof is fully automatic,
however AKISS proves trace equivalence instead of labeled bismilarity, and uses a
simpler process calculus instead of the Applied π-Calculus.

Note that FOO is not secure against Forced-Abstention-Attacks, as the voters
send their identity (here modeled by their public key) to the administrator over a
public channel. If we consider a modified version with a trusted administrator
and a private channel between the voter and the administrator, FOO also ensures
security against forced abstention attacks: SwV P I,FA.

Theorem 20 FOO with trusted administrator and a private channel between the
voter and the administrator respects SwV P I,FA.

Proof As we proved above, FOO ensures Privacy for the “PO” case. Hence we
only need to consider the case of abstention, i.e. show that

νch1.νch2.(processV {skva/skv, pk(ska)/pka} {abstain/v} |
processV {skvb/skv, pk(ska)/pka} {b/v} |processVc1c2 {skvc/skv, pk(ska)/pka} |

processA {pk(skva)/pkv} |processA {pk(skvb)/pkv} |processA {pk(skvc)/pkv})
≈l

νch1.νch2.(processV {skva/skv, pk(ska)/pka} {b/v} |
processV {skvb/skv, pk(ska)/pka} {abstain/v} |processVc1c2 {skvc/skv, pk(ska)/pka} |

processA {pk(skva)/pkv} |processA {pk(skvb)/pkv} |processA {pk(skvc)/pkv})

holds. The differences to the above proof are marked in bold: the channels ch1
and ch2 are now restricted, and we include the administrators as they are now
trusted. Note that this proof is technically only valid for two honest voters and
one voter under control of the attacker. Nevertheless a similar proof can be made
for other numbers of voters.

The intuition is that since the administrator is honest and the registration is
done over a private channel, the intruder only sees the anonymous commitments
and can thus not determine which voters participated.

We call the left hand side process P and the right hand side process Q, and
write VA for processV {skva/skv, pk(ska)/pka}, VB for processV {skvb/skv, pk(ska)/pka}
and V c1,c2

C for processVc1c2 {skvc/skv, pk(ska)/pka}. The beginning is similar: the
non-abstaining honest voter construct the blinded and committed vote and sends
them to the administrator through an internal reduction, due to the private

8Note that although – to the best of our knowledge – there exists no formal soundness proof
for the transformations performed by ProSwapper [Smy11], in this case the result is effectively
confirmed by our manual proof.
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channel. The administrator will accept the ballot, sign it and send it back to
the voter, again triggering an internal reduction. The voter checks the signature
and waits for the synchronization. Until now, only internal reductions have taken
place and the frames are empty. Then it depends on the context:
— If the corrupted voter is told to abstain, the bidder can synchronize, and

publishes his ballot. We obtain the following frames:

φl = νrB.({(commit(b,rB),sign(commit(b,rB),ska))/x1})

and
φr = νrA.({(commit(b,rA),sign(commit(b,rA),ska))/x1})

Then it depends again on the input of the attacker. If the honest voter gets a
wrong input, he blocks. If he receives receives a correct input he synchronizes
and reveals his random values with the corresponding l. This yields the
following frames:

φ′l = νrB.νlB.({(commit(b,rB),sign(commit(b,rB),ska))/x1} | {(lB ,rB)/x2})

and

φ′r = νrA.νlA.({(commit(b,rA),sign(commit(b,rA),ska))/x1} | {(lA,rA)/x11})

These frames are statically equivalent as the random values are indistinguish-
able, which gives us the desired result.

— If the context tells the corrupted voter to vote, he forwards the given message
to the administrator (over a private channel, hence an internal reduction). If
the message was correct, the administrator signs and returns the ballot (again
over a private channel). This message is forwarded to the context. In any
other case, the process will simply block. We have the following transitions:

P
in(c2,false)−−−−−−−→ in(c2,y2)−−−−−→→∗ out(c1,x1)−−−−−−→ P1| {m2/x1}

Similarly

Q
in(c2,false)−−−−−−−→ in(c2,y2)−−−−−→→∗ out(c1,x1)−−−−−−→ Q1| {m2/x1}

These frames are identical and hence statically equivalent. If the context
tells the voter to go on, the processes can synchronize, and the honest voter
publishes his unblinded ballot. The corrupted bidder publishes the message
he is given. This yields the following frames:

φ′′l = νrB.({m2/x1} | {(commit(b,rB),sign(commit(b,rB),ska))/x2} | {y4/x3} | {m3/x4})
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and

φ′′r = νrA.({m2/x1} | {(commit(b,rA),sign(commit(b,rA),ska))/x2} | {y4/x3} | {m3/x4})

Then it depends again on the input of the attacker. If the honest voters
gets a wrong input or the attacker decides to block V c1,c2

C , the voters cannot
synchronize. If the honest voters receives a correct input and if he can
synchronize with V c1,c2

C , he reveals his random values with the corresponding
l. This yields the following frames:

φ′′′l = νrB.νlB.({m2/x1} | {(commit(b,rB),sign(commit(b,rB),ska))/x2} |
{y4/x3} | {m3/x4} | {(lB ,rB)/x5} | {y7/x6})

and

φ′′′r = νrA.νlA.({m2/x1} | {(commit(b,rA),sign(commit(b,rA),ska))/x2} |
{y4/x3} | {m3/x4} | {(lA,rA)/x5} | {y7/x6})

These frames are statically equivalent as they only differ in the restricted
random values, which gives us the desired result. �

§ 3.3.5.2. Protocol by Okamoto. The protocol by Okamoto [Oka96] is
similar to the protocol by Fujioka et al. discussed above, but it uses trap-door
commitments to achieve Receipt-Freeness. It is however not Coercion-Resistant as
the coercer can force the voter to use a specially prepared commitment [DKR09].

Protocol Description. The main differences to FOO are the use of trap-door
commitments and the existence of timeliness member to open the commitments.
The first phase – during which the voter obtains a signature on his commitment –
follows exactly the same protocol as FOO, except that this time ξ is a trapdoor-
commitment. In the second phase the vote is submitted:
— Voter Vi sends the signed trap-door commitment to the collector C through

an anonymous channel.

— The collector checks the administrators signature and enters (xi, yi) into a list.

— The voter sends (vi, ri, xi) to the timeliness member through an untappable
anonymous channel

When all ballots are cast and/or when the deadline is over, the counting phase
begins:
— The collector publishes the list of correct ballots.

— Vi verifies that his commitment appears on the list.

— The timeliness member publishes a randomly shuffled list of votes vi and a
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zero-knowledge proof that he knows a permutation π for which xπ(i) = ξ(vi, ri).

Model in the Applied π-Calculus. We use following equational theory:

checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), sk), r) = sign(m, sk)
open(tdcommit(m, r, td), r) = m

tdcommit(m2, f(m1, r, td,m2), td) = tdcommit(m1, r, td)

The forth equation models the creation of a trap-door commitment to m using
a random value r and a trap-door td, whereas the last equation permits the
construction of another random value to open a commitment differently. This
requires knowledge of the trap-door td and the initial random value r.

We use the following processes for our proof:

1 (∗ pr i va t e keys ∗)
2 ν ska . ν skva . ν skvb . ν skvc .
3 (∗ pub l i c keys ∗)
4 l e t ( pka , pkva , pkvb , pkvc )
5 = (pk ( ska ) , pk ( skva ) , pk ( skvb ) , pk ( skvc ) ) in
6 (∗ pr i va t e channe l s ∗)
7 νchT .
8 (∗ pub l i c key d i s c l o s u r e ∗)
9 out ( ch , pka ) . out ( ch , pkva ) . out ( ch , pkvb ) . out ( ch , pkvc ) .

10 (∗ admin i s t r a to r s ∗)
11 ( processA | processA | processA |
12 processC | processC | processC |
13 processT | processT | processT |
14 (∗ vo t e r s ∗)
15 ( l e t skv = skva in l e t v = a in processV ) |
16 ( l e t skv = skvb in l e t v = b in processV ) |
17 ( l e t skv = skvc in l e t v = c in processV ) )

Listing 3.6 – The main process

The main process (Listing 3.6) shows how the participation processes (three
administrators, three collectors, three talliers - one for each voter - and three
voters) are combined in parallel using a private channel.

The voter process (Listing 3.7 on the facing page) follows the nearly the same
protocol as in the case of FOO, but he has to reveal the data necessary to open
the commitment over a private channel to the timeliness member T . Note that in
the case of abstention the voter also executes the second synchronization point,
although normally it is executed by the collector. This is necessary to avoid a
situation where the entire voting process blocks because of an abstaining voter.
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1 processV =
2 i f v = absta in then
3 sync 1 .
4 syncn 2
5 e l s e
6 νb . ν r . ν td .
7 l e t commitedvote = tdcommit (v , r , td ) in
8 l e t b l indedvote = b l ind ( commitedvote , b ) in
9 out ( ch1 , ( pk ( skv ) , s i gn ( b l indedvote , skv ) , b l indedvote ) ) .
10 in ( ch2 ,m2) .
11 l e t r e s u l t = checks ign (m2, pka ) in
12 i f r e s u l t = bl indedvote then
13 l e t s i gnedvote = unbl ind (m2, b) in
14 sync 1 .
15 out ( ch3 , ( commitedvote , s i gnedvote ) ) .
16 out (chT , ( v , r , commitedvote ) )

Listing 3.7 – The voting process

1 processVc1c2 =
2 in ( c2 , y1 ) .
3 i f x1 = true then
4 sync 1 .
5 syncn 2
6 e l s e
7 νb . out ( c1 , b ) . ν r . out ( c1 , r ) . ν td . out ( c1 , td ) .
8 l e t commitedvote = tdcommit (v , r , td ) in
9 l e t b l indedvote = b l ind ( commitedvote , b ) in
10 in ( c2 , y2 ) . out ( ch1 , y2 ) .
11 in ( ch2 ,m2) . out ( c1 ,m2) .
12 l e t r e s u l t = checks ign (m2, pka ) in
13 in ( c2 , y3 ) .
14 i f y3 = true then
15 l e t s i gnedvote = unbl ind (m2, b) in
16 sync 1 .
17 in ( c2 , y4 ) . out ( ch3 , y4 ) .
18 in ( c2 , y5 ) . out (chT , y5 )

Listing 3.8 – The voting process under control of the attacker
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1 processVchc =
2 i f v = absta in then
3 sync 1 .
4 syncn 2
5 e l s e
6 νb . ν r . ν td .
7 out ( chc , b ) . out ( chc , r ) . out ( chc , td ) .
8 l e t commitedvote = tdcommit ( a , r , td ) in
9 l e t b l indedvote = b l ind ( commitedvote , b ) in

10 out ( ch1 , ( pk ( skv ) , s i gn ( b l indedvote , skv ) , b l indedvote ) ) .
11 out ( chc , ( pk ( skv ) , s i gn ( b l indedvote , skv ) , b l indedvote ) ) .
12 in ( ch2 ,m2) .
13 l e t r e s u l t = checks ign (m2, pka ) in
14 i f r e s u l t = bl indedvote then
15 l e t s i gnedvote = unbl ind (m2, b) in
16 sync 1 .
17 out ( ch3 , ( commitedvote , s i gnedvote ) ) .
18 out ( chc , ( commitedvote , s i gnedvote ) ) .
19 out (chT , ( a , r , commitedvote ) ) .
20 out ( chc , ( a , r , commitedvote ) )

Listing 3.9 – The process trying to create a receipt

A voter under control of the attacker is described by Listing 3.8 on the previous
page. This process can be obtained by calculating processVc1,c2 as defined in
Definition 19 on page 59.

A voter trying to create a receipt by revealing all his secret data is modeled by
the process in Listing 3.9. This process can be obtained by calculating processVchc

as defined in Definition 18 on page 59.
The administrator (Listing 3.11 on the next page) checks the signature on the

blinded commitment and signs it.
The collector (Listing 3.12 on the facing page) verifies the signature on

incoming commitments using the administrator’s public key. If the signature is
correct, he publishes the commitment on a public channel.

The timeliness member (Listing 3.13 on page 82) receives the vote, the corre-
sponding commitment and the randomness over a private channel. He verifies the
correctness of the data and then publishes the vote. Note that the synchronization
point syncn 2 can also be enabled by an abstaining bidder (cf. Process 3.7 on the
preceding page) to allow the publication of the submitted votes. As explained
above, although an instance with n voters contains 2n instances of syncn 2, any
n of them are sufficient to enable the continuation.

Analysis. We have the following result:

80



3.3. A Formal Taxonomy of Privacy in Voting

1 processV ’ =
2 i f a = absta in then
3 νb . ν r . ν td .
4 l e t commitedvote = tdcommit (b , r , td ) in
5 l e t b l indedvote = b l ind ( commitedvote , b ) in
6 out ( ch1 , ( pk ( skv ) , s i gn ( b l indedvote , skv ) , b l indedvote ) ) .
7 in ( ch2 ,m2) .
8 l e t r e s u l t = checks ign (m2, pka ) in
9 i f r e s u l t = bl indedvote then
10 l e t s i gnedvote = unbl ind (m2, b) in
11 sync 1 .
12 out ( ch3 , ( commitedvote , s i gnedvote ) ) .
13 out (chT , ( b , r , commitedvote ) ) .
14 e l s e
15 νb . ν r . ν td .
16 out ( chc , b ) . out ( chc , f (b , r , td , a ) ) . out ( chc , td ) .
17 l e t commitedvote = tdcommit (b , r , td ) in
18 l e t b l indedvote = b l ind ( commitedvote , b ) in
19 out ( ch1 , ( pk ( skv ) , s i gn ( b l indedvote , skv ) , b l indedvote ) ) .
20 out ( chc , ( pk ( skv ) , s i gn ( b l indedvote , skv ) , b l indedvote ) ) .
21 in ( ch2 ,m2) .
22 l e t r e s u l t = checks ign (m2, pka ) in
23 i f r e s u l t = bl indedvote then
24 l e t s i gnedvote = unbl ind (m2, b) in
25 sync 1 .
26 out ( ch3 , ( commitedvote , s i gnedvote ) ) .
27 out ( chc , ( commitedvote , s i gnedvote ) ) .
28 out (chT , ( b , r , commitedvote ) ) .
29 out ( chc , ( a , f (b , r , td , a ) , commitedvote ) )

Listing 3.10 – The process V’

1 processA =
2 in ( ch1 ,m1) .
3 l e t ( pubkeyv , s ig , b l indedvote ) = m1 in
4 i f pubkeyv = pkv && checks ign ( s ig , pkv ) = bl indedvote then
5 out ( ch2 , s i gn ( b l indedvote , ska ) )

Listing 3.11 – The administrator process

1 processC =
2 sync 1 .
3 in ( ch3 , (m3,m4) ) .
4 i f checks ign (m4, pka ) = m3 then
5 syncn 2 .
6 out ( ch , (m3,m4) )

Listing 3.12 – The collector process
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1 processT =
2 sync 1 .
3 (∗ r e c e i v i n g the commitment ∗)
4 in (chT , ( vt , rt , xt ) ) .
5 sync 2 .
6 i f open ( xt , r t ) = vt then
7 out ( res , vt )

Listing 3.13 – The timeliness process

Theorem 21 The protocol by Okamoto respects SwRF I,PO.

Proof We need to show that there exists a closed plain process V ′ such that

V ′\out(chc,·) ≈l processV {skva/skv, pk(ska)/pka} {b/v} (3.8)

and
νchT.((processV {skva/skv, pk(ska)/pka} {a/v})chc|

processV {skvb/skv, pk(ska)/pka} {b/v} |
processVc1c2 {skvc/skv, pk(ska)/pka} |

processT|processT|processT)
≈l

νchT.(V ′|processV {skvb/skv, pk(ska)/pka} {a/v} |
processVc1c2 {skvc/skv, pk(ska)/pka} |

processT|processT|processT)

(3.9)

As in the case of the protocol by Fujioka et al., we only consider three voters, but
the proof can be generalized for more honest voters. In particular we show in
Section 3.4.4 that the protocol is modular, which directly implies that privacy
also holds for any number of honest voters: we can compose the above instance
with another instance to obtain an instance with an arbitrary number of voters,
and the bisimilarity still holds. For more details, see Section 3.4.4.

Again, we write VA for processV {skva/skv, pk(ska)/pka}, VB for processV
{skvb/skv, pk(ska)/pka} and V c1,c2

C for processVc1c2 {skvc/skv, pk(ska)/pka}.
Consider the process V ′ = processV′ {skva/skv, pk(ska)/pka} that fakes a receipt.

We can see that the first equivalence (3.8) holds by removing all out(chc,_)
from processV′ as given in Listing 3.10 on the previous page: Independent
of a, the resulting process is apparently equal to the original voting process
processV {skva/skv} {b/v}.

The second equivalence (3.9) is more difficult to prove. The beginning is
similar to the proof of privacy for FOO. We denote the left hand side process P
and the right hand side process Q. The honest voters construct the blinded and
committed votes and send them to the administrator. During this process, VA
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outputs his secret values and inputs, where V ′ fakes these values. We have the
following transitions:

P
out(chc,x1)−−−−−−−→ νx2.out(chc,x2)−−−−−−−−−→ νx3.out(chc,x3)−−−−−−−−−→ νbA.νrA.νtdA.(P1| {bA/x1}

| {rA/x2} | {tdA/x3})
νx4.out(ch1,x4)−−−−−−−−−−→ νx5.out(chc,x5)−−−−−−−−−→ νbA.νrA.νtdA.(P2| {bA/x1} | {rA/x2}

| {tdA/x3}
| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva),blind(tdcommit(a,rA,tdA),bA))/x4}

| {x4/x5})
νx6.out(ch1,x6)−−−−−−−−−−→ νbA.νrA.νtdA.νbB.νrB.νtdB.(P3| {bA/x1}

| {rA/x2} | {tdA/x3}
| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva),blind(tdcommit(a,rA,tdA),bA))/x4}

| {x4/x5}
| {(pk(skva),sign(blind(tdcommit(b,rB ,tdB),bB),skvb),blind(tdcommit(b,rB ,tdB),bB))/x6})

Similarly

Q
νx1.out(chc,x1)−−−−−−−−−→ νx2.out(chc,x2)−−−−−−−−−→ νx3.out(chc,x3)−−−−−−−−−→ νbA.νrA.νtdA.(Q1

| {bA/x1} | {f(a,rA,tdA,c)/x2} | {tdA/x3})
νx4.out(ch1,x4)−−−−−−−−−−→ νx5.out(chc,x5)−−−−−−−−−→ νbA.νrA.νtdA.(Q2| {bA/x1}

| {f(b,rA,tdA,a)/x2} | {tdA/x3}
| {(pk(skva),sign(blind(tdcommit(b,rA,tdA),bA),skva),blind(tdcommit(b,rA,tdA),bA))/x4}

| {x4/x5})
νx6.out(ch1,x6)−−−−−−−−−−→ νbA.νrA.νtdA.νbB.νrB.νtdB.(Q3| {bA/x1}

| {f(a,rA,tdA,c)/x2} | {tdA/x3}
| {(pk(skva),sign(blind(tdcommit(b,rA,tdA),bA),skva),blind(tdcommit(b,rA,tdA),bA))/x4}

| {x4/x5}
| {(pk(skva),sign(blind(tdcommit(a,rB ,tdB),bB),skvb),blind(tdcommit(a,rB ,tdB),bB))/x6})

We can argue that at this point the obtained frames are statically equivalent. In
particular the attacker obtains in both cases

open(unblind(checksign(proj2(x4), pk(skva)), x1), x2) = a

when he tries to open the commitment due to the trap-door and the faked
randomness.

The next steps depend on the context:

— If the attacker tells the corrupted voter to vote, he will forward the given
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ballot to the administrator. We have the following transitions:

P3
in(c2,false)−−−−−−−→ in(c2,y2)−−−−−→ νx7.out(ch1,x7)−−−−−−−−−−→ νx̃.(P4| {bA/x1} | {rA/x2} | {tdA/x3} |
{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva),blind(tdcommit(a,rA,tdA),bA))/x4} |

{x4/x5} |
{(pk(skva),sign(blind(tdcommit(b,rB ,tdB),bB),skvb),blind(tdcommit(b,rB ,tdB),bB))/x6} |

{y2/x7})

where x̃ = {bA, rA, tdA, bB, rB, tdB}. Similarly

Q3
in(c2,false)−−−−−−−→ in(c2,y2)−−−−−→ νx7.out(ch1,x7)−−−−−−−−−−→ νx̃.(Q4| {bA/x1} | {f(a,rA,tdA,c)/x2} |

{tdA/x3} |
{(pk(skva),sign(blind(tdcommit(b,rA,tdA),bA),skva),blind(tdcommit(b,rA,tdA),bA))/x4} |

{x4/x5} |
{(pk(skva),sign(blind(tdcommit(a,rB ,tdB),bB),skvb),blind(tdcommit(a,rB ,tdB),bB))/x6} |

{y2/x7})

If the context then returns correctly signed votes to the two honest voters and
tells V c1,c2

C to go on (i.e. sends a message containing true), the processes can
synchronize and go on. Otherwise at least one of them blocks and they are
unable to synchronize.
If they are able to synchronize, they output their votes to the collector (V c1,c2

C

sends any message the attacker gives him) and send the secret values to the
timeliness member over a private channel. We obtain the following frames:

φl = νx̃.({bA/x1} | {rA/x2} | {tdA/x3} |
{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva),blind(tdcommit(a,rA,tdA),bA))/x4} |

{x4/x5} |
{(pk(skva),sign(blind(tdcommit(b,rB ,tdB),bB),skvb),blind(tdcommit(b,rB ,tdB),bB))/x6} |

{y2/x7} |
{(tdcommit(a,rA,tdA),sign(tdcommit(a,rA,tdA),ska))/x8} |
{(tdcommit(b,rB ,tdB),sign(tdcommit(b,rB ,tdB),ska))/x9} |

{(a,rA,tdcommit(a,rA,tdA))/x11})
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and

φr = νx̃.({bA/x1} | {f(b,rA,tdA,a)/x2} | {tdA/x3} |
{(pk(skva),sign(blind(tdcommit(b,rA,tdA),bA),skva),blind(tdcommit(b,rA,tdA),bA))/x4} |

{x4/x5} |
{(pk(skva),sign(blind(tdcommit(a,rB ,tdB),bB),skvb),blind(tdcommit(a,rB ,tdB),bB))/x6} |

{y2/x7} |
{(tdcommit(b,rA,tdA),sign(tdcommit(b,rA,tdA),ska))/x8} |
{(tdcommit(a,rB ,tdB),sign(tdcommit(a,rB ,tdB),ska))/x9} |

{(a,f(b,rA,tdA,a),tdcommit(b,rA,tdA))/x10})

These frames are statically equivalent. If the attacker sent a correct input to
the third timeliness process, T will put out the corresponding vote. Note that
if the attacker copies VA’s vote using the possibly faked credentials, T will
always output a.
More generally, the attacker cannot use T to obtain frames that are not
statically equivalent as this would imply that this difference could also be
made on the frames before by opening a commitment - something the attacker
could do by himself. Intuitively having access to the “Timeliness” oracle does
not help the attacker, as the oracle performs only operations the attacker could
have done by himself.

— Similarly, if the attacker tells the corrupted voter to abstain and if the context
then returns correctly signed votes to the two honest voters, the processes can
synchronize and go on. Otherwise at least one of them blocks and they are
unable to synchronize.
If they are able to synchronize, they output their votes to the collector and
send the secret values to the timeliness member over a private channel. The
timeliness member will open the commitments, synchronize and publish the
votes. We obtain the following frames:

φl = νx̃.({bA/x1} | {rA/x2} | {tdA/x3} |
{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva),blind(tdcommit(a,rA,tdA),bA))/x4} |

{x4/x5} |
{(pk(skva),sign(blind(tdcommit(b,rB ,tdB),bB),skvb),blind(tdcommit(b,rB ,tdB),bB))/x6} |

{(tdcommit(a,rA,tdA),sign(tdcommit(a,rA,tdA),ska))/x7} |
{(tdcommit(b,rB ,tdB),sign(tdcommit(b,rB ,tdB),ska))/x8} |

{(a,rA,tdcommit(a,rA,tdA))/x9} |
{a/x10} | {b/x11})
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and

φr = νx̃.({bA/x1} | {f(b,rA,tdA,a)/x2} | {tdA/x3} |
{(pk(skva),sign(blind(tdcommit(b,rA,tdA),bA),skva),blind(tdcommit(b,rA,tdA),bA))/x4} |

{x4/x5} |
{(pk(skva),sign(blind(tdcommit(a,rB ,tdB),bB),skvb),blind(tdcommit(a,rB ,tdB),bB))/x6} |

{(tdcommit(b,rA,tdA),sign(tdcommit(b,rA,tdA),ska))/x7} |
{(tdcommit(a,rB ,tdB),sign(tdcommit(a,rB ,tdB),ska))/x8} |

{(a,f(b,rA,tdA,a),tdcommit(b,rA,tdA))/x9} |
{a/x10} | {b/x11})

Again, these frames are statically equivalent. �

Unfortunately ProVerif cannot prove this automatically as the equational theory
is too complex. This is due to the trapdoor-commitment which yields a non-
confluent equational theory. However, we can show that the final frames φl and φr
from above are statically equivalent using KISS [CDK12]. The code is available
online [Dre13].

As for FOO, we can show that the protocol also ensures Security against
Forced-Abstention-Attacks if the administrator is to be trusted and there is a
private channel between the administrator and the voters.

Theorem 22 The protocol by Okamoto with a trusted administrator and a private
channel to the administrator respects SwRF I,FA.

Proof We have to show that there exists a closed plain process V ′ such that

V ′\out(chc,·) ≈l processV {skva/skv, pk(ska)/pka} {b/v}

and

νchT.νch1.νch2.((processV {skva/skv, pk(ska)/pka} {a/v})chc|
processV {skvb/skv, pk(ska)/pka} {b/v} |processVc1c2 {skvc/skv, pk(ska)/pka} |

processT|processT|processT|
processA {pk(skva)/pkv} |processA {pk(skvb)/pkv} |processA {pk(skvc)/pkv})

≈l
νchT.νch1.νch2.(V ′|processV {skvb/skv, pk(ska)/pka} {a/v} |

processVc1c2 {skvc/skv, pk(ska)/pka} |
processT|processT|processT|

processA {pk(skva)/pkv} |processA {pk(skvb)/pkv} |processA {pk(skvc)/pkv})

As above, our proof is technically only be correct for three voters, but it can be
generalized for more voters.
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As above, we write VA for processV {skva/skv, pk(ska)/pka}, VB for processV
{skvb/skv, pk(ska)/pka} and V c1,c2

C for processVc1c2 {skvc/skv, pk(ska)/pka}.

Consider V ′ = processV′ {skva/skv, pk(ska)/pka}. The first equivalence is easy
to see by removing all out(chc,_) from processV′ (Listing 3.10 on page 81).
Independent of a, the resulting process is apparently equal to the original voting
process processV {skva/skv} {b/v}.

The second equivalence is more difficult to prove. As for FOO, it is sufficient
to analyze the case of abstention, as the other case is a consequence of the above
lemma. We denote the left hand side process P and the right hand side process Q.
On the left hand side the honest voter under attack VA abstains and hence does
nothing, whereas the other voter VB constructs the blinded and committed vote
and send it to the administrator. On the right hand side, V ′ pretends to abstain,
whereas VB abstains in reality. Note that since the channels to the administrator
are now private channels, the communication only yields internal reductions. The
next steps depends on the context:

— If the context tells the corrupted voter to abstain, the honest voter can
synchronize and forward his ballot to the timeliness member and to the
collector. The timeliness member can synchronize too, and will publish the
vote. We have the following transitions:

P →∗ in(c1,false)−−−−−−−→ νx1.out(ch3,x1)−−−−−−−−−−→ νrB.νtdB.(P1|
{(tdcommit(b,rB ,tdB),sign(tdcommit(b,rB ,tdB),ska))/x1})

→∗ νx2.out(res,x2)−−−−−−−−−→ νrB.νtdB.(P2|
{(tdcommit(b,rB ,tdB),sign(tdcommit(b,rB ,tdB),ska))/x1} | {b/x2})

Similarly

Q →∗ in(c1,false)−−−−−−−→ νx1.out(ch3,x1)−−−−−−−−−−→ νrA.νtdA.(Q1|
{(tdcommit(b,rA,tdA),sign(tdcommit(b,rA,tdA),ska))/x1})

→∗ νx2.out(res,x2)−−−−−−−−−→ νrA.νtdA.(Q2|
{(tdcommit(b,rA,tdA),sign(tdcommit(b,rA,tdA),ska))/x1} | {b/x2})

It is easy to see that both frames are statically equivalent.

— If the attacker tells the corrupted voter to vote, he will forward the given
ballot to the administrator. If this ballot is correctly signed, the administrator
will accept it, sign it and return it. If the context then tells V c1,c2

C to go on
(i.e. sends a message containing true), the processes can synchronize and go
on. Otherwise at least one of them blocks and they are unable to synchronize.
If they are able to synchronize, they output their votes to the collector (V c1,c2

C

sends any message the attacker gives him) and send the secret values to the
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timeliness member over a private channel. We obtain the following frames:

φl = νrB.νtdB.({(sign(checksign(proj2(y1),pubkvc),ska))/x1} |
{(tdcommit(b,rB ,tdB),sign(tdcommit(b,rB ,tdB),ska))/x2} |

{y4/x3})

and
φr = νrA.νtdA.({(sign(checksign(proj2(y1),pubkvc),ska))/x1} |

{(tdcommit(b,rA,tdA),sign(tdcommit(b,rA,tdA),ska))/x2} |
{y4/x3})

These frames are statically equivalent. If the attacker sent a correct input to
the third timeliness process, T will put out the corresponding votes. However,
since he has no access to the values used to create the commitment used by
the honest voter, the only possibility for him is to create his own one. In that
case the timeliness member announces the vote of the corrupted voter plus
one vote b.
As above, the attacker cannot use T to obtain frames that are not statically
equivalent as this would imply that this difference could also be made on the
frames before by opening a commitment - something the attacker could do by
himself. Intuitively having access to the “Timeliness" oracle does not help the
attacker, as the oracle performs only operations the attacker could have done
by himself. �

§ 3.3.5.3. Bingo Voting. Bingo Voting was developed by Bohli, Müller-
Quade and Röhrich [BMQR07] to achieve coercion-resistance as well as individual
and universal verifiability by using a trusted random number generator (RNG),
i.e. a tamper-proof random generator providing real random numbers only to
the machine and the voter (in particular not to the adversary). In our hierarchy
Bingo Voting ensures SwCRI,PO if the voting machine is to be trusted.

Protocol Description. The protocol is split into three phases: The pre-voting
phase, the voting phase and the post-voting phase. In the pre-voting phase the
voting machine generates for every candidate pj (j ∈ {1, . . . , l}, l is the number
of candidates) k (k is the number of voters) random values ni,j (i ∈ {1, . . . , k},
j ∈ {1, . . . , l}). It commits to the k · l pairs (ni,j , pj) and publishes the shuffled
commitments.

In the voting phase, the voter enters the voting booth and selects the candidate
he wants to vote for on the voting machine. The RNG generates a random number
r which is transmitted to the voting machine and displayed to the voter. The
voting machine chooses for each candidate, except for the voter’s choice, a dummy
vote. For the chosen candidate, the random value from the RNG is used and
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the receipt is created. Finally the voter checks that the number displayed on the
RNG corresponds to the entry of his candidate on the receipt.

In the post-voting phase, the voting machine announces the result, publishes all
receipts, and opens the commitments of all unused dummy votes. The machine also
generates non-interactive zero-knowledge proofs that each unopened commitment
was actually used as a dummy vote in one of the receipts.

Model in the Applied π-Calculus. As we are only interested in privacy, we
ignore the zero-knowledge proofs which are necessary to achieve verifiability. This
yields a very simple equational theory:

open(commit(m, r), r) = m

We assume the voting machine to be honest, otherwise no privacy can be guaran-
teed as the vote is submitted in clear by the voter. To model the voting booth,
we use private channels between the voting machine and the voter, between
the voter and the RNG, and between the RNG and the voting machine. To
achieve better readability we use the macros for and parfor (similar to [MR10])
where e.g. for (i = 1 to 2) out(ch, i) corresponds to out(ch, 1).out(ch, 2)
and parfor (i = 1 to 2) out(ch, i) corresponds to (out(ch, 1) | out(ch, 2)).
Additionally we use a function choose where

choose(pi, pj , x, y) =

x if i = j

y otherwise

Our model depends on two parameters: k (the number of voters) and l (the
number of candidates).

The main process (Listing 3.14 on the next page) sets up the private channels
and executes the participating processes (the voting machine, three voters, and
three RNGs) in parallel.

The RNG (Listing 3.15 on the following page) generates a random number
and sends it to the voting machine and the voter over private channels.

The voter (Listing 3.16 on page 91) sends his vote to the voting machine,
receives the random number from the RNG and the receipt.

The V c1,c2 process (Listing 3.17 on page 91) simulates a coerced voter. He
follows the same protocol, but votes for the candidate the coercer tells him and
forwards the receipt and the random number.

The voting machine (Listing 3.19 on page 93) generates the dummy votes and
publishes the corresponding commitments. Then k sub-processes interact with
the voters, i.e. create the receipts. After all voting has been done, they publish
the result, the receipts and the unused dummies in random order. Note that
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1 (∗ pr i va t e channe l s ∗)
2 νprivChM1 . νprivChM2 . ν privChM3 .
3 νprivChRM1 . νprivChRM2 . ν privChRM3 .
4 νprivChR1 . νprivChR2 . ν privChR3 .
5 (∗ vot ing machine ∗)
6 ( processM |
7 (∗ RNGs ∗)
8 ( l e t privChM = privChRM1 in
9 l e t privChV = privChR1 in processRNG) |

10 ( l e t privChM = privChRM2 in
11 l e t privChV = privChR2 in processRNG) |
12 ( l e t privChM = privChRM3 in
13 l e t privChV = privChR3 in processRNG) |
14 (∗ vo t e r s ∗)
15 ( l e t privChM = privChM1 in
16 l e t privChRNG = privChR1 in
17 l e t v = p1 in processV ) |
18 ( l e t privChM = privChM2 in
19 l e t privChRNG = privChR2 in
20 l e t v = p2 in processV ) |
21 ( l e t privChM = privChM3 in
22 l e t privChRNG = privChR3 in
23 l e t v = p3 in processV ) )

Listing 3.14 – The main process

1 processRNG =
2 (∗ generate random number ∗)
3 ν r .
4 (∗ output to vot ing machine ∗)
5 out (privChM , r ) .
6 (∗ output to voter ∗)
7 out ( privChV , r )

Listing 3.15 – The random number generator (RNG)
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1 processV =
2 i f v = absta in then
3 sync id i
4 e l s e
5 (∗ vot ing ∗)
6 out (privChM , v ) .
7 (∗ r e c e i p t ∗)
8 f o r ( i = 1 to l )
9 in (privChM , r e c e i p t i )
10 (∗ random value , to v e r i f y r e c e i p t ∗)
11 in (privChRNG , r )

Listing 3.16 – The voting process

1 processVc1c2 =
2 in ( c1 , x1 ) .
3 i f x1 = true then
4 sync id i
5 e l s e
6 (∗ vot ing ∗)
7 in ( c1 , x2 ) .
8 out (privChM , x2 ) .
9 (∗ r e c e i p t ∗)
10 f o r ( i = 1 to l )
11 in (privChM , r e c e i p t i ) .
12 out ( c2 , r e c e i p t i )
13 (∗ random value , to v e r i f y r e c e i p t ∗)
14 in (privChRNG , r ) .
15 out ( c2 , r )

Listing 3.17 – The process V c1,c2

91



3. eVoting

1 processV ’ =
2 in ( c1 , x1 ) .
3 (∗ vot ing ∗)
4 i f x1 = true then
5 out (privChM , b ) .
6 (∗ random value , to v e r i f y r e c e i p t ∗)
7 in (privChRNG , r ) .
8 (∗ r e c e i p t ∗)
9 f o r ( i = 1 to l )

10 in (privChM , r e c e i p t i ) .
11 (∗ output nothing s i n c e c la iming to abs ta in ∗)
12 e l s e
13 in ( c1 , x2 ) .
14 out (privChM , b ) .
15 (∗ random value , to v e r i f y r e c e i p t ∗)
16 in (privChRNG , r ) .
17 (∗ r e c e i p t ∗)
18 f o r ( i = 1 to l )
19 in (privChM , r e c e i p t i ) .
20 out ( c2 , r e c e i p t i )
21 (∗ output c o r r e c t random value ∗)
22 f o r ( i = 1 to l )
23 i f ( x2 = pi ) then out ( c2 , r e c e i p t i )

Listing 3.18 – The process V ′
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1 processM ’ =
2 in ( privChV , v ) . in ( privChR , r ) .
3 f o r ( j = 1 to l )
4 l e t r e c e i p t j = choose (pj , v , r , ni,j ) in
5 out ( privChV , r e c e i p t j ) ;
6 synck 1 .
7 (∗ output r e s u l t ∗)
8 out ( res , v )
9 (∗ output r e c e i p t s ∗)
10 f o r ( j = 1 to l )
11 out ( chRec , r e c e i p t j )
12 (∗ output unused dummy votes ∗)
13 par f o r ( j = 1 to l )
14 i f vi 6=pj then out (chDum, ( ( ni,j , pj ) , commit ( ( ni,j , pj ) , r i,j ) , r i,j ) )
15
16 processM ’ ’ =
17 sync id i .
18 synck 1 .
19 (∗ output unused dummy votes ∗)
20 par f o r ( j = 1 to l )
21 out (chDum, ( ( ni,j , pj ) , commit ( ( ni,j , pj ) , r i,j ) , r i,j ) )
22
23 processM =
24 (∗ prepare dummy votes ∗)
25 f o r ( i = 1 to k )
26 f o r ( j = 1 to l )
27 νni,j . ν r i,j .
28 par f o r ( i = 1 to k )
29 par f o r ( j = 1 to l )
30 out ( ch , commit ( ( ni,j , pj ) , r i,j ) )
31 (∗ vot ing ∗)
32 l e t privChV = privChMi in
33 l e t privChR = privChRMi in ( processM ’ | processM ’ ’ )

Listing 3.19 – The voting machine
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again any k out of the 2k synchronization points synck 1 (as there are two voting
machine processes per voter each containing a synck 1 command) are sufficient
for continuation.

Analysis. As announced above, Bingo Voting respects SwCRI,FA.

Theorem 23 Bingo Voting respects SwCRI,FA, i.e. Coercion-Resistance against
an inside attacker and security against forced abstention attacks.

Proof To show that Bingo Voting ensures SwCRI,FA, we show that for any
C = νc1.νc2.(_|P ) satisfying ñ ∩ fn(C) = ∅ and

νc̃h.(C [V c1,c2
A ] |VB {b/v} |V c1,c2

C |Mk=3,l=2|RA|RB|RC)
≈l

νc̃h.(VA {a/v}chc |VB {b/v} |V c1,c2
C |Mk=3,l=2|RA|RB|RC)

we have
C
[
V ′
]\out(chc,·) ≈l VA {b/v}

and
νc̃h.(C [V c1,c2

A ] |VB {b/v} |V c3,c4
C |Mk=3,l=2|RA|RB|RC)
≈l

νc̃h.(C [V ′] |VB {a/v} |V c3,c4
C |Mk=3,l=2|RA|RB|RC)

where

νc̃h = νprivChM1.νprivChM2.νprivChM3.

νprivChRM1.νprivChRM2.νprivChRM3.

νprivChR1.νprivChR2.νprivChR3
VA = processV {privChM1/privChM, privChR1/privChRNG}
VB = processV {privChM2/privChM, privChR2/privChRNG}
VC = processV {privChM3/privChM, privChR3/privChRNG}
V ′ = processV′ {privChM1/privChM, privChR1/privChRNG}
RA = processRNG {privChRM1/privChM, privChR1/privChV }
RB = processRNG {privChRM2/privChM, privChR2/privChV }
RC = processRNG {privChRM3/privChM, privChR3/privChV }

Mk=k′,l=l′ = processM {k′/k, l′/l}

This is technically only a valid proof for two honest voters and two candidates,
however a similar proof can be done for an arbitrary number of voters and
candidates. In Section 3.4.4 we also show that Bingo Voting is modular, which
directly generalizes this proof to an arbitrary number of honest voters.

It is easy to see that C [V ′]\out(chc,·) ≈l VA {b/v} holds. If we ignore all inputs
of V ′ on c1 and all outputs on c2, we obtain VA as both cases (abstention or not)
coincide.
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We now have to show that the last equivalence holds. As before, we denote the
left hand side P and the right hand side Q. For better readability we concentrate
on the important steps. At the beginning the voting machine publishes all
commitments; then the voters enter the voting booth and vote. We consider
only two candidates, thus a = p1, a = p2 or a = abstain (similarly for b, except
b 6= abstain). Here we concentrate on the cases a = p2, b = p1 and a = abstain,
b = p1, the other cases are similar.

— We start with a = p2, b = p1. Since all communication inside the booth takes
place over internal channels which yield internal reductions (we do not detail
this part) and first condition on C ensures that the targeted voter is forced to
vote a, we obtain the following two frames:

φl = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r1/x7} | {n1,2/x8} | {r1/x9})

φr = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{n1,1/x7} | {r1/x8} | {n1,1/x9})

Obviously both frames are statically equivalent. Note that at this point no
information about VB and his vote is available. Now the attacker has to vote
himself or abstain, otherwise the voting machines are unable to synchronize
and block.
– If he abstains, he can synchronize with processM’’, and we obtain the

following final frames:

φ′l = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r1/x7} | {n1,2/x8} | {r1/x9} |
{p1/x10} | {p2/x11} |

{r1/x12} | {n1,2/x13} | {n2,1/x14} | {r2/x15} |
{((n1,1,p1),commit((n1,1,p1),r1,1),r1,1)/x16} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x17} |
{((n2,2,p2),commit((n2,2,p2),r2,2),r2,2)/x18} |
{((n3,2,p2),commit((n3,2,p2),r3,2),r3,2)/x19})

95



3. eVoting

φ′r = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{n1,1/x7} | {r1/x8} | {n1,1/x9} |
{p1/x10} | {p2/x11} |

{n1,1/x12} | {r1/x13} | {r2/x14} | {n2,2/x15} |
{((n2,1,p1),commit((n2,1,p1),r2,1),r2,1)/x16} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x17)} |
{((n1,2,p2),commit((n1,2,p2),r1,2),r1,2)/x18)} |
{((n3,2,p2),commit((n3,2,p2),r3,2),r3,2)/x19)})

It is easy to see that these frames are statically equivalent.

– If the corrupted voter votes, he cannot relate his vote in any way to VA’s
vote, as the receipts are meaningless to him and he has to submit his vote
in clear. Suppose that he votes for p1 (the other case is similar). We obtain
the following final frames.

φ′l = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r1/x7} | {n1,2/x8} | {r1/x9} |
{r3/x10} | {n3,2/x11} | {r3/x12} |
{p1/x13} | {p1/x14} | {p2/x15} |

{r1/x16} | {n1,2/x17} | {n2,1/x18} | {r2/x19} | {r3/x20} | {n3,2/x21} |
{((n1,1,p1),commit((n1,1,p1),r1,1),r1,1)/x22} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x23} |
{((n2,2,p2),commit((n2,2,p2),r2,2),r2,2)/x24})

φ′r = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{n1,1/x7} | {r1/x8} | {n1,1/x9} |
{r3/x10} | {n3,2/x11} | {r3/x12} |
{p1/x13} | {p1/x14} | {p2/x15} |

{n1,1/x16} | {r1/x17} | {r2/x18} | {n2,2/x19} | {r3/x20} | {n3,2/x21} |
{((n2,1,p1),commit((n2,1,p1),r2,1),r2,1)/x22} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x23)} |
{((n1,2,p2),commit((n1,2,p2),r1,2),r1,2)/x24)})

The election outcome and the data published by the voting machine do not
help the attacker in distinguishing both cases. He can verify if the receipt
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by the coerced voter was correct (which it is), but he still does not know if
the numbers on the receipt are unrevealed commitments or fresh random
numbers.

— Consider now the case a = abstain, b = p1. Since all communication inside
the booth takes place over internal channels which yield internal reductions
(we again do not detail this part) and first condition on C ensures that the
targeted voter is forced to abstain. Hence he does reveal any receipt (nor does
V ′), thus we obtain the following two frames:

φl = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6})

φr = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6})

Both frames are syntactically equivalent, hence also statically equivalent. Thus
that at this point no information about VB and his vote is available.
Now the attacker has to vote himself or abstain, otherwise the voting machines
are unable to synchronize and block.
– If he abstains, he can synchronize with processM’’, and we obtain the

following final frames:

φ′l = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{p1/x7} |
{r2/x8} | {n2,2/x9} |

{((n1,1,p1),commit((n1,1,p1),r1,1),r1,1)/x10} |
{((n2,1,p1),commit((n2,1,p1),r2,1),r2,1)/x11} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x12} |
{((n1,2,p2),commit((n1,2,p2),r1,2),r1,2)/x13} |
{((n3,2,p2),commit((n3,2,p2),r3,2),r3,2)/x14})
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φ′r = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{p1/x7} |
{r1/x8} | {n1,2/x9} |

{((n1,1,p1),commit((n1,1,p1),r1,1),r1,1)/x10} |
{((n2,1,p1),commit((n2,1,p1),r2,1),r2,1)/x11} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x12)} |
{((n2,2,p2),commit((n2,2,p2),r2,2),r2,2)/x13)} |
{((n3,2,p2),commit((n3,2,p2),r3,2),r3,2)/x14)})

It is easy to see that these frames are statically equivalent.

– If the corrupted voter votes, he cannot relate his vote in any way to VA’s
vote, as the receipts are meaningless to him and he has to submit his vote
in clear. Suppose that he votes for p1 (the other case is similar). We obtain
the following final frames.

φ′l = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r3/x7} | {n3,2/x8} | {r3/x9} |
{p1/x10} | {p1/x11} |

{r2/x12} | {n2,2/x13} | {r3/x14} | {n3,2/x15} |
{((n1,1,p1),commit((n1,1,p1),r1,1),r1,1)/x16} |
{((n2,1,p1),commit((n2,1,p1),r2,1),r2,1)/x17} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x18} |
{((n1,2,p2),commit((n1,2,p2),r1,2),r1,2)/x19})

φ′r = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r3/x7} | {n3,2/x8} | {r3/x9} |
{p1/x10} | {p1/x11} |

{r1/x12} | {n1,2/x13} | {r3/x14} | {n3,2/x15} |
{((n1,1,p1),commit((n1,1,p1),r1,1),r1,1)/x16} |
{((n2,1,p1),commit((n2,1,p1),r2,1),r2,1)/x17} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x18)} |
{((n2,2,p2),commit((n2,2,p2),r2,2),r2,2)/x19)})

Again, the election outcome and the data published by the voting machine
do not help the attacker in distinguishing both cases. He can see that one
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other voter voted for candidate one, but he cannot decide which one. �

Note that in this case we implicitly assume that the attacker does not know if
a voter enters the voting booth, which is not necessarily a realistic assumption.
To address this, we can modify e.g. the voters process, or the voting machine to
announce the list of participants9 (see Listing 3.20). In this case we still have
SwCRI,PO, i.e. Coercion-Resistance against an inside attacker, but no security
against forced-abstention attacks any more.

Theorem 24 Bingo Voting with voter lists respects SwCRI,PO, i.e. Coercion-
Resistance against an inside attacker in the Participation Only case.

Proof To show that Bingo Voting with voter lists ensures SwCRI,PO, we show
that for any C = νc1.νc2.(_|P ) satisfying ñ ∩ fn(C) = ∅ and

νc̃h.(C [V c1,c2
A ] |VB {b/v} |V c1,c2

C |Mlk=3,l=2|RA|RB|RC)
≈l

νc̃h.(VA {a/v}chc |VB {b/v} |V c1,c2
C |Mlk=3,l=2|RA|RB|RC)

we have
C
[
V ′
]\out(chc,·) ≈l VA {b/v}

and
νc̃h.(C [V c1,c2

A ] |VB {b/v} |V c3,c4
C |Mlk=3,l=2|RA|RB|RC)
≈l

νc̃h.(C [V ′] |VB {a/v} |V c3,c4
C |Mlk=3,l=2|RA|RB|RC)

where

νc̃h = νprivChM1.νprivChM2.νprivChM3.

νprivChRM1.νprivChRM2.νprivChRM3.

νprivChR1.νprivChR2.νprivChR3
VA = processV {privChM1/privChM, privChR1/privChRNG}
VB = processV {privChM2/privChM, privChR2/privChRNG}
VC = processV {privChM3/privChM, privChR3/privChRNG}
V ′ = processV′ {privChM1/privChM, privChR1/privChRNG}
RA = processRNG {privChRM1/privChM, privChR1/privChV }
RB = processRNG {privChRM2/privChM, privChR2/privChV }
RC = processRNG {privChRM3/privChM, privChR3/privChV }

Mlk=k′,l=l′ = processMl {k′/k, l′/l}

Again, we mark differences to the above proof in bold.

9This is for example a legal requirement for public elections in France [Fra69].
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1 processMl ’ =
2 in ( privChV , v ) . in ( privChR , r ) .
3 f o r ( j = 1 to l )
4 l e t r e c e i p t j = choose (pj , v , r , ni,j ) in
5 out ( privChV , r e c e i p t j ) ;
6 synck 1 .
7 (∗ output r e s u l t ∗)
8 out ( res , v )
9 (∗ output voter l i s t ∗)

10 out ( voters , id i )
11 (∗ output r e c e i p t s ∗)
12 f o r ( j = 1 to l )
13 out ( chRec , r e c e i p t j )
14 (∗ output unused dummy votes ∗)
15 par f o r ( j = 1 to l )
16 i f vi 6=pj then out (chDum, ( ( ni,j , pj ) , commit ( ( ni,j , pj ) , r i,j ) , r i,j ) )
17
18 processMl ’ ’ =
19 sync id i .
20 synck 1 .
21 (∗ output unused dummy votes ∗)
22 par f o r ( j = 1 to l )
23 out (chDum, ( ( ni,j , pj ) , commit ( ( ni,j , pj ) , r i,j ) , r i,j ) )
24
25 processMl =
26 (∗ prepare dummy votes ∗)
27 f o r ( i = 1 to k )
28 f o r ( j = 1 to l )
29 νni,j . ν r i,j .
30 par f o r ( i = 1 to k )
31 par f o r ( j = 1 to l )
32 out ( ch , commit ( ( ni,j , pj ) , r i,j ) )
33 (∗ vot ing ∗)
34 l e t privChV = privChMi in
35 l e t privChR = privChRMi in ( processMl ’ | processMl ’ ’ )

Listing 3.20 – The voting machine announcing a voter list
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This is technically only a valid proof for two honest voters and two candidates,
however a similar proof can be done for an arbitrary number of voters and
candidates.

It is easy to see that C [V ′]\out(chc,·) ≈l VA {b/v} holds. If we ignore all inputs
of V ′ on c1 and all outputs on c2, we obtain VA as both cases (abstention or not)
coincide.

We now have to show that the last equivalence holds. As before, we denote the
left hand side P and the right hand side Q. For better readability we concentrate
on the important steps. At the beginning the voting machine publishes all
commitments; then the voters enter the voting booth and vote. We consider only
two candidates, thus b = p1 or b = p2 (similarly for a). Here we will look at the
case b = p2 and a = p1, the other cases are similar. Since all communication
inside the booth takes place over internal channels which yield internal reductions
(we do not detail this part) and first condition on C ensures that the targeted
voter is forced to vote a, we obtain the following two frames:

φl = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r1/x7} | {n1,2/x8} | {r1/x9})

φr = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{n1,1/x7} | {r1/x8} | {n1,1/x9})

Obviously both frames are statically equivalent. Note that at this point no
information about VB and his vote is available. Now the attacker has to vote
himself or abstain, otherwise the voting machines are unable to synchronize and
block.

— If he abstains, he can synchronize with processMl’’, and we obtain the following
final frames:
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φ′l = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r1/x7} | {n1,2/x8} | {r1/x9} |
{p1/x10} | {p2/x11} |

{id1/x12} | {id2/x13} |
{r1/x14} | {n1,2/x15} | {n2,1/x16} | {r2/x17} |
{((n1,1,p1),commit((n1,1,p1),r1,1),r1,1)/x18} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x19} |
{((n2,2,p2),commit((n2,2,p2),r2,2),r2,2)/x20} |
{((n3,2,p2),commit((n3,2,p2),r3,2),r3,2)/x21})

φ′r = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{n1,1/x7} | {r1/x8} | {n1,1/x9} |
{p1/x10} | {p2/x11} |

{id1/x12} | {id2/x13} |
{n1,1/x14} | {r1/x15} | {r2/x16} | {n2,2/x17} |
{((n2,1,p1),commit((n2,1,p1),r2,1),r2,1)/x18} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x19)} |
{((n1,2,p2),commit((n1,2,p2),r1,2),r1,2)/x20)} |
{((n3,2,p2),commit((n3,2,p2),r3,2),r3,2)/x21)})

It is easy to see that these frames are statically equivalent.

— If the corrupted voter votes, he cannot relate his vote in any way to VA’s
vote, as the receipts are meaningless to him and he has to submit his vote in
clear. Suppose that he votes for p1 (the other case is similar). We obtain the
following final frames.

φ′l = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r1/x7} | {n1,2/x8} | {r1/x9} |
{r3/x10} | {n3,2/x11} | {r3/x12} |
{p1/x13} | {p1/x14} | {p2/x15} |

{id1/x16} | {id2/x17} | {id3/x18} |
{r1/x19} | {n1,2/x20} | {n2,1/x21} | {r2/x22} | {r3/x23} | {n3,2/x24} |

{((n1,1,p1),commit((n1,1,p1),r1,1),r1,1)/x25} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x26} |
{((n2,2,p2),commit((n2,2,p2),r2,2),r2,2)/x27})
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φ′r = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{n1,1/x7} | {r1/x8} | {n1,1/x9} |
{r3/x10} | {n3,2/x11} | {r3/x12} |
{p1/x13} | {p1/x14} | {p2/x15} |

{id1/x16} | {id2/x17} | {id3/x18} |
{n1,1/x19} | {r1/x20} | {r2/x21} | {n2,2/x22} | {r3/x23} | {n3,2/x24} |

{((n2,1,p1),commit((n2,1,p1),r2,1),r2,1)/x25} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x26)} |
{((n1,2,p2),commit((n1,2,p2),r1,2),r1,2)/x27)})

Again, the election outcome and the published data do not help the attacker
in distinguishing both cases. He can verify if the receipt by the coerced voter
was correct (which it is), but he still does not know if the numbers on the
receipt are unrevealed commitments or fresh random numbers. �

§ 3.3.5.4. Protocol by Lee, Boyd, Dawson, Kim, Yang and Yoo. The
protocol by Lee, Boyd, Dawson, Kim, Yang and Yoo [LBD+03] was shown to be
Coercion-Resistant in the DKR-model [DKR09]. Yet the protocol is neither secure
against an inside attacker nor against forced-abstention attacks, as we show. It is
based on trusted devices that re-encrypt ballots and prove their correct behavior
to the voter using designated verifier proofs (DVPs).

Protocol Description. We simplified the protocol to focus on the important
parts with respect to privacy. For example, we do not consider distributed
authorities, but model them as one honest authority.

— The administrator sets up the election, distributes keys and registers legitimate
voters. Each voter is equipped with his personal trusted device. At the end,
he publishes a list of legitimate voters and corresponding trusted devices.

— The voter encrypts his vote with the tallier’s public key (using the El Gamal
scheme), signs it and sends it to his trusted device over a private channel.
The trusted device verifies the signature, re-encrypts and signs the vote, and
returns it, together with a DVP that the re-encryption is correct, to the voter.
The voter verifies the signature and the proof, double signs the ballot and
publishes it on the bulletin board.

— The administrator verifies for all ballots if the voter has the right to vote and
if the vote is correctly signed. He publishes the list of correct ballots, which is
then shuffled by the mixer.
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— The tallier decrypts the mixed votes and publishes the result.

In the following we use a simplified protocol similar to the one was proposed by
Delaune et al. [DKR09]: the administrator, the mixer and the tallier are replaced
by one honest collector which executes the last two steps.

Model in Applied Pi Calculus. We use a model similar to the one developed
by Delaune et al. [DKR09], but we include signatures by the voters on the
submitted ballots and add a third voter. This model is closer to the original
protocol description. It uses the following equational theory:

decrypt(penc(m, pk(sk), r), sk) = m

checksign(sign(m, sk), pk(sk)) = m

rencrypt(penc(m, pk(sk), r1), r2) = penc(m, pk(sk), f(r1, r2))
checkdvp(dvp(x, rencrypt(x, r), r, pk(sk)), x, rencrypt(x, r), pk(sk)) = ok

checkdvp(dvp(x, y, z, skv), x, y, pk(skv)) = ok

These equations are standard, except for the reencryption and DVPs. The function
reencrypt models reencryption usig a new random value. The second to last
equation allows to verify a DVP of reencryption, and the last equation allows the
designated verifier to forge a DVP for a different value using his secret key.

We then use the following processes:
The main process (Listing 3.21 on the facing page) sets up the private channels

and executes the participating processes (three voters, three mixers, three talliers
- one for each voter - and the keying process).

The keying process (Listing 3.22 on page 106) creates the private keys, dis-
tributes them over private channels and publishes the corresponding public keys.
Each voter is equipped with his private key, the tallier’s public key and the public
key of his trusted device. Listing 3.23 on page 107 is variant of the keying process
for two voters.

The voter process (Listing 3.24 on page 107) receives the necessary keys. Then
he encrypts his votes, signs it and sends it over a private channel to his trusted
device. When he receives the answer, he checks the DVP, double signs the ballot
and sends it to the mixer (which corresponds to the publication on the bulletin
board).

The trusted device (Listing 3.26 on page 108) receives his private and the
voter’s public key. When he receives an encrypted ballot from the voter, he checks
the signature, re-encrypts the message, signs it and establishes a DVP to prove
the correctness of his re-encryption. The result is send back to the voter.

The process in Listing 3.27 on page 109 models a voter controlled by the
attacker. This process is obtained when calculating processVc1,c2 as defined in
Definition 19 on page 59. Note that his trusted device is not assumed to be
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1 (∗ pr i va t e channe l s ∗)
2 ν skcCh . νpkcCh . νvotCh .
3 νskvaCh . νskvbCh . ν skvcCh .
4 νskdaCh . νskdbCh . ν skdcCh .
5 νpkvaCh . νpkvbCh . νpkvcCh .
6 νpkdaCh . νpkdbCh . νpkdcCh .
7 (∗ admin i s t r a to r s ∗)
8 ( processK | processC | processC | processC |
9 (∗ vo t e r s ∗)
10 ( l e t skvCh = skvaCh in l e t pkdCh = pkdaCh in
11 l e t v = a in processV ) |
12 ( l e t skvCh = skvbCh in l e t pkdCh = pkdbCh in
13 l e t v = b in processV ) |
14 ( l e t skvCh = skvcCh in l e t pkdCh = pkdcCh in
15 l e t v = c in processV ) |
16 (∗ t ru s t ed dev i c e s ∗)
17 ( l e t skdCh = skdaCh in
18 l e t pkvCh = pkvaCh in processD ) |
19 ( l e t skdCh = skdbCh in
20 l e t pkvCh = pkvbCh in processD ) |
21 ( l e t skdCh = skdcCh in
22 l e t pkvCh = pkvcCh in processD ) )

Listing 3.21 – The main process

corrupted.
The collector (Listing 3.29 on page 110) receives the key pair corresponding

to a legitimate voter (the public keys of the voter and his trusted device) and
his private key. When receives ballot, he checks the signatures and decrypts the
ballots. He publishes the result on a public channel (which emulates the bulletin
board).

Analysis. We note that the protocol also ensures Coercion-Resistance in our
model: it ensures SwCRO,PO. This result was already shown in [DKR09], however
using a different model. We prove that the result also holds in our model, and
then show that the protocol is not secure against inside attackers as vote-copying
attacks are possible. The main difference to the model used in [DKR09] is that
in our model the voters sign the re-encrypted ballots, as in the original protocol
description. This is important with respect to vote-copying and forced abstention
attacks, as the signatures allow the attacker to link the ballots to the voters.

Theorem 25 The protocol by Lee et al. respects SwCRO,PO (Swap-Coercion-
Resistance against an outside attacker in the Participation Only case).

Proof We suppose that all authorities are honest and that all key distribution
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1 processK =
2 (∗ pr i va t e keys ∗)
3 ν skc . ν skva . ν skvb . ν skvc . ν skda . ν skdb . ν skdc .
4 (∗ pub l i c keys ∗)
5 l e t ( pkc , pkva , pkvb , pkvc , pkda , pkdb , pkdc )
6 = (pk ( skc ) , pk ( skva ) , pk ( skvb ) , pk ( skvc ) ,
7 pk ( skda ) , pk ( skdb ) , pk ( skdc ) ) in
8 (∗ pub l i c key d i s c l o s u r e ∗)
9 out ( ch , pkc ) .

10 out ( ch , pkva ) . out ( ch , pkvb ) . out ( ch , pkvc ) .
11 out ( ch , pkda ) . out ( ch , pkdb ) . out ( ch , pkdc ) .
12 (∗ d i s t r i b u t e keys : ∗)
13 (∗ vo t e r s ∗)
14 ( out ( skvaCh , skva ) | out ( skvbCh , skvb ) | out ( skvcCh , skvc ) |
15 out (pkdaCh , pkda ) | out (pkdbCh , pkdb ) | out (pkdcCh , pkdc ) |
16 out (pkcCh , pkc ) | out (pkcCh , pkc ) | out (pkcCh , pkc ) |
17 (∗ t ru s t ed dev i c e s ∗)
18 out ( skdaCh , skva ) | out ( skdbCh , skvb ) | out ( skdcCh , skvc ) |
19 out (pkvaCh , pkva ) | out (pkvbCh , pkvb ) | out (pkvcCh , pkvc ) |
20 (∗ c o l l e c t o r s ∗)
21 out ( votCh , ( pkva , pkda ) ) |
22 out ( votCh , ( pkvb , pkdb ) ) |
23 out ( votCh , ( pkvc , pkdc ) ) |
24 out ( skcCh , skc ) | out ( skcCh , skc ) | out ( skcCh , skc ) )

Listing 3.22 – The key distribution process
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1 processK2 =
2 (∗ pr i va t e keys ∗)
3 ν skc . ν skva . ν skvb . ν skda . ν skdb .
4 (∗ pub l i c keys ∗)
5 l e t ( pkc , pkva , pkvb , pkda , pkdb )
6 = (pk ( skc ) , pk ( skva ) , pk ( skvb ) , pk ( skda ) , pk ( skdb ) ) in
7 (∗ pub l i c key d i s c l o s u r e ∗)
8 out ( ch , pkc ) .
9 out ( ch , pkva ) . out ( ch , pkvb ) . out ( ch , pkda ) . out ( ch , pkdb ) .
10 (∗ d i s t r i b u t e keys : ∗)
11 (∗ vo t e r s ∗)
12 ( out ( skvaCh , skva ) | out ( skvbCh , skvb ) |
13 out (pkdaCh , pkda ) | out (pkdbCh , pkdb ) |
14 out (pkcCh , pkc ) | out (pkcCh , pkc ) |
15 (∗ t ru s t ed dev i c e s ∗)
16 out ( skdaCh , skva ) | out ( skdbCh , skvb ) |
17 out (pkvaCh , pkva ) | out (pkvbCh , pkvb ) |
18 (∗ c o l l e c t o r s ∗)
19 out ( votCh , ( pkva , pkda ) ) |
20 out ( votCh , ( pkvb , pkdb ) ) |
21 out ( skcCh , skc ) | out ( skcCh , skc ) )

Listing 3.23 – The key distribution process for two voters

1 processV =
2 (∗ pr i va t e key ∗)
3 in ( skvCh , skv ) .
4 (∗ pub l i c keys o f the t ru s t ed dev i ce and the c o l l e c t o r ∗)
5 in (pkdCh , pubkd ) . in (pkcCh , pubkc ) .
6 sync 1 .ν r .
7 l e t e = penc (v , pubkc , r ) in
8 out (chD , ( pk ( skv ) , e , s i gn ( e , skv ) ) ) .
9 in (chD ,m2) .
10 l e t ( re , sd , dvpV) = m2 in
11 i f checkdvp (dvpV , e , re , pk ( skv ) ) = ok then
12 i f checks ign ( sd , pubkd ) = re then
13 out ( ch1 , ( re , s i gn ( sd , skv ) ) )

Listing 3.24 – The voting process
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1 processVchc =
2 (∗ pr i va t e key ∗)
3 in ( skvCh , skv ) . out ( chc , skv ) .
4 (∗ pub l i c keys o f the t ru s t ed dev i ce and the c o l l e c t o r ∗)
5 in (pkdCh , pubkd ) . out ( chc , pubkd ) .
6 in (pktCh , pubkc ) . out ( chc , pubkc ) .
7 sync 1 .ν r . out ( chc , r ) .
8 l e t e = penc (v , pubkc , r ) in
9 out (chD , ( pk ( skv ) , e , s i gn ( e , skv ) ) ) .

10 in (chD ,m2) . out ( chc ,m2) .
11 l e t ( re , sd , dvpV) = m2 in
12 i f checkdvp (dvpV , e , re , pk ( skv ) ) = ok then
13 i f checks ign ( sd , pubkd ) = re then
14 out ( ch1 , ( re , s i gn ( sd , skv ) ) )

Listing 3.25 – The voting process revealing its secret data

1 processD =
2 (∗ pr i va t e key ∗)
3 in ( skdCh , skd ) .
4 (∗ pub l i c key o f the voter ∗)
5 in (pkvCh , pubkv ) .
6 sync 1 .
7 in (chD ,m1) .
8 l e t (pubv , enc , s i g ) = m1 in
9 i f pubv = pubkv then

10 i f checks ign ( s ig , pubkv ) = enc then
11 ν r1 .
12 l e t reenc = rencrypt ( enc , r1 ) in
13 l e t signD = s ign ( reenc , skd ) in
14 l e t dvpD = dvp ( enc , reenc , r1 , pubkv ) in
15 out (chD , ( reenc , signD , dvpD) )

Listing 3.26 – The trusted device process
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1 processVc1c2 =
2 (∗ pr i va t e key ∗)
3 in ( skvCh , skv ) . out ( c1 , skv ) .
4 (∗ pub l i c keys o f the t ru s t ed dev i ce and the c o l l e c t o r ∗)
5 in (pkdCh , pubkd ) . out ( c1 , pubkd ) .
6 in (pkcCh , pubkc ) . out ( c1 , pubkc ) .
7 sync 1 .ν r . out ( c1 , r ) .
8 l e t e = penc (v , pubkc , r ) in
9 in ( c2 ,m1) . out (chD ,m1) .
10 in (chD ,m2) . out ( c1 ,m2) .
11 l e t ( re , sd , dvpV) = m2 in
12 in ( c2 ,m3) .
13 i f m3 = true then
14 in ( c2 ,m4) .
15 i f m4 = true then
16 in ( c2 ,m5) . out ( ch1 ,m5)

Listing 3.27 – The voting process under control of the attacker

1 processV ’ =
2 (∗ pr i va t e key ∗)
3 in ( skvCh , skv ) . out ( c1 , skv ) .
4 (∗ pub l i c keys o f the t ru s t ed dev i ce and the t a l l i e r ∗)
5 in (pkdCh , pubkd ) . out ( c1 , pubkd ) .
6 in (pkcCh , pubkc ) . out ( c1 , pubkc ) .
7 sync 1 .ν r . out ( c1 , r ) .
8 l e t e = penc (v , pubkc , r ) in
9 in ( c2 ,m1) . out (chD , ( pk ( skv ) , e , s i gn ( e , skv ) ) ) .
10 l e t ( pka , ea , sa ) = m1 in
11 in (chD ,m2) .
12 l e t ( re , sd , dvpV) = m2 in
13 i f checkdvp (dvpV , e , re , pk ( skv ) ) = ok then
14 i f checks ign ( sd , pubkd ) = re then
15 ν r ’ . l e t fk = dvp ( ea , re , r ’ , skv ) in
16 out ( c1 , ( re , sd , fk ) ) .
17 in ( c2 ,m3) .
18 i f m3 = true then
19 in ( c2 ,m4) .
20 i f m4 = true then
21 in ( c2 ,m5) . out ( ch1 ,m5)

Listing 3.28 – The voting process resisting coercion
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1 processC =
2 (∗ r e g i s t e r l e g i t ima t e vo t e r s ∗)
3 in ( votCh , ( pubkv , pubkd ) ) .
4 (∗ c o l l e c t o r ’ s s e c r e t key ∗)
5 in ( skcCh , skt ) .
6 sync 1 .
7 in ( ch1 ,m1) .
8 l e t ( enc , s i g ) = m1 in
9 i f checks ign ( checks ign ( s ig , pubkv ) , pubkd ) = enc then

10 sync 2 .
11 out ( res , decrypt (m, skc ) )

Listing 3.29 – The collector process

channels as well as the channel to the trusted device are private. We show that
there exists a process V ′ such that for all votes σvA and σvB where neither σvA
nor σvB makes a voter abstain, the following holds:

For any context C = νc1.νc2.(_|P ′) with ñ ∩ fn(C) = ∅ and

S′ [C [(V σidA)c1,c2 ] |V σidBσvB ] ≈l S′
[
(V σidAσvA)chc|V σidBσvB

]
(3.10)

we have
C
[
V ′
]\out(chc,·) ≈l V σidAσvB (3.11)

and
S′ [C [(V σidA)c1,c2 ] |V σidBσvB ] ≈l S′

[
C
[
V ′
]
|V σidBσvA

]
(3.12)

where

S′ = νc̃h.(_|DA|DB|processK2|processC|processC)
νc̃h = νsktCh.νpktCh.νvotCh.νskvcCh.νchD.

νskvaCh.νskvbCh.νskdaCh.νskdbCh.
νpkvaCh.νpkvbCh.νpkdaCh.νpkdbCh

V = processV
V ′ = processV′ {skvaCh/skvCh, pkdaCh/pkdCh}σvB

σidA = {skvaCh/skvCh, pkdaCh/pkdCh}
σidB = {skvbCh/skvCh, pkdbCh/pkdCh}
DA = processD {skdaCh/skdCh, pkvaCh/pkvCh}
DB = processD {skdbCh/skdCh, pkvbCh/pkvCh}

This proof is technically only valid for two honest voters, however a similar proof
can be done for an arbitrary number of voters.

This proof is particularly challenging as we have to reason about all contexts
C that fulfill the above conditions. We start by analyzing how this context has to
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behave, commencing our reasoning from the result. The first condition ensures
that the announced result at the end contains a vote vA and a vote vB. As the
voter idB always votes vB, the context has to submit a vote for vA. Hence the
last message m5 must be a valid vote for vA. This also implies that messages m4
and m3 contain true, otherwise no vote is submitted.

As the trusted device’s keys are secret, the only way for the context to construct
a correct ballot is to submit it to the device. Otherwise he is unable to construct a
valid signature that can be accepted by the talliers. This implies that he submits
a ballot containing vA as message m1. As (V σidAσvA)chc reveals all his data on
channel chc, C [(V σidA)c1,c2 ] has to do the same. In particular he has to publish an
unsigned version of the ballot he later on submits (cf. Process 3.25 on page 108),
hence he needs to output the ballot he gets back from the trusted device. The
other data he needs to publish on the channel are the secret key of the voter,
the public key of the device and a “random value” (like the one that is used to
encrypt the vote). The keys have to be correct as they can be compared to the
keys publish by the key distribution process, the “random value” can be anything
as long as the frame is statically equivalent to one with a random value.

Let us now consider the equations we need to prove.

For the first equation (3.11) consider the processes V ′. If we ignore all outputs
on c1 and inputs on c2, the process is equivalent to V σidAσvB until the final three
commands which depend on the inputs by the context. But there we can argue
as above that the context C[_] will provide the correct inputs, i.e. twice true
and finally the correctly signed ballot obtained from the trusted device.

For the second equation (3.12) we have consider the possible transitions. As
before, we denote the left hand side P and the right hand side Q. Both sides
start by publishing the keys, and then distributing them over restricted channels
(yielding internal reductions). We do not detail this part for better readability. On
both sides C [(V σidA)c1,c2 ] and C [V ′] respectively publish the keys they receive.
Then all processes synchronize, and the voters chose their random values (which
the voter under attack reveals) and send their ballots to the trusted devices
over the private channels. The trusted device answers with the signed and re-
randomized ballot and the DVP. The voters check the DVP and then send the
signed ballot to the collector. This also holds for the coerced voter as explained
above. We obtain the following frame on the left hand side:

φl = νc̃h.νr̃.({skva/x1} | {pkda/x2} | {pkc/x3} | {r/x4} |
{(penc(vA,pk(skc),f(r,r1)),sign(penc(vA,pk(skc),f(r,r1)),skda),

dvp(penc(vA,pk(skc),r),penc(vA,pk(skc),f(r,r1)),r1,pk(skva)))/x5} |
{(penc(vA,pk(skc),f(r,r1)),sign(sign(penc(vA,pk(skc),f(r,r1)),skda),skva)/x6} |

{(penc(vB ,pk(skc),f(rB ,r1)),sign(sign(penc(vB ,pk(skc),f(rB ,r1)),skdb),skvb)/x7})
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where r̃ contains all the fresh random values created by the processes. Note
that technically r is just a variable: the context can output a different value
indistinguishable from the original r output by (V σidAσvA)chc, however this does
not affect our reasoning since the frame has to remain statically equivalent to this
one by (3.10). On the right hand side we have:

φr = νc̃h.νr̃.({skva/x1} | {pkda/x2} | {pkc/x3} | {r/x4} |
{(penc(vB ,pk(skc),f(r′′,r1)),sign(penc(vB ,pk(skc),f(r′′,r1)),skda),

dvp(penc(vA,pk(skc),r),penc(vB ,pk(skc),f(r′′,r1)),r′,skva))/x5} |
{(penc(vB ,pk(skc),f(r′′,r1)),sign(sign(penc(vB ,pk(skc),f(r′′,r1)),skda),skva)/x6} |
{(penc(vA,pk(skc),f(rB ,r1)),sign(sign(penc(vA,pk(skc),f(rB ,r1)),skdb),skvb)/x7})

Here again r is just a variable, we denote by r′′ the random value chosen by V ′.

The above frames are statically equivalent as the context has no access to skc
or r1, and in particular we have

checkdvp(third(x5), penc(vA, pk(skc), r), first(x5), pk(skva) = ok

in both frames.

If the attacker forwards the ballots, the collectors check the signatures, syn-
chronize and publish the result: A vote vA and a vote vB in both cases. If he does
not forward the ballots or inputs other (and hence incorrectly signed) values, the
collector(s) will block and cannot synchronize. �

Yet the protocol does not ensure simple Vote-Privacy against an inside attacker,
showing that the cases Insider and Outsider are distinct. As acknowledged by
the authors in their original paper [LBD+03], it is possible to copy votes. More
precisely, an attacker can access the ballots on the bulletin board before the
mixing takes place. He can easily verify which ballot belongs to which voter as
they are signed by the voters themselves. He can remove the signature and use
the ciphertext as an input to his trusted device. The trusted device will re-encrypt
and sign it. This allows the attacker to construct a correct ballot which contains
the same vote as the targeted honest voter. By submitting this ballot he obtains
a different election outcome in both cases of the observational equivalence.

Theorem 26 The protocol by Lee et al. does not respect SwV P I,PO (Swap-Vote-
Privacy against an inside attacker in the Participation Only case).

Proof In our model this can be seen as follows. We suppose that all authorities
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are honest and that all key distribution channels are private. We show that

νc̃h.(VA {a/v} |VB {b/v} |V c1,c2
C |DA|DB|DC |A)

6≈l
νc̃h.(VA {b/v} |VB {a/v} |V c1,c2

C |DA|DB|DC |A)

where

νc̃h = νskcCh.νpkcCh.νvotCh.
νskvaCh.νskvbCh.νskvcCh.νskdaCh.νskdbCh.νskdcCh.
νpkvaCh.νpkvbCh.νpkvcCh.νpkdaCh.νpkdbCh.νpkdcCh

A = (processK|processC|processC|processC)
VA = processV {skvaCh/skvCh, pkdaCh/pkdCh}
VB = processV {skvbCh/skvCh, pkdbCh/pkdCh}
VC = processVc1c2 {skvcCh/skvCh, pkdcCh/pkdCh}
DA = processD {skdaCh/skdCh, pkvaCh/pkvCh}
DB = processD {skdbCh/skdCh, pkvbCh/pkvCh}
DC = processD {skdcCh/skdCh, pkvcCh/pkvCh}

As before, we denote the left hand side P and the right hand side Q. For better
readability we concentrate on the important steps. After key distribution, the
honest voters will execute the protocol with their trusted device and eventually
output the following messages on ch1:

P →∗ . . .→∗ out(ch1,x1)−−−−−−−→ out(ch1,x2)−−−−−−−→
νr1.νr2.νr3.νr4.(P1|
{(penc(a,pk(skt),f(r1,r2)),sign(sign(penc(a,pk(skt),f(r1,r2)),skda),skva))/x1} |
{(penc(b,pk(skt),f(r3,r4)),sign(sign(penc(b,pk(skt),f(r3,r4)),skdb),skvb))/x2})

Q →∗ . . .→∗ out(ch1,x1)−−−−−−−→ out(ch1,x2)−−−−−−−→
νr1.νr2.νr3.νr4.(Q1|
{(penc(b,pk(skt),f(r1,r2)),sign(sign(penc(b,pk(skt),f(r1,r2)),skda),skva))/x1} |
{(penc(a,pk(skt),f(r3,r4)),sign(sign(penc(a,pk(skt),f(r3,r4)),skdb),skvb))/x2})

The attacker can now target e.g. voter VA and copy his vote. Note that he
can identify which voter cast which ballot as they are signed and the keys pub-
licly available. Through VC he submits penc(a, pk(skt), f(r1, r2)) in the left
hand case or penc(b, pk(skt), f(r1, r2)) in the right hand case to DC and obtains
sign(penc(a, pk(skt), f(f(r1, r2), r5)), skdc) and penc(a, pk(skt), f(f(r1, r2), r5) or
sign(penc(b, pk(skt), f(f(r1, r2), r5)), skdc) and penc(b, pk(skt), f(f(r1, r2), r5) re-
spectively, where r5 is a fresh name (nonce). He can then sign the message and
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Protocol Security Level Comments
Bingo Voting [BMQR07] SwCRI,FA Trusted voting machine

& polling booth
- with voter lists SwCRI,PO Vulnerable to forced

abstention attacks
Lee et al. [LBD+03] SwCRO,PO Trusted randomizer,

vulnerable to vote-copying
Okamoto [Oka96] SwRF I,PO Uses trap-door commitments
- variant SwRF I,FA Secure channel to trusted

administrator
Fujioka et al. [FOO92] SwV P I,PO Based on blind signatures
- variant SwV P I,FA Secure channel to trusted

administrator
Simple Voting Protocol, SwV PO,PO The running example,
Example 12 on page 55 vulnerable to vote-copying

Table 3.1 – Results of the case studies

publish it on the bulletin board (i.e. send in on channel ch1):

(penc(a, pk(skt), f(f(r1, r2), r5)),

sign(sign(penc(a, pk(skt), f(f(r1, r2), r5)), skdc), skvc))

or in the right hand case

(penc(b, pk(skt), f(f(r1, r2), r5)),

sign(sign(penc(b, pk(skt), f(f(r1, r2), r5)), skdc), skvc))

The collector will then check the signatures - which are apparently correct - and
publish the decrypted votes. On the left hand side, we will obtain two votes a
and one vote b, on the right hand side one vote for a and two votes for b. Thus
the frames are not statically equivalent, hence both sides are not bisimilar. �

Additionally, this protocol is not secure against forced-abstention attacks as the
ballots on the bulletin board are signed by the voters. The attacker can thus
easily verify if a voter voted or not.

§ 3.3.5.5. Summary. In this section we presented a taxonomy of privacy
in eVoting protocols. Our taxonomy is based on three independent dimensions:
Communication between the voter and the attacker, inside or outside attacker,
and security against forced abstention attacks. We formalized a model for voting
protocols and the different notions in the Applied π-Calculus.

To illustrate that the different dimensions of our taxonomy correspond to
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different properties of existing protocols, we presented several case studies. The
results of these case studies are summed up in Table 3.1 on the facing page and
Figure 3.1 on page 69.

3.4 Defining Privacy for Weighted Votes

The definitions presented in the previous section are based on the idea of swapping
votes. Yet these definitions are unsuitable for some situations, for example in
companies where votes are weighted according to the proportion of shares held by
each shareholder. Consider the following example: Alice owns 50% of the stocks,
and Bob and Carol each hold 25%. The cases where Alice and Bob swap votes
are now easily distinguishable if for example Carol votes “yes” all the time, as
the result of the vote is different: 75% vs. 50% vote for “yes”. Note that there
are still situations where privacy is ensured in the sense that different situations
give the same result. The last outcome (50% yes, 50% no) could - for example -
also be announced if Alice votes “yes” and Bob and Carol vote “no”. Protocols
supporting vote weights have been proposed, for example Eliasson and Zúquete
[EZ06] developed a voting system supporting vote weights based on REVS [JZF03],
which itself is based on the protocol by Fujioka et al. [FOO92].

To address this issue, we now present a generalization of previous notions
that takes weighted votes into account. Instead of requiring two executions where
voters swap votes to be bisimilar, we require two executions to be bisimilar if they
publish the same result, independent of the mapping between voters and votes.
We analyze the relationship of our notion to the previous swap-based ones and
give precise conditions for formally proving the equivalence between them. We
use a variant of the protocol by Eliasson and Zúquete [EZ06] as a case study for
our definition, and provide a partially automated proof using ProVerif.

Our privacy definition is based on the observation that - as the result of the
vote is always published - some knowledge about the voter’s choices can always be
inferred from the outcome. The classical example is the case of a unanimous vote
where the contents of all votes are revealed just by the result. Yet - as already
discussed in the above - there can also be other cases where some of the votes
can be inferred from the result, in particular in the case of weighted votes. If
for example Alice holds 66% of the shares and Bob 34%, both votes are always
revealed when announcing the result: If one option gets 66% and the other 34%,
it is clear which one was chosen by Alice or Bob. However, if we have a different
distribution of the shares (e.g. 50%, 25% and 25% as above), some privacy is still
possible as there are several situations with the same result. Thus our main idea:
If two instances of a protocol give the same result, an attacker should not be able
to distinguish them. Note that this includes the previous definitions where votes
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are swapped, if this gives the same result.

3.4.1 — Formal Definition

To express this formally, we need to define the result of an election. As defined
above, we suppose that the result is always published on a special channel res.
The following definition allows us to hide all channels except for a specified channel
c, which we can use for example to reason about the result on channel res.

Definition 22 (P |c) Let P |c = νc̃h.P where c̃h are all channels except for c, i.e.
we hide all channels except for c.

Now we can formally define our privacy notion: If two instances of a protocol give
the same result, they should be bisimilar.

Definition 23 (Vote-Privacy (VP)) A voting protocol ensures Vote-Privacy
(VP) if for any two instances V PA = νñ.(V σid1σvA1

| . . . | V σidlσvAn | A1 | . . . |
Al) and V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al) we have

V PAH |res ≈l V PBH |res ⇒ V PA ≈l V PB

where V PAH and V PBH are the honest voting processes corresponding to V PA
and V PB respectively.

Note that the test if the two instances give the same result is defined on the
honest voting processes, but the bisimilarity ensuring privacy is then required to
hold on the “normal” voting processes where some authorities can be dishonest.
This distinction is necessary as otherwise the hiding of all channels but the
result (V PAH |res and V PBH |res) in the test could produce instances that cannot
actually terminate as some authorities are not present, and the attacker cannot
simulate them as he does not have access to the channels.

A simple interpretation of this definition is that everything apart from the
result on channel res has to remain private. This obviously relies heavily on the
notion of “result” and the modeling of the protocol. Typically the result will
only contain the sum of all votes, which corresponds to a simple and intuitive
understanding of privacy.

Some protocols may leak some additional information, for example the number
of ballots on the bulletin board. For instance in the protocol by Juels et al.
[JCJ05] voters can post fake ballots. In this case, the above definition of the result
may lead to a too restrictive privacy notion, since two situations with the same
votes but a different number of fakes are required to be bisimilar. To address this
issue, we can include the number of ballots in the result if we want to accept the
additional leakage. This gives very fine-grained control about the level of privacy
we want to model.
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Note that if the link between a voter and his vote is also published as part
of the result on channel res, our definition of privacy may be true although this
probably does not correspond to the intuitive understanding of privacy. This
is however coherent within the model since everything apart from the result is
private; simply the result itself leaks too much information.

Moreover, note that this approach to define privacy is not only limited to
voting, but can also be applied e.g. on auction protocols (see Section 4.3.4), or
other types of multi-party computation where several parties jointly compute a
public result based on private inputs.

3.4.2 — Example: A Variant of FOO

To show that our definition is applicable in practice, we now discuss an example:
Eliasson and Zúquete [EZ06] proposed an implementation of a voting system
supporting vote weights based on REVS [JZF03], which itself is based on the
protocol by Fujioka et al. [FOO92] discussed in Section 3.3.5.1.

§ 3.4.2.1. Adding Vote Weights. In [EZ06] Eliasson and Zúquete discuss
several possibilities on how to implement weights in this protocol:
— including the weight in the vote (which requires trusting the voter for correct-

ness or zero-knowledge proofs to verify the weight)

— using different keys when the vote is signed by the administrator, where each
key corresponds to a different weight

— using multiple ballots per voter, i.e. if for example voter A holds 70% and
voter B 30% of the shares, voter A sends seven and voter B three ballots.

We implemented the latter variant in the Applied π-Calculus as a case study.
Note that there is also a variant of Helios supporting vote weights [ADMPQ09],

using a fourth approach: the voters vote normally, and the authorities multiply
the vote with its weight before tallying, exploiting the homomorphic property of
the encryption.

§ 3.4.2.2. Model and Analysis. We use the following equational theory and
model:

open(commit(m, r), r) = m

checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), sk), r) = sign(m, sk)

The administrator (Listing 3.30 on the following page) receives his private key
and the public key of a legitimate voter. When receives the blinded commitment,
he checks the signature, signs, and sends the result back.
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1 processA =
2 in ( ch1 ,m1) .
3 l e t ( pubkeyv , s ig , b l indedvote ) = m1 in
4 i f pubkeyv = pkv && bl indedvote = checks ign ( s ig , pkv ) then
5 out ( ch2 , s i gn ( b l indedvote , ska ) )

Listing 3.30 – The administrator process

1 processC =
2 synch 1 .
3 in ( ch3 , (m3,m4) ) .
4 i f checks ign (m4, pka ) = m3 then
5 ν l . out ( ch4 , ( l ,m3,m4) ) .
6 in ( ch5 , ( l ’ , rand ) ) .
7 i f l = l ’ then
8 l e t voteV = open (m3, rand ) in
9 out ( res , voteV )

Listing 3.31 – The collector process

1 processV =
2 f o r ( i = 1 to w)
3 νbi . ν r i .
4 l e t commitedvote i = commit (v , r i ) in
5 l e t b l indedvote i = bl ind ( commitedvote i , bi ) in
6 out ( ch1 , ( pk ( skv ) , s i gn ( b l indedvote i , skv ) , b l indedvote i ) )
7 f o r ( i = 1 to w)
8 in ( ch2 , mi ) .
9 l e t r e s u l t i = checks ign (mi , pka ) in

10 i f r e s u l t i = bl indedvote i then
11 l e t s i gnedvote i = unbl ind (mi , bi ) in
12 sync 1 .
13 f o r ( i = 1 to w)
14 out ( ch3 , ( commitedvote i , s i gnedvote i ) ) .
15 in ( ch4 , ( l ,=commitedvote i ,= s ignedvote i ) )
16 sync 2 .
17 f o r ( i = 1 to w)
18 out ( ch5 , ( l i , r i ) )

Listing 3.32 – The voting process
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The collector (Listing 3.31 on the preceding page) receives the administrator’s
public key, which he then uses to verify the signature on incoming commitments. If
the signature is correct, he creates a new bounded name l (the number in the list)
and sends it together with the signed commitment back to the voter. The voter
then reveals his randomness, which the collector uses to open the commitment.

The voter’s process (Listing 3.32 on the facing page) votes following the
protocol by FOO, yet for several ballots according to his weight w: He first
creates the blinded commitments, signs them and sends them to the administrator.
He unblinds the answer and sends it to the collector, and finally reveals the
randomness.

Using a manual proof we can show that

V PAH |res ≈l V PBH |res ⇒
n∑
i=1

vAi ∗ wi =
n∑
i=1

vBi ∗ wi. (3.13)

Proof To show that (3.13) holds, we use a proof by contradiction. Suppose

n∑
i=1

vAi ∗ wi 6=
n∑
i=1

vBi ∗ wi (3.14)

We will show that this implies V PAH |res 6≈l V PBH |res by showing that there
exists an execution which allows the attacker to see for all i wi times a message
vXi on channel res. Hence he can compare messages and distinguish V PAH |res
and V PBH |res.

Consider two processes

V PAH = |
1≤i≤n

(processV
{
vAi /v

}
{wi/w} {pk(ska)/pka} {skvi/skv})

|
1≤i≤n

( |
1≤k≤wi

processC {pk(ska)/pka})

|
1≤i≤n

( |
1≤k≤wi

processA {pk(skvi)/pkv})

V PBH = |
1≤i≤n

(processV
{
vBi /v

}
{wi/w} {pk(ska)/pka} {skvi/skv})

|
1≤i≤n

( |
1≤k≤wi

processC {pk(ska)/pka})

|
1≤i≤n

( |
1≤k≤wi

processA {pk(skvi)/pkv})

In both cases, processC cannot synchronize and is blocked. The voter pro-
cesses can output wi times (pk(skvi), sign(blindedvotei, skvi), blindedvotei)
(their blinded and signed vote) on channel ch1. The administrator replies
with the correctly signed votes, which allows the voters to successfully ver-
ify and unblind the signed ballots. Then they will synchronize and output
the (commitedvotei, signedvotei) on channel ch3. The processC processes
can then receive the messages, verify the signatures and output (l, m3, m4), i.e.
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(l, commitedvotei, signedvotei) on channel ch4. The voters will then verify if
the messages correspond to their votes, synchronize and reveal the random values
of the commitments. The collectors can open the commitments and will publish
all votes on channel res. Hence there is an execution that reveals all votes and
their weights in clear to the intruder, hence using (3.14), V PAH |res 6≈l V PBH |res.
�

Using a python script available online [Dre13] that generates all cases to check
given the number of voters and the discrete weight distribution, we can use ProVerif
to then establish (3.15) for a given weight distribution. Although this technique
allows to conclude that the protocol ensures (VP) given a certain distribution of the
weights, ProVerif is unable to prove a general result for all possible distributions
automatically, as we have infinitely many possible distributions and hence infinitely
many cases to check.

n∑
i=1

vAi ∗ wi =
n∑
i=1

vBi ∗ wi ⇒ V PA ≈l V PB (3.15)

3.4.3 — Link to Existing Definitions

To establish the relationship of our definition and the previous taxonomy in
Section 3.3, we need to formally characterize their difference. Intuitively the
swap-based definition assumes that swapping two votes will not change the result.
This can be formalized as follows: If two instances of the protocol with the same
voters give the same result, then the votes are a permutation of each other, and
vice versa. This precludes weighted votes, thus the name “Equality of Votes”.

Definition 24 (Equality of Votes (EQ)) A voting protocol respects Equality
of Votes (EQ) if for any two voting processes V PA = νñ.(V σid1σvA1

| . . . |
V σidnσvAn | A1 | . . . | Al) and V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . |
Al) where no σvAi or σvBi makes a voter abstain, we have

V PAH |res ≈l V PBH |res ⇔ ∃π : ∀i : σvBi = σvA
π(i)
,

where π is a permutation.

Note that here we exclude abstention, i.e. the result can for example include a list
of all abstaining voters. We also define a stronger notion that includes abstention.
In that case, the result has to remain unchanged even if different voters abstain.

Definition 25 (Equality of Abstention (EQA)) A voting protocol respects
Equality of Abstention (EQA) if for any two voting processes V PA = νñ.(V σid1σvA1
| . . . | V σidnσvAn | A1 | . . . | Al) and V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1
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| . . . | Al), we have

V PAH |res ≈l V PBH |res ⇔ ∃π : ∀i : σvBi = σvA
π(i)
,

where π is a permutation.

Obviously this is stronger than (EQ), i.e. any protocol respecting (EQA) also
respects (EQ).

We can apply these definitions on the case studies we presented before, consider
for example FOO.

Theorem 27 FOO ensures Equality of Votes (EQ).

Proof Suppose we have two voting processes V PA and V PB and there exists a
permutation π : ∀i : σvBi = σvA

π(i)
. We have to show that V PAH |res ≈l V PBH |res.

As the protocol ensures SwV P I,PO (and hence also SwV PO,PO) and we can write
any permutation as a sequence of simple permutations, we have V PA ≈l V PB,
which gives V PAH |res ≈l V PBH |res as labeled bisimilarity is closed under the
application of contexts (here the inclusion of the missing authorities and the
restriction to the channel res).

Suppose we have two voting processes V PA and V PB with V PAH |res ≈l
V PBH |res. Assume that there exists no permutation π such that ∀i : σvBi = σvA

π(i)
,

hence there exists a vote v such that the number vAi with vAi = v is different of
the number of vBi with vBi = v, i.e.

∑
1≤i≤n,vAi =v

1 6=
∑

1≤i≤n,vBi =v

1

We show that this allows an attacker to distinguish V PAH |res and V PBH |res
which contradicts V PAH |res ≈l V PBH |res. Consider the following voting pro-
cesses:

V PAH = |
1≤i≤n

(processV
{
vAi /v

}
{pk(ska)/pka} {skvi/skv} |

processC {pk(ska)/pka} |processA {pk(skvi)/pkv})
V PBH = |

1≤i≤n
(processV

{
vBi /v

}
{pk(ska)/pka} {skvi/skv} |

processC {pk(ska)/pka} |processA {pk(skvi)/pkv})

The voter processes can output (pk(skv), sign(blindedvote, skv), blindedvote)
(their blinded and signed vote) on channel ch1. The administrator then replies
with the signed votes, which allows the voters to successfully verify and unblind the
signed ballots. Then they synchronize and output the (commitedvote, signedvote)
on channel ch3. The collectors processC can then receive the messages, verify
the signatures and output list of accepted ballots on channel ch4. The voters
then reveal their random values r. The collectors can finally open and publish the
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votes voteV on channel res. Hence there is an execution that reveals all votes in
clear to the intruder, thus he can count the number of occurrences of each choice,
which gives V PAH |res 6≈l V PBH |res. �

We can do a similar proof for the protocol by Okamoto.

Theorem 28 The protocol by Okamoto ensures Equality of Votes (EQ).

Proof Suppose we have two voting processes V PA and V PB and there exists a
permutation π : ∀i : σvBi = σvA

π(i)
. We have to show that V PAH |res ≈l V PBH |res.

As the protocol ensures SwV P I,PO (and hence also SwV PO,PO) and we can write
any permutation as a sequence of simple permutations, we have V PA ≈l V PB,
which gives V PAH |res ≈l V PBH |res as labeled bisimilarity is closed under the
application of contexts (here the inclusion of the missing authorities and the
restriction to the channel res).

Suppose we have two voting processes V PA and V PB with V PAH |res ≈l
V PBH |res. Assume that there exists no permutation π such that ∀i : σvBi = σvA

π(i)
,

hence there exists a vote v such that the number vAi with vAi = v is different of
the number of vBi with vBi = v, i.e.

∑
1≤i≤n,vAi =v

1 6=
∑

1≤i≤n,vBi =v

1

We show that this allows an attacker to distinguish V PAH |res and V PBH |res
which contradicts V PAH |res ≈l V PBH |res. Consider the following voting pro-
cesses:

V PAH = νchT.

(
|

1≤i≤n
(processV

{
vAi /v

}
{pk(ska)/pka} {skvi/skv} |

processT)
)
|processC {pk(ska)/pka})|processA {pk(skvi)/pkv}

V PBH = νchT.

(
|

1≤i≤n
(processV

{
vBi /v

}
{pk(ska)/pka} {skvi/skv}

processT)
)
|processC {pk(ska)/pka})|processA {pk(skvi)/pkv}

In both cases, processT cannot synchronize and is blocked. The voter processes
can output (pk(skv), sign(blindedvote, skv), blindedvote) (their blinded and
signed vote) on channel ch1. The administrator then replies with the signed votes,
which allows the voters to successfully verify and unblind the signed ballots. Then
they synchronize and output the (commitedvote, signedvote) on channel ch3,
and output (v, r, commitedvote) on the private channel chT with the timeliness
member. The processT processes can then receive the messages, synchronize,
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verify the signatures and output the votes vt on channel res. Hence there is an
execution that reveals all votes in clear to the intruder, thus he can count the
number of occurrences of each choice, which gives V PAH |res 6≈l V PBH |res. �

Similarly Bingo Voting ensures Equality of Abstention as votes are not weighted
and abstaining voters remain anonymous.

Theorem 29 Bingo Voting ensures Equality of Abstention (EQA).

Proof Suppose we have two voting processes V PA and V PB and there exists a
permutation π : ∀i : σvBi = σvA

π(i)
. We have to show that V PAH |res ≈l V PBH |res.

As the protocol ensures SwV P I,FA and we can write any permutation as a sequence
of simple permutations, we have V PA ≈l V PB, which gives V PAH |res ≈l
V PBH |res.

Suppose we have two voting processes V PA and V PB with V PAH |res ≈l
V PBH |res. Assume that there exists no permutation π such that ∀i : σvBi = σvA

π(i)
,

hence there exists w.l.o.g. a vote v 10 such that the number vAi with vAi = v is
different of the number of vBi with vBi = v, i.e.

∑
1≤i≤n,vAi =v

1 6=
∑

1≤i≤n,vBi =v

1 (3.16)

We show that this allows an attacker to distinguish V PAH |res and V PBH |res
which contradicts V PAH |res ≈l V PBH |res. Consider the following voting pro-
cesses:

V PAH = νprivChM1 . . . νprivChMn.νprivChRM1 . . . νprivChRMn.

νprivChR1 . . . νprivChRn.
(

processM {n/k}

|
1≤i≤n

(
processV

{
vAi /v

}
σidi {privChMi/privChM} {privChRi/privChRNG}

)
|

1≤i≤n
(processRNG {privChRMi/privChM} {privChRi/privChV})

)

10If we have a different number of abstaining voters, this also implies that we have a candidate
which has a different number of votes on both sides.
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and

V PBH = νprivChM1 . . . νprivChMn.νprivChRM1 . . . νprivChRMn.

νprivChR1 . . . νprivChRn.
(

processM {n/k}

|
1≤i≤n

(
processV

{
vBi /v

}
σidi {privChMi/privChM} {privChRi/privChRNG}

)
|

1≤i≤n
(processRNG {privChRMi/privChM} {privChRi/privChV})

)

In both cases the voting machine process processM generates the commitments
commit((ni,j, pj), ri,j) and publishes them on channel ch. The random generators
processRNG generate a fresh nonce and output it on the private channels to the
voter and the voting machine. The voter processes outputs his vote v on channel
privChMi. The voting machine receives both and outputs the receipts receiptj
to the voters on channel PrivChMi. After all votes have been received and the
receipts have been send, the voting machine can synchronize and output the result,
i.e. the votes v in clear on channel res. Hence there is an execution that reveals
all votes in clear to the intruder, thus he can count the number of occurrences of
each choice which gives V PAH |res 6≈l V PBH |res. �

Using (EQ) and (EQA) we can now establish the formal link between (VP) and
the previous privacy definitions in our taxonomy.

Theorem 30 We have:

— If a protocol respects (EQ), then (VP) and (SwV PO,PO) are equivalent.

— If a protocol respects (EQA), then (VP) and (SwV PO,FA) are equivalent.

Proof We only prove the first statement, the second is analogous. We simply
need to add the case where σvB makes the voter abstain, which is however covered
by (EQA), hence the resulting proof is the same.

— Suppose the protocol respects (VP). We have to show that it respects SwV PO,PO,
i.e. that for any voting process V P and for all votes σvA and σvB where σvB
and σvA does not make a voter abstain we have

V PA := V P{A,B} [V σidAσvA |V σidBσvB |0]
≈l

V P{A,B} [V σidAσvB |V σidBσvA |0] =: V PB
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Consider

V PAH := V PH{A,B} [V σidAσvA |V σidBσvB ]
≈l

V PH{A,B} [V σidAσvB |V σidBσvA ] := V PBH

Obviously the votes on the right hand side are a permutation of the votes of
the left hand side and as the protocol ensures Equality of Votes we have

V PAH |res ≈l V PBH |res

As the protocol respects Vote-Privacy, we conclude

V PA ≈l V PB

— Suppose the protocol respects SwV PO,PO and we want to show that it respects
(VP), i.e. for any voting process V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 |
. . . | Al) and V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al) we have

V PAH |res ≈l V PBH |res ⇒ V PA ≈l V PB

Suppose V PAH |res ≈l V PBH |res. As the protocol respects (EQ), we know
that there exists a permutation π such that ∀i : σvAi = σvB

π(i)
. Using the fact that

SwV PO,PO allows us to permute any two votes and that any permutation can
be expressed as a sequence of simple permutations, we obtain V PA ≈l V PB.
Note that if we only have one voter, he has to vote the same on both sides
and the equivalence is trivially true. �

It is easy to see that for protocols violation (EQ) the equivalence does not necessary
hold: If a protocol uses weighted votes (e.g. Alice 66%, Bob 34%), it may satisfy
(VP), but not (SwV PO,PO).

Similarly, assume a simple yes/no referendum, where the proposition is ac-
cepted if at least half of the voters are in favor of the proposition. If however at
the same time the ballots on the bulletin board allow to compute the number of
“yes” and “no” votes, such a protocol may ensure (SwV PO,PO) – if the ballots
cannot be linked to the voters –, but not (VP) because two instances with a
different outcome based on the ballots will have the same “result” on res: for
example the instances where Alice votes “no” and Bob votes “yes” gives the same
result as the instance where both vote “yes”. Note that such a protocol would
contradict (EQ) because we have instances where the votes are not a permutation
of each other, but still give the same result.
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3.4.4 — Including Corrupted Voters

Until now, these definitions did not include corrupted voters. This can be addressed
using the following definitions.

Definition 26 (Vote-Privacy with a single corrupted voter (VPSC)) A
voting protocol ensures Vote-Privacy with a single corrupted voter (VPSC) if for
any two instances V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al) and V PB
= νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al), and a subset J ⊆ {1, . . . , n},
such that ∀j ∈ J : σvAj = σvBj

and |J | ≤ 1 we have

V PAH |res ≈l V PBH |res

⇒ V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
≈l V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

where V PAJ and V PBJ are contexts equal to V PA and V PB with a hole for
the voters in J respectively (cf. Definition 16 on page 58).

Again, we can establish a link to the existing definition.

Theorem 31 We have:
— If a protocol respects (EQ), then (VPSC) and SwV P I,PO are equivalent.

— If a protocol respects (EQA), then (VPSC) and SwV P I,FA are equivalent.

Proof We only consider the first case, the second case is analogous.
— Suppose the protocol respects (VPSC). We have to show that it respects

(SwV P I,PO), i.e. for any voting process V P and for all votes σvA and σvB
where σvB and σvA do not make a voter abstain we have

V PA := V P{A,B,C} [V σidAσvA |V σidBσvB |(V σidC )c1,c2 ]
≈l

V P{A,B,C} [V σidAσvB |V σidBσvA |(V σidC )c1,c2 ] =: V PB

Consider

V PAH := V PH{A,B,C} [V σidAσvA |V σidBσvB |V σidCσvC ]
≈l

V PH{A,B,C} [V σidAσvB |V σidBσvA |V σidCσvC ] := V PBH

Obviously the votes on the right hand side are a permutation of the votes of
the left hand side. As the protocol ensures Equality of Votes we have

V PAH |res ≈l V PBH |res
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As the protocol respects (VPSC) we conclude with J = {C}, |J | ≤ 1, that

V PA ≈l V PB

Note that technically the names of the channels of the corrupted voter are
different, however labeled bisimilarity is closed under α-renaming.

— Suppose the protocol respects (SwV P I,PO) and we want to show that it
respects (VPSC), i.e. for two instances V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn
| A1 | . . . | Al) and V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al), and
a subset J ⊆ {1, . . . , n} such that ∀j ∈ J : σvAj = σvBj

and |J | ≤ 1 we have

V PAH |res ≈l V PBH |res

⇒ V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
≈l V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

Suppose V PAH |res ≈l V PBH |res. As the protocol respects (EQ), we know
that there exists a permutation π such that ∀i : σvAi = σvB

π(i)
. Additionally we

know that ∀j ∈ J : σvAj = σvBj
. Using the fact that (SwV P I,PO) allows us to

permute any two votes of honest voters in the presence of one corrupted voter
which does not change its vote, and that any permutation (even the identity)
can be expressed as a sequence of simple permutations, we obtain

V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
≈l V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

(again after renaming).
Note that if we have no honest voter, the equivalence is trivially true (syntac-
tical equality). Similarly if we have only one honest voter, he has to vote the
same on both sides and the equivalence is again trivially true. Note also that
if we do not have a corrupted voter, we can still conclude as (VPSC) implies
(VP). �

Naturally we can also consider multiple corrupted voters.

Definition 27 (Vote-Privacy with multiple corrupted voters (VPMC))
A voting protocol ensures Vote-Privacy with multiple corrupted voters (VPMC) if
for any two instances V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al) and
V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al), and a subset J ⊆ {1, . . . , n},
J 6= {1, . . . , n} if n > 1, such that ∀j ∈ J : σvAj = σvBj

we have

V PAH |res ≈l V PBH |res ⇒ V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
≈l V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]
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where V PAJ and V PBJ are contexts equal to V PA and V PB with a hole for
the voters in J respectively (cf. Definition 16 on page 58).

Note that each corrupted bidder j has his own channel pair c1j , c2j to interact
with the attacker. This avoids confusion, in particular in the Coercion-Resistance
definitions below.

With these definitions we obtain a hierarchy of privacy notions.

Theorem 32 (Hierarchy of Privacy Definitions) We have:
— If a protocol respects (VPMC), then it also respects (VPSC).

— If a protocol respects (VPSC), then it also respects (VP).

Proof This is a consequence of the definitions: (VP) is a special case of (VPSC)
with J = ∅, and (VPSC) is a special case of (VPMC) with |J | ≤ 1. �

As shown in the previous section, inside and outside attackers are in general
not the same as an inside attacker can for example employ vote-copying attacks.
However we can show that under some reasonable assumptions on the protocol
(VP), (VPSC) and (VPMC) coincide.

To prove this, we define the notion of a “generalized voting process” which is
like a voting process, but some of the voters might be coerced or corrupted.

Definition 28 (Generalized Voting Process) A Generalized Voting Process
is a voting process V P with variables for the voter’s processes that can either
be a “normal” honest voter, a voter communicating with the intruder, or a
corrupted voter, i.e. V P = νñ.(V1| . . . |Vn|A1| . . . |Al) where Vi ≈l V σidiσvi or
V
\out(chci,·)
i ≈l V σidiσvi or Vi ≈l (V σidiσvi)c1i,c2i.

The next definition captures the key property required for our proof.

Definition 29 (Modularity (Mod)) A voting protocol is modular (Mod) if
for any honest, coerced or corrupted voters V1, . . . , Vn (i.e. with Vi ≈l V σidiσvi
or V \out(chci,·)i ≈l V σidiσvi or Vi ≈l (V σidiσvi)c1i,c2i) and the corresponding gen-
eralized voting processes V PA = νñA.(V1 | . . . | Vk | A1A | . . . | AlA), V PB =
νñB.(Vk+1 | . . . | Vn | A1B | . . . | AlB) and V P = νñ.(V1 | . . . | Vn | A1 | . . . |
Al) we have

V P ≈l V PA|V PB.

Note that this can be applied in both directions, i.e. we can compose and decom-
pose instances with different voters in a transparent way. In particular we can
add voters by composing with an instance containing these voters, or decompose
an instance into two instances and reason about both instances independently.

Consider the following example illustrating how Modularity captures that
certain parts of a voting protocol are independent: imagine a protocol where
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in order to escape coercion the voters can claim that a certain ballot on the
bulletin board is their ballot, but this ballot was actually prepared by some honest
authority to allow the voters to create a fake receipt. If we suppose that this ballot
exists only once no matter how many voters are attacked, it would be enough for
a single voter to fake his receipt. However we cannot compose two instances with
one attacked voter each, as they would use the same fake ballot which would be
noticeable for the attacker. Hence the above definition also captures the fact that
faking the receipt to escape coercion can be done by each voter independently.

Similarly, a modular protocol is secure against inside attackers or corrupted
voters since the different parts of the protocol are independent, as we now show.

Theorem 33 If a protocol is modular and finite (i.e. any instance or voting
process is finite), (VP) and (VPMC) are equivalent.

Proof By Theorem 32 a protocol ensuring (VPMC) also ensures (VP). We now
show that if a protocol is modular, finite and respects (VP), then it also respects
(VPMC).

We need to show that for any two instances V PA = νñ.(V σid1σvA1
| . . . |

V σidnσvAn | A1 | . . . | Al) and V PB = νñ.(V σid1σvB1
| . . . | V σidnσvBn | A1 |

. . . | Al), and a subset J ⊆ {1, . . . , n}, J 6= {1, . . . , n} if n > 1, such that
∀j ∈ J : σvAj = σvBj

we have

V PAH |res ≈l V PBH |res

⇒ V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
≈l V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

As the protocol ensures (VP), we have that for any two instances V PA =
νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al) and V PB = νñ.(V σid1σvB1
| . . . |

V σidnσvBn | A1 | . . . | Al) we have

V PAH |res ≈l V PBH |res ⇒ V PA ≈l V PB

Assume we have two instances V PA and V PB as above, and a subset J ⊆
{1, . . . , n} such that ∀j ∈ J : σvAj = σvBj

with V PAH |res ≈l V PBH |res. Then
V PA ≈l V PB. Consider now

V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
|V PA

By V PA ≈l V PB we have

V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
|V PA ≈l V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
|V PB
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As the protocol is modular, we can decompose V PB, and recompose with the
corrupted voters to obtain

V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
|V PB

≈l νñ.
(
V σid1σvA1

| . . . |
j∈J

(V σidjσvBj )| . . . |V σidnσvAn |A1| . . . |Al

)
|

V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

Since ∀j ∈ J : σvAj = σvBj
we have

νñ.

(
V σid1σvA1

| . . . |
j∈J

(V σidjσvBj )| . . . |V σidnσvAn |A1| . . . |Al

)
|

V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

≈l νñ.
(
V σid1σvA1

| . . . |
j∈J

(V σidjσvA
j

)| . . . |V σidnσvAn |A1| . . . |Al

)
|

V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

≈l V PA|V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

Thus

V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
|V PA ≈l V PA|V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

As the protocol is finite, we can apply Lemma 15 on page 44 to conclude

V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
≈l V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

�

As in practical situations voting protocols need to announce the result after
a finite amount of time, assuming that they are finite appears to be realistic.
The modularity assumption used in the above theorem is also fulfilled by many
protocols, as we illustrate now using three case studies. We start with our first
case study from Section 3.3.5: the protocol by Fujioka, Okamoto and Ohta.

Theorem 34 The protocol by Fujioka, Okamoto and Ohta ensures Modularity
(Mod).
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Proof We analyze the structure of the voting processes. We consider the model
used in the proof of SwV P I,PO (Theorem 19 on page 71), i.e without any secret
channels or keys, and no trusted authorities. All keys are free names. In the case
of n voters, we have the form

V1| . . . |Vn

Hence we can rewrite this instance into n instances containing one voter each:

V1| . . . |Vn

which is syntactically equivalent. �

Remark Note that the voters use synchronization points, and that even after the
decomposition the voters in the different instances synchronize. This is necessary,
as otherwise the decomposition becomes trivially distinguishable from the initial
big instance: for example in one decomposed instance results can be published
although not all votes in the other instances have been submitted, which is
impossible in the big instance. Intuitively this means that modularity only works
for instances sharing the same deadlines.

Remark Note also that in many proofs (e.g. of Theorem 33 on page 129, but also
in the following) we replace some instances in the decomposition with bisimilar
ones. However we only showed the bisimilarity in a situation where only the
processes in this instance had to synchronize, yet now, in this new, bigger context,
they also synchronize with other processes in other instances. Although we do
not give a full formal proof here, we argue that this is sound, i.e. that the initial
composed instance is bisimilar to the one after the replacement. For instances
without synchronization we know that such a replacement is correct, as labeled
bisimilarity is closed under the application of contexts. When replacing an instance
with synchronization within a bigger instance, the only difference to a simple
context application is the synchronization. However we can see that the processes
in this instance can still only synchronize if all processes in the instances have
reached the synchronization point, as now all processes in all instances have to
reach the synchronization point. We argue similarly in the case of a k out of n
synchronization (e.g. in the case of Bingo Voting below), as at the same time the
values k and n are adjusted. In the case of Bingo Voting half of all processes are
required for synchronization, this remains true for the replaced instance within
the bigger instance as we have a different value for n.

Give the above result, by Theorems 30 on page 124 and 33 on page 129 we have
that FOO ensures (VPMC) as it respects (EQ) (Theorem 27 on page 121), (Mod)
(Theorem 34 on the preceding page) and is finite. As a second example we analyze
the protocol by Okamoto.
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Theorem 35 The protocol by Okamoto ensures Modularity (Mod).

Proof We analyze the structure of the voting processes. In the case of n voters,
we have the form

νchT.(V1| . . . |Vn |
i=1,...,n

processT),

where processT is the process executed by the timeliness member and chT is the
private channel between voters and the timeliness member. For k ∈ {1, . . . , n−1},
a possible decomposition would be

νchT.(V1| . . . |Vk |
i=1,...,k

processT)|νchT.(Vk+1| . . . |Vn |
i=k+1,...,n

processT),

which would be syntactically equivalent except for the private channel chT, which
is now decomposed into two channels. This affects only one transition, namely
the communication between the voter11 and the timeliness member when the
voter reveals his random value. Consider a communication between a Vi and one
processT on the left side: This can obviously be matched by the same transition
on the right, and vice versa (as the processT are all the same, it is not important
which one of them is chosen). �

This result generalizes the proof of Theorem 21 on page 80: in the proof we only
considered two honest and one corrupted voter. As (Mod) allows us to compose
instances, we can add instances with an arbitrary number of honest voters. This
formally extends the result to cases with an arbitrary number of voters. Our last
example is Bingo Voting.

Theorem 36 Bingo Voting ensures Modularity (Mod).

Proof In the case of n voters, we have the following voting process

νprivChM1 . . . νprivChMn.νprivChRM1 . . . νprivChRMn.

νprivChR1 . . . νprivChRn.(V1| . . . |Vn|M1,...,n;l|R1| . . . |Rn)
(3.17)

where Ri are the trusted random number generators,M1,...,n;l is the voting machine
process for n voters from 1 to n and l candidates, and privChMi, privChRMi

and privChRi are the private channels between the voter and the voting machine,
the RNG and the voting machine, and the RNG and the voter respectively. For

11Here we consider generalized voting processes, however due to the condition on the Vi’s we
know that there is exactly one message on this channel.
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k ∈ {1, . . . , n− 1}, this can be rewritten using Lemma 17 on page 60 as

νprivChM1 . . . νprivChMk.νprivChRM1 . . . νprivChRMk.

νprivChR1 . . . νprivChRk.(V1| . . . |Vk|M1,...,k;l|R1| . . . |Rk)|
νprivChMk+1 . . . νprivChMn.νprivChRMk+1 . . . νprivChRMn.

νprivChRk+1 . . . νprivChRn.(Vk+1| . . . |Vn|Mk+1,...,n;l|Rk+1| . . . |Rn)

(3.18)

as M1,...,n;l ≈l M1,...,k;l|Mk+1,...,n;l. This can be seen from the code in the Applied
π-Calculus (Listing 3.19 on page 93). Hence (3.17) and (3.18) are bisimilar. �

As for the protocol by Okamoto, this generalizes the proof of Theorem 23 on
page 94 to an arbitrary number of honest voters.

3.5 Multi-Voter Coercion

In this section we define Receipt-Freeness and Coercion-Resistance for weighted
votes. We first consider the case where only one voter is coerced, then we define
multi-voter coercion, and we also discuss the presence of corrupted voters.

3.5.1 — Single-Voter Receipt-Freeness (SRF)

We combine the approach used in Section 3.3.2 to define Receipt-Freeness with the
generalized definition of Privacy for weighted votes (Definition 23 on page 116): If
two instances of a voting protocol give the same result, they should be bisimilar
even if one voter reveals his secret data in one case or fakes it in the other.

Definition 30 (Single-Voter Receipt Freeness (SRF)) A voting protocol en-
sures Single-Voter Receipt Freeness (SRF) if for any two instances V PA =
νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al) and V PB = νñ.(V σid1σvB1
| . . . |

V σidnσvBn | A1 | . . . | Al) and any number i ∈ {1, . . . , n} there exists a process V ′i
such that we have

V
′\out(chci,·)
i ≈l V σidiσvBi

and

V PAH |res ≈l V PBH |res ⇒ V PA{i}
[
(V σidiσvAi )chci

]
≈l V PB{i}

[
V ′i
]
.

This definition is equivalent to the existing one based on swapping if the protocol
ensures (Mod) and (EQ) or (EQA) respectively.

Theorem 37 We have:
— If a protocol respects (EQ) and (Mod), (SwRFO,PO) and (SRF) are equivalent.

— If a protocol respects (EQA) and (Mod), (SwRFO,FA) and (SRF) are equiva-
lent.
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Proof We only prove the first statement, the second is analogous.

— Suppose a protocol ensuring (SRF). We will now show that the protocol ensures
(SwRFO,PO), i.e. for any voting process V P and for all votes σvA and σvB
that do not make a voter abstain there exists a process V ′i such that

V ′\out(chc,·) ≈l V σidAσvB

and

V P{A,B}
[
(V σidAσvA)chc|V σidBσvB |0

]
≈l V P{A,B}

[
V ′|V σidBσvA |0

]
Consider

V PA := V P{A,B} [V σidAσvA |V σidBσvB ]
≈l

V P{A,B} [V σidAσvB |V σidBσvA ] := V PB

Obviously the votes on both sides are a permutation of each other, thus we
we have V PAH |res ≈l V PBH |res (by (EQ)). We can apply (SRF) to obtain
for any i the existence of a process V ′i such that

V
′\out(chci,·)
i ≈l V σidiσvBi

and

V PAH |res ≈l V PBH |res ⇒ V PA{i}
[
(V σidiσvAi )chci

]
≈l V PA{i}

[
V ′i
]

We choose i = A and obtain the desired property. Note that we have to
rename the channel chci to chc, which is possible as labeled bisimilarity is
closed under α-renaming.

— Suppose a protocol ensuring (SwRFO,PO) and we want to show (SRF), i.e.
for any voting processes V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al)
and V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al) and any number
i ∈ {1, . . . , n} there exists a process V ′i such that we have

V
′\out(chci,·)
i ≈l V σidiσvBi

and

V PAH |res ≈l V PBH |res ⇒ V PA{i}
[
(V σidiσvAi )chci

]
≈l V PB{i}

[
V ′i
]

Assume V PAH |res ≈l V PBH |res. Then, as we suppose (EQ), the votes on
the left are a permutation of the votes on the right. (SwRFO,PO) allows us
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the swap the vote of the targeted voter i with any other voter’s vote. However
the other voters in the instance can also swap votes. (SwRFO,PO) implies
(SwV PO,PO) (cf. Lemma 18 on page 65), however we cannot swap the other
voter’s votes directly: As one voter is under attack, we cannot apply the
equation. If however the protocol is modular, we can decompose the protocol
into two instances where one contains only honest voters, and where we can
then swap if necessary. By composability, we can then compose both instances
and obtain the desired result. �

To see why Modularity is important in the proof, consider the following example.

Example 19 Imagine a voting protocol where each voter publishes a signed
commitment to his vote, and reveals the randomness to open it to all other
voters and the election authority using private channels. The election authority
opens the commitments and announces the result, but does not publish the values
needed to open the commitments. To obtain Receipt-Freeness, we allow a coerced
voter to ask the other voters (before the voting starts, and using private channels)
if somebody is voting for the candidate the coercer wants him to vote for. If
somebody does, both voters swap commitments, and the coerced voter can sign and
publish the other voter’s commitment to claim that this is his own commitment.

We can see that such a protocol ensures (SwV PO,PO) as the values necessary
to open the commitments remain private for an outside attacker, yet still all voters
can compute and verify the outcome. The protocol also ensures (SwRFO,PO): the
coerced voter can successfully produce a false receipt by swapping commitments.
At the same time his receipt includes the values to open the commitments of all
voters, hence violating privacy of all other voters. The protocol also ensures (EQ)
if votes are not weighted, however it does not ensure (SRF) as the voter under
attack breaks privacy for all other voters. For the same reason the protocol is not
modular: we cannot add a corrupted voter, since he can break privacy.

Again, we can include corrupted voter(s) as follows.

Definition 31 (SRF with multiple corrupted voters (SRFMC)) A voting
protocol ensures Single-Voter Receipt Freeness with multiple corrupted voters
(SRFMC) if for any two instances V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1

| . . . | Al) and V PB = νñ.(V σid1σvB1
| . . . | V σidnσvBn | A1 | . . . | Al) and

any number i ∈ {1, . . . , n} there exists a process V ′i such that for any subset
J ⊆ {1, . . . , i − 1, i + 1, . . . n}, J 6= {1, . . . , i − 1, i + 1, . . . n} if n > 1, with
∀j ∈ J : σvAj = σvBj

we have

V
′\out(chci,·)
i ≈l V σidiσvBi
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and

V PAH |res ≈l V PBH |res
⇓

V PAJ∪{i}

[
(V σidiσvAi )chci |

j∈J
(V σidj )c1j ,c2j

]
≈l V PBJ∪{i}

[
V ′i |

j∈J
(V σidj )c1j ,c2j

]

Definition 32 (SRF with a single corrupted voter (SRFSC)) A voting pro-
tocol ensures Single-Voter Receipt Freeness with a single corrupted voter (SRFSC)
if it ensures Single-Voter Receipt Freeness with multiple corrupted voters (SRFMC)
for any |J | ≤ 1.

Similarly to swap-based definitions, (SRF) is stronger than (VP). The proof
is analogous to the proof in the swap-based model (SwRFAttacker,Abs implies
SwV PAttacker,Abs in Lemma 18 on page 65).

Theorem 38 For any X ∈ {ε12, SC,MC} we have: If a protocol respects (SRFX),
it also respects (VPX).

Proof We only show that a protocol ensuring (SRFMC) also ensures (VPMC),
the other cases follow directly.

We need to show that for any subset J ⊆ {1, . . . , i − 1, i + 1, . . . n}, J 6=
{1, . . . , i− 1, i+ 1, . . . n} if n > 1, such that ∀j ∈ J : σvAj = σvBj

we have

V PAH |res ≈l V PBH |res ⇒ V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
≈l V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

By hypothesis there is a closed plain process so that

V
′\out(chci,·)
i ≈l V σidiσvBi (3.19)

and

V PAH |res ≈l V PBH |res
⇓

V PAJ∪{i}

[
(V σidiσvAi )chci |

j∈J
(V σidj )c1j ,c2j

]
≈l V PBJ∪{i}

[
V ′i |

j∈J
(V σidj )c1j ,c2j

]

We suppose V PAH |res ≈l V PBH |res. Then we can apply the context νchci.( _ |

12Here ε denotes the empty string.
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!in(chci, x)) on both sides, which gives

V PAJ∪{i}

[
(V σidiσvAi )chci |

j∈J
(V σidj )c1j ,c2j

]\out(chci,·)

≈l V PBJ∪{i}

[
V ′i |

j∈J
(V σidj )c1j ,c2j

]\out(chci,·)

Using Lemma 17 on page 60 we obtain

V PAJ∪{i}

[
(V σidiσvAi )chci |

j∈J
(V σidj )c1j ,c2j

]\out(chci,·)

≡ V PAJ∪{i}

[(
V σidiσ

chci
vAi

)\out(chci,·)
|

j∈J
(V σidj )c1j ,c2j

]

and

V PBJ∪{i}

[
V ′i |

j∈J
(V σidj )c1j ,c2j

]\out(chci,·)

≡ V PBJ∪{i}

[
V
′\out(chci,·)
i |

j∈J
(V σidj )c1j ,c2j

]

We can now apply Lemma 16 on page 60, (3.19) and use the fact that labeled
bisimilarity is closed under structural equivalence and conclude

V PAJ

[
|

j∈J
(V σidj )c1j ,c2j

]
= V PAJ∪{i}

[
V σidiσvAi

|
j∈J

(V σidj )c1j ,c2j

]

≈l V PBJ∪{i}

[
V σidiσvBi

|
j∈J

(V σidj )c1j ,c2j

]
= V PBJ

[
|

j∈J
(V σidj )c1j ,c2j

]

�

We also have the following implications and equivalences.

Theorem 39 We have:
— If a protocol respects (SRFMC), then it also respects (SRFSC).

— If a protocol respects (SRFSC), then it also respects (SRF).

— If a protocol respects (EQ) and (Mod), then (SRFSC) and SwRF I,PO are
equivalent.

— If a protocol respects (EQA) and (Mod), then (SRFSC) and SwRF I,FA are
equivalent.

— If a protocol is modular, finite (i.e. any instance is finite) and respects (SRF),
then it also respects (SRFMC).
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Proof The first two implications are true by definition: (SRF) is a special case
of (SRFSC) with J = ∅, and (SRFSC) is a special case of (SRFMC) with |J | ≤ 1.

We only show that (SRFSC) and SwRF I,PO are equivalent if (EQ) and (Mod)
hold, the other case is similar.

— Suppose a protocol ensuring (SRFSC). We will now show that the protocol
ensures (SwRF I,PO), i.e. for any voting process V P and for all votes σvA and
σvB that do not make a voter abstain, there exists a process V ′i such that

V ′\out(chc,·) ≈l V σidAσvB

and

V P{A,B,C}
[
(V σidAσvA)chc|V σidBσvB |(V σidC )c1,c2

]
≈l V P{A,B,C}

[
V ′|V σidBσvA |(V σidC )c1,c2

]
Consider

V PA := V P{A,B,C} [V σidAσvA |V σidBσvB |V σidCσvC ]
≈l

V P{A,B,C} [V σidAσvB |V σidBσvA |V σidCσvC ] := V PB

Obviously the votes on both sides are a permutation of each other, thus we we
have V PAH |res ≈l V PBH |res (by (EQ)). We can apply (SRFSC) to obtain
for any i the existence of a process V ′i such that

V
′\out(chci,·)
i ≈l V σidiσvBi

and

V PAH |res ≈l V PBH |res
⇓

V PA{i}∪J

[
(V σidiσvAi )chci |

j∈J
(V σidj )c1j ,c2j

]
≈l V PB{i}∪J

[
V ′i |

j∈J
(V σidj )c1j ,c2j

]
,

We choose i = A and J = {C} and obtain the desired property. Note that
again we have to rename the channel.

— Suppose a protocol ensuring (SwRF I,PO) and we want to show (SRF), i.e.
for any voting processes V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . .
| Al) and V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al) and any
number i ∈ {1, . . . , n} there exists a process V ′i such that for any subset
J ⊆ {1, . . . , i− 1, i+ 1, . . . n}, J 6= {1, . . . , i− 1, i+ 1, . . . n} if n > 1, such that
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∀j ∈ J : σvAj = σvBj
and |J | ≤ 1 we have

V
′\out(chci,·)
i ≈l V σidiσvBi

and
V PAH |res ≈l V PBH |res

⇓

V PA{i}∪J

[
(V σidiσvAi )chci |

j∈J
(V σidj )c1j ,c2j

]
≈l

V PB{i}∪J

[
V ′i |

j∈J
(V σidj )c1j ,c2j

]
,

Assume V PAH |res ≈l V PBH |res. As the protocol respects (EQ), we know
that there exists a permutation π such that ∀i : σvAi = σvB

π(i)
. Additionally we

know that ∀i ∈ I : σvAi = σvBi
. (SwRF I,PO) allows us the swap the vote of the

targeted voter i with any other voter’s vote in presence of a corrupted voter.
As (SwRF I,PO) implies (SwV P I,PO) (cf. Lemma 18 on page 65), we can also
swap the votes of all other voters if necessary (as the protocol is modular),
which gives the desired result.

The last claim is a consequence of Theorems 40 and 41 below: Theorem 40 on
the following page states that any modular and finite protocol ensuring (SRF)
also ensures (MRF) (as defined below), and Theorem 41 on page 142 states that
any modular and finite protocol ensuring (MRF) also ensures (MRFMC), and
hence ensures (SRFSC). �

3.5.2 — Multi-Voter Receipt-Freeness (MRF)

We now generalize the idea of Receipt-Freeness to the case where multiple voters
are attacked. Instead of only considering one attacked voter i, we consider a set I
of attacked voters. To be receipt-free, it should be possible for all attacked voters
to fake the receipt. Note that we assume that there is always at least one honest
voter, except for the case with only one voter.

Definition 33 (Multi-Voter Receipt Freeness (MRF)) A voting protocol
ensures Multi-Voter Receipt Freeness (MRF) if for any voting processes V PA
= νñ. (V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al), V PB = νñ.(V σid1σvB1
| . . . |

V σidnσvBn | A1 | . . . | Al) and any subset I ⊆ {1, . . . , n}, I 6= {1, . . . , n} if n > 1,
then there exists processes V ′i such that we have

∀i ∈ I : V ′\out(chci,·)i ≈l V σidiσvBi
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and

V PAH |res ≈l V PBH |res ⇒ V PAI

[
|
i∈I

(V σidiσvAi )chci
]
≈l V PBI

[
|
i∈I
V ′i

]
.

It is clear that (MRF) implies (SRF), and under certain conditions the converse
is also true.

Theorem 40 If a protocol is finite and modular (Mod), Single-Voter Receipt
Freeness (SRF) and Multi-Voter Receipt Freeness (MRF) are equivalent.

Proof It is easy to see that any protocol ensuring Multi-Voter Receipt Freeness
also ensures Single-Voter Receipt Freeness, we simply set I = {i}.

Assume the protocol ensures Single-Voter Receipt Freeness. We want to prove
that the protocol ensures Multi-Voter Receipt Freeness, i.e. that for any V PA
= νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al), V PB = νñ.(V σid1σvB1
| . . . |

V σidnσvBn | A1 | . . . | Al) and any subset I ⊆ {1, . . . , n}, I 6= {1, . . . , n} if n > 1,
there exists processes V ′i such that we have

∀i ∈ I : V ′\out(chci,·)i ≈l V σidiσvBi (3.20)

and

V PAH |res ≈l V PBH |res ⇒ V PI

[
|
i∈I
V σidiσ

chci
vAi

]
≈l V PBI

[
|
i∈I
V ′i

]
(3.21)

We suppose V PAH |res ≈l V PBH |res and we show that there exist processes V ′i
such that we have (3.20) and

V PAI

[
|
i∈I
V σidiσ

chci
vAi

]
|

j∈{1,...,|I|−1}
V PA

≈l V PBI

[
|
i∈I
V ′i

]
|

j∈{1,...,|I|−1}
V PB (3.22)

which gives the desired result using the cancellation result from Lemma 15 and
(VP). The idea is that adding other voting processes allows us to decompose,
mix and compose the processes so that we can apply (SRF) on the individual
instances.

We start by decomposing the left side of the bisimilarity and recompose the
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processes to have |I| instances with single-voter coercion:

V PAI

[
|
i∈I
V σidiσ

chci
vAi

]
|

j∈{1,...,|I|−1}
V PA

≈l |
i∈I
V PAi{i}

[
V σidiσ

chci
vAi

]
|
i 6∈I
V PAi{i}

[
V σidiσvAi

]
|

j∈{1,...,|I|−1}

(
|

i∈{1,...,n}
V PAi{i}

[
V σidiσvAi

])
≈l |

i∈I
V PA{i}

[
V σidiσ

chci
vAi

]
(3.23)

In the first step we break the instances down to a single voter each, i.e. V PAi is
a voting processes only one voter i. In the next step, we assemble the voters and
instances in such a way that we obtain complete instances (i.e. containing voters
1 to n) with one attacked voter per instance.

We apply the same transformations on the right side and obtain:

V PBI

[
|
i∈I
V ′i

]
|

j∈{1,...,|I|−1}
V PB

≈l |
i∈I
V PBi

{i} [V ′i ] |
i 6∈I
V PBi

{i}

[
V σidiσvBi

]
|

j∈{1,...,|I|−1}

(
|

i∈{1,...,n}
V PBi

{i}

[
V σidiσvBi

])
≈l |

i∈I
V PB{i} [V ′i ]

(3.24)

As we have V PAH |res = V PBH |res, we can apply Single-Voter Receipt Freeness
on the left side, i.e. we have for any i ∈ {1, . . . , n} there exists a process V ′i such
that

V
′\out(chc,·)
i ≈l V σidiσvBi (3.25)

and
V PAI

[
V σidiσ

chci
vAi

]
≈l V PBI

[
V ′i
]

(3.26)

Using this we can rewrite (3.23) in (3.24), and hence prove (3.22). �

As above, we can include corrupted voter(s) as follows.

Definition 34 (MRF with multiple corrupted voters (MRFMC)) A vot-
ing protocol ensures Multi-Voter Receipt Freeness with multiple corrupted voters
(MRFMC) if for any two instances V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 |
. . . | Al) and V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al) and any subset
I ⊆ {1, . . . , n} there exists processes V ′i such that for any subset J ⊆ {1, . . . , n},
J ∩ I = ∅, J ∪ I 6= {1, . . . , n} if n > 1, such that ∀j ∈ J : σvAj = σvBj

we have

V
′\out(chci,·)
i ≈l V σidiσvBi
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and
V PAH |res ≈l V PBH |res

⇓

V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
≈l

V PBI∪J

[
|
i∈I
V ′i |

j∈J
(V σidj )c1j ,c2j

]
.

Definition 35 (MRF with a single corrupted voter (MRFSC)) A voting
protocol ensures Multi-Voter Receipt Freeness with a single corrupted voter
(MRFSC) if it ensures Multi-Voter Receipt Freeness with multiple corrupted voters
(MRFMC) for any |J | ≤ 1.

Again, we have several implications and equivalences.

Theorem 41 We have for any X ∈ {ε, SC,MC}:

— If a protocol respects (MRFMC), then it also respects (MRFSC).

— If a protocol respects (MRFSC), then it also respects (MRF).

— If a protocol respects (MRFX), then it also respects (SRFX).

— If a protocol is modular, finite (i.e. any instance is finite) and respects (MRF),
then it also respects (MRFMC).

Proof The first three implications are true by definition: (MRF) is a special case
of (MRFSC) with J = ∅, and (MRFSC) is a special case of (MRFMC) with |J | ≤ 1.
Similarly (SRFMC) is a special case of (MRFMC), and (SRFSC) of (MRFSC),
and (SRF) of (MRF), all with I = {i}.

For the last claim, assume we have two instances V PA and V PB, and a
subset I ⊆ {1, . . . , n}, and a subset J ⊆ {1, . . . , n}, J ∩ I = ∅, J ∪ I 6= {1, . . . , n}
if n > 1, such that ∀j ∈ J : σvAj = σvBj

, and V PAH |res ≈l V PBH |res. Then by

(MRF) there exits processes V ′i such that V ′\out(chci,·)i ≈l V σidiσvBi and

V PAI

[
|
i∈I

(V σidiσvAi )chci
]
≈l V PBI

[
|
i∈I
V ′i

]
.

Consider now

V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
|V PAI

[
|
i∈I

(V σidiσvAi )chci
]
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By the above we have

V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
|V PAI

[
|
i∈I

(V σidiσvAi )chci
]

≈l V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
|V PBI

[
|
i∈I
V ′i

]

As the protocol is modular, we can decompose V PBI

[
|
i∈I
V ′i

]
, and recompose

with the corrupted voters to obtain

V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
|V PBI

[
|
i∈I
V ′i

]

≈l νñ.
(
V σid1σvA1

| . . . |
i∈I

(V σidiσvAi )chci |
j∈J

(V σidjσvBj )| . . . |V σidnσvAn |A1| . . . |Al

)
|

V PBI∪J

[
|
i∈I
V ′i |

j∈J
(V σidj )c1j ,c2j

]

Since ∀i ∈ I : σvAi = σvBi
we have

νñ.

(
V σid1σvA1

| . . . |
i∈I

(V σidiσvAi )chci |
j∈J

(V σidjσvB
j

)| . . . |V σidnσvAn |A1| . . . |Al

)
|

V PBI∪J

[
|
i∈I
V ′i |

j∈J
(V σidj )c1j ,c2j

]

≈l νñ.
(
V σid1σvA1

| . . . |
i∈I

(V σidiσvAi )chci |
j∈J

(V σidjσvA
j

)| . . . |V σidnσvAn |A1| . . . |Al

)
|

V PBI∪J

[
|
i∈I
V ′i |

j∈J
(V σidj )c1j ,c2j

]

≈l V PAI

[
|
i∈I

(V σidiσvAi )chci
]
|V PBI∪J

[
|
i∈I
V ′i |

j∈J
(V σidj )c1j ,c2j

]

Thus

V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
|V PAI

[
|
i∈I

(V σidiσvAi )chci
]

≈l V PAI

[
|
i∈I

(V σidiσvAi )chci
]
|V PBI∪J

[
|
i∈I
V ′i |

j∈J
(V σidj )c1j ,c2j

]

As the protocol is finite, we can apply Lemma 15 on page 44 to conclude

V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
≈l V PBI∪J

[
|
i∈I
V ′i |

j∈J
(V σidj )c1j ,c2j

]
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�

The last theorem allows us to show that the protocol by Okamoto is secure against
multi-voter coercion, i.e. ensures (MRFMC).

Lemma 42 The protocol by Okamoto ensures Multi-Voter Receipt Freeness with
multiple corrupted voters (MRFMC).

Proof As shown in Theorems 28 on page 122 and 35 on page 132, the protocol
ensures (EQ) and is modular. Using Theorem 39 on page 137 we have that it
ensures (SRFSC) and (SRF). It is easy to see that all instances are finite, hence
we have that it ensures (MRF) using Theorem 40 on page 140, and finally that it
ensures (MRFMC) using Theorem 41 on page 142. �

Note that we expect this to hold also for a variant of the protocol with weighted
votes. Similarly to the variant of FOO we could implement this using multiple
ballots, and expect that the resulting protocol ensures (SRF), (MRF), (MRFMC)
and (Mod), but neither (EQ) nor SwRF I,PO as the votes are weighted.

3.5.3 — Single-Voter Coercion (SCR)

After discussing Receipt-Freeness, we now define Coercion-Resistance. As before,
we start with Single-Voter Coercion-Resistance.

In this case, we combine (VP) with (SwCR): if two instances of a voting
protocol give the same result, they should be bisimilar even if one voter interacts
with the attacker in one case or only pretends to do so in the other case. The
coercion is modeled by the context C that interacts with the voter and tries to
force him to vote for a certain candidate.

Definition 36 (Single-Voter Coercion-Resistance (SCR)) A voting proto-
col ensures Single-Voter Coercion-Resistance (SCR) if for any two instances V PA
= νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al) and V PB = νñ.(V σid1σvB1
| . . .

| V σidnσvBn | A1 | . . . | Al) and any number i ∈ {1, . . . , n} there exists a process
V ′i such that for any context Ci with Ci = νc1.νc2.(_|Pi) and ñ ∩ fn(C) = ∅,

V PA{i}
[
Ci
[
(V σidiσvAi )c1,c2

]]
≈l V PA{i}

[
(V σidiσvAi )chci

]
we have

Ci
[
V ′i
]\out(chci,·) ≈l V σidiσvBi

and

V PAH |res ≈l V PBH |res ⇒ V PA{i}
[
Ci
[
(V σidiσvAi )c1,c2

]]
≈l V PB{i}

[
Ci
[
V ′i
]]
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As above, we can link this definition to the swap-based definition using (Mod),
(EQ) and (EQA).

Theorem 43 We have
— If a protocol respects (EQ) and (Mod), (SCR) and (SwCRO,PO) are equivalent.

— If a protocol respects (EQA) and (Mod), (SCR) and (SwCRO,FA) are equiva-
lent.

Proof Analogous to the proof of Theorem 37 on page 133. �

Similarly, we can also consider corrupted voters.

Definition 37 (SCR with multiple corrupted voters (SCRMC)) A voting
protocol ensures Single-Voter Coercion-Resistance with multiple corrupted vot-
ers (SCRMC) if for any two instances V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn
| A1 | . . . | Al) and V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al)
and any number i ∈ {1, . . . , n} there exists a process V ′i such that for any
context Ci with Ci = νc1.νc2.(_|Pi) and ñ ∩ fn(C) = ∅ and for any subset
J ⊆ {1, . . . , i − 1, i + 1, . . . n}, J 6= {1, . . . , i − 1, i + 1, . . . n} if n > 1, such that
∀j ∈ J : σvAj = σvBj

and

V PA{i}∪J

[
Ci
[
(V σidiσvAi )c1,c2

]
|

j∈J
(V σidj )c1j ,c2j

]

≈l V PA{i}∪J

[
(V σidiσvAi )chci |

j∈J
(V σidj )c1j ,c2j

]

we have
Ci
[
V ′i
]\out(chci,·) ≈l V σidiσvBi

and
V PAH |res ≈l V PBH |res

⇓

V PA{i}∪J

[
Ci
[
(V σidiσvAi )c1,c2

]
|

j∈J
(V σidj )c1j ,c2j

]
≈l

V PB{i}∪J

[
Ci [V ′i ] |

j∈J
(V σidj )c1j ,c2j

]

Definition 38 (SCR with a single corrupted voter (SCRSC)) A voting
protocol ensures Single-Voter Coercion-Resistance with a single corrupted voter
(SCRSC) if it ensures Single-Voter Coercion-Resistance with multiple corrupted
voters (SCRMC) for any |J | ≤ 1.

Again, we have the same equivalencies.
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Theorem 44 We have:
— If a protocol respects (SCRMC), then it also respects (SCRSC).

— If a protocol respects (SCRSC), then it also respects (SCR).

— If a protocol respects (EQ) and (Mod), then (SCRSC) and (SwCRI,PO) are
equivalent.

— If a protocol respects (EQA) and (Mod), then (SCRSC) and (SwCRI,FA) are
equivalent.

— If a protocol is modular, finite (i.e. any instance is finite) and respects (SCR),
then it also respects (SCRMC).

Proof The first two implications are true by definition: (SCR) is a special case
of (SCRSC) with J = ∅, and (SCRSC) is a special case of (SCRMC) with |J | ≤ 1.
The other proofs are analogous to the proof of Theorem 39 on page 137. �

3.5.4 — Multi-Voter Coercion (MCR)

We now discuss Multi-Voter Coercion-Resistance. To model the case where
multiple voters are attacked, we consider the set I of attacked voters.

Definition 39 (Multi-Voter Coercion-Resistance (MCR)) A voting pro-
tocol ensures Multi-Voter Coercion-Resistance (MCR) if for any voting pro-
cesses V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al) and V PB =
νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al) and any subset I ⊆ {1, . . . , n},
I 6= {1, . . . , n} if n > 1, there exists processes V ′i such that for any contexts
Ci = νc1.νc2.(_|Pi), i ∈ I and ñ ∩ fn(C) = ∅ and

V PAI

[
|
i∈I
Ci
[
(V σidiσvAi )c1,c2

]]
≈l V PAI

[
|
i∈I

(V σidiσvAi )chci
]

we have
∀i ∈ I : Ci

[
V ′i
]\out(chci,·) ≈l V σidiσvBi

and
V PAH |res ≈l V PBH |res

⇓

V PAI

[
|
i∈I
Ci
[
(V σidiσvAi )c1,c2

]]
≈l V PBI

[
|
i∈I
Ci [V ′i ]

]
,

To consider corrupted voters, we propose the following definitions.

Definition 40 (MCR with multiple corrupted voters (MCRMC)) A vot-
ing protocol ensures Multi-Voter Coercion-Resistance with multiple corrupted
voters (MCRMC) if for any two instances V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn
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| A1 | . . . | Al) and V PB = νñ.(V σid1σvB1
| . . . | V σidnσvBn | A1 | . . . | Al) and any

subset I ⊆ {1, . . . , n} there exists processes V ′i such that for any contexts Ci, i ∈ I
with Ci = νc1.νc2.(_|Pi) and ñ ∩ fn(C) = ∅ and for any subset J ⊆ {1, . . . , n},
J ∩ I = ∅, J ∪ I 6= {1, . . . , n} if n > 1, such that ∀j ∈ J : σvAj = σvBj

, and

V PAI∪J

[
|
i∈I
Ci
[
(V σidiσvAi )c1,c2

]
|

j∈J
(V σidj )c1j ,c2j

]

≈l V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]

we have
∀i ∈ I : Ci

[
V ′i
]\out(chci,·) ≈l V σidiσvBi

and
V PAH |res ≈l V PBH |res

⇓

V PAI∪J

[
|
i∈I
Ci
[
(V σidiσvAi )c1,c2

]
|

j∈J
(V σidj )c1j ,c2j

]
≈l

V PBI∪J

[
|
i∈I
Ci [V ′i ] |

j∈J
(V σidj )c1j ,c2j

]

Definition 41 (MCR with a single corrupted voter (MCRSC)) A voting
protocol ensures Multi-Voter Coercion-Resistance with a single corrupted voter
(MCRSC) if it ensures Multi-Voter Coercion-Resistance with multiple corrupted
voters (MCRMC) for any |J | ≤ 1.

Again, we have several implications and equivalences.

Theorem 45 We have for any X ∈ {ε, SC,MC}:
— If a protocol respects (MCRX), then it also respects (SCRX).

— If a protocol respects (MCRMC), then it also respects (MCRSC).

— If a protocol respects (MCRSC), then it also respects (MCR).

— If a protocol respects (SCRX), it also respects (SRFX).

— If a protocol respects (MCRX), it also respects (MRFX).

Proof The first three implications are direct consequences of the definitions.
Then we only consider the case (MCRMC) implies (MRFMC), the other follow
directly.

The proof is similar to the proof of SwCRAttacker,Abs implies SwRFAttacker,Abs

in Lemma 18 on page 65. Assume the protocol ensures (MCRMC). Let Ci be
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evaluation contexts such that Ci = νc1.νc2.(_|Pi) for some plain processes Pi
which fulfill

V PAI∪J

[
|
i∈I
Ci
[
(V σidiσvAi )c1,c2

]
|

j∈J
(V σidj )c1j ,c2j

]

≈l V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
(3.27)

Note that these Ci can be constructed directly from the vote process V . By
hypothesis we know that there are closed plain process V ′i such that

∀i ∈ I : Ci
[
V ′i
]\out(chci,·) ≈l V σidiσvBi

and
V PAH |res ≈l V PBH |res

⇓

V PAI∪J

[
|
i∈I
Ci
[
(V σidiσvAi )c1,c2

]
|

j∈J
(V σidj )c1j ,c2j

]
≈l

V PBI∪J

[
|
i∈I
Ci [V ′i ] |

j∈J
(V σidj )c1j ,c2j

]
(3.28)

We have to find other processes V ′′i such that

∀i ∈ I : V ′\out(chci,·)i ≈l V σidiσvBi (3.29)

and
V PAH |res ≈l V PBH |res

⇓

V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
≈l

V PBI∪J

[
|
i∈I
V ′i |

j∈J
(V σidj )c1j ,c2j

]
(3.30)

Let V ′′i = Ci[V ′i ]. This directly fulfills the first requirement (Equation (3.29)). For
the second equation (3.30), we suppose V PAH |res ≈l V PBH |res. We can then
use the condition on Ci (Equation (3.27)) and obtain

V PAI∪J

[
|
i∈I
Ci
[
(V σidiσvAi )c1,c2

]
|

j∈J
(V σidj )c1j ,c2j

]

≈l V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]
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The second hypothesis (Equation (3.28)) gives

V PAI∪J

[
|
i∈I
Ci
[
(V σidiσvAi )c1,c2

]
|

j∈J
(V σidj )c1j ,c2j

]

≈l V PBI∪J

[
|
i∈I
Ci
[
V ′i
]
|

j∈J
(V σidj )c1j ,c2j

]

As labeled bisimilarity is transitive, we can conclude

V PAI∪J

[
|
i∈I

(V σidiσvAi )chci |
j∈J

(V σidj )c1j ,c2j

]

≈l V PBI∪J

[
|
i∈I
Ci
[
V ′i
]
|

j∈J
(V σidj )c1j ,c2j

]

which gives us the desired result for V ′′i = Ci[V ′i ]. �

Finally we also have equivalence between (SCR) and (MCR) as well as (MCR)
and (MCRMC) under the same assumptions as in the case of Receipt-Freeness
using a similar proof.

Theorem 46 We have:
— If a protocol is modular, finite and respects (SCR), it also ensures (MCR).

— If a protocol is modular, finite and respects (MCR), then it also respects
(MCRMC).

Proof Analogous to the proofs of Theorem 40 on page 140 and Theorem 41 on
page 142. �

The last theorem allows us to show that Bingo Voting is secure against multi-voter
coercion, i.e. ensures (MCRMC).

Lemma 47 Bingo Voting ensures Multi-Voter Coercion-Resistance with multiple
corrupted voters (MCRMC).

Proof As shown in Theorem 23 on page 94, the protocol ensures SwCRI,FA. In
Theorems 29 on page 123 and 36 on page 132 we showed that it ensures (EQA)
and (Mod). Using Theorem 44 on page 146 we have that it ensures (SCRSC) and
(SCR). It is easy to see that all instances are finite, thus we have that it ensures
(MCR) and (MCRMC) using Theorem 46. �

3.6 Conclusion

In this chapter we proposed a taxonomy of privacy notions for eVoting protocols.
We started by extending the notions originally proposed by Delaune et al. [DKR09]
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VP VPSC VPMC

SRF SRFSC SRFMC

MRF MRFSC MRFMC

SCR SCRSC SCRMC

MCR MCRSC MCRMC

Mod, Fin

Mod, Fin

Mod, Fin

Mod, Fin

Mod, Fin

Figure 3.2 – The hierarchy of generalized privacy notions. A C−→ B means that
under the assumption C a protocol ensuring A also ensures B.

150



3.6. Conclusion

SwV PO,PO

SwV PO,FA

SwV P I,PO

SwV P I,FA

SwRFO,PO

SwRFO,FA

SwRF I,PO

SwRF I,FA

SwCRO,PO

SwCRO,FA

SwCRI,PO

SwCRI,FA

SCRSC

SRFSC

VPSC

SCR

SRF

VP

EQA, Mod

EQ, Mod

EQA, Mod

EQ, Mod

EQA

EQ

EQA, Mod

EQ, Mod

EQA,
Mod

EQ, Mod

EQA

EQ

Figure 3.3 – The links between the generalized and swap-based privacy notions.
A C−→ B means that under the assumption C a protocol ensuring A
also ensures B.
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to cover corrupted voters and forced abstention attacks. We applied the resulting
notions on several case studies: the protocols by Fujioka et al. [FOO92], the
protocol by Okamoto [Oka96], the protocol by Lee et al. [LBD+03] and Bingo
Voting [BMQR07]. The results are summed up in and Table 3.1 on page 114, the
position of the case studies within our hierarchy is shown in Figure 3.1 on page 69.

As it turns out, these notions based on swapping votes are unsuitable for cases
where votes are weighted. To address this issue we generalized the privacy notions
to cover weighted votes, multiple corrupted and multiple coerced voters. Figure 3.2
on page 150 sums up the resulting notions and their relationships. We discussed
a variant of the protocol by Fujioka et al. [FOO92] as a first case study. We
also showed that under certain assumptions – a finite protocol and modularity –,
multi-voter coercion and single-voter coercion are equivalent. This allows to
prove security against multi-voter coercion by simply checking for finiteness and
modularity, which are often simpler to prove than the entire property. Similarly,
we were able to show that a finite protocol ensuring modularity is also secure
against inside attackers: the cases with and without corrupted voters coincide.
To show that this assumption is realistic, we showed that the protocol by Fujioka
et al. [FOO92], the protocol by Okamoto [Oka96] and Bingo Voting [BMQR07]
fulfill this property, and hence ensure Vote-Privacy with multiple corrupted voters,
Multi-Voter Receipt Freeness with multiple corrupted voters and Multi-Voter
Coercion-Resistance with multiple corrupted voters, respectively.

We also analyzed the link between these notions and the previous taxonomy.
We were able to identify precise conditions: Equality of Votes and Equality of
Abstention model the fact that votes are not weighted and that additionally
abstaining voters remain anonymous, respectively. This allows to prove that some
swap-based and some generalized privacy notions coincide for protocols ensuring
one of the two properties. For Receipt-Freeness and Coercion-Resistance we also
need Modularity as the generalized notions are slightly more powerful. The links
between both taxonomies are summed up in Figure 3.3 on the previous page. The
notions appearing in both Figures 3.2 on page 150 and 3.3 on the previous page
are marked in bold, allowing to connect the two figures.

As future work, we would like to verify more properties automatically as
manual proofs are often cumbersome and tend to be error-prone. One of the main
problems here are the equational theories which become too complex for ProVerif
to handle. There is some first work on replacing such theories with simpler, but
equivalent ones [SAR13], which could help in dealing with more complex theories
automatically. Moreover, KISS [CDK12] and AKISS [CCK12] can deal with more
complex equational theories, which could help us in verifying more properties
automatically.

We would also like give the full formal proof that we can replace a process
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P synchronizing with other processes within a context C[_], with a bisimilar
(modulo the synchronization) processes P ′ ≈l P , i.e. that we have C[P ] ≈l C[P ′].

Additionally the approach in this chapter is possibilistic: We call a protocol
secure if there is a way for the targeted voter to escape coercion. As we are in a
symbolic model, we do not consider probabilities. Hence the adversary may in
reality still have a certain probability of detecting that the coerced voter tried
to resist coercion. This is beyond the scope of this work, yet a computational
translation of our definitions should be able take this into account. There already
is some work in the computational model in this direction [KTV10b], yet they do
not consider all different dimensions of our taxonomy.
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Chapter 4
eAuctions

A uctions provide sellers and buyers with a way to exchange goods or services
for a mutually acceptable price. Commonly the bidders strive for the least

possible price, and the seller aims for the highest possible price. Due to the
competitive nature of the process, security is important to ensure fairness.

In this chapter we propose a formal model for different security properties. We
start by analyzing Authentication, Fairness and Privacy properties with the help
of ProVerif. We discuss the protocols due to Curtis et al. [CPS07], Brandt [Bra06]
and Sako [Sak00]. Then we propose an abstract model of Verifiability for different
types of auctions, and provide case studies in the symbolic as well as in the
computational model using ProVerif and CryptoVerif respectively.

Finally we discuss the idea of “true bidder-verifiable auctions”, i.e. proto-
cols that can be verified by a non-expert. This precludes relying on complex
cryptography, hence we discuss two protocols achieving verifiability based only
on the physical properties of the manipulated objects. Moreover, we propose a
first approach to model these physical objects and their properties, and use it to
provide a formal analysis of the protocols using ProVerif.

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.1.2 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . 159

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.3 Fairness, Authentication and Privacy in Auctions . . . . . 162

4.3.1 Modeling Auction Protocols . . . . . . . . . . . . . . . . . . 162

4.3.2 Fairness Properties . . . . . . . . . . . . . . . . . . . . . . . 166

4.3.3 Authentication Properties . . . . . . . . . . . . . . . . . . . 167

4.3.4 Privacy Properties . . . . . . . . . . . . . . . . . . . . . . . 169

4.3.4.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . 170



4. eAuctions

4.3.4.2 Receipt-Freeness . . . . . . . . . . . . . . . . . . . 177

4.3.4.3 Coercion-Resistance . . . . . . . . . . . . . . . . . 185

4.3.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.3.5.1 Protocol by Curtis, Pierprzyk and Seruga . . . . . 194

4.3.5.2 Protocol by Brandt . . . . . . . . . . . . . . . . . 202

4.3.5.3 Protocol by Sako . . . . . . . . . . . . . . . . . . . 207

4.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

4.4 Verifiability in Auctions . . . . . . . . . . . . . . . . . . . . 213

4.4.1 A Different Model of Auction Protocols . . . . . . . . . . . 213

4.4.2 Defining Verifiability . . . . . . . . . . . . . . . . . . . . . . 214

4.4.2.1 First-Price Auctions . . . . . . . . . . . . . . . . . 215

4.4.2.2 Other Types of Auctions . . . . . . . . . . . . . . 217

4.4.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 218

4.4.3.1 Protocol by Sako . . . . . . . . . . . . . . . . . . . 218

4.4.3.2 Protocol by Curtis et al. . . . . . . . . . . . . . . 236

4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

4.5 Towards True Bidder-Verifiable Auctions . . . . . . . . . . 241

4.5.1 The “Cardako” Protocol . . . . . . . . . . . . . . . . . . . . 242

4.5.1.1 Description . . . . . . . . . . . . . . . . . . . . . . 242

4.5.1.2 Security Properties . . . . . . . . . . . . . . . . . 243

4.5.1.3 Formal Analysis . . . . . . . . . . . . . . . . . . . 244

4.5.2 The “Woodako” Protocol . . . . . . . . . . . . . . . . . . . 248

4.5.2.1 Description . . . . . . . . . . . . . . . . . . . . . . 249

4.5.2.2 Securities Properties . . . . . . . . . . . . . . . . . 256

4.5.2.3 Formal Analysis . . . . . . . . . . . . . . . . . . . 257

4.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

4.6.1 Limitations and Future Work. . . . . . . . . . . . . . . . . . 268

156



4.1. Introduction

4.1 Introduction

Auctions are a simple method to sell goods and services. Typically a seller offers
a good or a service, and the bidders make offers. Depending on the type of
auction, the offers might be sent using sealed envelopes which are opened at
the same time to determine the winner (the “sealed-bid” auction, e.g. [Cac99,
NPS99, AS02, CLK03, LAN02, BCD+09]), or an auctioneer could announce
prices decreasingly until one bidder is willing to pay the announced price (the
“dutch auction”, e.g. [RG95]). There might be several rounds, or offers might be
announced publicly directly (the “English” or “shout-out” auction, e.g. [OM01]).
The winner usually is the bidder submitting the highest bid, but in some cases he
might only have to pay the second highest offer as a price (the “second-price”-
or “Vickrey”-Auction, e.g. [HTK98, LAN02]). In general a bidder wants to win
the auction at the lowest possible price, and the seller wants to sell his good at
the highest possible price. For more information on different auction methods see
e.g. [Kri02].

Due to the competitive nature of the auction process, security is a major
concern to prohibit cheating and manipulations of the prices. As frauds are
common in eAuctions [NTJ13], different security properties have been discussed
in the literature. We study1 the following security properties of auction protocols:
— Fairness: Firstly a fair (sealed-bid) auction protocol should not leak any

information about the other participants and their offers until the bidding
phase is over (so as to prohibit unfair tactics based on leaked information).
We call this Weak or Strong Noninterference, depending on if the number of
bidders is leaked or not. Thirdly a protocol should not allow anybody to win
although they did not submit the highest price, i.e. ensure that the Highest
Price Wins. Otherwise a losing bidder could try to cheat to win.

— Authentication: For the seller it is crucial to ensure Non-Repudiation, i.e.
that – after the winner has been announced – the winning bidder cannot claim
that he did not submit the winning bid. Additionally we might want to ensure
Non-Cancellation, i.e. that a bidder cannot cancel a submitted offer before
the winner is announced, to have binding bids.

— Privacy: Privacy is important in sealed-bid auctions to prevent information
leakage after the auction is over, for example if an auction is organized in
several rounds, or if the bids leak sensitive information e.g. to competitors or
clients [BCD+09]. Again, we distinguish several different notions: Secrecy of
Bids, Bidding-Price Unlinkability, Weak Anonymity and Strong Anonymity (of
Bidders), Receipt-Freeness and Coercion-Resistance. Secrecy of Bids guarantees
that the losing bids remain secret. In the case of Bidding-Price Unlinkability

1See Section 4.2 for a detailed discussion of the properties proposed in the literature.
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the list of bids can be public, but must not be linkable to the losing bidders.
Strong Anonymity of Bidders means that the participants, including the winner,
remain anonymous, and all losing bids remain secret. In the case of Weak
Anonymity the list of bids can be public, but the bids are not linkable to
the bidders, including the winner, who remains anonymous. Receipt-Freeness
ensures that bidders are unable to prove to an attacker (which might be
another bidder trying to force them to submit a low bid so that he wins at a
lower price) that they bid a certain offer, and Coercion-Resistance means that
even when interacting with a coercer, the bidders can still bid a price of their
choice.

— Verifiability: A verifiable protocol should allow the bidders to verify that
the winner was correctly determined, and that no bids were manipulated or
submitted by uneligible bidders. This allows to back up trust in the auctioneer
or other authorities, since they often also have a financial interest in the
auction. For example in the case of eBay the auction fees include a proportion
of the selling price [eBa13].

Note that depending on the type of auction, some properties might be different
or unachievable. For sealed-bid first-price auctions, the most common type of
protocols in the literature, all of the above are suitable. However for example
Secrecy of Bids is difficult to ensure in an English Auction where bids are announced
publicly, but anonymity might still be achievable.

4.1.1 — Contributions

In this chapter we provide the following contributions:
— In the first part we give a formal framework in the Applied π-Calculus to

model and analyze e-Auction protocols. Within this framework we define the
discussed fairness, privacy and authentication properties and analyze their
relationship.

— We provide three case studies: The protocol by Curtis et al. [CPS07], a protocol
by Brandt [Bra06] and the protocol by Sako [Sak00]. We show how the three
can be modeled in the Applied π-Calculus and verified using ProVerif [Bla01].
We discover several flaws on the first two protocols and explain how some of
their shortcomings can be addressed. We also show that the protocol by Sako
ensures all our properties except for receipt-freeness and coercion-resistance.

— In the second part, we give a high-level definition of Verifiability in eAuctions
based on an abstract protocol level. We show how this definition can be
generalized to accommodate different types of auctions.

— We apply this definition on the protocols by Sako and Curtis et al.. Again, we
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rely on ProVerif to execute the Verification. For the protocol by Sako, we also
provide a computational proof in CryptoVerif [Bla06a].

— Finally we provide two examples of “true bidder-verifiable” sealed-bid auction
protocols. Although these protocols have their limitations with respect to
scalability, they illustrate two simple ways of achieving secure and verifiable
auctions by exploiting physical properties of physical objects instead of cryp-
tography. We also discuss how we can apply the previous formal models to
verify these “physical” protocols.

4.1.2 — Outline of the Chapter

In Section 4.2, we discuss related work. Then we model auction protocols in the
Applied π-Calculus to formally define the security properties in Section 4.3.1. In
the following Sections 4.3.2, 4.3.3 and 4.3.4 we model fairness, authentication and
privacy properties respectively. In Section 4.3.5, we analyze our three case studies.
In the following part (Section 4.4) we propose our abstract model of auction
protocols for verifiability (Section 4.4.1) as well as the definition of verifiability
(Section 4.4.2) and the case studies (Section 4.4.3). In the final part we propose
two “true bidder-verifiable” protocols in Sections 4.5.1 and 4.5.2 and discuss their
formal analysis. We then conclude in Section 4.6.

4.2 Related Work

In this section we discuss related work on auction protocols, the different security
properties, previous work on formal verification of auction protocols, the link
to other applications such as eVoting (in particular for privacy and verifiability)
or contract-signing, and work on modeling physical properties for security and
protocols.

Auction Protocols. Many electronic auction (e-Auction) protocols have been
proposed in the literature (see e.g. [Bra02, Bra06, BS08, PSKT01] for an overview).
They rely on a multitude of cryptographic primitives such as hash chains [SS99],
signatures of knowledge and zero-knowledge proofs [OM01], coin-extractability,
range proofs and proofs of knowledge [LAN02], proxy-oblivious transfers and
secure evaluation functions [NPS99] and many others. There is also a protocol
by Stajano and Anderson [SA99] solely based on anonymous broadcast, arguing
that physical properties can be used to construct efficient and simple auction
protocols. As case studies, we use the protocol by Curtis et al. [CPS07], which
uses a trusted registrar and pseudonyms, the protocol by Brandt [Bra06], which
is entirely distributed using secure multi-party computation, and the protocol by
Sako [Sak00] which uses a distributed trusted authority.
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Security Properties. The different security properties have been discussed
since the early publications on eAuctions, e.g. Franklin and Reiter [FR95] dis-
cuss secrecy of bids, anonymity of bidders, fairness, non-repudiation and non-
cancellation. Further publications [HTK98, KHT98, LKM01, OM01] have used
and refined these notions, also adding verifiability. Abe and Suzuki [AS02] intro-
duced and motivated Receipt-Freeness for e-Auctions. Cancellation of bids was
also discussed by Stubblebine and Syverson [SS99] who proposed a protocol imple-
menting cancellation as a feature, and another protocol ensuring non-cancellation.
Still, all definitions given in these papers are informal.

Formal Verification of Auction Protocols. Although there has been much
work on developing auction protocols ensuring various properties, there is con-
siderably less work on their formal definition and analysis. Subramanian [Sub98]
proposed an auction protocol and analyzed it using a BAN-style logic to show
some security properties. In particular he showed the atomicity of the transaction,
weak secrecy of private keys and a form of anonymity modeled as weak secrecy of
the public key of the bidder. Using OFMC, Księżopolski and Lafourcade [KL07]
identified an attack on authentication in an auction protocol. More recently Dong
et al. [DJP11] analyzed a receipt-free auction protocol in the Applied π-Calculus.
They only considered privacy, in particular secrecy of the bidding price and
receipt-freeness, but only for losing bidders.

Link to other Applications. In the context of electronic voting there has
been much more work on formal verification, in particular in the area of privacy
as discussed in Section 3.2. Some notions are similar, yet there are also some
differences to auctions. For example the information leaked by the result in both
cases is usually not the same: typically in voting the published result is the sum of
all votes (although there are more complex ways of computing the tally), whereas
in auctions the public outcome is in most cases the winning bidder and price.
Often the losing bids remain private, and in some cases even the winner stays
anonymous, e.g. the well known “bidder on the phone”. Although normally at
least the winning price is public, there is the protocol by Brandt [Bra06] where
only the winner and the seller learn the winner and the winning price, but to the
best of our knowledge, this is the only protocol aiming for such a high level of
privacy.

Concerning Verifiability there is a considerable amount of work in voting. The
property of individual verifiability – a voter can verify that her vote counts correctly
for the result – has been a well-established notion since the field’s inception [FOO92,
BT94, SK95, HS00]. Similarly the concept of universal verifiability – the property
that all voters or even an outside an observer may verify (using only public
information) the correctness of the tally – has also been discussed for a long
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time [CF85, BT94, SK95, Ben96]. Kremer et al. [KRS10] formalized individual
and universal verifiability in the Applied π-Calculus, and added the notion of
eligibility verifiability: the property whereby any observer may verify, using only
public information, that the set of cast votes from which the result is determined,
originates only from eligible voters, and each eligible voter cast at most one vote.
Smyth et al. [SRKK10] used ProVerif to automatically check Verifiability of voting
protocols. They express the conditions in the definitions as reachability properties,
which can be checked by ProVerif. In some of our case studies on the Verifiability
of eAuction protocols we also use the Applied π-Calculus and employ a similar
technique in ProVerif, but our model and definitions are more general and can also
be instantiated using a computational model. Moreover, Küsters et al. [KTV10a]
introduced the notion of accountability: when verifiability of a certain goal fails, it
is possible to identify the party responsible for the failure. They also give symbolic
and computational definitions of verifiability, which they identify as a weaker
variant of accountability. As a case study, they apply their definitions on Bingo
Voting. Although they also consider an auction protocol as a second case study,
the verifiability goals used do not cover all verifications required by our definition.
Finally, Guts et al [GFN09] defined auditability, i.e. the fact that a protocol
logs sufficient evidence to convince an impartial judge that certain properties are
satisfied. In our definition of verifiability the protocol only needs to convince
the participants that the protocol execution was correct, but not necessary an
outside judge. Moreover, Guts et al. verify auditability using static typing on the
concrete protocol implementation, whereas our definition of verifiability leaves
open the choice of the concrete method of verifying the definition.

While the intuition behind the notions from voting carries (to some degree)
over to auctions, we note that auctions can be much more competitive as the
bidders are pressed for time, for example in the case of an English auction.
This can be exploited by an attacker: for example an illegal bid (e.g., by an
unregistered bidder) may increase the winning price by forcing the honest bidders
to increase their offer, while finally not changing the winner. Hence, a lack of
verifiability (which would allow the honest bidders to identify the incorrect bid)
can compromise fairness. In addition, winner and price determination can be quite
complex depending on the type of auction, e.g. for second-price or multi-good
auctions2. Thus, although providing important inspiration, verification of voting
systems does not translate directly to verification of auction systems.

There has been a lot of work on Non-Repudiation in the context of contract
signing and fair exchange protocols (e.g. [KR03, KV09, LV10]). We rely on the
work by Klay et al. [KV09] who propose many different flavors of non-repudiation

2Note however that although in many cases the outcome computation in voting is relatively
simple, there are more complex voting systems such as Single Transferable Vote (STV) used e.g.
in Ireland [Cit13].
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based on agent knowledge or authentication. We only consider “Non-Repudiation
of Origin”, i.e. that the bidder cannot deny that he made an offer, implemented
as a form of authentication.

Modeling Physical Properties. In the last part of this chapter, we also
discuss the formal analysis of protocol relying on physical objects. Several such
protocols were developed for various purposes, e.g. [CK94, FNW96, NP97, Cha04].
Blaze [Bla03, Bla04b] analyzed physical locks from a cryptographic point of
view, and argued that physical security should be taken into account in security
modeling [Bla06b]. Other work in this area focused on modeling physical security
in various ways. The Portunes framework by Dimkov et al. [DPH11] allows
modeling of attacks that cross physical, digital and social domains. They focus
on access control and data breaches. Moran and Naor [MN05, MN06a] proposed
several protocols using physical objects, including a “human-centric” polling
protocol based on physical envelopes, and also discussed their formal analysis in
the UC-framework. Recently Meadows et al. [MP13] describe a way to formalize
security procedures (accounting for physical objects) in logic, however again their
work is more concerned about the movement of physical objects, rather than
the properties of the objects itself. Basin et al. [BCSS11] proposed a formal
model to verify protocols based on physical attributes such as time and location.
Their model includes the constraints of these physical domains in their reasoning,
however does not express properties of physical objects that can be manipulated
by the participants.

4.3 Fairness, Authentication and Privacy in Auctions

In this section, we describe our model of auction protocols in the Applied π-
Calculus and propose definitions for multiple properties related to fairness, au-
thentication and privacy. We also discuss our three case studies: The protocols
by Brandt [Bra06], Curtis et al. [CPS07] and Sako [Sak00].

4.3.1 — Modeling Auction Protocols

Similar to voting protocols, we model auction protocols in the Applied π-Calculus
as follows.

Definition 42 (Auction Protocol) An auction protocol is defined by a tuple
(B, S, A1, . . . , Am, m̃) where B is the process executed by the bidders, S is the
process executed by the seller, and the Aj’s are the processes executed by the
authorities (for example an auctioneer, a registrar etc.), and m̃ is a set of private
channels. We also assume the existence of a particular public channel res that is
only used to publish the winning bid or bidder.
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Note that we have only one process for the bidders. This means that different
bidders will execute the same process, but with different variable values (e.g.
the keys, the bids etc.). To reason about privacy, we talk about instances of an
auction protocol, which we call auction processes.

Definition 43 (Auction Process) An instance of an auction protocol (B, S,
A1, . . ., Am, m̃) is called an auction process, which is a closed process

νñ.(Bσid1σb1 | . . . |Bσidkσbk |S|A1| . . . |Al),

where l ≤ m, ñ includes the secret channel names m̃, Bσidiσbi are the processes
executed by the k bidders, σidi is a substitution assigning the identity to the i-th
bidder, σbi specifies the i-th bid and Aj’s are the auction authorities which are
required to be honest.

The restricted channel names model private channels or secret keys. Note that
we only model the honest authorities as unspecified parties are subsumed by the
attacker.

By abuse of notation we write bl > bo to express that the bidding price
determined by the substitution σbl is greater than the one assigned by σbo , and
maxi{bi} denotes the maximal price assigned by any substitution σbi . We also
denote by arg maxi{bi} the set of values i for which bi corresponds to the maximal
price.

Example 20 Consider the following simple auction protocol.

Informal description: Each bidder encrypts his bid using the auctioneer’s public
key and signs it using his secret key. The resulting bid is posted on the bulletin
board. After the deadline is over, the auctioneer checks if each ballot is signed by
an eligible bidder. He then decrypts the bids and determines the winner.

Formal description in our model: The protocol uses probabilistic public-key
encryption and signatures, which we model using the following equational theory
already used in Example 12 on page 55:

dec(enc(m, pk(sk), r), sk) = m

checksign(sign(m, sk), pk(sk)) = m
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The protocol is then a tuple (B,S,A, ∅) where

A = in(ch, (sig1, bid1)). . . . in(ch, (sign, bidn)).
if checksign(sig1, pkb1) = bid1 && . . .

&& checksign(sign, pkbn) = bidn then
let b1 = dec(bid1, ska) in . . .

let bn = dec(bidn, ska) in
if max(b1, . . . , bn) = b1then
out(res, (sign((b1, 1), ska), (b1, 1)))
else if . . .

else out(res, (sign((bn, n), ska), (bn, n)))
B = νr.let ebid = enc(b, pka, r) in

out(ch, (sign(ebid, skb), ebid))
S = in(res, (sig, (price, id))).

if checksign(sig, pka) = (price, id) then . . .

In this example the substitution determining the identity of a bidder assigns the
secret key, e.g. σidk = {skk/skb}. The substitution specifying the bid would be e.g.
σbk = {pricek/b}.

Similarly to voting, we also define Honest Auction Processes, and (Honest) Auction
Contexts.

Definition 44 (Honest Auction Process) An Honest Auction Process of an
auction protocol (B, S, A1, . . ., Am, m̃) is a closed plain process

νñ.(Bσid1σb1 | . . . |Bσidkσbk |S|A1| . . . |Am)

where ñ includes the secret channel names m̃, Bσidiσbi are the processes executed
by the k bidders, σidi is a substitution assigning the identity to the i-th bidder, σbi
specifies the i-th bid and Aj’s are the auction authorities.

Given an auction process

AP = νñ.(Bσid1σb1 | . . . |Bσidkσbk |S|A1| . . . |Al)

we denote by APH the corresponding honest auction process, i.e.

APH = νñ.(Bσid1σb1 | . . . |Bσidkσbk |S|A1| . . . |Am)

Definition 45 ((Honest) Auction Context) Given an auction process

AP = νñ.(Bσid1σb1 | . . . |Bσidkσbk |S|A1| . . . |Al)
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and a subset of bidders I we define the Auction Context API [_] as follows:

API [_] = νñ.( |
i/∈I
Bσidiσbi |_|S|A1| . . . |Al)

Similarly for an honest auction process

APH = νñ.(Bσid1σb1 | . . . |Bσidkσbk |S|A1| . . . |Am)

and a subset of bidders I we define the Honest Auction Context APHI [_] as
follows:

APHI [_] = νñ.( |
i/∈I
Bσidiσbi |_|S|A1| . . . |Am)

Example 21 An instance of our simple auction protocol (Example 20 on page 163)
with two bidders A and B looks as follows:

AP = νskA.νskB.νskAd.(S {pk(skAd)/pka} |B {skA/skv, pk(skAd)/pka} {priceA/b} |

B {skB/skv, pk(skAd)/pka} {priceB/b} |A {skAd/ska, pk(skA)/pkb1, pk(skB)/pkb2})

The corresponding auction context AP{B} then looks as follows:

AP{B} = νskA.νskB.νskAd.(S {pk(skAd)/pka} |B {skA/skv, pk(skAd)/pka} {priceA/b}

|_|A {skAd/ska, pk(skA)/pkb1, pk(skB)/pkb2})

Note that as this protocol assumes an honest auctioneer, the honest auction process
APH and the “normal” auction process AP , as well as the honest auction context
APHI [_] and the “normal” auction context API [_] coincide.

In order to reason about reachability and authentication properties we use events.
Events are annotations marking important steps in the protocol execution, but
otherwise do not influence the behavior of processes. They allow us to verify
properties such as “event bad is unreachable” or “on every trace event a is preceded
by event b”.

We use the same technique as in [ABF07, SRKK10]: Events are outputs
out(e, (M1, . . . ,Mn)) on a special “event” channel e ∈ E, where E is the set of
event channels, disjoint of the set of “ordinary” channels. To ensure that the
adversary cannot obtain additional knowledge from the events or create events
himself, we only consider traces respecting the following conditions when reasoning
about processes containing events:
— Event names occur only in outputs; they are neither communicated nor used

for inputs in processes and in transitions.

— Names and variables extruded in events do not appear in inputs unless they
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have also been sent on other output channels.
In accordance with the syntax used by ProVerif, we also write event e(M1, . . . ,Mn)
instead of out(e, (M1, . . . ,Mn)), where e is the name of the event (channel), and
the terms M1, . . . ,Mn are parameters.

For auction protocols we use the following events:
— bid(p,id): When a bidder id bids the price p the event bid(p,id) is emitted.

— recBid(p,id): When a bid at price p by bidder id is recorded by the auc-
tioneer/bulletin board/etc. the event recBid(p,id) is called. This is used to
model Non-Cancellation, i.e. from this point on a bid is considered binding.

— won(p,id): When a bidder id wins the auction at price p, the event won(p,id)
is emitted.

4.3.2 — Fairness Properties

A fair auction protocol should not leak any information about any participant
until the bidding phase is over and the winning bid is announced, and hence some
information is inevitably leaked. We propose the following two definitions:

Definition 46 (Strong Noninterference (SN)) An auction protocol ensures
Strong Noninterference (SN) if for any two auction processes APA and APB that
halt at the end of the bidding phase (i.e. where we remove all code after the last
recBid event) we have

APA ≈l APB.

This notion is very strong: Any two instances, independently of the participants
and their offers, are required to be bisimilar until the end of the bidding phase.
This would also require two instances with a different number of participants to
be bisimilar, which will probably not hold on many protocols. A more realistic
notion is the following:

Definition 47 (Weak Noninterference (WN)) An auction protocol ensures
Weak Noninterference (WN) if for any two auction processes APA = νñ.(Bσid1σb1,A

| . . . | Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B
| S | A1 | . . . | Al) that halt at the end of the bidding phase (i.e. where we remove
all code after the last recBid event) we have

APA ≈l APB.

This only requires any two instances with the same participants Bσidi to be
bisimilar, however bids may still change. It is easy to see that (SN) implies (WN).
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Theorem 48 An auction protocol ensuring Strong Noninterference (SN) also
ensures Weak Noninterference (WN).

Proof We have to show that for any two auction processes APA = νñ.(Bσid1σb1,A

| . . . | Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B
| S | A1 | . . . | Al) that halt at the end of the bidding phase (i.e. where we remove
all code after the last recBid event) we have APA ≈l APB. By (SN) we have
that for any two auction processes APA and APB that halt at the end of the
bidding phase (i.e. where we remove all code after the last recBid event) we have
APA ≈l APB, hence we can conclude directly. �

However the above two notions only capture that no information is leaked, however
we also want to ensure that the bidders cannot cheat. The following property
models that there should be no way for a malicious participant to cheat and win
the auction at a chosen price, independently of the other (higher) bids.

Definition 48 (Highest Price Wins (HPW)) An electronic auction protocol
ensures Highest Price Wins (HPW) if for any auction process AP we have for
AP{A,B}[ BσidAσbA | (BσidBσbB )c1,c2 ] where bA is the highest bid, there is no trace
containing the event won for bidder idB with a lower bid.

The idea is the following: We have an honest bidder BσidA who submits the
highest bid. The attacker has completely corrupted another bidder BσidB and
should be unable to win the auction on his behalf using a lower bid.

Note that these definitions can be applied independently of trust assumptions,
and that different assumptions can lead to different results: For example, a
protocol might ensure (HPW) if the auctioneer is trusted, but not otherwise.

4.3.3 — Authentication Properties

The first authentication property we want to define is Non-Repudiation, i.e. that –
once the winner has been announced – a winning bidder cannot claim that the
winning bid was not sent by him. As discussed in [KV09], Non-Repudiation can
be expressed as form of authentication.

Definition 49 (Non-Repudiation) An auction protocol ensures the property of
Non-Repudiation (NR) if for every auction process AP on every possible execution
trace the event won(p,id) is preceded by a corresponding event bid(p,id).

The intuition is simple: If there was a trace on which a bidder would win without
submitting the winning bid, he could try to claim that he did not submit the
winning bid even in a case where he rightfully won.

Note two subtleties with this definition: Firstly, since only honest parties are
explicitly modeled, it is clear that only honest parties can emit events. Hence
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one could think that our definition implicitly assumes some parties to be honest –
however, this is not the case: If we do not trust the party that would normally
emit for example the event won, we can simply remove this party from the model
and replace it with a new party that receives the parameters on a special channel,
and then emits the event using these parameters. This gives the adversary total
control about the events, as it would be the case for a distrusted authority3.
Secondly, if the protocol supports multiple auctions in parallel, we need to use
auction-dependent identifiers for the bidders in our events. This is to ensure that
the protocol only accepts bids that were submitted to the same auction, and that
an attacker cannot submit a bid from a different auction.

The second authentication property we model is Non-Cancellation, i.e. that a
bidder cannot cancel a submitted bid before the winner is announced.

Definition 50 (Non-Cancellation) An auction protocol ensures the property
of Non-Cancellation (NC) if given any auction process AP for the corresponding
process AP{i}

[
(Bσidiσbi)

chc
]
, i.e. containing a bidder i which

— reveals his secret data on channel chc (see Def. 18 on page 59), and which

— submits the highest bid, i.e. ∀j 6= i : bi > bj,
there is no trace containing the events recBid(bi, idi) and won(bw, idw) for another,
lower bid, i.e. bw < bi.

The idea is the following: The bidder idi submits the highest bid, so he should
win. If however there is the possibility that even though his bid was correctly
received he did not win, this would mean that the intruder was able to cancel the
bidder’s bid even after reception. We require the bidder to reveal all his secret
data to the intruder to capture the fact that the bidder himself might want to
cancel his offer, in which case he could use his private data (keys etc.) to do so.

Note that technically we only defined Non-Cancellation for the winning bidder.
This is sufficient since in a first-price auction the other bids do not influence the
outcome. Additionally it can be generalized to other auction types by simply
requiring that the winning price must be correct on all traces. This is to ensure
that no other bids that influence the result can be canceled.

Both properties are independent: A protocol may implement the cancellation
of bids as an official feature. For example after all bids have been submitted,
bidders could be allowed to cancel their bids for a certain period of time, before
the winner is finally announced. At the same time, such a protocol may ensure
non-repudiation of the winner using e.g. signatures. Similarly a protocol may
ensure Non-Cancellation but no Non-Repudiation if the submitted bids cannot be

3Note however that our definition also allows to have trusted parties. It is hence not as strong
as other definitions in the literature, which require sufficient evidence to convince an impartial
judge, and thus usually exclude any trust on parties participating in the protocol execution.
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RF-U RF-WA

RF-SARF-BPS RF
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CR-U CR-WA

CR-SACR-BPS CR
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Figure 4.1 – Relations among the privacy notions. A C−→ B means that under
the assumption C a protocol ensuring A also ensures B.

BPU-C WA-C

SA-CSBPS-C P-C
FPSBA

RF-U-C RF-WA-C

RF-SA-CRF-BPS-C RF-C
FPSBA

CR-U-C CR-WA-C

CR-SA-CCR-BPS-C CR-C
FPSBA

Figure 4.2 – Relations among the privacy notions including corrupted bidders.
A C−→ B means that under the assumption C a protocol ensuring A
also ensures B.

canceled, but are not authenticated, so that the announced winner can successfully
claim not having submitted the winning bid. Again, a protocol might ensure
Non-Cancellation or Non-Repudiation for a certain trust setting, but not for
another.

4.3.4 — Privacy Properties

We consider Privacy, Receipt-Freeness and Coercion-Resistance, and at each level
two independent axes:
— the winner may stay anonymous (Strong Anonymity (SA, RF-SA, CR-SA)

and Weak Anonymity (WA, RF-WA, CR-WA)) or not (Strong Bidding-Price
Secrecy (SBPS, RF-BPS, CR-BPS) and Bidding-Price Unlinkability (BPU,
RF-U, CR-U))
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Figure 4.3 – Relations between the privacy notions with and without corrupted
bidders. A C−→ B means that under the assumption C a protocol
ensuring A also ensures B.

— the losing bids may stay completely private (Strong Bidding-Price Secrecy
(SBPS, RF-BPS, CR-BPS) and Strong Anonymity (SA, RF-SA, CR-SA)), or
there might be list of all bids, which are however unlinkable to the bidders
(Bidding-Price Unlinkability (BPU, RF-U, CR-U) and Weak Anonymity (WA,
RF-WA, CR-WA)).

These definitions are expressed for protocols implementing a first-price sealed-bid
auction. We also provide the generalized notions (P), (RF) and (CR), which can
also be applied to other types of auctions such as second-price auctions. We show
that if a protocol correctly implements a First-Price Sealed-Bid Auction (FPSBA),
these notions coincide with the corresponding Strong Anonymity-notions (SA),
(RF-SA) and (CR-SA). We also propose variants of the above notions including
corrupted bidders. Figures 4.1 on the previous page, 4.2 on the preceding page
and 4.3 provide overviews of the different notions and their relations.

§ 4.3.4.1. Privacy. The first privacy notion we consider was proposed by
Dong et al. [DJP11].

Definition 51 (Strong Bidding-Price Secrecy (SBPS) [DJP11]) An elec-
tronic auction protocol ensures Strong Bidding-Price Secrecy (SBPS) if for any
auction process AP and any bids bA < bC , bB < bC we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbB |BσidCσbC ]
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The intuition is the following: If the losing bids are private, a losing bidder may
change his bid for another losing one without this being noticeable to an attacker.
This is expressed as an observational equivalence between two situations where a
losing bidder changes his bid. Note that BσidC does not necessarily win since in
AP ′ there might be a bidder offering a higher price, but bA, bB < bC guarantees
that BσidA loses.

We propose the following, weaker notion of Bidding-Price Unlinkability, which
allows the losing bids to be public, however their link to the bidders have to be
secret.

Definition 52 (Bidding-Price Unlinkability (BPU)) An electronic auction
protocol ensures Bidding-Price Unlinkability (BPU) if for any auction process AP
and any bids bA < bC , bB < bC we have

AP{A,B,C} [BσidAσbA |BσidBσbB |BσidCσbC ]

≈l AP{A,B,C} [BσidAσbB |BσidBσbA |BσidCσbC ]

In this definition we require two situations in which two losing bidders swap their
bids to be bisimilar. This might be the case if the bids are public, but the real
identity of the bidders is hidden, e.g. through the use of pseudonyms.

Theorem 49 If an auction protocol ensures Strong Bidding-Price Secrecy (SBPS),
it also ensures Bidding-Price Unlinkability (BPU).

Proof As we have (SBPS), suppose for any auction process AP and any bids
bA < bC , bB < bC we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbB |BσidCσbC ]

We have to show that for any auction process AP and any bids bA, bB < bC we
have

AP{A,B,C} [BσidAσbA |BσidBσbB |BσidCσbC ]

≈l AP{A,B,C} [BσidAσbB |BσidBσbA |BσidCσbC ]

Applying the hypothesis, can conclude as follows:

AP{A,B,C} [BσidAσbA |BσidBσbB |BσidCσbC ]
≈l AP{A,B,C} [BσidAσbB |BσidBσbB |BσidCσbC ]
≈l AP{A,B,C} [BσidAσbB |BσidBσbA |BσidCσbC ]

�
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Note that the previous two notions only concern the losing bids, yet we might
also want to preserve the anonymity of the winning bidder.

Definition 53 (Strong Anonymity (SA)) An electronic auction protocol en-
sures Strong Anonymity (SA) if for an auction process AP and any bids bA <
bC , bB < bC we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbC |BσidCσbB ]

Here we require two situations to be bisimilar where two different bidders win
using the same offer, and the losing bidders may also use different bids in the two
cases. This is stronger than Strong Bidding-Price Secrecy (SBPS).

Theorem 50 If an auction protocol ensures Strong Anonymity (SA), it also
ensures Strong Bidding-Price Secrecy (SBPS).

Proof We have to show (SBPS), i.e. that for any auction process AP and any
bids bA < bC , bB < bC we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbB |BσidCσbC ]

Suppose that for any auction process AP and any bids bA < bC , bB < bC we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbC |BσidCσbB ]

Then we can conclude as follows.

AP{A,C} [BσidAσbA |BσidCσbC ]
≈l AP{A,C} [BσidAσbC |BσidCσbB ]
≈l AP{A,C} [BσidAσbB |BσidCσbC ]

�

A slightly weaker notion is Weak Anonymity, which allows the bids to be public,
however their link to the bidders have to be secret, even for the winner.

Definition 54 (Weak Anonymity (WA)) An electronic auction protocol en-
sures Weak Anonymity (WA) if for an auction process AP and any bids bA < bC

we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbC |BσidCσbA ]

Here again two different bidders win using the same bid, but the losing bidder
cannot choose his bid freely as above - the two bidders swap their bids. This
corresponds for example to a situation with a public list of bids in clear, but
where it is private which bidder submitted which bid.
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Theorem 51 If an auction protocol ensures Strong Anonymity (SA), it also
ensures Weak Anonymity (WA).

Proof We have to show that for any auction process AP and any bids bA < bC

we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbC |BσidCσbA ]

Suppose that for any auction process AP and any bids bA < bC , bB < bC we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbC |BσidCσbB ]

We set bB = bA to conclude. �

Weak Anonymity (WA) is stronger than Bidding-Price Unlinkability (BPU) as
even the winner remains anonymous.

Theorem 52 If an auction protocol ensures Weak Anonymity (WA), it also
ensures Bidding-Price Unlinkability (BPU).

Proof We have to show that for any auction process AP and any bids bA <

bC , bB < bC we have

AP{A,B,C} [BσidAσbA |BσidBσbB |BσidCσbC ]

≈l AP{A,B,C} [BσidAσbB |BσidBσbA |BσidCσbC ]

Assume that for any auction process AP and any bids bA < bC we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbC |BσidCσbA ]

Then we can proceed as follows.

AP{A,B,C} [BσidAσbA |BσidBσbB |BσidCσbC ]
≈l AP{A,B,C} [BσidAσbA |BσidBσbC |BσidCσbB ]
≈l AP{A,B,C} [BσidAσbC |BσidBσbA |BσidCσbB ]
≈l AP{A,B,C} [BσidAσbB |BσidBσbA |BσidCσbC ]

�

All these definitions are only meaningful for first-price auctions. To also deal
with second-prices sealed-bid auctions, we can use the following generalization
based on the published result (analogous to the definitions for weighted votes in
Section 3.4).
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Definition 55 (Privacy (P)) An electronic auction protocol ensures Privacy
(P) if for any two auction processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S
| A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al)
we have

APAH |res ≈l APBH |res ⇒ APA ≈l APB

The intuition is quite simple: any two instances (consisting of the same bidders)
which give the same result, for example the same winning bid, have to be bisimilar.

It turns out that for a correct first-price sealed-bid auction protocol which
only publishes the winning price, this coincides with Strong Anonymity.

Definition 56 (First-Price Sealed-Bid Auction (FPSBA)) An electronic
auction protocol implements a First-Price Sealed-Bid Auction (FPSBA) if for any
two auction processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1 | . . . | Al)
and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al) we have

APAH |res ≈l APBH |res

⇔
(

max
i
bi,A = max

i
bi,B ∧ | arg maxi bi,A| = | arg maxi bi,B|

)
This definition requires the protocol to announce the same result if and only if the
maximum among the submitted bids is the same and we have the same number
of tied bids, independently of which bidder submitted which bid. Without the
second condition we would require two situations to give the same result even
if in one there is a tie, but not in the other. This would be too strict for many
protocols that identify and publish ties, but not automatically break them.

It is easy to see that both conditions hold in the case of a correct first-price
sealed-bid auction protocol. This allows us to prove the equivalence of (P) and
(SA).

Theorem 53 If an electronic auction protocol implements a First-Price Sealed-
Bid Auction (FPSBA), then Privacy (P) and Strong Anonymity (SA) are equiva-
lent.

Proof We prove both implications separately:
— Suppose an electronic auction protocol ensures (P), i.e. if for any two auction

processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1 | . . . | Al) and
APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al) we have

APAH |res ≈l APBH |res ⇒ APA ≈l APB

We want to show (SA), i.e. that for any an auction process AP and any bids
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bA < bC , bB < bC we have

APA := AP{A,C} [BσidAσbA |BσidCσbC ]
≈l

AP{A,C} [BσidAσbC |BσidCσbB ] =: APB

We can see that both sides have the number of maximal bids containing the
same price, hence by (FPSBA) we obtain that APAH |res ≈l APBH |res, which
allows to conclude using (P).

— Suppose that we have (SA) and we want to show (P). Suppose APAH |res ≈l
APBH |res, then by (FPSBA) we have the same number of maximal bids
containing the same price on both sides. If the winning bidder(s) did not
change, only losing bids may have changed, and we can use a sequence of
applications of (SA) to conclude (as in the proof of Theorem 50 on page 172).
If the winning bidder(s) did change, (SA) allows us to swap the winning bid,
and then – as above – we can use a sequence of applications of (SA) to conclude
for the other bids. �

These definitions do not include corrupted bidders, which can be realized as follows.
For better readability we mark the differences to the corresponding definitions
without corrupted bidders in bold.

Definition 57 (SBPS with Corrupted Bidders (SBPS-C)) An electronic
auction protocol ensures Strong Bidding-Price Secrecy with Corrupted Bidders
(SBPS-C) if for an auction process AP , any bids bA < bC , bB < bC and any
subset of bidders I with I ∩ {A,C} = ∅ we have

AP{A,C}∪I

[
BσidAσbA |BσidCσbC |

i∈I
(Bσidi)c1i,c2i

]

≈l AP{A,C}∪I

[
BσidAσbB |BσidCσbC |

i∈I
(Bσidi)c1i,c2i

]

This definition is identical to the definition of (SBPS), except that any subset of
the other bidders in the instance can be corrupted.

We can employ the same approach for Bidding-Price Unlinkability, Weak
Anonymity and Weak Anonymity.

Definition 58 (BPU with Corrupted Bidders (BPU-C)) An electronic Auc-
tion protocol ensures Bidding-Price Unlinkability with Corrupted Bidders (BPU-C)
if for an auction process AP , any bids bA < bC , bB < bC and any subset of
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bidders I with I ∩ {A,B,C} = ∅ we have

AP{A,B,C}∪I

[
BσidAσbA |BσidBσbB |BσidCσbC |

i∈I
(Bσidi)c1i,c2i

]

≈l AP{A,B,C}∪I

[
BσidAσbB |BσidBσbA |BσidCσbC |

i∈I
(Bσidi)c1i,c2i

]

Definition 59 (Strong Anonymity with Corrupted Bidders (SA-C)) An
electronic auction protocol ensures Strong Anonymity with Corrupted Bidders
(SA-C) if for an auction process AP , any bids bA < bC , bB < bC and any subset
of bidders I with I ∩ {A,C} = ∅ we have

AP{A,C}∪I

[
BσidAσbA |BσidCσbC |

i∈I
(Bσidi)c1i,c2i

]

≈l AP{A,C}∪I

[
BσidAσbC |BσidCσbB |

i∈I
(Bσidi)c1i,c2i

]

Definition 60 (Weak Anonymity with Corrupted Bidders (WA-C)) An
electronic auction protocol ensures Weak Anonymity with Corrupted Bidders (WA-
C) if for an auction process AP , any bids bA < bC and any subset of bidders
I with I ∩ {A,C} = ∅ we have

AP{A,C}∪I

[
BσidAσbA |BσidCσbC |

i∈I
(Bσidi)c1i,c2i

]

≈l AP{A,C}∪I

[
BσidAσbC |BσidCσbA |

i∈I
(Bσidi)c1i,c2i

]

Analogous to our definitions for eVoting, we can also include corrupted bidders in
the generalized definition.

Definition 61 (Privacy with Corrupted Bidders (P-C)) An electronic auc-
tion protocol ensures Privacy with Corrupted Bidders (P-C) if for any two auction
processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1 | . . . | Al) and APB =
νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al) and any subset of bidders
I ⊆ {1, . . . , n} with ∀i ∈ I : σbi,A = σbi,B we have

APAH |res ≈l APBH |res

⇒ APAI

[
|
i∈I

(Bσidi)c1i,c2i

]
≈l APBI

[
|
i∈I

(Bσidi)c1i,c2i

]

Then we have the following hierarchy between the different notions.

Theorem 54 We have for any X ∈ {P, SBPS, BPU, SA, WA}:
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— Any auction protocol ensuring (X-C) also ensures (X).

— Any auction protocol ensuring (SBPS-C) also ensures (BPU-C).

— Any auction protocol ensuring (SA-C) also ensures (SBPS-C).

— Any auction protocol ensuring (SA-C) also ensures (WA-C).

— Any auction protocol ensuring (WA-C) also ensures (BPU-C).

— If an auction protocol implements (FPSBA), then (P-C) and (SA-C) are
equivalent.

Proof The first proposition is easy to show, we simply consider I = ∅. The
remaining five propositions can be shown analogously to Theorems 49, 50, 51,
52 and 53. We simply add the set of corrupted bidders, the rest of the proofs
remains unchanged. �

§ 4.3.4.2. Receipt-Freeness. A first Receipt-Freeness definition for auction
protocols was proposed by Dong et al. [DJP11]. It is a generalization of Strong
Bidding-Price Secrecy (SBPS).

Definition 62 (Simple Receipt-Freeness (SRF) [DJP11]) An electronic
auction protocol ensures Simple Receipt-Freeness (SRF) if for an auction process
AP and any bids bA < bC , bB < bC there exists a process B′ such that

B′\out(chc,·) ≈l BσidAσbB

and
AP{A,C}

[
(BσidAσbA)chc |BσidCσbC

]
≈l AP{A,C}

[
B′|BσidCσbC

]
The intuition behind this definition is a follows: If the protocol is receipt-free,
an attacker cannot distinguish between a situation where a losing bidder bids
bA and reveals all his secret data on a channel chc, and a situation where the
bidder bids bB and only pretends to reveal his secret data (the fake strategy,
modeled by process B′). Note that Simple Receipt-Freeness (SRF) implies Strong
Bidding-Price Secrecy (SBPS).

Theorem 55 An auction protocol ensuring Simple Receipt-Freeness (SRF) also
ensures Strong Bidding-Price Secrecy (SBPS).

Proof We have to show that for any auction process AP and any bids bA <

bC , bB < bC we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbB |BσidCσbC ]
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By hypothesis we have that for any auction process AP and any bids bA <

bC , bB < bC there exists a process B′ such that

B′\out(chc,·) ≈l BσidAσbB

and
AP{A,C}

[
(BσidAσbA)chc |BσidCσbC

]
≈l AP{A,C}

[
B′|BσidCσbC

]
We apply the context νchcidC (_|!in(chcidC , x)) on both sides, which gives

AP{A,C}
[
(BσidAσbA)chc|BσidCσbC

]\out(chc,·)
≈l

AP{A,C} [B′|BσidCσbC ]\out(chc,·)

By using Lemma 17 on page 60 we obtain

AP{A,C}
[
(BσidAσbA)chc|BσidCσbC

]\out(chc,·)
≡

AP{A,C}

[(
(BσidAσbA)chc

)\out(chc,·)
|BσidCσbC

]
and

AP{A,C}
[
B′|BσidCσbC

]\out(chc,·) ≡ AP{A,C} [(B′)\out(chc,·)|BσidCσbC]
We can now apply Lemma 16 on page 60 and use the fact that labeled bisimilarity
is closed under structural equivalence and obtain

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C}
[
(B′)\out(chc,·)|BσidCσbC

]
where we can use (B′)\out(chc,·) ≈l BσidAσbB to conclude. �

The definition by Dong et al. has several shortcomings: Firstly, it ensures receipt-
freeness only for one losing bidder, whereas in reality several bidders might be
under attack. Secondly, it does not necessary ensures the privacy of other bidders:
Consider for example a protocol that allows a losing bidder to create a fake receipt
for himself, e.g. using a trapdoor to generate a different decryption key, and that
reveals all submitted bids to the participating bidders, e.g. to enable verifiability.
Such a protocol would be secure according to above definition, but it would allow
a coercer to ask a bidder to reveal the other participants bids, violating their
privacy4. To address these issues, we propose the following notions, inspired by
the definitions developed for electronic voting in the previous chapter and the
above privacy notions.

4We observed a similar problem for voting protocols in Example 19 on page 135.
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Definition 63 (RF-XXX) An electronic auction protocol ensures RF-XXX if
for any two auction processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1 |
. . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al) such
that
— if XXX=BPS (Bidding-Price-Secrecy), for J = arg maxi bi,A = arg maxi bi,B

with ∀j ∈ J : bj,A = bj,B = maxi bi,A = maxi bi,B and for any subset I ⊆
{1, . . . , k}, I ∩ J = ∅,

— if XXX=U (Unlinkability), for J = arg maxi bi,A = arg maxi bi,B with ∀j ∈
J : bj,A = bj,B = maxi bi,A = maxi bi,B and a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k}, I ∩ J = ∅,

— if XXX=SA (Strong Anonymity), maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B|, and for any subset I ⊆ {1, . . . , k},

— if XXX=WA (Weak Anonymity), there exists a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k},

there exist processes B′i such that we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B

and
APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′i

]
Consider the first case, (RF-BPS): In this definition any subset of losing bidders
may create fake receipts at the same time, and the other bidders can also change
their bids. It is easy to see that this definition implies Simple Receipt-Freeness
(SRF).

Theorem 56 An auction protocol ensuring Receipt-Free Bidding-Price-Secrecy
(RF-BPS) also ensures Simple Receipt-Freeness (SRF).

Proof By hypothesis we have for any two auction processesAPA= νñ.(Bσid1σb1,A

| . . . | Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S
| A1 | . . . | Al) such that for J = arg maxi bi,A = arg maxi bi,B with ∀j ∈ J : bj,A =
bj,B = maxi bi,A = maxi bi,B and for any subset I ⊆ {1, . . . , k}, I ∩ J = ∅ there
exist processes B′i such that we have ∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B and

APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′i

]

We have to show that for any auction process AP and any bids bA, bB < bC there
exists a process B′ such that

B′\out(chc,·) ≈l BσidAσbB
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and
AP{A,C}

[
(BσidAσbA)chc |BσidCσbC

]
≈l AP{A,C}

[
B′|BσidCσbC

]
We can conclude by setting

APA = AP{A,C} [BσidAσbA |BσidCσbC ] ,
APB = AP{A,C} [BσidAσbC |BσidCσbB ]

and I = {C}, where ∀j ∈ J : bj,A = bj,B = maxi bi,A = maxi bi,B holds. �

Similarly to our privacy definitions, we can also weaken (RF-BPS) and only
consider cases where the bids are merely unlinkable to the bidders, by only
considering permutations of the bids: We obtain (RF-U), which implies (BPU).

Theorem 57 An auction protocol ensuring Receipt-Free Unlinkability (RF-U)
also ensures Bidding-Price Unlinkability (BPU).

Proof We have to show that for any auction process AP and any bids bA <

bC , bB < bC we have

AP{A,B,C} [BσidAσbA |BσidBσbB |BσidCσbC ]

≈l AP{A,B,C} [BσidAσbB |BσidBσbA |BσidCσbC ]

By hypothesis we have for any two auction processes APA = νñ.(Bσid1σb1,A | . . .
| Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S |
A1 | . . . | Al) such that for J = arg maxi bi,A = arg maxi bi,B with ∀j ∈ J : bj,A =
bj,B = maxi bi,A = maxi bi,B and a permutation Π with ∀i : bi,B = bΠ(i),A, and for
any subset I ⊆ {1, . . . , k}, I ∩ J = ∅, there exist processes B′i such that we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B

and
APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′i

]
We can easily see that if we choose

APA = AP{A,B,C} [BσidAσbA |BσidBσbB |BσidCσbC ]
APB = AP{A,B,C} [BσidAσbB |BσidBσbA |BσidCσbC ]

this fits the definition of (RF-U), i.e. we have for J = arg maxi bi,A = arg maxi bi,B
that ∀j ∈ J : bj,A = bj,B = maxi bi,A = maxi bi,B holds, and a permutation Π with
∀i : bi,B = bΠ(i),A, hence we can choose I = ∅ and conclude. �

The third notion (RF-SA) is stronger in the sense that we also allow the winning
bidder to be under attack, i.e. a winner needs to be able to create a fake receipt
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that proves that he lost, and a losing bidder needs to be able to create a fake
receipt that proves that he won. Note that an attacker might ask a losing bidder
to prove that he bid a certain price before the auction is over. If the bidder decides
to bid less and create a fake receipt, the attacker may notice that he got a fake
receipt if for example the winning bid is less than the price on the receipt. This
is however an inherent problem of auctions, but our definition guarantees that a
losing bidder can create a fake receipt for the winning price once the auction is
over and the winning price is known.

Similarly to the other cases above, we have that (RF-SA) implies (SA).

Theorem 58 An auction protocol ensuring Receipt-Free Strong Anonymity (RF-
SA) also ensures Strong Anonymity (SA).

Proof We have to show that for any auction process AP and any bids bA, bB < bC

we have

AP{A,C} [BσidAσbA |BσidCσbC ] ≈l AP{A,C} [BσidAσbC |BσidCσbB ]

By hypothesis we have for any two auction processes APA = νñ.(Bσid1σb1,A | . . .
| Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S |
A1 | . . . | Al) such that maxi bi,A = maxi bi,B and | arg maxi bi,A| = | arg maxi bi,B|,
and for any subset I ⊆ {1, . . . , k} there exist processes B′i such that we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B

and
APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′i

]
We can easily see that if we choose

APA = AP{A,C} [BσidAσbA |BσidCσbC ]
APB = AP{A,C} [BσidAσbC |BσidCσbB ]

this fits the definition of (RF-SA), i.e. we have maxi bi,A = maxi bi,B and
| arg maxi bi,A| = | arg maxi bi,B|, hence we can choose I = ∅ and conclude. �

Again, we can define a weaker version where the list of prices may be public, but
it has to be unlinkable to the bidders, even for the winner: (RF-WA). Similarly
to (RF-SA), we have that (RF-WA) implies (WA).

Theorem 59 An auction protocol ensuring Receipt-Free Weak Anonymity (RF-
WA) also ensures Weak Anonymity (WA).

Proof As the proof of Theorem 58, but with bB = bA. �
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It is easy to see that (RF-SA) implies (RF-BPS) and (RF-WA), and that both
(RF-BPS) and (RF-WA) imply (RF-U).

Theorem 60 We have:
— A protocol ensuring (RF-SA) also ensures (RF-BPS) and (RF-WA).

— A protocol ensuring (RF-BPS) or (RF-WA) also ensures (RF-U).

Proof The only difference between these pairs is the restriction on the bids and
I:
— if XXX=BPS (Bidding-Price-Secrecy), for J = arg maxi bi,A = arg maxi bi,B

with ∀j ∈ J : bj,A = bj,B = maxi bi,A = maxi bi,B and for any subset I ⊆
{1, . . . , k}, I ∩ J = ∅,

— if XXX=U (Unlinkability), for J = arg maxi bi,A = arg maxi bi,B with ∀j ∈
J : bj,A = bj,B = maxi bi,A = maxi bi,B and a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k}, I ∩ J = ∅,

— if XXX=SA (Strong Anonymity), maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B|, and for any subset I ⊆ {1, . . . , k},

— if XXX=WA (Weak Anonymity), there exists a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k},

It is easy to see that SA includes WA, that BPS includes U, that SA includes
BPS, and finally that WA includes U. �

Finally, the following definition is a generalization of Receipt-Free Strong Anonymity
(RF-SA) (analogous to (P) and (SA)): Any two instance giving the same result
have to be bisimilar, even if bidders are under attack.

Definition 64 (Receipt-Freeness (RF)) A auction protocol ensures Receipt-
Freeness (RF) if for any two auction processes APA = νñ.(Bσid1σb1,A | . . . |
Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S
| A1 | . . . | Al) and any subset I ⊆ {1, . . . , k}, there exist processes B′i such that
we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B

and

APAH |res ≈l APBH |res ⇒ APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′i

]
.

Similarly to Privacy (P), we prove that for protocols implementing a First-
Price Sealed-Bid Auction (First-Price Sealed-Bid Auction), Receipt-Free Strong
Anonymity (RF-SA) and Receipt-Freeness coincide.
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Theorem 61 If an electronic auction protocol implements a First-Price Sealed-
Bid Auction (FPSBA), then Receipt-Freeness (RF) and Receipt-Free Strong
Anonymity (RF-SA) are equivalent.

Proof Suppose an electronic auction protocol ensures (RF), i.e. if for any two
auction processes APA = νñ′.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1 | . . . | Al)
and APB = νñ′.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al) and any subset
I ⊆ {1, . . . , k}, there exist processes B′i such that we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B

and

APAH |res ≈l APBH |res ⇒ APAI

[
|
i∈I

(Bσidiσbi,A)chci
]
≈l APBI

[
|
i∈I
B′i

]
.

We want to show (RF-SA), i.e. for any two auction processesAPA= νñ′.(Bσid1σb1,A

| . . . | Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ′.(Bσid1σb1,B | . . . | Bσidkσbk,B |
S |A1 | . . . |Al) such that maxi bi,A = maxi bi,B and | arg maxi bi,A| = | arg maxi bi,B|,
and for any subset I ⊆ {1, . . . , k} there exist processes B′i such that we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B

and
APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′i

]
Assume such APA and APB, then maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B|, hence by (FPSBA) we obtain that APAH |res ≈l APBH |res, which
allows to conclude using (RF).

Suppose that we have (RF-SA) and we want to show (RF). By (FPSBA) if we
haveAPAH |res ≈l APBH |res, we have maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B|, hence we can conclude using (RF-SA). �

Note that the above definitions implicitly assumes that all bidders not under
attack are honest. If one also wants to consider corrupted bidders, we can again
replace some of the honest bidders Bσidiσbi,X by corrupted bidders (Bσidi)c1i,c2i

as follows. Again, differences to the definition without corrupted bidders are
marked in bold.

Definition 65 (RF-XXX-C) An electronic auction protocol ensures RF-XXX-
C if for any two auction processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S
| A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al)
such that
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— if XXX=BPS (Bidding-Price-Secrecy), for J = arg maxi bi,A = arg maxi bi,B
with ∀j ∈ J : bj,A = bj,B = maxi bi,A = maxi bi,B and for any subset I ⊆
{1, . . . , k}, I ∩ J = ∅ there exist processes B′i such that for any subset
H ⊆ {1, . . . , k} with H ∩ J = ∅ and

— if XXX=U (Unlinkability), for J = arg maxi bi,A = arg maxi bi,B with ∀j ∈
J : bj,A = bj,B = maxi bi,A = maxi bi,B and a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k}, I ∩ J = ∅ there exist processes B′i
such that for any subset H ⊆ {1, . . . , k} with H ∩ J = ∅ and

— if XXX=SA (Strong Anonymity), maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B| and for any subset I ⊆ {1, . . . , k} there exist processes B′i such
that for any subset H ⊆ {1, . . . , k}

— if XXX=WA (Weak Anonymity), there exists a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k} there exist processes B′i such that
for any subset H ⊆ {1, . . . , k}

with ∀h ∈ H : σbh,A = σbh,B and H ∩ I = ∅, we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B

and

APAI∪H

[
|
i∈I

(Bσidiσvi,A)chci |
h∈H

(Bσidh)c1h,c2h

]

≈l APBI∪H

[
|
i∈I
B′i |
h∈H

(Bσidh)c1h,c2h

]

Similarly our generalized definition looks as follows.

Definition 66 (Receipt-Freeness with Corrupted Bidders (RF-C)) An
auction protocol ensures Receipt-Freeness with Corrupted Bidders (RF-C) if
for any two auction processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1

| . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al) and
any subset I ⊆ {1, . . . , k} there exist processes B′i such that for any subset
H ⊆ {1, . . . , n} with ∀h ∈ H : σbh,A = σbh,B and H ∩ I = ∅, we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B
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and
APAH |res ≈l APBH |res

⇓

APAI∪H

[
|
i∈I

(Bσidiσvi,A)chci |
h∈H

(Bσidh)c1h,c2h

]
≈l

APBI∪H

[
|
i∈I
B′i |
h∈H

(Bσidh)c1h,c2h

]
.

Then again we have the following hierarchy between the different notions.

Theorem 62 We have for any XXX ∈ {BPS, U, SA, WA}:
— Any auction protocol ensuring (RF-XXX-C) also ensures (RF-XXX).

— Any auction protocol ensuring (RF-C) also ensures (RF).

— Any auction protocol ensuring (RF-BPS-C) also ensures (RF-U-C).

— Any auction protocol ensuring (RF-SA-C) also ensures (RF-BPS-C).

— Any auction protocol ensuring (RF-SA-C) also ensures (RF-WA-C).

— Any auction protocol ensuring (RF-WA-C) also ensures (RF-U-C).

— If an auction protocol implements (FPSBA), then (RF-C) and (RF-SA-C) are
equivalent.

Proof The first two propositions follow directly for H = ∅. The remaining
propositions can be shown analogously to Theorems 60 and 61. We simply add
the set of corrupted bidders, the rest of the proofs remains unchanged. �

§ 4.3.4.3. Coercion-Resistance. Coercion-Resistance is a stronger property
than receipt-freeness: The intruder may not only ask for a receipt, but is also
allowed to interact with the bidder during the bidding process and to give orders.
We can generalize the previously discussed Receipt-Freeness notions to Coercion-
Resistance as follows.

Definition 67 (CR-XXX) An electronic auction protocol ensures CR-XXX if
for any two auction processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1 |
. . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al) such
that
— if XXX=BPS (Bidding-Price Secrecy), for J = arg maxi bi,A = arg maxi bi,B

with ∀j ∈ J : bj,A = bj,B = maxi bi,A = maxi bi,B and for any subset I ⊆
{1, . . . , k}, I ∩ J = ∅,

— if XXX=U (Unlinkability), for J = arg maxi bi,A = arg maxi bi,B with ∀j ∈
J : bj,A = bj,B = maxi bi,A = maxi bi,B and a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k}, I ∩ J = ∅,
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— if XXX=SA (Strong Anonymity), maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B|, and for any subset I ⊆ {1, . . . , k},

— if XXX=WA (Weak Anonymity), there exists a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k},

there exist processes B′i such that for any contexts Ci, i ∈ I with Ci = νc1.νc2.(_|Pi),
ñ ∩ fn(C) = ∅ and

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]

we have
∀i ∈ I : Ci

[
B′i
]\out(chci,·) ≈l Bσidiσvi,B

and
APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci
[
B′i
]]

The difference to the previous receipt-freeness definitions is that the attacked
bidders do not only reveal their data on channel c1, but also take orders on
channel c2. The context Ci models the attacker that tries to force them to bid
the price bi,A (this is expressed by the condition on Ci). The protocol is hence
coercion-resistant if there exists a counter-strategy B′ which allow the bidders to
bid bi,B instead without the attacker noticing.

Note that the hierarchy we already observed for Privacy and Receipt-Freeness
also holds on the level of Coercion-Resistance.

Theorem 63 We have:
— A protocol ensuring (CR-SA) also ensures (CR-BPS) and (CR-WA).

— A protocol ensuring (CR-BPS) or (CR-WA) also ensures (CR-U).

Proof Similar to Theorem 60: We only need to consider the different parameters,
which are specializations of each other. �

For non sealed-bid first-price auctions, we obtain the following definition.

Definition 68 (Coercion-Resistance (CR)) An electronic auction protocol
ensures Coercion-Resistance (CR) if for any two auction processes APA =
νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B

| . . . | Bσidkσbk,B | S | A1 | . . . | Al) and any subset I ⊆ {1, . . . , k}, there ex-
ists processes B′i such that for any contexts Ci, i ∈ I with Ci = νc1.νc2.(_|Pi),
ñ ∩ fn(C) = ∅ and

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]
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we have
∀i ∈ I : Ci

[
B′i
]\out(chci,·) ≈l Bσidiσvi,B

and
APAH |res ≈l APBH |res

⇓

APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci [B′i]

]

Again the contexts Ci model the part of the adversary interacting with the
coerced bidders. The contexts are limited to force the bidders to bid their bids
from the first instance to ensure that both instances with coercion result in
the same election outcome, and are not trivially distinguishable. Similarly to
Receipt-Freeness we can prove that for protocols implementing a First-Price
Sealed-Bid Auction (FPSBA), Coercion-Resistant Strong Anonymity (CR-SA)
and Coercion-Resistance (CR) coincide.

Theorem 64 If an electronic auction protocol implements a First-Price Sealed-
Bid Auction (FPSBA), then Coercion-Resistant Strong Anonymity (CR-SA) and
Coercion-Resistance (CR) are equivalent.

Proof Suppose an electronic auction protocol ensures (CR), i.e. if for any two
auction processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1 | . . . | Al)
and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al) and any subset
I ⊆ {1, . . . , k}, there exists processes B′i such that for any contexts Ci, i ∈ I with
Ci = νc1.νc2.(_|Pi), ñ ∩ fn(C) = ∅ and

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]

we have
∀i ∈ I : Ci

[
B′i
]\out(chci,·) ≈l Bσidiσvi,B

and
APAH |res ≈l APBH |res

⇓

APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci [B′i]

]
We want to show (CR-SA), i.e. that for any two auction processes APA =
νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B

| . . . | Bσidkσbk,B | S | A1 | . . . | Al) such that maxi bi,A = maxi bi,B and
| arg maxi bi,A| = | arg maxi bi,B|, and for any subset I ⊆ {1, . . . , k} there ex-
ist processes B′i such that for any contexts Ci, i ∈ I with Ci = νc1.νc2.(_|Pi),
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ñ ∩ fn(C) = ∅ and

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]

we have ∀i ∈ I : Ci [B′i]
\out(chci,·) ≈l Bσidiσvi,B and

APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci
[
B′i
]]

Assume such APA and APB, then maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B|, hence by (FPSBA) we obtain that APAH |res ≈l APBH |res, which
allows to conclude using (CR).

Suppose that we have (CR-SA) and we want to show (CR). By (FPSBA) if we
haveAPAH |res ≈l APBH |res, we have maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B|, hence we can conclude using (CR-SA). �

We also note that similarly to the case of electronic voting, Coercion-Resistance
is stronger than Receipt-Freeness.

Theorem 65 An electronic auction protocol ensuring Coercion-Resistance (CR)
also ensures Receipt-Freeness (RF).

Proof Assume that for any two auction processes APA = νñ.(Bσid1σb1,A | . . . |
Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S |
A1 | . . . | Al) and any subset I ⊆ {1, . . . , k}, there exists processes B′i such that
for any contexts Ci, i ∈ I with Ci = νc1.νc2.(_|Pi), ñ ∩ fn(C) = ∅ and

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]

we have
∀i ∈ I : Ci

[
B′i
]\out(chci,·) ≈l Bσidiσvi,B

and
APAH |res ≈l APBH |res

⇓

APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci [B′i]

]
We have to show that for any two auction processes APA = νñ.(Bσid1σb1,A | . . .
| Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S
| A1 | . . . | Al) and any subset I ⊆ {1, . . . , k}, there exist processes B′i such that
we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B
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and

APAH |res ≈l APBH |res ⇒ APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′i

]
.

Let Ci, i ∈ I be evaluation contexts with Ci = νc1.νc2.(_|Pi), ñ ∩ fn(C) = ∅ and

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]

Note that such a C can be constructed directly from the bidders process B. By
hypothesis we know that there are closed plain processes B′i such that

∀i ∈ I : Ci
[
B′i
]\out(chci,·) ≈l Bσidiσvi,B

and
APAH |res ≈l APBH |res

⇓

APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci [B′i]

]

We have to find other processes B′′i such that

∀i ∈ I : B′′\out(chci,·)i ≈l Bσidiσbi,B

and

APAH |res ≈l APBH |res ⇒ APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′′i

]

Let ∀i : B′′i = Ci[B′i]. This directly fulfills the first requirement. Assume
APAH |res ≈l APBH |res. We now use the hypotheses

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]

and
APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci
[
B′i
]]

As labeled bisimilarity is transitive, we can conclude

APAI

[
|
i∈I

(Bσidiσbi,A)chci
]
≈l APBI

[
|
i∈I
Ci
[
B′i
]]

which gives us the desired result for B′′i = Ci[B′i]. �

This also holds for (CR-XXX).
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Theorem 66 An electronic auction protocol ensuring (CR-XXX) also ensures
(RF-XXX) for any XXX ∈ {BPS, U, SA, WA}.

Proof Assume that for any two auction processes APA = νñ.(Bσid1σb1,A | . . . |
Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S |
A1 | . . . | Al) such that
— if XXX=BPS (Bidding-Price Secrecy), for J = arg maxi bi,A = arg maxi bi,B

with ∀j ∈ J : bj,A = bj,B = maxi bi,A = maxi bi,B and for any subset I ⊆
{1, . . . , k}, I ∩ J = ∅,

— if XXX=U (Unlinkability), for J = arg maxi bi,A = arg maxi bi,B with ∀j ∈
J : bj,A = bj,B = maxi bi,A = maxi bi,B and a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k}, I ∩ J = ∅,

— if XXX=SA (Strong Anonymity), maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B|, and for any subset I ⊆ {1, . . . , k},

— if XXX=WA (Weak Anonymity), there exists a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k},

there exist processesB′i such that for any contexts Ci, i ∈ I with Ci = νc1.νc2.(_|Pi),
ñ ∩ fn(C) = ∅ and

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]

we have
∀i ∈ I : Ci

[
B′i
]\out(chci,·) ≈l Bσidiσvi,B

and
APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci
[
B′i
]]

We have to show that for any two auction processes APA = νñ.(Bσid1σb1,A | . . .
| Bσidkσbk,A | S | A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S
| A1 | . . . | Al) such that
— if XXX=BPS (Bidding-Price-Secrecy), for J = arg maxi bi,A = arg maxi bi,B

with ∀j ∈ J : bj,A = bj,B = maxi bi,A = maxi bi,B and for any subset I ⊆
{1, . . . , k}, I ∩ J = ∅,

— if XXX=U (Unlinkability), for J = arg maxi bi,A = arg maxi bi,B with ∀j ∈
J : bj,A = bj,B = maxi bi,A = maxi bi,B and a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k}, I ∩ J = ∅,

— if XXX=SA (Strong Anonymity), maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B|, and for any subset I ⊆ {1, . . . , k},

— if XXX=WA (Weak Anonymity), there exists a permutation Π with ∀i : bi,B =
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bΠ(i),A, and for any subset I ⊆ {1, . . . , k},

there exist processes B′i such that we have

∀i ∈ I : B′\out(chci,·)i ≈l Bσidiσbi,B

and
APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′i

]
Since the conditions on the σbi,X and I depending on the parameter XXX are the
same in both cases (CR and RF), we can proceed independently of XXX. Let
Ci, i ∈ I be evaluation contexts with Ci = νc1.νc2.(_|Pi), ñ ∩ fn(C) = ∅ and

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]

Note that such a C can be constructed directly from the bidders process B. By
hypothesis we know that there are closed plain processes B′i such that

∀i ∈ I : Ci
[
B′i
]\out(chci,·) ≈l Bσidiσvi,B

and
APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci
[
B′i
]]

We have to find other processes B′′i such that

∀i ∈ I : B′′\out(chci,·)i ≈l Bσidiσbi,B

and
APAI

[
|
i∈I

(Bσidiσvi,A)chci
]
≈l APBI

[
|
i∈I
B′′i

]

Let ∀i : B′′i = Ci[B′i]. This directly fulfills the first requirement. We now use the
hypotheses

APAI

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]]
≈l APAI

[
|
i∈I

(Bσidiσbi,A)chci
]

and
APAI

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]]
≈l APBI

[
|
i∈I
Ci
[
B′i
]]

As labeled bisimilarity is transitive, we can conclude

APAI

[
|
i∈I

(Bσidiσbi,A)chci
]
≈l APBI

[
|
i∈I
Ci
[
B′i
]]
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which gives us the desired result for B′′i = Ci[B′i]. �

We can also include corrupted bidders as follows. Again, differences to the
definition without corrupted bidders are marked in bold.

Definition 69 (CR-XXX-C) An electronic auction protocol ensures CR-XXX-
C if for any two auction processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S
| A1 | . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al)
such that
— if XXX=BPS (Bidding-Price Secrecy), for J = arg maxi bi,A = arg maxi bi,B

with ∀j ∈ J : bj,A = bj,B = maxi bi,A = maxi bi,B and for any subset I ⊆
{1, . . . , k} with I ∩ J = ∅ there exist processes B′i such that for any subset
H ⊆ {1, . . . , k} with H ∩ J = ∅ and

— if XXX=U (Unlinkability), for J = arg maxi bi,A = arg maxi bi,B with ∀j ∈
J : bj,A = bj,B = maxi bi,A = maxi bi,B and a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k} with I ∩ J = ∅ there exist processes
B′i such that for any subset H ⊆ {1, . . . , k} with H ∩ J = ∅ and

— if XXX=SA (Strong Anonymity), maxi bi,A = maxi bi,B and | arg maxi bi,A| =
| arg maxi bi,B| and for any subset I ⊆ {1, . . . , k} there exist processes B′i such
that for any subset H ⊆ {1, . . . , k}

— if XXX=WA (Weak Anonymity), there exists a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊆ {1, . . . , k} there exist processes B′i such that
for any subset H ⊆ {1, . . . , k}

with ∀h ∈ H : σbh,A = σbh,B and H ∩ I = ∅ we have that for any contexts
Ci, i ∈ I with Ci = νc1.νc2.(_|Pi), ñ ∩ fn(C) = ∅ and

APAI∪H

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]
|

h∈H
(Bσidh)c1h,c2h

]

≈l APAI∪H

[
|
i∈I

(Bσidiσbi,A)chci |
h∈H

(Bσidh)c1h,c2h

]

we have
∀i ∈ I : Ci

[
B′i
]\out(chci,·) ≈l Bσidiσvi,B

and

APAI∪H

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]
|

h∈H
(Bσidh)c1h,c2h

]

≈l APBI∪H

[
|
i∈I
Ci
[
B′i
]
|

h∈H
(Bσidh)c1h,c2h

]

For non sealed-bid first-price auctions, we obtain the following definition.
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Definition 70 (Coercion-Resistance with Corrupted Bidders (CR-C))
An auction protocol ensures Coercion-Resistance with Corrupted Bidders (CR-C)
if for any two auction processes APA = νñ.(Bσid1σb1,A | . . . | Bσidkσbk,A | S | A1

| . . . | Al) and APB = νñ.(Bσid1σb1,B | . . . | Bσidkσbk,B | S | A1 | . . . | Al) and
any subset I ⊆ {1, . . . , k}, there exists processes B′i such that for any subset
H ⊆ {1, . . . , n} with ∀h ∈ H : σbh,A = σbh,B and H ∩ I = ∅ we have that
for any contexts Ci, i ∈ I with Ci = νc1.νc2.(_|Pi), ñ ∩ fn(C) = ∅ and

APAI∪H

[
|
i∈I
Ci
[
(Bσidiσbi,A)c1,c2

]
|

h∈H
(Bσidh)c1h,c2h

]

≈l APAI∪H

[
|
i∈I

(Bσidiσbi,A)chci |
h∈H

(Bσidh)c1h,c2h

]

we have
∀i ∈ I : Ci

[
B′i
]\out(chci,·) ≈l Bσidiσvi,B

and
APAH |res ≈l APBH |res

⇓

APAI∪H

[
|
i∈I
Ci
[
(Bσidiσvi,A)c1,c2

]
|

h∈H
(Bσidh)c1h,c2h

]
≈l

APBI∪H

[
|
i∈I
Ci [B′i] |

h∈H
(Bσidh)c1h,c2h

]
Then again we have the following hierarchy between the different notions.

Theorem 67 We have for any XXX ∈ {BPS, U, SA, WA}:
— Any auction protocol ensuring (CR-XXX-C) also ensures (CR-XXX).

— Any auction protocol ensuring (CR-C) also ensures (CR).

— Any auction protocol ensuring (CR-BPS-C) also ensures (CR-U-C).

— Any auction protocol ensuring (CR-SA-C) also ensures (CR-BPS-C).

— Any auction protocol ensuring (CR-SA-C) also ensures (CR-WA-C).

— Any auction protocol ensuring (CR-WA-C) also ensures (CR-U-C).

— If an auction protocol implements (FPSBA), then (CR-C) and (CR-SA-C)
are equivalent.

Proof The first two propositions follow directly for H = ∅. The remaining
propositions can be shown analogously to Theorems 63 on page 186 and 64 on
page 187. We can add the set of corrupted bidders without changing the rest of
the proofs. �

Figure 4.3 on page 170 sums up the relations between all the above notions.
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4.3.5 — Case Studies

We applied the previously explained definitions on three case studies using ProVerif:
the protocol by Curtis et al. [CPS07], the protocol by Brandt [Bra06] and the
protocol by Sako [Sak00].

§ 4.3.5.1. Protocol by Curtis, Pierprzyk and Seruga. The protocol by
Curtis et al. [CPS07] was designed to support sealed-bid first- and second price
auctions while guaranteeing fairness, privacy, verifiability and non-repudiation.

Description. The main idea of the protocol is the following: The bidders register
with a trusted Registration Authority (RA) using a Public-Key Infrastructure
(PKI), which issues pseudonyms that will then be used to submit bids to the Seller
(S). It is split into three phases: Registration, Bidding, and Winner determination.

1. Registration: Each bidder sends his identity, a hash h(bi) of his bidding price
bi and a signature of h(bi) to the RA. The RA checks the identity and the
signature using the PKI, and replies with an encrypted (using the bidder’s
public key) and signed message containing a newly generated pseudonym p

and the hashed bid h(bi).
2. Bidding: The RA generates a new symmetric key k. Each bidder will send
c = EncpkS (bi), his bid bi encrypted with the seller’s public key, and a
signature of c, together with his pseudonym to the RA. The RA will reply
with a signature on c, and encrypts the bidders message, together with the
hashed bid h(bi) from phase one, using the symmetric key k. This encrypted
message is then sent to the seller.

3. Winner determination: After all bids have been submitted, the RA will
reveal the symmetric key k to the seller. The seller can then decrypt the bids,
verify the correctness of the hash and determine the winner. To identify the
winner using the pseudonym he can ask the RA to reveal the true identity.

Remark Note that the protocol does not specify how exactly the winner is
determined. The seller obtains all bids in clear, and can thus apply any auction
function. This may be a simple first-price auction (i.e. the highest bid wins), but
also second-price auctions or other auction functions are supported. However, as
some of our properties rely on the event won, we need to specify some auction
function to be able to perform the verification. Hence we assume – for simplicity –
a first-price auction in the following.

Formal Model. We modeled the protocol in ProVerif using an equational theory
inspired by the equations given in the original paper [CPS07], It contains equations
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1 l e t b idder (b : int , k : skey , rk : pkey , ak : pkey , chR : channel ) =
2 (∗ f i r s t message to r e g i s t r a r : s i gned hash o f bid ∗)
3 l e t ha = h( intToBit (b ) ) in
4 out (chR , ( ha , s i gn (ha , k ) ) ) ;
5 (∗ answer conta in ing pseudonym P ∗)
6 in (chR ,m: b i t s t r i n g ) ;
7 l e t (P: b i t s t r i n g , hc : b i t s t r i n g )
8 = checks ign ( dec (m, k ) , rk ) in
9 i f ha = hc then
10 (∗ bidding ∗)
11 l e t c = enc ( intToBit (b ) , ak ) in
12 event bid (b ,P) ;
13 out (chR , (P, c , s i gn ( c , k ) ) ) .

Listing 4.1 – The bidder.

for symmetric encryption (functions senc and sdec), asymmetric encryption5

(functions enc, dec and pk – which generates the public key corresponding to a
secret key) and signatures (functions sign, checksign and getmessage):

sdec(senc(m, key), key) = m

dec(enc(m, pk(sk)), sk) = m

checksign(sign(m, sk), pk(sk)) = m

getmessage(sign(m, sk)) = m

Listing 4.1 shows our model of the bidder, Listing 4.2 on the following page the
code of the registrar. Here we employ ProVerif syntax, i.e. including types for
the variables and parameters for the subprocesses, and type conversion functions
(e.g. intToBit converting an integer to a bitstring). For a detailed explanation,
see the ProVerif manual [BSC13]. Listing 4.3 on page 197 gives the code for the
auctioneer, and Listing 4.4 on page 197 shows the code for an instance with two
bidders. The ProVerif code used for each of the verifications below is available
online [Dre13].

Analysis. We assume an honest RA and an honest seller.
Non-Repudiation (NR): To prove (NR), we have to show that on each possible

trace the event won(p,id) is preceded by the event bid(p,id). ProVerif can
verify such properties using queries, in this case using the query

query p:price,id:identity;
event(won(p,id)) ==> event(bid(p,id)).

5Note that in this model the asymmetric encryption is not probabilistic (following the original
equation by Curtis et al.), however the use of a probabilistic encryption scheme does not change
our results.
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1 l e t s u b r e g i s t r a r ( k : skey , bk : pkey , ak : pkey , syk : sykey ,
2 chS : channel , chA : channel , chR : channel ) =
3 (∗ s igned hash o f bid from bidder ∗)
4 in (chR , ( ha : b i t s t r i n g , sa : b i t s t r i n g ) ) ;
5 i f ha = checks ign ( sa , bk ) then
6 (∗ c r e a t e pseudonym ∗)
7 new p : b i t s t r i n g ;
8 out (chR , enc ( s i gn ( ( p , ha ) , k ) , bk ) ) ;
9 (∗ r e c e i v e bid ∗)

10 in (chR , ( p1 : b i t s t r i n g , c : b i t s t r i n g , sc : b i t s t r i n g ) ) ;
11 i f p = p1 && checks ign ( sc , bk ) = c then
12 event recBid (ha , p ) ;
13 (∗ con f i rmat ion to bidder ∗)
14 out (chR , ( c , s i gn ( c , k ) ) ) ;
15 (∗ encrypted bid to auc t i onee r ∗)
16 out (chA , senc ( ( p , c , ha ) , syk ) ) ;
17 (∗ synchron i za t i on ∗)
18 out ( chS , ack ) .
19
20 l e t r e g i s t r a r ( k : skey , bk1 : pkey , . . . , bkn : pkey , ak : pkey ,
21 chA : channel , chR : channel ) =
22 (∗ c r e a t e symmetric key ∗)
23 new syk : sykey ;
24 (∗ channel f o r synchron i za t i on ∗)
25 new chS : channel ;
26 (∗ subproce s s e s ∗)
27 s u b r e g i s t r a r (k , bk1 , ak , syk , chS , chA , chR) |
28 . . .
29 s u b r e g i s t r a r (k , bkn , ak , syk , chS , chA , chR) |
30 (∗ r e v e a l symmetric key a f t e r synchron i za t i on ∗)
31 in ( chS , x1 : b i t s t r i n g ) ; . . . ; in ( chS , xn : b i t s t r i n g ) ;
32 out (chA , syk ) .

Listing 4.2 – The registrar.
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1 l e t auc t i onee r ( k : skey , pkR : pkey , chA : channel )=
2 (∗ r e c e i v e b ids and sym . key ∗)
3 in (chA , x1 : b i t s t r i n g ) ;
4 . . .
5 in (chA , xn : b i t s t r i n g ) ;
6 in (chA , sk : sykey ) ;
7 (∗ decrypt ion ∗)
8 l e t ( p1 : b i t s t r i n g , c1 : b i t s t r i n g , ha1 : b i t s t r i n g )
9 = sdec ( x1 , sk ) in
10 l e t bid1 : b i t s t r i n g=dec ( c1 , k ) in
11 . . .
12 l e t (pn : b i t s t r i n g , cn : b i t s t r i n g , han : b i t s t r i n g )
13 = sdec (xn , sk ) in
14 l e t bidn : b i t s t r i n g = dec ( cn , k ) in
15 (∗ determine winner ∗)
16 i f h ( bid1 ) = ha1 && . . . && h( bidn ) = han then
17 i f geq ( b i tToInt ( bid1 ) , b i tToInt ( bid2 ) ) && . . . &&
18 geq ( bi tToInt ( bid1 ) , b i tToInt ( bidn ) ) then
19 event won( bitToInt ( bid1 ) , p1 ) ;
20 out (chW, p1 )
21 e l s e
22 i f geq ( b i tToInt ( bid2 ) , b i tToInt ( bid1 ) ) && . . . &&
23 geq ( bi tToInt ( bid2 ) , b i tToInt ( bidn ) ) then
24 event won( bitToInt ( bid2 ) , p1 ) ;
25 out (chW, p2 )
26 e l s e
27 . . .

Listing 4.3 – The auctioneer.

1 proce s s
2 (∗ c r e a t e keys ∗)
3 new skb1 : skey ; new skb2 : skey ; new ska : skey ; new skr : skey ;
4 (∗ pub l i c keys are pub l i shed ∗)
5 out ( chPKI , pk ( skb1 ) ) |
6 out ( chPKI , pk ( skb2 ) ) |
7 out ( chPKI , pk ( ska ) ) |
8 out ( chPKI , pk ( skr ) ) |
9 (∗ two bidders , the r e g i s t r a r and the auc t i onee r ∗)
10 bidder (b1 , skb1 , pk ( skr ) , pk ( ska ) , chR) |
11 bidder (b2 , skb2 , pk ( skr ) , pk ( ska ) , chR) |
12 r e g i s t r a r ( skr , pk ( skb1 ) , pk ( skb2 ) , pk ( ska ) , chA , chR) |
13 auc t i onee r ( ska , pk ( skr ) , chA)

Listing 4.4 – The main process for an instance with two bidders.
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This query means that for any value p of type price and any id of type identity,
if the event won(p,id) is recorded, it is preceded by the event bid(p,id). In this
case we use the pseudonyms (of type bitstring) to identify the bidders, hence
the query looks like this:

query p:price,pseudo:bitstring;
event(won(p,pseudo)) ==> event(bid(p,pseudo)).

ProVerif finds the following attack: Since the channel between the Registration
Authority and the Seller is not protected, anybody can pretend to be the RA and
submit false bids, encrypted with a self-chosen symmetric key. After all false bids
are submitted, the attacker reveals the symmetric key and the seller will decrypt
the bogus bids. Hence the event won(p,id) can be emitted on a trace without any
event bid(p,id). We propose a solution to address this problem: If the messages
from the RA to the seller are signed, the attacker cannot impersonate the RA any
more and ProVerif is able to prove Non-Repudiation for the accordingly modified
protocol.

Non-Cancellation (NC): Here we have to show that even if a bidder reveals
his secret data to the intruder, the intruder cannot cancel a submitted bid, i.e.
there is no trace with the events recBid(p_1,id_a) and won(p_2,id_b) where
p_1 > p_2. To verify this we need to model at least two distinct prices, which
can be implemented using constants, i.e. by setting p_1 = max_price and p_2
= smaller_price, where max_price and smaller_price are two constants such
that max_price > smaller_price6. Then we want to test the conjunction (not
the precedence as above) of two events, which is not possible directly in ProVerif.
A well-known solution is to replace the underlying events with messages over a
private channel to a newly added processes which will call a conjunction event
recBid_and_won once he received all the messages. Then we could use the
following query:

query event(recBid_and_won(p_1, id_a, p_2, id_b)).

where the first two parameters are from the event recBid(p_1,id_a) and the
second from the event won(p_2,id_b), here instantiated with price constants as
explained above and two constants for two different bidders. However, as above,
we use the pseudonyms in our events recBid and won, as for example to seller
(who executes the event won) does not know the real identity of a bidder. Hence
we cannot have won(p_2,id_b), but only won(p_2,pseudonym). To associate the
pseudonyms with bidders and still be able to execute the above query, we added

6Note that most auction protocols assume a finite number of possible prices anyway, which
we can model using a list of constants.
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an event getAlias(id,p) (and an output on a private channel to the process
checking for the events) executed by the registrar when he attributes a pseudonym
p to the identity id. This allows us to link pseudonyms to identities, hence the
process checking for the conjunction can execute the event with the real identities
as described above by linking them to the pseudonyms using his input from the
RA.

For the original protocol, ProVerif finds a similar attack to the one described
above: An attacker can delete the messages sent by the the RA to the seller, and
choose a symmetric key and send bogus messages containing prices of his choice
instead. When he reveals the symmetric key, a bidder of his choice will win, hence
there will be an event won(smaller_price,id_b) for a smaller price than the one
recorded by recBid(max_price,id_a). Even if we add signatures as proposed
above, ProVerif still comes up with an attack: A dishonest bidder might submit a
first bid triggering the event recBid for this bid, delete the forwarded message
to the seller, and then submit a second bid at a different price7. A first attempt
to fix this issue would be – as proposed in the original paper – by including the
number of bids in the message where the RA reveals the symmetric key. This
would allow the seller to verify if he received the correct number of bids. However
the attack still works if two auctions take place in parallel8: Since the RA uses
the same PKI in both cases, he will use the same keys. The malicious bidder
could register in the second auction, obtain the signed bid and replace his original
bid with this message. The new message will include a different pseudonym, but
the seller has no means of verifying if a pseudonym corresponds to the current
auction. A solution would be to use different keys for different auctions (which
need to be set up in a secure way), but we were unable to verify the resulting
protocol because ProVerif cannot maintain state information, which is necessary
to model the counting of messages.

Noninterference: It is clear that the protocol does not ensure Strong Nonin-
terference (SN) since an attacker can simply count the number of messages to
determine the number of participants. However we can check Weak Noninter-
ference (WN), i.e. that any two instances containing the same bidders and only
differing in the bids are bisimilar up to the end of the bidding phase, using the
following query in ProVerif:

noninterf b_1, ..., b_n.

This query will ask ProVerif to verify strong secrecy of the variables b_1, ...,

7Note that this only works if he is allowed to submit several bids in the same auction, which
is however not forbidden in the original protocol description.

8Note that this attack also works is he is only allowed to submit one single bid per auction,
since he is submitting to different auctions.
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b_n., i.e. to check that any two instances of the protocol that only differ in these
variables are bisimilar. For the original protocol ProVerif finds an attack which is
based on the first message, which includes the hashed bidding price. An attacker
simply hashes the possible values and compares the result. If we encrypt this
message using the RA’s public key, ProVerif is able to prove Weak Noninterference
(WN). This modification was proposed in the original paper to achieve anonymity
of bidders, but turns out to be also necessary to ensure fairness.

Highest Price Wins (HPW): Here we have to show that a malicious bidder
cannot win the auction at a chosen price, even if another bidder submitted a higher
bid. Again, we will assume that we have a finite number of possible prices. Then
we can check the property using ProVerif by modeling two bidders, the first one
bidding max_price, and the second one is corrupted by the adversary (according
to Definition 19 on page 59). To prevent the adversary from just winning using
the highest possible price (which would not necessarily correspond to an attack),
we declare the constant max_price private9. We also have to be sure that the
protocol does not leak max_price before the end of the bidding phase (which
would contradict the intention of declaring it private). As we already showed
Weak Noninterference (WN), we can be sure that this is not the case. Hence we
could check if the event won is reachable for the corrupted bidder id_B using the
following query

query bid:price; event(won(bid, id_B)).

Since bidder id_A submitted the highest possible price and the attacker cannot
access and submit this value, he should be unable to make id_B win the auction.
However, as the seller only knows the pseudonym, we again have to modify the
query slightly. Our approach is the same as above: we use the event getAlias.
Then we can execute the following query:

query bid:price, alias:bitstring; event(won(bid, alias))
==> event(getAlias(id_A, alias)).

The idea is simple: we ask ProVerif to prove that if a bidder wins, it was bidder
id_A. This implies that the corrupted bidder id_B cannot win, as in our first
query.

For the original protocol – only corrected with added encryption of the first
bid to ensure Weak Noninterference –, ProVerif finds an attack again using the
fact that the messages from the RA to the Seller are not authenticated, hence an

9In the definition we did not require A to submit the highest possible bid, but only a higher
bid than anybody else. We could model the existence of higher prices by defining additional
private constants, but this would not change the verification task since they are never used by
any honest participants and are not accessible to the attacker.
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attacker can pretend to be RA and submit bids of his choice to win the auction at
a price of his choice. If we add signatures again, ProVerif still comes up with an
attack: A dishonest bidder might register twice and then replace the message from
the RA to the seller containing the correct bid with his own, bogus bid obtained
using the second registration. As above, this could probably be circumvented by
counting the messages and using different keys for different auctions, but for the
same reason as above we cannot verify this in ProVerif.

Privacy: The authors claim in the original paper that if the first message is
encrypted, their protocol ensures anonymity of the bidders. Yet we can see that it
does not ensure Strong Anonymity (SA) since after the symmetric key has been
published, an attacker can obtain a list with hashes of all bids, which allows to
distinguish h(bA), h(bC) from h(bB), h(bC). Hence we checked Weak Anonymity
(WA) using the choice[] operator in ProVerif, which verifies if the processes
obtained by instantiating a variable with two different values are bisimilar. More
precisely, we can check if for two swapping bidders (the first bidder bids b_A =
choice[b_1,b_2], the second b_B = choice[b_2,b_1]) the resulting processes
are bisimilar. This query leads to another possible attack: The intruder might
delay the messages from the second bidder. He waits until the first bidder sent
his final message and this was relayed to the seller by the RA. This allows the
attacker to link this message to the first bidder and distinguish both cases based
on the hash after decrypting the message using the published symmetric key. This
type of attack is well-known in electronic voting [DKR09]. As a solution, we have
to ensure that both messages to the seller are sent at exactly the same time using
synchronization. Inspired by some techniques used in ProSwapper [KSR10], we
prove that the accordingly modified protocol ensures Weak Anonymity (WA) for
two honest bidders. Note that technically our definition requires to consider any
number of bidders, however due to the protocol structure ProVerif cannot do
this automatically: the computation of the winner in the general case includes
loops, which cannot be modeled in ProVerif. A manual proof following the idea
of modularity used for voting protocols to reduce the general case to the case of
two voters is also difficult, as the protocol structure violates such a modularity
condition. One of the problems is the symmetric key used between the RA and
the seller – decomposing instances will lead to several distinct keys (and hence
also several messages where the key is revealed).

If we consider corrupted bidders, ProVerif discovers another weakness in the
protocol: the corrupted bidder can essentially test if an honest bidder submitted
a certain price. This works as follows. The corrupted bidder submits the hash of
the price he wants to test to the RA as if it was his bid. The RA responds with
an encrypted message containing the pseudonym and the hash of the bid, signed
by the RA. The malicious bidder can decrypt this message, and then encrypt
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the signed values using the public key of the targeted bidder, and send him this
message. The targeted bidder decrypts the message, verifies the signature and
checks if the hash corresponds to his bid. If yes, he continues, if no, he aborts,
which is visible to the attacker by observing the next message. A solution to this
problem is to send this message from the RA to the bidder over an private channel.
This was proposed in the original protocol description, however it is unclear why
the message needs to be encrypted and signed if the channel is secure anyway –
maybe this was intended as an implementation of a secure channel. Therefore we
considered both versions here, and it turns out that the encryption and signature
as proposed are insufficient. If the channel is private, ProVerif is again able to
prove Weak Anonymity (WA) for two honest and one corrupted bidder.

It is also clear that the protocol is neither Receipt-Free nor Coercion-Resistant
for any of the proposed notions since the hashed bidding price in the first message
can be used as a receipt. Even if this message is encrypted, the data used to
encrypt (keys, random values) can be used as a receipt.

Note that for all properties ProVerif responds in a few seconds on a standard
PC.

§ 4.3.5.2. Protocol by Brandt. The protocol by Brandt [Bra06] was de-
signed to ensure maximal privacy in a completely distributed way. It exploits the
homomorphic properties of a distributed threshold El-Gamal Encryption scheme
for a secure multi-party computation of the winner.

Informal Description. The participating bidders and the seller communicate
using a broadcast channel10, e.g. a bulletin board (an append-only memory
accessible for everybody). The bids are encoded as bit-vectors where each entry
corresponds to a price. The protocol then uses linear algebra operations on the
bid vectors to compute a function fi, which returns a vector containing one zero if
the bidder i submitted the highest bid, and only random numbers otherwise. To
be able to compute this function in a completely distributed way, and to guarantee
that no coalition of malicious bidders can break privacy, these computations are
performed on the encrypted bids using homomorphic properties of a distributed
n out of n threshold ElGamal encryption.

In a nutshell, the protocol realizes the following steps:
1. Firstly, the distributed key is generated: each bidder chooses his part of the

secret key and publishes the corresponding part of the public key on the
10Note that in the original paper the authors suppose a “reliable broadcast channel, i.e. the

adversary has no control of communication” [Bra06]. Yet even under this very strong assumption
dishonest participants can impersonate other participants by submitting messages on their behalf,
as the protocol does not include any authentication of the messages. In the following we consider
an attacker in control of the network, however many attacks can also be executed analogously by
dishonest parties – which are considered in the original paper – in the reliable broadcast setting.
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bulletin board.
2. Each bidder then computes the joint public key, encrypts his offer using this

key and publishes it on the bulletin board.
3. Then the auction function f is calculated for every bidder using some

operations exploiting the homomorphic property of the encryption scheme.
4. The outcome of this computation (n encrypted vectors) are published on

the bulletin board, and each bidder partly decrypts each value using his
secret key.

5. These partial decryptions are published and can be combined to obtain the
winner11.

Formal Model. We need to model the distributed encryption scheme and the
distributed computations. The protocol assumes a finite set of possible prices,
which we model as constants p1, . . . , pq. Assuming n bidders, we define the
following equational theory. The first equation models steps 3 and 4 of the
protocol:

f(enc(b1, pkey, r1), . . . , enc(bn, pkey, rn), ski)
= share((maxi{bi}, arg max′i{bi}), (b1, ..., bn), pkey, ski, g(r1, .., rn))

where the function arg max′i returns the smallest i for which the maximum is
reached, similar to the tie-breaking used in the protocol. The equation expresses
the following properties of the function f: If we have bids b1, . . . , bn, encrypted
using the same joint public key pkey, some random values r1, . . . , rn, and a part
ski of the secret key we obtain a share (a partial decryption) of the function
outcome, i.e. the tuple (winning price, id of the winner), for the same public
and secret keys and a function of the used random values. Since the share will
look slightly different depending on the bids even if winning bid is the same, we
also include b1, . . . , bn and the random values r1, . . . , rn in the share. This is
necessary to avoid false attacks in ProVerif. The next equation corresponds to
step 5 of the protocol and uses the function combine(pk(k1), . . . , pk(kn)) which
models the computation of the joint public key based on the individual ones.

dec(share(m,x1, combine(pk(k1), . . . , pk(kn)), k1, r1), . . . ,
share(m,xq, combine(pk(k1), . . . , pk(kn)), kn, rn)) = m

11This is a simplification w.r.t. the original protocol, where the partial decryptions are not
published directly, but sent to the seller. He can combine them to obtain the result and learn
the winner and winning price. He then publishes part of the partial decryptions on the bulletin
board so that each bidder i can compute his fi using his partial decryptions. Yet the published
values are insufficient to obtain fj for any other bidder j 6= i, i.e. each bidder only learns if he
won or lost, but neither the winner nor the winning price if he is not the winner himself. In our
simplified version everybody learns the winner and winning price, as it would be the case with a
dishonest seller revealing the winner to everybody. As it turns out, even this simplified version is
flawed.
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The equation models that knowing all shares of the function outcome allows to
decrypt it, if
— all shares have been constructed using the same joint public key, which was

computed using the function combine from the individual public keys, and

— the individual public keys were computed from the same secret keys that were
used to compute the shares.

Since the number of different prices q and the number of participants n are
finite, we can enumerate all possible equations. In particular we can list all
possible parameters of the function f, which allows us to enumerate all instances
and replace the max and arg max functions which their actual values. As our
definitions require at least two bidders and at least three different prices, we
use n = 2 and q = 3. This yields a convergent equational theory, which allows
ProVerif to verify all the tested properties in less than one second.

The process description is straightforward: an instance with two bidders
(Listing 4.5 on the facing page) and one seller (Listing 4.6 on page 206) is
described in Listing 4.7 on page 206.

Note that as the bidders have to exchange their bids we have to swap sending
and receiving of the bids for both processes in order to avoid deadlocks. Note also
that the events bid and recBid do not use the same data types concerning the
bid, this is however not a problem since they do not occur simultaneously in the
definition of a property.

Analysis. We use the same ProVerif techniques we discussed in the previous
section. The protocol ensures none of the defined properties except for Weak
Noninterference, mainly due the lack of authentication, even if all parties are
trusted.

For Non-Repudiation we use the query

query b:price, m:int; event(won(b, m)) ==> event(bid(b, m)).

ProVerif finds the following attack: Due to the lack of authentication, the attacker
can simulate a completely different protocol execution towards the seller (i.e.
setting up keys, encrypting bids of his choice, doing the calculation, and publishing
the shares), which allows to construct a trace with event won, but without any
event bid.

In the case of Non-Cancellation we have the problem that won and recBid
use different data types. We can however address this using the conjunction event
recBid_and_won as above and the query

query m : price, pkey : shpkey, r : bitstring;
event(recBid_and_won(enc(priceToBit(p1), pkey, r), one, p2, one)).
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1 l e t b idder1 (b : pr i c e , chK : channel , chB : channel , chR : channel ) =
2 (∗ s e t up j o i n t key : c r e a t e and pub l i sh one part ∗)
3 new shkey : shskeys ;
4 out (chK , pk ( shkey ) ) ;
5 (∗ compute j o i n t key us ing second pub l i c key ∗)
6 in (chK , pk2 : shpkeys ) ;
7 l e t pkey = combine (pk ( shkey ) , pk2 ) in
8 (∗ encrypt bid ∗)
9 new r : b i t s t r i n g ;
10 l e t bid1 = enc ( pr iceToBit (b ) , pkey , r ) in
11 event bid (b , one ) ;
12 out (chB , bid1 ) ;
13 (∗ r e c e i v e other bid ∗)
14 in (chB , bid2 : b i t s t r i n g ) ;
15 event recBid ( bid2 , two ) ;
16 (∗ compute p a r t i a l decrypt ion ∗)
17 l e t r e s = win ( bid1 , bid2 , shkey ) in
18 out (chR , r e s ) .
19
20 l e t b idder2 (b : pr i c e , chK : channel , chB : channel , chR : channel ) =
21 (∗ s e t up j o i n t key : c r e a t e and pub l i sh one part ∗)
22 new shkey : shskeys ;
23 in (chK , pk2 : shpkeys ) ;
24 (∗ compute j o i n t key us ing second pub l i c key ∗)
25 out (chK , pk ( shkey ) ) ;
26 l e t pkey = combine ( pk2 , pk ( shkey ) ) in
27 (∗ encrypt bid ∗)
28 new r : b i t s t r i n g ;
29 l e t bid1 = enc ( pr iceToBit (b ) , pkey , r ) in
30 (∗ r e c e i v e other bid ∗)
31 in (chB , bid2 : b i t s t r i n g ) ;
32 event recBid ( bid2 , one ) ;
33 (∗ pub l i sh own bid ∗)
34 event bid (b , two ) ;
35 out (chB , bid1 ) ;
36 (∗ compute p a r t i a l decrypt ion ∗)
37 l e t r e s = win ( bid2 , bid1 , shkey ) in
38 out (chR , r e s ) .

Listing 4.5 – The bidders.
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1 l e t s e l l e r (chR : channel ,chW: channel ) =
2 (∗ r e c e i v e p a r t i c a l dec rypt i ons ∗)
3 in (chR , x : b i t s t r i n g ) ;
4 in (chR , y : b i t s t r i n g ) ;
5 (∗ compute winner ∗)
6 l e t (wbid : pr i c e , winner : i n t ) = dec (x , y ) in
7 event won(wbid , winner ) ;
8 out (chW, ( wbid , winner ) ) .

Listing 4.6 – The seller.

1 proce s s
2 bidder1 (b1 , chK , chB , chR) |
3 bidder2 (b2 , chK , chB , chR) |
4 s e l l e r (chR ,chW)

Listing 4.7 – The aution process.

The query expresses that we look for a trace where the recorded bid was an
encryption of the higher price p1, whereas the declared winning bid was the lower
price p2, however from the same bidder one. Again ProVerif finds a trace violating
the property: The adversary can simulate a different instance to the seller, hence
replacing the initially recorded bid with a bid of his choice.

For Highest Price Wins ProVerif identifies a similar issue using the query

query p:price; event(won(p, two)).

i.e. we look for a trace where bidder two wins, although bidder one submits the
highest bid at the highest possible price. The attack is quite simple: since there
is no authentication, the attacker can replace the bid of bidder one with a lower
one to win.

Although the protocol claims to be fully private, when checking for Strong
Bidding-Price Secrecy, ProVerif finds an attack that allows to completely uncover
a bidder’s bid: since there is no authentication, an intruder can simulate all other
parties with respect to a participant. He will generate secret keys, publish the
according public keys and on reception of the attacked bidder’s bid, simply copy it
and claim that it is his own bid. Then the joint computation and decryption will
take place, and the announced winning price will be attacked bidder’s offer, which
is hence public. Note that this is not an attack on the security of the computation,
but on the structure of the protocol.

Hence the protocol does also not ensure any notion of privacy with corrupted
voter(s), and neither receipt-freeness nor coercion-resistance as all of them are
vulnerable to this attack.
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It is also clear that the protocol does not ensure Strong Noninterference since
the number of participants is public, which allows to distinguish instances with
different number of participants. However we prove Weak Noninterference using
choice[] (the use of noninterf leads to false attacks).

As above, the ProVerif-code is available online [Dre13].

§ 4.3.5.3. Protocol by Sako. Kazue Sako [Sak00] proposed a protocol for
sealed-bid first-price auctions which hides the bids of losing bidders and ensures
verifiability. It turns out to ensure all of our properties except for receipt-freeness
and coercion-resistance. In the paper Sako gives a high-level description based on
primitives ensuring certain properties. Then she also proposes two instantiations
using some particular cryptographic primitives: the first one uses Elgamal [EG85]
encryption, and the second one employs a probabilistic version of RSA [RSA78].
Note that in this protocol dishonest authorities can break privacy, but because of
verifiability a manipulation of the auction outcome can be detected.

Informal Description. Informally, the protocol works as follows:
1. The authorities select a list of allowed bids p1, . . . , pm.
2. For each allowed bid pi, the authorities set up encryption and decryption

algorithms Epi and Dpi (in both implementations simply a public and private
key pair). The encryption scheme must provide an indistinguishability
property. The authorities publish the encryption algorithms (or public keys
in the implementation) and the list of allowed bids on a bulletin board.

3. To bid for price pi, a bidder encrypts a public constant c using Epi , signs
it and publishes the bid Cj = Epi(c) together with the signature on the
bulletin board.

4. After the bidding phase is over, the authorities check the signatures and start
decrypting all bids with the highest possible price t = pm. If Dt(Cj) = c,
then bid j was a bid for price t. If all decryptions fail, the authorities
decrease t and try again. Each time a decryption is done, they publish
a proof of correct decryption to enable verifiability. This can be a zero-
knowledge proof, or it might be achieved by simply publishing the secret
key.

5. To verify the outcome, anybody can verify the signatures, and check the
proofs of correct decryption.

In the rest of this section we consider the implementation based on public and pri-
vate key pairs as a concretization of the general encryption/decryption algorithms,
however we abstract away of the precise encryption scheme. Note that dishonest
authorities can break privacy since they have access to all secret keys, but because
of verifiability a manipulation of the auction outcome can be detected.
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1 l e t b idder (b : pkey , k : skey , chBB : channel ) =
2 new s : seed ;
3 l e t o f f e r : b i t s t r i n g = penc ( bidval , b , s ) in
4 event bid ( o f f e r , pk (k ) ) ;
5 out (chBB , ( o f f e r , s i gn ( o f f e r , k ) ) ) .

Listing 4.8 – The bidder.

Formal Model. To verify Sako’s protocol we need to model public-key encryp-
tion, signatures and proofs of correct decryption. This can be done using the
following equational theory:

checksign(sign(m, k), pk(k)) =m

getmessage(sign(m, k)) =m

dec(penc(m, pk(k), s), k) =m

checkproof(decProof(penc(m, pk(k), s),m, k),
penc(m, pk(k), s),m, pk(k)) = true

checkproof(decProof(penc(m, pk(k1), s),
dec(penc(m, pk(k1), s), k2), k2),

penc(m, pk(k1), s),
dec(penc(m, pk(k1), s), k2), pk(k2)) = true

The first two equations model signatures: If a signature on the message m is
checked using the correct public key, we obtain the message m. Similarly the third
equation models public-key encryption: A message encrypted with a public key
can only be opened using the corresponding private key. The last two equations
model proofs of correct decryption: The verification succeeds if the proposed
plaintext is the actual decryption of the ciphertext under the claimed key, even if
this decryption is not meaningful as the key is not the correct one.

Consider the ProVerif code in Listing 4.8 describing the behavior of a bidder in
Sako’s protocol. The bidder process has three parameters: the key b, corresponding
to the key representing his bid, his secret key k used for signing and the channel
to the bulletin board chBB. He draws a fresh random seed s, encrypts the constant
bidval using the price-key b, computes a signature on the ciphertext, executes
the event bid on his (signed) offer and sends it to the bulletin board.

The authority (in this case for an instance with two bidders) is modeled as
shown in Listing 4.9 on the facing page. Firstly the bids are received from the
bulletin board. Then the signatures are checked and the bids are decrypted
using the key corresponding to the highest possible price, and the decryptions are
published together with a proof. Finally, if the first bidder submitted a bid for
the highest price, he is declared a winner, otherwise the second bid is checked.
If none of the decryptions is correct, the authority decreases the price and tries
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again.
Finally, the complete model for an instance with two bidders and one possible

price is shown in Listing 4.10: the private key corresponding to the price is created
and the public key is published. Similarly the private keys of the bidders are
created and the public keys are published. Then we have three processes in
parallel: The authority and two bidders.

Analysis. Similarly to the above examples, we test Non-Repudiation using the
following query

query offer:bitstring,id:pkey;
event(won(offer,id)) ==> event(bid(offer,id)).

To also account for dishonest bidders, we give all data of the bidder except for
his secret key to the intruder, and let him compose the message which is signed
and sent to the bulletin board (see Listing 4.11 for the modified bidder’s process).
ProVerif proves that the property still holds.

Non-Cancellation is again tested using a process that tests if the conjunction
of events recBid and won for a lower bid occurs, and then executes an event bad.
However instead of using channels to forward the event parameters to the process
we “inline” it into the authority process (i.e. include it as a macro at the end of the
authority process). This is possible since anyway both events are executed inside
this process, and necessary since otherwise ProVerif comes up with false attacks
which essentially correspond to changing a bid inside the authority process during
its computation of the winner. This is however not possible as the authority is
assumed to be honest. With this modification ProVerif can conclude that a “bad”
situation is unreachable using the query

query event(bad()).

Similarly for Highest Price Wins we also use a process that executes an event
bad if a situation violating the property (i.e. an event won for bidder two) is
detected, although here no inlining is necessary. ProVerif can again conclude that
such an event is unreachable.

For Weak Non-Interference we use the choice operator, as the noninterf
command leads to false attacks. We use a small python script to generate all the
cases for two bidders and two prices, which can then successfully be checked using
ProVerif.

Privacy is also tested using the choice operator. As the protocol reveals the
winner and the winning price, the highest achievable privacy notion is Strong
Bidding-Price Secrecy. Hence we test two situations, where in both situations
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1 l e t author i ty ( p1 : skey , . . . , pm: skey ,
2 k1 : pkey , . . . , kn : pkey ,
3 chBB1 : channel , . . . , chBBn : channel ,
4 chO11 : channel , . . . , chOn1 : channel , . . . ,
5 chO1m: channel , . . . , chOnm: channel ,chW: channel ) =
6 in (chBB1 , (m1: b i t s t r i n g , s1 : b i t s t r i n g ) ) ;
7 . . .
8 in (chBBn , (mn: b i t s t r i n g , sn : b i t s t r i n g ) ) ;
9 i f checks ign ( s1 , k1 ) = m1 && . . . &&

10 checks ign ( sn , kn ) = mn then
11 l e t dec11 = dec (m1, p1 ) in
12 out ( chO11 , (m1, dec11 , decProof (m1, dec11 , p1 ) ) ) ;
13 . . .
14 l e t dec1n = dec (mn, p1 ) in
15 out (chOn1 , (mn, dec1n , decProof (mn, dec1n , p1 ) ) ) ;
16 i f dec11 = bidva l then
17 event won(m1, p1 ) ;
18 out (chW, (m1, s1 , one , one ) )
19 e l s e i f . . .
20 . . .
21 e l s e i f dec1n = bidva l then
22 event won(mn, pn ) ;
23 out (chW, (mn, sn , n , one ) )
24 e l s e
25 . . .
26 l e t decm1 = dec (m1,pm) in
27 out (chO1m, (m1, decm1 , decProof (m1, decm1 ,pm) ) ) ;
28 . . .
29 l e t decmn = dec (mn,pm) in
30 out (chOnm, (mn, decmn , decProof (mn, decmn ,pm) ) ) ;
31 i f decm1 = bidva l then
32 event won(m1, p1 ) ;
33 out (chW, (m1, s1 , one ,m) )
34 e l s e i f . . .
35 . . .
36 e l s e i f decmn = bidva l then
37 event won(mn, pm) ;
38 out (chW, (mn, sn , n ,m) ) .

Listing 4.9 – The authority.
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1 proce s s
2 new keyone : skey ;
3 new k1 : skey ;
4 new k2 : skey ;
5 out ( chPKI , pk ( keyone ) ) |
6 out ( chPKI , pk ( k1 ) ) |
7 out ( chPKI , pk ( k2 ) ) |
8 author i ty ( keyone , pk ( k1 ) , pk ( k2 ) ,
9 chBB1 , chBB2 , chO11 , chO21 , chO12 , chO22 ,chW) |
10 bidder (b1 , k1 , chBB1 ) ) |
11 bidder (b2 , k2 , chBB2 ) )

Listing 4.10 – An instance with two bidders.

1 l e t b idder (b : pkey , k : skey , chBB : channel , chAd : channel )=
2 new s : seed ;
3 out (chAd , ( s , b ) ) ;
4 in (chAd , o f f e r : b i t s t r i n g ) ;
5 event send ( o f f e r , pk (k ) ) ;
6 out (chBB , ( o f f e r , pk (k ) ) ) .

Listing 4.11 – The dishonest bidder.

bidder one bids the same highest price one and wins. In situation one bidder two
bids price two, in situation two he bids three. Since he loses in both situations,
no information about his bid should be leaked, and both situations should be
observationally equivalent. If we suppose an honest authority, ProVerif is able to
prove this result.

ProVerif can prove the result even if we add a corrupted bidder, which might
appear suprising as it is possible to copy bids. However, as only the losing bids
are required to be private, an attack similar to the one on the protocol by Brandt
does not work: the copied bid does not influence the outcome as anyway the
honest bidder with the higher bid wins.

Note that the protocol is neither receipt-free nor coercion-resistant as the
random values used to encrypt the constant can be used as a receipt.

Remark In the literature an attack on fairness was described [ABN10, FLPQ13].
The attack targets the implementation using the ElGamal encryption and works
as follows. A dishonest bidder encrypts the constant using a key of his choice, but
using zero as a random value. He obtains a ciphertext of the form (1,M), which
decrypts under any private key. A dishonest authority can then decrypt the bid
at any chosen price, for example one euro higher than the highest other bid.

This attack violates Highest Price Wins: a corrupted bidder that did not
submit the highest bid wins - yet still we did not identify it for several reasons:
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— We assume an honest authority, whereas the attack requires the authority to
collude with the bidder.

— As we use an abstract model of the encryption, the underlying weakness of the
ElGamal scheme is not represented in model. Our equational theory permits
decryption only using the secret key corresponding to the public key used for
encryption. This not surprising, as we wanted to check the high-level protocol,
not the ElGamal-based implementation.

If we decide to consider dishonest authorities, we obviously have even simpler
attacks: the authorities can simply announce a winner and winning price of their
choice. To circumvent this problem, the protocol was designed to be verifiable, i.e.
the bidders can verify the announced winner as the authorities provide proofs of
correct decryption. In Section 4.4.3.1 we analyze verifiability in Sako’s protocol
in detail, and show that this attack will be detected during the verification phase.
This allows us to argue that the assumption that the authority is honest is
reasonable - if it behaves dishonestly, this can be detected in the verification
phase.

4.3.6 — Summary

In this section we formalized auction protocols in the Applied π-Calculus and
modeled fairness, authentication and privacy properties. We verified three case
studies using ProVerif: the protocol by Curtis et al. [CPS07], the protocol by
Brandt [Bra06] and the protocol by Sako [Sak00].

We identified several problems with the protocol by Curtis et al.: We need
to encrypt the first message to ensure Weak Noninterference, and we need to
add authentication for the messages from the RA to the seller to ensure Non-
Repudiation. We also need to introduce synchronization for privacy. Even with
these modifications, ProVerif still finds attacks for Highest Price Wins and Non-
Cancellation by mixing several instances. This could probably be addressed
by using different keys for different instances and counting the number of bids,
however we were unable to analyze this in ProVerif because of a technical limitation
of the tool: counting the number of bids requires to maintain state information,
which is not supported in ProVerif.

The protocol by Brandt ensures Weak Noninterference, however fails to achieve
any other property (including privacy) due to the lack of authentication.

Finally the protocol by Sako turns out to ensure all properties except for
receipt-freeness and coercion-resistance, assuming an honest authority.
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4.4 Verifiability in Auctions

In the previous section we discussed Fairness, Privacy and Authentication proper-
ties of auction protocols in the Applied π-Calculus. In this section we concentrate
on Verifiability, but using a more general model that can be instantiated in the
symbolic model (where we use the Applied π-Calculus again) and computational
model (where we use CryptoVerif).

Auction verifiability is easy to achieve in isolation, as for example in the English
“shout-out” auction. However, maintaining verifiability while ensuring other
properties such as privacy is far more difficult. Yet in the literature verifiability
is often claimed together with other properties, but these papers typically only
provide informal arguments, e.g. [Sak00, Bra06]. To address this issue, we propose
a generic formal framework to analyze verifiability independent of the type of
auction implemented in the protocol.

The main contribution of this section is to identify a set of scheme-independent
definitions, which, taken together, cover verifiability of auctions. To this end,
we focus on the bidders (distinguishing verifiability for losing bidders from the
winning bidder) and the seller. We present this framework as a set of formal
verifiability tests. Moreover, we investigate the auction protocols by Sako [Sak00]
and by Curtis et al. [CPS07]. Sako claims verifiability without a formal proof,
and we are able to give a computational and a symbolic proof for her protocol as
our first case study. For the second protocol by Curtis et al. we identify several
shortcomings with respect to verifiability.

The rest of this section is structured as follows. In Section 4.4.1, we describe
the new abstract model of auction protocols. In Section 4.4.2, we formalize the
verifiability definitions, taking into account the point of view of the seller and the
bidders. In Section 4.4.3, we then apply our model to the two examples.

4.4.1 — A Different Model of Auction Protocols

As explained above, we use a very general model of auction protocols in this
section. We only specify the parts necessary to define verifiability, and remain
very abstract to allow instantiations in different concrete models.

We consider a set of bidders B and a seller S. We do not model other parties
as only bidders and the seller verify the execution of the protocol.

Bids are of type Bid (in the simplest case just a price). When being submitted
the bids might be encrypted or anonymized to ensure privacy, hence we use the
type EBid for such bids. We assume that there is a public list L of length n and
type List(EBid) of all submitted bids, for example a bulletin board. To define
the soundness of the verification tests we need a mapping between both types, i.e.
a function getPrice : EBid 7→ Bid that gives the bid for an encrypted bid. This
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function does not need to be computable for any party, as it is only used in the
soundness definition.

Bidders have to register at some point, or are otherwise authenticated when
bidding, in order to be able to obtain their goods once the auction has ended.
This could for example be implemented using signatures, authentication tokens,
MACs etc.. Therefore we require a function isReg : EBid 7→ {true, false} that
returns true if a bid was submitted by a registered bidder, and not modified –
this integrity protection is necessary to prevent manipulation of bids.

In addition, we require a public function that – given a list of bids – computes
the index of the winning bid within the list of all bids: win : List(Bid) 7→ Index.
This might simply be the index of the maximal bid among all bids, but there may
be more complex operations to determine this index depending on the type of
auction or to deal with ties (i.e. several maximal bids).

Lastly, we assume that the variable winBid of type Index refers to the index
of the announced winning bid at the end of the auction, and that each bidder has
a variable myBid of type Index that refers to the index of his bid in L.

Note that for a list l we write l[i] to denote the i-th element of the list starting
with 1, and Indices(l) to denote the set of indices of l, i.e. {1, . . . , n} if l contains
n elements.

Definition 71 An auction protocol is a tuple (B, S, L, getPrice, isReg, win,
winBid) where

— B is the set of bidders,

— S is the seller,

— L is a list of all submitted bids,

— getPrice : EBid 7→ Bid is a function mapping submitted bids to bids,

— isReg : EBid 7→ {true, false} is a function that returns true if a bid was sub-
mitted by a registered bidder,

— win : List(Bid) 7→ Index is a function that returns the index of the winning
bid,

— winBid is a variable referring to the index of the winning bid at the end of the
auction.

4.4.2 — Defining Verifiability

Now we formally define verifiability for auction protocols with respect to the
new generalized model. In the first part we consider only first-price auctions.
Thereafter we generalize the definitions to account for second-price, multi-price,
and other types of auctions.
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§ 4.4.2.1. First-Price Auctions. To understand which verifications are
needed, we start by discussing three different stakeholder’s perspectives:

— A losing bidder wants to be convinced that he actually lost, i.e. that:
– the winning bid was actually superior to his bid (as defined by the win

function), and

– that the winning bid was submitted by another bidder (preventing both
seller and auctioneer from maliciously adding or manipulating bids to
influence the final price).

— A winning bidder wants to check that:

– he actually submitted the winning bid,

– the final price is correctly computed,

– all other bids originated from bidders, and

– no bid was modified.

Together, these verification checks ensure that the winning bidder is indeed
the correct winner, for the correct price. Moreover, the last two checks ensure
that the auction process was only influenced by legitimate bidders – neither
seller nor auctioneer influenced the process.

— The seller wants to verify that:

– the announced winner is correct, and

– the winning price is correct,

in particular if the outcome of the auction was not determined publicly
(e.g. privately by the auctioneer, or using distributed computations among the
bidders).

To execute these verifications, we introduce the notion of Verification Tests.

Definition 72 (Verification Test) We define a Verification Test as an efficient
terminating algorithm that takes as input the data visible to a participant of an
auction protocol and returns a Boolean value.

We deliberately do not specify more details at this point as they will depend on the
underlying protocol model. Such a test could be a logical formula (whose size is
polynomial in the input) in a symbolic model or a polynomial-time Turing-machine
in a computational model. Obviously there can be different tests for different
participants (e.g. for bidders and the seller), since they may have different views
of the protocol execution.

We then define verifiability as follows.
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Definition 73 (Verifiability – First-Price Auctions) An auction protocol (B,
S, L, getPrice, isReg, win, winBid) ensures Verifiability if we have Verification
Tests rvs, rvw, ovl, ovw, ovs respecting the following soundness conditions:

1. Registration and Integrity Verifiability (RV):
— Anyone can verify that all bids on the list were submitted by registered

bidders:
rvs = true =⇒ ∀b ∈ L : isReg(b) = true

— Anyone can verify that the winning bid is one of the submitted bids:
rvw = true =⇒ winBid ∈ Indices(L)

2. Outcome Verifiability (OV):
— A losing bidder can verify that his bid was not the winning bid:

ovl = true =⇒ myBid 6= win(getPrice(L))

— A winning bidder can verify that his bid was the winning bid:
ovw = true =⇒ myBid = win(getPrice(L))

— The seller can verify that the winning bid is actually the highest submitted
bid:
ovs = true =⇒ winBid = win(getPrice(L))

as well as the following completeness condition:
— If all participants follow the protocol correctly, the above tests succeed (i.e.,

the implications hold in the opposite direction, ⇐=, as well).
where – with abuse of notation – we write getPrice(L) for getPrice(L[1]), . . .,
getPrice(L[n]).

Consider the perspective of a losing bidder: He can verify that his bid was not
the winning bid (ovl), and that the winning bid was among the ones submitted
by registered bidders, which were also not modified (rvs and rvw). Similarly a
winning bidder can check that his bid was actually the winning bid (ovw), and that
the other bids were submitted by other bidders and not modified (rvs). Lastly, the
seller can also check that the bids using for computing the winner were submitted
only by registered bidders (rvs and rvw), and that the outcome was correct (ovs).
Hence these tests cover all the verifications discussed above.

In the case of soundness, we require the conditions to hold even in the presence
of malicious participants (since the tests should check if they did their work
correctly), whereas in the case of completeness we only consider honest participants.
This is necessary as otherwise e.g. a dishonest auctioneer could announce the
correct result, but publish incorrect evidence. Hence the verification tests fail
although the outcome is correct, but this is acceptable since the auctioneer did
not “work correctly” in the sense that he deviated from the protocol specification.

Definition 73 can be applied to sealed-bid auctions, where all bids are submitted
in a private way, as well as English auctions, where the price increases with each
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publicly announced bid. These latter are verified by applying the verification tests
after each price increase.

Example 22 Consider a simple auction system where all bidders publish their
(not encrypted and not signed) bids on a bulletin board, and at the end of the
bidding phase the auctioneer announces the winner. In this case there is a simple
test for rvw: anyone can simply test if the winning bid is one of the published
ones. However there is no test for rvs since bids are not authenticated. If we
require bidders to sign their bids before publishing them, we also have a simple
test for rvs: verifying the signatures.

It is clear that we have simple tests for ovl, ovw and ovs since everybody can
compute the winner on the public list of unencrypted bids. This however means
that the protocol ensures no privacy, and no fairness since a bidder can choose
his price depending on the previously submitted bids. If we add encryption for
the bids to address this shortcoming, the situation becomes more complex and
the auctioneer has to prove that he actually computed the winner correctly, for
example using zero-knowledge proofs.

§ 4.4.2.2. Other Types of Auctions. Our definition can be extended to
other auctions, including second-price auctions, more general (M + 1)st-price
auctions, and even bulk-good auctions that have multiple winners at different
prices. In a bulk-good auction, a seller offers N units of a good, and bidders can
make offers such as “I want to buy X units at price Y ”. In that case there may
be a several winners, where each of them pays a different price. More generally,
we could also imagine situations where the winner has to pay the mean of the
first three bids, or other more complex values. In these types of auctions the price
does also depend on the other submitted bids, and not only on the winning bid.

To deal with this, we enrich our model of an auction protocol with a type
Price. The function win now returns a list of winners and prices win : List(Bid) 7→
List(Index × Price). We also assume that for each bidder there is a variable
myPrice of type Price instantiated as the price announced to a winning bidder
respectively. Similarly winBid is now instantiated as a list of indices of bids and
prices (List(Index × Price)).

For such auctions, registration verifiability does not change, but the winner(s)
and the seller also want to verify the price they pay to prevent a malicious party
from manipulating the price(s).

In the following definition we mark differences to Definition 73 in bold.

Definition 74 (Verifiability – Other Types of Auctions) An generalized
auction protocol (B, S, L, getPrice, isReg, win, winBid, winPrice) ensures Verifia-
bility if we have Verification Tests rvs, rvw, ovl, ovw, ovs respecting the following
conditions:
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1. Soundness:
(a) Registration and Integrity Verifiability (RV):

— Anyone can verify that all bids on the list were submitted by regis-
tered bidders:
rvs = true =⇒ ∀b ∈ L : isReg(b) = true

— Anyone can verify that the winning bids are among the submitted
bids:
rvw = true =⇒ ((b, p) ∈ winBid ⇒ b ∈ Indices(L))

(b) Outcome Verifiability (OV):
Let winBidsPrices = win(getPrice(L)).
— A losing bidder can verify that his bid was not the winning bids:

ovl = true =⇒ ∀i : winBidsPrices[i] 6= (myBid,_)

— A winning bidder can verify that his bid was among the winning
bids, and that his price is correct:
ovw = true =⇒ ∃i : winBidsPrices[i] = (myBid,myPrice)

— The seller can verify that the list of winners and the winning prices
are correctly determined:
ovs = true =⇒ winBid = winBidsPrices

2. Completeness: If all participants follow the protocol correctly, the above tests
succeed (i.e., the implications hold in the opposite direction, ⇐=, as well).

where – with abuse of notation – we write getPrice(L) for getPrice(L[1]), . . .,
getPrice(L[n]).

Note that e.g. in the case of a second-price auction verifying the price, for
example in test ovw, may implicitly include some more registration verification,
namely checking that the second-highest bid was actually submitted by a bidder.
Otherwise a malicious seller could add a higher second-highest bid or manipulate
the existing one to achieve a higher selling price. This is however included in our
model as the function win only works on the list L, hence adding another bid later
on to manipulate the bidding price violates the test, and adding or manipulating
a bid in L violates rvs.

4.4.3 — Case Studies

We now discuss the two case studies: the protocols by Sako and Curtis et al..

§ 4.4.3.1. Protocol by Sako. We use the protocol by Sako [Sak00] already
described in Section 4.3.5.3. In our high-level model, we formalize this protocol
using a set of bidders B and a seller S. The list of all submitted bids L is published
on the bulletin board. The function getPrice(C) decrypts the bid by trying all
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possible prices until the correct value is found, i.e. until Dt(C) = c (as the
authorities would), and then returns t. The function isReg returns if a bid was
submitted by one of the registered bidders. The function win returns the index of
the highest bid, and winBid will point to the index of the winning bid at the end
of the auction as announced by the authorities on the bulletin board.

The verification tests proposed by Sako can be translated to our framework as
follows: The test rvs simply checks all the signatures. For rvw one can check if
the encrypted value appears in the list of bids on the bulletin board when the
winner is announced. Finally the test for ovl, ovw and ovs works as follows: Any
participant can check that all decryptions corresponding to a potentially higher
bid were unsuccessful (i.e. the result was different from Mt), and verify the proofs
of correct decryption. To check if he won or lost, a bidder can simply compare his
bid to the winning price. Similarly the seller can check if the announced winning
bid is actually the winning bid.

We analyze the protocol in two different settings. We start using the Applied
π-Calculus and ProVerif and give a first, symbolic analysis. Then, to show that
our high-level model can also be instantiated in a computational setting, we
provide a computational analysis with the help of CryptoVerif.

Verifiability in the Symbolic Setting. Based on the modeling of the protocol
from Section 4.3.5.3 we also model the proposed tests in the Applied π-Calculus
and formally show that they are actually sound and complete. The proofs are
done by ProVerif for a simple case (e.g. only two bidders), and then extended
manually to the general case. This is necessary as ProVerif is unable to handle
the general case directly.

In order to verify the verification tests we model them as processes: they
receive the necessary data on some channels and output whether they accepted
this input or not. This also allows us to check soundness and completeness of the
tests in ProVerif, since these properties can be modeled as reachability properties
such as “If the input to the test was generated by honest participants according to
the protocol, can the process “test” emit a message “KO”?” (which corresponds
to completeness) or “Is it possible for an attacker to send messages to the process
“test” such that it emits a message “OK” although the input is not correct?”
(which corresponds to soundness).

The first test rvs, described in Listing 4.12 on the next page, is actually a
simple implementation of our soundness condition (∀b ∈ L : isReg(b) = true): It
receives all bidders’ public keys and the bids, and then verifies all signatures. We
show that is sound and complete in Theorem 68.

Theorem 68 The test rvs (see Listing 4.12 on the next page) for the protocol by
Sako [Sak00] is sound and complete.
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1 l e t t e s t r v s (chRVS : channel , k1 : pkey , . . . , kn : skey ,
2 chBB1 : channel , . . . , chBBn : channel ) =
3 in (chBB1 , (m1: b i t s t r i n g , s1 : b i t s t r i n g ) ) ;
4 . . .
5 in (chBBn , (mn: b i t s t r i n g , sn : b i t s t r i n g ) ) ;
6 i f checks ign ( s1 , k1 ) = m1 && . . . &&
7 checks ign ( sn , kn ) = mn then
8 out (chRVS ,OK)
9 e l s e

10 out (chRVS ,KO) .

Listing 4.12 – The test rvs.

1 l e t t e s t r v s (chRVS : channel , k1 : pkey , . . . , kn : skey ,
2 chBB1 : channel , . . . , chBBn : channel ) =
3 in (chBB1 , (m1: b i t s t r i n g , s1 : b i t s t r i n g ) ) ;
4 . . .
5 in (chBBn , (mn: b i t s t r i n g , sn : b i t s t r i n g ) ) ;
6 i f checks ign ( s1 , k1 ) = m1 && . . . &&
7 checks ign ( sn , kn ) = mn then
8 out (chRVS ,OK) ;
9 event accept (m1, s1 , . . . , mn, sn )

10 e l s e
11 out (chRVS ,KO) ;
12 event r e j e c t ( ) .

Listing 4.13 – The test rvs with events.
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Proof We start by showing that it is sufficient to verify the case of only one bid,
and that this generalizes to situations with many bids. More precisely, we show
that

rvs = true ⇒ ∀b ∈ L : isReg(b) = true

holds for any length n of L (corresponding to the number of bids). Listing 4.12
on the facing page gives the test rvs for n bids. Let testrvsi denote analogously
the test for i bids, and testrvsi

∗−→ OK denote that – given a protocol execution –
after some interactions and reductions it outputs “OK” on channel chRVS. We
assume that the test is sound and complete for one bid, i.e. for soundness

testrvs1
∗−→ OK ⇒ isReg(L) = true (4.1)

and for completeness

isReg(L) = true ⇒ testrvs1
∗−→ OK (4.2)

where L contains only one entry.

Then we can see from the code that

testrvsn
∗−→ OK
⇓

∀1 ≤ i ≤ n : testrvs1 {ki/k1, chBBi/chBB1} ∗−→ OK

since testrvsn checks the signatures of all bids on channels chBB1 to chBBn using
the keys k1 to kn, and testrvs1 {ki/k1, chBBi/chBB1} checks the signature of the bid
i on channel chBBi using the key ki. If we suppose now that testrvs1 is sound
(4.1), we obtain

∀1 ≤ i ≤ n : testrvs1 {ki/k1, chBBi/chBB1} ∗−→ OK
⇓

∀1 ≤ i ≤ n : isReg(List(L[i])) = true
⇓

∀b ∈ L : isReg(b) = true
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We can make a similar argument for completeness:

∀b ∈ L : isReg(b) = true
⇓

∀1 ≤ i ≤ n : isReg(List(L[i])) = true
⇓

∀1 ≤ i ≤ n : testrvs1 {ki/k1, chBBi/chBB1} ∗−→ OK
⇓

testrvsn
∗−→ OK

Hence it is sufficient to check the case of only one bid, i.e. (4.1) and (4.2). As
hinted above, these are reachability properties ("The test will not output “OK” if
a bid was not submitted by a registered bidder", "The test will not output KO
if the bid was correctly submitted by a registered bidder"). We prove (4.1) and
(4.2) automatically using ProVerif.

For (4.1) we add two events accept (cf. Listing 4.13 on page 220) and send
(inside a registered bidder) to the model, and ProVerif shows that any event
accept is preceded by a corresponding send, i.e. the test only accepts bids sent
by registered bidders:

query m:bitstring, s:bitstring;
event(accept(m, s)) ==> event(send(m, s)).

For (4.2) we add an event event reject in the process testrvs (cf. Listing 4.13
on page 220) and ProVerif shows that it is unreachable if an honest bidder sends
his bid over a private channel12:

query event(reject()).

The code used is available online [Dre13]. �

The second test rvw, given in Listing 4.14 on the next page, takes all published bids
on channel chBB and the winning bid published on channel chW and checks if the
winning bid is among the published ones. This is again the direct implementation
of the soundness condition, and we show that it is sound and complete in the
following theorem.

Theorem 69 The test rvw (see Listing 4.14 on the facing page) for the protocol
by Sako [Sak00] is sound and complete.

12This is necessary, since otherwise the attacker might send a bogus bid instead leading to
a false “attack”. Another solution would be to use the “passive” attacker in ProVerif, which
cannot modify messages. As we are only interested in the reachability of the event reject, both
approaches should be equivalent: the passive attacker might learn more since he has access to
the messages, but he cannot exploit this as he is not allowed to create or modify messages.
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1 l e t testrvw (chRVW: channel ,chW: channel ,
2 chBB1 : channel , . . . , chBBn : channel ) =
3 in (chBB1 , (m1: b i t s t r i n g , s1 : b i t s t r i n g ) ) ;
4 . . .
5 in (chBBn , (mn: b i t s t r i n g , sn : b i t s t r i n g ) ) ;
6 in (chW, (m: b i t s t r i n g , s : b i t s t r i n g , ind : int , p r i c e : i n t ) ) ;
7 i f (m1 = m && s1 = s ) | | . . . | | (mn = m && sn = s ) then
8 out (chRVW,OK)
9 e l s e
10 out (chRVW,KO) .

Listing 4.14 – The test rvw.

1 l e t testrvw (chRVW: channel ,chW: channel ,
2 chBB1 : channel , . . . , chBBn : channel ) =
3 in (chBB1 , (m1: b i t s t r i n g , s1 : b i t s t r i n g ) ) ;
4 event onBB(m1, s1 ) ;
5 . . .
6 in (chBBn , (mn: b i t s t r i n g , sn : b i t s t r i n g ) ) ;
7 event onBB(mn, sn ) ;
8 in (chW, (m: b i t s t r i n g , s : b i t s t r i n g , ind : int , p r i c e : i n t ) ) ;
9 i f (m1 = m && s1 = s ) | | . . . | | (mn = m && sn = s ) then
10 out (chRVW,OK) ;
11 event accept (m, s ) ;
12 e l s e
13 out (chRVW,KO) ;
14 event r e j e c t ( ) .

Listing 4.15 – The test rvw with events.
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Proof Again, Listing 4.14 on the previous page gives the test rvw for n bids, and
let testrvwi denote the test rvw for i bids. testrvwi

∗−→ OK denotes that – given a
protocol execution – after some interactions and reductions the test outputs “OK”
on channel chRVW. Similarly to rvs, we automatically prove using ProVerif that in
the case of only one bid, the test only accepts the winning bid if it was published
on the bulletin board (soundness):

testrvw1
∗−→ OK ⇒ winBid ∈ Indices(L) (4.3)

using the query

query m:bitstring, s:bitstring;
event(accept(m, s)) ==> event(onBB(m, s)).

and the annotated process in Listing 4.15 on the preceding page.

We also show that the test succeeds if the authority follows the protocol
(completeness):

winBid ∈ Indices(L)⇒ testrvw1
∗−→ OK (4.4)

where L contains only one entry, using the query

query event(reject()).

using the same annotations (cf. Listing 4.15 on the previous page), and an honest
bidder and an honest authority interacting over private channels.

We now have to show that this generalizes to situations with many bids. More
precisely, we need to prove that

rvw = true ⇒ winBid ∈ Indices(L)

holds for any length n of L (corresponding to the number of bids). Again, by
analyzing the code we have

testrvwn
∗−→ OK

⇓
∃1 ≤ i ≤ n : testrvw1 {chBBi/chBB1} ∗−→ OK

since testrvwn checks if the winning bid received on channel chW equals one of
the bids received on channels chBB1 to chBBn, and testrvw1 {chBBi/chBB1} checks
if the winning bid received on channel chW equals the bid i received on channel
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chBBi. Using (4.3), we obtain that

∃1 ≤ i ≤ n : testrvw1 {chBBi/chBB1} ∗−→ OK
⇓

∃1 ≤ i ≤ n : winBid ∈ Indices(List(L[i]))
⇓

winBid ∈ Indices(L)

We can make a similar argument for completeness:

winBid ∈ Indices(L)
⇓

∃1 ≤ i ≤ n : winBid ∈ Indices(List(L[i]))
⇓

∃1 ≤ i ≤ n : testrvw1 {chBBi/chBB1} ∗−→ OK
⇓

testrvwn
∗−→ OK

using (4.4). �

For the outcome verification tests we employ a similar approach. Firstly note
that for Sako’s protocol the tests ovl, ovw and ovs are all the same, described
by process testov (Listing 4.16 on the following page). The winning bid, the
winning price and the winner’s index are announced on channel chW. Morevover
the proofs of correct decryption are published on channels chOij. The test then
takes the first set of proofs of correct decryption and verifies them (lines 5-9).
Then it checks if the announced winning price and winner are correct with respect
to the obtained decryptions, i.e. if one of the decryptions corresponds to the
constant, and if this is the one announced as the winner (lines 10-17). If within
the set no decryption corresponds to the constant, it repeats the same checks for
the next set of decryptions and proofs (lines 18-35). Note that the test accepts
the case when all decryptions for all prices fail and the winning price is none of
the checked ones. This might be the case if the authority correctly followed the
protocol, but the bidders sent wrong encryptions. We show that this test is sound
and complete in Theorem 70.

Theorem 70 The test testov (see Listing 4.16 on the next page) for the protocol
by Sako [Sak00] is sound and complete.

Proof Again, Listing 4.16 on the following page gives the test testov for n bids
and m possible prices. Let testovi,j denote the test for i bids and j possible
prices, and testovi,j

∗−→ OK denote that – given a protocol execution – after some
interactions and reductions it outputs “OK” on channel chOV, and k = winBid
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1 l e t t e s t ov (chOV: channel ,chW: channel , pk1 : pkey , . . . , pkm: pkey ,
2 chO11 : channel , . . . , chOn1 : channel , . . . ,
3 chO1m: channel , . . . , chOnm: channel ) =
4 in (chW, (m, s ,w, p ) ) ;
5 in ( chO11 , ( c1 ,m1, p1 ) ) ;
6 . . .
7 in ( chOn1 , ( cn ,mn, pn ) ) ;
8 i f checkproo f (p1 , c1 ,m1, pk1 ) && . . . &&
9 checkproo f (pn , cn ,mn, pk1 ) then

10 i f p = one && ( (w = one && m1 = bidva l ) | | . . . | |
11 (w = n && m1 <> bidva l && . . . && m(n−1) <> bidva l &&
12 mn = bidva l ) )
13 then
14 out (chOV,OK)
15 e l s e
16 i f m1 <> bidva l && . . . && mn <> bidva l
17 && p <> one then
18 . . .
19 in (chO1m, ( c1 ,m1, p1 ) ) ;
20 . . .
21 in (chOnm, ( cn ,mn, pn ) ) ;
22 i f checkproo f (p1 , c1 ,m1,pkm) && . . . &&
23 checkproo f (pn , cn ,mn,pkm) then
24 i f p = m && ((w = one && m1 = bidva l ) | | . . . | |
25 (w = n && m1 <> bidva l && . . . &&
26 m(n−1) <> bidva l && mn = bidva l ) ) then
27 out (chOV,OK)
28 e l s e
29 i f m1 <> bidva l && . . . && mn <> bidva l &&
30 p <> m then
31 out (chOV,OK)
32 e l s e
33 out (chOV,KO)
34 e l s e
35 out (chOV,KO)
36 . . .
37 e l s e
38 out (chOV,KO) .

Listing 4.16 – The test for ov{l,w,s}.
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1 l e t t e s t ov (chOV: channel ,chW: channel , pk1 : skey , pk2 : skey ,
2 chO11 : channel , chO21 : channel ) =
3 in (chW, (m: b i t s t r i n g , s : b i t s t r i n g ,w: int , p : i n t ) ) ;
4 in ( chO11 , ( c1 : b i t s t r i n g ,m1: b i t s t r i n g , p1 : b i t s t r i n g ) ) ;
5 in ( chO21 , ( c2 : b i t s t r i n g ,m2: b i t s t r i n g , p2 : b i t s t r i n g ) ) ;
6 i f ( checkproo f (p1 , c1 ,m1, pk ( pk1 ) ) ) &&
7 ( checkproo f (p2 , c2 ,m2, pk ( pk1 ) ) ) then
8 i f p = one && w = one && m1 = bidToBit ( b idva l ) then
9 i f dec ( c1 , pk1 ) <> bidToBit ( b idva l ) then
10 event bad ( ) e l s e 0
11 e l s e
12 i f p = one && w = two && m1 <> bidToBit ( b idva l ) &&
13 m2 = bidToBit ( b idva l ) then
14 i f dec ( c1 , pk1 ) = bidToBit ( b idva l ) | |
15 dec ( c2 , pk1 ) <> bidToBit ( b idva l ) then
16 event bad ( ) e l s e 0
17 e l s e
18 i f m1 <> bidToBit ( b idva l ) && m2 <> bidToBit ( b idva l )
19 && p <> one then
20 i f dec ( c1 , pk1 ) = bidToBit ( b idva l ) | |
21 dec ( c2 , pk1 ) = bidToBit ( b idva l ) then
22 event bad ( )
23 e l s e 0
24 e l s e
25 event KO( )
26 e l s e
27 event KO( ) .
28
29 proce s s
30 in ( chPk1 , ( pk1 : skey ) ) ;
31 in ( chPk2 , ( pk2 : skey ) ) ;
32 t e s t ov (chOV,chW, pk1 , pk2 , chO11 , chO21 )

Listing 4.17 – Proving soundness of ov{l,w,s}.
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the index of the winning bid. Using ProVerif we show that in the case of i = 2
bids and j = 1 price, the test only accepts the announced winner and winning
price if they are correct (soundness):

testov2,1
∗−→ OK

⇓
(getPrice(L[winBid]) = one⇒ winBid = win(getPrice(L)))

(4.5)

To prove this using ProVerif we use the process depicted in Listing 4.17 on the
previous page. The idea is the following: the adversary generates the input for
the test, i.e. chooses the keys, generates the bids and proofs of decryption and
announces the winner. Every time the test accepts an outcome based on the
proofs, we check if the decryptions using the secret key actually give the values
they are supposed to give. For example if the winner is bidder one at price one,
his bid must decrypt correctly under key pk1 to the constant. Similarly, if the
winner is bidder two at price one, his bid must decrypt correctly under key pk1 to
the constant and the other bidder’s bid must not decrypt correctly under this key.
If such a test fails, an event bad is executed. Using the following query ProVerif
can then prove that such an event is unreachable:

query event(bad()).

We also show that the test succeeds if the authority follows the protocol
correctly (completeness):

(getPrice(L[winBid]) = one⇒ winBid = win(getPrice(L)))
⇓

testov2,1
∗−→ OK

(4.6)

using – once again – a variant of the process testov containing events reject
where the process outputs KO and the query

query event(reject()).

We now show that this generalizes to situations with many bids and prices.
We start by discussing soundness, the proofs of completeness are analogous. First
we prove the generalization to m prices, but still for two bids. We have to show
that the following holds:

testov2,m
∗−→ OK ⇒ winBid = win(getPrice(L))
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By analyzing the code we can see that

testov2,m
∗−→ OK

⇓
∀1 ≤ i ≤ m : testov2,1 {pki/pk1, chO1i/chO11, chO2i/chO21, i/one} ∗−→ OK

i.e. that if testov2,m holds for the winner input from channel chW, prices (i.e.
public keys) pk1 to pkm, decryptions and proofs from channels chO11 to chO2m,
then for any i

testov2,1 {pki/pk1, chO1i/chO11, chO2i/chO21, i/one}

holds for the same winner, but only checking price i instead of one, and hence
considering only the price (key) pki and proofs from channels chO1i and chO2i.
Using (4.5), we deduce that:

∀1 ≤ i ≤ m : testov2,1 {pki/pk1, chO1i/chO11, chO2i/chO21, i/one} ∗−→ OK
⇓

∀1 ≤ i ≤ m : getPrice(L[winBid]) = i⇒ winBid = win(getPrice(L))
⇓

winBid = win(getPrice(L))

Hence we have

testov2,m
∗−→ OK ⇒ winBid = win(getPrice(L)) (4.7)

In the next step, we generalize the result to n bids, i.e. we want to show that

testovn,m
∗−→ OK ⇒ winBid = win(getPrice(L))

Firstly note that in this protocol the highest bid wins, and that in the case of ties
the bid with the lowest index in the list wins (cf. Listing 4.9 on page 209), i.e. we
have

winBid = win(getPrice(L))
m

∀1 ≤ i ≤ n : (getPrice(L[i]) ≤ getPrice(L[winBid])) ∧
(getPrice(L[i]) = getPrice(L[winBid])⇒ i > winBid)

m
(∀i < winBid : win(getPrice(L[i],L[winBid])) = 2) ∧
(∀i > winBid : win(getPrice(L[winBid],L[i])) = 1)

(4.8)
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Let k = winBid. We can see from the code that

testovn,m
∗−→ OK

⇓
(∀i < winBid : testov2,m {chOi1/chO11, chOk1/chO21, . . . ,

chOim/chO1m, chOkm/chO2m, two/w} ∗−→ OK ) ∧
(∀i > winBid : testov2,m {chOk1/chO11, chOi1/chO21, . . . ,

chOkm/chO1m, chOim/chO2m, one/w} ∗−→ OK )

i.e. that if testovn,m holds on for the winner input from channel chW, prices (i.e.
public keys) pk1 to pkm, decryptions and proofs from channels chO11 to chOnm,
then for any i < winBid

testov2,m {chOi1/chO11, chOk1/chO21, . . . , chOim/chO1m, chOkm/chO2m, two/w}

holds for winner two and considering only the decryptions and proofs from channels
chOi1 and chOk1 to chOim and chOkm, and analogously for i > winBid. Using
the intermediate result (4.7) we have

(∀i < winBid : win(getPrice(L[i],L[winBid])) = 2) ∧
(∀i > winBid : win(getPrice(L[winBid],L[i])) = 1)

and using (4.8) we can conclude

winBid = win(getPrice(L))

We now make a similar argument for completeness, starting again by proving
soundness for 2 bids and m prices.

winBid = win(getPrice(L))
⇓

∀1 ≤ i ≤ m : getPrice(L[winBid]) = i⇒ winBid = win(getPrice(L))
⇓

∀1 ≤ i ≤ m : testov2,i {pki/pk1, chO1i/chO11, chO2i/chO21, i/one} ∗−→ OK
⇓

testov2,m
∗−→ OK
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We conclude for n bids as follows.

winBid = win(getPrice(L))
⇓

(∀i < winBid : win(getPrice(L[i],L[winBid])) = 2) ∧
(∀i > winBid : win(getPrice(L[winBid],L[i])) = 1)

⇓
(∀i < winBid : testov2,m {chOi1/chO11, chOk1/chO21, . . . ,

chOim/chO1m, chOkm/chO2m, two/w} ∗−→ OK ) ∧
(∀i > winBid : testov2,m {chOk1/chO11, chOi1/chO21, . . . ,

chOkm/chO1m, chOim/chO2m, one/w} ∗−→ OK )
⇓

testovn,m
∗−→ OK

�

We thus conclude that all proposed tests are sound and complete, hence the proto-
col by Sako [Sak00] is verifiable. The code used is available on our website [Dre13].

Verifiability in the computational setting. Next, we analyze both sound-
ness and completeness of the verifiability tests in the computational setting using
CryptoVerif [Bla06a]. CryptoVerif has two input modes: the mode “channels”
and “oracles”. The mode “channels” takes process descriptions and queries similar
to ProVerif. These are then translated into “oracles”, and CryptoVerif tries to
prove the queries using a sequence of games. This sequence of games can be
found automatically in simple cases, or manually using an interactive front-end.
Each transition can be a simplification of the current game, the application of an
equation or of a cryptographic hypotheses such as IND-CPA (indistinguishability
under chosen plaintext attacks [BDPR98]) for public key encryption or UF-CMA
(existential unforgeability against adaptive chosen message attacks [GMR88]) for
signatures. For more details on CryptoVerif, we refer to the original paper [Bla06a]
or the CryptoVerif Manual [BC12].

Due to the similarities with ProVerif, we employ the mode “channels”. We
do not repeat the model and tests, but directly discuss the verification games.
However, as we are not in a symbolic setting any more, we need to slightly adapt
our model. We replace the abstract primitive “proof of correct decryption” with
the implementation originally proposed by Sako: the authority simply reveals the
secret key to enable verification of the decryption. Again, the entire code used is
available on our website [Dre13].

For the first test, rvs, we assume a UF-CMA probabilistic signature scheme.
In Listing 4.18 on the next page we present our CryptoVerif code which works as
follows: up to N bidders post their bids on the bulletin board (the choice of the
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price is left to the adversary), and then the adversary can submit bids to the test.
Note in here we model the test for N bidders by allowing the adversary to submit
N messages, and that he wins if he can reach the event accept(m) at least once
without using one of the honest bids.

CryptoVerif is able to conclude automatically that the test is sound, i.e. it
will only accept registered bidders: each event accept(m) is preceded by an event
send(m). For N bidders the advantage computed by CryptoVerif is N ∗ advsign,
where advsign is the advantage against the signature scheme.

1 l e t b idder =
2 in ( chBid , b : pkey ) ;
3 new ks : skeyseed ;
4 i n s e r t keys ( spkgen ( ks ) ) ;
5 l e t k = sskgen ( ks ) in
6 new s : seed ;
7 l e t o f f e r : s b l o c k s i z e = bitToSign ( enc ( bidval , b , s ) ) in
8 new s s : s s eed ;
9 l e t o f f e r s = s i gn ( o f f e r , k , s s ) in

10 event send ( o f f e r ) ;
11 out (chBB1 , ( o f f e r , o f f e r s ) ) .
12
13 l e t t e s t r v s =
14 in (chBB2 , (m: sb l o ck s i z e , s : s i gna tu r e ) ) ;
15 get keys ( k ) suchthat check (m, k , s ) in
16 event accept (m) .
17
18 proce s s
19 ( ( ! i<=N t e s t r v s ) |
20 ( ! i<=N bidder ) )

Listing 4.18 – The CryptoVerif code for checking soundness of rvs.

Similarly, in Listing 4.19 on the facing page, we describe our CryptoVerif
code for completeness of rvs: A honest bidder creates his keys, registers himself
and submits a bid to the test. To avoid false attacks, we use “inlining” again,
i.e. we merge the bidder’s process with the test process. CryptoVerif concludes
automatically that the event reject is unreachable, i.e. that such bids are always
accepted. Here we need no cryptographic hypothesis, only the correctness of the
signature scheme, i.e. that

check(m, pkgen(r), sign(m, skgen(r), r2)) = true

holds for any message m and any seeds r and r2. The computed advantage is 0,
but this only means that – since the signature scheme is correct – the bid will
always be accepted.
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1 l e t testcomp =
2 in (chAd , b : pkey ) ;
3 new k : skeyseed ;
4 l e t spk = spkgen (k ) in
5 l e t s sk = sskgen (k ) in
6 i n s e r t keys ( spk ) ;
7 new s : seed ;
8 new s1 : s s eed ;
9 l e t o f f e r : s b l o c k s i z e = bitToSign ( enc ( bidval , b , s ) ) in
10 i f check ( o f f e r , spk , s i gn ( o f f e r , ssk , s1 ) ) <> true then
11 event r e j e c t ( ) .
12
13 proce s s
14 ! i<=N testcomp

Listing 4.19 – The CryptoVerif code for checking completeness of rvs.

CryptoVerif immediately finishes the soundness and completeness proofs for
test rvw (Listings 4.20 and 4.21 on the following page, respectively). For soundness
we prove that each event accept(m,s) is preceded by an event onBB(m,s). For
completeness we show that the event reject is unreachable. Again, we connect
the processes directly to not rely on channels in order to avoid false attacks. We
note that CryptoVerif does not rely on any cryptographic hypothesis for proving
soundness or completeness of this test, hence the adversary has an advantage of 0
in both cases.

1 l e t bu l l e t i nboa rd =
2 in (chBB , ( b : s b l o ck s i z e , s : s i gna tu r e ) ) ;
3 event onBB(b , s ) ;
4 i n s e r t b ids (b , s ) .
5
6 l e t testrvw =
7 in (chW, (m: sb l o ck s i z e , s : s i gna tu r e ) ) ;
8 get b ids (=m,=s ) in
9 event accept (m, s ) .
10
11 proce s s
12 ( ( testrvw ) |
13 ( ! i<=N bu l l e t i nboa rd ) )

Listing 4.20 – The CryptoVerif code for checking soundness of rvw.

For the output verification tests ov{l,w,s}, again no cryptographic assumptions
are needed. For completeness we only require correctness of the encryption scheme,
i.e. that

dec(enc(m, pkgen(r), r2), r) = m (4.9)

233



4. eAuctions

1 l e t b idder =
2 new k1s : skeyseed ;
3 i n s e r t keys ( spkgen ( k1s ) ) ;
4 l e t k1 = sskgen ( k1s ) in
5 new s1 : seed ;
6 l e t o f f e r 1 : s b l o c k s i z e =
7 bitToSign ( enc ( bidval , b1 , s1 ) ) in
8 new ss1 : s s eed ;
9 l e t o f f e r 1 s = s i gn ( o f f e r 1 , k1 , s s1 ) in

10 i n s e r t o f f e r s ( o f f e r 1 ) ;
11 event send ( o f f e r 1 , o f f e r 1 s ) ;
12 author i ty .
13
14 l e t author i ty =
15 get keys ( k1 ) suchthat check ( o f f e r 1 , k1 , o f f e r 1 s ) in
16 l e t dec11 = dec ( s ignToBit ( o f f e r 1 ) , p1 ) in
17 i f ( dec11 = in j bo t ( b idva l ) ) then
18 l e t m = o f f e r 1 in testrvw
19 e l s e
20 l e t dec21 = dec ( s ignToBit ( o f f e r 1 ) , p2 ) in
21 i f ( dec21 = in j bo t ( b idva l ) )
22 then l e t m = o f f e r 1 in testrvw .
23
24 l e t testrvw =
25 get o f f e r s (=m) in y i e l d e l s e
26 event r e j e c t ( ) .
27
28 proce s s
29 in ( s ta r t , ( ) ) ;
30 new p1s : keyseed ; new p2s : keyseed ;
31 l e t p1 = skgen ( p1s ) in
32 l e t p2 = skgen ( p2s ) in
33 l e t p1p = pkgen ( p1s ) in
34 l e t p2p = pkgen ( p2s ) in
35 l e t b1 = p1p in
36 bidder

Listing 4.21 – The CryptoVerif code for checking completeness of rvw.
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holds for any message m, secret key r and seed r2. For soundness we also need
two properties about the keys:
— we assume that there is a function pkgen which computes the corresponding

public key to a given secret key, and

— if several different secret keys share the same public key, all decryptions (i.e.
using any of the private keys sharing the same public key) give the same result.

This is in particular the case for the ElGamal encryption scheme used in the
implementation proposed by Sako: given a secret key x one can compute the
public key y = gx mod n, and any secret key x′ with gx′ = gx mod n decrypts
correctly. Completeness can again be verified automatically for the base case with
two bidders and one price13, however we were unable to prove soundness, even in
CryptoVerif’s manual mode. This is due to the heuristic employed in CryptoVerif’s
handling of equations, prohibiting the application of equations where both sides
are complex terms, i.e. not a simple variable [Bla13]. Hence, we prove Theorem 71
manually.

Theorem 71 The test for ov{l,w,s} (see Listing 4.22 on page 237) is sound with
advantage 0 if the following conditions hold:
— we assume that there is a function pkgen which computes the corresponding

public key to a given secret key, and

— dec(enc(m, pkgen(r), r2), r) = m holds for any message m, secret key r and
seed r2

— if several different secret keys share the same public key, all decryptions
(i.e. using any of the private keys sharing the same public key) give the
same result: if pkgen(r) = pkgen(r′) then dec(enc(m, pkgen(r), r2), r) =
dec(enc(m, pkgen(r), r2), r′)

Proof Consider the test in Listing 4.22 on page 237. We have to show that it is
sound, i.e. that it will only accept correct outcomes. Similar to the symbolic case
above, we show that when the test accepts the provided data, this corresponds to
a correct outcome. More precisely, we show that if a bid is accepted as a winning
bid, it actually decrypts to the constant under the private key corresponding to
the claimed price, and that none of the other bids decrypts under any of the keys
corresponding to higher prices.

Consider the first acceptance in line 9. By the test pk1=pkgen(p1) in line
3 we know that p1 is a correct secret key for the published public key pk1, i.e.
by the hypotheses decrypts to the same value as the original secret key (the key
used to generate the public key used do encrypt). Note that the test in line 3 is

13Similar to the symbolic proof we can show that this extends to the general case using an
analog proof.
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important, otherwise an attacker could submit a wrong secret key to claim that
no ciphertext decrypts to bidval. Hence the following tests to check that the
decryptions are correct (lines 3-4) use a correct key. Thus, the tests following in
lines 5-7 operate on correctly decrypted values, and only accept if the announced
winner corresponds to the observed (correct by the previous tests) decryptions.

If none of the decryptions gives the constant bidval, i.e. no bidder chose
the price corresponding to the key pk1, the same procedure is repeated for the
next key. Finally, if even for the last key no decryption returns the constant, the
test stills as there was apparently no valid bid for any of the prices – this might
correspond to bidders spoiling their bids on purpose.

Finally, the adversary’s advantage is 0, as none of the used hypothesis gives
the adversary any advantage. �

Remark In Section 4.3.5.3 we discussed the attack by Abdalla et al. [ABN10]
on fairness. It turns out that this attack can be discovered if the verification is
carried out as specified in Listing 4.22 on the next page.

Recall the attack: the dishonest bidder uses the randomness 0 to encrypt his
bid, hence the resulting ciphertext has the form (1, bidval), and decrypts correctly
under any key to the value bidval. This allows a colluding authority to open the
bogus bid at a price of his convenience, for example at price xm + 1 if xm is the
value of the highest bid.

This however is not possible if the verification is carried out correctly. If the
authority decides to open the bogus bid at price xm + 1, he has to prove that the
bogus bid does not decrypt to the value bidval for any key corresponding to a
price higher than xm+1. Since the bogus bid decrypts under any key, he is unable
to do so. The only possible way to pass the verification test is to open the bogus
bid at the highest possible price and to declare the dishonest bidder a winner at
this price, since then no other keys are used in the verification. This however
gives the bidder no advantage over simply submitting a bid for the highest price
using a correct encryption, hence the attack does not compromise fairness if the
verification is carried out correctly.

Note however that our relatively abstract modeling of the encryption scheme and
its correctness is not able to identify the underlying problem of using a particular
random seed to construct an illegal ciphertext: equation (4.9) states nothing
about the result of a decryption using a secret key that does not correspond to the
public key used for encryption. To detect this issue, we would need to explicitly
model the ElGamal encryption and its mathematical properties.

§ 4.4.3.2. Protocol by Curtis et al.. Our second case study is the protocol
by Curtis et al. [CPS07] from Section 4.3.5.1.
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1 l e t t e s t ov =
2 in (chW, ( (m, s ,w, p ) , ( pk1 , . . . , pkm) , p1 , ( c1 ,m1 ) , . . . , ( cn ,mn) ) ) ;
3 i f pk1 = pkgen ( p1 ) && dec ( c1 , p1 ) = m1 && . . . &&
4 dec ( cn , p1 ) = mn then
5 i f p = one && ( (w = one && m1 = bidva l ) | | . . . | |
6 (w = n && m1 <> bidva l && . . . && m(n−1) <> bidva l &&
7 mn = bidva l ) )
8 then
9 out (chOV, OK)
10 e l s e
11 i f m1 <> bidva l && . . . && mn <> bidva l &&
12 p <> one then
13 . . .
14 in (chW, (pm, ( c1 ,m1 ) , . . . , ( cn ,mn) ) ;
15 i f pkm = pkgen (pm) && dec ( c1 ,pm) = m1 && . . . &&
16 dec ( cn ,pm) = mn then
17 i f p = m && ((w = one && m1 = bidva l )
18 | | . . . | | (w = n && m1 <> bidva l && . . . &&
19 m(n−1) <> bidva l && mn = bidva l ) ) then
20 out (chOV, OK)
21 e l s e
22 i f m1 <> bidva l && . . . && mn <> bidva l &&
23 p <> m then
24 out (chOV, OK)
25 e l s e
26 out (chOV, KO)
27 e l s e
28 out (chOV, KO)
29 . . .
30 e l s e
31 out (chOV, KO) .

Listing 4.22 – The soundness and completeness code for ov{l,w,s}.
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1 l e t testrvw ( chP1 : channel , . . . , chPn : channel ,chW: channel ,
2 chRVW: channel ) =
3 in ( chP1 , ( p1 : b i t s t r i n g , c1 : b i t s t r i n g , h1 : b i t s t r i n g ) ) ;
4 . . .
5 in ( chPn , ( pn : b i t s t r i n g , cn : b i t s t r i n g , hn : b i t s t r i n g ) ) ;
6 in (chW, ( p : b i t s t r i n g ) ) ;
7 i f ( p1 = p) | | . . . | | ( pn = p) then
8 out (chRVW,OK)
9 e l s e

10 out (chRVW,KO) .

Listing 4.23 – The test rvw.

1 l e t testrvw ( chP1 : channel , . . . , chPn : channel ,chW: channel ,
2 chRVW: channel ) =
3 in ( chP1 , ( p1 : b i t s t r i n g , c1 : b i t s t r i n g , h1 : b i t s t r i n g ) ) ;
4 event onLis t ( p1 ) ;
5 . . .
6 in ( chPn , ( pn : b i t s t r i n g , cn : b i t s t r i n g , hn : b i t s t r i n g ) ) ;
7 event onLis t (pn ) ;
8 in (chW, ( p : b i t s t r i n g ) ) ;
9 i f ( p1 = p) | | . . . | | ( pn = p) then

10 out (chRVW,OK) ;
11 event accept (p)
12 e l s e
13 out (chRVW,KO) ;
14 event r e j e c t ( ) .

Listing 4.24 – The test rvw with events.

With respect to our model of verifiability, we have the set of bidders B and a
seller S. We do not need to specify the type of bids Bid since the protocol supports
any type of bids. The bids are published when the auctioneer reveals the symmetric
key, i.e. L contains bids of the following type: (Pseudo × PEnc(Bid) × Hash),
where Pseudo is the type of pseudonyms, PEnc is a public-key encryption and
Hash are hash values. The function getPrice simply decrypts the encrypted bid
(the second entry of the tuple). The function isReg returns true if and only if
the hash value is correct, the pseudonym was actually attributed by the RA and
the bid was submitted correctly signed by the bidder with this pseudonym. The
protocol is independent of the used auction mechanism and hence does not define
win. The seller simply decrypts all bids and can then apply any function win.
He publishes the winning price and the winning bidders pseudonym, and winBid
denotes the index of the bid containing this pseudonym.

As a concrete instance of this abstract model, we employ the model in the
Applied π-Calculus already used in Section 4.3.5.1.
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1 l e t t e s t r v s ( k1 : pkey , . . . , kn : pkey ,
2 chH1 : channel , . . . , chHn : channel ,
3 chP1 : channel , . . . , chPn : channel , chRVS : channel ) =
4 in ( chH1 , ( h1 : b i t s t r i n g , s1 : b i t s t r i n g ) ) ;
5 . . .
6 in (chHn , ( hn : b i t s t r i n g , sn : b i t s t r i n g ) ) ;
7 in ( chP1 , ( p1 : b i t s t r i n g , c1 : b i t s t r i n g , h1 : b i t s t r i n g ) ) ;
8 . . .
9 in ( chPn , ( pn : b i t s t r i n g , cn : b i t s t r i n g , hn : b i t s t r i n g ) ) ;
10 i f ( h1 = ha && checks ign ( s1 , k1 ) = h1 ) && . . . &&
11 (hn = ha && checks ign ( sn , kn ) = hn) then
12 out (chRVS ,OK)
13 e l s e
14 out (chRVS ,KO) .

Listing 4.25 – The test rvs.

1 l e t t e s t r v s ( k1 : pkey , . . . , kn : pkey ,
2 chH1 : channel , . . . , chHn : channel ,
3 chP1 : channel , . . . , chPn : channel , chRVS : channel ) =
4 in ( chH1 , ( h1 : b i t s t r i n g , s1 : b i t s t r i n g ) ) ;
5 . . .
6 in (chHn , ( hn : b i t s t r i n g , sn : b i t s t r i n g ) ) ;
7 in ( chP1 , ( p1 : b i t s t r i n g , c1 : b i t s t r i n g , h1 ’ : b i t s t r i n g ) ) ;
8 . . .
9 in ( chPn , ( pn : b i t s t r i n g , cn : b i t s t r i n g , hn ’ : b i t s t r i n g ) ) ;
10 i f ( h1 = h1 ’ && checks ign ( s1 , k1 ) = h1 ) && . . . &&
11 (hn = hn ’ && checks ign ( sn , kn ) = hn) then
12 out (chRVS ,OK) ;
13 event accept (h1 , s1 , p1 , c1 , . . . , hn , sn , pn , cn )
14 e l s e
15 out (chRVS ,KO) ;
16 event r e j e c t ( ) .

Listing 4.26 – The test rvs with events.
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Analysis. As already noted in Section 4.3.5.1, the protocol does not specify the
output computation, hence we do not consider the tests ovs, ovl and ovw.

For rvw we propose the following test: checking if the pseudonym of the
winner appears in the list of bids. Using ProVerif we were able to show that
this test (Listing 4.23 on page 238) is sound and complete, using the same
techniques as in the case of the protocol by Sako: we instrument the process with
events (Listing 4.24 on page 238), and show that any accept(p) is preceded by a
corresponding onList(p). Similarly we show that if a honest seller announces one
of the bidders as the winner, the event reject is unreachable14. In both cases we
only consider the case with one bidder, however we can show that this generalizes
to an arbitrary number of bidders similarly to Theorem 69 on page 222.

For rvs the situation is more complicated. Essentially, a verifier can only
check if the hash was correctly signed when previously submitted to the RA as
all other data is encrypted or otherwise inaccessible. We implemented such a
test in ProVerif (Listing 4.25 on the previous page) and were able to prove its
completeness using the same technique as above: we show that the event reject
is not reachable if all parties are honest. To check soundness we verify if each event
accept is preceded by the corresponding send, where send is an event executed
by the bidders when submitting the bid. ProVerif immediately finds an attack:
since the messages from the RA to the seller are not authenticated, anybody
can modify all values except for the hash, in particular the pseudonyms. Hence
there is no assurance that a pseudonym actually corresponds to a bidder. Even if
the messages from the RA were authenticated, a verifier still needs to trust the
RA, since the RA can still manipulate the pseudonyms, for example swap two
pseudonyms or create fake ones. Note also that if we want to ensure privacy of
the bids the first message containing the signed hash also needs to be encrypted
(cf. Section 4.3.5.1), hence even this insufficient check is not possible any more.

Curtis et al. explicitly state that the RA needs to be trusted for correctness.
However, they also propose a property “robustness” which states that an auction
protocol should be able to handle corrupt behavior. Clearly, their protocol is
not robust to dishonest behavior by the RA, and this cannot be fixed using
verification checks, as they also would require trust in the RA. We argue that
basing verifiability tests on such a trust assumption at least partly contradicts
the main point of verifiability, which is to back up trust assumptions by providing
evidence that a trusted party actually behaved honestly.

Again, the code used is available on our website [Dre13].

14As we consider only one bidder, we do not need to know how the winner is determined, we
simply assume that the one participating bidder will be declared the winner.
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4.4.4 — Summary

In this section we defined verifiability for auction protocols using a high-level
model that can be instantiated with different concrete model, including symbolic
and computational ones. Our definitions cover first-price auctions as well as
second-price or even bulk good auctions.

We applied our definitions on two case studies. Our first example, the protocol
by Sako, ensures verifiability as it provides sound and complete verification test.
We showed this in a symbolic setting using ProVerif and in a computational
setting using CryptoVerif. The protocol by Curtis et al. is our second case study
and suffers from several problems. For example the bids lack authentication in
the last step of the protocol, and one needs to trust the registration authority to
manage the pseudonyms correctly.

4.5 Towards True Bidder-Verifiable Auctions

In the previous section we defined and analyzed verifiability. As discussed in the
introduction, the goal of verifiability is to enable the participants to verify the
correct execution of the protocol in order to reduce the necessary trust hypothesis.
We were able to show that the protocol by Sako, one of our two case studies, fulfills
our definition of verifiability. However, to achieve this, it relies on cryptographic
operations such as signatures and public-key cryptography.

Yet, achieving verifiability through cryptography is somewhat disingenuous:
any participant lacking cryptographic expertise cannot ascertain for himself that
the verification procedure is indeed correct, and is thus forced to trust the judgment
of cryptographic experts that designed this procedure. This means that to some
extent the verification procedure does not reduce the necessary trust, but simply
shifts the trust from the parties participating in the protocol execution to the
cryptographers that designed the protocol.

The same problem was already identified in electronic voting. In 2004,
Chaum [Cha04] argued along the same lines that the verifiable cryptographic
voting protocols proposed up to this date did little to empower actual voters to
verify elections, as even the verification procedures were to complex for a normal
voter to understand. This view was shared by the German Constitutional Court in
its decision on electronic voting machines: “the use of electronic voting machines
requires that the essential steps of the voting and of the determination of the result
can be examined by the citizen reliably and without any specialist knowledge of the
subject” [Bun09]. To address this issue, Chaum proposed a voting protocol using
visual cryptography: the ballot was distributed over two layers that on top of each
other showed the voter’s choice. Then, one layer was destroyed, leaving the voter
with a layer full of random dots from which no choice can be inferred. However,
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anyone can verify that the system accurately recorded this layer – without any
cryptographic expertise. Chaum called this “true voter-verifiable elections”, hence
our idea of “true bidder-verifiable auctions”.

In this section we explore this idea of “true bidder-verifiable auctions” based
on physical properties. We propose two examples of protocols ensuring “true
bidder-verifiability”. Although these protocols have some limitations with respect
to scalability, they illustrate how we can realize secure auctions by exclusively
relying on physical objects and their properties. Since we already established
our formal security definitions for auctions protocols (Fairness, Authentication,
Privacy and Verifiability), we also propose a first approach allowing to model
physical objects and their properties in the Applied π-Calculus, in an attempt to
apply our previous definitions on the new physical protocols.

Inspired by Sako’s protocol, we propose a physical protocol called Cardako15.
This protocol does not rely on cryptography nor on trusted parties, yet retains
the verifiability, privacy, authentication and fairness properties of Sako’s protocol.
We provide a formal analysis of these security properties in ProVerif, modeling
their physical properties using a special equational theory. Although ensuring
privacy for the losing bidders (if the authorities are trusted), both the Sako and
the Cardako protocol publicly reveal the winner.

To improve privacy, we propose Woodako16: a physical auction protocol that
only reveals the winner and winning price to the seller and the winner, but not to
the losing bidders (similar to [Bra06]). However, we show that the result remains
verifiable even for losing bidders. We build a concrete prototype of this protocol,
and verify the security properties with the help of ProVerif.

We argue that both protocols can be understood by a non-expert in the spirit
of “true bidder-verifiable auctions”.

4.5.1 — The “Cardako” Protocol

The Cardako protocol is a practical implementation of the main concepts of Sako’s
protocol [Sak00] using office material.

§ 4.5.1.1. Description. In the Cardako protocol each bidder has a piece of
cardboard marked with a number of positions corresponding to possible prices in
descending order from left to right (see Figure 4.4 on the facing page). A bidder
chooses his price (in Figure 4.4, the second-highest price pm−1), and punches a
hole in the position corresponding to his bid. Next, he inserts the card into a
special envelope of the same size with marks corresponding to the different prices
on the outside (see Figure 4.5 on the next page), and signs on the outside of the

15A Cardboard version of Sako’s protocol.
16Wooden box based implementation of Sako’s protocol.
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envelope. The envelope is sealed and shown to all other bidders so that they can
check the signature.

pm pm−1 . . . p1

Figure 4.4 – Cardako bid for price pm−1.

Once all bidders have finished creating bids and shown their signatures, the
bidders swap envelopes and jointly try to punch a needle through the marked
areas of each envelope, starting with the highest possible price. If this succeeds,
they find a hole and hence a bid for this price. The signature on the outside then
allows the identification of the winner. If this fails for all bids, the bidders repeat
the procedure for the second price, etc.. Since the order of the prices is important,
the cards and envelopes are designed such that they can only fit together in one
way. This ensures that the card cannot accidentally or maliciously be turned
around.

To fully ensure verifiability, the protocol must also ensure that only eligible
bidders can bid. This is achieved through the verification of the signatures on the
envelopes by the seller and bidders when bids are posted.

Bidder’s Signature

pm pm−1 . . . p1

Figure 4.5 – Cardako bidding envelope.

§ 4.5.1.2. Security Properties. The Cardako protocol relies on the physical
properties of the cardboard and the envelopes: Nobody can see from the outside
the contents of a bid, but by trying to punch with a needle the bidders can test if
it was an offer for a certain price. It offers verifiability similar to Sako’s protocol
as well as non-cancellation and non-repudiation due to the signatures and the
swapping of the envelopes. It ensures fairness since no premature information is
leaked (Weak Non-Interference) and due to the joint bid opening no cheating is
possible (Highest Price Wins).

Obviously a malicious bidder can open an envelope and read its contents –
but this is actually similar to Sako’s protocol, where dishonest authorities can
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break privacy. The difference is that in Cardako such a behavior will be detected
by the other bidders, since the envelope is damaged and the other parties are
in the same room. An extension to improve privacy could be to put the signed
envelopes into slightly bigger and indistinguishable envelopes after the signature
has been verified by the other parties. These envelopes can be posted into a ballot
box to break the link between a bidder and his bid. Hence a malicious bidder will
only be able to break the privacy of a random bid, but not necessary the one he
is interested in.

A positive side effect of using indistinguishable envelopes is that ties can be
detected and resolved fairly without revealing the identities of the tied bidders
(unlike Sako’s protocol). This happens as follows: first, the protocol determines
which envelopes contain winning bids. As the envelopes are indistinguishable
from one another, the identity of the tied bidders is not revealed yet. The tie is
then broken by selecting a random envelope (e.g. by rolling a die, or drawing an
envelope from a hat).

§ 4.5.1.3. Formal Analysis. We model the bidders as processes exchanging
messages (envelopes or real communication messages), however we also need to
model the physical properties of the objects used. Our approach consists in
modeling the properties using an equational theory. We describe the envelope
using a function envelope that is created using a random seed to hide its contents
and can only be opened using that seed, similar to a cryptographic commitment.
However we also have functions testone, testtwo, . . . , testm, that can test for
a certain value without opening the envelope (i.e., the needle tests17):

open(envelope(content, k), k) = content

testone(sign(envelope(x, k), sk)) =

true if x = one,

false otherwise

testtwo(sign(envelope(x, k), sk)) =

true if x = two,

false otherwise
...

testm(sign(envelope(x, k), sk)) =

true if x = m,

false otherwise
checksign(sign(m, k), pk(k)) =m

getmessage(sign(m, k)) =m

getpubkey(sign(m, k)) = pk(k)

17Note that technically the needle tests cannot be modeled like this in a normal equational theory
due to the case distinction, however we can implement this in ProVerif using extended destructors.
A variant for a normal equational theory would be testone(sign(envelope(one, k), sk)) = true.
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1 l e t b idder (b : bid , sk : skey , chBox : channel , chBoxOut : channel ,
2 chSyncS1 : channel , . . . , chSyncSn : channel ,
3 chSyncR : channel , chWon : channel ) =
4 new k : key ;
5 l e t o f f e r : l e t t e r = enve lope (b , k ) in
6 l e t sb : s i g n e d l e t t e r = s i gn ( o f f e r , sk ) in
7 event bid ( sb , k ) ;
8 out ( chBox , ( sb , k ) ) ;
9 in ( chBoxOut , ( env : s i g n ed l e t t e r , s : key ) ) ;
10 i f ( t e s t one ( env ) = true ) then
11 l e t sb : bid = open ( getmessage ( env ) , s ) in
12 event won( env , s ) ;
13 out (chWon , ( sb , getpubkey ( env ) ) ) ;
14 out ( chSyncS1 , t rue ) ;
15 . . .
16 out ( chSyncSn , t rue )
17 e l s e
18 out ( chSyncS1 , f a l s e ) ;
19 . . .
20 out ( chSyncSn , f a l s e ) ;
21 in ( chSyncR , found1 : bool ) ;
22 . . .
23 in ( chSyncR , foundn : bool ) ;
24 i f ( found1 = f a l s e ) && . . . &&
25 ( foundn = f a l s e ) then
26 . . .
27 i f ( t e s tn ( env ) = true ) then
28 l e t sb : bid = open ( getmessage ( env ) , s ) in
29 event won( env , s ) ;
30 out (chWon , ( sb , getpubkey ( env ) ) ) ;
31 out ( chSyncS1 , t rue ) ;
32 . . .
33 out ( chSyncSn , t rue )
34 e l s e
35 out ( chSyncS1 , f a l s e ) ;
36 . . .
37 out ( chSyncSn , f a l s e ) ;
38 in ( chSyncR , found : bool ) .

Listing 4.27 – The bidder.

245



4. eAuctions

1 l e t processSwap ( chBoxIn1 : channel , . . . , chBoxInN : channel ,
2 chBoxOut1 : channel , . . . , chBoxOutN : channel ) =
3 in ( chBoxIn1 , ( b1 : s i g n ed l e t t e r , k1 : key ) ) ;
4 event recBid (b1 , k1 ) ;
5 . . .
6 in ( chBoxInN , ( bn : s i g n ed l e t t e r , kn : key ) ) ;
7 event recBid (bn , kn ) ;
8 out ( chBoxOut1 , ( bn , kn ) ) |
9 . . .

10 out (chBoxOutN , ( b1 , k1 ) ) .

Listing 4.28 – The swap process.

1 proce s s
2 new k1 : skey ; new k2 : skey ;
3 new chBoxIn1 : channel ; new chBoxIn2 : channel ;
4 l e t pk1 = pk ( k1 ) in l e t pk2 = pk ( k2 ) in
5 out ( chPKI , ( pk1 , pk2 ) ) ;
6 processSwap ( chBoxIn1 , chBoxIn2 , chBoxOut1 , chBoxOut2 ) |
7 bidder (b1 , k1 , chBoxIn1 , chBoxOut1 , chSync1 , chSync2 , chWon) |
8 bidder (b2 , k2 , chBoxIn2 , chBoxOut2 , chSync2 , chSync1 , chWon)

Listing 4.29 – An instance with two bidders.

The last three equations model signatures. The first equation allows to verify a
signature, the second equation to obtain the signed message, and the last one to
identify the person who signed the message.

The honest participants obviously only test for the values that they are
supposed to, but dishonest participants can also apply tests they are not supposed
to execute. To model the fact that any party in possession of an envelope can
open it, the bidders give away the random seed they used to create it when giving
away the envelope.

The process model is given in Listings 4.27 on the preceding page, 4.28
and 4.29. The bidder (Listing 4.27 on the previous page) encloses his bid inside
the envelope and sends the envelope together with the key to the synchronization
and swap process (Listing 4.28). This process waits until he has all bids, and
then redistributes them in inverse order over all bidders. This is to model that
once all envelopes are ready, they are swapped between the bidders. The bidders
then receive the envelopes, and test for the first (i.e. highest) price. If this
succeeds, they announce the winner and stop. If it fails, they let the other bidders
know, and wait if any of the other bidders finds a winner. If yes, they stop,
otherwise they test for the next possible price, and so on. The verification tests
(Listings 4.30 on the next page, 4.31 on the facing page and 4.32 on page 248) are
straightforward: To check the result, one repeats the necessary needle test, and
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1 l e t t e s t ov (chWin : channel , chOV: channel ,
2 chBid1 : channel , . . . , chBidn : channel ) =
3 in (chWin , ( p r i c e : bid , id : pskey ) ) ;
4 in ( chBid1 , ( b1 : s i g n ed l e t t e r , s1 : key ) ) ;
5 . . .
6 in ( chBidn , ( bn : s i g n ed l e t t e r , sn : key ) ) ;
7 i f ( ( p r i c e = one ) && ( getpubkey ( b1 ) = id ) &&
8 ( t e s t one ( b1 ) ) then
9 out (chOV,OK)
10 . . .
11 e l s e i f ( p r i c e = one ) && ( getpubkey (bn) = id ) &&
12 ( t e s t one (bn ) ) then
13 out (chOV,OK)
14 . . .
15 e l s e i f ( p r i c e = m) && ( getpubkey ( b1 ) = id ) &&
16 ( tes t two ( b1 ) ) && not ( t e s t one ( b1 ) ) && . . . &&
17 not ( t e s t one ( b2 ) ) then
18 out (chOV,OK)
19 . . .
20 e l s e i f ( p r i c e = m) && ( getpubkey (bn) = id ) &&
21 ( tes t two ( b2 ) ) && not ( t e s t one ( b1 ) ) && . . . &&
22 not ( t e s t one ( b2 ) ) then
23 out (chOV,OK)
24 e l s e
25 out (chOV,KO) .

Listing 4.30 – The verification test for ov{l,w,s}.

1 l e t t e s t r v s (chRVS : channel , pk1 : pskey , . . . , pkn : pskey ,
2 chBoxIn1 : channel , . . . , chBoxInN : channel ) =
3 in ( chBoxIn1 , ( b1 : s i g n ed l e t t e r , k1 : key ) ) ;
4 . . .
5 in ( chBoxInN , ( bn : s i g n ed l e t t e r , kn : key ) ) ;
6 i f checks ign (b1 , pk1 ) = getmessage ( b1 ) && . . . &&
7 checks ign (bn , pkn ) = getmessage (bn) then
8 out (chRVS ,OK)
9 e l s e
10 out (chRVS ,KO) .

Listing 4.31 – The verification test for rvs.
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1 l e t testrvw (chRVW: channel ,chW: channel ,
2 chBox1 : channel , . . . , chBoxN : channel ) =
3 in ( chBox1 , ( b1 : s i g n ed l e t t e r , k1 : key ) ) ;
4 . . .
5 in (chBoxN , ( bn : s i g n ed l e t t e r , kn : key ) ) ;
6 in (chW, ( b : bid , id : pskey ) ) ;
7 i f ( open ( getmessage ( b1 ) , k1 ) = b && getpubkey ( b1 ) = id )
8 | | . . . | |
9 ( open ( getmessage (bn ) , kn ) = b && getpubkey (bn) = id ) then

10 out (chRVW, OK)
11 e l s e
12 out (chRVW, KO) .

Listing 4.32 – The test rvw.

to check the registration one checks the signatures and if the announced winner is
among the initial bids.

This model allows us to repeat the same verification steps as for Sako’s
protocol18 and to conclude that the protocol ensures Non-Repudiation, Non-
Cancellation, Weak Non-Interference, Highest Price Wins and Verifiability.

When verifying Privacy, ProVerif finds the obvious attacks of opening the
envelopes or testing for all values. If however we keep the seeds private and remove
all tests except for the required ones (in an attempt to model the fact that bidders
do not want to risk being caught when breaking the rules) ProVerif is able to
prove secrecy of the losing bids. All the above verifications succeed within a few
seconds on a standard office PC.

The full code is available online [Dre13].

4.5.2 — The “Woodako” Protocol

To improve the privacy of the Cardako protocol, we developed Woodako, which
relies on a special wooden box. Our prototype is designed for 3 bidders and 5
possible prices, but such a box can be built for any number n of bidders and any
number k of prices. Figure 4.6 on the facing page shows all components of the
box. The Woodako auction system uses:
— Five black marbles per bidder, each size represents one price.

— Six layers (L0 – L5): Layers L0 and L1 are made of transparent plexiglass
and have no holes. The other layers are made of wood and contain four holes
per column. The size of these holes corresponds to the size of the marbles, i.e.
the holes in L2 are only big enough for the smallest marbles, the holes in L3
for the second-smallest etc.

18As in the case of Sako’s protocol, we only check the base case using ProVerif, however we
can show that this generalizes to any number of bidders using similar proofs.
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— Three top layers T1, T2, T3. Each layer is associated with a bidder.

— Two inclined layers: these are placed below the layers, near the bottom of the
box.

— Locks and keys: each bidder and the seller has a set of locks and keys.

— One front side made of wood that closes the box and contains holes to insert
the extremities of the layers. These extremities will stick out and so constitute
a place where the parties can put locks. These locks are used to ensure security
properties regarding that layer, for example that it cannot be removed unless
everybody agrees.

Figure 4.6 – The Woodako prototype.

§ 4.5.2.1. Description. The wooden box carries out the important steps
of the auction in a secure way through its physical properties. The box (see
Figure 4.7 on the next page) is composed of three columns and seven horizontal
plus two inclined layers. Each column (the left, middle and right part of the box)
corresponds to one bidder. The top layers T1, T2 and T3 are used to achieve
confidentiality of the bid of each bidder, as the marbles (corresponding to the bids)
are inserted underneath. The transparent layer L0 is used to lock the bids, once
they are made, to achieve non-repudiation and non-cancellation. The five lower
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Figure 4.7 – Inside our Woodako prototype, where layers L0 and L1 are removed.
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horizontal layers L1 – L5 are used to determine the winning price in a private
way. Finally, the two inclined layers are intended to make it impossible to know
from which column a marble fell by guiding all of them to the same spot in the
bottom left part of the box.

The general idea is as follows: Each bidder will place his bid, modeled by
a marble of a certain size, in the top part of the box. We use five different
sizes, the smallest one representing the highest possible price, and the biggest
one representing the lowest possible price. In the bidding phase, all marbles
are inserted into the box onto solid layer L0. In the opening phase, layer L0 is
removed. Below there is layer L1 with holes big enough to only let the smallest
marbles pass through. Below layer L1, there is layer L2 with bigger holes (the
size of the next biggest marble), and so on. If a bidder inputs the highest possible
price, i.e. the smallest marble, this marble will fall through all layers once the
solid layer is removed, hence revealing the winning price – but not the winning
bidder, thanks to the inclined layers. If nobody inserted the smallest marble, no
marble will fall through and the participants can then remove the next layer to
check for the second highest price, and so on.

All layers L0 – L5 are equipped with four locks, one for each of the three
bidders, plus one for the seller. This ensures that a layer can only be removed
if all parties agree to do so. Similarly, the removable front side of the box is
attached using four locks in the four corners (cf. Figure 4.8 on page 253), one for
each bidder plus one for the seller. This allows the parties to inspect the interior
of the box before starting the protocol.

The topmost layer consists of three independent parts T1, T2 and T3 that each
bidder can use to secure his bid (i.e. his marble inside the box, cf. Figure 4.8 on
page 253) from the other participants. Once all bids are inserted, the transparent
layer L0 is inserted just below and locked by all four parties to ensure non-
cancellation (cf. Figure 4.7 on the facing page). Once the winning price is
determined, the bidders can open their column by removing their lock on Ti and
check through the transparent layer if their part of the box is empty or not, i.e. if
they won or not (cf. Figure 4.10 on page 255).

Similarly the seller can remove the two inclined layers at the bottom to check
if a marble is present inside a column or not (cf. Figure 4.11 on page 255). The
first solid layer L1 of the price determination part is transparent to allow the
participants to check at the start of the protocol if each bidder inserted exactly
one marble. Note also that all participants are always in presence of the box to
be able to detect misbehavior of somebody.

The protocol is then broken down into 4 phases:
1) Initialization: Each participant can check all the material and see the

inside of the box as in Figure 4.7 on the preceding page to convince himself of the
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correct design of the machine. The seller gives black marbles of different sizes to
each bidder. The smallest marble corresponds to the biggest price and the biggest
marble represents the lowest price. Moreover the seller and each bidder have a
set of padlocks and keys (as in Figure 4.8 on the facing page). Once all bidders
have checked the box and received their material (in the case of our prototype
five marbles and eight padlocks with keys), the seller closes the box with the front
side. The seller and each bidder put a padlock on the box (on each corner of
Figure 4.9 on page 254, marked with 1, 2, 3, and S). The seller places the layers
L1 – L5 in the box, but neither the individual top layers T1, T2 and T3 nor the
transparent layer L0. The seller also places the two inclined layers in the bottom
of the box. Finally, he puts one lock on each layer on the middle column, and all
four locks on the inclined layers. He also assigns a column to each bidder.

2) Bidding Phase: Each bidder selects a marble corresponding to the price
he wants to bid and puts it in his column without showing the marble to the other
parties. He then closes his column using his top layer Ti and secures it using one
of his locks. He also puts locks on the five layers L1 – L5 below. In Figure 4.8
on the facing page you can see the box after bidder number 2 assigned to the
middle column has made his bid. Once all bids are made and all locks in place,
the seller introduces the transparent plexiglass layer L0, i.e. in the hole between
the individual top layers and the first full layer L1. Finally each participant puts
a lock on plexiglass layer L0.

3) Opening Phase: The seller and all bidders verify that each bidder inserted
exactly one marble by removing the inclined layers (to which the seller has the
keys) and looking through the holes of layers L2 – L5 and the plexiglass layer L1
from below. After the inclined layers have been reinstalled and locked by the seller,
all participants remove their lock on the layer L1, and the seller removes it. If
somebody chose to bid the highest possible price, i.e. insert the smallest possible
marble, it will now fall down through all the holes (since all lower layers have
bigger holes) and all participants know the winning price, yet not the winner. If no
marble falls down, they repeat this process with the next layer below corresponding
to the next price. In Figure 4.9 on page 254, we see the back of the box once
the two first prices have been tested. The inclined layers are there to hide from
which column the marble fell, as all marbles will end up in the bottom left part
independently of where they came from (cf. Figure 4.7 on page 250).

4) Verification Phase: Once a marble has fallen down, each bidder can
open his lock on his top layer Ti and individually check if his marble is still inside.
In Figure 4.10 on page 255, bidder number two notes that his marble is still
inside the box, so he did not win. Similarly the seller can remove the two inclined
layers and check for each column, whether there is still a marble inside, hence
determining the winner (the column with no marble). An example is given in
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Figure 4.8 – The Woodako box after the bid of bidder number two.
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Figure 4.9 – The Woodako box after two prices have been tested.
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Figure 4.11: the left bidder won since his column is empty, and the two others
lost, as their marbles are still there (highlighted by the yellow circles).

Figure 4.10 – Bidder verifiability (i.e. view from top).

Figure 4.11 – Seller verifiability (i.e. view from bottom).

Resolving ties: Note that in the case of a tie two (or more) marbles will fall
down at the same time. Thus everybody knows that there is a tie, the seller can
also identify the tied parties, and the bidders know if they are tied or not. Note
also that a tied party can prove to anybody that he is tied by opening his top
and showing that his compartment is empty. To resolve the situation either an
external tie-breaking mechanism can be used (e.g. rolling a die), or the auction can
simply be restarted. Using an external mechanism implies revealing the identity
of the tied parties or trusting the seller, since he is the only one who knows who is
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tied. If privacy is the main concern and the seller is not to be trusted, the auction
can simply be restarted and giving the bidders the chance to modify their bids.
Note that Sako’s protocol (our inspiration) also reveals the identity of the tied
parties.

§ 4.5.2.2. Securities Properties. We now argue how the properties defined
Sections 4.3 and 4.4 are achieved by our protocol, as long as there is at least one
honest party following the protocol (i.e. one bidder or the seller).

Non-cancellation and non-repudiation. Everybody can see in which column
a bidder inserted his marble. Due to the fact that the layer L0 is locked by all the
participants, nobody can change his price during the execution of the protocol.
Hence nobody can cancel his bid. Similarly nobody can deny that it was his
marble that fell down as the seller and the concerned bidder can verify in which
column a marble is still present. Moreover the check at the beginning of the
opening phase ensures due to the transparent layer L1 that there is exactly one
marble per bidder.

Fairness. We consider the two aspects defined in Section 4.3.2:
— Highest-Price-Wins: By the design of the box and the holes of different size in

layers L2 – L5, the highest price offered by a bidder which is represented by
the smallest marble is the first marble to fall down. No bidder can make a
larger marble drop before a smaller one.

— Weak-Non-Interference: For a given set of bidders no information about the
bids is leaked until the end of the bidding phase, since each bidder can choose
his marble privately and drop it into the box in such a way that nobody can
identify its size.

Privacy. The winner is only known to the seller and himself, but everybody
knows the winning price. The inclined layers prevent anybody else from deter-
mining the winner by observing from which column the marble fell19. Once a
marble has dropped, the winner can check if his column is empty by unlocking
his top layer Ti and looking inside. As shown in Figure 4.11 on the preceding
page, the seller can also determine the winner by removing the inclined layers

19Note that with two layers as shown in Figure 4.7 on page 250 there is a side-channel attack:
If the marble falls down in the rightmost column, one can hear the sound of a falling marble only
once, whereas in the case of the other two columns the marble falls down twice. However there
are some simple solutions: one can extend both layers further to the right so that the marbles
fall down twice independently of their original column, or one can use something similar to a
“bean machine”, i.e. several rows of pins, arranged so that the falling marble hits a pin in each
row. The idea is that the marble has a 50% chance of falling down on either side of the pin,
hence arrives at a random location on the bottom.
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and checking which column is empty. Since the remaining marbles are too big
to fall through the holes, the seller can only see if there is a marble, but will be
unable to determine its size, as all marbles have the same color. This preserves
the secrecy of the losing bids. The losing bidders can also open their top layers
Ti and verify if their marbles are still inside as shown in Figure 4.10 on page 255.
This leaks no information about the winner, yet they know the price from the
moment when the marble falls as each layer corresponds to a price.

Verifiability. The registration is done at the beginning of the protocol by the
seller, and all participants can check if only the registered bidders participate
by inserting a marble into the box. Hence the protocol ensures registration
verifiability. Outcome verifiability is achieved by the fact that each participant
can check the box and the mechanism at the beginning of the protocol, and that
each bidder can check at the end whether he lost or won by opening his top layer
Ti. The seller can also verify the outcome by opening the bottom of the box.

§ 4.5.2.3. Formal Analysis. To formally verify the security properties of
this protocol we need to model the properties of the box. Again, we represent the
current state of the box (Figure 4.7 on page 250) by an object denoted machine(·).
We use an equational theory to model possible changes to it. A machine(·) has
the following parameters, where the index i represents a bidder among the n
bidders, j a price among the m prices, and s the seller:
— bji representing the different compartments (for each bidder and price, i.e.

above L1 to L5 for bidder one, two and three in our prototype) of the box,
which can be empty or contain a marble of a certain size.

— lji and ljs represent the locks (or rather: the keys necessary to open the locks)
that need to be opened to remove a layer Lj (where j ∈ {1, . . . , n}) from the
“sieve” part of the machine, one for each bidder and one for the seller.

— ti are the locks used by the bidders to close the top layer Ti after they inserted
their bid.

— pi and ps are the locks on the plexiglass layer L0.

— bs represents the locks by the seller on the inclined layers at the bottom (for
simplicity we model only one instead of four).

— wk (k ∈ {1, . . . , n ∗ m}) represent the lower left part of the box where the
“winning” marbles that have fallen down end up. We need multiple variables
since all marbles fall down if all layers are removed. To simplify the equational
theory we have different variables for each price, as this allows us to have
independent equations for removing each layer – otherwise we need to take
the current state of the wks into account, which further increases the number
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of equations.

We also define the following functions:

— check_window: takes as input a machine and returns the wk to check if a
marble has fallen down. This function dose not require any key to be applied.

— price_j: takes as input a machine, the keys lji and ljs, and returns a machine
where the layer j was removed and potentially marbles have fallen down.

— open_top_i: takes as input a machine and the key ti, and returns the contents
of all bji for bidder j. This corresponds to the bidder verification check by
looking through the plexiglass layer L0.

— open_bottom: takes as input a machine and the key bs, and returns a vector
indicating if the columns contain marbles or not. This corresponds to the
seller verification check.

— change_top_i: takes as input a machine, all the keys pk (k among all the
bidders), ps and the single ti and a new marble to place into bidder i’s top
compartment.

Consider an example of two bidders and two prices. Suppose the first bidder bids
the highest possible price (constant one), and the second bidder bids the lower
price two. Then the initial state of the machine m is:

m = machine(one, two, empty, empty, l11, l12, l1s, l21, l22, l2s,

t1, t2, p1, p2, ps, bs, empty, empty, empty, empty)

If we compute m1 = price_one(m, l11, l12, l1s) we obtain

m1 = machine(empty, empty, empty, two, l11, l12, l1s, l21, l22,

l2s, t1, t2, p1, p2, ps, bs, one, empty, empty, empty)

Any party can apply check_window on m1 to obtain (one, empty, empty, empty)
and hence observe that a bidder won at price one. The seller can determine that bid-
der one is the winner by computing open_bottom(m1, bs) = (empty, something).
Similarly bidder one can check he is the winner by doing open_top_1(m1, t1) =
(empty, empty), and bidder two can verify his marble is still in the box with
open_top_2(m1, t2) = (empty, two).

Since the number of parameters of the machine depends on the number of
bidders and prices, we are unable to define them in a general way in ProVerif.
However we have developed a python script that generates the necessary equa-
tions for a given number of bidders and prices. For the functions price_j and
open_bottom this also consists in enumerating all possible cases based on the
possible bid values.
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1 l e t procMachine ( chBox1 : channel , . . . , chBoxN : channel ,
2 chKey11 : channel , . . . , chKey1n : channel , chKey1s : channel , . . . ,
3 chKeym1 : channel , . . . , chKeymn : channel , chKeyms : channel ,
4 chKeyT1 : channel , . . . , chKeyTn : channel , chKeyP1 : channel , . . . ,
5 chKeyPn : channel , chKeyPS : channel , chKeyBS : channel ,
6 chMachine1 : channel , . . . , chMachineN : channel ,
7 chMachineS : channel , chMachineP : channel )=
8 in ( chBox1 , b a l l 1 : b a l l ) ;
9 recBid ( ba l l 1 , one ) ;
10 in ( chKey11 , l 11 : key ) ;
11 . . .
12 in (chKeym1 , lm1 : key ) ;
13 in ( chKeyT1 , t1 : key ) ;
14 in ( chKeyP1 , p1 : key ) ;
15 out ( chMachineP , machine ( ba l l 1 , empty , . . . , empty , empty , . . . ,
16 empty , . . . , empty , . . . , empty , l11 , none , . . . , none , . . . ,
17 lm1 , none , . . . , none , t1 , none , . . . , none , p1 , none , . . . , none ,
18 none , empty , . . . , empty ) ) ;
19 . . .
20 in (chBoxN , ba l l n : b a l l ) ;
21 recBid ( ba l ln , n ) ;
22 in ( chKey1n , l1n : key ) ;
23 . . .
24 in (chKeymn , lmn : key ) ;
25 in (chKeyTn , tn : key ) ;
26 in ( chKeyPn , pn : key ) ;
27 out ( chMachineP , machine ( ba l l 1 , . . . , ba l ln , empty , . . . ,
28 empty , . . . , empty , . . . , empty , l11 , . . . , l1n , none , . . . ,
29 lm1 , . . . , lmn , none , t1 , . . . , tn , p1 , . . . , pn , none , none ,
30 empty , . . . , empty ) ) ;
31 in ( chKey1s , l 1 s : key ) ;
32 . . .
33 in ( chKeyms , lms : key ) ;
34 in ( chKeyPS , ps : key ) ;
35 in (chKeyBS , bs : key ) ;
36 out ( chMachine1 , machine ( ba l l 1 , . . . , ba l ln , empty , . . . ,
37 empty , . . . , empty , . . . , empty , l11 , . . . , l1n , l 1 s , . . . ,
38 lm1 , . . . , lmn , lms , t1 , . . . , tn , p1 , . . . , pn , ps , bs ,
39 empty , . . . , empty ) ) ;
40 . . .
41 out ( chMachineN , machine ( ba l l 1 , . . . , ba l ln , empty , . . . ,
42 empty , . . . , empty , . . . , empty , l11 , . . . , l1n , l 1 s , . . . ,
43 lm1 , . . . , lmn , lms , t1 , . . . , tn , p1 , . . . , pn , ps , bs ,
44 empty , . . . , empty ) ) ;
45 out ( chMachineS , machine ( ba l l 1 , . . . , ba l ln , empty , . . . ,
46 empty , . . . , empty , . . . , empty , l11 , . . . , l1n , l 1 s , . . . ,
47 lm1 , . . . , lmn , lms , t1 , . . . , tn , p1 , . . . , pn , ps , bs ,
48 empty , . . . , empty ) ) .

Listing 4.33 – The process generating the machine.

259



4. eAuctions

1 l e t b idder ( chBox : channel , chKey1 : channel , . . . , chKeym : channel ,
2 chKeyT : channel , chKeyP : channel , b : ba l l , chKey : channel ,
3 chMachine : channel , chBid : channel , chWon : channel ) =
4 bid (b , one ) ;
5 out ( chBox , b ) ;
6 new key1 : key ;
7 . . .
8 new keym : key ;
9 new keyT : key ;

10 new keyP : key ;
11 out ( chKey1 , key1 ) ;
12 . . .
13 out (chKeym , keym ) ;
14 out (chKeyT , keyT ) ;
15 out (chKeyP , keyP ) ;
16 in ( chMachine ,m: box ) ;
17 out ( chKey , key1 ) ;
18 in ( chKey , k1 : key ) ;
19 . . .
20 in ( chKey , kn : key ) ;
21 l e t m1 = price_one (m, key1 , k1 , . . . , kn ) in
22 l e t (w1 : ba l l , . . . , wnm: b a l l ) = check_window (m1) in
23 i f (w1 = one ) then
24 i f ( ( open_top1 (m1, keyT ) ) = (empty , empty ) ) then
25 event won( one , one )
26 e l s e
27 0
28 e l s e
29 . . .
30 out ( chKey , keym ) ;
31 in ( chKey , k1 : key ) ;
32 . . .
33 in ( chKey , kn : key ) ;
34 l e t mm = price_m (m(m−1) ,keym , k1 , . . . , kn ) in
35 l e t (w1 : ba l l , . . . ,wm: b a l l ) = check_window (mm) in
36 i f (w(n−1)m = m) then
37 i f ( open_top1 (mm, keyT) = (empty , empty ) ) then
38 event won(m, one )
39 e l s e
40 0
41 e l s e
42 0 .

Listing 4.34 – The process for the first bidder.
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1 l e t s e l l e r ( chKey1s : channel , . . . , chKeyms : channel ,
2 chKeyPs : channel , chKeyBs : channel , chKey : channel ,
3 chMachine : channel ) =
4 new key1 : key ;
5 . . .
6 new keym : key ;
7 new keyP : key ;
8 new keyB : key ;
9 out ( chKey1s , key1 ) ;
10 . . .
11 out (chKeyms , keym ) ;
12 out ( chKeyPs , keyP ) ;
13 out ( chKeyBs , keyB ) ;
14 in ( chMachine ,m: box ) ;
15 in ( chKey , k1 : key ) ;
16 . . .
17 in ( chKey , kn : key ) ;
18 out ( chKey , key1 ) ;
19 l e t m1 = price_one (m, k1 , . . . , kn , key1 ) in
20 l e t (w1 : ba l l , . . . , wnm: b a l l ) = check_window (m1) in
21 i f (w1 = one ) then
22 i f ( ( open_bottom (m1, keyB ) ) =
23 ( empty , something , . . . , something ) ) then
24 event won( one , one )
25 e l s e
26 . . .
27 i f ( ( open_bottom (m1, keyB ) ) =
28 ( something , . . . , something , empty ) ) then
29 event won( one , n)
30 e l s e 0
31 e l s e
32 in ( chKey , k1 : key ) ;
33 . . .
34 in ( chKey , kn : key ) ;
35 out ( chKey , keym ) ;
36 l e t mm = price_m (m(m−1) ,k1 , . . . , kn , keym) in
37 l e t (w1 : ba l l , . . . , wnm: b a l l ) = check_window (mm) in
38 i f (w(n−1)m = m) then
39 i f ( open_bottom (mm, keyB) =
40 ( empty , something , . . . , something ) ) then
41 event won(m, one )
42 e l s e
43 i f ( open_bottom (mm, keyB) =
44 ( something , . . . , something , empty ) ) then
45 event won(m, n)
46 e l s e 0
47 e l s e 0 .

Listing 4.35 – The seller process.
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1 proce s s
2 new chBox1 : channel ;
3 new chKey11 : channel ;
4 new chKey21 : channel ;
5 new chKey31 : channel ;
6 new chKeyT1 : channel ;
7 new chKeyP1 : channel ;
8 new chMachine1 : channel ;
9 new chBox2 : channel ;

10 new chKey12 : channel ;
11 new chKey22 : channel ;
12 new chKey32 : channel ;
13 new chKeyT2 : channel ;
14 new chKeyP2 : channel ;
15 new chMachine2 : channel ;
16 new chKey1s : channel ;
17 new chKey2s : channel ;
18 new chKey3s : channel ;
19 new chKeyPs : channel ;
20 new chKeyBs : channel ;
21 new chMachineS : channel ;
22 procMachine ( chBox1 , chBox2 , chKey11 , chKey12 , chKey1s ,
23 chKey21 , chKey22 , chKey2s , chKey31 , chKey32 , chKey3s ,
24 chKeyT1 , chKeyT2 , chKeyP1 , chKeyP2 , chKeyPs , chKeyBs ,
25 chMachine1 , chMachine2 , chMachineS , chMachineP ) |
26 bidder ( chBox1 , chKey11 , chKey21 , chKey31 , chKeyT1 ,
27 chKeyP1 , b1 , chKey , chMachine1 ) |
28 bidder2 ( chBox2 , chKey12 , chKey22 , chKey32 , chKeyT2 ,
29 chKeyP2 , b2 , chKey , chMachine2 ) |
30 s e l l e r ( chKey1s , chKey2s , chKey3s , chKeyPs , chKeyBs ,
31 chKey , chMachineS )

Listing 4.36 – An instance with two bidders and three possible prices.
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The script also generates a process procMachine (Listing 4.33 on page 259)
that receives the marbles and all the keys from the bidders and the seller, and sends
the resulting machine to all participants. They can then execute the “computation”
on their copy of the machine, and only need to exchange the keys necessary. Note
that after each bidder inserted his marble and added his locks, an intermediate
state of the machine is published on channel chMachineP. Note also that this is
an over-approximation since we create many copies of the same machine, which
can even evolve differently, although this is not possible in the real world.

The ProVerif code for the first bidder is shown in Listing 4.34 on page 260.
He sets up his keys and sends them together with his bid/marble to the process
procMachine over private channels. Once he receives the machine object, publishes
his first key and waits for the other bidders keys for the first layer, and the
applies the function price_one to remove the first layer. Then he checks using
check_window if somebody won, and if this is the case, he checks using open_top1
if he himself won.

The seller is described by the code in Listing 4.35 on page 261. Similarly
to the bidder he sets up his keys and sends them to the process procMachine
over private channels. He then receives the machine and waits for the keys to
remove the first layer. He published his key and applies the function price_one.
If somebody won, he can determine the winner using open_bottom.

Note that in our model a bidder may insert at most one marble into the box,
whereas in the real world he could try to insert several. This may lead to attacks
on e.g. non-repudiation or non-cancellation: a bidder could insert two prices
(marbles). The seller will observe one marble falling down when the first layer is
removed. However, when he opens the bottom of the box to check for the winner,
each column still contains a marble. To prevent this, the bidders and the seller
check at the beginning if there is exactly one marble per column. Hence we argue
that the approximation in our model is correct.

The above model allows us to prove using ProVerif that Woodako ensures
Non-Repudiation, Non-Cancellation, Weak Non-Interference, Highest Price Wins
and Verifiability.

For Non-Repudiation we consider two situations: In the first situation, we only
assume an honest seller, and the event bid is executed by the process procMachine
when he receives the marble. This corresponds to the seller observing the bidder
inserting his marble into the box. In the second situation we only assume one
honest bidder, he also executes the won events as in Listing 4.34 on page 260. In
both situations ProVerif concludes successfully.

In the case of Non-Cancellation we removed the events won from the bidder
process, they are only executed by the seller as we consider a dishonest bidder
trying to cancel its bid.
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We prove Weak Non-Interference using the noninterf command of ProVerif.
When verifying Privacy we consider two cases: If the seller is dishonest, the

protocol only ensures secrecy of the losing bids, but the winner and winning
price are revealed. If the seller is honest, the winner stays anonymous, and only
the winning price is revealed. We can prove both results in ProVerif, but the
verification takes approximately 24 hours for the dishonest seller and 36 hours for
the honest seller case. This is due to the complexity of the equational theory and
the equivalence proof. All other properties can be proved within a few seconds.
Note that – as above – we only consider the base case (i.e. two bidders) due to
the complexity of the equational theory for higher number of bidders and possible
prices. Note also that we have to remove the publication of the intermediate
states of the machine from process procMachine to avoid false attacks. Otherwise
ProVerif finds an attack, where the functions price_j are applied for example on
the first intermediate state using the published keys from bidder one, allowing to
test only his bid for this price. This is obviously not possible in reality, as this
intermediate state does not exist any more. Moreover we proved above that we
have Weak-Noninterference, which means that the published intermediate states
do not leak any information until the end of the bidding phase. Hence, as they are
not existent any more after the end of the bidding phase, we can safely remove
them in the analysis of Privacy.

For Highest Price Wins we consider an instance with two bidders, where one
is honest and the other is corrupted. Since events can only be executed by honest
bidders, he executes all won events, even if the other bidder wins (slightly differing
from Listing 4.34 on page 260). This is possible since in the case he observes a
marble falling down with his column still not empty, he can conclude that the
other bidder won.

Concerning Verifiability we note that there is no need to design a test for rvw:
If a marble falls down, it must have been inside the box before, hence the winner
is one of the participants, and there is nothing to verify.

For rvs the test is obvious, but difficult to model: Anybody sees and verifies
that the marbles and locks were added by eligible bidders, and for the rest of
the process the locks on the transparent layer ensure that the bids cannot be
tampered with. To model this, we use functions hide, unhide , auth, authcheck
and openauth. The first two functions model the hiding of the marbles in the
hand of the bidder, the remaining function model the implicit authentication
using a secret (corresponding to the physical identity of the bidder), similar to a
signature. We have the following equations:

unhide(hide(object, rand, hidesec), hidesec) = object

authcheck(auth(object, authsec), genPublic(authsec)) = object

openauth(auth(object, authsec)) = object
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The ProVerif code used is shown in Listing 4.37. Note that above we did not
model this part of the set-up phase explicitly, we simply modeled the interaction
between the bidder and the machine as secret channels. This has the following
reason: If we used the model with “hiding” and “authentication” above, the
machine would be checking the authentication of the bidders, which is simply not
the case. On the contrary, as the machine does not ensure that it is used by the
correct participants, somebody else could insert his marble instead of an honest
participant, and this would not be prevented by the machine itself. However, this
will be detected by the other participants as we show here, and thus they will
not continue the protocol. Hence we can argue that if the machine ends up being
set up properly, authentication was correctly ensured, and hence that the model
based on secret channels used above is realistic.

1 l e t b idder ( chBox : channel , authsec : s e c r e t , h id e s e c : s e c r e t ,
2 b : b a l l ) =
3 new r : random ;
4 l e t hid = hide (b , r , h id e s e c ) in
5 event bid ( hid ) ;
6 out ( chBox , ( auth ( hid , authsec ) ) ) .
7
8 l e t t e s t r v s ( chBox1 : channel , , . . . , chBoxn : channel ,
9 authpub1 : publ ic , . . . , authpubn : pub l i c ) =
10 in ( chBox1 , ( v1 : authent i ca ted ) ) ;
11 . . .
12 in ( chBoxn , ( vn : authent i ca ted ) ) ;
13 l e t content1 = openauth ( v1 ) in
14 . . .
15 l e t contentn = openauth (vn ) in
16 i f authcheck ( v1 , authpub1 ) = content1 && . . . &&
17 authcheck (vn , authpubn ) = contentn then
18 event accepted ( content1 , . . . , contentc )
19 e l s e
20 event r e j e c t e d ( ) .

Listing 4.37 – The code used to verify testrvs.

Concerning ovl, ovw and ovs, we use the verification functions designed for
this purpose: A losing bidder checks that his column is not empty, a winning
bidder that his column is empty, and the seller opens the bottom to identify
the winner. Actually, these functions are already employed during the winner
determination process, hence we only check that this is sound and complete, i.e.
that they only accept a correct outcome, and accept the outcome if everybody
behaves honestly. We check this using the reachability of an event bad, similar to
the previous case studies.
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4.5.3 — Summary

We argued that verifiability of an auction should not depend on cryptographic
expertise: without understanding, there is no meaningful verifiability. With that
in mind, we proposed two protocols based on physical objects, inspired by the
cryptographic auction protocol due to Sako. In both cases, we can achieve the
desired security properties without cryptography or trusted parties20.

In our first proposal, the Cardako protocol, each bidder marks their bid by
making a hole in their piece of cardboard, which is then put into an envelope.
Using a needle, it is possible to detect if a hole is in a certain place (i.e., if
the envelope contains a bid for this price), without opening the envelope, and
hence determine the winner without revealing the contents of the losing bids. We
modeled the physical process of testing the envelope for a certain price using an
special equational theory in ProVerif, which allows us to apply the exact same
analysis as for the cryptographic protocols in previous sections. The analysis
successfully proved Non-Repudiation, Non-Cancellation, Weak Non-Interference,
Verifiability, and Highest Price Wins. For privacy, an issue was automatically
found: dishonest participants may open an envelope or test an envelope for all
possible bids. A mitigation is that such actions are readily detectable by all, as
any handling of the envelopes occurs in public, and any such test either breaks
the envelope or leaves a hole that can be detected by the other bidders. If we
assume that such actions are not undertaken, we can show Strong Bidding-Price
Secrecy using ProVerif.

To achieve an even higher level of privacy, we introduced the Woodako protocol.
This protocol is again inspired by Sako’s protocol, and again replaces cryptography
and trusted parties by physical properties. This time, bids are represented by
marbles, where smaller marbles denote higher bids. Bidders place the marble
corresponding to their bid in their designated column in an entirely mechanical
machine. Then, the first layer below all columns is removed, leaving a new layer
with holes the size of the smallest marble. If at least one marble falls through,
there is a winner, otherwise this layer is removed and the next layer with larger
holes is now the base layer. We argued that Woodako achieves Non-Repudiation,
Non-Cancellation, Weak Non-Interference, Verifiability, and Highest Price Wins.
Moreover, this argumentation did not require any expert knowledge to understand,
nor did it hinge on correct behavior by trusted parties.

Finally, we formally analyzed the Woodako protocol, again modeling physical
properties in equational theory. The model of our physical implementation was
proven correct with respect to the mentioned security properties using ProVerif.
As the seller knows the winning bidder, a dishonest seller can reveal the winner.

20In the case of Cardako misbehaving parties could break some properties, however any such
breach is immediately detected.
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As such, we automatically proved privacy for all bidders including anonymity of
the winner in case of an honest seller, and simple privacy for losing bidders in
case of a dishonest seller.

We admit that both protocols have practically issues. Neither of them scales
well for higher numbers of bidders or possible prices, and both require all bidders
to be in the same room at least during the winner determination phase. Hence
we need to find more practical protocols.

Moreover, the soundness of our models is a major direction of future work.
How can we argue that a model is sound with respect to the physical work and its
infinite amount of possibilities of interactions and combinations of objects? This
is an important issue in particular for coercion-resistance: physical objects can
be manipulated in many ways in order to create receipts or divulge information
using side-channels.

Additionally, the proofs we currently have for both protocols are not generic
in the number of bidders and bids. As future work, we are looking to provide a
fully generic proof. One main issue is the state space of the Woodako protocol: it
scales too fast for automated proofs with higher numbers of bidders and prices.

4.6 Conclusion

In this chapter we discussed auction protocols. We identified many desirable
security properties:

— Fairness, including Strong Noninterference, Weak Noninterference and Highest
Price Wins

— Authentication, including Non-Repudiation and Non-Cancellation

— Privacy, including Strong Bidding-Price Secrecy, Bidding-Price Unlinkability,
Weak Anonymity, Strong Anonymity, as well as Receipt-Freeness and Coercion-
Resistance

— Verifiability, including Registration and Integrity Verifiability as well as Out-
come Verifiability

We defined the Fairness, Authentication and Privacy properties in the Applied
π-Calculus and automatically analyzed three case studies using ProVerif: the
protocols due to Curtis et al. [CPS07], Brandt [Bra06] and Sako [Sak00]. We were
able to prove all properties except for receipt-freeness and coercion-resistance for
the protocol due to Sako, but identified several problems with the other two. The
protocol by Brandt completely lacks authentication. The protocol by Curtis et al.
leaks some information about the bids, and also lacks authentication in the final
messages between the registration authority and the seller.
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In the next part of the chapter, we proposed a high-level model of Verifiability
in auctions. We defined soundness and completeness conditions for the necessary
verification tests, inspired by the perspectives of the participants. Our definitions
were initially designed for first-price auctions, however we also gave a generalized
version that can accommodate second-price or bulk-good auctions.

We then showed using the example of Sako’s auction protocol how this defini-
tion can be instantiated in the symbolic model as well as in the computational
model. We were able to prove that the verification test are sound and complete,
using ProVerif in the symbolic model, and CryptoVerif in the computational
model. We also analyzed the protocol by Curtis et al., and identified several
issues. For example, some messages lack the necessary authentication, and the
registration authority needs to be trusted for the management of pseudonyms.

In the last part of the chapter we discussed true bidder-verifiable auctions.
Starting from the observation that auction protocols typically heavily rely on
cryptography to achieve verifiability, which makes them too complex for many
bidders to understand, we explored the idea of ensuring verifiability (as well as
other properties) only using physical properties of physical objects.

We proposed two protocols: Cardako and Woodako. Cardako is a simple
implementation of Sako’s protocol using office material, whereas Woodako uses
a wooden machine to compute the winner in a private, but verifiable way. We
argued that both protocols ensure the desired properties, and also analyzed them
formally in ProVerif. To model the properties of the physical objects we used
special equational theories.

4.6.1 — Limitations and Future Work.

Most of our Fairness and Authentication definitions are only meaningful for first-
price auctions, however a generalization to other auction types appears to be
feasible. We would also like to refine the model used for the protocol by Brandt
to capture that the losing bidders do not learn the winner. Then we would like
to fix the issues identified with the protocols by Brandt and Curtis et al., and
prove the security of the resulting protocols. This however implies dealing with
some limitations of ProVerif, in particular concerning state. Similarly we often
had to extend the ProVerif proofs manually to cover the general case, it would
be desirable to obtain these results directly. There are already some extensions
of ProVerif addressing the limitations, for example StatVerif [ARR11] allows to
model stateful processes. We would also like to test our notions of Receipt-Freeness
and Coercion-Resistance on suitable protocols.

Concerning our computational analysis of the protocol by Sako, it would be
interesting to refine the proof by replacing the abstract public key decryption
with the concrete ElGamal cryptosystem to obtain an even stronger result.
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Finally concerning our work on true bidder-verifiable auctions, we would like to
have more practical protocols. Another direction for future work is the soundness
of models including physical objects - how can we obtain models that are arguably
sound with respect to all the possibilities present in the physical world?
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Chapter 5
Conclusion

I n this chapter we summarize our results. We also discuss the limitations of our
work, and directions for future research.
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5. Conclusion

5.1 Summary

We introduced the context and motivated this work in Chapter 1.

In Chapter 2, we recalled the syntax and semantics of the Applied π-Calculus.
We also identified two important subclasses of processes: Normed and finite
processes. Normed processes are processes that have a finite complete trace, and
finite processes are processes where all complete traces are finite. We showed
that any normed process P can be rewritten as the parallel composition of prime
factors in a unique (up to ∼l) way, i.e. such that P ∼l P1| . . . |Pn. Each factor Pi
is prime in the sense that any further decomposition into Pi ∼l PAi |PBi implies
that at least one of the factors is trivial, i.e. either PAi ∼l 0 or PBi ∼l 0. We
also showed that any finite process P can be decomposed uniquely up to ≈l into
(weakly) parallel prime factors P ≈l P1| . . . |Pn.

We then discussed privacy in eVoting in Chapter 3. We proposed a taxonomy
of privacy in eVoting protocols in the Applied π-Calculus. It accounts for different
attacker capabilities (insider or outsider), special attacks (e.g. forced-abstention)
as well as different levels of coercion (simple vote-privacy, receipt-freeness or
coercion-resistance). As case studies we discussed the protocols by Fujioka et
al. [FOO92], Okamoto [Oka96], Lee et al. [LBD+03] and Bingo Voting [BMQR07].
The protocol by Fujioka et al. ensures Vote-Privacy for an insider but is not
secure against forced abstention attacks. Receipt-Freeness against an insider is
ensured by the protocol by Okamoto, yet it remains vulnerable to forced abstention
attacks. Both protocols can be secured against forced abstention attacks by using
a private channel to a trusted administrator. The protocol by Lee et al. ensures
Coercion-Resistance, but only against an outsider, and is vulnerable to forced
abstention attacks. Finally Bingo Voting achieves Coercion-Resistance against an
insider and is secure against forced abstention attacks, if the list of participating
voters is not publicly announced.

In the next part, we developed generalized privacy definitions to accommodate
protocols supporting weighted votes. We proposed such definitions for Privacy,
Receipt-Freeness and Coercion-Resistance, with and without one or several cor-
rupted voters. For Receipt-Freeness and Coercion-Resistance we also considered
multiple coerced voters. Moreover, we established precise links between the new
and the previous notions in the taxonomy. We considered a variant of the protocol
by Fujioka et al. as a case study. Additionally we showed that for protocols
ensuring a certain modularity condition the notions with and without corrupted
bidders are equivalent. We were also able to prove that in such a case Multi-Voter
Coercion-Resistance and Single-Voter Coercion-Resistance as well as Multi-Voter
Receipt-Freeness and Single-Voter Receipt-Freeness coincide.

In Chapter 4, we analyzed electronic auction protocols. We started by giving
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a formal model of auction protocols in the Applied π-Calculus, and by defining
fairness, authentication and privacy properties. We defined Non-Repudiation,
Non-Cancellation, Weak and Strong Non-Interference, Highest Price Wins as well
as different notions of Privacy, Receipt-Freeness and Coercion-Resistance. These
different privacy notions allow to accommodate protocols where the winner stays
anonymous or not, and where losing bids are public (yet unlinkable to the bidders)
or remain private. We also provided generalized notions for auctions that are not
first-price auctions, and provided a formal link to the previous notions. As case
studies, we analyzed the protocols by Curtis et al. [CPS07], Brandt [Bra06] and
Sako [Sak00]. The protocol by Sako turned out to ensure all properties except for
receipt-freeness and coercion-resistance, yet the authority needs to be trusted for
privacy. The protocols by Curtis et al. and Brandt both suffered from several
shortcoming, in particular both lacked authentication of some messages which can
be exploited by an attacker. For the protocol by Curtis et al. we also provided
some corrections.

In the next part of the chapter we analyzed Verifiability in electronic auction
protocols. We gave a new, high-level model of an auction protocol and the
necessary verification tests. This definition can be instantiated in the symbolic
or the computational model. To illustrate this, we provided a symbolic (i.e.
using ProVerif and a manual generalization) and a computational (using mostly
CryptoVerif and one manual proof) proof of Verifiability for Sako’s protocol. We
also analyzed the protocol by Curtis et al. using ProVerif, and again identified
several flaws.

Finally we explored the idea of “true bidder-verifiable auctions”, i.e. auctions
that can be verified without any specialist knowledge. To achieve this, we proposed
two protocols ensuring verifiability only through physical properties. The first one,
called “Cardako”, only uses office material: bids are holes in a piece of cardboard,
which is then inserted into an envelope. This allows to test if a bid contains
a specific price, without revealing the bid entirely. We argued informally that
the protocol ensures all the desired properties, and also proposed a modeling of
the physical objects and their properties in ProVerif using a special equational
theory to apply our formal definitions. Using this model we identified an attack
on privacy if the parties are dishonest, however this attack can be detected by
the other bidders.

Our second protocol is called “Woodako” and relies on a wooden box deter-
mining the winner in a secure way based on the properties of the box. In this
case bids are marbles (of different sizes), and the first marble to come out of the
machine determines the winner. In addition to Cardako this protocol is secure
even if all other parties are dishonest, and reveals the winner only to the winner
and the seller – the losing bidders only learn that they lost. Again, we provided
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informal and formal arguments for its security. Similarly to Cardako we model
the box using a special equational theory and use ProVerif to conclude.

5.2 Limitations and Directions for Future Research

Concerning our unique decomposition results, we see two lines of future work. The
first line is concerned with the extension of a parallel decomposition to infinite
processes containing replication. A first approach in this direction was proposed
by Hirschkoff and Pous [HP10] for a subset of CCS with top-level replication.
They introduced the concept of a seed of a process P . It is defined as the process
Q, Q bisimilar to P , of least size in terms of prefixes whose number of replicated
components is maximal among the processes of least size. They showed that
this representation is unique. Moreover, they showed that this generalizes to
the Restriction-Free-π-Calculus (i.e. without “ν”). It remains however open if a
similar result can be obtained for the full calculus.

The second line of research is to find an efficient algorithm that converts a
process into its unique decomposition. It is unclear if such an algorithm exists
and can be efficient, as simply deciding if a process is finite can be non-trivial.

A more technical relic is that we did not prove that Strong Labeled Bisimilarity
is closed under the application of contexts, although we expect such a result to
hold due to its close similarity to Weak Labeled Bisimilarity.

Similarly, we did not give a formal proof showing that we can replace a process
P synchronizing (i.e. containing a sync) with other processes within a context
C[_], with a bisimilar (modulo the synchronization) processes P ′ ≈l P , i.e. that
we have C[P ] ≈l C[P ′], although again we expect this result to hold.

With respect to our work on Privacy we also see two main directions for future
work. Firstly most of our proofs were manual, and it would be great to mechanize
more of these proofs as they tend to be long and cumbersome. The main obstacles
are too complex equational theories (as in the case of the protocol by Okamoto in
Section 3.3.5.2) and the universally quantified attacker context in the definition
of Coercion-Resistance. A step in this direction was undertaken by Smyth et
al. [SAR13]. They propose to replace the complex equational theory with a
simpler, but equivalent one which can be then treated by ProVerif. Moreover,
KISS [CDK12] and AKISS [CCK12] can deal with more complex equational
theories. KISS can verify the static equivalence of frames, which allowed us to
verify the static equivalence of the final frames in the proof of the protocol by
Okamoto. AKISS can prove trace equivalence in a calculus similar to the Applied
π-Calculus. However, it is still an open problem to automatically reason about
the universally quantified context in the definitions of Coercion-Resistance.

A second direction for future work is a translation of our definitions to a
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computational setting. In our symbolic model we do not consider probabilities, i.e.
we call a protocol secure if there is a possibility for the voter to escape coercion,
even if an attacker has a noticeable probability of detecting this. A computational
variant of our definition would be able to take this into account.

Concerning our work on eAuctions, we see many possibilities for future work.
A first idea is to try to fix all the identified issues with the protocols by Curtis et
al. and Brandt. As we already noted, this also implies dealing with some of the
limitations of ProVerif. Moreover, the current model of the protocol by Brandt is
a simplification, it would be interesting to extend this to a more precise model.

When using ProVerif we often were unable to prove the general case directly,
and had to provide a manual proof to show that the result holds for any number
of bidders. An extension of ProVerif with loops could permit to obtain the general
proof directly.

Additionally, none of our case studies turned out to ensure any notion of
Receipt-Freeness or Coercion-Resistance. The auction protocol by Abe and
Suzuki [AS02] was shown to ensure Receipt-Freeness in the model by Dong et
al. [DJP11], it would be interesting to see if this generalizes to our model.

To strengthen our computational proof of verifiability of Sako’s protocol, we
would like to refine the model by replacing the abstract primitive “secure and
correct encryption” with the concrete ElGamal encryption.

Finally, we would like to develop more practical and scalable true bidder-
verifiable auction protocols. However even the current protocols raise many
interesting questions for future work with respect to the application of formal
methods to protocols that combine cryptography with physical properties. The
main question is how to model physical objects and their interactions in a realistic
way. Given the richness of the physical world this is not obvious, and the question
of soundness is a challenging one. For cryptographic protocols we usually consider
soundness with respect to the computational model (although this still abstracts
away from implementation errors and side-channels), yet when considering physical
objects it is not clear with respect to which model our reasoning should be “sound”.

Moreover, in [DDL13] we provided a detailed cryptanalysis of Brandt’s fully
private auction protocol [Bra06]. Although we did not discuss the results in this
thesis, in particular the discovered flaws and proposed fixes, it would be interesting
to provide a formal (computational) proof of the corrected protocol.

275





Chapter 6
Résumé en Français

C ette partie contient des résumés de tous les chapitres précédents en français.
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6. Résumé en Français

6.1 Introduction

De plus en plus d’échanges commerciaux se passent sur internet, par exemple la
vente des biens – Amazon.com a atteint en 2012 un chiffre d’affaires de plus de 61
milliards de dollars [Ama13] – ou les ventes aux enchères en ligne via des sites
tels que eBay dont le chiffre d’affaires en 2012 fût de plus que 14 milliards de
dollars [Don12]. D’autre part, les administrations et le gouvernement utilisent de
plus en plus des systèmes informatiques pour des applications d’administration.
Par exemple le vote électronique, qui est utilisé par exemple en Estonie [Est] ou
dans certains cantons suisses [Gen13, Reg13].

Pour faire interagir différents systèmes ou implémenter une application comme
le vote ou les ventes aux enchères en ligne, de nombreux protocoles ont été
développés. Ces protocoles définissent l’interaction entre les différents participants,
et sont conçus pour assurer des propriétés de sécurité (comme l’authentification
ou le secret) aussi bien que des propriétés fonctionnelles (comme la disponibilité
ou une réponse en temps réel).

Malheureusement le développement de tels protocoles est difficile et sensible
aux erreurs. Une approche pour maîtriser cette problématique est l’utilisation des
méthodes formelles. Les méthodes formelles utilisent des modèles formelles comme
des logiques dédiées, des algèbres de processus ou des arguments statistiques
ou probabilistes pour analyser la sécurité d’un système. Elles permettent non
seulement de découvrir des erreurs, mais aussi de prouver qu’un système est sûr
par rapport à une propriété précise dans un modèle donné.

Le « Common Criteria for Information Technology Security Evaluation »
[Com12a], un standard international pour la certification des systèmes d’informa-
tion critiques, exige une évaluation formelle du système pour les deux niveaux
de certification les plus hauts, les « Evaluation Assurance Levels (EALs) » 6 et
7 [Com12b].

L’utilisation des méthodes formelles a connu des nombreux succès. Depuis
les travaux importants de Dolev et Yao [DY81, DY83] et Millen [Mil84] sur les
protocoles à clé publique, le développement de la logique BAN [BAN90], et les
résultats bien connus de Lowe [Low96] sur l’analyse automatique du protocole
de Needham-Schroeder, beaucoup de faiblesses dans des protocoles et standards
existants et déployés ont été identifiées. Par exemple Mitchell, Shmatikov et
Stern [MSS98] ont découvert des anomalies dans SSL (« Secure Socket Layer »)
3.0, et Delaune, Kremer et Steel [DKS10] ont constaté plusieurs faiblesses dans le
standard PKCS#11 pour les clés USB cryptographiques.

Mais les méthodes formelles peuvent aussi non seulement servir à identifier
des failles de sécurité, mais aussi à obtenir des preuves de sécurité. Par exemple
He et al. [HSD+05] ont donné une preuve modulaire du standard IEEE 802.11i
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et du protocole « Transport Layer Security (TLS) », un des protocoles les plus
utilisés sur internet. Plus récemment, une implémentation entièrement vérifiée de
TLS a été réalisée [BFK+13].

Les principaux défis restent le choix du modèle, la formalisation des propriétés
de sécurité, et le développement des outils de vérification automatique.

Dans cette thèse nous étudions deux applications principales : le vote électro-
nique et les ventes aux enchères électroniques. Les systèmes de vote électroniques
ont été utilisés dans de nombreux pays du monde, et maintenant même des sys-
tèmes de vote en ligne sont introduits, par exemple en Estonie [Est], dans plusieurs
cantons suisses [Gen13, Reg13] et même pour les français expatriés [Min13]. Vue
l’importance du vote dans les démocraties modernes, les exigences de sécurité
élevées amènent à des discussions controversées [Par07, UK 07, Min08, Bun09].

La deuxième application, les ventes aux enchères électroniques, a connu un
grand succès : par exemple eBay avait plus que 112 millions d’utilisateurs actifs,
et plus que 350 millions d’offres en 2012 [Don12]. Comme il s’agit d’un processus
compétitif – les participants cherchent à payer le prix le plus bas possible –
engageant des sommes d’argent considérables, des fraudes sont courantes [NTJ13]
et la sécurité est un enjeu majeur.

Dans les deux domaines d’application nous considérons des systèmes complexes
et des propriétés non-triviales comme le respect de la vie privée, l’équité et la
vérifiabilité. Le respect de la vie privée peut simplement vouloir dire le secret
du vote (ou de l’offre), mais aussi l’anonymat du votant ou de l’enchérisseur.
L’équité est souvent liée au respect de la vie privée car par exemple des résultats
préliminaires peuvent influencer les votants restants, mais inclut aussi la protection
contre la fraude, et le respect des règles des protocoles de vente aux enchères.
Finalement la vérifiabilité permet aux participants d’un protocole de vérifier
à la fin que le protocole s’est bien déroulé, et que les résultats annoncés sont
corrects. Ceci est particulièrement intéressant pour les systèmes complexes, car la
vérification peut être plus simple que l’exécution du protocole.

Puisque les définitions en langue naturelle sont souvent imprécises, un défi
majeur pour la vérification formelle est le développement des définitions formelles
précises, qui couvrent tous les aspects de la propriété en question, et qui sont
adaptées à la vérification automatique.

Le but de cette thèse est de proposer des modèles et des définitions qui
permettent de vérifier des propriétés de sécurité dans les deux contextes. Pour le
vote, nous nous concentrons sur les propriétés d’anonymat, qui incluent l’absence
de reçu et la protection contre la coercition, c’est-à-dire contre un intrus qui
essaye de forcer les votants à voter pour un candidat de son choix. Pour les ventes
aux enchères nous proposons des modèles et des définitions pour les propriétés
d’anonymat, d’équité et de vérifiabilité. De plus, nous examinons plusieurs études
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de cas, ce qui amène aussi bien à des preuves de sécurité qu’à la découverte de
plusieurs failles de sécurité. Finalement nous présentons aussi un résultat théorique
dans le π-calcul appliqué qui nous permet de prouver l’équivalence de plusieurs
notions d’anonymat.

6.1.1 — Contributions

Dans le chapitre 2, nous rappelons la syntaxe et la sémantique du π-calcul appliqué,
qui est utilisé de manière récurrente dans la thèse. Nous présentons ainsi deux
résultats de décomposition unique pour des processus dans le π-calcul appliqué.
Nous commençons par la définition de deux sous-classes de processus : les processus
normés et finis, c’est-à-dire les processus qui possèdent au moins une trace complète
(c’est-à-dire qui se termine dans un état ou aucune transition n’est possible) finie,
et les processus où toutes les traces complètes sont finies respectivement. Dans
un premier temps, nous démontrons que tout processus normé peut se réécrire
de manière unique (modulo la bisimulation forte) sous forme de composition
parallèle de plusieurs facteurs premiers, c’est-à-dire nous avons P ∼l P1| . . . |Pn
où tous les Pi sont premiers, c’est-à-dire ne peuvent pas être décomposés dans des
facteurs non-triviaux. Dans un deuxième temps, nous prouvons que tout processus
fini (c’est-à-dire toutes les traces sont finies) peut se réécrire de manière unique
(modulo la bisimulation faible) sous forme de composition parallèle de plusieurs
facteurs premiers : P ≈l P1| . . . |Pn. Ces résultats démontrent l’existence d’une
forme normale, et impliquent un résultat d’annulation sur les processus : nous
obtenons que A|B ∼ C|B implique A ∼ C. Ce résultat est utilisé au chapitre 3
dans une preuve d’équivalence de différentes notions de sécurité.

Dans le chapitre 3 nous analysons le respect de la vie privée dans les systèmes
de vote électroniques. Dans un premier temps, nous proposons une taxonomie
formelle du respect de la vie privée dans le π-calcul appliqué. Cette taxonomie
tient compte de différentes capacités de l’intrus (par exemple un intrus interne
qui participe aussi au vote, ou un intrus externe qui est juste observateur), de
différents types d’attaques (l’abstention forcée), et du niveau de coercition employé
par l’intrus. Nous appliquons cette taxonomie dans plusieurs études de cas : les
protocoles de Fujioka et al. [FOO92], de Okamoto [Oka96], de Lee et al [LBD+03],
et Bingo Voting [BMQR07].

Dans un deuxième temps, nous généralisons les notions du respect de la vie
privée pour prendre en compte les votes pondérés, par exemple dans le cas d’une
société où les votes seraient proportionnels aux nombres d’actions de chaque
votant. Dans un tel cas les définitions précédentes fondées sur la permutation ne
sont plus adaptées, car une permutation peut changer le résultat de l’élection et
donc rendre les deux situations trivialement distinguables. Notre solution consiste
à s’abstraire du résultat, et à considérer toutes les distributions de votes qui
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amènent au même résultat. Nous appliquons ces nouvelles notions à un protocole
inspiré par le protocole d’Eliasson and Zúquete [EZ06], qui implémente des votes
pondérés. De plus, nous établissons des liens précis entre les notions généralisées,
et les notions de la taxonomie précédente : nous démontrons que les deux sont
équivalentes sous l’hypothèse que les votes ont tous le même poids. Dans une
étape supplémentaire, nous démontrons que si le protocole est fini et satisfait une
certaine condition de modularité (ce qui est le cas dans beaucoup d’exemples), la
coercition d’un ou de plusieurs votants est équivalente. Ces conditions permettent
aussi de prouver que le cas avec des votants corrompus par l’intrus peut se réduire
au cas sans votants corrompus. Cela permet de simplifier les preuves de sécurité,
car il suffit d’analyser le cas sans votants corrompus et avec un seul votant sous
coercition.

Dans le chapitre 4 nous analysons les protocoles de vente aux enchères en
ligne. Dans la première partie nous proposons des définitions des propriétés
d’authentification comme la non-répudiation et la non-annulation, des propriétés
d’équité comme la non-interférence des offres et la protection contre la fraude, et
de la protection de la vie privée de l’anonymat dans le π-calcul appliqué. Dans la
suite nous analysons trois études de cas : les protocoles de Curtis et al. [CPS07],
de Brandt [Bra06] et de Sako [Sak00]. Nous identifions automatiquement grâce
à l’outil ProVerif plusieurs problèmes pour les deux premiers, et obtenons des
preuves automatiques en ProVerif pour le dernier.

Dans la deuxième partie nous analysons la vérifiabilité des protocoles d’enchère.
Nous proposons une définition abstraite, qui peut s’instancier aussi bien dans le
modèle symbolique que dans le modèle calculatoire. Dans la suite, nous étudions
deux exemples : les protocoles de Sako et Curtis et al.. Pour le protocole de Sako,
nous proposons une preuve symbolique en utilisant ProVerif (et des généralisations
manuelles), et une preuve calculatoire en utilisant CryptoVerif (et une preuve
manuelle). Pour le protocole de Curtis et al. nous employons ProVerif et identifions
plusieurs faiblesses.

Dans la dernière partie nous explorons l’idée des « enchères vraiment vérifiables
par les enchérisseurs », c’est-à-dire des protocoles qui assurent la vérifiabilité sans
utiliser des opérations cryptographiques complexes, et qui sont donc compréhen-
sibles même pour une personne non spécialiste. Nous proposons d’utiliser des
propriétés physiques de certains objets, et développons deux protocoles inspirés
du protocole proposé par Sako. Le premier s’appelle « Cardako » et n’utilise que
du matériel de bureau, c’est-à-dire du carton et des enveloppes. Le deuxième
s’appelle « Woodako » et utilise une boîte en bois qui détermine le gagnant de
manière privée et vérifiable. Bien que ces protocoles aient leur limitations pour
passer à l’échelle, ils illustrent qu’on peut réaliser des enchères simplement en
utilisant des objets physiques. Nous proposons aussi d’appliquer les définitions
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formelles proposées plus tôt à ces protocoles, et discutons leur vérification formelle
automatique en ProVerif en utilisant une théorie équationnelle particulière qui
modélise les propriétés physiques. Avec cette approche, nous obtenons que les
deux ont les propriétés souhaitées.

Finalement, nous résumons nos résultats dans le chapitre 5 et discutons des
perspectives.

6.1.2 — Publications précédentes

Une grande partie du travail présenté dans cette thèse a déjà été publiée avant la
publication de cette thèse à l’occasion de plusieurs conférences internationales.

Les résultats sur la décomposition unique du chapitre 2 ont été présentés
à FoSSaCS 2013 [DELL13]. Les premiers résultats du travail présenté dans le
chapitre 3 ont été exposés à FPS 2011 [DLL11], ICC-SFCS 2012 [DLL12b] et à
ESORICS 2012 [DLL12a]. Une grande partie des résultats du chapitre 4 a aussi
été publiée : à POST 2013 [DLL13] et à ASIACCS 2013 [DJL13].

Bien que cela ne fasse pas partie du travail présenté dans cette thèse, nous
avons aussi publié une analyse détaillée du protocole par Brandt à Africacrypt
2013 [DDL13].

6.2 Le π-calcul appliqué et la décomposition unique des
processus

Le π-calcul appliqué [AF01] est une algèbre de processus. Il s’agit d’une variante du
π-calcul adaptée à la vérification des protocoles. Dans cette algèbre, les participants
du protocole sont décrits sous forme de processus qui peuvent interagir, par
exemple échanger des messages. Tous les messages sont composés de termes, qui
sont évalués par rapport à une théorie équationnelle qui modélise par exemple les
propriétés des opérations cryptographiques (par exemple dec(enc(m, k), k) = m

pour un chiffrement symétrique).
Les grammaires pour la construction des termes et des processus sont données

dans les figures 2.1, 2.2 and 2.3 : le processus 0 ne fait rien, la composition parallèle
P |Q exécute P et Q en parallèle, et la réplication !P exécute un nombre infini
de copies de P en parallèle. νn.P crée un nom frais et restreint n, puis continue
tant que P . if M = N then P else Q se comporte comme P si N =E M ,
ou comme Q sinon. Le processus in(u, x).P reçoit un message sur le canal u,
l’affecte à la variable x et puis continue comme P . La sémantique est donnée
dans les figures 2.4, 2.5 et 2.6. Cette sémantique permet de définir plusieurs
notions d’équivalence, notamment la bisimulation forte (∼l) et la bisimulation
faible (≈l). Dans la bisimulation forte chaque transition d’un côté doit être simulée
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par exactement une transition de l’autre côté, dans le cas de la bisimulation faible
une transition peut être simulée par plusieurs transitions (internes).

Dans une algèbre de processus comme le π-calcul appliqué une question
naturelle est celle de la décomposition en facteurs parallèles : étant donné un
processus P , existent-ils des processus P1, . . . , Pn tel que P peut se réécrire comme
P1| . . . |Pn ? Et si cette décomposition existe, est-elle unique ?

Une telle décomposition a plusieurs applications : elle sert de forme normale,
ce qui simplifie certaines preuves, elle permet de vérifier l’équivalence de deux
processus en vérifiant qu’ils ont la même forme normale, ou encore elle implique
un résultat d’annulation, c’est-à-dire que P |Q ≈ P |R implique Q ≈ R.

Dans ce chapitre nous démontrons que dans le π-calcul appliqué tout processus
« normé » P peut se réécrire de manière unique modulo la bisimulation forte sous
la forme suivante

P ∼l P1| . . . |Pn

où P1, . . . , Pn sont premiers, c’est-à-dire qu’ils ne peuvent pas se décomposer dans
des facteurs non-triviaux (Théorèmes 5 et 6). Un processus est « normé » s’il
possède au moins une trace complète (c’est-à-dire qui se termine dans un état ou
aucune transition n’est possible) finie.

De manière similaire, nous prouvons que tout processus « fini » (c’est-à-dire
toutes les traces complètes sont finies) P peut se réécrire de manière unique
modulo la bisimulation faible sous la forme suivante

P ≈l P1| . . . |Pn

où P1, . . . , Pn sont premiers (Théorèmes 13 et 14).
Dans les deux cas nous obtenons un résultat d’annulation, c’est-à-dire que

— P |Q ∼l P |R implique Q ∼l R pour P , Q et R normés (Lemme 7)

— P |Q ≈l P |R implique Q ≈l R pour P , Q et R finis (Lemme 15)
Ce dernier résultat permet dans le chapitre 3 de démontrer l’équivalence de
plusieurs notions d’anonymat pour les protocoles de vote.

6.3 Les protocoles de vote

Puisque le vote est un acte central de participation dans les démocraties modernes,
de nombreuses propriétés de sécurité ont été proposées :
— Correction : le résultat annoncé correspond à la somme de tous les votes.

— Éligibilité : seulement les votants enregistrés peuvent voter, et au plus une
fois.

— Équité : le processus de vote est équitable, notamment aucun résultat prélimi-
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naire n’est publié afin de ne pas influencer les autres votants.

— Robustesse : le protocole peut tolérer des votants avec un comportement
incorrect.

— Vérifiabilité : le protocole possède des mécanismes qui permettent de vérifier
l’exactitude du résultat.

— Respect de la vie privée : tous les votes restent secrets.
La dernière propriété est cruciale pour assurer que les votants soient libres de
leurs choix. Dans la littérature, elle est souvent divisée en plusieurs notions (p.ex.
dans [DKR09, LSB+09, SC11, SB13, Jon09, DHvdG+13]) :
— Secret du vote : Tous les votes restent secrets pour un observateur extérieur.

— Absence de reçu : Un votant ne peut pas créer un reçu qui permet de prouver
à une tierce partie qu’il a voté pour un certain candidat. Ceci permet d’éviter
l’achat des votes.

— Résistance à la coercition : Même si un votant interagit avec un intrus pendant
tout le processus de vote, l’intrus ne peut pas savoir avec certitude si le votant
a suivi ses ordres ou voté différemment.

— Protection contre l’abstention forcée : Un intrus ne peut pas forcer un votant
à s’abstenir.

— Indépendance des votes : Aucun votant ne peut lier son vote au vote d’un
autre votant1.

— Secret perpétuel : Le secret des votes n’est pas seulement assuré au moment de
l’élection, mais aussi sur le long terme, quand la puissance de calcul de l’intrus
aura considérablement augmenté.

Dans ce chapitre nous étudions toutes ces notions, sauf le secret perpétuel.

6.3.1 — Taxonomie

Dans le contexte du vote, le respect de la vie privée est difficile à définir for-
mellement à cause de la grande variété d’attaques et de capacités de l’intrus.
Pour systématiser notre définition, nous proposons une taxonomie basée sur une
approche modulaire.

Dans notre scénario, l’intrus cible un votant (le votant ciblé) et essaye de
connaître son vote. Si l’intrus connaît les votes de tous les autres votants, il peut
déduire son vote à partir du résultat affiché. Nous supposons donc que l’intrus ne

1La possibilité de copier des votes peut compromettre le secret des votes si le nombre de
votants est faible, ou si un grand nombre de votants est corrompu. Supposons une instance avec
trois votants : le troisième votant peut copier le vote du premier et le soumettre comme son vote.
Cela résulte en au moins deux votes pour le candidat choisi par le premier votant ; ce dernier
peut donc être déduit du résultat du vote.
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connaît pas le vote d’au moins un autre votant (le votant de compensation).
Nous exprimons le secret comme une équivalence observationnelle entre deux

situations. Dans la première situation, le votant ciblé vote comme l’intrus le
souhaite, dans la deuxième il vote différemment. Le votant de compensation
contrebalance le vote changé en changeant son propre vote pour assurer que le
résultat reste le même dans les deux situations. Si le protocole assure le secret du
vote, l’intrus devrait donc être incapable de distinguer les deux situations.

En partant des définitions de résistance à la coercition, de l’absence de reçu et
de secret du vote nous proposons de factoriser trois dimensions : communication
entre le votant ciblé et l’intrus, intrus interne ou externe, et protection contre
l’abstention forcée.

1. Communication entre le votant ciblé et l’intrus : Nous considérons trois
niveaux différents :
(a) Dans le cas le plus simple, l’intrus observe simplement les données

publiques. Ce cas s’appelle « Swap-Vote-Privacy », noté « SwV P ».
(b) Dans le deuxième cas le votant ciblé essaye de construire un reçu en

révélant toutes ces données privées pour convaincre l’intrus qu’il a voté
pour un certain candidat. Ce cas s’appelle « Swap-Receipt-Freeness »,
noté « SwRF ».

(c) Dans le cas le plus fort, le votant prétend être complétement sous
contrôle de l’intrus, c’est-à-dire qu’il révèle toutes ces données privées
et suit les instructions de l’intrus. Ce cas s’appelle « Swap-Coercion-
Resistance », noté « SwCR ».

Intuitivement « Swap-Coercion-Resistance » est plus fort que « Swap-Receipt-
Freeness », qui est plus fort que « Swap-Vote-Privacy » (SwCR > SwRF >

SwV P ).
2. Intrus interne ou externe : L’intrus peut contrôler un autre votant légitime

(ni le votant ciblé, ni le votant de compensation). Dans ce cas il peut par
exemple essayer de copier le vote du votant ciblé. Dans nos définitions, nous
distinguons deux cas :
(a) L’intrus est externe, noté « O »
(b) L’intrus est interne, noté « I »
Intuitivement le deuxième cas est plus fort (I > O).

3. Protection contre l’abstention forcée : Un protocole peut permettre à un
votant de voter, même si l’intrus essaye de l’en empêcher. Contrairement
à la littérature [JCJ05, BHM08], nous définissions cette propriété indé-
pendamment de la résistance à la coercition. Nous exigeons l’équivalence
observationnelle
(a) dans tous les cas, même si un votant est forcé à s’abstenir. Ce cas

s’appelle « security against Forced-Abstention-Attacks », noté « FA ».
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(b) seulement si le votant ciblé ne s’abstient pas. Ce cas s’appelle « Parti-
cipation Only », noté « PO ».

Dans cette dimension « security against Forced-Abstention-Attacks » est
plus fort que « Participation Only » (FA > PO).

La propriété la plus forte est donc SwCRI,FA, la plus faible SwV PO,PO. Toute
la hiérarchie des notions est présentée dans la figure 3.1. De plus, nous avons
appliqué notre définition modulaire dans plusieurs études de cas, et les résultats
sont résumés dans la table 3.1.

6.3.2 — Votes pondérés

Les définitions présentées dans la section précédente sont basées sur l’idée de
permutation de votes. Cela les rend inadaptées pour une situation où les votes
sont pondérés, comme dans une société anonyme, où les votes sont proportionnels
aux nombres d’actions de chaque votant. Considérons l’exemple suivant : Alice a
50% des actions, et Bob et Carol 25% chacun. Les cas où Alice et Bob permutent
leurs votes sont donc facilement distinguables si par exemple Carol vote « Oui »
tout le temps, car le résultat est différent : 75% ou 50% pour oui. Nous notons
qu’il existe encore des situations qui donnent le même résultat : par exemple on
obtient 50% « Oui » si Alice vote « Oui » et Bob et Carol « Non », ou si Alice
vote « Non » et Bob et Carol votent « Oui ».

Afin de résoudre ce problème, nous proposons une généralisation qui prend
en compte les votes pondérés : au lieu d’exiger l’équivalence observationnelle
pour deux situations où deux votants ont permutés leurs votes, nous exigeons
l’équivalence observationnelle de toutes les situations qui publient le même résultat,
indépendamment de la distribution des votes. Nous démontrons aussi que cette
définition est équivalente à la précédente si les votes ont tous le même poids.

Comme étude de cas nous utilisons une variante du protocole d’Eliasson et
Zúquete [EZ06], et proposons une preuve partiellement automatisée avec ProVerif.

Dans une deuxième généralisation des définitions précédentes, nous proposons
des définitions d’absence de reçu et de résistance à la coercition où plusieurs votants
sont sous attaque par l’intrus. Nous démontrons ensuite que cette généralisation
est équivalente à la définition précédente si le protocole est modulaire (c’est-à-dire
qu’on peut composer et décomposer des instances) et fini (c’est-à-dire que les
processus sont finis). De plus, sous les mêmes hypothèses, nous démontrons que les
cas d’un intrus interne et externe sont équivalentes (c’est-à-dire que la corruption
des votants ne rapporte rien à l’intrus pour un protocole avec ces propriétés). Nous
prouvons aussi que les protocoles de Fujioka et al. [FOO92], d’Okamoto [Oka96]
et Bingo Voting [BMQR07] satisfont ces hypothèses. Pour ces réductions nous
utilisons le résultat d’annulation du chapitre 2.

Tout cela amène à une grande hiérarchie de notions, qui est résumée dans les
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figures 3.2 et 3.3.

6.4 Les protocoles de vente aux enchères

Les ventes aux enchères représentent une méthode simple pour la vente de biens
ou de services : un vendeur propose un bien ou un service, et les enchérisseurs
soumettent des offres.

Dans la littérature beaucoup de propriétés de sécurité ont été proposées, ici
nous analysons les suivantes en détail :
— Équité : D’abord un protocole de vente aux enchères scellées ne devrait

divulguer aucune information sur les autres enchérisseurs et leurs offres jusqu’à
la fin de la phase de soumission des offres, pour empêcher des tactiques non
équitables. Nous appelons cette propriété « Weak » ou « Strong Noninterfe-
rence », selon que le nombre de participants est divulgué ou pas. De plus, un
protocole ne devrait pas permettre à un participant malhonnête de gagner la
compétition même qu’il n’a pas soumis l’offre la plus élevée. Cette propriété
s’appelle « Highest Price Wins ».

— Authentification : Du point de vue du vendeur il est important d’assurer la
non-répudiation, c’est-à-dire qu’une fois le gagnant annoncé, l’enchérisseur ne
peut pas nier qu’il a soumis l’offre gagnante. De plus, dans certains systèmes
d’enchère, il est interdit d’annuler une offre – il faut donc exiger la non-
annulation.

— Respect de la vie privée : Dans une vente aux enchères scellées le secret des
offres est une propriété bien connue, et l’anonymat des acheteurs est souvent
souhaité également. Nous distinguons plusieurs notions : « Secrecy of Bids »,
« Bidding-Price Unlinkability », « Weak Anonymity » et « Strong Anonymity »,
« Receipt-Freeness » et « Coercion-Resistance ». « Secrecy of Bids » garantit
que les offres perdantes restent secrètes. Dans le cas de « Bidding-Price Unlin-
kability » une liste des offres peut être publique, mais le lien entre la liste et
les enchérisseurs perdants doit rester secret. « Strong Anonymity » implique
que tous les participants (y compris le gagnant) restent anonymes, et que les
offres perdantes restent secrètes. Dans le cas de « Weak Anonymity » la liste
des offres peut également être publique, mais le lien avec les enchérisseurs
(anonymes) reste secret. « Receipt-Freeness » assure qu’un enchérisseur peut
créer des faux reçus pour prouver qu’il a enchérit une offre particulière, et
« Coercion-Resistance » implique que les enchérisseurs peuvent résister à la
coercition.

— Vérifiabilité : Un protocole vérifiable permet aux enchérisseurs et au vendeur
de vérifier que le gagnant et le prix ont été correctement calculés, et qu’il n’y
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avait pas d’offre illégitime soumise par un extérieur.
Nous proposons des définitions formelles de toutes les propriétés d’équité, d’au-
thentification et de respect de la vie privée dans le π-calcul appliqué. Pour les
notions de respect de la vie privée nous obtenons une hiérarchie, qui est résumée
dans la figure 4.3.

Pour la définition de la vérifiabilité nous utilisons une approche différente :
dans un modèle abstrait nous définissons les tests nécessaires pour vérifier le bon
déroulement du protocole et les conditions que ces tests doivent satisfaire. Un
protocole est donc vérifiable s’il possède tous les tests, et si les tests satisfont les
conditions. Ce modèle peut – par exemple – s’instancier dans le π-calcul appliqué.

Nous appliquons toutes les définitions précédentes avec ProVerif sur trois
études de cas : les protocoles de Curtis et al. [CPS07], de Brandt [Bra06], et
de Sako [Sak00]. Seulement le protocole de Sako s’avère sûr, les deux autres
contiennent plusieurs faiblesses, essentiellement liées à des problèmes d’authentifi-
cation.

La définition de vérifiabilité peut aussi s’instancier dans le modèle calculatoire.
Pour illustrer cela, nous prouvons que le protocole par Sako assure la vérifiabilité
aussi dans le modèle calculatoire. Pour ce faire nous utilisons majoritairement
CryptoVerif, mais aussi une preuve manuelle car une limite de CryptoVerif ne
permet pas de finir cette preuve automatiquement.

Le but de la vérifiabilité est de permettre aux utilisateurs de vérifier le bon
déroulement du protocole. En même temps, pour assurer cette propriété, les
protocoles utilisent des opérations cryptographiques complexes. Ces opérations
sont très puissantes, mais souvent trop complexes pour être vraiment comprises
par un utilisateur lambda, qui doit donc faire confiance aux experts qui ont
développé (et peut-être vérifié formellement) la procédure de vérification. Pour
proposer une solution à cette problématique, nous avons développé deux protocoles
d’« enchères vraiment vérifiable par les enchérisseurs », c’est-à-dire des protocoles
qui garantissent la vérifiabilité sans utiliser la cryptographie complexe – mais
basés sur des objets et propriétés physiques.

Le premier protocole, une variante du protocole de Sako basé sur du carton et
des enveloppes, s’appelle « Cardako2 ». Il peut être réalisé entièrement avec du
matériel de bureau. Le deuxième protocole s’appelle « Woodako3 ». Il s’agit aussi
d’une variante du protocole de Sako, mais implémenté avec une boîte en bois, qui
permet de désigner le gagnant de manière privée et vérifiable. Pour consolider
notre affirmation que ces protocoles sont effectivement sûrs et vérifiables, nous
les analysons formellement en ProVerif en utilisant les mêmes définitions que
pour les protocoles cryptographiques. Pour modéliser les objets physiques et leurs

2Cardboard Sako
3Wooden Box Sako
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propriétés nous utilisons une théorie équationnelle particulière, ce qui permet de
conclure que les protocoles sont sûrs.

6.5 Conclusion

Nous avons introduit notre travail et son contexte dans le chapitre 1.
Dans le chapitre 2, nous avons rappelé le π-calcul appliqué, sa syntaxe et sa

sémantique. Nous avons identifié deux sous-classes de processus : des processus
normés, et des processus finis. Nous avons démontré que tout processus normé
P peut se réécrire de manière unique (modulo ∼l) comme composition parallèle
de facteurs premiers : P ∼l P1| . . . |Pn. Chaque facteur est premier dans le sens
où il ne peut pas se décomposer en facteurs non-triviaux. De plus, nous avons
démontré que tout processus fini peut se décomposer de manière unique (modulo
≈l) en processus premiers, c’est-à-dire que P ≈l P1| . . . |Pn.

Dans la suite, chapitre 3, nous nous sommes intéressées au vote électronique.
Nous avons proposé une taxonomie du respect de la vie privée dans le π-calcul
appliqué. Elle prend en compte différents pouvoirs de l’intrus (interne ou externe),
des attaques spécifiques (comme l’abstention forcée), et des niveaux de coercition
différents (secret du vote, absence de reçu, résistance à la coercition). Comme
études de cas, nous avons analysé les protocoles de Fujioka et al. [FOO92],
Okamoto [Oka96], Lee et al. [LBD+03] et Bingo Voting [BMQR07]. Le protocole
de Fujioka et al. garantit le secret du vote pour un intrus interne, mais est
vulnérable aux attaques d’abstention forcée. Bien qu’il reste vulnérable aux
attaques d’abstention forcée, le protocole d’Okaomoto garantit l’absence de reçu.
Les deux protocoles peuvent être sécurisés contre les attaques d’abstention forcée
avec un canal privé et un administrateur honnête. Le protocole de Lee et al. assure
la résistance à la coercition, mais seulement contre un intrus externe, et reste
vulnérable aux attaques d’abstention forcée. Finalement Bingo Voting garantit la
résistance à la coercition pour un intrus interne et est protégé contre les attaques
d’abstention forcée, si la liste des participants n’est pas publiée.

Dans la deuxième partie du chapitre, nous avons développé des notions gé-
néralisées pour prendre en compte des votes pondérés. Nous avons proposé des
définitions du secret du vote, de l’absence de reçu et de la résistance à la coercition,
avec et sans votants corrompus par l’intrus. Pour l’absence de reçu et la résistance
à la coercition nous avons aussi développé des notions où un seul ou plusieurs
votants sont sous attaque. De plus, nous avons établi des liens formels avec les
définitions précédentes de notre taxonomie. Nous avons analysé une variante du
protocole par Fujioka et al. comme étude de cas, et prouvé que si un protocole
est fini et respecte une condition de modularité, les cas avec un seul ou plusieurs
votants sous attaque sont équivalents. Nous avons obtenu un résultat similaire
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pour les cas avec et sans votants corrompus.
Dans le chapitre 4 nous avons analysé les protocoles de vente aux enchères.

Après avoir proposé notre modèle, nous avons défini plusieurs notions d’équité,
d’authentification et de respect de la vie privée : non-répudiation, non-annulation,
« Weak » et « Strong Non-Interference », « Highest Price Wins » et différentes
notions de respect de la vie privée. Ces notions permettent de capturer des
protocoles où le gagnant reste anonyme ou non, et où les offres sont secrètes ou
juste anonymes. De même, nous avons proposé des notions pour des protocoles
qui ne sont pas des protocoles d’enchère où le gagnant paye le prix de l’offre
la plus élevée (enchères au premier prix), mais par exemple le prix de l’offre
la deuxième plus élevée (enchères au deuxième prix). Comme études de cas,
nous avons discuté les protocoles de Curtis et al. [CPS07], Brandt [Bra06] et
Sako [Sak00]. Le protocole de Sako garantit toutes les propriétés sauf l’absence de
reçu et la résistance à la coercition. Pour les deux autres protocoles, nous avons
identifié plusieurs faiblesses, essentiellement liés à des problèmes d’authentification.

Dans la suite de ce chapitre, nous avons analysé la vérifiabilité pour les
protocoles d’enchère. Nous avons proposé une définition abstraite de la vérifiabilité
qui peut s’instancier dans le modèle symbolique et calculatoire. Pour illustrer
cela, nous avons complété une étude du protocole de Sako dans les deux modèles
en utilisant ProVerif et CryptoVerif (et des preuves manuelles). De plus nous
avons aussi analysé le protocole de Curtis et al. en ProVerif, et identifié plusieurs
faiblesses.

Finalement nous avons exploré le concept des « enchères vraiment vérifiables
par les enchérisseurs », c’est-à-dire des protocoles qui peuvent être vérifiés sans
connaissances spéciales. Pour cela nous avons proposé deux protocoles inspirés du
protocole de Sako : « Cardako » et « Woodako ». Cardako n’utilise que du matériel
de bureau, c’est-à-dire du carton et des enveloppes. Woodako est basé sur une boîte
en bois qui permet de déterminer le gagnant de manière privée et vérifiable. Nous
analysons les deux en ProVerif en utilisant des théories équationnelles particulières
pour modéliser le comportement des objets physiques (les enveloppes, la boîte en
bois). Cela permet d’appliquer les mêmes définitions que celles appliquées aux
protocoles cryptographiques.

6.5.1 — Perspectives

Par rapport aux résultats de décomposition unique, nous avons identifié deux
pistes principales. La première consiste à étendre l’approche aux processus infinis.
Un premier résultat dans cette direction a été obtenu par Hirschkoff et Pous [HP10]
pour un sous-ensemble de CCS avec de la réplication uniquement niveau le plus
haut. Ils ont introduit le concept de seed, c’est-à-dire le processus bisimilaire au
processus initial de taille minimale, mais avec un nombre maximal de processus
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sous réplication. Ils ont prouvé que cette représentation est unique, et que ce
résultat se généralise au π-calcul sans restriction (sans ν). Il reste ouvert si un
résultat similaire peut être obtenu pour le π-calcul intégral.

Une deuxième piste consiste à proposer un algorithme efficace qui calcule la
décomposition unique d’un processus. Il n’est pas certain qu’un tel algorithme
existe, car simplement déterminer si un processus est fini peut être non-trivial.

De plus, il reste deux autres résultats à démonter : il reste à prouver que la
bisimulation forte est clos sous l’application de contexte (comme son pendant
faible), et qu’on peut remplacer des processus contenant la synchronisation avec
des processus bisimilaires, et que le résultat reste bisimilaire.

Par rapport aux résultats concernant la vie privée dans les protocoles de vote
nous avons identifié deux pistes. La première consiste à automatiser nos preuves
(qui pour la plupart étaient manuelles). Pour cela les défis principaux sont des
théories équationnelles complexes, et le contexte qui représente l’intrus dans la
définition de la résistance à la coercition. La deuxième piste est la traduction de
nos définitions symboliques dans le modèle calculatoire, pour par exemple pouvoir
raisonner sur la probabilité qu’un intrus devine correctement le vote du votant
ciblé.

Concernant nos résultats sur les ventes aux enchères, nous voyons plusieurs
pistes. Une première idée est d’essayer de corriger les problèmes identifiés avec
les protocoles de Curtis et al. et Brandt. Cela implique de surmonter certaines
limites de ProVerif, et de préciser le modèle utilisé pour le protocole de Brandt.

Dans nos applications ProVerif était souvent incapable de prouver le cas
général directement, ce qui a nécessité des preuves de généralisation manuelles.
Une extension de ProVerif permettant de traiter des boucles et de l’état global
est donc nécessaire.

De plus, aucun de nos protocoles ne garantit l’absence de reçu ou la résistance
à la coercition. Il serait intéressant d’analyser un tel protocole, comme celui d’Abe
et Suzuki [AS02].

Pour renforcer notre preuve calculatoire de vérifiabilité pour le protocole de
Sako, il serait intéressant de remplacer la primitive de chiffrement abstraite par le
chiffrement d’ElGamal concret.

Finalement, nous aimerions développer des protocoles d’« enchères vraiment
vérifiables par les enchérisseurs » qui passent facilement à l’échelle. De plus,
la modélisation formelle des propriétés physiques soulève encore beaucoup de
questions : comment être sûr que le modèle est assez précis et permet de détecter
toutes les attaques ?

Par ailleurs, dans [DDL13] nous avons proposé une analyse détaillée du pro-
tocole de Brandt. Bien que cela ne soit pas présenté dans cette thèse, il serait
intéressant faire une preuve calculatoire démontrant que les corrections que nous
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avons proposées sont suffisantes, et que le protocole est maintenant sûr.
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