UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE LUNIVERSITE DE GRENOBLE

Spécialité : Informatique

Présentée par

Jannik Dreier

Thése dirigée par Pr. Yassine Lakhnech
et codirigée par Dr. Pascal Lafourcade

préparée au sein du Laboratoire VERIMAG
et de I’Ecole Doctorale Mathématiques, Sciences et Technologies de
'Information, Informatique (EDMSTII)

Formal Verification of Voting and

Auction Protocols
From Privacy to Fairness and Verifiability

Thése soutenue publiquement le 25 novembre 2013,
devant le jury composé de :

Dr. David Pointcheval

Ecole Normale Supérieure, CNRS, Président

Dr. Steve Kremer

INRIA Nancy — Grand Est, Rapporteur

Pr. Olivier Pereira

Université Catholique de Louvain, Rapporteur

Pr. David Basin

ETH Zirich, Examinateur

Dr. Bruno Blanchet

INRIA Paris — Rocquencourt, Examinateur

Dr. Cédric Fournet

Microsoft Research, MSR-INRIA Joint Center, Examinateur
Dr. Pascal Lafourcade

Université Joseph Fourier Grenoble, Co-Directeur de thése

Abstract

I N this document, we formally analyze security in electronic voting and electronic
auctions. On-line voting is now available in several countries, for example in
Estonia [Est] or parts of Switzerland [Genl3l [Regl3]. Similarly, electronic auctions
are increasingly used: eBay had over 112 million active users and over 350 million
listings in 2012, and achieved a revenue of more than 14 billion US Dollars [Don12].
In both applications, security is a main concern, as fairness is important and
money is at stake.

In the case of voting protocols, privacy is crucial to ensure free elections.
We propose a hierarchy of privacy notions in the Applied w-Calculus, including
different levels of coercion, special attacks such as forced-abstention attacks, and
inside attackers. We also provide generalized notions for situations where votes
are weighted (e.g. according to the number of shares in a company), and show
that for many protocols the case with multiple coerced voters can be reduced
to the case with one coerced voter. This result is made possible by a unique
decomposition result we proved in the Applied 7m-Calculus, showing that any finite
process has a unique normal form with respect to labeled bisimilarity. Moreover
we provide multiple case studies illustrating how our taxonomy allows to assess
the level of privacy ensured by a voting protocol.

In the case of auction protocols we also consider a hierarchy of privacy notions,
and several fairness and authentication properties such as Non-Interference, Non-
Cancellation and Non-Repudiation. We analyze all these properties automatically
using ProVerif on three case studies, and identify several flaws. Moreover we give
an abstract definition of verifiability in auctions and provide case studies in the
symbolic and computational model using ProVerif and CryptoVerif respectively.
Again, we identify several shortcomings, but also give a computational proof for
one protocol.

Finally we explore the idea of “true bidder-verifiable auctions”, i.e. auctions
that can be verified by a non-expert, as the property is ensured through physical
properties instead of complex cryptography. We propose two such protocols,
discuss how to model the underlying physical properties, and provide a formal

analysis of both protocols using ProVerif.

Keywords: Privacy, Electronic Voting, Electronic Auctions, Authentication,
Fairness, Formal Verification, Symbolic Model, Computational Model, ProVerif,
CryptoVerif, Applied Pi-Calculus, Unique Decomposition, Normal Form

Résumé

D ANS cette theése nous étudions formellement la sécurité des protocoles de vote
et d’encheére en ligne. Le vote en ligne est utilisé en Estonie [Est] et dans
certaines régions de la Suisse [Genl3l [Regl3]. D’autre part, les enchéres en ligne
sont de plus en plus populaires : eBay comptait plus de 112 millions utilisateurs
actifs et plus de 350 millions d’objets a vendre en 2012, avec un chiffre d’affaires
de 14 milliards de dollars [Donl2]. Dans ces deux applications, la sécurité est
primordiale, & cause d’enjeux financiers et politiques.

Dans le cas des protocoles de vote, le secret du vote est crucial pour le libre
choix des votants. Nous proposons une hiérarchie des notions de secret du vote
par rapport a plusieurs niveaux de coercition, des attaques spécifiques (comme
l’abstention forcé), et des votants corrompus. Nous généralisons ces notions pour
le cas des votes pondérés (par exemple par rapport au nombre d’actions dans
une société). Nous montrons aussi que sous certaines conditions le cas avec
plusieurs votants sous attaque se réduit au cas avec un seul votant sous attaque.
Ce résultat a été obtenu griace a un autre résultat démontré dans le Il-calcul
appliqué, montrant que tout processus fini peut se décomposer de maniere unique
en processus premiers. Nous illustrons notre hiérarchie sur plusieurs exemples,
soulignant comment elle permet d’évaluer le niveau d’anonymat d’un protocole
donné.

Dans le cas des protocoles d’enchére en ligne, nous proposons aussi une
hiérarchie de notions d’anonymat, et plusieurs notions d’équité et d’authentification
comme la non-interférence, la non-annulation et la non-répudiation. Nous analysons
ces propriétés automatiquement & ’aide de I'outil ProVerif sur trois exemples, et
découvrons plusieurs faiblesses. De plus, nous proposons une définition abstraite
de la vérifiabilité, et I’appliquons sur des exemples aussi bien dans le modele
calculatoire que dans le modele symbolique en utilisant CryptoVerif et ProVerif
respectivement. Nous démontrons dans le modele calculatoire qu’un des protocoles
est vérifiable, et découvrons plusieurs faiblesses sur les autres exemples.

Finalement nous étudions le concept d’«encheres vraiment vérifiable par les
enchérisseursy, c’est-a-dire des protocoles d’enchere ou le bon déroulement peut
étre vérifié par un non-expert, car la sécurité est assurée par des moyens physiques,
et non cryptographiques. Nous proposons deux tels protocoles, et une analyse
formelle de ces protocoles grace a une modélisation des propriétés physiques avec
ProVerif.

Mots-clés : vie privée, vote électronique, enchere en ligne, authentification,
équité, vérification formelle, modele symbolique, modele calculatoire, ProVerif,

CryptoVerif, pi-calcul appliqué, décomposition unique, forme normale

iii

Acknowledgments

F IRSTLY I would like to thank all the members of my jury, in particular my
reviewers Dr. Steve Kremer and Pr. Olivier Pereira, for accepting to report
on this long manuscript. I would also like to express my gratitude towards the
examiners Pr. David Basin, Dr. Bruno Blanchet, Dr. Cédric Fournet and Dr.
David Pointcheval for their interest in my work.

I am also very grateful to my supervisors Pr. Yassine Lakhnech and Dr.
Pascal Lafourcade for accepting me as a PhD student, organizing the funding,
and supervising me. I have always enjoyed working with them, and without them
this work would not have been possible.

Then I would to thank my collaborators, Jean-Guillaume Dumas from Labora-
toire Jean Kuntzmann, for his help with Brandt’s auction protocol, Cristian Ene
from VERIMAG, for his help and collaboration on the 7-calculus, and Hugo Jonker
from Luxembourg for his collaboration on auction protocols. Jean-Guillaume was
a great help in understanding the mathematics of Brandt’s protocol, and he is a
very enjoyable traveling companion. Cristian showed me the subtleties of process
algebras, and encouraged me to continue when I was about to give up. Hugo is a
great source of ideas, and a gifted organizer of productive workshops.

I also want to thank all the colleges at VERIMAG (Marie-Laure Potet, Pierre
Corbineau, Nicolas Halbwachs, Susanne Graf, Claire Maiza, ...), the secretaries
(Sandrine, Christine, Rosen, ...) for their help with the inevitable paperwork,
the IT-Team (Jean-Noél Bouvier, Philippe Genin, Loic Thillier) and in particular
my fellow PhD students and/or office mates (Mathilde, Christian, Raphael, Ali,
Eduardo, Marion, Yvan, Tommaso, ...) for making it a very nice place to work
and study. I will surely remember the lunch breaks thanks to the immortal
VERIFAIM (Jacques, Sophie, Marc, Valentin, Benoit, Claude, Florent, ...), and
life would have been much less enjoyable without the common mountain activities:
skiing and climbing (VERICLIMB).

Finally I am very grateful to my family and friends for their constant support.
I want to thank my father for introducing to the enchanting worlds of mathematics,
engineering and science, my mother for teaching me the fascination of languages
and cultures, and my girlfriend Mathilde for simply being there.

Last but not least my thanks go to all those I forgot here. ..

TABLE OF CONTENTS

Table of Contents

1__Introduction| 5
(LT _Tntroduction and Motivationl. 6
(1.2 Related Workl 8
[1.3 Contributions and Organization of the Thesis| 12
[L4 Publications 14

[Processes| 15
2.1 Introductionl. o 16
[2.1.1 Outline of the Chapter{. 16

2.2 Syntax and Semantics| Lo 16
2.3 Observational Equivalence and Labeled Bisimilarity] 21
[2.4 Unique Parallel Decomposition of Processes| 24
241 Related Workl. o000 24
[2.4.2 Depth and Norm of Processes| 25
12.4.3 Decomposition w.r.t. Strong Labeled Bisimilarity|. 28
[2.4.4 Decomposition w.r.t. Weak Labeled Bisimilarity| 36

25 Conclusion| o 45
47
3.1 Introductionl. 49
B.1.1 Contributionsf 0. 50
3.1.2 Outline of the Chapter|. 51

B2 Related Workl o oo 51
3.3 A Formal Taxonomy of Privacy in Voting| 54
[3.3.1 Formalizing Voting Protocols| 54
[3.3.2 Defining Privacy: A Modular Approach| 60
13.3.3 Definitions in the Applied m-Calculus| 62
8.3.4 Hierarchy| L 65

TABLE OF CONTENTS

TABLE OF CONTENTS

B.3.5 CaseStudies 68
[3.3.5.1 Protocol by Fujioka, Okamoto and Ohta (FOO)| . 68

[3.3.5.2 Protocol by Okamoto| 77

[3.3.5.3 Bingo Voting| 88

[3.3.5.4 Protocol by Lee, Boyd, Dawson, Kim, Yang and |

[Yool 103
[3.3.5.5 Summary| 114

[3.4 Defining Privacy for Weighted Votes| 115
3.4.1 Formal Definitionl. 116
[3.4.2 Example: A Variant of FOO| 117
[3.4.2.1 Adding Vote Weights| 117

[3.4.2.2 Model and Analysig| 117

13.4.3 Link to Existing Definitions| 120
13.4.4 Including Corrupted Voters| 126

3.5 Multi-Voter Coercion|. 133
[3.5.1 Single-Voter Receipt-Freeness (SRF)| 133
[3.5.2 Multi-Voter Receipt-Freeness (MRF) 139
[3.5.3 Single-Voter Coercion (SCR)| 144
[3.5.4 Multi-Voter Coercion (MCR)| 146

B.6 Conclusionl 149
4__eAuctions| 155
41 Introductionl. 157
411 Contributions/o 158
4.1.2 Outline of the Chapter|. 159

42 Related Workl oo oo o 159
[4.3 Fairness, Authentication and Privacy in Auctions| 162
4.3.1 Modeling Auction Protocols| 162
[4.3.2 Fairness Properties| L. 166
[4.3.3 Authentication Properties| 167
[4.3.4 Privacy Properties| oo oo 169
[4.3.4.1 Privacy| oo 170

[4.3.4.2 Receipt-Freeness| 177

4.3.4.3 Coercion-Resistancel 185

435 CaseStudies 194
[4.3.5.1 Protocol by Curtis, Pierprzyk and Serugal 194

[4.3.5.2 Protocol by Brandt| 202

[4.3.5.3 Protocol by Sako|. o000 207

4.3.6 Summary| L 212

[4.4 Veritiability in Auctions|o oL, 213
4.4.1 A Different Model of Auction Protocolsl 213

TABLE OF CONTENTS

[4.4.2 Defining Verifiability| 214
4.4.2.1 First-Price Auctiond 215

4.4.2.2 Other Types of Auctions| 217

443 CaseStudied 218
4.4.3.1 Protocol by Sakol. 218

4.4.3.2 Protocol by Curtisetal| 236

444 Summary| e e e 241

4.5 Towards True Bidder-Verifiable Auctions. 241
¢ " Protocoll 242

4.5.1.1 Description| 242

4.5.1.2 Security Properties| 243

4.5.1.3 Formal Analysis| 244

¢ "Protocoll oL 248

4.5.2.1 Description| 0oL 249

|4.5.2.2 Securities Properties|. 256

4.5.2.3 Formal Analysis| 257

4.5.3 Summary| e e 266

46 Conclusionl 267
4.6.1 [imitations and Future Workl. 268
5__Conclusionl 271
[B.1 Summary| 272
6.2 Limitations and Directions for Future Researchl 274
[6 Résumé en Francais| 277
6.1 Introduction|. 278
6.1.1 Contributionsf 280
|6.1.2 Publications précédentes|., 282

6.2 Le w-calcul appliqué et la décomposition unique des processus| . . . 282
6.3 Les protocoles de votel 283
6.3.1 Taxonomiel o 284
6.3.2 Votes pondérés| Lo o 286

6.4 Les protocoles de vente aux encheres| 287
6.5 Conclusionl 289
16.5.1 Perspectives|. o o 290
(Bibliography| 297

Chapter

Introduction

I N this chapter we introduce the context of the thesis and motivate our work. We
also give an overview of related work, and outline the thesis and its contributions.

Finally we list previous publications of preliminary results concerning the work
presented in this thesis.

Contents
(1.1 Introduction and Motivation|. 6
1.2 Related Workl.« c 0 v i i i i i e e e e e e e 8

1. Introduction

1.1 Introduction and Motivation

More and more commerce is done using the Internet, for example on-line shop-
ping — Amazon.com achieved a revenue of more than 61 billion US Dollars in
2012 [Amal3] — or on-line auctions (eAuctions) such as eBay with a revenue
of more than 14 billion US Dollars in 2012 [Donl2]. Moreover administration
and government rely more and more on computer system for electronic govern-
ment (eGovernment) applications or electronic voting (eVoting), which is used for

example in Estonia [Est] or parts of Switzerland |Genl3| Reg13].

To connect different systems or to implement such distributed applications,
many protocols are developed. These protocols specify how the different par-
ticipants interact, and are designed to ensure security properties (for example
authentication or secrecy of the exchanged messages) as well as functional proper-

ties (for example to fulfill efficiency or real-time constraints).

However, the design of complex protocols is notoriously difficult and error-
prone. One approach to tackle this problem is the use of formal methods. Formal
methods rely on the use of formal models such as dedicated logics, process algebras
or probabilistic arguments to analyze the security of systems or protocols. They
can be used to find bugs, but also to prove that a system is secure within a given
model and with respect to given security properties. The Common Criteria for
Information Technology Security Evaluation [ComI2al, an international standard
for the certification of security critical information systems, requires formal analysis
for its two highest Evaluation Assurance Levels (EALs) 6 and 7 [Com12b].

The use of formal methods has achieved many results in recent years. Since
the seminal works by Dolev and Yao [DY81, [DY83] and Millen [Mil84] on public
key protocols, the development of the BAN-logic [BAN90], and the famous results
by Lowe [Low96] on the automatic analysis of the Needham-Schroeder protocol,
many weaknesses in existing and deployed protocols and standards have been
identified. For example Mitchell, Shmatikov and Stern [MSS98] found anomalies
in SSL (Secure Socket Layer) 3.0 using finite-state analysis. Moreover, Delaune,
Kremer and Steel [DKS10] discovered several flaws in the PKCS#11 standard for
cryptographic tokens using a formal model and an automated decision procedure.
Similarly Smyth and Cortier [SC11] identified weaknesses concerning the voter’s
privacy in the Helios voting system [Adi08], again using formal analysis. More
issues with Helios were discovered by Bernhard et al. [BCP™11, BPW12]. Finally
the automated analysis of the YubiHSM hardware security module, designed to
protect secret keys even when an intruder corrupted the rest of the machine, also

revealed a flaw, leading to a redesign of the protocol [KS12].

Formal methods cannot only be used to discover attacks, but also to obtain se-

cure and certified protocols and implementations. For example He et al. [HSD™05]

6

1.1. Introduction and Motivation

completed a modular proof of IEEE 802.11i and Transport Layer Security (TLS),
one of the most widely used security protocols on the internet. More recently, a

verified reference implementation of TLS was completed [BFK™13].

The main challenges however in both situations (certification and verification)
remain the choice of the model, the formalization of complex security properties,

and the development of automated verification tools.

In this thesis we discuss two main applications: electronic voting (eVoting)
and electronic auctions (eAuction). Electronic Voting systems have been used in
many countries all over the world, and even on-line voting is available in some
countries such as Estonia [Est], parts of Switzerland |[Genl3| Regl3] or for French
expatriates [Minl3]. As voting is a crucial act in modern democracies, the security
requirements are high and complex, and there have been controversial discussions
about the security of such systems [Par07, (UK 07, Min08, [Bun09].

As our second application we discuss electronic auctions. They are widely
used, for example eBay had over 112 million active users and over 350 million
listings in 2012 [Donl2]. Since an auction includes several competing parties —
multiple bidders striving for the lowest possible price, and the seller looking to
achieve the highest possible price — and money is at stake, security is a major

concern in such transactions as frauds are common [NT.J13].

In both applications we deal with complex systems and non-trivial properties
such as Privacy, Fairness, and Verifiability. Privacy can simply mean the secrecy
of the vote (or bid), but also unlinkability of the voter and his vote, or anonymity
of the winning bidder. Fairness often is related to Privacy, since for example
preliminary results in an election can influence the choice of the remaining voters.
Yet fairness also includes robustness against cheating, for example by ensuring
that a voter cannot vote twice, or that a bidder cannot modify or cancel his
bid (depending on the rules of the auction). Finally Verifiability ensures that
a participant can verify the correct behavior of some (un-)trusted parties, for
example of the tallier in a voting protocol. In such a case a voter can check the
correctness of the result after the election is over, without having to trust the
authorities. This is particularly interesting if the systems are complex and difficult
to understand for the participants, as the verification can be noticeably easier

than the protocol execution.

As the definitions in natural language tend to contain imprecisions, one of the
main challenges in formal verification is the development of formal definitions for
the different properties. These definitions need to be precise, and should ideally
also be suitable for automated verification, as human proofs tend to be error-prone
as complexity increases. Finally the definitions should also be as complete (i.e.
containing all aspects and covering all possible attacks) as possible, yet this is

often difficult to achieve — how to include types of attacks which are not yet

7

1. Introduction

known?

The goal of this thesis is to propose models and definitions to express and
verify such security properties in both contexts. For voting we focus on Privacy
properties including Receipt-Freeness and Coercion-Resistance. Receipt-Freeness
means that a voter cannot construct a receipt proving to an attacker that he
voted for a particular candidate, to prevent vote-buying. Coercion-Resistance
allows a voter to vote for a candidate of his choice, even if the attacker tries to
force him to vote for a certain candidate by interacting with him throughout
the entire voting process. For auctions, we propose models and definitions for
Privacy (also including Receipt-Freeness and Coercion-Resistance), Fairness and
Verifiability. We also discuss several case studies to test our models on existing
examples. In particular we prove one protocol secure with respect to our model
and definitions, but also identify multiple flaws with other protocols. Moreover
we provide a theoretical result in the Applied 7-Calculus which allows us to show

that some privacy notions coincide.

1.2 Related Work

Here we give only a high-level overview of the different approaches, models and
tools used for formal verification of protocols. In each chapter we discuss in more
detail the work related to the chapter’s content.

Now we start by discussing the symbolic and computational models as well as
their relationship, then we give an overview of the techniques and tools used in
the symbolic model. Finally we also give a short overview over tools supporting
computationally sound proofs.

In general, we distinguish two main approaches for the formal verification of

protocols: the symbolic and computational models.

The Symbolic Model. In the symbolic model, cryptographic building blocks
such as encryption, signatures, commitments etc. are treated as black boxes and
assumed to be perfectly secure. This means that for example the decryption of
an encrypted message is only possible if one knows the key, or that the only way
generate a valid signature is using the secret key. Usually the intruder has full
control of the network, i.e. can intercept, create, modify and delete messages,
which are terms. Then there are rules specifying which operations the intruder
can apply on these terms. Such a formal model was first proposed by Dolev
and Yao [DY81], DY83]EI, and their technique allows for automatic verification of

reachability properties such as “Can the intruder access this secret value?”.

! An attacker with similar capabilities was previously discussed informally, e.g. in INSTS].

1.2. Related Work

The Computational Model. In the computational model on the contrary,
messages are bitstrings, and the intruder is a (usually probabilistic polynomial-
time) Turing-machine. Security properties are then typically defined as games
played by the intruder. If he manages to win the game, he breaks the property.
The goal is then to prove that the probability of the adversary winning the game
is very low, for example close to random guessing. Usually one shows that his
advantage is negligible, i.e. smaller than the inverse of any positive polynomial
function of the security parameter (for example the key length). The common
technique to prove such statements is a proof by reduction, i.e. one proves that
if the adversary is able to win the security game with a high probability, he can
break a supposedly hard mathematical problem such as the factorization of large
numbers or computing the discrete logarithm. These proofs are often realized as
a “sequence of games”, where the first game corresponds to the initial security
game, and the last game corresponds to the supposedly hard problem, which
concludes the proof. In between these two games there can be many intermediate
games, and each two games in the sequence differ only in a small detail. This is
to decompose the proofs, as one proves that in each game the adversary has the
same advantage as in the previous one, or that there is only a negligible difference.
Such computational proofs tend to be more difficult to automate, in particular

the sequence of games is often difficult to generate automatically.

Links between the Symbolic and Computational Model. Although both
models are quite different, there are soundness results showing a link between
both. In 2000 Abadi and Rogaway [AR00] showed that a protocol using en-
cryption shown secure in the symbolic model with respect to certain properties,
is also secure in the computational model with respect to the computational
equivalent of these properties. Since then many more results have been obtained
for various properties and combinations of different cryptographic primitives
(e.g. [BP05, BDKOT7, [CLC08, [KT09b, BMUI12, ICLHKS12, BBU13] or [CKW11]
for an overview), however also some limitations of this approach were discov-

ered [BPWO6].

Symbolic Techniques and Tools. Within the symbolic model there is a
big variety of techniques. There is the initial Dolev-Yao model [DY83] based
on deduction rules, there are logics such as the BAN-logic [BAN9Q] to model
authentication, process algebras such as the Spi-Calculus [AG97] or the Applied
m-Calculus [AF01], and methods based on typing such as F7 [BFGI(, BBF11].

Although protocol verification problems are often undecidable in the general
case [EG82, [DLMS04] — in particular with unbounded message length and and
an unbounded number of instances in parallel — there are various tools support-

ing automated protocol verification in different symbolic models. To deal with

9

1. Introduction

such undecidable problems, they employ various techniques: approximations,
restrictions to the case with a bounded number of instances or limited attacker
capabilities, or algorithms that do not always terminate. We now discuss several
tools that employ such techniques.

AVISPA [ABB™05] is a tool supporting four different back-ends for protocol

verification with different techniques:

— the On-the-fly Model-Checker (OFMC) [BMV05] works by exploring the

transition system of the protocol in a demand-driven way.

— the Constraint-Logic-based Attack Searcher (CL-AtSe) [Tur06] analyzes a

bounded number of instances of the protocol using constraint logic.

— the SAT-based Model-Checker (SATMC) [AC04] translates the possible (finite)

protocol runs into a logical formula, which is then solved by a SAT-solver.

— Finally Tree Automata based on Automatic Approximations for the Analysis
of Security Protocols (TA4SP) [BHKOO04] is the only back-end supporting an

unbounded number of sessions by over-approximation.

AVISPA can analyze authentication as well as (weak) secrecy, modeled as reach-
ability. We distinguish weak secrecy, i.e. “Can the secret value be computed
by an adversary?”, from strong secrecy, i.e. “Can the adversary distinguish two
instances which only differ in the secret value?”. The latter is stronger in the sense
that the adversary might be incapable of computing the exact value, but still
be able to test if it is equal to a specific value, for example zero. Strong secrecy
can be expressed using observational equivalence. AVISPA was extended in the
AVANTSSAR [AAAT12] project, but still relies on the same (although improved)
back-ends.

Scyther [Cre08al, [CreO8b| verifies protocol using a symbolic backwards search
based on patterns. It supports bounded and unbounded number of runs, however
it does not always conclude for the unbounded case. In such a situation however
it still gives a verdict for the bounded case. It supports authentication and weak
secrecy (i.e. reachability) properties. A variant of Scyther can also be used to
generate machine-checked proofs [MCBI10].

Recently the Tamarin prover [SMCBI12, MSCB13| was developed, it supports
verification of security protocols with an unbounded number of sessions. The
security properties can be expressed with respect to a special subset of (temporal)
first-order logic. It also supports Diffie-Hellman exponentiation and a user-defined
subterm-convergent rewriting theory.

ProVerif is an automatic verification tool based on Horn clauses originally
developed by Bruno Blanchet [Bla01]. It features a mechanical translation from
the Applied m-Calculus to Horn clauses, so it can directly verify a protocol given

in the Applied m-Calculus. ProVerif uses approximations and is sound but not

10

1.3. Contributions and Organization of the Thesis

complete, and sometimes does not terminate. Originally designed to verify weak
secrecy, it was extended to support correspondence properties between events
to verify authentication properties [Bla02] and strong secrecy [BlaO4a]. Another
extension was made to reconstruct attack traces if possible to help identifying
false attacks [ABO5Db]. Finally support for the verification of equivalences [BAF0S]
was added, which was recently improved to obtain a finer approximation [CB13b].
It also supports user-defined equational theories [AB05a].

AKISS [CCK12| is a recent tool that allows to prove trace equivalence prop-
erties for bounded processes, featuring user-defined equational theories. It is
based on KISS [CDK12], a tool allowing to prove static equivalence for complex
equational theories.

For a comparison of the performance of different tools (in particular Scyther,
ProVerif and the different AVISPA backends) see [CLN09]. We chose ProVerif
for many verification tasks throughout the thesis because of its performance, its
support for authentication and equivalence properties (to analyze different notions
of Privacy) and its support of user-defined equational theories (to model special

cryptographic operations as well as the properties of physical objects).

Computational Tools. There are also tools working in the computational
model. CryptoVerif [Bla06al, BP06l, Bla07, Bla08] is a tool supporting proofs
based on sequences of games. It allows for manual or (semi-)automatic proofs.
CryptoVerif provides an exact upper bound on the probability of the adversary
winning the game in terms of how often he calls the oracles (called concrete
security). Recently it was extended to also directly provide implementations based
on the verified protocol model [CB13al.

CertiCrypt [BGZBO09] allows for certified cryptographic proofs in the computa-
tional model using the Coq proof assistant [Coql, [CH88]. It also uses a sequence of
games and provides strong guarantees, however the proofs are manual and tend to
be cumbersome. To address this, EasyCrypt [BGHZBI11] was developed. In Easy-
Crypt the user specifies the sequence of games, and the tool tries to automatically
prove the equivalences between the games using SMTﬂsolvers. When it succeeds,
it also provides a proof that can be checked using the Coq proof assistant.

A different approach is used by the Computational Indistinguishability Logic
(CIL) [BDKLI0], allowing to formalize computational indistinguishability proofs
based on a special logic, which can also be implemented in the Coq assistant.

A recent extension to F7 also permits computationally sound proofs [FKS11].

In our computational proofs, we use CryptoVerif because of its high grade of
automation, and syntactical similarity to ProVerif, which allows us to re-use big

parts of the models.

2Satisfiability Modulo Theories

11

1. Introduction

1.3 Contributions and Organization of the Thesis

In Chapter 2] we recall the Applied w-Calculus, which is used throughout the
thesis. We also present two results on the unique decomposition of processes. We
start by defining the subclasses of finite and normed processes, i.e. processes
where all complete traces are finite, and processes where there exists at least one
complete finite trace respectively. In the first result we show that any process in
the subclass of normed processes can be rewritten as a composition of parallel
factors in a unique (up to permutation and strong labeled bisimilarity) way, i.e.
we can decompose a normed process P into factors Pj|...|P,, where each P; is
prime in the sense that it cannot be further decomposed without obtaining trivial
(i.e. equivalent to 0) factors. In our second result, we show that similarly any
finite process can be rewritten in a unique (up to permutation and weak labeled
bisimilarity) way as a composition of parallel prime factors. Such results are
handy as they provide a normal form, and a cancellation result in the sense that
A|B ~ C|B implies A ~ C. We use our second decomposition result in Chapter

in a proof showing the equivalence of two privacy notions.

In Chapter , we discuss privacy in electronic voting (eVoting). In a first
contribution we provide a formal taxonomy of privacy in the Applied m-Calculus.
This taxonomy accounts for different attacker capabilities (such as an inside or
outside attacker), particular attacks (forced-abstention attacks) as well as the
level of coercion possible by the attacker (simple privacy, receipt-freeness, or
full coercion-resistance). We apply this taxonomy on several existing protocols
(the protocol by Fujioka et al. [FO0O92], the protocol by Okamoto [Oka96], the
protocol by Lee et al [LBDT03], and Bingo Voting [BMQRO7]) to illustrate the

different levels of privacy achieved by these protocols.

In our second contribution, we generalize the privacy definition to accommodate
protocols with weighted votes, for example according to the percentage of shares
in a company. In such a case the previous definitions based on two voters swapping
their votes are unsuitable as swapping votes can lead to different outcomes and
hence trivially distinguishable situations. Our solution is to abstract away from
the result, and simply consider all distributions of votes giving the same result.
We apply these new notions on a protocol implementing weighted votes (based
on the protocol by Eliasson and Zuquete [EZ06]). We also establish precise
links between these new notions and the notions from our taxonomy: we can
show that the corresponding notions coincide if the votes are not weighted. In
a next step, we can also show that if the protocol ensures a certain modularity
condition (which is the case for most of our examples), single-voter coercion
(i.e. only one voter under coercion by the attacker) and multi-voter coercion

(i.e. several voters simultaneously under coercion) are equivalent. This means

12

1.4. Publications

that a modular protocol ensuring single-voter coercion-resistance also ensures
multi-voter coercion-resistance. We can also show that for modular protocol we
do not need to consider corrupted voters, a situation including corrupted voters

can be reduced to a situation without corrupted voters.

In Chapter [4] we consider electronic auctions (eAuctions). In the first part, we
provide formal definitions of authentication properties such as Non-Repudiation
and Non-Cancellation, fairness properties such as Weak or Strong Non-Interference
and “Highest Price Wins” as well as different notions of privacy and anonymity,
including receipt-freeness and coercion-resistance in the Applied 7w-Calculus. We
then consider three case studies: The protocol by Curtis et al. [CPS07], the
protocol by Brandt [Bra06] and the protocol by Sako [Sak00]. We identify several
problems for the first two protocols automatically using ProVerif, and provide
automated proofs for all properties except receipt-freeness and coercion-resistance

for the latter protocol.

In the second part of the chapter we analyze verifiability in eAuctions. We
introduce a high-level model and definition, which allows for instantiations in
the symbolic and computational model. Then we provide two case studies:
the protocols by Sako and Curtis et al. For the protocol by Sako, we give a
symbolic proof in the Applied 7-Calculus with help of ProVerif (and some manual
generalizations), and also a computational proof using CryptoVerif (and one
manual proof). For the protocol by Curtis et al. we use ProVerif to analyze

verifiability, and identify several shortcomings.

In the last part, we explore the idea of “true bidder-verifiable auctions”, i.e.
auction protocols that achieve verifiability without relying on complex cryptogra-
phy, and can hence be verified without any specialist knowledge. To achieve such
a property we propose to exploit the physical properties of certain objects, and
develop two protocols inspired by Sako’s protocol. The first one, called “Cardako”,
only uses office material, i.e. cardboard and envelopes. The second one, called
“Woodako”, uses a wooden box, that determines the winner in a private, secure
and verifiable way. Although these protocols have their limitations with respect
to scalability, they illustrate how we can realize secure auctions by exclusively
relying on physical objects and their properties. We also discuss how we can
apply the formal models and definitions we developed before on these protocols,
and investigate a first possibility using special equational theories in ProVerif to
model the physical properties. Using this model, we can automatically verify both

protocols, and show that they achieve the desired security properties.

We sum up our results in Chapter [5] and discuss directions for future work.

13

1. Introduction

1.4 Publications

Much of the work presented in this thesis has already been published at different
conferences.

The unique decomposition results of Chapter [2] were presented at FoSSaCS
2013 [DELL13]. Preliminary results of the work presented in Chapter [3| were pub-
lished at several occasions: the notion of Vote-Independence was presented at FPS
2011 [DLLI11], the hierarchy of privacy notions at ICC-SFCS 2012 [DLLI12b] and
the work on weighted votes and multi-voter coercion at ESORICS 2012 [DLL12a].
Many of the results of Chapter [4] have also been presented before: the work on
authentication, fairness and privacy at POST 2013 [DLL13], and the definition of
verifiability at ASTACCS 2013 [DJL13].

Although not included in this thesis, we also provided a detailed cryptanalysis
of Brandt’s auction protocol [Bra06|, identifying several shortcomings. This work
was presented at Africacrypt 2013 [DDL13].

14

Chapter

The Applied m-Calculus and Unique

Parallel Decomposition of Processes

T HE Applied m-Calculus is a process calculus designed for the verification
of cryptographic protocols. In this chapter we recall its syntax and the
semantics, as it is used throughout the rest of the thesis. We also present two
results concerning the unique parallel decomposition of processes. In the first
result we show that any normed process can be rewritten as a composition of
(prime) parallel factors in a unique way up to strong labeled bisimilarity, i.e. we
can decompose a finite process P into factors Pi|...|P,. In our second result we
show that similarly any finite process can be decomposed uniquely up to (weak)

labeled bisimilarity.

Contents
2.1 TIntroductionl, 16
[2.1.1 Outline of the Chapter|. 16
2.2 Syntax and Semantics|.o 0000000000 16
[2.3 Observational Equivalence and Labeled Bisimilarity| . .. 21
2.4 Unique Parallel Decomposition of Processes| 24
2.4, Related Workl oo 24
[2.4.2 Depth and Norm of Processes| 25
[2.4.3 Decomposition w.r.t. Strong Labeled Bisimilarity|. 28
[2.4.4 Decomposition w.r.t. Weak Labeled Bisimilarity] 36

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

2.1 Introduction

Process Algebras or Calculi are used to formally model and analyze distributed
systems. Famous examples include the Calculus of Communicating Systems (CCS)
due to Milner [Mil89], or Basic Parallel Processes (BPP) [Chr93]. These calculi
contain basic operations such as emission and reception of messages as well as
parallel composition or interleaving. In an extension to CCS, Milner, Parrow
and Walker developed the m-Calculus [MPW92|, which also features channel
passing and scope extrusion. Abadi and Fournet [AF0I] subsequently proposed
the Applied m-Calculus, a variant of the m-Calculus designed for the verification
of cryptographic protocols. It additionally features equational theories and active

substitutions.

2.1.1 — Outline of the Chapter

In the next section we recall the syntax and semantics of the Applied 7-Calculus.
In Section we present several equivalence and bisimilarity notions. We then
discuss related work concerning unique decomposition of processes in Section [2.4.1]
and define the depth and norm of a process in Section Finally we present our
unique decomposition for strong and weak bisimilarity in Section and

respectively. Finally we conclude the chapter.

2.2 Syntax and Semantics

The Applied m-Calculus relies on a type or sort system for terms. It includes a
set of base types such as Integer, Key or Data. Additionally, if 7 is a type, then
Channel(r) is a type (intuitively the type of a channel transmitting terms of type
T).

We suppose a signature ¥ of functions, which consists of a finite set of function
symbols with the associated arity and sorts. For example enc(message, key),
dec(message, key) are of arity two with two parameters of sorts Data and Key,

returning a value of type Data. A function with arity zero is a constant.

M, N = terms
a,b,e,n,m, k names
T,Y, 2 variables
f(My, ..., M;) function application

Figure 2.1 — Grammar for terms

Terms in the Applied m-Calculus are combinations of names (which typically
correspond to data or channels), variables and function symbols from the signature

Y following the grammar depicted in Figure 2.1 These combinations have to

16

2.2. Syntax and Semantics

be correct with respect to arity and sorts of the function symbols, variables and
names. Variables and names can have any type, and functions take and return
only values of base types. We assume infinite sets of names and variables.

Functions typically include encryption and decryption, hashing, signing and
so on. Equalities are modeled using an equational theory F which defines a
relation =p. A classical example, which describes the correctness of symmetric
encryption, is dec(enc(message, key), key) =g message. To simplify the notation
we sometimes omit the subscript g if this is clear from the context.

Tuples can be implemented e.g. using a function tuple, (Mi,..., M,) and
the equations

Vi: proj,(tuple,(Mi,..., My,)) = M,

To simplify notation we also write (M, ..., M,) for tuple, (Mi,...,M,), this
assumes the function tuple, and the destructors proj, with the equations as

defined above.

P, Q= plain processes
0 null process
P|Q parallel composition
P replication
vn.P name restriction (“new”)
if M = N then P else () conditional (M, N terms)
in(u,z).P message input
out(u, M).P message output

Figure 2.2 — Grammar for Plain Processes

A, B, P, Q := active processes
P plain process
A|B parallel composition
vn.A name restriction
ve.A variable restriction
{M/z} active substitution

Figure 2.3 — Grammar for Extended Processes

There are two types of processes in the Applied m-Calculus: plain processes and
extended or active processes. Plain processes are constructed using the grammar
depicted in Figure The null process 0 does nothing, the parallel composition
P|Q executes P and @ in parallel, and the replication ! P executes infinitely many
copies of P in parallel. vn.P creates a new, private name n and continues as P.
if M = N then P else) behaves as P if N = M or as Q otherwise. Note
the equality with respect to the equational theory, and that we require M and N

to have the same type. The process in(u,z).P inputs a message on channel u,

17

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

assigns it to the variable = of type 7, and continues as P. We assume that u is
of type Channel(r,). Finally out(u, M).P outputs M (of type 7as) on channel u
and continues as P. Again, u has to be of of type Channel (7).

Active or extended processes are plain processes or active substitutions as shown
in Figure Note that the Applied w-Calculus does not include the “+”-operator
which implements a nondeterministic choice, yet we can implement something
similar using a restricted channel (see Example |7 on page 28|). For more details
on encoding the operator with respect to different semantics, see [NP0O, [PHO5].

The substitution {M/z} replaces the variable z with a term M. Note that we
do not allow two active substitutions to define the same variable, as this might
lead to situations with unclear semantics. We also require substitutions to be
well-sorted and circle-free, and only allow active substitutions on variables of
base sorts. We denote by fv(A), bu(A), fn(A), bn(A) the free variables, bound
variables, free names or bound names respectively. A name n is bound if it is
in the scope of a restriction vn, a variable = is bound if it is in the scope of a
restriction va or of an input in(u,z). All unbound names and variables are free.

As an additional notation we write vS.A for vsi.vsy...vs,.A where s1,...5,
are the elements of a set of variables and names S. By abuse of notation we
sometimes leave out “.0” at the end of a process. We also write A* for A|...|A
(k times), in particular A° = 0 as 0 is the neutral element of parallel composition.
Inspired by ProVerif’s syntax, we write let x = M in P for va. (P {M/z}), or even
let (z1,...,2p) = (My,...,M,) in P for vy .. .vey,. (P{Mi/zy, ..., Mn/a,}).

The frame ®(A) of an active process A is obtained by replacing all plain
processes in A by 0. This frame can be seen as a representation of what is
statically known to the environment about a process. The domain dom(®) of a
frame & is the set of variables for which ® defines a substitution. By abuse of
notation, we also write dom(A) to denote the domain of the frame ®(A) of an active
process A. Note that dom(A) C fv(A), and that as we cannot have two active
substitutions for the same variable, P = Q|R implies dom(P) = dom(Q)Udom(R)
and dom(Q) Ndom(R) =). A frame or process is closed if all variables are bound
or defined by an active substitution. An evaluation context C[_] denotes an
active process with a hole for an active process that is not under replication, a
conditional, an input or an output.

The semantics of the calculus presupposes a notion of Structural Equivalence
(=), which is defined as the smallest equivalence relation on extended processes

that is closed under application of evaluation contexts, a-conversion on bound

names and bound variables such that the rules in Figure [2.4 on the next page]

hold. Note the contagious nature of active substitutions: by rule SUBST they
apply to any parallel process.

Example 1 Consider the following running example, where x and y are variables,

18

2.2. Syntax and Semantics

PAR-0 A=A

PAR-A A|(B|C) = (A|B)|C

PAR-C A|B = B|A

NEW-0 vn.0=0

NEW-C vu.vv.A = vv.vu. A

NEW-PAR Alvu.B = vu.(A|B) ifudg fn(A)U fu(A)
REPL P = P|IP

REWRITE {M/a} = {N/z} if M =g N

ALIAS ve. {M/z} =0

SUBST {M/a} |A = {M/} |4 {M/s}

Figure 2.4 — Structural Equivalence

and c, d, k, I, m and n are names:
P., = vk.vlvm.vd. ({{/y} |out(c, enc(n, k))|out(d, m)|in(d, x).out(c, z))

We have dom(Pez) = {y}, fo(Pex) = {y}, bv(Pey) = {z}, fn(Pex) = {n,c},
bn(Pey) = {k,l,m,d} and

O(P,.;) = vk.vi.wvm.vd. ({I/y}10]0|0) = vk.vl.vm.vd. ({{/y})

Internal Reduction () is the smallest relation on extended processes closed by
structural equivalence and application of evaluation contexts such that the rules
in Figure hold. Note that in accordance with the original notations [AF01],
we sometimes omit the labels 7., 7, and 7., and write P — P’ for P 2> P’ with
v € {7e, 7t, Te}. We also write P —* P’ for P — ... — P’.

COMM out(a,z).P | in(a,2).Q & P|Q
THEN if M =M then Pelse Q % P
ELSE if M =N then Pelse Q 5 Q

for any ground terms such that M #g N

Figure 2.5 — Internal Reduction

Interactions of extended processes are described using labeled operational

semantics (2, see Figure |2.6 on the following pagel), where a can be an input or

an output of a channel name or variable of base type, e.g. out(a,u) where u is a

variable or a name.

Labeled external transitions are not closed under evaluation contexts. Note
that a term M (except for channel names and variables of base type) cannot be
output directly. Instead, we have to assign M to a variable, which can then be

output.

19

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

IN in(a,z).P M, p vy,
OUT-ATOM out(a,u).P 25, p
out(a,u) ,
OPEN-ATOM A A__u#a
X U A vu.out(a,u) A
SCOPE A= A u does not occur in «

vu. A S vu. A
A5 A bu(a)n fo(B) =bn(a)N fa(B) =0

PAR -
A|BS A B
— « / I — Al
STRUCT A=B B=B B=A
A= A

Figure 2.6 — Labeled semantics

Example 2 Consider our running example process Pe,.
P, = vkvlvm.d. ({{/y} |out(c, enc(n, k))|out(d, m)|in(d, x).out(c, x))
Using an internal reduction, we can execute the following tmnsitioﬂ:

P., = vkwlvmuwd. ({{/y}|out(c,enc(n,k))|out(d, m)|in(d, x).out(c,x))
vk.viwvm.vd.({{/y} |out(c, enc(n, k))|ve.({m/z})|out(d, m)|

in(d, z).out(c, x)) by PAR-0, ALIAS
= vkwvlvmuwd.({I/y} |out(c, enc(n, k))|ve.({m/«} |out(d, x)|
in(d, z).out(c, x))) by SUBST, NEW-PAR

T vkwlvm.vd. ({Yy} lout(c, enc(n, k))|vz. ({m/z} |out(c, z)))
= vkwlvm.wd. ({{/y} |out(c, enc(n, k))|out(c, m))
by SUBST, ALIAS, NEW-PAR, PAR-0

Similarly, we can also execute an external transition:

P., = vkvlvmuwd.({{y}|vz. ({enc(nk)/2} |out(c, 2)) |out(d, m)|
in(d, z).out(c, x))
vk.vl.vm.vd. ({{/y} | {enc(nk)/2} Jout(d, m)|in(d, x).out(c, x))

vz.out(c,z)

We can also see that external transitions are not closed under evaluation contexts:

by rule SCOPE vc.Pe,; cannot execute the transition m any more.

'Here and throughout the rest of the thesis we mark the differences between the steps in
bold for better readability.

20

2.3. Observational Equivalence and Labeled Bisimilarity

2.3 Observational Equivalence and Labeled Bisimilar-

ity

The Applied m-Calculus has two equivalence notions for processes: Observational
FEquivalence and Labeled Bisimilarity. They can be used to express strong secrecy
or other privacy properties. Let A || a denote that A can send a message on the

channel a, i.e. when A —* Clout(a, M).P] for some evaluation context C|[_].

Definition 1 (Observational Equivalence [AF01]) Observational Equivalence
(=) is the largest symmetric relation relation R between closed extended processes
with the same domain such that A R B implies:

1. if Al a, then B | a

2. if A—=* A, then B —* B" and A’ R B’ for some B’

3. C[A] R CIB] for all closing evaluation contexts C|_]

The intuition is that two processes are observationally equivalent if each output
or internal transition of one processes can be simulated by the other, and this

holds for any context (corresponding for example to an attacker).

Example 3 Consider the following processes, where f is a function of arity one:

Py = va.out(c,a)
P, = vawd.(out(d,a
P, = wvawd.(out(d,a

~— ~—
= =
H
8 B
—~
\'Q‘\'&
<
—
o O
e &
ct
—
o 6
= &
- ~
S~—
—~~
<
~
S—
SN—
~—
S—

Then we have Py = P; as Py || ¢ and P, || ¢, Pi — va.wwd.out(c,a) = Py, but
neither Py = Py nor P = Py as Py outputs a tuple instead of a single value, which

can be tested by a contert.

As Observational Equivalence can be difficult to prove due to the all-quantified
context, we often use Labeled Bisimilarity instead. Labeled Bisimilarity is defined
using the notion of Static Equivalence, which is based on the equivalence of two

terms in a given frame.

Definition 2 (Equivalence in a Frame [AF01]) Two terms M and N are
equal in the frame ¢, written (M = N)¢, if and only if for any names n and
substitution o such that ¢ = vi.o and {f} N (fn(M) U fn(N)) = 0 we have
Mo =g No.

Note that any frame ¢ can be written as v7i.c modulo structural equivalence, i.e.
using rule NEW-PAR.

Definition 3 (Static Equivalence (=;) [AF01]) Two closed frames ¢ and ¢

are statically equivalent, written ¢ ~4 1, when dom(¢) = dom(y)) and when for

21

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

all terms M and N we have (M = N)¢ if and only if (M = N)y. Two extended
processes A and B are statically equivalent (A ~4 B) if their frames are statically

equivalent.

The intuition behind this definition is that two processes are statically equivalent if
the messages exchanged previously with the environment cannot be distinguished
with respect to the equational theory, i.e. all operations on both sides were
indistinguishable. Note that this only concerns what is statically known to the

environment, not the possible interactions.

Example 4 (JAF01]) Consider the following frames, where f and g are two
functions with no equations (corresponding intuitively to two independent one-way
hash functions):

¢o = vk A¥}|vs. {s/v}

o1 vk. {f(k)/z, a(k)/y}

by = vk {Fz, IK)/y}

Then ¢o =5 ¢1, but ¢1 %5 P2 and ¢1 %5 P2 as (f(x) = y)pa, but neither (f(x) =
y)bo nor (f(x) = y)p1. Intuitively this expresses that the attacker is unable to

distinguish the output of two independent one-way hash functions from two random
values. In the last frame there is a link between the two values that an attacker

can check, making it distinguishable from the other two frames.
We can then define (Weak)?| Labeled Bisimilarity.
Definition 4 ((Weak) Labeled Bisimilarity (~;) [AF01]) (Weak) Labeled

Bisimilarity is the largest symmetric relation R on closed active processes, such
that A R B implies:
1. A=, B,
2. if A— A, then B —* B’ and A’ R B’ for some B’,
3. if A A and fo(a) C dom(A) and bn(a)Nfn(B) =0, then B —*%—* B/
and A" R B’ for some B'.

As hinted above, Labeled Bisimilarity is often easier to prove than Observational
Equivalence since there is no quantification over all contexts. However Observa-
tional Equivalence and Labeled Bisimilarity do not coincide if active substitutions
are allowed on variables of channel type [Liulll [LL12], this being the reason why
we restrict active substitutions to variables of base sort. In this case, (Weak)
Labeled Bisimilarity coincides with observational equivalence [Liull], and is thus
is closed under the application of evaluation contexts.

In our work on unique decomposition of processes we also consider a stronger

version of labeled bisimilarity.

2Originally this bisimilarity notion was only called “Labeled Bisimilarity” by Abadi and
Fournet [AF01], however we also call it “Weak Labeled Bisimilarity” to distinguish it from
“Strong Labeled Bisimilarity”.

22

2.4. Unique Paralle] Decomposition of Processes

Definition 5 (Strong Labeled Bisimilarity (~;)) Strong Labeled Bisimilar-
ity is the largest symmetric relation R on closed active processes, such that A R B
implies:
1. A=~; B,
2. if A— A', then B— B’ and A’ R B’ for some B/,
3. if AL A and fu(a) C dom(A) and bn(a) N fn(B) =0, then B % B’ and
A’ R B’ for some B'.

This notion is stronger than Weak Labeled Bisimilarity in the sense that each
step on one side has to be matched by exactly one on the other side, whereas in
the case of Weak Labeled Bisimilarity a single transition could be simulated using

several (internal) transitions.

Example 5 Consider again the processes from Example where f

s a function:

Py = wva.out(c,a)
P = vawd.(out(d,a)
P, = vawd.(out(d,a

~
= =
= =
B B
—~
\'Q‘ ~
<
—
o O
e =
t o
N
S 6
= &
~ ~—
\H N—
—~~
<
~
S~—
SN—
~
S~—

va.out(c,a)) va.out(c,a)

0
and Py — va.vd.out(c,a) ~; Py. Yet neither Py = Py nor P = Py as P, —
va.vd.out(c, (a, f(a))) = vawvd.vz. {af(a)/:} out(c, z) 12O, g . {(a,f(a))/2}
but neither Py nor Py can produce a frame that is statically equivalent. Note also
that Py #1 Py and Py o4y Py as By 222800

external transition without a previous internal reduction. Similarly Py o) Py as

Then we have Py ~; Py as Py 0 and P, — va.vd.out(c,a

0 but P and P> cannot do any

Py cannot produce a frame that is statically equivalent to va.vd. {(a.f(a))/-}.
Note that restrictions can only forbid transitions, but not create new ones.

Lemma 1 Let A be a closed extended process and X C dom(A). Then vX.A %
vX. A implies A X5 A where p can be a silent or a visible transition, and we

have either
— @ =por
— for x € X and p = vz.out(a,x), p/ = out(a,x)

Proof Any transition by v X.A can be executed by A as the SCOPE-rule may
only forbid certain transitions. Note that the STRUCT-rule allows to apply
structural equivalence rules, yet none of these can enable transitions that could
not be enabled without the restriction on X. The second case where p and p’ differ
is more of a syntactical corner case: a transition revealing one of the restricted
values corresponds to an output of an unrestricted term in the unrestricted case,

yet the underlying out is the same. (|

23

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

2.4 Unique Parallel Decomposition of Processes

In a process algebra the question of unique process decomposition naturally arises:
can we rewrite a process P as P :ﬂ Py|P;]...|P,, where each P; is prime in the
sense that it cannot be rewritten as the parallel composition of two non-zero
processes?

Such a decomposition provides a maximally parallelized version of a given
program P. Additionally, it is useful as it provides a normal form, and a cancel-
lation result in the sense that P|Q = P|R implies @ = R. This is convenient in
proofs, for example when proving the equivalence of different security notions in
electronic voting (see Chapter [3.5)).

If there is an efficient procedure to transform a process into its normal form,
such a decomposition can also be used to verify the equivalence of two pro-
cesses [GM92]: once the processes are in normal form, one only has to verify if
the factors on both sides are identical.

In the next section, we discuss related work. We then define the depth and
norm of a process, and provide our first unique decomposition result with respect
to strong bisimilarity. In the following section, we show the second result w.r.t.

weak bisimilarity.

2.4.1 — Related Work

Unique decomposition (or factorization) has been a field of interest in process
algebra for a long time. The first results for a subset of CCS were published
by Moller and Milner [Mol89, MM93]. They showed that finite processes with
interleaving can be uniquely decomposed with respect to strong bisimilarity. The
same is true for finite processes with parallel composition, where — in contrast
to interleaving — the parallel processes can synchronize. They also proved that
finite processes with parallel composition can be uniquely decomposed w.r.t. weak
bisimilarity.

Later on Christensen [Chr93] proved a unique decomposition result for normed
processes (i.e. processes with a finite shortest complete trace) in BPP with
interleaving or parallel composition w.r.t. strong bisimilarity.

Luttik and van Oostrom [LvO05] provided a generalization of the unique
decomposition results for ordered monoids. They show that if the calculus satisfies
certain properties, the unique decomposition result follows directly. Recently
Luttik also extended this technique for weak bisimilarity [Lutl2].

However, these existing results focus on “pure” calculi such as CCS or BPP or

variants thereof. The Applied w-Calculus, as an “impure” variant of the 7w-Calculus

3Here = does not designate syntactical identity, but rather some behavioral equivalence or
bisimilarity relation.

24

2.4. Unique Paralle] Decomposition of Processes

P+ (Pr2Ae)
Y Tey Yy

Figure 2.7 — Channel /Link Passing in the Applied 7-Calculus

scope of y scope of y

Figure 2.8 — Scope extrusion in the Applied 7m-Calculus

designed for the verification of cryptographic protocols, has a more complex
structure and semantics. The main differences are the equational theory to model
cryptographic primitives and the active substitutions. As active substitutions are
minimal elements (with respect to the transition relation) different from 0, we
cannot apply the general results by Luttik et al. [LvOO05, Lut12].

Additionally, the Applied m-Calculus inherits the expressive power of the
m-Calculus including channel or link passing (sometimes also called mobility) and
scope extrusion. Consider three parallel processes P, () and R, where P and @
synchronize using an internal reduction 7., i.e. P|Q|R =% P'|Q’'|R (see Figures
and . Channel passing allows a process P to send a channel y he shares
with R to process @ (Figure . Scope extrusion arises for example when P
sends a restricted channel y he shares with R to @, since the scope after the
transition includes Q' (Figure . This is of particular importance for unique
decomposition since two parallel processes sharing a restricted channel might not
be decomposable and hence a simple reduction might “fuse” two prime factors,
which is not possible in BPP or CCS.

2.4.2 — Depth and Norm of Processes

In the following we prove unique decomposition for different subsets of processes,
namely finite and normed processes. This requires to formally define the length of
process traces. Let Int = {7, 7, 7.} denote the set of labels corresponding to inter-
nal reductions or silent transitions, and Act = {in(a, M), out(a, u), vu.out(a,u)}
for any channel name a, term M and variable or name u, denote the set of labels

of possible external or visible transitions. By construction we have Act NInt = (.

25

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

The visible depth is defined as the length of the longest trace of visible actions,
i.e. labeled transitions, excluding internal reductions. Note that this may be
infinite for processes including replication. We write P /4 if P cannot execute
any transition, and P 228 prfor p 24 pp 22 py B85 By pr

Definition 6 (Visible Depth) Let length, : (Act UInt)* — N be a function
1 + length,(w) if p € Act

where length,(€) = 0 and length, (puw) = gthy(w) if p
length,,(w) otherwise

Then the visible depth |P|, € (NU{oo}) of a closed process P is defined as follows:
|P|, = sup {lengthv(w) :P % PLwe (Act U Int)*}

The total depth is defined as the length of the longest trace of actions (including

internal reductions).

Definition 7 (Total Depth) Let length, : (ActUInt)* — N be a function where
length,(€) = 0 and length,(pw) = 1+ length,(w). The total depth |P|; € (NU{o0})

of a closed process P is defined as follows:
|P|; = sup {lengtht(w) :P % Plwe (Act U Int)*}

The norm of a process is defined as the length of the shortest complete trace,
including internal reductions, where communications are counted as two. This is
necessary to ensure that the norm of P|@ is the sum of the norm of P and the

norm of Q.

Definition 8 (Norm of a Process) Let length,, : (Act UInt)* — N be a func-
1+ length,,(w) if u # 7c

2 + length, (w) if u =T
The norm N (P) € (NU{oo}) of a closed process P is defined as follows:

tion where length,(¢) = 0 and length,, (pw) = {

N(P) = inf {lengthn(w) P 5 P A4 we (Act U Int)*}

Example 6 Consider the processes from our running example (Ezample
. We have |Peg|o = 2, |Pezlt = 3 and N'(Pey) = 4.

The above definitions admit some simple properties.

Lemma 2 For any closed extended processes P, QQ and R we have
1. |P|, <|P|;
2. P = Q|R implies |P|, = |Ql|v + |R|»
3. P = Q|R implies |P|; = |Ql; + |R|:
4. P = QIR implies N(P) = N(Q) + N(R)

26

2.4. Unique Paralle] Decomposition of Processes

5. P = Q implies |Pl, = |Qly
6. P ~; Q implies |P|; = |Q|¢
7. P ~; Q implies N'(P) = N (Q)

Proof Let P, (Q and R be closed extended processes.

1. By definition of the length; and length, functions.

2. Suppose P = Q|R. Let wp denote a maximal (with respect to length,)
complete (i.e. no further transitions are possible) sequence of transitions of P,
i.e. length,(wp) = | P|,. By definition of the function length,, we only count
external transitions in w, which by rule PAR can originate either from @ or
R, hence |P|, < |Qly+|R|,. Similarly, let wg and wr denote maximal (with
respect to length,) complete sequences of transitions of @) and R respectively,
i.e. length,(wg) = |Q|, and length,(wr) = |R|,. Then wp = wquwg is
a complete sequence of transitions of P, hence |P|, > |Ql|, + |R|y, thus
[Plo = Qv + [Rlo-

3. Suppose P = Q|R. Let wp denote a maximal (with respect to lengthy)
complete sequences of transitions of P, i.e. length,(wp) = |P|;. As the
length is maximal, there can be no synchronizations between @Q and R, as
otherwise we can build a longer trace by replacing this synchronization with
two external reductions. Hence all transitions originate either from @ or R,
hence |P|, < |Q|: + |R|¢. Similarly, let wg and wr denote maximal (with
respect to length;) complete sequences of transitions of Q and R respectively,
i.e. lengthi(wg) = |Q|; and lengthi(wgr) = |R|;. Then wp = wqwg is
a complete sequence of transitions of P, hence |P|; > |Q|; + |R|:, thus
[Pl = Qe + | Rs.

4. Suppose P = Q|R. Let wg and wgr denote (one of) the smallest (with respect
to length,,) complete (i.e. no further transitions are possible) sequences
of transitions of () and R respectively. Then wp = wgwg is a complete
sequence of transitions of P, hence N (P) < N(Q)+N(R). Assume N (P) <
N(Q) + N(R). Then there is a complete trace wp with length, (wp) <
length,, (wp). If ws contains no synchronizations of @ and R, each transition
originates either from @ or R, hence giving shorter complete traces for @
and/or R, contradicting the minimality of wg and wg. If w) contains
a synchronization of () and R, this can be rewritten into two external
transitions of () and R, resulting in a complete trace of the same length
(by construction of length,,), leading to a contradiction. Hence N(P) =
N(Q)+N(R).

5. Assume P =~ @, but w.l.o.g. |P|, > |Q|,. Let ws be a sequence of transitions
of P with maximal number of visible transitions, i.e. length,(ws) = |P|s.

By the definition of =2 each visible transition of P can be matched by a

27

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

visible transition by @, giving a trace with more visible transitions than
|Q|v, leading to a contradiction. Hence |P|, = |Q|s.

6. Assume P ~; @, but w.l.o.g. |P|; > |Q|:. Let ws be a sequence of transitions
of P with maximal number of transitions, i.e. length;(ws) = |P|;. By the
definition of ~; each transition of P can be matched by a transition by Q,
giving a trace with more transitions than |Q|;, leading to a contradiction.
Hence |P|; = |Q:-

7. Assume P ~; Q but wlo.g. N(P) < N(Q). Let w; be a sequence of
transitions of P with minimal number of transitions, i.e. length,(w;) =
N (P), and ending in a state P’ 4. By the definition of ~; each transition of
P can be matched by a transition by), giving a trace with less transitions
than NV(Q) and ending in a state Q' /4 as Q' ~; P by definition, leading to
a contradiction. Hence N (P) = N(Q). O

Now we can define two important subclasses of processes: finite processes, i.e.
processes with a finite longest complete trace, and normed processes, i.e. processes

with a finite shortest complete trace.

Definition 9 (Finite and normed processes) A closed process P is called
finite if |P|¢ is finite (which implies |P|, is finite). A closed process P is called
normed if N'(P) is finite.

It is easy to see that any finite process is normed, but not all normed processes

are finite, as the following example illustrates.

Example 7 Consider P = va.(out(a, m)|(in(a, x).(lin(b,y)))|in(a,x)). Then we
have P — P’ ~; 0, hence P is normed. However we also have P — P" ~lin(b,y),

which has infinite traces. Hence P is not finite.

It is also clear that not all processes are normed. Consider the following example.

Example 8 Consider P =!(vz.out(c,x)). It is easy to see that for no sequence

of transitions s we have P 2 P' 4, i.e. P has no finite traces.

Note however that any process without replication (“!”) is finite, as no other

syntactic element allows to construct infinite traces.

2.4.3 — Decomposition w.r.t. Strong Labeled Bisimilarity

We begin with the simpler case of Strong Labeled Bisimilarity. Note that P ~; @
implies |P|; = |Q]; and N(P) = N(Q) for any closed processes P and Q.
We define strong parallel primeness as follows: a process is prime if it cannot

be decomposed into non-trivial subprocesses (w.r.t. strong labeled bisimilarity).

28

2.4. Unique Paralle] Decomposition of Processes

We require the processes to be closed, which is necessary as our bisimulation

relation is only defined on closed processes.

Definition 10 (Strongly Parallel Prime) A closed process P is strongly par-

allel prime if
— P #;0 and

— for any two closed processes Q) and R such that P ~; Q|R, we have Q ~; 0 or
R ~; 0.

Example 9 Consider our running example:
P., = vk.vlvm.vd. ({{/y} |out(c, enc(n, k))|out(d, m)|in(d, z).out(c, z))
We can decompose P,y as follows:
P~ (vl {lYy})|(vk.out(c, enc(n, k)))|(vd.(vm.out(d, m)|in(d, x).out(c, x)))

The first factor S1 = vl.{l/y} is prime since it defines only one variable, and we
cannot have two substitutions defining the same variable.

It is easy to see that the second factor Sy = vk.out(c,enc(n, k)) is prime, as
it can only perform one external transition.

The third factor

S3 = vd.(vm.out(d, m)|in(d, z).out(c, z))

is prime because its two parts can synchronize using a shared restricted channel and
then perform a visible external transition. Since dom(Ss) = 0 any decomposition
into two factors, i.e. such that Ss ~; S4|S4, would mean that both factors can
execute one transition each (otherwise they would be equivalent to 0 as they have
an empty domain). However in that case both transitions of S5|S% can be executed
in any order, whereas in S3 we have to start with the internal reduction. Hence

no such decomposition exists.

Remark With respect to applications in protocol analysis, Example [J] illustrates
that shared restricted names, for example private channels or shared keys, can
prohibit decomposition. This is unavoidable, since a decomposition should not
change the behavior of the processes (up to ~;). As our definition is solely based
on the semantics and the bisimilarity notion, it allows to decompose a process
as far as possible without changing the observed behavior, and thus any further
decomposition will change the behavior. As a side-effect, the decomposition shows
where shared restricted names (modeling for example keys) are actually used in a
noticeable (w.r.t. to ~;) way, and where they can be ignored and processes can

be further decomposed.

29

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

Remark Note also that within a prime factor we can recursively apply the
decomposition as our bisimilarity notion is closed under the application of contexts.
For example if we have a prime factor P = va.P’, we can bring P’ into normal
form, i.e. P’ ~; P{|...|P}, and rewrite P = va.P" as P ~j va.(P{|...|P}).

It is clear that not all processes can be written as a unique decomposition of

parallel primes according to our definition.

Example 10 Consider |P for a process P ¢ 0. By definition we have !P = P|!P,
hence | P is not prime. At the same time any such decomposition contains again
!P, a non-prime factor, which needs to be decomposed again. Thus there is no

decomposition into prime factors.

However we can show that any closed normed process has a unique decomposition
with respect to strong labeled bisimilarity. To achieve this, we need some prelim-
inary lemmas about transitions and the domain of processes. The first lemma
captures the fact that any process which cannot perform any transition and has

an empty domain, is bisimilar to 0 (the empty process).

Lemma 3 For any closed process A with dom(A) =0 and N (A) =0, we have
A~y 0.

Proof Consider the relation R = {(A4,0)}. We show that it fulfills the conditions
of strong labeled bisimilarity:
1. We have dom(A) =) = dom(0), hence A ~; 0.
2. Let (A,0) € R. Obviously 0 cannot do any transition. Since N (A) = 0,
there exists a complete trace of length 0. Thus we have A /4, i.e. A cannot

do any transition either and the remaining conditions are trivially satisfied.

As we have (A,0) € R, this gives A ~; 0, which we wanted to show. O

We also need to show that if a normed process can execute a transition, it can

also execute a norm-reducing transition.

Lemma 4 Let A be a closed normed process with A X5 A’ where p is an internal
reduction or visible transition. Then A 5 A" with N'(A”) < N'(A).

Proof As A is normed, we have oo > N(A). Moreover, A % A’ implies N'(A4) > 0,
as this transition contradicts a complete trace of length 0. Hence the shortest
complete trace w has co > length, (w) > 0. Hence there is a transition p’ with
w = p'w’ which reduces norm, i.e. A o A with N(A") < N(A). O

In a first step, we prove the existence of a decomposition.

30

2.4. Unique Paralle] Decomposition of Processes

Theorem 5 (Existence of Factorization) Any closed normed process P can
be expressed as the parallel product of strong parallel primes, i.e. P~y Py|...|P,

where for all 1 < i <n, P; is strongly parallel prime.

Proof By induction on the norm of P, and on the size of the domain dom(P).
— I N(P)=0:
— If |[dom(P)| = 0, then P ~; 0 (by Lemma [3)), hence the factorization is the
empty product.

— If |dom(P)| > 0, then P 7; 0, hence P is either strongly parallel prime itself
(in which case we are done), or can be written as P ~; Q|R (by the definition
of strongly parallel prime). As we have dom(P) = dom(Q) U dom(R) with
dom(Q) Ndom(R) = () and |[dom(Q)| > 0, |[dom(R)| > 0 (since Q ; 0 and
R +; 0), we have |dom(Q)| < |dom(P)|, |[dom(R)| < |dom(P)|, hence we

can use the induction hypothesis to conclude.

— If N(P) > 0:

— If |dom(P)| = 0: P is either strongly parallel prime itself, or can be written
as P ~; Q|R. Then we have dom(P) = dom(Q) = dom(R) = 0, and
N(Q) > 0, N(R) > 0 by Lemma [3| hence N (Q) < N (P), N(R) < N(P)
by Lemma [2| and we can apply the induction hypothesis.

— If |dom(P)| > 0, then P +#; 0, hence P is either strongly parallel prime
itself, or can be written as P ~; Q|R. Suppose N (Q) > 0 and N(R) > 0,
hence N (Q) < N(P), N(R) < N(P) and we can apply the induction
hypothesis. Suppose w.l.o.g. N(Q) =0 < N(P), then N(R) = N (P) by
Lemma 2| Since @ #; 0 this implies |dom(Q)| > 0 by Lemma [3| hence
|dom(R)| < |dom(P)|, and we can use the induction hypothesis to conclude.
O

We now show the uniqueness of the decomposition. As an additional notation, let
exp(A, R) denote the exponent (i.e. the number of occurrences) of prime A in the

unique factorizatiory] of R.

Theorem 6 (Uniqueness of Factorization) The strong parallel factorization
of a closed normed process P is unique up to ~; and permutation of the prime

factors.

Proof By induction on N (P), and on the size of the domain dom(P).
— IfN(P)=0:
— If |[dom(P)| = 0, then P ~; 0 (by Lemma [3), hence the factorization is the

unique empty product.

4This notation only makes sense if we know that R has a unique decomposition, which however
holds in the cases where we employ it during the proof and later on.

31

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

— If |dom(P)| > 0, P #; 0. Suppose P ~; @, but P and @ have different

factorizations:

P o~y ABAR Al

Q ~ AV|AZ|...|Af
where the A;’s are distinct (i.e. for i # j we have A; #; A;) and k; > 0,
I; > 0.
Note that since all factors A; are prime we have Vi A; %; 0, and since we
also know N (P) = 0 we have Vi N (4;) = 0. By Lemma [3| we then have
dom(A;) # (), which implies k;,l; < 1 as we cannot have two substitutions
defining the same variable.
Let m be such that k,, # [,,. Without loss of generality we assume
1=k, >1,=0.
Obviously we have dom(P) = dom(Q). Let v = dom(P) \ dom(A,). Then
we have (by Lemma [2[and rules ALIAS and NEW-PAR):

vo.P = Ap|vo. P~ Ay,

where P’ is P without the factor A,,, since dom(vo.P’) = () and N'(v0.P’) =
0. Similarly

N - . -
v0.Q = lier v0i-Ailigr v0i. AY ~1 lier v A;

where I = {ildom(A;) Ndom(A,,) # 0 and I; = 1} and 9; = dom(A;) N .
By v9.P ~; v9.QQ we have Ay, ~ |icr v0;.A;. If |I| = 0, we have A,, ~; 0
which contradicts the hypothesis that A,, is prime. Similarly for |I| > 1,
we have a factorization for A,, into several processes, which also contradicts
A,, prime.

For |I| = 1 we have the following cases: Let i denote the only index in I.
If 9; = 0, we have a contradiction to the distinctness hypothesis of the A;’s
since Ay, ~; A; withm #iasl, =0#1,=1.

If v; # 0 we have dom(A,,) C dom(A;), but dom(A,,) # dom(A;). Now

consider ¥ = dom(Q) \ dom(A;). Then - as above - we have:
vt'.Q = A;|vd'.Q" ~ A;
where)" is @ without the factor A;. Similarly
Vi P = |jep v Ajligr vT.AY ~ |jep 1354
where I' = {j|dom(A;) Ndom(A;) # 0 and k; = 1} and ¥} = dom(A;) N

?’. Since dom(Ay,) C dom(A;), dom(A,,) # dom(A;) and dom(A;) =

dom(|jer v©}.A;) we have |I'| > 1, hence A; ~ |jer vi;.A; gives a

32

2.4. Unique Paralle] Decomposition of Processes

factorization of A;, which contradicts the hypothesis that it is prime.

— IfN(P) > 0:
— If |[dom(P)| = 0: Suppose P ~; @, but P and @ have different factoriza-

tions:

P o~y Af|Ak| | Ake
Q ~ AM[AZ]...|AL

where the A;’s are distinct (i.e. for i # j we have A; %; A;) and k;,1; > 0.

By induction hypothesis we have that for every process R with N (R) <

N (P) the factorization is unique.

Let m be such that k,, # l,,, and that N'(4;) > N(A,,) implies k; = [;

(i.e. A, has the maximal norm among the factors in which P and @ differ).

Without loss of generality we assume k,, > l,.

In the following we use the fact that P ~; () and hence) can simulate

each transition of P and vice versa.

We now analyze different cases:

x If P = AFm ie. P is the power of a prime:

Note that @ cannot contain any prime factor A,, r # m with N'(4,) >
N(Ap,): Suppose I, > 0. By assumption, A,, is the maximal (w.r.t.
norm) prime factor in which P and @ differ, hence k, = [, > 0. This
contradicts P = AFm.
If k,, =1 (i.e. P is prime), then @ is prime as well, and since 1 = k,;, >
l;, we have Q ~; A; for some j # m, which gives A, ~; A;, which
contradicts the distinctness of the prime factors.
If k&, > 1:
Assume l,, = 0. Then — since dom(A,,) = 0 — for some p A, & R,
P £ P with exp(Ap, P') = kp —1 > 0 and N(P') < N(P) by
Lemma . Since P ~; Q, there exists a Q' with Q £ @'. For any
such Q" we have exp(A,,, Q") = 0 since I, = 0, A, has maximal norm,
and [; = 0 for all A; with N'(4;) > N(A,,). Note that if 4 = 7. two
smaller factors in @ could fuse using scope extrusion (cf. Figure
, however no two prime factors share a secret channel (cf.
the structure of P and Q). Hence the existence of such a transition
T. fusing two factors would imply the existence of a u # 7. that we
can chose instead. Since) ~; P we also know that A,, can execute u,
which we can thus choose to ensure the above reasoning holds.
As P’ and Q' have a unique prime factorization by induction hypothesis,
we have a contradiction with exp(A,,, P') = ky, —1 > 0 = exp(4;,, Q).
Hence assume I, > 0: If A,, & R with N (R) < N(A,) for p # 7.,
we have Q £ @’ and since P ~; @ there exists P’ with P £ P’. We
have exp(Ap,, P') > kp — 1 > 1, — 1 = exp(Ap,, Q') which contradicts

33

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

P ~; @ using the induction hypothesis.

If no such transition j exists, we have A,, - R, hence Q =% Q' and
since P ~; Q there exists P’ with P =% P’. We know that P cannot
simulate this transition using synchronization between the different
copies of A,, as this would imply the existence of a visible norm-reducing
transition p (as the transition 7. is norm-reducing as well). Hence we
have again exp(Ap,, P') > kyp —1 > 1, — 1 = exp(An,, Q") which
contradicts P ~; @ using the induction hypothesis.

* If there exists j # m such that k; > 0:
Let u, T be such that P % T and N(T) < N(P) and for all v such
that P % P' with N(P") < N(P) we have exp(A,, P') < exp(Am,T).
We now show that such pu, T exist.
Note because of Lemma [2l and N (P) < oo we have N (4;) < oo. This
gives that if 4; £ A/ then A; “, A with N (A7) < N(4;) by Lemma
Suppose no such u, T exist. Hence for no A; with k; > 0,7 #= m we
have A; & Al otherwise this allows a transition that would fulfill
the above conditions. Hence (by Lemma [3)) we have dom(A;) # 0 for
any ¢ with k; > 0,7 # m, which contradicts |dom(P)| = 0. Note that
exp(Am, T) > kp, as any transition by a factor different from A,, does
not decrease the number of A4,,’s.
If we have a pu # 7¢, then - as P ~; Q - there exists Q' with Q & Q'
and Q' ~; T. Hence N'(Q') < N(Q) and 34; with A; & R.
If N(A) < N(Ap,) then exp(An, Q') < by < ki < exp(Ap,, T), which
gives the contradiction to the induction hypothesis,
If N(Ay) > N(Ay) then exp(Am, Q') = lm + exp(Ap, R), t # m
and k, = I, > 0 as A,, is maximal. Consider now P £ P/ =
Ak | AR | AR R with exp(Ap, P) = ko +exp(Ap, R). Hence
exp(Am, Q") = by + exp(Am, R) < kpy + exp(Anm, R) = exp(Anm, P'),
which contradicts Q' ~; P’. Hence the only option for) to match
this transition would be to use a ever bigger A, in which case we can
however apply the same argument (ks = [5). As the number of prime
factors is finite, we have that @ +; P which gives the contradiction.
If no p # 7. exists, choose a y = 7.. We distinguish two different
cases: If the transition is matched by only one factor, we can argue
as above. If the transition is matched by the synchronization of two
factors (A, % A’ and A, 2 A’), this implies that we have two visible
actions on two different factors. As all transitions that do not reduce the
number of A,,’s are T.-transitions, these actions can only be matched
by A, thus A, < A’ . Hence Q % Q' with exp(A,,, Q') = l,, —1 and
for any P % P’ we have exp(Ap,, P') >k —1> 1, —1 = exp(Anm, Q'),

34

2.4. Unique Paralle] Decomposition of Processes

which contradicts P’ ~; Q’.

— If [dom(P)| > 0: This is essentially the same proof as above. In the first

case (P is a power of a prime), we only have to consider the case k,, =1
as dom(A;,) # (). Hence P is prime, and then @ is prime as well, and since
1 = kp >, we have Q ~; A; for some j # m, which gives A,, ~; A;,
which contradicts the distinctness of the prime factors.
In the second case we have to be more careful when proving that p and T
with the desired properties exist. Once again, we suppose that they do not
exist, hence for no A; with k; > 0,47 # m we have A; LN Al otherwise this
allows a transition that would fulfill the conditions. Hence for any ¢ with
k; > 0, i # m we have N'(A;) = 0, and by Lemma [3| we have dom(A;) # 0.
Let © = dom(P) \ dom(A,,) and consider

vi.P = Afm|vp P~y Afm
where P’ is P without the factor A¥m. Similarly
vo.Q = |; I/IN)z‘.Aéi

where 0; = dom(A4;) N 0.
As |dom(Akm)| < |dom(P)| by induction hypothesis the factorization is
unique. We cannot have 9; =) for any ¢ # m, as this contradicts the
uniqueness of the factorization as A; #; A,,. Hence dom(A;) # 0 and
l; =1.
As A,, is prime, we have that A,,|R ~; v;.A; for some i # m and R. More
precisely, we have v9;.A; ~; AL for some [> 1, as any other factorization
of R would contradict the primeness of A,,. In fact, since A, is the biggest
factor in which P and @ differ and by Lemmas [T] and [3] we have [= 1.
We cannot have @ ~; A; as this would directly give a factorization of A;.
Hence there has to be another factor A, which — by Lemma [3] - has either
dom(A,) # () or can execute a transition (or both).
If dom(A,) # 0, consider ¥' = dom(Q) \ dom(A;). Then — as above — we
have:

Q1 =vi.Q = A|lvi'.Q ~ vi'.P =P

where Q' is @ without the factor A;.
If A, 2 A", we have

Q ~1 AiAn|S L A;|AL|S = @

where S is @) without A; and A,. By P ~; Q there exists P; with
PP~y AjALYS.

35

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

In both cases, we have a unique factorization by induction hypothesis.
Additionally exp(4;,Q1) = 1, and by the uniqueness of the factoriza-
tion exp(A;, P1) = exp(4;,Q1) = 1. Let s be such that dom(As) N
dom(A;) # 0, ks > 0. Such s exists because of dom(A,,) & dom(A;)
and dom(P) = dom(Q). Then by hypothesis As cannot do any transition,
and exp(As, P1) = exp(As, P) = 1, which contradicts exp(A4;, 1) = 1
because of the conflicting domains.

Hence p and T with the desired properties exist, and the rest of the proof

is the same as above. O

As a direct consequence, we have the following cancellation result.

Lemma 7 (Cancellation Lemma) For any closed normed processes A, B and

C, we have

A‘CN[B|C:>ANIB

Proof As A, B and C are closed and normed, there exists a unique paral-
lel factorization for each of them, i.e. A ~; Aj|...|Agx, B ~; By|...|B; and
C ~1 Cl| PN |Cm Thus we have A‘C ~1 A1| NN]Ak.]Cl\ c. |Cm and B‘C ~1
By|...|Bi|C4]...|Cp,. These are prime factorizations, and by Theorem [f] they are
unique. As A|C ~; B|C, they have to be identical. Hence k + m = [+ m, thus
k = 1. We show that this implies that the factorizations of A and B have to be
identical (up to ~;), which implies A ~; B. Consider the following cases:

Ifk=0,A~ 0. Asl=k=0, B~;0,and A and B have the same prime
factorization.

If £ > 0, we have A ~; Ay]|...|Ag. Suppose that there exists a prime factor
A; with exp(A;, A) # exp(A;, B), then exp(A;, A|C) = exp(A;, A) + exp(4;,C) #
exp(A;, B) + exp(A;, C) = exp(A;, B|C), which contradicts the fact that A|C and

B|C have the same prime factorization. O

2.4.4 — Decomposition w.r.t. Weak Labeled Bisimilarity

In this part, we discuss unique decomposition with respect to (weak) labeled
bisimilarity. Note that P ~; @ implies |P|, = |Q|, for any closed processes P and
Q (cf. Lemma [2 on page 26)).

To obtain our unique decomposition result for weak labeled bisimilarity, we

need to define parallel prime with respect to weak labeled bisimilarity.

Definition 11 (Weakly Parallel Prime) A closed extended process P is weakly
parallel prime, if
— P %0 and

— for any two closed processes @ and R such that P ~; Q|R, we have Q ~; 0 or
R ~ 0.

36

2.4. Unique Paralle] Decomposition of Processes

This definition is analogous to strongly parallel prime. However, as the following
example shows, in contrast to strong bisimilarity, not all normed processes have a

unique decomposition w.r.t. to weak bisimilarity.

Example 11 Consider P = va.(out(a, m)|(in(a, x).(lin(b,y)))|in(a,x)). Then
we have P = P|P, hence we have no unique decomposition. Note that this ezample
does not contradict our previous result, as we have P+ P|P, as P — P' ~; 0, but
P|P — P" ~; P and P|P 4 P" for any P" ~; 0. Hence, w.r.t. strong labeled

bisimilarity, P is prime.

({3}

If however we consider normed processes that contain neither restriction (“v”) nor
conditionals, we have that any normed process is finite (and hence has a unique

decomposition, as we show below).

“,,

Lemma 8 For any process P that does not contain restriction (“v”) or condi-
tionals (“if then else”), we have that P is finite if and only if P is normed.

Proof It is easy to see that any finite process is normed. To show the converse,
we use induction on the structure of P.

— P =0: P is obviously finite and normed.
— P ={M/z}: P is finite and normed.

— P = Q|R: If N(P) < oo then N(Q) < oo and N(R) < co. By induction
hypothesis |Q[; < oo and |R|; < 0o, hence |P|; < oc.

— P =1Q: If N(P) < oo then |Q|; = 0, hence |P|; < cc.

— P =in(u,x).Q or P = out(u, M).Q: If N(P) < oo then N (Q) < co. By
induction hypothesis |Q|; < oo, hence |P|; < 0. O

Similarly any process that does not contain replication is finite.
In the following we show that all finite processes have a unique decomposition
w.r.t. to (weak) labeled bisimilarity. To prove this, we need some preliminary

lemmas about transitions and the domain of processes.
Lemma 9 For any closed process A with A —* A’, we have dom(A) = dom(A’).

Proof The domain of a process is the set of variables for which it defines a
substitution. No transition can destroy an existing active substitution. Similarly,
if A executes only internal reductions, A cannot create any new active substitutions,
hence dom(A) = dom(A’). O

Lemma 10 For any closed process A for which no sequence of transitions A —*=»
A’ exists, we have A ~; A’ for any A" with A —* A’.

37

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

Proof Consider the relation R = {(X,Y)|4 —-* X and A —* Y'}. We will show
that it fulfills the conditions of labeled bisimilarity:
1. Obviously we have A ~4 A, which is closed under internal reductions (as
they do not change the active substitutions). Hence for any (C, D) € R we
have C' ~4 D.
2. Let (C,D) € R. Hence A —* C and A —* D. If C — C’, we have A —* (",
hence (C’, D) € R (and symmetrically for D — D’).
3. The last condition is trivially true. Suppose there exists (C, D) € R such
that C % C’, then we have A —*% €', which contradict the hypothesis.
The symmetrical case is analogous.

Obviously we have (A, A") € R for any A" with A —* A'. O

The next lemma captures the fact that any process which cannot perform any
visible transition and has an empty domain, is weakly bisimilar to 0 (the empty

process).

Lemma 11 If for a closed process A with dom(A) = () there does not exist a

sequence of transitions A —* A’, then we have A ~; 0.

Proof Suppose there is no sequence of transitions A —*= A’. We show that
this implies A ~; 0. Consider the relation R = {(A’,0)|A —* A’}. We show that
it fulfills the conditions of labeled bisimilarity:

1. By hypothesis for any (C,D) € R we have) = dom(A) = dom(C) (as
internal reductions do not change the active substitutions, Lemma @ and
dom(D) = dom(0) = 0, hence C ~; D.

2. Let (C,D) € R. Hence A —* C and D = 0. If C — C’, we have A —* (',
hence (C’,0) € R with 0 —* 0. Note that symmetrically 0 cannot perform
any transition, hence the condition is trivially true.

3. The last condition is trivially true. Suppose there exists (C, D) € R such
that C = C’, then we have A —*% €', which contradicts the hypothesis.
Symmetrically by definition 0 cannot perform any transitions at all.

As we have (A,0) € R, this gives A ~; 0, which we wanted to show. O

As a direct consequence, this gives us that any non-zero process with empty

domain can do a visible transition.

Corollary 12 For every closed process A with dom(A) = () and A % 0 there

exists a sequence of transitions A —* A’
Now we can show in a first step that a decomposition into prime factors exists.

Theorem 13 (Existence of Factorization) Any closed finite active process P
can be expressed as the parallel product of parallel primes, i.e. P ~; Py|...|P,

where for all 1 <i <n P; is weakly parallel prime.

38

2.4. Unique Paralle] Decomposition of Processes

Proof By induction on the visible depth of P, and on the size of the domain
dom(P).
— If |P|, =0:
— If [dom(P)| = 0, then P ~; 0 (by Lemma [11]), hence the factorization is
the empty product.

— If |dom(P)| > 0, then P #; 0, hence P is either parallel prime it-
self (in which case we are done), or can be written as P ~; Q|R with
Q %; 0 and R #; 0 (by the definition of parallel prime). As we have
dom(P) = dom(Q)Udom(R) with dom(Q)Ndom(R) = () and |dom(Q)| > 0,
|dom(R)| > 0 (by Lemma since @ #%; 0 and R #; 0), we have
|dom(Q)| < |dom(P)| and |dom(R)| < |dom(P)|, hence we can use the

induction hypothesis to conclude.

— If |P|, > 0:
— If [dom(P)| = 0: P is either parallel prime itself, or can be written as
P =~ Q|R. Then we have dom(P) = dom(Q) = dom(R) = (), and |Q|, > 0,
|R|, > 0 (by Corollary [12)), hence |Ql, < |Plv, |R|v < |P|y and we can
apply the induction hypothesis.

— If [dom(P)| > 0: P is either parallel prime itself, or can be written as
P ~; Q|R. Suppose |Q|, > 0, |R|, > 0, hence |Q|, < |P|y, |R|s < |P]y and
we can apply the induction hypothesis. Suppose w.l.o.g. |Q], =0 < |P|y,
then |R|, = |P|,. Since @ #; 0 by Lemma [I1] this implies |[dom(Q)| > 0,
hence |dom(R)| < |dom(P)|, and we can use the induction hypothesis to

conclude. O

To prove uniqueness we use the following relation on processes.

Definition 12 (“>") For two finite processes P and Q) we have P = Q iff
— |Ply > |Qlv or

— |Pl, =|Qlv and P —* Q
i.e. P has either a longer visible trace than @@ or P can be reduced to @) using

internal reductions.

This is a partial order on finite processes modulo static equivalence. The relation
is reflexive as we have P —* P, and transitive. It is also antisymmetric: Suppose
P> Q and Q = P, then |P|, = |Q|,, P =" Q and @ —* P. Since P and @ are
finite, we cannot have P —* Q —* P for P # (as this allows to construct an
infinite trace.

Now we can show the uniqueness of the decomposition.

Theorem 14 (Uniqueness of Factorization) The parallel factorization of a

closed finite process P is unique (up to ~).

39

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

Proof We will prove a slightly different statement which implies the uniqueness
of the factorization: Any closed finite processes Py and @y with Py ~; Q) have

the same factorization (up to ~;).

Suppose Py ~; Qy, but Py and @y have different factorizations:

P, = PP)...|P,
Qr = 1]Q2]... Qo

We can rewrite this factorization as follows:

P = AP|AR|.. Ak
Q = ApA|...|AY

where P ~; Py and Q ~; Qy, the A;’s are distinct (i.e. for i # j we have A; %; A;)
and k‘i, ll > 0.
We will show that this leads to a contradiction by induction on a = |P|; + |Q|¢,

and inside each case by induction on the size of the domain b = |dom(P)| =

|[dom(Q)].
— Ifa=0:
— If b =0, then P =; 0 (by Lemma , hence the factorization is the unique
empty product.

— If >0, then P %; 0.
Note that since Vi A; %; 0 and a = |P|; + |Q]: = 0, we have dom(A;) # ()
by Lemma which implies k;,l; < 1 as we cannot have two substitutions
defining the same variable.
Let m be such that k,, # [,,. Without loss of generality we assume
1=Fk, >1,=0.
Obviously we have dom(P) = dom(Q). Let v = dom(P) \ dom(A,). Then
we have (by Lemma [2{and rules ALTAS and NEW-PAR):

v0.P = Ap|vo.P ~; Ay,
where P’ is P without the factor A,,. Similarly
UQNJ.Q = ’iEI l/’INJZAZ‘Z¢I UQNJZAi’] |i€] VﬁzAz

where I = {ildom(A;) Ndom(A,,) # 0 and I; = 1} and 9; = dom(A;) N .
By vo.P ~; v9.QQ we have A, =~ |icr v0;.A;. I |I| =0, we have A,, =~ 0
which contradicts the hypothesis that A,, is prime. Similarly for |I| > 1,
we have a factorization for A,, into several processes, which also contradicts
A, prime.

For |I| = 1, i.e. A, = v1;.A; for the only index ¢ in I, we have the

40

2.4. Unique Paralle] Decomposition of Processes

following cases: If v; = (), we have a contradiction to the distinctness
hypothesis of the A;’s since A, ~; A; with m # ¢ as l, =0#1[; = 1.
If 9; # () we have dom(A,,) C dom(A;). Now consider o/ = dom(Q) \

dom(A;). Then - as above - we have:
vt'.Q = Al .Q' ~ A;
where Q' is Q without the factor A;. Similarly
vi'.P = |jep vij.Ajljgr Vf};-.Ai-j ~y |jer v} A;

where I' = {j|dom(A;) Ndom(A;) # 0 and k; = 1} and ©; = dom(4;) N
v'. Since dom(Ay) & dom(A;) and dom(A;) = dom(|jer vi;.A;j) (by
dom(P) = dom(Q)) we have |I'| > 1, hence A; ~ |je; v9;.A; gives a

factorization of A;, which contradicts the hypothesis that it is prime.

— If a > 0:
— If b =0: If P =; 0 then the (empty) factorization is unique. Hence suppose
0% P~ Q.

Let m be such that A, is a maximal (w.r.t. »=) A; with k; # [; (hence
km # lm). Without loss of generality we assume ki, > l,.
In the following we will use the fact that P =; @) and hence) can
simulate each transition of P and vice versa. Assume P —*% P’ such
that |PJ, = |P|, + 1, then the labeled bisimilarity gives us Q —*£—* @’
with P’ ~; Q. For our proof it will be important that to simulate this
transition in () the prime factors cannot communicate. Suppose two
prime factors A, s, R and A, ﬁ> S communicated (through an internal
reduction), then this has consumed at least two visible actions, hence
Qv <1Qly—2=|P|y,—2=|P'|,—1 < |P|,. Thus P’ and @’ do not have
the same visible depth, which contradicts that fact that they are bisimilar.
We now analyze different cases:
% If P~y Akm ie. P is the power of a prime:
Note that) cannot contain any prime factor A,, r # m with A, = A.,:
Suppose I, > 0. By assumption, A4,, is a maximal (w.r.t. >) prime
factor in which P and @ differ, hence k, = [, > 0. This contradicts
P = AFm,
If k, =1 (i.e. P is prime), then @ is prime as well, and since 1 = k,;, >
l;, we have QQ ~; A; for some j # m, which gives A,, ~; A;, which
contradicts the distinctness of the prime factors.
If k,, > 1:

Note that this implies dom(A;,) = 0 as otherwise we would have several

41

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

substitutions defining the same variables. Assume [,, = 0, then for
some u € Act Ay, x5 R (by A, #; 0 and Corollary with
IR|y = |Am|o — 1, s0 P —*5 P’ with exp(Ap,, P') = kp —1 > 0. Since
P = Q, there exists a Q' with Q —*£—* . For any such @’ we have
exp(Apm, Q') = 0 since A, is maximal (w.r.t. =), [; = 0 for all A; with
|Aily > |Am|, and since communication between different prime factors
— which could through the exchange of secret channels lead to bigger (in
the sense of visible depth) new prime factors — is not possible. As P’
and @' have a unique prime factorization by induction hypothesis, we
have a contradiction with exp(A,, P') = kp, —1 > 0 = exp(Am, Q).
Hence assume [,,, > 0:

Suppose Ly, < km — 1: As A, =*% R, we have P —*%& P’ with
exp(Apm, P') = ky, —1 and since P ~; Q there exists Q' with Q —*5—*
@'. Hence we have exp(Ap,, P') = ky, — 1 > 1, > exp(Am, Q') which
contradicts P ~; @) using the induction hypothesis.

Hence assume [,,, = k,,, — 1:

We can write QQ = S]Af;{b, where S is composed of prime factors. We
have S %; A,, as the opposite contradicts either the distinctiveness of
the prime factors or the fact that A, is prime. Since) = dom(A,,) =
dom(P) = dom(Q) = dom(S) we have S ~, A,,, hence either S or A,,
can do a transition the other cannot match. This transition can be a
visible transition or an internal reduction.

Suppose S £ S with |S’|; < |S]; such that A,, cannot match the
transition. As we have P ~; Q, S|Alm & §/|Alm = Q' gives us
that P —*&—* P’ (w.lo.g., when y = 7 we have P —* P'). Since
this transition reduced the total depth, we can apply the induction
hypothesis and both @' and P’ have a unique prime factorization,
hence P’ = R|AFm—1 where A,, =*5—* R (or A,, =* R respectively).
By the uniqueness of the factorization we also have R =4 S’, which
contradicts the assumption that the transition cannot be simulated.
Suppose A,, & R with |R|; < |An|; such that S cannot match the
transition. As we have P ~; Q, P = AFm LN R|AFm=1 = P’ gives us
that Q —*&—* Q' (w.lo.g., otherwise Q —* (). Since this transition
reduced the total depth, we can apply the induction hypothesis and both
Q' and P’ have the same unique prime factorization, hence S'|AFm=1 =
Q' ~; P' = R|AFm=1 Thus R ~; S'. Since A,, is the biggest factor in
which P and @ differ, all other factors in S cannot be reduced to A,,,
and we have § —*£—* S (or § —* S’ respectively), which contradicts

the assumption.

* If there exists j # m such that k; > 0:

42

2.4. Unique Paralle] Decomposition of Processes

Let € Act, T be such that P —*% T and |P|, = |T|, 4+ 1 and for all
v such that P —*% P’ with |P|, = |P'|, + 1 we have exp(A,,, P') <
exp(Apm,T). We now show that such p, T exist.

Suppose no such p, T exist. Hence for no A; with k; > 0,7 % m we
have A; —*% A’ otherwise this allows a transition that would fulfill
the above conditions. Hence (by Lemma we have dom(A;) # 0 for
any i with k; > 0,4 # m, which contradicts |dom(P)| = 0. Note that
exp(Am,T) > kn,, as any transition by a factor different from A,, does
not decrease the number of A4,,’s.

As P ~; Q there exists Q' with Q —*%—* Q" and Q' ~; T. Hence
1Qls = |Q'|s + 1 and JA, with 4, —»*%—* R as there can be no
communication between the A;’s (as shown above).

If Ay < |Amly then exp(Ap, Q') < Iy < km < exp(Ap,T), which
gives the contradiction to the induction hypothesis. Note that as A,, is
the maximal prime factor in which P and @ differ, A; —* A,, implies
k;j = ki, hence Q' cannot contain additional A, as a result of internal
reductions - this would imply exp(A4;, Q") # exp(A4;, P').

If |A¢ly > |Amly then t # m, and k; = I; > 0 (as Ay, is maximal). Con-
sider P —* & pr = Ak AR | AR R with exp(Ay,, P') =
Em + exp(Anm, R). Hence exp(A,,, Q") < ln + exp(Am, R) < kpm +
exp(Ap,, R) = exp(Am, P’), which contradicts Q' ~; P’. Hence the only
option for () to match this transition would be to use a ever bigger A,
in which case we can however apply the same argument (ks = [5). As
the number of prime factors is finite, we have that @) 5; P which gives
the contradiction. Note that — as above — Q' cannot contain additional

A, as a result of internal reductions.

— If b > 0: This is essentially the same proof as above. In the first case

(P is a power of a prime), we only have to consider the case k,, = 1 as
dom(Ay,) # 0. Hence P is prime, and then @ is prime as well, and since
1 = ks > I, we have Q ~; A; for some j # m, which gives A,, ~; A;,
which contradicts the distinctness of the prime factors.
In the second case we have to be more careful when proving that p and T
with the desired properties exist. Once again, we will suppose that they
do not exist, hence for no A; with k; > 0,7 # m we have A; G RN Al
otherwise this allows a transition that would fulfill the conditions. Hence
(by Lemma we have dom(A4;) # 0 for any ¢ with k; > 0,7 # m. Let
0 = dom(P) \ dom(A,,) and consider

vo.P = Afm|vp P ay Akm

43

2. The Applied w-Calculus and Unique Parallel Decomposition of Processes

where P’ is P without the factor A¥m. Similarly
vo.Q = |; Vf)i.Aéi

where 0; = dom(A4;) N 0.
As |dom(AFm)| < |dom(P)| by induction hypothesis the factorization is
unique. We cannot have 9; = () for any i # m, as this contradicts the
uniqueness of the factorization as A; #; A,,. Hence dom(4;) # 0 and [; = 1
for i # m.
As A, is prime, we have that A,,|R ~; v;.A; for some i # m and R. More
precisely, we have vo;.A; a5 Al for some [> 1, as any other factorization
of R would contradict the primeness of A,,. In fact, since A,, is the biggest
factor in which P and @ differ and by Lemmas [11] and [1} we have [= 1.
We cannot have () =; A; as this would directly give a factorization of A;.
Hence there has to be another factor A, which — by Lemma [TI]— has either
dom(A,) # () or can execute a visible transition (or both).
If dom(A,) # 0, consider ¥/ = dom(Q) \ dom(A;). Then — as above — we
have:

vt'.Q = Ailvt.Q = Q1 ~ vt .P =P

where @’ is Q without the factor A;.
If A, —*% A’ we have

Q ~ AiArlS =L A;AL|S = Qy

where S is @ without A; and A,. By P =; @ there exists P, with
P =D % Py Ai|AL)S.

In both cases, we have a unique factorization by induction hypothesis.
Additionally exp(A;,@1) = 1, and by the uniqueness of the factorization
exp(4;, P1) = exp(A;,Q1) = 1. Let s be such that dom(As) Ndom(A;) # 0,
ks > 0. Such s exists because of dom(A4,,) € dom(A4;) and dom(P) =
dom(Q). Then by hypothesis As cannot do any visible transition, and by
Lemma (10 exp(As, P1) = exp(As, P) = 1, which contradicts exp(4;, P;) =
1 because of the conflicting domains.

Hence p and T with the desired properties exist, and the rest of the proof

is the same as above. O

Again we have a cancellation result using the same proof as above.

Lemma 15 (Cancellation Lemma) For any closed finite processes A, B and
C, we have
A|C ~ B|C:> A ~; B

Proof Similar to the proof of Lemma O

44

2.5. Conclusion

Type of Process | Strong Bisimilarity (~;) | Weak Bisimilarity (~;)
finite Theorem [j) Theorem

normed Theorem (Counter-)Example |7

general (Counter-)Example (Counter-)Example

Table 2.1 — Summary of unique factorization results for the Applied m-Calculus

2.5 Conclusion

In this chapter we recalled the Applied w-Calculus, in particular its syntax,
semantics and equivalence notions. We then presented two unique decomposition
results for subsets of the Applied w-Calculus. We showed that any closed finite
process can be decomposed uniquely with respect to weak labeled bisimilarity,
and that any normed process can be decomposed uniquely with respect to strong
labeled bisimilarity. Table sums up our results.

As the concept of parallel prime decomposition has its inherent limitations
with respect to replication (“!”, see Example , a natural question is to find an
extension to provide a normal form even in cases with infinite behavior. A first
result in this direction has been obtained by Hirschkoff and Pous [HP10] for a
subset of CCS with top-level replication. They define the seed of a process P as
the process @, @ bisimilar to P, of least size (in terms of prefixes) whose number
of replicated components is maximal (among the processes of least size), and show
that this representation is unique. They also provide a similar normal form result
for the Restriction-Free-w-Calculus (i.e. no “v”). It remains however open if a
similar result can be obtained for the full calculus.

Another interesting question is to find an efficient algorithm that converts a
process into its unique decomposition. It is unclear if such an algorithm exists
and can be efficient, as simply deciding if a process is finite can be non-trivial.
Such an algorithm could however allow to verify the bisimilarity of two given
processes by transforming them into their normal form, and then simply checking
if the normal forms are identical.

Finally we did not show formally that Strong Labeled Bisimilarity is closed
under the application of contexts. Due to its close relation to Weak Labeled
Bisimilarity we expect the result to hold (which is important for our decomposition
to be meaningful), yet we estimate that the full formal proof will be at least

similarly as complex as the proof for Weak Labeled Bisimilarity [Liulll [Liul3].

45

Chapter

cVoting

P RIVACY is a major concern in electronic voting, as it is crucial to ensure the
fairness of the voting process by protecting voters from coercion.

In this chapter we propose a taxonomy of privacy for voting protocols consider-
ing different attacker capabilities (insider or outsider), different attacks (including
forced abstention) and different levels of coercion (simple Privacy, Receipt-Freeness
and Coercion-Resistance). As case studies we analyze several protocols to assess
which levels of privacy they achieve.

The taxonomy is based on definitions where two voters swap votes, which is
unsuitable for situations where votes are weighted. To address this, we propose
generalized definitions and establish a precise formal link between the two ap-
proaches. We also show that in the generalized model multi-voter coercion can
be (under certain conditions) reduced to single-voter coercion. This holds for
Receipt-Freeness and Coercion-Resistance. Additionally we show that under the
same conditions a situation with multiple corrupted voters can be reduced to a
situation without corrupted voters. We also provide a case study of a protocol

supporting weighted votes.

Contents
8.1 Introductionl 0oL 49
.11 Contributions| oo 50
[3.1.2 Outline of the Chapter|. 51
8.2 Related Workl., 51
3.3 A Formal Taxonomy of Privacy in Voting|. 54
[3.3.1 Formalizing Voting Protocols| 54
[3.3.2 Defining Privacy: A Modular Approach| 60
[3.3.3 Definitions in the Applied 7-Calculus] 62
[3.3.4 Hierarchy] oo 65

3.

eVoting

[3.3.5.1 Protocol by Fujioka, Okamoto and Ohta (FOO)| . 68

13.3.5.2 Protocol by Okamoto| 77

13.3.5.3 Bingo Voting|, 88

13.3.5.4 Protocol by Lee, Boyd, Dawson, Kim, Yang and Yoo|103

3.3.5.5 Summary| oL 114

3.4 Defining Privacy for Weighted Votes|. 115
8.41 Formal Definition|. 0oL 116
13.4.2 Example: A Variant of FOO| 117
18.4.2.1 Adding Vote Weights| 117

8.4.2.2 Model and Analysis| 117

3.4.3 Link to Existing Definitions| 120
3.4.4 Including Corrupted Voters| 126
3.5 Multi-Voter Coercionl o o 133
[3.5.1 Single-Voter Receipt-Freeness (SRF)| 133
[3.5.2 Multi-Voter Receipt-Freeness (MRF)[. 139
[3.5.3 Single-Voter Coercion (SCR)| 144
[3.5.4 Multi-Voter Coercion (MCR)[. 146
B.6 Conclusion] 149

48

3.1. Introduction

3.1 Introduction

Electronic voting systems have been designed and employed in practice for several
years, mainly in the form of direct-recording electronic (DRE) voting machines.
More recently, some countries started to offer the possibility to vote over the
Internet, e.g. in Estonia [Est], parts of Switzerland [Genl3, Regl3] or for French
expatriates [Minl3].

As voting is a central act of participation in modern democracies, the use
of such systems in general elections requires high security standards and re-
mains controversial [Par07, [UK 07, Min08, Bun09]. Consequently many security
requirements for electronic voting systems have been proposed:

— Correctness: The announced result corresponds to the sum of all submitted

votes.

— FEligibility: Only the registered voters can vote, and nobody can submit more

votes than allowed (typically only one).

— Fuairness: The election process is fair, in particular no preliminary results that

could influence other voters’ decisions are available.
— Robustness: The protocol can tolerate some misbehaving voters.

— Verifiability: Voters are provided with evidence that allows them to verify the

correctness of the election process.

— Privacy: All votes remain private.

The last requirement is crucial to ensure that the voters are free in their choice
and cannot be coerced. In the literature, it is often split into several notions (e.g.
[DKRO09, LSB™09, [SCT1, SBT3, [JTon09, DHvdG™13]):

— Vote-Privacy: The votes are kept private with respect to an outside observer.

This can also be expressed as an unlinkability between the voter and his vote.

— Receipt-Freeness: A voter cannot construct a receipt which allows him to
prove to a third party that he voted for a certain candidate. This is to prevent

vote-buying.

— Coercion-Resistance: Even when a voter interacts with a coercer during the
entire voting process, the coercer cannot be sure whether he followed his

instructions or actually voted for another candidate.

— Security against Forced Abstention Attacks: A coercer cannot force a voter to

abstain from voting.

— Vote-Independence: No voter can relate his vote to any other voter’s votdl]

!Being able to copy votes can compromise privacy if the number of participants is small or a
noticeable fraction of voters can be corrupted. Consider a case with three voters: the third voter
can copy the first voter’s vote and submit it as his vote. This results in (at least) two votes for

49

3. eVoting

— Fwverlasting Privacy: Privacy is not only ensured at the time of the election,
but also in the long term when computationally secure encryptions might turn

insecure due to increased computational power.

As we argued in Chapter [I] the design of complex protocols to fulfill all these
partly antipodal requirements [CMFPT06| is notoriously difficult and error-prone.
Consequently many efforts have been undertaken to formally define and verify
these properties (e.g. [JCJ05, MNO6b, BHMO8, DKR09, [Jon09, KRS10, [SC11]).

3.1.1 — Contributions

Generalizing the existing work, we provide the following contributions in this

chapter:

1. We propose a taxonomy of privacy notions which allows to assess the level of
privacy provided by a voting protocol against various attacks. The taxonomy
is based on formal definitions of the classical notions (Vote-Privacy, Receipt-
Freeness and Coercion-Resistance) in the Applied m-Calculus originally
proposed by Delaune et al. [DKR09], but extends their work in several
ways to include insider attacks as well as specialized attacks such as forced-
abstention or vote-copying attacks.

2. We illustrate our model using several case studies: the protocol by Fujioka
et al. [FOO92|, the protocol by Okamoto [Oka96], the protocol by Lee et
al. [LBDT03] and Bingo Voting [BMQROT].

3. Most existing symbolic definitions of Privacy are based on the idea of

3 9

swapping votes. If the votes are private, a case where Alice votes “yes’
and Bob votes “no” should be indistinguishable from a case where Alice
votes “no” and Bob votes “yes”. Yet this definition is unsuitable for some
situations, for example in companies where votes are weighted according to
the proportion of shares held by each shareholder. Consider the following
example: Alice owns 50% of the stocks, and Bob and Carol each hold 25%.
The cases where Alice and Bob swap votes are now easily distinguishable
if Carol votes “yes” all the time, as the result of the vote is different: 75%
vs. 50% vote for “yes”. Note that there are still situations where privacy is
ensured in the sense that different situations give the same result. The last
outcome (50% yes, 50% no) could - for example - also be announced if Alice
votes “yes” and Bob and Carol vote “no”.

Protocols supporting vote weights have been proposed, for example Eliasson
and Zaquete [EZ06] developed a voting system supporting vote weights based
on REVS [JZF03], which itself is inspired by the protocol by Fujioka et

al. [FOO92]. We provide a generalized definition of privacy to accommodate

the candidate chosen by the first voter and his choice can thus be inferred from the result.

50

3.2. Related Work

weighted votes, and show under which conditions the generalized notions
coincide with the notions from the first taxonomy. We also provide a case
study to illustrate our approach.

4. In the previous definitions of Receipt-Freeness and Coercion-Resistance, we
only consider one voter under coercion. We provide a generalized definition
for multiple coerced voters, and show that single-voter and multi-voter
coercion coincide under certain assumptions using a unique decomposition
result from Chapter

3.1.2 — Outline of the Chapter

In the following section we review related work on formal verification of privacy
in electronic voting. In Section [3.3], we present our taxonomy of privacy in voting,
and discuss several case studies. To deal with weighted votes, we provide a
generalized model in Section discuss a case study, and establish a link to our
taxonomy. Finally, in Section we show that the case of multiple coerced voters
can be reduced to a single coerced voter under some reasonable assumptions, and

again establish a link to our taxonomy. In Section we conclude this chapter.

3.2 Related Work

As the amount of work on electronic voting is huge, we concentrate here on
related work concerning the specification and verification of privacy. We start
by discussing application-independent privacy notions, followed by work on the
specification and certification — including privacy — of voting protocols and systems.
Then we discuss work on voting protocols in the computational model, and finally
in the symbolic model.

Canetti and Gennaro [CG96] proposed computational definitions of receipt-
freeness that can be applied to many different applications. Similarly Unruh
and Miiller-Quade defined coercion-resistance [UMQ10] in the (computational)
Universal Composability (UC) framework [CanOI]. Application-independent
anonymity notions were also proposed by Bohli and Pashalidis [BP09]. Although
these definitions are very general, the application to voting protocols often results
in — for this context — unusual privacy notions (Pseudonymity etc.), compared to
the classic properties such as vote-privacy that we discuss here.

Volkamer et al.[VMO0T7] worked towards developing requirements and evalua-
tion procedures for the certification of eVoting systems in the common criteria
framework. They give a formalization of the different requirements in a high-level
way, similar to a technical standard, i.e. in “formalized” natural language. Yet

this specification still lacks precise semantics.

o1

3. eVoting

Kramer and Ryan [KR11] propose a modular specification of voting systems
which includes (among many other properties) privacy and receipt-freeness. It
is expressed in a multi-modal logic featuring time. Such a logic framework is
very expressive and hence suitable for the specification of systems, but difficult to
handle for automatic verification tools. Concerning privacy, they define coercion-
resistance as the conjunction of privacy and receipt-freeness, differing from the
original definition by Juels et al. [JCJ05] which includes resistance against force
abstention attacks, and allows a coercer to instruct the voter to deviate from the
protocol. We employ the Applied m-Calculus as the basis for our definitions as it

has powerful tool support e.g. using ProVerif.

In the computational model, Juels et al. [JCJ05] were the first to give a
formal definition of coercion-resistance. They showed that their protocol (which
became the basis for Civitas [CCMO08]) is secure with respect to their definition.
However — as their protocol is based on voting “credentials” — credentials also
appear in the definition. Their model is thus unsuitable for protocols that do
not use credentials (e.g. Bingo Voting [BMQRO7] or the protocol by Lee et
al. [LBD™03]), which we can accommodate in our model. A first computational
definition of privacy for voting was given by Cohen/Benaloh and Fischer [CF85],
a first computational definition of receipt-freeness for voting by Benaloh and
Tuinstra [BT94] (although their protocol suffered from an issue with the underlying
encryption scheme [FLAT11]). A first computational definition within the UC-
framework was given by Moran and Naor [MNOGD].

De Marneffe, Pereira, and Quisquater [dMPQO7al, [dIMPQO7b] proposed a
computational security definition based on the simulation of an ideal functionality
of a fair and secure voting system by the real-world system. Although not

impossible [DKP09|, such an approach is rarely employed in symbolic models.

Based on similar definitions [BCP™11, [CPP13|, Smyth and Bernhard [SB13]
recently proposed computational definitions of ballot secrecy (similar to vote-
privacy) and ballot independence, and showed that they coincide under some

reasonable assumptions. In our symbolic model, we have a similar result (see

Section .

A different computational game-based definition including coercion was pro-
posed by Kisters, Truderung, and Vogt [KTV10b]. They applied it to Scantegrity
IT [KTV10c| as well as ThreeBallot and VAV [KTV11]. In their definition they
consider the overall advantage of an attacker trying to guess a voter’s vote, which
is always non-negligible as in certain situations the votes are revealed, e.g. in
the case of an unanimous vote. We employ a different approach by comparing
different situations that lead to the same outcome: In such a case, the attacker

should not have a (non-negligible) advantage.

Along similar lines to Kiisters et al., Bernhard et al. [BCPW12] proposed to

52

3.2. Related Work

measure vote-privacy using (computational) entropy. The idea is to compute
how much privacy remains after an election, i.e. given a certain protocol, vote
distribution and counting function. This can be computed after a concrete election
(i.e. using the actually the submitted votes), or given a certain vote distribution
to compute a metric giving an expectation of the level of privacy provided. They
also establish a link between their information-theoretic approach and a previous
computational definition [BCPT11].

In the symbolic model, Jonker [Jon09] defines privacy by analyzing a voter’s
choice group, i.e. the set of candidates the voter could have voted for given
the attackers knowledge about the protocol execution. For maximal privacy the
choice group should be as large as possible. If it contains only one option, the
attacker knows the exact vote and all privacy is lost. This is somewhat similar
to the work by Kiisters et al. in the computational model, but Jonker does not
consider probabilities: even if a choice is very unlikely, it is still considered in the
choice group. In our work, we employ a different approach: we explicitly identify
situations that should be inside the same choice group given only the result, and

then require these situations to be observationally equivalent.

Langer et al. [LJP10] developed verifiability definitions and privacy notions
based on (un-)linkability between a voter and his vote. They define (un-)linkability

as a property on traces, whereas we consider bisimulations.

Kiisters and Truderung [KT09a] proposed a high-level model independent
definition of coercion-resistance for voting protocols. Their definition has to be
instantiated with a concrete formal model. The exact security level can be defined
with respect to certain chosen goals, and excluding explicit special cases. In
contrast to our model, their definition is based on traces and not bisimulations,
and they only define coercion-resistance (in particular no simple vote-privacy).
They also explicitly consider multi-voter coercion. In their abstract model, Single-
Voter Coercion and Multi-Voter Coercion turned out to be different in general.
Subsequently they proposed a modified definition of Coercion-Resistance that
implies both Single- and Multi-Voter Coercion-Resistance, but they did not provide
a precise analysis of the link between these notions. In our model we can show
that Single- and Multi-Voter Coercion are equivalent under certain conditions
on the protocol. Hence we do not need to change the initial definition, and the

conditions allow us to precisely characterize the difference between both notions.

Langer et al. also worked towards a high-level taxonomy of privacy [LSBT09,
LSBV10] based on different levels of secrecy with respect to different attacker
capabilities. This has some similarities to our taxonomy approach, however their
definitions are abstract and have to be instantiated with a concrete formal process
and attacker model, whereas we directly give the operational definitions in the

Applied m-Calculus.

93

3. eVoting

Backes et al. [BHMOS]| translated the definition by Juels et al. [JCJ05] to the
Applied m-Calculus and provided an automated verification using ProVerif. Their
approach has the same limitations as the original, computational definitions: they
are difficult to apply to protocols using different techniques.

More general definitions were developed by Delaune, Kremer and Ryan [DKR09]
(the so-called DKR-model). They express different levels of privacy as observa-
tional equivalence in the Applied m-Calculus. An attacker should not be able to
distinguish one case in which the voter complies with the coercer’s instructions
and another in which he only pretends to do so and votes as he wishes. Our
definitions are based on their model, but we extend it in several ways: we include
forced abstention, corrupted voters and generalize it to accommodate protocols
with weighted votes.

Smyth and Cortier [SC11] showed that being able to copy votes can compromise
privacy if the number of participants is small or a noticeable fraction of voters
can be corrupted. For example in the case of three voters, the third voter can try
to copy the first voter’s vote and submit it as his vote. If this succeeds, it will
result in (at least) two votes for the candidate chosen by the first voter and his
choice can thus be inferred from the result. They also formally analyzed ballot
secrecy in Helios using an adaption of the model by Delaune, Kremer and Ryan.
However we show that, in general, the DKR model is not sufficient to capture
vote-independence. For example the protocol by Lee et al. [LBD03] was shown
to be coercion-resistant in this model, despite its vulnerability to vote-copy attacks
(see Section [3.3.5.4)).

Recently Arapinis et al. [ACKRI13| proposed a formal model in the Applied

m-Calculus to verify everlasting privacy.

3.3 A Formal Taxonomy of Privacy in Voting

In this section we present our formal taxonomy of privacy in electronic voting. We
start by giving a formalization of voting protocols, then explain our definitions
informally and give the detailed definitions in the Applied 7-Calculus. We present
the hierarchy of notions, and discuss several case studies: the protocols by Fujioka,
Okamoto and Ohta (FOO) [FOO92], by Okamoto [Oka96], by Lee et al. [LBDT03]
and Bingo Voting [BMQRO7].

3.3.1 — Formalizing Voting Protocols

In this section we describe our model of voting protocols in the Applied 7-Calculus.
It is inspired by the model used by Delaune, Kremer and Ryan [DKR09].
First of all, we define the notion of a woting protocol. Informally, a voting

protocol specifies the processes executed by voters and authorities.

o4

3.3. A Formal Taxonomy of Privacy in Voting

Definition 13 (Voting Protocol) A voting protocol is a tuple (V, Ay, ..., Ap,
¢) where V is the process that is executed by the voter, the A;’s are the processes

executed by the election authorities, and ¢ is a set of private channels.

Note that the protocol only defines one process V', which is instantiated for each
voter. Yet here may be several authorities, for example a registrar, a bulletin
board, a mixer, a tallier, ...

In our definitions we reason about privacy using concrete instances of a voting

protocol. An instance is called a Voting Process.

Definition 14 (Voting Process) A voting process of a voting protocol (V, Ay,

.y Ap, €) is a closed plain process
Vﬁ~(VUid10v1| ce |V0idn0'vn|A1’ e |Al)

where | < m, 1 includes (some of) the secret channel names, Vo,q,0,, are the
processes executed by the voters where:
— 044, 15 a substitution assigning the identity to a process (this determines for

example the secret keys),

— oy, specifies the vote(s) and if the voter abstains,

and Ajs are the election authorities which are required to be honest.

As an extension to the model by Delaune et al. [DKR09], the substitution de-
termining the vote of the voter can also specify abstention or other (correct)
behaviors. In this case V' includes all the possible behaviors, and o,, determines
which of them is executed. In our model an abstaining voter does not participate
at all in the election, we define this formally below.

Note that each voter runs the same process V', which is instantiated with a
different o4, (his identity) and o,, (his vote(s)). Note also that we have | < m
as not all authorities might be trusted. If an authority is not trusted, it is not
modeled and left to the context, i.e. the attacker. In such a case also a private
channel to this untrusted authority can be modeled as a public channel, i.e. left
out in 7.

Moreover, note that our definition does not specify how the result is computed,
nor what information it contains. For example, the result could be only the name
of the winning candidate(s) — which might be computed in a complex way, e.g.
in a Single Transferable Vote (STV) system as used in Ireland [Cit13] —, or also
the number of votes for each candidate. We implicitly assume the latter case for
most of our examples, but our notions (and in particular the generalizations in
Sections and can also be applied to protocols implementing more complex

counting algorithms.

95

3. eVoting

Example 12 As a running example, we consider the following simple voting

protocol.

Informal description: To construct his ballot, each voter encrypts his vote with
the administrator’s public key and signs it using his secret key. The resulting ballot
is posted on the bulletin board. After the voting deadline is over, the administrator
checks if each ballot is signed by an eligible voter. He then decrypts the correct
ballots and publishes the result.

Formal description in our model: The protocol uses probabilistic public-key

encryption and signatures, which we model using the following equational theory:

dec(enc(m, pk(sk),r),sk) = m
checksign(sign(m, sk),pk(sk)) = m

The first equation states that a message m encrypted using a public key can
be decrypted correctly using the corresponding secret key. The second equation
states that the verification with a public key succeeds if it was created using the

corresponding secret key.

The protocol is then a tuple (V, A, () where

A = A {pkvifpko}|...|A" {Pkvn/pko}

A" = in(ch, (sig,vote)).
if checksign(sig, pkv) = vote
then sync l.out(chR,dec(vote, ska))
else 0

V = wvr.let evote = enc(v, pka,r) in

out(ch, (sign(evote, skv), evote))

In this example we use another important syntactical extension of the Applied
w-Calculus: sync 1 is a synchronization point with the following semantics: No
process can continue until all other processes have reached the synchronization
point. Such a behavior can directly be expressed in the standard Applied 7-Calculus
as follows (similarly to the idea of Delaune et al. [DKR0J]): The synchronization
command is replaced with an output of a message 1 on a restricted channel chSyncl
(out(chSyncl, 1)), followed by an input on a different restricted channel chSync2
(in(chSync2,m)). An additional synchronization process is added, receiving all
messages on the private channel, and outputting messages on the second channel

once all messages have been received:

Pyyne = in(chSyncl,z1)...in(chSyncl,zy).
(out(chSync2,1)|... |out(chSync2,1))

This ensures that the processes can only continue once all n processes have reached

96

3.3. A Formal Taxonomy of Privacy in Voting

the synchronization point, as they have to wait for the answer by synchronization
process. The context cannot interfere with the synchronization, as both channels
chSyncl and chSync2 are restricted. ProSwapper [KSRI0], a preprocessor for
ProVerif, implements similar synchronization points, but also allows to swap the
entire data of the synchronizing processes to help ProVerif proving observational
equivalences.

Sometimes we need to model a synchronization where k out of n processes
are sufficient to enable continuation. In that case we write sync, 1, and the

implementation is similar:

Pyyne, = in(chSyncl,z1)...in(chSyncl,xy).
(out(chSync2,1)|... |out(chSync2,1))

In this example the substitution determining the identity of a voter assigns the
secret key, e.g. 04, = {skx/skv}. The substitution specifying the vote as for

example a vote for candidate a would be o, = {a/v}.

In some of our definitions we also need to reason about instances where all parties,

in particular all authorities, are honest.

Definition 15 (Honest Voting Process) An Honest Voting Process of a vot-

ing protocol (V, Ay, ..., Am, €) is a closed plain process
Vﬁ.(VJidIJv1| ce |V0—idnavn|A1‘ e |Am)

where 1 includes the secret channel names, Vo;q,0,, are the processes executed by

the voters where:

— 044, 15 a substitution assigning the identity to a process (this determines for

example the secret keys),

— oy, specifies the vote(s) and if the voter abstains,
and Ajs are the election authorities.

Given a voting process
VP =vn.(Voig,oul... Vi, o0, |A1] ... A1)
we denote by VPH the corresponding honest voting process, i.e.
v pPH — vi.(Voig o0, | - \Vid, o0, |A1] .. |Am)

Note that for our running example a voting process and its corresponding honest
voting process coincide, as the one and only authority is required to be honest

anyway.

o7

3. eVoting

We also often need to replace some voters inside a voting process. For this we

use Voting Contexts.

Definition 16 ((Honest) Voting Context) Given a voting process
VP =vn.(Voigoul...|Voi,ou,|A1]...|4)
and a subset of voters I we define the Voting Context V Pr[_] as follows:
VP] = Vﬁ.(;IV@diavi |_|A1] ... |A)

Similarly for an honest voting process
VPH = vi.(Voig, 00| ... |Via, 00| ALl ... | Am)
and a subset of voters I we define the Honest Voting Context VPIH [] as follows:

VPH] =vi.(| Voig,o0|_|A1]...|An)
i¢l

Consider the following example.

Example 13 An instance of our simple voting protocol (Example|12 on page 5

with two voters A and B looks as follows:

VP = vsky.vskp.vskaq.(V {ska/skv, Pk(skad)[pka} {a/v} |
14 {SkB/skv, Pk(SkAd)/pka} {b/v} |A/ {SkAd/ska, Pk(SkA)/pkv} |A/ {SkAd/ska, Pk(SkB)/pkv})

The corresponding voting context V Py 4y then looks as follows:

VP{A} = vska.vskp.vskaq.(_|V {skB/skv, Pk(skad)/pka} {b/v} |
A’ {skaa/ska, Pe(ska)/pkv} | A" {skad/ska, PE(skB) /pkv})

Finally, we define abstention for a voting process. An abstaining voter does not
send any message on any channel, in particular no ballot. In the real world, this
would correspond to a voter that does not even go to polling station. This is
different from just voting for a particular “null” candidate denoted L, which still
results in sending a ballot (a blank vote).

However, we need to allow it to execute synchronization points, because
synchronization is essential to ensure privacy, as otherwise an attacker in control
of the network can simply keep track of a ballot and break privacy by linking
the vote to a voter. Synchronization allows to break such links. Yet, if we allow
abstention, we have to allow the non-abstaining voters to synchronize normally,

otherwise they will block and no result can be announced. Hence we allow

o8

3.3. A Formal Taxonomy of Privacy in Voting

abstaining voters to execute synchronization operations, and obtain the following

definition.

Definition 17 (Abstention) Let A\ sync denote the process A where all sync
instructions have been removed. Then a substitution o,, makes a voter Vojq,

abstain if (Voiq,00,) \ sync ~; 0.

In our privacy definitions we also consider (partly) corrupted voters. To formally
define corrupted parties or voter revealing secrets to the attacker, we use the
following two definitions. The first one turns a process P into another process
P that reveals all its inputs and secret data on the channel ch. This can be

seen as trying to construct a receipt.

Definition 18 (Process P°" [DKR09]) Let P be a plain process and ch be a
channel name. We define P as follows:

e 2,
— (P|Q) = Ph|Qh,

— (vn.P)" = vn.out(ch,n).P" when n is a name of base type,

— (vn.P)" = yn. P otherwise,

— (in(u, z).P)" = in(u,r).out(ch, z).P" when x is a variable of base type,
— (in(u,z).P)" = in(u,). P otherwise,

— (out(u, M).P)*" = out(u, M).P",

Pyt 2P,

—

if M = N then P else Q)" = if M = N then P else Q°".

In the remainder we assume that ch ¢ fn(P) U bn(P) before applying the trans-
formation.

The second definition does not only reveal the secret data, but also takes
orders from an outsider before sending a message or branching, i.e. the process is

under complete remote control.

Definition 19 (Process P2 [DKRO9]) Let P be a plain process and c1, c2
be channel names. We define P2 as follows:
—Qerez 2),

(P|Q)c1,02 Ppcisc2 |Q01,C2

— (vn.P)*%? = vn.out(cy,n). P2 when n is a name of base type,

— (vn.P)%2 = yn. P2 otherwise,

— (in(u,x).P)*% = in(u, z).out(c1,). P when x is a variable of base type

and x 1s a fresh variable,

99

3. eVoting

n(u,x).P)% = in(u,x). P otherwise,
u

i
out(,M).P)C1,C2 = in(C2’;E).out(u’m)‘P017CQ7

—
—
. (!P)Cl,cz Ean !P01702’
—(

if M = N then P else Q)2 = in(cg,z).if © = true then P2

else Q2 where x is a fresh variable and true is a constant.

To hide the output of a process, we use the following definition.

Definition 20 (Process A\°“(¢") [DKRO09]) Let A be an extended process.
We define the process A\“(°h) a5 peh.(Allin(ch, x)).

Given these definitions, we recall two lemmas by Delaune et al. [DKR09] used in

our proofs.

Lemma 16 ([DKRO09]) Let P be a closed plain process and ch a channel name
such that ch ¢ fn(P)Ubn(P). We have (P")\uHch) ~; P,

Lemma 17 ([DKROQ9]) Let C; = vuy.(_|B1) and Cy = vig.(_|Bs) be two
evaluation contexts such that @y N (fv(B2) U fn(Bg2)) = 0 and e N (fv(B1) U
fn(B1)) = 0. Then we have C1[Cs[A]] = Co[C1[A]] for any extended process A.

3.3.2 — Defining Privacy: A Modular Approach

Privacy in eVoting is notoriously difficult to define. As discussed above, many
different types of attacks and different attacker capabilities are considered. To
systematize the existing approaches, we propose a modular definition, trying to
factor out the different independent types of attacks and attacker capabilities.

In our setting, the attacker targets one voter (the targeted voter) and tries
to extract information about the targeted voter’s vote(s). If the attacker knows
the votes of all other voters, he can infer the targeted voter’s vote from the result.
Thus we suppose that he is unsure about the vote of one other voter. This voter
is called the counterbalancing voter, as he counterbalances different votes by the
attacked voter to ensure that the result remains unchanged.

We express privacy as an observational equivalence. Intuitively, an attacker
should not be able to distinguish between an execution in which the targeted voter
behaves and votes as the attacker wishes, and another execution where he only
pretends to do so and votes differently. To ensure that the attacker cannot tell the
difference by just comparing the result, the counterbalancing voter compensates
by simply swapping votes with the targeted voter.

Starting from the definitions of Coercion-Resistance, Receipt-Freeness, and
Vote-Privacy in the literature we propose to factor out the three following dimen-
sions: Communication between the attacker and the targeted voter, insider or

outside attacker, and security against forced-abstention-attacks.

60

3.3. A Formal Taxonomy of Privacy in Voting

1. Communication between the attacker and the targeted voter: We define three
different levels, corresponding to different attacker capabilities:

(a) In the simplest case, the attacker only observes publicly available data
and communication. We call this case Swap—Vote—Privacyﬂ denoted
SwV P.

(b) In the second case, the targeted voter tries to convince the attacker
that he voted for a certain candidate by revealing his secret data. Yet
the attacker should not be able to determine if he actually sent his
real data, or a fake receipt. We call this case Swap-Receipt-Freeness,
denoted SwRF.

(c¢) In the strongest case, the voter pretends to be completely under the
control of the attacker, i.e. to reveal his secret data and to follow the
intruder’s instructions. Yet the attacker should be unable to determine
if he actually complied with his instructions or if he only pretended to
do so. We call this case Swap-Coercion-Resistance, denoted SwCR.

Intuitively Swap-Coercion-Resistance is stronger than Swap-Receipt-Freeness,
which is stronger than Swap-Vote-Privacy (SwCR > SwRF > SwV P).

2. Inside or outside attacker: The attacker may control another legitimate
voter (neither the targeted nor the counterbalancing voter). In that case
he could be able to compromise privacy by trying to relate the corrupted
voter’s vote to the targeted voter’s vote (e.g. by copying it as in the attack
by Smyth and Cortier [SC11]) or using the corrupted voter’s secret data,
such as his credentials or keysﬂ In our definitions, we distinguish two cases
for the Attacker, corresponding again to different attacker capabilities:

(a) Attacker is an Outsider (denoted O): The attacker is an external
observer.

(b) Attacker is an Insider (denoted I): The attacker has corrupted a
legitimate voter.

Again, Insider is intuitively the stronger setting (I > O).

3. Security against forced-abstention-attacks: A protocol can ensure that a
voter can still vote as intended, although a coercer wants him to abstain.
Note that in contrast to the literature [JCJ05, BHMOS|, we define this
property independent of Coercion-Resistance, as we also want to apply it
in the case of Vote-Privacy. This is because we see it as a different type of
attack, that can be combined with the different attacker capabilities defined
above. Our model expresses (in)security against forced-abstention attack by

requiring the observational equivalence to hold:

2We include “swap” in the name to distinguish these notions based on swapping votes from
the generalized notions in Section
3Here we only consider a single corrupted voter, the generalization to multiple corrupted

voters is discussed in Section

61

3. eVoting

(a) in any case, i.e. even if the voter is forced to abstain. We call this case
security against Forced-Abstention-Attacks, denoted F'A.
(b) if the targeted voter does not abstain from voting (i.e. always partici-
pates). We call this case Participation Only, denoted PO.
In this dimension security against Forced-Abstention-Attacks is a stronger
property than Participation Only (FA > PO).
The strongest possible property is thus SwCRHFA,| the weakest SwV PO 1f
we leave out the parameter, we take the weakest setting as a default, i.e. SwV P
denotes SwV POFO,

3.3.3 — Definitions in the Applied m-Calculus

Our definition is parameterized using the following parameters (as explained
above):
— Privacy = {SwCR, SwRF, SwV P} (“Swap-Coercion-Resistance”, “Swap-

Receipt-Freeness” or “Swap-Vote-Privacy”).
— Attacker = {I,0} (“Insider” or “Outsider”).

— Abs = {F'A, PO} (“Security against Forced-Abstention-Attacks”or “Participa-
tion Only”).

Definition 21 (PrivacyteckerA4bs) A protocol fulfills PrivacyteckerAbs if for

any UOtZ"Ilg process
VP = Vﬁ-(VUidlle\ ce |Vgidn0—vn‘A1’ e ‘Al)

there exists a process V' such that for all votes o, and o, where Vo,, does not
make a voter abstaz’rﬂ one of the following holds depending on the privacy setting:
— if Privacy is Swap-Vote-Privacy (SwV P):

VP [Voig,00,|Viagous Vel =1 VP [Void, 00,V 0ias00, Vel

— if Privacy is Swap-Receipt-Freeness (SwRF):
_ V/\out(chc,-) ~ VaidAGvB
- Vpy [(Vo'idAO'vA)ChC|VUz’dBUvB|VC] ~ VP [V'|Voiazo,,[VC]
— if Privacy is Swap-Coercion-Resistance (SwCR):
For any context C = vey.wey.(_|P') with nN fn(C) =0 and
VP [C(Voia,)) [Voiasous Vel m VP (Voia,00,) "V aia, 00| Vo
we have
- C [V/]\out(chc,-) ~ VaidAUUB

4This condition is needed to ensure that in the case PO no voter can abstain.

62

3.3. A Formal Taxonomy of Privacy in Voting

= VP [C{(Vaia,)] [Voiagous Vol =1 VP C V]|V, Ve]
where
— If Attacker is:

— Insider(I): I :={A,B,C} and V¢ := (Voiq,)

— Qutsider (0): I :={A,B} and Vo :=0
— If Abs is:

— Participation Only (PO): Vo;q, does not abstain

— Security against Forced-Abstention-Attacks (F'A): he may abstain.

As we require the conditions to hold for any voting process V P, they have to hold
for any number of honest voters’}
The following examples illustrate how the parameter values instantiate the

definition and give corresponding intuitions. We start with simple privacy.

Example 14 (SwVPOTO) A protocol fulfills SwV POTO if for any voting pro-
cess VP such that for all votes o, and o,, where o, and o,, does not make a

voter abstain we have:
VP{A,B} [Va—idAUvA’VUidBUvBM} ~ VP{A,B} [VUidAUvB‘VUidBO—vA‘O] (3.1)

This coincides with the definition of Vote-Privacy given by Delaune et al. [DKR0Y]:

Two situations where two voters swap votes are bisimilar. We also note that

FOPO in our model, and

RO7PO

Receipt-Freeness in the DKR-model corresponds to SwR

Coercion-Resistance in the DKR-model corresponds to SwC in our model.

In our next example, we apply the above definition on our running example, the

simple voting protocol.

Example 15 (Application) Consider our running example of a simple voting
protocol. We show that it ensures SwV PO PO as defined above using ProVerif. We
assume the secret keys to be private (hence n includes the secret keys of the voters
and the administrator), and the administrator to be honest. In that case, ProVerif
is able to prove the bisimilarity in equation which gives that the simple

5In our proofs we usually only consider the case of two or three voters, respectively, as this
is the base case. These proofs do however generalize in a straightforward way to any number
of participants. Additionally, if the protocol is modular, i.e. if instances can be composed (cf.
Definition 29 on page 128]in Section [3.4.4)), then the problem of many honest voters automatically
reduces to the base case of two or three voters.

5Note that the calculus used by ProVerif differs in some technical details from the original
Applied 7-Calculus. This is mainly due to the different extensions included in ProVerif, but also
the semantics have been slightly simplified as the original semantics are often non-deterministic
and hence difficult to reason about. Although the simplified semantics appear to be sound,
there is no formal proof [Blal3], thus technically we cannot claim that the result also holds
in the Applied w-Calculus. Yet we argue that ultimately our model and definitions remain as
meaningful in the ProVerif-calculus as in the Applied w-Calculus.

63

3. eVoting

voting protocol ensures SwV PO O, The code used is available online [Dreld].

It is easy to see that this protocol does not guarantee Swap-Vote-Privacy for
an inside attacker (SwV PHTO), as he can simply access the votes on the bulletin
board and copy thenﬂ. He can identify which vote was posted by which voter using
the signatures.

FAttacker,Abs) oither as the randomness

The protocol is not receipt-free (SwR
used for encrypting the vote can be used as a receipt. Since the bulletin board
reveals which voters participated through the signatures, it is not resistant against

forced-abstention attacks.

In the following example we illustrate how security against Forced-Abstention-

Attacks is captured by our definition.

Example 16 (SwV PP F4) A protocol fulfills SwV POFA if for any voting pro-
cess VP such that for all votes o,, and o,, where o,, does not make a voter

abstain we have:
VP{A,B} [VgidAUUA‘VUidBUUB’O] ~ VP{A,B} [VO'idAUUB’VO'idBO'vA’O]

In this case, o,, can make a voter abstain. As o,, may not specify abstention,
we have an observational equivalence between a situation where the targeted voter
abstains, and a situation where he votes and the counterbalancing voter abstains.

This captures the security against forced-abstention-attacks.

Now we illustrate how we capture Receipt-Freeness, and how the inside attacker

is modeled.

Example 17 (SwRFHPO) A protocol fulfills SwRFTTO if for any voting process
VP there exists a process V' such that for all votes o,, and o, where o,, and

0y, do not make a voter abstain we have
Nout(che,") ~_
Vv \out(chc,") ~ VUidAUvB

and

VP anes (Vo VooV

~ VP oy [V IVOiagou |(Voias)] .

"Technically the attacker copies the vote from the bulletin board, and sends it to his corrupted
voter using the channel c2. The corrupted voter then submits the signed vote to the bulletin
board. Since in our modeling everybody can post on the bulletin board, the attacker can also
copy the vote, sign it using the key of his corrupted voter (which he received on channel ¢1) and
then submit it directly.

64

3.3. A Formal Taxonomy of Privacy in Voting

The main idea of this Receipt-Freeness definition is the following: a protocol is
recetpt-free if an attacker cannot distinguish between a voter revealing honestly
all his secret data as a receipt, and a voter only giving away fake information
and voting differently. This counter-strateqy is expressed here by the process V'.
The labeled bisimilarity then has to hold for a situation where voter id4 votes
va and reveals all his secret data honestly, and a situation where he employs the
counter-strateqy V'. The first equation ensures that he votes vg in the case of the
counter-strategy.

To account for an inside attacker we include a corrupted voter idc. The

adversary can hence try to execute vote-copy attacks, or employ insider knowledge.
Finally we discuss Coercion-Resistance.

Example 18 (SwCRPF4) A protocol fulfills SwCROFA if for any voting pro-
cess VP there exists a process V' such that for all votes oy, and o, where

Vo, does not make a voter abstain, the following holds: For any context

C =veyvee.(|P) with N fn(C) =0 and
VP{AvB} [C [(VgidA)ChCQ] |V0idBUUB|O] ~i VP{AvB} {(VaidAO'”A)ChqvaidBavB|0}

we have

o [V,}\out(ChC,') ~ Vi, o0

— VPpy [C(Voia,)] [VOias 00510l =1 VP4 gy [C[V'] [V 0idp00,]0]

The intuition behind this definition is the following: the context C' also belongs to
the attacker and tries to force the targeted voter to vote for a certain candidate
or to make him abstain (depending on o;q,), whereas V' tries to vote differently
and to escape coercion. The condition on the context C ensures that the voter
is actually forced to vote for the candidate o, to ensure that both sides give the

same result, and hence are not trivially distinguishable.

3.3.4 — Hierarchy

As already announced in the informal description in Section we have a

hierarchy of notions in each of the three dimensions.

Lemma 18 For Privacy € {SwV P,SwRF,SwCR} , Attacker € {I,0} and
Abs € {FA, PO} we have:

1. Any attack that works for an outsider can also be used for an insider: If a

1,Abs O, Abs

protocol respects Privacy , then it also respects Privacy

2. If a protocol is secure against Forced-Abstention attacks, it is also secure in

the “Participation Only” case: If a protocol respects Privacy/ttacker.FA gt

also respects Privacyttacker,PO

65

3.

eVoting

3. Coercion-Resistance is stronger than Receipt-Freeness, which is stronger

than Vote-Privacy:

— If a protocol respects SwC RAtacker,Abs it 4150 respects SwRF Attacker,Abs

— If a protocol respects SwRFAtacker,Abs 1 150 respects SwV PAttacker,Abs

Proof We consider the different propositions independently.

1. We detail the case SwV P14 the other cases are analogous. We use a

proof by contradiction: suppose that a protocol does not ensure SwV P95,

but SwV PLAbs 1olds. Then we have an instance where

VPaBy VOia,ou,|Viagous] %0V Pa By [VOidyous |V Oidgou,]

which we can rewrite as

VPa By [VOidsous |V Tidgoup |V 0id; 00,

#1 VPa By [VOid 005V Tiagous|Voido0]

for some honest voter Vo;4,0,,. This yields the contradiction for an attacker
enforcing that the corrupted voter behaves like an honest voter, i.e. a context
C = vecy.vey.(P|_) such that C [Vaicé’ocz] ~ V04,04, as we have an instance
violating the definition of SwV P14 Note that technically this also works
if the instance violating privacy contains only two voters, in this case the

intruder forces the corrupted voter to do nothing.

. This holds by definition: in the case F'A we consider all o,,,, whereas we

exclude some in the case PO. Thus, if the bisimilarity holds for F'A, it also
holds for PO.

. Coercion-Resistance is stronger than Receipt-Freeness, which is stronger

than Vote-Privacy:

— The proof is similar to the proof showing that Coercion-Resistance
implies Receipt-Freeness in the DKR model [DKR09]:
Assume that we have a protocol ensuring SwC RAttacker,Abs 1ot ' be an

evaluation context such that C' = vey.veg.(_ |P) for some plain process
P which fulfills

VP [C[Va®] Voo Vo]
~ VP [VO'idAO';iZC’VUidBUvB|VC} (3.2)

Note that such a C can be constructed directly from the vote process
V. By the definition of SwC RAtacker:Abs e know that there is a closed

66

3.3. A Formal Taxonomy of Privacy in Voting

plain process V' such that
C [V’} \out(che,") oy VO'Z'dAO'UB (33)
and

VP |C [Voiy? | Voyou Vo] % VP [C V] [Vaiagou,|Ve] (34)

id A

To prove that the protocol ensures SwRFAttacker:Abs we have to find

another process V" such that
V/Nuthe)) Vg o0, (3.5)
and
VP [VOia, 08 [V aiayou, Vo] = VP [V [Voiaou,Ve] (3.6)

Let V" = C[V’]. This directly fulfills the first requirement (3.5)) by (3.3)).
By the condition (3.2)) on C' we have:

VP [C Vol | VoiayousVo| 21 VP Vi 08t Vaiayou, Vo
The second hypothesis gives

VP [C Vo] Voiayous Vo | = VP [C V'] Voo, Vel
As labeled bisimilarity is transitive, we can conclude

VP, [VJidAaf,ZﬂVaidBavBWo] ~ VP [C V] [Voiayo0,Ve]

which gives us the desired result for V" = C[V’].

The proof is similar to the proof of Receipt-Freeness implies Vote-Privacy
in the DKR-model [DKRO09]:
Assume that we have a protocol ensuring SwREFAttacker,Abs - By hypoth-

esis there is a closed plain process V' so that
voutehe) o Vo gy (3.7)
and
VP, {VO’idAO'lc)ZC’VO'idBUvB|VC} ~ VP [V'IVoiago0,|Ve]

We apply the context vche.(_|'in(che, z)) (cf. Definition [20 on page 60))

67

3. eVoting

on both sides, which gives

che \out(che,")
V Pr {VO’idAUUZ |VUidBUvB|VC}

~ VP [V Vi, 00, Ve])

By using Lemma [17 on page 60| on both sides of the equivalence we

obtain
VP] [V/|Vgid3 Tus |VC] \out(chc,") = VP] |:V/\OUt(ChC,~) |VO'idB O, |VC:|

and \out(che.)
VP [Voia, 08|V iy o0, Vel ’

V Py [(Vgi dAUchc)\out(chc,~

VA

)
|V0—idBO—vB‘VC:| .

We can now apply Lemma and use the fact that labeled

bisimilarity is closed under structural equivalence to obtain
VP [Voig,00,|VOidso0 Vel =1 V Py [V/\o“t(dw") \Vids o0, |VC}
where we can apply to conclude
VP [Voig,00,|Viagovs Vel =1 VP [V0id, 005V 0ias00, Vel
i.e. that the protocol ensures SwV pAttacker,Abs, [l

Taking these properties together, we arrive at the hierarchy shown in Figure [3.]]

[on the tacing page]

3.3.5 — Case Studies

We applied our family of notions on several case studies, chosen to show that

each of our dimensions corresponds to a different property of existing protocols.

The results are summed up in and Table [3.1 on page 114] the position of the case

studies within our hierarchy is shown in Figure|3.1 on the facing page]

§ 3.3.5.1. Protocol by Fujioka, Okamoto and Ohta (FOQO). The pro-
tocol by Fujioka, Okamoto and Ohta [FOO92] is based on blind signatures and
commitments. It was shown to ensure Vote-Privacy [DKR09] in the DKR-model,
but is not receipt-free as the randomness of the commitment can be used as a
receipt. We show that it ensures SwV PLPO (ie. Swap-Vote-Privacy against an

insider, but just in the Participation Only case).

68

3.3. A Formal Taxonomy of Privacy in Voting

SwCROFA SwC RLFABMQRO7
SwCROTO [LBD%(SwC RO«
SwRFOFA SwRFLFA
SwREOPO — i SwRETHTO[0ka96)
SwV POFA SwV PLFAL
SwV PO-TOe SwV PLFPO [FOOS;Z/

Figure 3.1 — Hierarchy of privacy notions with examples: The simple voting
protocol, our running example (e); Bingo Voting [BMQRO07]; Bingo
Voting with voter lists (%); Okamoto [Oka96]; Okamoto with a
private channel to the honest administrator (¢); FOO [FOO92];
FOO with a private channel to the honest administrator (t); and
Lee et al. [LBD™03|. A — B means that a protocol ensuring A also
ensures B.

Protocol Description. The protocol is split into three phases. In the first

phase the administrator signs the voter’s commitment to his vote:

— Voter V; chooses his vote v; and computes a commitment x; = &(v;, ;) for a
random key r;.

— He blinds the commitment using a blinding function y, a random value b; and
obtains e; = x(z;, b;).

— He signs e; and sends the signature s; = oy, (e;) together with e; and his

identity to the administrator.

— The administrator checks if V; has the right to vote and has not yet voted,
and if the signature s; is correct. If all tests succeed, he signs d; = o4(e;) and
sends it back to V;.

— V; checks the signature, and unblinds the signature to obtain y; = §(d;, b;) =
oa(x;).

In the second phase, the voter submits his ballot:

— Voter V; sends (x;, ;) to the collector C' through an anonymous channel.

— The collector checks the administrator’s signature and enters (z;,y;) as the
[-th entry into a list.

When all ballots are cast or when the deadline is over, the counting phase begins:

— The collector publishes the list of correct ballots.

— V; verifies that his commitment appears on the list and sends (I, ;) to C using

an anonymous channel.

69

© 00 ~J O Ul = W N =

= e s e e e
S U R W N = O

3. eVoting

— The collector C' opens the [-th ball

Model in the Applied 7m-Calculus.

ot using r; and publishes the vote.

We use the following equational theory:

open(commit(m,r),r) = m

checksign(sign(m, sk),pk(sk)) = m

unblind(blind(m,r),r) = m
unblind(sign(blind(m,r),sk),r) = sign(m, sk)

We can then express the behavior of

processes.

the different parties using the following

(x+ private keys x)

vska .vskva.vskvb.vskve.

(* public keys x)

let (pka,pkva,pkvb,pkvc)

= (pk(ska),pk(skva), pk(skvb
(* public key disclosure x*)
out (ch,pka).out(ch,pkva).out
(¥ administrators)

((let pkv pkva in processA
(let pkv = pkvb in processA

(let pkv = pkve in processA
processC | processC | proce
(% voters x)

(let skv = skva in let v =
(let skv = skvb in let v =
(let skv = skvec in let v =

) ,pk(skvc)) in
(ch,pkvb).out(ch,pkvc).
) |

) |

) |
ssC |
a in processV) |

b in processV) |
¢ in processV))

Listing 3.1 —

The main process (Listing sets

The main process

up the keys and executes the participation

processes (three voters, three administrators and three collectors — one for each

voter —) in parallel. Note that (x ...

syntax, and that processA, processkK,

*) are comments, inspired by ProVerif’s

processC and processV are variables for

the processes of the administrator, keying process, collector and voter as defined

below. Note also that although much
still rely on the original Applied 7-Cal

of this syntax is inspired by ProVerif, we

culus.

The voter’s process (Listing |3.2 on the facing page|) starts by deciding if he

abstains: If yes, he does nothing except for the synchronization points. This is

necessary as otherwise he blocks the other voters. If he does not abstain, he votes

following the protocol described informally before.

A wvoter controlled by the attacker is

modeled by the process given in Listing[3.3

This process is obtained when computing processV:°2 as defined in

Definition

70

3.3. A Formal Taxonomy of Privacy in Voting

processV =
if v = abstain then
sync 1.
sync 2
else
vb.vr.
let commitedvote = commit(v,r) in

let blindedvote = blind (commitedvote ,b) in

out (chl,(pk(skv),sign(blindedvote ,skv),blindedvote)).
in(ch2,m2).

let result = checksign (m2,pka) in

if result = blindedvote then

let signedvote = unblind (m2,b) in

sync 1.

out (ch3 ,(commitedvote ,signedvote)).
in(ch4,(1l,commitedvote’,signedvote ’)).

if commitedvote’ = commitedvote then
if signedvote’ = signedvote then
sync 2.

out(ch5,(1,r))

Listing 3.2 — The voting process

When the administrator (Listing|3.4 on the next page]) receives the blinded

commitment, he checks the signature, signs, and sends the result back.

The collector (Listing 3.5 on the following page|) verifies the signature on

incoming commitments using the administrator’s public key. If the signature is
correct, he creates a new bounded name [(the number in the list) and sends it
together with the signed commitment back to the voter. The voter then reveals

his randomness, which the collector uses to open the commitment.

Analysis. Delaune et al. showed that the protocol ensures Vote-Privacy in their
model [DKR0O9] (which corresponds to SwV PPF? in our model, as they do not

consider inside attackers). We show that it also ensures Vote-Independence, i.e.

the stronger notion of Vote-Privacy for inside attackers: SwV PLFO.

Theorem 19 FOO respects SwV P1FO.

Proof We show that

processV {skva/skv, Pk(ska)/pka} {a/v} |processV {skvb/skv, Pk(ska)/pka} {b/v} |
processVclc2 {skve/sko, Pk(ska)/pka}
~l
processV {skva/sky, pPk(ska)/pka} {b/v} |processV {skvb/skv, Pk(ska)/pka} {a/v} |

processVclc2 {skve/sko, P(ska)/pka}

71

© 00 O O i W N~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0 J O O b W N~

3. eVoting

processVclc2 =
in(c2,yl).
if yl = true then
sync 1.
sync 2
else
vb.out(cl,b).vr.out(cl,r).
let commitedvote = commit(v,r) in
let blindedvote = blind (commitedvote ,b) in
in(c2,y2).out(chl,y2).
in (ch2 ,m2).out(cl,m2).
let result = checksign(m2,pka) in
in(c2,y3).
if y3 = true then
let signedvote = unblind (m2,b) in
sync 1.
in(c2,y4).out(ch3,y4).
in (ch4 ,m3).out(cl,m3).
let (1,commitedvoter’, signedvoter’) = m3 in
in(c2,y5).
if yb = true then
in(c2,y6).
if y6 = true then
sync 2.
in(c2,y7).out(chb,y7)

Listing 3.3 — The voting process under control of the attacker

processA =
in(chl ,ml).
let (pubkeyv,sig,blindedvote) = ml in
if pubkeyv = pkv && checksign(sig,pkv) = blindedvote then
out (ch2,sign(blindedvote ,ska))

Listing 3.4 — The administrator process

processC =
in (ch3,(m3,m4)).
if checksign(m4,pka) = m3 then
vl.out(ch4,(1,m3,m4)).
in(ch5,(1’,rand)).
if 1 =1’ then
let voteV = open(m3,rand) in
out (res ,voteV)

Listing 3.5 — The collector process

72

3.3. A Formal Taxonomy of Privacy in Voting

As labeled bisimilarity is closed under the application of contexts, it is sufficient
to show that

processV {skva/sky, Pk(ska)/pka} {a/v} |processV {skvb/skuv, Pk(ska)/pka} {b/v}
~l

processV {skva/sky, Pk(ska)/pka} {b/v} |processV {skvb/sko, Pk(ska)/pka} {a/v}

This is different from the model and proof used in [DKR09], and more similar to
the proofs by Kremer and Ryan [KR05] or Smyth [Smy11]: all keys are modeled
as free names, and hence not secret. Note also that we consider only two honest
voters and one voter under control of the attacker. However, as labeled bisimilarity
is closed under the application of contexts, this immediately generalizes to an
arbitrary number of honest or corrupted voters as we do not need any secret
channel or key.

The intuition is the following: thanks to the blinding nobody can link the
ballot, which is sent to the administrator, to the commitment, published later on
over the anonymous channel.

We call the left hand side process P and the right hand side process). Note
that we do not consider abstention of the honest voters here, hence the test
v=abstain is always false. We write V4 for processV {skva/skv, pk(ska)/pka} and
Vi for processV {skvb/skv, Pk(ska)/pka}. We now discuss the possible transitions.
The honest voters construct the blinded and committed votes and send them to

the administrator. We have the following transitions:

P —>°ut(6hl’xl) vbg.vra.(Py|
{(pk(skva),sign(blind(commit(a,r;,),bA),skva),blind(commit(a,rA),bA))/xl})

out(chl,x
M vbp.vbg.vrs.vrp.(Ps|

{(pk(skva),sign(blind(commit(a,rA),bA),skva),blind(commit(a,rA),bA))/xl } |

{(pk(skvb),sign(blind(commit(b,rg),bB),skUb) ,blind(cammit(b,rB),bB))/xQ})

Similarly

out(chl,zq)
_—

Q

vba.vra.(Q1]
{(pk(sk'ua) ,sign(bl'md(comm'it(b,rA),bA),skva),blind(commit(b,v"A),bA))/g:1 })

t(chl,
M vbp.vby.vra.vrp.(Q2]

{(pk(sk’va),sign(blind(commit(bmA),bA),skva),blind(conwm't(b,rA),bA))/ml } |
{(pk(skvb),sign(blind(commit(a,rB),bB),skvb) 7blind(con’mu't((JL,TB),bB))/xQ})

Until this point, it is easy to see that the frames are statically equivalent: both
voters sent a signed commitment, but because of the blinding they are indistin-
guishable. Note that the messages can appear in the inverse order, however the

frames remain statically equivalent. The next step depends on the context. If

73

3. eVoting

the attacker returns correctly signed votes to the two voters, the processes can
synchronize and go on. Otherwise at least one of them blocks and they are unable

to synchronize.

If they are able to synchronize, they will output their unblinded vote to the
collector. From this point on, the voters swap their roles, i.e. Vp{4/v} simulates
the behavior of V4 {¢/v}. We obtain the following frames:

¢ =vbp.vbavravrpg.(
{(pk(skva),sign(blind(commit(a,rA),bA),skva),blind(commit(a,rA),bA))/xl} |

{(pk(skvb),sign(blind(commit(b,rB),bB),skvb),blind(commit(b,rB),bB))/xQ} |
{(commit(a,rA),sz’gn(commit(a,'r’A),ska))/903} ‘

{(commit(b,rB),sign(commit(b,rg),ska))/$4})

¢r = vbp.vbgvrgvrp.(
{(pk(skva),sign(blind(commit(b,rA),bA),skva),blind(commit(b,r,q),bA))/xl} |

{(pk(skvb) ,sign(blind(commit(a,rg),bp),skvb),blind(commit(a,rg),bp))/acz} |
{(commit(b,rA),sign(commit(b,r,q),ska))/mg} |

{(commit(a,rB),sign(commit(a,rB),sk:a))/x4})

These frames are again statically equivalent, as the blinding breaks any link of
the commitments to the first messages. Then it depends again on the input of
the attacker. If either of the voters gets a wrong input, they cannot synchronize.
If both voters receive a correct input, they reveal their random values with the

corresponding [. This yields the following frames:

¢ = vbp.vbavravrp.viavip.(

{(pk(sk:va),sign(blind(commit(a,rA),bA),sk:va),blind(commit(a,rA),bA))/xl} |

{(pk(skvb),sign(blind(commit(b,rg),bB),skvb),blind(commit(b,rB),bB)
{(commit(a,rA),sz’gn(commit(a,rA),ska))
{(commit(b,rB),sign(commit(b,rB),ska))/x4} |

{0ara)fas} | {a5r5)/s})

¢l = vbp.wbg.vravrgvlyvip.(

{(pk(skva),sign(blind(commit(b,rA),bA),skva),blind(commit(b,rA),bA

{(pk(skvb),sign(blind(commit(a,rg),bB),skvb),blind(commit(a,rg),bg
{(commit(b,rA ,sign(commit(b,r 4),ska

) s} |
)

{(commit(a,rB ,sign(commit(a,rg),ska)/904} |

{@ara)fas} [{Up5)fzc))

These frames are statically equivalent, giving us the desired result. ([

)
)
)
)

74

3.3. A Formal Taxonomy of Privacy in Voting

This result can also be obtained automatically using ProSwappeI{S_’r] and ProVerif.
The code is available on our website [Drel3].

Moreover note that using the recently developed tool AKISS, a similar proof
of privacy [CCKI12|] for this protocol was made. The proof is fully automatic,
however AKISS proves trace equivalence instead of labeled bismilarity, and uses a
simpler process calculus instead of the Applied 7w-Calculus.

Note that FOO is not secure against Forced-Abstention-Attacks, as the voters
send their identity (here modeled by their public key) to the administrator over a
public channel. If we consider a modified version with a trusted administrator
and a private channel between the voter and the administrator, FOO also ensures

security against forced abstention attacks: SwV PLFA,

Theorem 20 FOO with trusted administrator and a private channel between the

voter and the administrator respects SwV PLFA,

Proof As we proved above, FOO ensures Privacy for the “PO” case. Hence we

only need to consider the case of abstention, i.e. show that

vchl.vch2.(processV {skva/sky, pk(ska)/pka} {abstain/,} |
processV {skvb/sky, PE(ska)/pka} {b/v} |processVclc2 {skve/sky, Pk(ska)/pka} |
processA {pk(skva)/pkv} |processA {pk(skvb)/pkv} |processA {pk(skve)/pkv})
X
vchl.vch2.(processV {skva/sky, pk(ska)/pka} {b/v} |
processV {skvb/sky, Pk(ska)/pka} {abstain/y} |processVclc2 {skve/sko, Pk(ska)/pka} |
processA {pk(skva)/pkv} |processA {pk(skvb)/pkv} |processA {pk(skve)/pkv})

holds. The differences to the above proof are marked in bold: the channels chi
and ch2 are now restricted, and we include the administrators as they are now
trusted. Note that this proof is technically only valid for two honest voters and
one voter under control of the attacker. Nevertheless a similar proof can be made
for other numbers of voters.

The intuition is that since the administrator is honest and the registration is
done over a private channel, the intruder only sees the anonymous commitments
and can thus not determine which voters participated.

We call the left hand side process P and the right hand side process), and
write V4 for processV {skva/sky, Pk(ska)/pka}, Vg for processV {skvb/skv, pk(ska)/pka}
and V5" for processVc1c2 {skve/sko, Pk(ska)/pka}. The beginning is similar: the
non-abstaining honest voter construct the blinded and committed vote and sends

them to the administrator through an internal reduction, due to the private

8Note that although — to the best of our knowledge — there exists no formal soundness proof
for the transformations performed by ProSwapper [Smy11], in this case the result is effectively
confirmed by our manual proof.

75

3. eVoting

channel. The administrator will accept the ballot, sign it and send it back to
the voter, again triggering an internal reduction. The voter checks the signature
and waits for the synchronization. Until now, only internal reductions have taken
place and the frames are empty. Then it depends on the context:

— If the corrupted voter is told to abstain, the bidder can synchronize, and

publishes his ballot. We obtain the following frames:
o = VTB_({(commit(b,rB),sign(commit(b,rB),ska))/ml})

and

Or = yrA_({(commit(b,rA),sign(commit(b,rA),ska))/ml})

Then it depends again on the input of the attacker. If the honest voter gets a
wrong input, he blocks. If he receives receives a correct input he synchronizes
and reveals his random values with the corresponding [. This yields the

following frames:

@) = vrp.vlg.({(commit(brp),sign(commit(brp).ska)) [z, } | {B:7B) /2, })
and

@l = vra.vlg.({(commit(bra),sign(commit(bra),ska)) [z, } | {Tara)/zi1 })

These frames are statically equivalent as the random values are indistinguish-

able, which gives us the desired result.

— If the context tells the corrupted voter to vote, he forwards the given message
to the administrator (over a private channel, hence an internal reduction). If
the message was correct, the administrator signs and returns the ballot (again
over a private channel). This message is forwarded to the context. In any

other case, the process will simply block. We have the following transitions:

in(c2,false) in(c2,y2) « out(cl,zq

P s Pi| {m2fe}

Similarly

in(c2,false) in(c2,y2) « out(cl,xy

Q Ly Qu) {m2far}

These frames are identical and hence statically equivalent. If the context
tells the voter to go on, the processes can synchronize, and the honest voter
publishes his unblinded ballot. The corrupted bidder publishes the message

he is given. This yields the following frames:

E’ = VTB.({m2/x1} | {(commit(b,’/‘B),sign(commit(b,rg),ska))/xQ} | {y4/13} | {m3/x4})

76

3.3. A Formal Taxonomy of Privacy in Voting

and
QZ);{ = VTA.({m2/:1:1} ’ {(commit(b,rA),sign(commit(b,rA),ska))/IQ} ‘ {?/4/x3} | {m3/x4})

Then it depends again on the input of the attacker. If the honest voters
gets a wrong input or the attacker decides to block V5", the voters cannot
synchronize. If the honest voters receives a correct input and if he can
synchronize with V5", he reveals his random values with the corresponding

[. This yields the following frames:

¢2// _ VTB.VZB'({WQ/M} ’ {(commit(b,rB),sign(commit(b,rB),ska))/m} |

{v4/ s} [{m3faa} [{Unre)fus} [{¥7/26})

and

gb;_” = VT‘A.I/ZA.({mQ/azl} | {(commit(b,rA),sign(commit(b,r,q),ska))/IQ} |

{8/} [{m3/a} | {Uara)fas} | {v7/z6})

These frames are statically equivalent as they only differ in the restricted

random values, which gives us the desired result. O

§ 3.3.5.2. Protocol by Okamoto. The protocol by Okamoto [Oka96| is
similar to the protocol by Fujioka et al. discussed above, but it uses trap-door
commitments to achieve Receipt-Freeness. It is however not Coercion-Resistant as

the coercer can force the voter to use a specially prepared commitment [DKR09].

Protocol Description. The main differences to FOO are the use of trap-door
commitments and the existence of timeliness member to open the commitments.
The first phase — during which the voter obtains a signature on his commitment —
follows exactly the same protocol as FOO, except that this time £ is a trapdoor-
commitment. In the second phase the vote is submitted:

— Voter V; sends the signed trap-door commitment to the collector C' through

an anonymous channel.
— The collector checks the administrators signature and enters (x;,y;) into a list.

— The voter sends (v;, 74, z;) to the timeliness member through an untappable
anonymous channel

When all ballots are cast and/or when the deadline is over, the counting phase

begins:

— The collector publishes the list of correct ballots.
— Vj verifies that his commitment appears on the list.

— The timeliness member publishes a randomly shuffled list of votes v; and a

7

© 00 3 O U = W N —

e e e e e
N O O W N = O

3. eVoting

zero-knowledge proof that he knows a permutation 7 for which @y = &(vi, 74).

Model in the Applied m-Calculus. We use following equational theory:

checksign(sign(m, sk),pk(sk)) = m
unblind(blind(m,r),r

unblind(sign(blind(m,r), sk)
)

open(tdcommit(m,r,td
tdcommit(meg, f(mi1,r, td, msa),td

= m

T m

)
)
,7) = sign(m,sk)
)
)

= tdcommit(my,r,td)

The forth equation models the creation of a trap-door commitment to m using
a random value r and a trap-door td, whereas the last equation permits the
construction of another random value to open a commitment differently. This
requires knowledge of the trap-door td and the initial random value 7.

We use the following processes for our proof:

(¢ private keys)

vska .vskva.vskvb.vskve.

(* public keys x)

let (pka,pkva,pkvb,pkvc)

= (pk(ska),pk(skva),pk(skvb),pk(skvc)) in

(* private channels x)

vchT.

(* public key disclosure x)

out (ch,pka).out(ch,pkva).out(ch,pkvb).out(ch,pkvc).
(x administrators)

(processA | processA | processA |

processC | processC | processC |

processT | processT | processT |

(x voters x)

(let skv = skva in let v = a in processV) |
(let skv = skvb in let v = b in processV) |
(let skv = skvc in let v = ¢ in processV))

Listing 3.6 — The main process

The main process (Listing [3.6)) shows how the participation processes (three
administrators, three collectors, three talliers - one for each voter - and three

voters) are combined in parallel using a private channel.

The voter process (Listing [3.7 on the facing page|) follows the nearly the same

protocol as in the case of FOO, but he has to reveal the data necessary to open
the commitment over a private channel to the timeliness member T'. Note that in
the case of abstention the voter also executes the second synchronization point,
although normally it is executed by the collector. This is necessary to avoid a

situation where the entire voting process blocks because of an abstaining voter.

78

© 00 J O U = W N

10
11
12
13
14
15
16
17
18

3.3. A Formal Taxonomy of Privacy in Voting

processV =
if v = abstain then
sync 1.
sync, 2
else
vb.vr.vtd.
let commitedvote = tdcommit(v,r,td) in

let blindedvote = blind (commitedvote ,b) in

out (chl,(pk(skv),sign(blindedvote ,skv),blindedvote)).

in(ch2,m2).

let result = checksign(m2,pka) in

if result = blindedvote then

let signedvote = unblind (m2,b) in
sync 1.

out (ch3,(commitedvote ,signedvote)).
out (chT,(v,r,commitedvote))

Listing 3.7 — The voting process

processVclc2 =
in(c2,yl).
if x1 = true then
sync 1.
sync, 2
else
vb.out(cl,b).vr.out(cl,r).vtd.out(cl, td).
let commitedvote = tdcommit(v,r,td) in
let blindedvote = blind (commitedvote ,b) in
in(c2,y2).out(chl, y2).
in (ch2,m2).out(cl,m2).
let result = checksign(m2,pka) in
in(c2,y3).
if y3 = true then
let signedvote = unblind (m2,b) in
sync 1.
in(c2,y4).out(ch3,y4).
in(c2,y5).out(chT,y5)

Listing 3.8 — The voting process under control of the attacker

79

3. eVoting

processVche =
if v = abstain then
sync 1.
syncy, 2
else
vb.vr.vtd.
out (chc,b).out(chec,r).out(chc,td).
let commitedvote = tdcommit(a,r,td) in
let blindedvote = blind (commitedvote ,b) in
out (chl,(pk(skv),sign(blindedvote ,skv),blindedvote)).
out (che, (pk(skv),sign(blindedvote ,skv),blindedvote)).
in(ch2,m2).
let result = checksign(m2,pka) in
if result = blindedvote then
let signedvote = unblind (m2,b) in
sync 1.
out (ch3,(commitedvote ,signedvote)).
out (chec ,(commitedvote ,signedvote)).
out (chT,(a,r,commitedvote)).
out (chc,(a,r,commitedvote))

Listing 3.9 — The process trying to create a receipt

A wvoter under control of the attacker is described by Listing 3.8 on the previous|
This process can be obtained by calculating processV*? as defined in
Definition

A woter trying to create a receipt by revealing all his secret data is modeled by

the process in Listing|3.9] This process can be obtained by calculating processvehe
as defined in Definition [18 on page 59
The administrator (Listing [3.11 on the next page]) checks the signature on the

blinded commitment and signs it.

The collector (Listing [3.12 on the facing page|) verifies the signature on

incoming commitments using the administrator’s public key. If the signature is

correct, he publishes the commitment on a public channel.

The timeliness member (Listing [3.13 on page 82)) receives the vote, the corre-

sponding commitment and the randomness over a private channel. He verifies the
correctness of the data and then publishes the vote. Note that the synchronization
point sync, 2 can also be enabled by an abstaining bidder (cf. Process
Ipreceding page]) to allow the publication of the submitted votes. As explained

above, although an instance with n voters contains 2n instances of sync, 2, any

n of them are sufficient to enable the continuation.

Analysis. We have the following result:

80

© 00 J O Ut = W N~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

T b W N =

S UL W N

3.3. A Formal Taxonomy of Privacy in Voting

processV ’ =
if a = abstain then
vb.vr.vtd.
let commitedvote = tdcommit(b,r,td) in
let blindedvote = blind (commitedvote ,b) in
out (chl,(pk(skv),sign(blindedvote ,skv),blindedvote)).
n(ch2,m2).
let result = checksign (m2,pka) in
if result = blindedvote then
let signedvote = unblind (m2,b) in
sync 1.
out (ch3,(commitedvote ,signedvote)).
out (chT,(b,r,commitedvote)).
else
vb.vr.vtd.
out (che,b).out(che,f(b,r,td,a)).out(chc,td).
let commitedvote = tdcommit(b,r,td) in
let blindedvote = blind (commitedvote ,b) in
out (chl,(pk(skv),sign(blindedvote ,skv),blindedvote)).
out (che, (pk(skv),sign(blindedvote ,skv),blindedvote)).
n(ch2 m2).
let result = checksign (m2,pka) in
if result = blindedvote then
let signedvote = unblind (m2,b) in
sync 1.
out (ch3,(commitedvote ,signedvote)).
out (chc ,(commitedvote , signedvote)).
out (c T,(b r,commitedvote)).
out (chc,(a (b,r,td ,a),commitedvote))
Listing 3.10 — The process V’
processA =
n(chl ml).
let (pubkeyv,sig ,blindedvote) = ml in
if pubkeyv = pkv && checksign(sig ,pkv) = blindedvote then
out (ch2,sign(blindedvote ,ska))
Listing 3.11 — The administrator process
processC =
sync 1.
n(ch3,(m3,m4)).
if checksign(m4,pka) = m3 then
sync, 2.
out (ch,(m3,m4))

Listing 3.12 — The collector process

81

3. eVoting

processT =
sync 1.
(* receiving the commitment)
in (chT,(vt,rt,xt)).
sync 2.
if open(xt,rt) = vt then
out(res,vt)

Listing 3.13 — The timeliness process

Theorem 21 The protocol by Okamoto respects SwRFTFO.

Proof We need to show that there exists a closed plain process V' such that
V/\out(ches)) brocessV {skva/sky, Ph(ska) fpka} {b/v} (3.8)

and
vehT.((processV {skva/sky, pk(ska) [pka} {a/v})Pe|

processV {skvb/skv, Pk(ska)/pka} {b/v} |
processVclc2 {skve/sko, Pk(ska) /pka} |
processT|processT|processT)
~
vehT.(V'|processV {skvb/sko, Pk(ska) /pka} {a/v} |
processVclc2 {skve/sko, pk(ska) /pka} |

processT|processT|processT)

As in the case of the protocol by Fujioka et al., we only consider three voters, but
the proof can be generalized for more honest voters. In particular we show in
Section that the protocol is modular, which directly implies that privacy
also holds for any number of honest voters: we can compose the above instance
with another instance to obtain an instance with an arbitrary number of voters,
and the bisimilarity still holds. For more details, see Section

Again, we write V4 for processV {skva/skv,pk(ska)/pra}, Vp for processV
{skvb/sko, P(ska)/pka} and V5 for processVclc2 {skve/sko, ph(ska)/pka}.

Consider the process V' = processV’ {skva/skv, Pk(ska)/pka} that fakes a receipt.
We can see that the first equivalence holds by removing all out(che,)

from processV’ as given in Listing [3.10 on the previous paget Independent

of a, the resulting process is apparently equal to the original voting process
processV {skva/sky} {b/v}.

The second equivalence is more difficult to prove. The beginning is
similar to the proof of privacy for FOO. We denote the left hand side process P
and the right hand side process (). The honest voters construct the blinded and

committed votes and send them to the administrator. During this process, V4

82

3.3. A Formal Taxonomy of Privacy in Voting

outputs his secret values and inputs, where V'’ fakes these values. We have the

following transitions:

out(chc,x1) vag.out(che,xa) vrs.out(che,zs)

P

UbA.UTA.UtdA.(Pﬂ {bA/:v1}
[{ra/fwa} [{tda/as})
vba.vr g vtdy.(Po|{ba/zi } | {ra/es}

vza.out(chl,xs) vaxs.out(che,zs)

| {tda/as}

‘ {(pk(skva) ,sign(blind(tdcommit(a,r a,td 4),ba),skva),blind(tdcommit(a,r o 7tdA),bA))/g;4}

| {#4/2s})
M vbg.vravtda.vbp.vrp.vtdp.(Ps| {ba/z:}
[{rafea} [{tda/zs}

| {(pk(sk:va) ,sign(blind(tdcommit(a,r a,td4),ba),skva),blind(tdcommit(a,r o ,tdA),bA))/x4}

| {=4/2s}

| {(pk(skva),sign(blind(tdcommit(b,rg tdp),bp),skvb),blind(tdcommit(b,r g ,tdB),bB))/x(;})

Similarly

vey.out(che,x1) vaa.out(che,xe) vas.out(che,xs)

Q > vba.vra.vtda.(Qr
[{ba/ar} [{Faratdac)/as} | {tda/as})
vbp.vrgvtdy.(Qa] {ba/z}
{70 atdadas} | {tdaas}
| {(pk(skva),sign(blind(tdeommit(b,r a,td),ba),skva) blind(tdcommit(br o tda),b4)) 2, }

| {=4/s})

vx4.out (chl,x4)\ vas.out(che,xs)
7

5. hl
M vbp.vrg.vtdy.vbp.vrp.vtdg.(Qs| {04z}

[{Foratdn e} | {1da/as}
‘ {(pk(skva) ,sign(blind(tdcommit(b,r a,td a),ba),skva),blind(tdcommit(b,r o 7talA),17,4))/5,;4}

| {=4/2s}

‘ {(pk(skva),sign(blind(tdcommit(a,r}g tdp),bg),skvb),blind(tdcommit(a,r g 7tdB),bB))/x6})

We can argue that at this point the obtained frames are statically equivalent. In

particular the attacker obtains in both cases
open(unblind(checksign(projy(xa), pk(skva)),z1),x2) = a

when he tries to open the commitment due to the trap-door and the faked

randomness.

The next steps depend on the context:

— If the attacker tells the corrupted voter to vote, he will forward the given

83

3.

eVoting

ballot to the administrator. We have the following transitions:

Py in(c2,false)\ in(c2,y2) wvaxr.out(chl,z7) Vi'.(P4‘ {bA/ccl} ’ {TA/wz} ‘ {tdA/gc3} |

{(pk(skva) ,sign(blind(tdcommit(a,r 4,td 4),ba),skva),blind(tdcommit(a,r o 7z‘,cl,ﬁl),bA))/m} |

{a/s} |

{(pk(skva),sign(blz'nd(tdcommit(b,’r’B tdp),bp),skvdb),blind(tdcommit(b,rg ,tdB),bB))/xG} |

{v2/ar})
where & = {ba,74,tda,bp,rp,tdp}. Similarly

Qg in(cQ,false)/ in(c2,y2) vaxr.out(chl,z7) VJN,‘.(Q4’ {bA/xl} ‘ {f(a,rA,tdA,c)/xQ} ‘

{tda/us} |

{(pk(sk'ua) ,sign(blind(tdcommit(b,r a,td 4),ba),skva),blind(tdcommit(b,r o ,tdA),bA))/I4} ’

{a/zs} |

{(pk(skva),sign(blind(tdcommit(a,rB tdB),bp),skvdb),blind(tdcommit(a,rp,tdp),bp))/556} |

{v2/ar})

If the context then returns correctly signed votes to the two honest voters and
tells V5 to go on (i.e. sends a message containing true), the processes can
synchronize and go on. Otherwise at least one of them blocks and they are
unable to synchronize.

If they are able to synchronize, they output their votes to the collector (V5
sends any message the attacker gives him) and send the secret values to the

timeliness member over a private channel. We obtain the following frames:

¢ = v ({bafe } | {rafea} | {tda/as} |

{(pk(skva),sign(blind(tdcommit(zz,'rA,tdA),bA),skva),blind(tdcommit(a,rA,tdA),bA))/CM} |
{z4/z5} |

{(pk(skva),sign(blind(tdcommit(b,rg,tdB),bB),skvb),blind(tdcommit(b,rB ,tdB),bB))/z6} |
{v2far} |

{(tdcommit(a,rA,tdA),sign(tdcommit(a,rA,tdA),ska))/xs} |
{(tdcommit(b,rB,tdB),sign(tdcommit(b,rB,tdB),ska))/:CQ} |

{(a,rA ;tdcommit(a,r a ,td,a,))/g,;11 })

84

3.3. A Formal Taxonomy of Privacy in Voting

and

Or = v ({bafar } [{Fratdaa)/y} [{tda/us} |

{(pk(skva),sign(blind(tdcommit(b,rA tda),ba),skva),blind(tdcommit(b,r 4 ,tdA),bA))/m4} |

{a/s} |

{(pk:(s/wa),sign(blind(tdcommit(a,rB,tdB),bB),skvb),blind(tdcommit(a,rs 7tdB),bB))/gCG} |
{v2/er} |

{(tdcomm'it(b,rA,tdA),sign(tdcommit(b,rA,tdA),ska))/mS} |
{(tdcommit(a,rB,tdB),sign(tdcommit(a,rg,tdB),ska))/xg} |

{(a,f(b,rA,tdA ,a),tdcommit(b,rA,tdA))/IIO})

These frames are statically equivalent. If the attacker sent a correct input to
the third timeliness process, 1" will put out the corresponding vote. Note that
if the attacker copies V4’s vote using the possibly faked credentials, T" will
always output a.

More generally, the attacker cannot use 7' to obtain frames that are not
statically equivalent as this would imply that this difference could also be
made on the frames before by opening a commitment - something the attacker
could do by himself. Intuitively having access to the “Timeliness” oracle does
not help the attacker, as the oracle performs only operations the attacker could

have done by himself.

Similarly, if the attacker tells the corrupted voter to abstain and if the context
then returns correctly signed votes to the two honest voters, the processes can
synchronize and go on. Otherwise at least one of them blocks and they are
unable to synchronize.

If they are able to synchronize, they output their votes to the collector and
send the secret values to the timeliness member over a private channel. The
timeliness member will open the commitments, synchronize and publish the

votes. We obtain the following frames:

¢ = v ({ba/er} [{mafea} | {tda/2s} |

{(pk(sk'ua),sign(blind(tdcommit(a,rA,tdA),bA),skva),blind(tdcommit(a,rA,tdA),bA))/gM} ‘
{z4/2s} |
{(pk(skva),sign(blind(tdcommit(b,r‘B,tdB),bB),sk’vb),blind(tdcommit(b,rfg,tdB),bB))/xG} |
{(tdcommit(a,rA,tdA),sign(tdcommit(a,rA,tdA),ska))/x7} |

{(tdcommit(b,rB ,tdB),sign(tdcommit(b,rB,tdB),ska))/xs} ‘

{(a,rA ;tdcommit(a,r 4 7talA))/xg} ‘

{9/z10} [{E/211})

85

3. eVoting

and

br = vi.({2afer} | {FOratdaass} | {103y} |

{(pk(skva),sign(blind(tdcommit(b,rA,tdA),bA),skva),blind(tdcommit(b,rA,tdA),bA))/m4} |
oy}

{ (Dk(skva) sign(Blind(tdcommit(a,rp tdp) bp),skvb) blind(tdcommit(a,r 5 tdp).b5))/ag } |
{(tdcommit(b,rA,tdA),sign(tdcommit(b,rA,tdA),ska))/m7} ’
{(tdcommit(a,rg,tdB),sign(tdcommit(a,rB,tdB),ska))/xS} |

{(a,f(b,rA Jtd a,a) tdcommit(b,r o ,tdA))/zg} |

{9/er0} [{¥11})

Again, these frames are statically equivalent. O

Unfortunately ProVerif cannot prove this automatically as the equational theory
is too complex. This is due to the trapdoor-commitment which yields a non-
confluent equational theory. However, we can show that the final frames ¢; and ¢,
from above are statically equivalent using KISS [CDK12]. The code is available
online [Drel3].

As for FOO, we can show that the protocol also ensures Security against
Forced-Abstention-Attacks if the administrator is to be trusted and there is a

private channel between the administrator and the voters.

Theorem 22 The protocol by Okamoto with a trusted administrator and a private

channel to the administrator respects SwRF1FA,

Proof We have to show that there exists a closed plain process V' such that
V/\out(ches) o) brocessV {skva/sky, pk(ska) fpka} {b/v}

and

vehT.wehl.veh2.((processV {skva/sky, pk(ska)/pia} {a/v})che|
processV {skvb/skv, Pk(ska)/pka} {b/v} |processVcic2 {skve/sky, PE(ska)/pka} |

processT|processT|processT|
processA {pk(skva)/prv} |processA {Pk(skvd)/piv} |processA {pk(skve)/pkv})

~i
vchT.wehl.vch2.(V'|processV {skvd/sko, Pk(ska) /pka} {a/v} |
processVclc2 {skve/skv, Pk(ska)/pka} |
processT|processT|processT|

processA {pk(skva)/pkv} |processA {pk(skvb)/pkv} |processA {pk(skve)/pkv})

As above, our proof is technically only be correct for three voters, but it can be

generalized for more voters.

86

3.3. A Formal Taxonomy of Privacy in Voting

As above, we write V4 for processV {skva/skv, pk(ska)/pka}, Vp for processvV
{skvb/sku, P(ska)/pka} and V5" for processVclc2 {skve/sko, Pk(ska)/pka}.

Consider V' = processV’ {skva/skyv, Pk(ska)/pka}. The first equivalence is easy

to see by removing all out(chc,) from processV’ (Listing [3.10 on page 81)).

Independent of a, the resulting process is apparently equal to the original voting

process processV {skva/skv} {b/v}.

The second equivalence is more difficult to prove. As for FOO, it is sufficient
to analyze the case of abstention, as the other case is a consequence of the above
lemma. We denote the left hand side process P and the right hand side process Q.
On the left hand side the honest voter under attack V4 abstains and hence does
nothing, whereas the other voter Vp constructs the blinded and committed vote
and send it to the administrator. On the right hand side, V' pretends to abstain,
whereas Vp abstains in reality. Note that since the channels to the administrator
are now private channels, the communication only yields internal reductions. The

next steps depends on the context:

— If the context tells the corrupted voter to abstain, the honest voter can
synchronize and forward his ballot to the timeliness member and to the
collector. The timeliness member can synchronize too, and will publish the

vote. We have the following transitions:

in(cl,false) wvwi.out(ch3,z1)

P —* vrp.vtdg.(P|
{(tdcommit(b,rB tdg),sign(tdcommit(b,r,tdp),ska))/331 })

« VT2.0ut(res,r2)
%

vrp.vtdp.(Ps|
{(tdcommit(b,rB tdg),sign(tdcommit(b,rg ,tdB),ska))/xl } ’ {b/xg})

Similarly

« in(cl, false) vxi.out(ch3,z1)

Q »vra.vtda.(Q1]

{(tdcommit(b,rA ;tda),sign(tdcommit(b,r a,td 4),ska))/;E1 })

vra.vtda.(Qo]
{(tdcommit(bmA,tdA),sign(tdcommit(b,rA,tdA),ska))/xl} ’ {b/x2})

« VT2.0ut (res,x2)
B

It is easy to see that both frames are statically equivalent.

— If the attacker tells the corrupted voter to vote, he will forward the given
ballot to the administrator. If this ballot is correctly signed, the administrator
will accept it, sign it and return it. If the context then tells V5" to go on
(i.e. sends a message containing true), the processes can synchronize and go
on. Otherwise at least one of them blocks and they are unable to synchronize.

1,62

If they are able to synchronize, they output their votes to the collector (V,

sends any message the attacker gives him) and send the secret values to the

87

3. eVoting

timeliness member over a private channel. We obtain the following frames:

= I/TB.ytdB'({(sign(checksign(projg(yl),pubkvc),ska))/xl} ‘
{(tdcommit(b,rg,tdB),sign(tdcommit(bmg,tdB),ska))/xZ} |

{4/2s})

and
¢ = yrA_ytdA‘({(sign(checksign(projg(yl),pubk:vc),ska))/wl} ‘

{(tdcommit(b,TA td a),sign(tdcommit(b,r a,td a),ska))/.732} ‘
{v4/xs})

These frames are statically equivalent. If the attacker sent a correct input to
the third timeliness process, T will put out the corresponding votes. However,
since he has no access to the values used to create the commitment used by
the honest voter, the only possibility for him is to create his own one. In that
case the timeliness member announces the vote of the corrupted voter plus
one vote b.

As above, the attacker cannot use T' to obtain frames that are not statically
equivalent as this would imply that this difference could also be made on the
frames before by opening a commitment - something the attacker could do by
himself. Intuitively having access to the “Timeliness" oracle does not help the
attacker, as the oracle performs only operations the attacker could have done
by himself. O

§ 3.3.5.3. Bingo Voting. Bingo Voting was developed by Bohli, Miiller-
Quade and Rohrich [BMQRO7] to achieve coercion-resistance as well as individual
and universal verifiability by using a trusted random number generator (RNG),
i.e. a tamper-proof random generator providing real random numbers only to
the machine and the voter (in particular not to the adversary). In our hierarchy

Bingo Voting ensures SwCR!"FO if the voting machine is to be trusted.

Protocol Description. The protocol is split into three phases: The pre-voting
phase, the voting phase and the post-voting phase. In the pre-voting phase the
voting machine generates for every candidate p; (j € {1,...,l}, [is the number
of candidates) k (k is the number of voters) random values n; ; (i € {1,...,k},
Jje{l,...,1}). It commits to the k- [pairs (n;;,p;) and publishes the shuffled
commitments.

In the voting phase, the voter enters the voting booth and selects the candidate
he wants to vote for on the voting machine. The RNG generates a random number
r which is transmitted to the voting machine and displayed to the voter. The
voting machine chooses for each candidate, except for the voter’s choice, a dummy

vote. For the chosen candidate, the random value from the RNG is used and

88

3.3. A Formal Taxonomy of Privacy in Voting

the receipt is created. Finally the voter checks that the number displayed on the
RNG corresponds to the entry of his candidate on the receipt.

In the post-voting phase, the voting machine announces the result, publishes all
receipts, and opens the commitments of all unused dummy votes. The machine also
generates non-interactive zero-knowledge proofs that each unopened commitment

was actually used as a dummy vote in one of the receipts.

Model in the Applied 7-Calculus. As we are only interested in privacy, we
ignore the zero-knowledge proofs which are necessary to achieve verifiability. This

yields a very simple equational theory:
open(commit(m,r),r) = m

We assume the voting machine to be honest, otherwise no privacy can be guaran-
teed as the vote is submitted in clear by the voter. To model the voting booth,
we use private channels between the voting machine and the voter, between
the voter and the RNG, and between the RNG and the voting machine. To
achieve better readability we use the macros for and parfor (similar to [MR10])
where e.g. for (i = 1 to 2) out(ch, i) corresponds to out(ch, 1).out(ch, 2)
and parfor (i = 1 to 2) out(ch, i) corresponds to (out(ch, 1) | out(ch, 2)).

Additionally we use a function choose where

rifi=j
choose(p;, pj, z,y) =
y otherwise

Our model depends on two parameters: k (the number of voters) and [(the

number of candidates).

The main process (Listing |3.14 on the next page]) sets up the private channels

and executes the participating processes (the voting machine, three voters, and
three RNGs) in parallel.
The RNG (Listing [3.15 on the following page|) generates a random number

and sends it to the voting machine and the voter over private channels.

The voter (Listing [3.16 on page 91)) sends his vote to the voting machine,

receives the random number from the RNG and the receipt.

The Vb2 process (Listing [3.17 on page 91)) simulates a coerced voter. He

follows the same protocol, but votes for the candidate the coercer tells him and

forwards the receipt and the random number.

The voting machine (Listing [3.19 on page 93)) generates the dummy votes and

publishes the corresponding commitments. Then k sub-processes interact with
the voters, i.e. create the receipts. After all voting has been done, they publish

the result, the receipts and the unused dummies in random order. Note that

89

© 00 ~J O Ut = W N

[I N R R e T e T e e e e
W N = O © 00 3O Ui W N = O

3. eVoting

(* private channels x)
vprivChM; . vprivChMs . v privChMsg.
vprivChRM; . vprivChRMy . v privChRMs .
vprivChRq .vprivChRs.v privChRg.
(¥ voting machine)
(processM |
(* RNGs x)
(let privChM = privChRM; in
let privChV = privChR; in processRNG) |
(let privChM = privChRM; in
let privChV = privChRs in processRNG) |
(let privChM = privChRM3 in
let privChV = privChR3 in processRNG) |
(*+ voters x)
(let privChM = privChM; in
let privChRNG = privChR; in
let v = p; in processV) |
(let privChM = privChMy in
let privChRNG = privChRs in
let v = p2 in processV) |
(let privChM = privChMs in
let privChRNG = privChRg3 in
let v = p3 in processV))

Listing 3.14 — The main process

processRNG =

(* generate random number x)
VT .

(* output to voting machine)
out (privChM ,r).

(* output to voter x)

out (privChV ,r)

Listing 3.15 — The random number generator (RNG)

90

© 00 3 O Ut = W N —

10
11
12
13
14
15

3.3. A Formal Taxonomy of Privacy in Voting

processV =
if v = abstain then
sync id;
else

(*+ voting x)
out (privChM ,v).
(* receipt =)
for(i =1 to 1)
in (privChM , receipt;)
(* random value, to verify receipt =)
in (privChRNG, r)

Listing 3.16 — The voting process

processVclc2 =
in(cl,x1).
if x1 = true then
sync id;
else
(*+ voting x)
in(cl,x2).
out (privChM, x2).
(% receipt =)
for(i =1 to 1)
in (privChM , receipt;).
out (c2,receipt;)
(* random value, to verify receipt =)
in (privChRNG,r).
out (c2,r)

Listing 3.17 — The process V%2

91

3. eVoting

processV '’ =
in(cl,x1).
(¥ voting)
if x1 = true then
out (privChM ,b).
(x random value, to verify receipt x*)
in (privChRNG,r).
(x receipt =)
for(i =1 to 1)

in (privChM , receipt;).
(* output nothing since claiming to abstain x)
else
in(cl,x2).
out (privChM ,b).
(x random value, to verify receipt x*)
in (privChRNG, 1).
(x receipt =)
for(i =1 to 1)
in (privChM , receipt;).
out (c2,receipt;)
(* output correct random value x)
for(i =1 to 1)
if (x2 = p;) then out(c2,receipt;)

Listing 3.18 — The process V'

92

3.3. A Formal Taxonomy of Privacy in Voting

processM’ =
in (privChV,v).in (privChR,r).
for(j =1 to 1)
let receipt; = choose(p;,v,r,n;;) in
out (privChV ,receipt;);
syncy 1.
(* output result =)
out(res,v)
(* output receipts x*)
for(j =1 to 1)
out (chRec, receipt;)
(*+ output unused dummy votes x)
parfor(j =1 to 1)
if v; #p; then out(chDum, ((n;;,p;j),commit((n;;,p;),Tij),Ti;))
processM’’ =
sync id;.
syncy 1.
(*+ output unused dummy votes x)
parfor(j =1 to 1)
out (ChDum, ((Ili’j 7pj) ,commit((nm 7pj) ,I’@j) ,ri,j))
processM =
(*+ prepare dummy votes)
for(i =1 to k)
for(j =1 to 1)
I/nivj . Vri,j .
parfor(i = 1 to k)
parfor(j =1 to 1)
out (ch ,Commit((nm ,pj> 7ri,j))
(*+ voting)
let privChV = privChM; in
let privChR = privChRM; in (processM’ | processM’’)

Listing 3.19 — The voting machine

93

3. eVoting

again any k out of the 2k synchronization points syncy 1 (as there are two voting
machine processes per voter each containing a syncy 1 command) are sufficient

for continuation.

Analysis. As announced above, Bingo Voting respects SwC R4,

Theorem 23 Bingo Voting respects SwCRVFA | i.e. Coercion-Resistance against

an inside attacker and security against forced abstention attacks.

Proof To show that Bingo Voting ensures SwCRDFA

C = vcy.wvep.(_|P) satisfying 7N fn(C) = 0 and

, we show that for any

veh (C [V 2] [Vip {b/o} [VEH | M=z 1=2| Ra| Rp|Rc)
~

vch. (Vi {a/u}" |V {b/o} [VE"? | My—s 1—o| Ra| Rg| Rc)

we have
C [V/] \out(che,") ~ Vi {b/v}
and
veh. (C [V VB {Y/u} [VE"™ [Mi=s 12| Ra| RB| Rc)
~l
veh (C'[V'] |V {afo} VS| Mg=3,1=2| Ra|RB|Rc)
where
vch = vprivChM,.vprivChM,.vprivChM,.
vprivChRM, .vprivChRM,.vprivChRM;.
vprivChR,.vprivChR,.vprivChR,
Va = processV {privChMi/privChM, privChR1 [privChRNG }
Ve = processV {privChMs/privCchM, privChRs /privChRNG }
Vo = processV {privChMs/privchM, privChRs/privChRNG }
V' = processV {privChMi/privchM , PrivChR1 [privChRNG}
R4 = processRNG {privChRMi /privChM , PrivChR1 [privChV }
Rp = processRNG {privChRMz/prinChM, PrivChR2/privChV }
Rc = processRNG {privChRM3/privChM, PrivChRs[privChV }
My—y =y = processM{K/k,U/i}

This is technically only a valid proof for two honest voters and two candidates,
however a similar proof can be done for an arbitrary number of voters and
candidates. In Section [3.:4.4] we also show that Bingo Voting is modular, which
directly generalizes this proof to an arbitrary number of honest voters.

It is easy to see that C [V7]\ut(¢he)

of V' on c1 and all outputs on c2, we obtain V4 as both cases (abstention or not)

~) V4 {b/v} holds. If we ignore all inputs

coincide.

94

3.3. A Formal Taxonomy of Privacy in Voting

We now have to show that the last equivalence holds. As before, we denote the
left hand side P and the right hand side). For better readability we concentrate
on the important steps. At the beginning the voting machine publishes all
commitments; then the voters enter the voting booth and vote. We consider
only two candidates, thus a = p1, a = py or a = abstain (similarly for b, except
b # abstain). Here we concentrate on the cases a = p2, b = p; and a = abstain,

b = p1, the other cases are similar.

— We start with a = py, b = p;. Since all communication inside the booth takes
place over internal channels which yield internal reductions (we do not detail
this part) and first condition on C' ensures that the targeted voter is forced to

vote a, we obtain the following two frames:

¢l = y;f;.f.ﬁ‘({commit((nLl,pl),TLl)/ml} | {commit((ng,l,pl),r271)/x2} ‘
{commit((n;;,l,p1)7r371)/x3} ’ {commit((nl,g,p2)7r172)/x4} ‘

{Commit((ngg,pz),ng)/xs} ’ {commit((n3,2,p2)17’3,2)/x6} ‘

{m/ar} [{mzfws} [{r1/ao})

¢r = vI.F.0.({commit((n1,1,p1),m1,1) [z, } | {commit((n2,1,p1)72,1) /s } |
{commit((n;;,l,pl),rg,l)/x?)} ’ {commit((nl,z,Pz),rl,2)/z4} ‘

{commit((ngg,pz),rgg)/zs} ’ {commit((ﬂ3,2,P2)7T3,2)/1'6} ‘
{rafaz} [{r/as} [{m11/ao})

Obviously both frames are statically equivalent. Note that at this point no
information about Vg and his vote is available. Now the attacker has to vote
himself or abstain, otherwise the voting machines are unable to synchronize
and block.

— If he abstains, he can synchronize with processM’, and we obtain the

following final frames:

@) = va.r.n.({commit((ni1,p1)r1,0) [z } | {commit((nz,1,p1),r2,1) [z } |
{commit((ng’l,pl),rgyl)/m3} | {commit((nLQ,pg),r172)/m4} |

{commit((nz,z,pg),r272)/x5} | {commit((n3,2,P2)77“3,2)/;p6} ’

{m/er} [{mafws} [{r1/ao} |
{P1/w10} [{P2fon} |
{r1/wa} [{m2fwrs} [{m20/wa} [{r2/ms} |

{((n1,1,p1),commit((n1,1,p1),71,1),m1,1) 216} |

{((n3,1,p1),commit((n3,1,p1),73,1):73,1)/z17 } |

{((n2,2,p2),commit((n2,2,p2),72,2):72,2) /15 } |
() (

{((n3,2,p2),commit((n3,2,p2),73,2),73,2) [214 })

95

3. eVoting

¢l = vi.7.n.({commit((n1,1,p1)r1,1) [z, } | {commit((n2,1,p1),r2,1) [z, } |
{commit((ngyl,pl),rgyl)/m))} ‘ {commit((nLg,pg),rlyz)/m} ‘

{Comm’it((ngg,pg),’r‘g’g)/a%} | {Commit((n3,2,pz),TS,Q)/xfj} |

{maafer} [{r/es} | {mra/ao} |
{P1/z10} [{P2/en} |
{mrfasz} [{m/eis} [{r2fore} [{n22/ers} |

{((ng,l,pl),commit((nz,l,p1),7“2,1),r2,1)/xl6} |
{((n3,1,p1),commit((n3,1,p1),73,1),73,1) [217) } |
{((77»1,2:p2)700mmit((n1,27p2),7'1,2)77'1,2)/x18)} ‘

(

{((n3,2,p2),commit((n3,2,p2),73,2):73,2) [w19) })
It is easy to see that these frames are statically equivalent.

— If the corrupted voter votes, he cannot relate his vote in any way to Va’s
vote, as the receipts are meaningless to him and he has to submit his vote
in clear. Suppose that he votes for p; (the other case is similar). We obtain

the following final frames.

@) = va.r.n.({commit((ni,1,p1),r1,1) [z } | {commit((n2,1,01),r2,1) [z, } |
{commit((ng,l,pl),rg’l)/zg)} ‘ {commit((nl,g,pg),rl,z)/JM} ‘

{Commit((n2’2,pg),’r‘g’z)/x5} ‘ {Commit((n3,27p2)7r3,2)/;p6} |

{rifwr} [{m2fas} [{r1/zo} |

{r3/ar0} [{ra.2/on} | {73/e12} |

{p1/a1s} [{P1/era} [{P2/215} |

{rifwis} [{m2/arr} [{P21/ers} [{2/} [{73/220} [{8.2/wa1 } |
{((n1,1,p1),commit((n1,1,p1),71,1),71,1) /295 } |
{((n3,1,p1),commit((ns,1,p1),73,1),73,1) /293 } |

{((nz,z,P2),Commit((n2,2,pQ),Tz,z),Tz,Q)/z24})

¢l = vi.r.n.({commit((n1,1,p1),71,1) /2, } | {commit((n2,1,p1),m2,1) [z, } |
{commit((ngyl,pl),rgyl)/$3} ‘ {commit((nLg,pg),rlyz)/m} ‘

{commit((n2,2,p2),72,2) /a5 } | {commit((ns2.p2)73.2) [} |
{riafar} [{r1/as} [{m11/ao} |

{r3/zro} [{na.2/en} | {73/e12} |

{p1/ars} | {P1/era} [{P2/215} |

{mafais} [{r/arr} [{r2/es} [{22/210} [{8/w0} [{m8.2/21 } |

{((m,l7p1),commit((nz,1,p1),rz,1),7’2,1)/m22} |
{((n3,17p1)760mmit((713,1,p1)7T3,1),T3,1)/x23)} ‘

{((n1,2,p2),commit((n1,2,p2),71,2):71,2) [w24) })

The election outcome and the data published by the voting machine do not

help the attacker in distinguishing both cases. He can verify if the receipt

96

3.3. A Formal Taxonomy of Privacy in Voting

by the coerced voter was correct (which it is), but he still does not know if
the numbers on the receipt are unrevealed commitments or fresh random

numbers.

— Consider now the case a = abstain, b = p;. Since all communication inside
the booth takes place over internal channels which yield internal reductions
(we again do not detail this part) and first condition on C ensures that the
targeted voter is forced to abstain. Hence he does reveal any receipt (nor does

V'), thus we obtain the following two frames:

o1 = va.7Fa.({commit((ni,1,p1),r10) [z } | {commit((n2,1,p1),r2,1) /2, } |
{commit((n3’1,pl),T371)/$3} | {commit((nl,g,pg),m’g)/x‘l} ‘

{commit((n2,2,p2),72,2) /25 } | { commit((n3,2,p2),73,2) /2 })

¢r = yj.f.ﬁ'({commit((nLl,pl),rLl)/zl} ’ {commit((n;l,pl),rg’l)/la} ‘
{commit((n&l,pl),r371)/x3} | {commit((nl,g,pz),m,g)/wél} ‘

{commit((n2,2,p2),r2,2) /x5 } | {commit((n3,2,p2),r3,2) /6 })

Both frames are syntactically equivalent, hence also statically equivalent. Thus
that at this point no information about Vg and his vote is available.

Now the attacker has to vote himself or abstain, otherwise the voting machines
are unable to synchronize and block.

— If he abstains, he can synchronize with processM’, and we obtain the

following final frames:

@) = V... ({commit((n,1,01):r1,0) /o, } | {commit((n2,1,01)ir2,1) /s } |
{commit((n3,1,p1),73,1) /x5 } | {commit((n1,2,p2),m1,2) /a4 } |
{commzt((n2,27p2 2.2 /1,5} ’ {commzt((n3,2,p2 3,2 /xG} ’

{p1/ar} |
{r2/as} [{m22/a0} |

n1,1,p1),commit((n1,1,p1),71,1),71,1) [210 } |

{« (
{((n2,1,p1),commit((n2,1,p1),72,1):72,1) /1 } |
{((

)

)

n3,1,p1),commit((ns,1,p1),r3,1),73, 1)/x12} ’

{((n1 2,p2),commit((n1,2,p2),r1,2),71,2 /$13} |
)

{((n3,2,p2),commit((n3,2,p2),73,2),73,2) [214 })

97

3. eVoting

¢l = vi.7.n.({commit((n1,1,p1)r1,1) [z, } | {commit((n2,1,p1),r2,1) [z, } |
{commit((ngyl,pl),rgyl)/m))} ‘ {commit((nLg,pg),rlyz)/m} ‘

{Comm’it((ngg,pg),’r‘g’g)/a%} | {Commit((n3,2,pz),TS,Q)/xfj} |

{p1/az} |

{r1/es} | {m12/zo} |

{((n1,1,p1),commit((n1,1,p1),71,1)m1,1) 210 } |

{((n2,1,p1),commit((n2,1,p1),72,1),72,1) 21, } |

{((n3,1,p1),commit((n3,1,p1),73,1),73,1) [12) } |

{((m 2,p2),commit((n2,2,p2),r2,2),r2,2 /x13 } ‘
(

{((n3,2,p2),commit((n3,2,p2),73,2):73,2) [w14) })
It is easy to see that these frames are statically equivalent.

— If the corrupted voter votes, he cannot relate his vote in any way to Va’s
vote, as the receipts are meaningless to him and he has to submit his vote
in clear. Suppose that he votes for p; (the other case is similar). We obtain

the following final frames.

@) = va.r.n.({commit((ni,1,p1),r1,1) [z } | {commit((n2,1,01),r2,1) [z, } |
{commit((ng,l,pl),rg’l)/zg)} ‘ {commit((nl,g,pg),rl,z)/JM} ‘

{Commit((n2’2,pg),’r‘g’z)/x5} ‘ {Commit((n3,27p2)7r3,2)/;p6} |

{ra/wr} [{ma2/es} | {ra/eo} |
{P1/z10} [{P1/zn} |
{r2/miz} [{m22/wia} [{r3/e1a} [{Ma2/15} |

{((n1,1,p1),commit((n1,1,p1),71,1),71,1) 216 } |
{((n2,1,p1),commit((n2,1,p1),72,1),72,1) 217 } |
3.1)
)1

{ 1)/ w1s |
{

(
((n3,1,p1),commit((ns3,1,p1),r3,1
((n1,2,p2),commit((ny,2,p2),r1,2),71, /1'19})

¢l = vi.r.n.({commit((n1,1,p1),71,1) /2, } | {commit((n2,1,p1),m2,1) [z, } |
{commit((ngyl,pl),rgyl)/$3} ‘ {commit((nLg,pg),rlyz)/m} ‘

{commit((ng,g,pg),rg’g)/xka} | {commit((n3,2,pg),r‘g,z)/xfj} |

{rs/wr} [{ma2/es} | {rs/eo} |
{P1/z10} [{P1/zn} |
{m/ez} [{m2feis} [{ra/era} [{na2/eis} |

{((m,l7p1),00mmit((n1,1,p1),7“1,1),1“1,1)/ggl6} |
{((m,l7p1),commit((nz,1,p1),rz,1),7’2,1)/m17} |
{((n3 1,p1),commit((n3,1,p1),r3,1),73,1 /xls } ‘
(

{((n2,2,p2),commit((n2,2,p2),r2,2):72,2) [x19) })

Again, the election outcome and the data published by the voting machine

do not help the attacker in distinguishing both cases. He can see that one

98

3.3. A Formal Taxonomy of Privacy in Voting

other voter voted for candidate one, but he cannot decide which one. [

Note that in this case we implicitly assume that the attacker does not know if
a voter enters the voting booth, which is not necessarily a realistic assumption.
To address this, we can modify e.g. the voters process, or the voting machine to
announce the list of participantsﬂ (see Listing . In this case we still have
SwCRIPO je. Coercion-Resistance against an inside attacker, but no security

against forced-abstention attacks any more.

Theorem 24 Bingo Voting with voter lists respects SwCRHPO | i.e. Coercion-

Resistance against an inside attacker in the Participation Only case.

Proof To show that Bingo Voting with voter lists ensures SwCRHTO | we show
that for any C' = vey.wves.(_|P) satisfying 7N fn(C) = () and

veh. (C [V 2] [V {0/} [VEH? [Mik=3,=2|Ra|R5|Rc)
~

vch. (Vi {0/} |V ()0} |VSH?| Mly=3,1=2| R4|RB|Rc)

we have
C [V/] \out(che,") ~, Vs {b/v}
and
veh (CVA" 2] [V Yo} [VE"™ | Mlk=s,1=2| Ra| Rp| Ro)
~l
veh. (C[V'] [V {a/o} [VEH [Mlg=31=2|Ra| Rp|Rc)
where
vch = vprivChM,.vprivChM,.vprivChM,.
vprivChRM, .vprivChRM,.vprivChRlM;.
vprivChR,.vprivChR,.vprivChR,
Va = processV {privChMi/privChM, PrivChRi [privChRNG }
Ve = processV {privChMsz/privchM, privChRs /privChRNG}
Vo = processV {privChMs/privChM, privChR3/prinChRNG }
V' = processV {privChMi /privchM, PrivChR1 [privChRNG}
R4 = processRNG {privChRM [privChM, PrivChR1 [privChV }
Rp = processRNG {privChRMz/prinChM, PrivChRe/privChV }
Rc = processRNG {privChRM3 [privChM , PrivChRs/privChV }
Mlg—ps =y = processMl{¥/k,'/i}

Again, we mark differences to the above proof in bold.

9This is for example a legal requirement for public elections in France [Era69].

99

© 00 O O i W N~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

3. eVoting

processM1’ =
in (privChV ,v).in (privChR,r).
for(j =1 to 1)
let receipt; = choose(p;,v,r,n;;) in
out (privChV ,receipt;);
syncy 1.
(* output result x*)
out(res ,v)
(% output voter list x)
out (voters ,id;)
(% output receipts)
for(j =1 to 1)
out (chRec,receipt;)
(* output unused dummy votes)
parfor(j =1 to 1)
if v;#p; then out(chDum, ((n;;,p;),commit((n;;,p;),Tij),Tij))
processMl’’ =
sync id;.
syncy 1.
(* output unused dummy votes)
parfor(j =1 to 1)
out (chDum, ((n;;,p;),commit ((n;;,p;),rij),Tij))
processMl] =
(* prepare dummy votes)
for(i =1 to k)
for(j =1 to 1)
vng .VIrig.
parfor (i = 1 to k)
parfor(j =1 to 1)
out (ch,commit ((n;;,pj),1i;))
(*+ voting)
let privChV = privChM; in
let privChR = privChRM; in (processMl’ | processMl’”)

Listing 3.20 — The voting machine announcing a voter list

100

3.3. A Formal Taxonomy of Privacy in Voting

This is technically only a valid proof for two honest voters and two candidates,
however a similar proof can be done for an arbitrary number of voters and

candidates.

It is easy to see that C [V/]*“H ") ~, v, {b/v} holds. If we ignore all inputs
of V' on c1 and all outputs on c2, we obtain V4 as both cases (abstention or not)

coincide.

We now have to show that the last equivalence holds. As before, we denote the
left hand side P and the right hand side (). For better readability we concentrate
on the important steps. At the beginning the voting machine publishes all
commitments; then the voters enter the voting booth and vote. We consider only
two candidates, thus b = p; or b = po (similarly for a). Here we will look at the
case b = po and a = pi, the other cases are similar. Since all communication
inside the booth takes place over internal channels which yield internal reductions
(we do not detail this part) and first condition on C ensures that the targeted

voter is forced to vote a, we obtain the following two frames:

(Z)l = yj'.f'ﬁ'({commit((nl,l,pl),rl’l)/zl} ’ {commit((ng,l,pl),rg’l)/$2} ‘
{commit((ng,l,pl),r371)/x3} ’ {commit((nl,g,pg),m’g)/x‘l} ‘

{commit((ng,g,p2)7r272)/x5} ’ {commit((ng,g,pg),7‘3’2)/336} ‘

{m/er} [{m2fus} [{r1/20})

¢r = yj'f.ﬁ‘({commit((nl,l,pl),rLl)/xl} ’ {commit((ng,l,p1),r2’1)/x2} |
{commit((n&l,p1)7r371)/x3} ’ {commit((nLg,pg),r1,2)/x4} ‘
{Commit((ngz,p2),7’272)/x5} ’ {commz’t((n&z,pg),mg)/xs} ‘

{mafar} | {ra/ws} [{m11/2o})

Obviously both frames are statically equivalent. Note that at this point no
information about Vg and his vote is available. Now the attacker has to vote
himself or abstain, otherwise the voting machines are unable to synchronize and

block.

— If he abstains, he can synchronize with processMI1”’, and we obtain the following

final frames:

101

3. eVoting

@) = vi.r.n.({commit((ni,1,01),r1,1) [} | {commit((n2,1,01),72,1) [z } |
{commit((n3,1,pl),rgyl)/x?)} ‘ {commit((an,pz),?’1,2)/;v4} ‘

{Commit((’nz’Q,pg),T‘Q’Q)/w5} | {commit((ng,g,pg),rg,z)/xfj} |

{r1/wr} [{m2/es} | {1/} |

{P1/z10} [{P2/an} |

{id/wrz} | {id2/15} |

{r1/wa} [{m2fars} [{m2a/ais} [{m2/aar} |

{((m,l7p1),commit((n1,1,p1),r1 1),m1 1)/118} |

{((TZB,l7P1),C0mmit((n3,1ypl ,73,1),73, 1)/9019} ‘

{((n2,2,p2),commit((n2 2,02),r2,2),72, 2)/9520} ‘
(

{((n3,2,p2),commit((n3,2,p2),73,2),73,2) [0, })

(ZS;* = UT.F.0. ({commit((n1 1,P1),71,1 /1;1} ‘ {commit((nz 1,P1),r2,1 /xQ} ‘
{commlt((ng 1,P1),73,1 /333} ‘ {commlt n1,2,p2), /334} |

{commzt((nz,z,pz),m,z /;p5} | {commzt((ng,g,pg ,T3,2 /QUG} |

{mafer} [{r/es} | {m11/zo} |

{P1/z10} [{P2/wn} |

{id1/w1} | {id2/215} |

{rafena} [{r1/ais} [{m2/mie} | {n22/a1r} |

{((n2,17p1),commit((n2,17171)77’2,1)77“2,1)/118} |
{((n3,1,p1),commit((n3,1,p1),73,1):73,1) /z19) } |
{((n1,27}02),Commit((m,Q7p2),7"1,2),7“1,2)/g;20)} |

{((n3,2,p2),commit((n3,2,p2),73,2),73,2) [291) })
It is easy to see that these frames are statically equivalent.

— If the corrupted voter votes, he cannot relate his vote in any way to Va’s
vote, as the receipts are meaningless to him and he has to submit his vote in
clear. Suppose that he votes for p; (the other case is similar). We obtain the
following final frames.

d)i = yj‘_f.ﬁ'({commit((nlJ,p1),r1’1)/w1} | {commit((nQJ,p1),r2,1)/m2} |
{commit((ng,l,p1)7r311)/x3} | {commit((nl,g,pg),rl,g)/x4} |

{COmmit((n272,p2),T2,2)/x5} ‘ {commit((ng,g,pg),?‘3,2)/x6} |

{r1/ar} [{m2fus} [{r1/eo} |

{rs/wio} [{ma:2farn} [{m3/212} |

{P/ers} [{P1/era} [{P2/ers} |

{id1/w1e} | {id2/z17} | {ids/w1s} |

{r1/a1o} [{m2/as} [{m2:1/wa} [{r2fwaa} [{ra/wzs} | {n32/w2e} |

{((n1,1,p1),commit((n1,1,p1),71,1),71,1) 205 } |
{((n3,1,p1),commit((n3,1,p1),73,1),73,1) /o } |

{((n2,2,P2)7commit((n2,2,p2),T2,2),7’2,2)/x27})

102

3.3. A Formal Taxonomy of Privacy in Voting

@l = vi.r.n.({commit((n1,1,p1),71,1) /2, } | {commit((n2,1,p1),72,1) [z, } |
{commit((nz,1,p1),r3,1) /5 } | {commit((n1,2,p2),71,2) /24 } |
{commit((n2,2,p2),72,2) /x5 } | {commit((n3,2,p2),73,2) /g } |

{ruafar} [{m1/est [{m11/zo} |

{r3/aro} [{na.2/en} | {73/e1} |

{pr/fwis} [{P1/era} [{P2/215} |

{id1/z16} | {id2/217} | {id8/215} |

{ruafaio} [{m1/a} [{r2/wan } [{n22/w2} [{73/225} [{0.2/w2u} |

{((n2,1,Pl),commit((m,l,pl),T2,1),T2,1)/x25} ‘
{((n3,1,p1),commit((n3,1,p1),73,1):73,1) /226) } |

{((711,27102),COmmit((nl,z,p2),7“1,2),1“1,2)/127)})

Again, the election outcome and the published data do not help the attacker
in distinguishing both cases. He can verify if the receipt by the coerced voter
was correct (which it is), but he still does not know if the numbers on the

receipt are unrevealed commitments or fresh random numbers. O

§ 3.3.5.4. Protocol by Lee, Boyd, Dawson, Kim, Yang and Yoo. The
protocol by Lee, Boyd, Dawson, Kim, Yang and Yoo [LBD™03] was shown to be
Coercion-Resistant in the DKR-model [DKR09]. Yet the protocol is neither secure
against an inside attacker nor against forced-abstention attacks, as we show. It is
based on trusted devices that re-encrypt ballots and prove their correct behavior

to the voter using designated verifier proofs (DVPs).

Protocol Description. We simplified the protocol to focus on the important
parts with respect to privacy. For example, we do not consider distributed

authorities, but model them as one honest authority.

— The administrator sets up the election, distributes keys and registers legitimate
voters. Each voter is equipped with his personal trusted device. At the end,

he publishes a list of legitimate voters and corresponding trusted devices.

— The voter encrypts his vote with the tallier’s public key (using the El Gamal
scheme), signs it and sends it to his trusted device over a private channel.
The trusted device verifies the signature, re-encrypts and signs the vote, and
returns it, together with a DVP that the re-encryption is correct, to the voter.
The voter verifies the signature and the proof, double signs the ballot and

publishes it on the bulletin board.

— The administrator verifies for all ballots if the voter has the right to vote and
if the vote is correctly signed. He publishes the list of correct ballots, which is
then shuffled by the mixer.

103

3. eVoting

— The tallier decrypts the mixed votes and publishes the result.

In the following we use a simplified protocol similar to the one was proposed by
Delaune et al. [DKR09]: the administrator, the mixer and the tallier are replaced

by one honest collector which executes the last two steps.

Model in Applied Pi Calculus. We use a model similar to the one developed
by Delaune et al. [DKR09], but we include signatures by the voters on the
submitted ballots and add a third voter. This model is closer to the original

protocol description. It uses the following equational theory:

decrypt(penc(m, pk(sk),r), sk) =m
checksign(sign(m, sk), pk(sk)) =m
rencrypt(penc(m, pk(sk),rl),r2) = penc(m, pk(sk), f(rl,r2))
checkdvp(dvp(z, rencrypt(z,r),r, pk(sk)), z, rencrypt(z, r), pk(sk)) = ok
checkdvp(dvp(z,y, 2, skv), z,y, pk(skv)) = ok

These equations are standard, except for the reencryption and DVPs. The function
reencrypt models reencryption usig a new random value. The second to last
equation allows to verify a DVP of reencryption, and the last equation allows the
designated verifier to forge a DVP for a different value using his secret key.

We then use the following processes:

The main process (Listing [3.21 on the facing page)) sets up the private channels

and executes the participating processes (three voters, three mixers, three talliers

- one for each voter - and the keying process).

The keying process (Listing [3.22 on page 106|) creates the private keys, dis-

tributes them over private channels and publishes the corresponding public keys.

FEach voter is equipped with his private key, the tallier’s public key and the public

key of his trusted device. Listing [3.23 on page 107|is variant of the keying process

for two voters.

The voter process (Listing|3.24 on page 107)) receives the necessary keys. Then

he encrypts his votes, signs it and sends it over a private channel to his trusted
device. When he receives the answer, he checks the DVP, double signs the ballot
and sends it to the mixer (which corresponds to the publication on the bulletin
board).

The trusted device (Listing |3.26 on page 108)) receives his private and the

voter’s public key. When he receives an encrypted ballot from the voter, he checks
the signature, re-encrypts the message, signs it and establishes a DVP to prove

the correctness of his re-encryption. The result is send back to the voter.

The process in Listing [3.27 on page 109 models a voter controlled by the

attacker. This process is obtained when calculating processV®“? as defined in

Definition Note that his trusted device is not assumed to be

104

© 00 O U = W N~

N N T N R O e T s T e T e T o S ey
N = O © 00 J O U i W N~ O

3.3. A Formal Taxonomy of Privacy in Voting

(x private channels x)

vskcCh . vpkcCh.vvotCh.

vskvaCh .vskvbCh .vskveCh.

vskdaCh . vskdbCh . vskdcCh .

vpkvaCh .vpkvbCh.vpkveCh.

vpkdaCh . vpkdbCh . vpkdcCh.

(*+ administrators x)

(processK | processC | processC | processC |
(% voters x)

(let skvCh = skvaCh in let pkdCh = pkdaCh in
let v = a in processV) |

(let skvCh = skvbCh in let pkdCh = pkdbCh in
let v= Db in processV) |

(let skvCh = skveCh in let pkdCh = pkdcCh in
let v = ¢ in processV) |

(+ trusted devices x)

(let skdCh = skdaCh in

let pkvCh = pkvaCh in processD) |

(let skdCh = skdbCh in

let pkvCh = pkvbCh in processD) |

(let skdCh = skdcCh in

let pkvCh = pkvcCh in processD))

Listing 3.21 — The main process

corrupted.

The collector (Listing [3.29 on page 110)) receives the key pair corresponding

to a legitimate voter (the public keys of the voter and his trusted device) and
his private key. When receives ballot, he checks the signatures and decrypts the
ballots. He publishes the result on a public channel (which emulates the bulletin
board).

Analysis. We note that the protocol also ensures Coercion-Resistance in our
model: it ensures SwC RO, This result was already shown in [DKR09], however
using a different model. We prove that the result also holds in our model, and
then show that the protocol is not secure against inside attackers as vote-copying
attacks are possible. The main difference to the model used in [DKR09] is that
in our model the voters sign the re-encrypted ballots, as in the original protocol
description. This is important with respect to vote-copying and forced abstention

attacks, as the signatures allow the attacker to link the ballots to the voters.

Theorem 25 The protocol by Lee et al. respects SwC RO (Swap-Coercion-

Resistance against an outside attacker in the Participation Only case).

Proof We suppose that all authorities are honest and that all key distribution

105

3. eVoting

processK =

(x private keys)
vskc.vskva.vskvb.vskve.vskda.vskdb.vskdc.
(* public keys x)

let (pkc,pkva,pkvb,pkve,pkda,pkdb,pkde)
= (pk(skc),pk(skva),pk(skvb),pk(skvc),

pk(skda) ,pk(skdb),pk(skdc)) in
(* public key disclosure x)
out (ch,pke).

out (ch,pkva).out(ch,pkvb).out(ch,pkvc).
out (ch,pkda).out (ch,pkdb).out(ch,pkdc).
(x distribute keys: x)

(x voters x)

(out (skvaCh,skva) | out(skvbCh,skvb) | out(skveCh,skvc)
out (pkdaCh,pkda) | out(pkdbCh,pkdb) | out(pkdcCh, pkdc)
out (pkcCh , pkc) | out (pkcCh, pke) | out (pkcCh, pke)

(* trusted devices x)

out (skdaCh,skva) | out(skdbCh,skvb) | out(skdcCh,skvc)
out (pkvaCh,pkva) | out(pkvbCh,pkvb) | out(pkvcCh, pkvc)

(x collectors x)
out (votCh, (pkva,pkda)) |
out (votCh, (pkvb ,pkdb)) |
out (votCh, (pkve,pkdc)) |
(

out (skcCh,skc) | out(skcCh,skc) | out(skcCh,skc))

Listing 3.22 — The key distribution process

106

3.3. A Formal Taxonomy of Privacy in Voting

processK2 =

(+ private keys x)

vskc .vskva.vskvb.vskda .vskdb.

(* public keys x)

let (pkc,pkva,pkvb,pkda,pkdb)
= (pk(skc),pk(skva),pk(skvb),pk(skda),pk(skdb)) in

(* public key disclosure x)

out (ch,pkc).

out (ch,pkva).out (ch,pkvb).out(ch,pkda).out(ch,pkdb).

(% distribute keys: x)

(* voters x)

(out (skvaCh,skva) | out(skvbCh,skvb) |
out (pkdaCh,pkda) | out(pkdbCh,pkdb) |
out (pkcCh, pke) | out (pkcCh, pkc)

(+ trusted devices x)
out (skdaCh,skva) | out(skdbCh,skvb) |
out (pkvaCh,pkva) | out(pkvbCh,pkvb) |

(* collectors x)
out (votCh, (pkva,pkda)) |
out (votCh, (pkvb,pkdb)) |
out (skcCh,skc) | out(skcCh,skc))

Listing 3.23 — The key distribution process for two voters

processV =
(¢ private key x)
in (skvCh,skv).
(*+ public keys of the trusted device and the collector x)
in (pkdCh, pubkd). in (pkcCh, pubke).
sync l.vr.
let e = penc(v,pubkc,r) in
out (chD, (pk(skv),e,sign(e,skv))).
in(chD,m2).
let (re,sd,dvpV) = m2 in
if checkdvp(dvpV,e,re,pk(skv)) = ok then
if checksign(sd,pubkd) = re then
out (chl,(re,sign(sd,skv)))

Listing 3.24 — The voting process

107

© 00 ~J O Ut = W N

10
11
12
13
14

© 00 3 O U = W N~

10
11
12
13
14
15

3. eVoting

processVche =
(x private key x)
in (skvCh,skv).out (chc,skv).

(* public keys of the trusted device and the collector)

in (pkdCh, pubkd). out (chc ,pubkd).

in (pktCh,pubkc). out (chc ,pubkc).

sync l.vr.out(chc,r).

let e = penc(v,pubkc,r) in

out (chD, (pk(skv),e,sign(e,skv))).

in (chD,m2).out (chc ,m2).

let (re,sd,dvpV) = m2 in

if checkdvp(dvpV,e,re,pk(skv)) = ok then
if checksign(sd,pubkd) = re then
out (chl,(re,sign(sd,skv)))

Listing 3.25 — The voting process revealing its secret data

processD =
(*+ private key =)
in (skdCh,skd).
(* public key of the voter x)
in (pkvCh, pubkv).
sync 1.
in (chD,ml).
let (pubv,enc,sig) = ml in
if pubv = pubkv then
if checksign(sig,pubkv) = enc then
vrl.
let reenc = rencrypt(enc,rl) in
let signD = sign(reenc,skd) in
let dvpD = dvp(enc,reenc,rl,pubkv) in
out (chD, (reenc ,signD ,dvpD))

Listing 3.26 — The trusted device process

108

© 00 3 O Ut = W N —

10
11
12
13
14
15
16

3.3. A Formal Taxonomy of Privacy in Voting

processVclc2 =
(+ private key x)
in (skvCh,skv).out(cl,skv).
(+ public keys of the trusted device and the collector x)
in (pkdCh,pubkd).out(cl,pubkd).
in (pkcCh, pubkec).out(cl,pubke).
sync l.vr.out(cl,r).
let e = penc(v,pubkc,r) in
in(c2,ml).out(chD,ml).
in (chD,m2).out(cl,m2).
let (re,sd,dvpV) = m2 in
in(c2,m3).
if m3 = true then
in(c2,m4).
if m4d = true then
in(c2,mb5).out(chl,mb)

Listing 3.27 — The voting process under control of the attacker

processV ’ =
(x+ private key x)
in (skvCh,skv).out(cl,skv).
(+ public keys of the trusted device and the tallier =)
in (pkdCh,pubkd).out(cl,pubkd).
in (pkcCh, pubkc).out(cl,pubke).
sync l.vr.out(cl,r).
let e = penc(v,pubkc,r) in
in(c2,ml).out(chD,(pk(skv),e,sign(e,skv))).
let (pka,ea,sa) = ml in
in (chD,m2).
let (re,sd,dvpV) = m2 in
if checkdvp(dvpV,e,re,pk(skv)) = ok then
if checksign(sd,pubkd) = re then
vr’.let fk = dvp(ea,re,r’,skv) in
out (cl,(re,sd,fk)).
in(c2,m3).
if m3 = true then
in(c2,m4).
if m4d = true then
in(c2,mb).out(chl,mj)

Listing 3.28 — The voting process resisting coercion

109

© 00 O U i W N~

10
11

3. eVoting

processC =

(x register legitimate voters)
in (votCh , (pubkv,pubkd)).

(x collector ’s secret key x)

in (skcCh, skt).

sync 1.
in (chl,ml).
let (enc,sig) = ml in

if checksign (checksign(sig ,pubkv),pubkd) = enc then
sync 2.
out (res ,decrypt (m,skc))

Listing 3.29 — The collector process

channels as well as the channel to the trusted device are private. We show that
there exists a process V' such that for all votes o,, and o,, where neither o,

nor o,, makes a voter abstain, the following holds:

For any context C' = vey.veg.(_|P') with N fn(C) = 0 and

S'[C(Voia)) VOianous) =i S [(Voia,00) ™V aiayou | (3.10)
we have
C V]V o Vo o0 (3.11)
and
S'CI(Voia,)2 Voiagous] 21 5" [C[V'] [VOiasou,] (3.12)
where
S" = wvch.(_|Da|Dg|processK2|processC|processC)
vch = vsktCh.rpktCh.vvotCh.vskvcCh.vchD.

vskvaCh.vskvbCh.vskdaCh.vskdbCh.
vpkvaCh.vpkvbCh.vpkdaCh.vpkdbCh
V = processV
Vv’ processV’ {skvaCh/skoCh, PkdaCh/pkdCh} oy,
Oid, = {skvaCl/skucn, pkdaChlpracn}

Oidy = {skvbCh/skah’ pkdbCh/pdeh}
D,y = processD {skdaCh/skaCh,PkvaCh/pkyCh}
Dp = processD {skdbCh/skdCh, PkvbCh/pkuCh}

This proof is technically only valid for two honest voters, however a similar proof

can be done for an arbitrary number of voters.

This proof is particularly challenging as we have to reason about all contexts

C that fulfill the above conditions. We start by analyzing how this context has to

110

3.3. A Formal Taxonomy of Privacy in Voting

behave, commencing our reasoning from the result. The first condition ensures
that the announced result at the end contains a vote v4 and a vote vg. As the
voter idp always votes vg, the context has to submit a vote for v4. Hence the
last message m5 must be a valid vote for v4. This also implies that messages m4

and m3 contain true, otherwise no vote is submitted.

As the trusted device’s keys are secret, the only way for the context to construct
a correct ballot is to submit it to the device. Otherwise he is unable to construct a
valid signature that can be accepted by the talliers. This implies that he submits

) che

a ballot containing v4 as message m1. As (Voiq,00, reveals all his data on

channel che, C [(Voiq,)*?] has to do the same. In particular he has to publish an

unsigned version of the ballot he later on submits (cf. Process|3.25 on page 108)),

hence he needs to output the ballot he gets back from the trusted device. The
other data he needs to publish on the channel are the secret key of the voter,
the public key of the device and a “random value” (like the one that is used to
encrypt the vote). The keys have to be correct as they can be compared to the
keys publish by the key distribution process, the “random value” can be anything

as long as the frame is statically equivalent to one with a random value.
Let us now consider the equations we need to prove.

For the first equation consider the processes V'. If we ignore all outputs
on c1 and inputs on c2, the process is equivalent to Vo;q,0,, until the final three
commands which depend on the inputs by the context. But there we can argue
as above that the context C[_| will provide the correct inputs, i.e. twice true

and finally the correctly signed ballot obtained from the trusted device.

For the second equation we have consider the possible transitions. As
before, we denote the left hand side P and the right hand side). Both sides
start by publishing the keys, and then distributing them over restricted channels
(yielding internal reductions). We do not detail this part for better readability. On
both sides C'[(V o4,)] and C [V'] respectively publish the keys they receive.
Then all processes synchronize, and the voters chose their random values (which
the voter under attack reveals) and send their ballots to the trusted devices
over the private channels. The trusted device answers with the signed and re-
randomized ballot and the DVP. The voters check the DVP and then send the
signed ballot to the collector. This also holds for the coerced voter as explained

above. We obtain the following frame on the left hand side:

o= I/C~h.1/f.({3kva/r1} | {pkda/zy} | {Phc/xs} | {7/za} |

{(penc(vaph(ske),f (r;r1)),sign(penc(v.a,pk(ske), f (r,r1)),skda),
dvp(penc(va p(ske),r),penc(vaph(ske),f(rr1)),r1pk(skva))) /s } |
{ (penc(va,ph(ske).f(r,r1)),sign(sign(penc(v.a,pk(ske),f (r,r1)),skda) skva) /g } |
{ (penc(vp ph(ske),f (rp,r1)),sign(sign(penc(vp ph(ske),f (rp,r1)),skdb),skvb) [, 1)

111

3. eVoting

where 7 contains all the fresh random values created by the processes. Note
that technically r is just a variable: the context can output a different value
indistinguishable from the original r output by (Vojq, 0, A)Chc, however this does
not affect our reasoning since the frame has to remain statically equivalent to this
one by . On the right hand side we have:

¢r = vehwF. ({skva/e, } | {Phda/z,} | {Phc/as} | {7/24} |

{(penc(vp ph(ske),f (r",r1)) sign(penc(ve pk(ske),f (" r1)),skda),
dvp(penc(v.,pk(ske),r).penc(vp ph(ske). f (" ;1)) skva)) s } |
{ (penc(vp ph(ske), f (" r1)) sign(sign(penc(vp ph(ske), (" 1)) skda),skva) /s } |
{ (penc(vaph(ske),f(rp 1)) sign(sign(penc(v.a,pk(ske), f (rp,r1)),skdb) skvb) [, })

Here again r is just a variable, we denote by r” the random value chosen by V’.

The above frames are statically equivalent as the context has no access to skc

or rl1, and in particular we have
checkdvp(third(xs), penc(va, pk(skc),r), first(zs), pk(skva) = ok

in both frames.

If the attacker forwards the ballots, the collectors check the signatures, syn-
chronize and publish the result: A vote v4 and a vote vg in both cases. If he does
not forward the ballots or inputs other (and hence incorrectly signed) values, the

collector(s) will block and cannot synchronize. O

Yet the protocol does not ensure simple Vote-Privacy against an inside attacker,
showing that the cases Insider and Outsider are distinct. As acknowledged by
the authors in their original paper [LBD™03], it is possible to copy votes. More
precisely, an attacker can access the ballots on the bulletin board before the
mixing takes place. He can easily verify which ballot belongs to which voter as
they are signed by the voters themselves. He can remove the signature and use
the ciphertext as an input to his trusted device. The trusted device will re-encrypt
and sign it. This allows the attacker to construct a correct ballot which contains
the same vote as the targeted honest voter. By submitting this ballot he obtains

a different election outcome in both cases of the observational equivalence.

Theorem 26 The protocol by Lee et al. does not respect SwV PHPO (Swap-Vote-

Privacy against an inside attacker in the Participation Only case).

Proof In our model this can be seen as follows. We suppose that all authorities

112

3.3. A Formal Taxonomy of Privacy in Voting

are honest and that all key distribution channels are private. We show that

veh. (Va{e/o} Vs {4/} VG| DalDp| DolA)

#
veh. (Va {b/v} Ve {a/o} VS| D 4| Dp|Dc|A)

where
vch = vskcCh.vpkcCh.vvotCh.
vskvaCh.vskvbCh.vskvcCh.vskdaCh.vskdbCh.vskdcCh.
vpkvaCh.vpkvbCh.vpkvcCh.vpkdaCh.vpkdbCh.vpkdcCh
A = (processK|processC|processC|processC)
V4 = processV{skvaCh/skuCh, PkdaCh/pkdCh}
Ve = processV {skvbCh/skuCh, PkdbCh/praCh}
Vo = processVclc2 {skveCh/skoCh, PkdcCh/pkdCh}
Dy = processD {skdaCh/sgaCh, PkvaCh/pryCh}
Dp = processD {skdbCh/skdCh, PkvbCh/pkvCh}
Do = processD {skdcCh/skdCh, pkvcCh/pkyCh}

As before, we denote the left hand side P and the right hand side Q. For better
readability we concentrate on the important steps. After key distribution, the
honest voters will execute the protocol with their trusted device and eventually

output the following messages on chi:

out(chl,z1) out(chl,zs)

P —*. . ="
vry.vre.wrs.wry.(Py|
{(penc(a.pk(skt), f (r1.72)).sign(sign(penc(a.ph(skt) £ (r1,r2)),shda),skva)) /o, } |
{(penc(bpk(skt). f (rs,r4)) sign(sign(penc(b.pk(skt).f (3,r4)).skdb).skvb)) [z, }

0 —* Ly out(chl,z1) out(chl,zz)

1/1"1.VT‘2.I/T3.1/7°4-(Q1|
{ (penc(b,pk(skt),f(r1,r2)),sign(sign(penc(b,pk(skt),f (r1,r2)),skda),skva)) [z, } |
{(Penc(a,pk(Skt),f(Ts,7“4))7Sign(Sig”(Penc(avpk(Skt)’f(7'37T4))*Skdb)’8kvb))/x2})

The attacker can now target e.g. voter V4 and copy his vote. Note that he
can identify which voter cast which ballot as they are signed and the keys pub-
licly available. Through Vi he submits penc(a, pk(skt), f(r1,72)) in the left
hand case or penc(b, pk(skt), f(r1,r2)) in the right hand case to D¢ and obtains
sign(penc(a, pk(skt), f(f(r1,r2),75)), skde) and penc(a, pk(skt), f(f(r1,r2),r5) or
sign(penc(b, pk(skt), f(f(r1,r2),75)), skdc) and penc(b, pk(skt), f(f(ri,72),75) re-
spectively, where r5 is a fresh name (nonce). He can then sign the message and

113

3. eVoting

Protocol Security Level | Comments

Bingo Voting [BMQRO07] | SwCRLF4 Trusted voting machine
& polling booth

- with voter lists SwCRHFPO Vulnerable to forced
abstention attacks

Lee et al. [LBDT03) SwC RO-FO Trusted randomizer,
vulnerable to vote-copying

Okamoto [Oka96] SwRFLPO Uses trap-door commitments

- variant SwRFLEFA Secure channel to trusted
administrator

Fujioka et al. [FOQO92] SwV p1.PO Based on blind signatures

- variant SwV phLiA Secure channel to trusted
administrator

Simple Voting Protocol, SwV po-ro The running example,

Example vulnerable to vote-copying

Table 3.1 — Results of the case studies

publish it on the bulletin board (i.e. send in on channel ch1):

(penc(a, pk(skt), f(f(r1,r2),75)),
sign(sign(penc(a, pk(skt), f(f(ri,72),r5)), skde), skvc))

or in the right hand case

(penc(b, pk(Skt)a f(f(rla T2)7 7’5)),
sign(sign(penc(b, pk(skt), f(f(r1,72),75)), skdc), skvc))

The collector will then check the signatures - which are apparently correct - and
publish the decrypted votes. On the left hand side, we will obtain two votes a
and one vote b, on the right hand side one vote for a and two votes for b. Thus

the frames are not statically equivalent, hence both sides are not bisimilar. [J

Additionally, this protocol is not secure against forced-abstention attacks as the
ballots on the bulletin board are signed by the voters. The attacker can thus

easily verify if a voter voted or not.

§ 3.3.5.5. Summary. In this section we presented a taxonomy of privacy
in eVoting protocols. Our taxonomy is based on three independent dimensions:
Communication between the voter and the attacker, inside or outside attacker,
and security against forced abstention attacks. We formalized a model for voting
protocols and the different notions in the Applied 7-Calculus.

To illustrate that the different dimensions of our taxonomy correspond to

114

3.4. Defining Privacy for Weighted Votes

different properties of existing protocols, we presented several case studies. The

results of these case studies are summed up in Table [3.1 on the facing pagel and

Figure

3.4 Defining Privacy for Weighted Votes

The definitions presented in the previous section are based on the idea of swapping
votes. Yet these definitions are unsuitable for some situations, for example in
companies where votes are weighted according to the proportion of shares held by
each shareholder. Consider the following example: Alice owns 50% of the stocks,
and Bob and Carol each hold 25%. The cases where Alice and Bob swap votes
are now easily distinguishable if for example Carol votes “yes” all the time, as
the result of the vote is different: 75% vs. 50% vote for “yes”. Note that there
are still situations where privacy is ensured in the sense that different situations
give the same result. The last outcome (50% yes, 50% no) could - for example -
also be announced if Alice votes “yes” and Bob and Carol vote “no”. Protocols
supporting vote weights have been proposed, for example Eliasson and Zuquete
[EZ06] developed a voting system supporting vote weights based on REVS [JZF03],
which itself is based on the protocol by Fujioka et al. [FO092].

To address this issue, we now present a generalization of previous notions
that takes weighted votes into account. Instead of requiring two executions where
voters swap votes to be bisimilar, we require two executions to be bisimilar if they
publish the same result, independent of the mapping between voters and votes.
We analyze the relationship of our notion to the previous swap-based ones and
give precise conditions for formally proving the equivalence between them. We
use a variant of the protocol by Eliasson and Zuquete [EZ06] as a case study for
our definition, and provide a partially automated proof using ProVerif.

Our privacy definition is based on the observation that - as the result of the
vote is always published - some knowledge about the voter’s choices can always be
inferred from the outcome. The classical example is the case of a unanimous vote
where the contents of all votes are revealed just by the result. Yet - as already
discussed in the above - there can also be other cases where some of the votes
can be inferred from the result, in particular in the case of weighted votes. If
for example Alice holds 66% of the shares and Bob 34%, both votes are always
revealed when announcing the result: If one option gets 66% and the other 34%,
it is clear which one was chosen by Alice or Bob. However, if we have a different
distribution of the shares (e.g. 50%, 25% and 25% as above), some privacy is still
possible as there are several situations with the same result. Thus our main idea:
If two instances of a protocol give the same result, an attacker should not be able

to distinguish them. Note that this includes the previous definitions where votes

115

3. eVoting

are swapped, if this gives the same result.

3.4.1 — Formal Definition

To express this formally, we need to define the result of an election. As defined
above, we suppose that the result is always published on a special channel res.
The following definition allows us to hide all channels except for a specified channel

¢, which we can use for example to reason about the result on channel res.

Definition 22 (P|.) Let P|. = vch.P where ch are all channels except for ¢, i.e.

we hide all channels except for c.

Now we can formally define our privacy notion: If two instances of a protocol give

the same result, they should be bisimilar.

Definition 23 (Vote-Privacy (VP)) A wvoting protocol ensures Vote-Privacy
(VP) if for any two instances VPA = l/ﬁ.(VJidlavfx | | Voigoua | AL] ... |
A;) and VPB = sz.(Vaidlale | ... | Voig,ou8 | A1 | ... | A1) we have

VPAHR ..o ~ VPBY|,.; = VPA~ VPB

where VPAH and VPBY are the honest voting processes corresponding to VPA
and V PB respectively.

Note that the test if the two instances give the same result is defined on the
honest voting processes, but the bisimilarity ensuring privacy is then required to
hold on the “normal” voting processes where some authorities can be dishonest.
This distinction is necessary as otherwise the hiding of all channels but the
result (VPAM|,.; and VPB|..,) in the test could produce instances that cannot
actually terminate as some authorities are not present, and the attacker cannot
simulate them as he does not have access to the channels.

A simple interpretation of this definition is that everything apart from the
result on channel res has to remain private. This obviously relies heavily on the
notion of “result” and the modeling of the protocol. Typically the result will
only contain the sum of all votes, which corresponds to a simple and intuitive
understanding of privacy.

Some protocols may leak some additional information, for example the number
of ballots on the bulletin board. For instance in the protocol by Juels et al.
[JCJO5] voters can post fake ballots. In this case, the above definition of the result
may lead to a too restrictive privacy notion, since two situations with the same
votes but a different number of fakes are required to be bisimilar. To address this
issue, we can include the number of ballots in the result if we want to accept the
additional leakage. This gives very fine-grained control about the level of privacy

we want to model.

116

3.4. Defining Privacy for Weighted Votes

Note that if the link between a voter and his vote is also published as part
of the result on channel res, our definition of privacy may be true although this
probably does not correspond to the intuitive understanding of privacy. This
is however coherent within the model since everything apart from the result is
private; simply the result itself leaks too much information.

Moreover, note that this approach to define privacy is not only limited to
voting, but can also be applied e.g. on auction protocols (see Section , or
other types of multi-party computation where several parties jointly compute a

public result based on private inputs.

3.4.2 — Example: A Variant of FOO

To show that our definition is applicable in practice, we now discuss an example:
Eliasson and Zuquete [EZ06] proposed an implementation of a voting system
supporting vote weights based on REVS [JZF03], which itself is based on the
protocol by Fujioka et al. [FOO92| discussed in Section

§ 3.4.2.1. Adding Vote Weights. In [EZ06] Eliasson and Ziquete discuss
several possibilities on how to implement weights in this protocol:
— including the weight in the vote (which requires trusting the voter for correct-

ness or zero-knowledge proofs to verify the weight)

— using different keys when the vote is signed by the administrator, where each

key corresponds to a different weight

— using multiple ballots per voter, i.e. if for example voter A holds 70% and
voter B 30% of the shares, voter A sends seven and voter B three ballots.
We implemented the latter variant in the Applied w-Calculus as a case study.
Note that there is also a variant of Helios supporting vote weights [ADMPQ09],
using a fourth approach: the voters vote normally, and the authorities multiply
the vote with its weight before tallying, exploiting the homomorphic property of

the encryption.

§ 3.4.2.2. Model and Analysis. We use the following equational theory and

model:
open(commit(m,r),r) = m
checksign(sign(m, sk),pk(sk)) = m
unblind(blind(m,r),r) = m
unblind(sign(blind(m,r),sk),r) = sign(m, sk)

The administrator (Listing [3.30 on the following page)) receives his private key

and the public key of a legitimate voter. When receives the blinded commitment,

he checks the signature, signs, and sends the result back.

117

T W N

© 00 J O U i W N~

3. eVoting

processA =
in(chl,ml).
let (pubkeyv,sig,blindedvote) = ml in
if pubkeyv = pkv && blindedvote = checksign (sig ,pkv) then
out (ch2,sign(blindedvote ,ska))
Listing 3.30 — The administrator process
processC =
synch 1.
in (ch3,(m3,m4)).
if checksign(m4,pka) = m3 then
vl.out(ch4,(1,m3,m4)).
in(ch5, (1’,rand)).
if 1 =1’ then
let voteV = open(m3,rand) in
out (res ,voteV)
Listing 3.31 — The collector process
processV =
for (i =1 to w)
vb;.vr;.
let commitedvote; = commit(v,r;) in
let blindedvote; = blind (commitedvote;,b;) in
out (chl,(pk(skv),sign(blindedvote;,skv),blindedvote;))
for (i =1 to w)
in(ch2, m;).
let result; = checksign (m;,pka) in
if result; = blindedvote; then
let signedvote; = unblind (m;,b;) in
sync 1.
for (i =1 to w)
out (ch3,(commitedvote;,signedvote;)).
in (ch4 ,(l,=commitedvote;,=signedvote;))
sync 2.
for (i =1 to w)
0ut(ch5,(li,ri))

Listing 3.32 — The voting process

118

3.4. Defining Privacy for Weighted Votes

The collector (Listing [3.31 on the preceding page) receives the administrator’s

public key, which he then uses to verify the signature on incoming commitments. If
the signature is correct, he creates a new bounded name [(the number in the list)
and sends it together with the signed commitment back to the voter. The voter

then reveals his randomness, which the collector uses to open the commitment.

The wvoter’s process (Listing [3.32 on the facing page)) votes following the

protocol by FOO, yet for several ballots according to his weight w: He first
creates the blinded commitments, signs them and sends them to the administrator.
He unblinds the answer and sends it to the collector, and finally reveals the
randomness.

Using a manual proof we can show that

n n
VPAH|res ~i VPBH‘res = szA * Wi = ZUZB * Wwj. (3.13)
1=1 =1

Proof To show that (3.13]) holds, we use a proof by contradiction. Suppose
n n
va*wi # szB * W; (3.14)
i=1 i=1

We will show that this implies VPA .., %; VPBH|,.s by showing that there
exists an execution which allows the attacker to see for all 7 w; times a message
Z-X on channel res. Hence he can compare messages and distinguish VPAH |res
and VPB|,.

Consider two processes

v

VPAH — 1<l (processV {vf‘/v} {wi/w} {Pk(ska)/pka} {skvi/skv})

| (| processC{rk(ska)/pka})
1<i<n 1<k<w;

| (| processA/{pk(skvi)/pkuv})
1<i<n 1<k<w;

VPBY = <! (processV {vf/v} {wi/w} {Pk(ska)/pka} {skvi/skv})

1SN

| (| processC{rk(ska)/pka})
1<i<n 1<k<w;

| (| processA/{pk(skvi)/pkuv})
1<i<n 1<k<w;
In both cases, processC cannot synchronize and is blocked. The voter pro-
cesses can output w; times (pk(skvi), sign(blindedvote;, skv;),blindedvote;)
(their blinded and signed vote) on channel chl. The administrator replies
with the correctly signed votes, which allows the voters to successfully ver-
ify and unblind the signed ballots. Then they will synchronize and output
the (commitedvote;,signedvote;) on channel ch3. The processC processes

can then receive the messages, verify the signatures and output (1,m3,m4), i.e.

119

3. eVoting

(1, commitedvote;, signedvote;) on channel ch4. The voters will then verify if
the messages correspond to their votes, synchronize and reveal the random values
of the commitments. The collectors can open the commitments and will publish
all votes on channel res. Hence there is an execution that reveals all votes and
their weights in clear to the intruder, hence using (3.14), VPAH|,cs % VPBY|,s.
O

Using a python script available online [Drel3] that generates all cases to check
given the number of voters and the discrete weight distribution, we can use ProVerif
to then establish for a given weight distribution. Although this technique
allows to conclude that the protocol ensures (VP) given a certain distribution of the
weights, ProVerif is unable to prove a general result for all possible distributions
automatically, as we have infinitely many possible distributions and hence infinitely

many cases to check.

n n
i=1 i=1

3.4.3 — Link to Existing Definitions

To establish the relationship of our definition and the previous taxonomy in
Section [3.3] we need to formally characterize their difference. Intuitively the
swap-based definition assumes that swapping two votes will not change the result.
This can be formalized as follows: If two instances of the protocol with the same
voters give the same result, then the votes are a permutation of each other, and

vice versa. This precludes weighted votes, thus the name “Equality of Votes”.

Definition 24 (Equality of Votes (EQ)) A wvoting protocol respects Equality
of Votes (EQ) if for any two voting processes VPA = Vﬁ-(vaidlavf | ...
VO'idnUv;:x ’ A1 | | Al) and VPB = V’fl.(vaidlo'le ’ ‘ VO'ian'UE ’ A1 ‘ |
A;) where no o, a or o, makes a voter abstain, we have
VPAH|T€S %l VPBH‘TQS <:> ElTr . \V/’L N O-’UB = O-’UA<.)’

where ™ is a permutation.

Note that here we exclude abstention, i.e. the result can for example include a list
of all abstaining voters. We also define a stronger notion that includes abstention.

In that case, the result has to remain unchanged even if different voters abstain.

Definition 25 (Equality of Abstention (EQA)) A wvoting protocol respects
Equality of Abstention (EQA) if for any two voting processes VPA = vin.(Vojq, Ty
|- [Voig, 008 | A | ... | &) and VPB = vi.(Voig o5 | ... | Voig,0,8 | A1

120

3.4. Defining Privacy for Weighted Votes

| ... | 4;), we have

VPAH‘res] VPBH’TeS < dr Vi O,B = 0,4

(i)
where 7 is a permutation.

Obviously this is stronger than (EQ), i.e. any protocol respecting (EQA) also
respects (EQ).
We can apply these definitions on the case studies we presented before, consider

for example FOO.
Theorem 27 FOO ensures Equality of Votes (EQ).

Proof Suppose we have two voting processes VPA and V PB and there exists a
permutation 7 : Vi : 0,5 = O'UA(_). We have to show that VPAHITes ~ VPBH|T65.

PLPO (POPO) and we can write

As the protocol ensures SwV and hence also SwV
any permutation as a sequence of simple permutations, we have VPA ~; VPB,
which gives VPAH lres & vpPBH lres as labeled bisimilarity is closed under the
application of contexts (here the inclusion of the missing authorities and the
restriction to the channel res).

Suppose we have two voting processes VPA and VPB with VPAH lres =1
vV PBH |res- Assume that there exists no permutation 7 such that Vi : OuB = Uv;xm,
hence there exists a vote v such that the number 'UZA with le = v is different of

the number of v? with v = v, i.e.

SRS Sl

1<i<nwit=v 1<i<n,wB=v

We show that this allows an attacker to distinguish VPA|,.; and VPBY|,.,
which contradicts VPAH|,.s ~ VPB|,.,. Consider the following voting pro-

cesses:

VPA® = | (processV {v{'/v} {Pk(ska)/pka} {skvi/skv} |
1<i<n
processC {Pk(ska)/pka} |processA {Pk(skvi)/pkv})
VPBY = | (processV {v?Jv} {Pk(ska)/pka} {skvi/skv} |
1<i<n

processC {Pk(ska)/pka} |processA {pk(skvi)/pkv})

The voter processes can output (pk(skv), sign(blindedvote, skv), blindedvote)
(their blinded and signed vote) on channel chl. The administrator then replies
with the signed votes, which allows the voters to successfully verify and unblind the
signed ballots. Then they synchronize and output the (commitedvote, signedvote)
on channel ch3. The collectors processC can then receive the messages, verify
the signatures and output list of accepted ballots on channel ch4. The voters

then reveal their random values r. The collectors can finally open and publish the

121

3. eVoting

votes voteV on channel res. Hence there is an execution that reveals all votes in
clear to the intruder, thus he can count the number of occurrences of each choice,
which gives VPAH |, s % VPBY|,s. O

We can do a similar proof for the protocol by Okamoto.
Theorem 28 The protocol by Okamoto ensures Equality of Votes (EQ).

Proof Suppose we have two voting processes VPA and V PB and there exists a
permutation 7 : Vi : Oy = U“;f(i)' We have to show that VPA .., ~; VPBH|,,.
As the protocol ensures SwV PTFO (and hence also SwV PP FP) and we can write
any permutation as a sequence of simple permutations, we have VPA ~; VPB,
which gives VPAH lres = VPBH lres as labeled bisimilarity is closed under the
application of contexts (here the inclusion of the missing authorities and the
restriction to the channel res).

Suppose we have two voting processes VPA and VPB with VPAH|.., ~;

O}
hence there exists a vote v such that the number v{* with v/* = v is different of

VPBH |res- Assume that there exists no permutation m such that Vi : o,p = 0,

the number of v? with v? = v, i.e.

SIS S

1§i§n,v{4=v 1§i§n,v{3:v

We show that this allows an attacker to distinguish VPAH lres and VvpPBH |res
which contradicts V PAH lres =1 vPBH lres- Consider the following voting pro-

cesses:

VPAH = ychT. (| (processV {v{'/v} {pk(ska)/pka} {skvi/skv} |
-

Stsn

processT)) |processC {pk(ska)/pka})|processA {pk(skvi)/pkv}

VPBH — ychr. < (processV {vf/v} {pk(ska)/pka} {skvi/skv}

1§l§n

processT)) |processC {pk(ska)/pka})|processA {pk(skvi)/pkv}

In both cases, processT cannot synchronize and is blocked. The voter processes
can output (pk(skv), sign(blindedvote, skv),blindedvote) (their blinded and
signed vote) on channel chl. The administrator then replies with the signed votes,
which allows the voters to successfully verify and unblind the signed ballots. Then
they synchronize and output the (commitedvote,signedvote) on channel ch3,
and output (v, r, commitedvote) on the private channel chT with the timeliness

member. The processT processes can then receive the messages, synchronize,

122

3.4. Defining Privacy for Weighted Votes

verify the signatures and output the votes vt on channel res. Hence there is an
execution that reveals all votes in clear to the intruder, thus he can count the

number of occurrences of each choice, which gives V PAH lres 1 VvpPBH lres- O

Similarly Bingo Voting ensures Equality of Abstention as votes are not weighted

and abstaining voters remain anonymous.

Theorem 29 Bingo Voting ensures Equality of Abstention (EQA).

Proof Suppose we have two voting processes VPA and V PB and there exists a
permutation 7 : Vi : OyB = O-U;:‘(i)' We have to show that VPAH]res ~ VPBH|TES.
As the protocol ensures SwV P14 and we can write any permutation as a sequence
of simple permutations, we have VPA ~; VPB, which gives VPAH lres =i

VPBY|,s.

Suppose we have two voting processes VPA and VPB with VPAH |, =~
VPBH|T68. Assume that there exists no permutation 7 such that Vi : 0,5 = O',UA(_),

hence there exists w.l.o.g. a vote v E such that the number v{! with v/! = v is

different of the number of v? with v = v, i.e.

ooo1#£E > 1 (3.16)

1<i<nvii=v 1<i<n,vP=v

We show that this allows an attacker to distinguish VPAH res and VPBH |res
which contradicts VPAH|,.; ~; VPBH|,.;. Consider the following voting pro-

cesses:

VPA" = yprivChM, . .. vprivChM,,.vprivChRM, . . . vprivChRM,,.
vprivChR; ... vprivChR,,. (processM {"/k}

| (processV {v{'/v} 04, {PrivChM;/privChM } {PrivChR; /privChRNG })
1<i<n

‘ (processRNG {priVChRMi/priVChM} {PriVCth‘/priVChV}))
1<i<n

107 we have a different number of abstaining voters, this also implies that we have a candidate
which has a different number of votes on both sides.

123

3. eVoting

and

VPBY = yprivChM, . .. vprivChM,,.vprivChRM; . . . vprivChRM,,.
vprivChR, ...vprivChR,,. (processM {"/k}

| (processV {vf/v} 0;q, {PrivChM, /privchm } {PrivChR, /privChRNG })
1<i<n

| (processRNG {privChRM; /privchmM} {privChR; /privChv }))

In both cases the voting machine process processM generates the commitments
commit((n; j,pj),ri,j) and publishes them on channel ch. The random generators
processRNG generate a fresh nonce and output it on the private channels to the
voter and the voting machine. The voter processes outputs his vote v on channel
privChl;. The voting machine receives both and outputs the receipts receipt j
to the voters on channel PrivChM;. After all votes have been received and the
receipts have been send, the voting machine can synchronize and output the result,
i.e. the votes v in clear on channel res. Hence there is an execution that reveals
all votes in clear to the intruder, thus he can count the number of occurrences of
each choice which gives VPAM|.. 2 VPBY|,s. O

Using (EQ) and (EQA) we can now establish the formal link between (VP) and

the previous privacy definitions in our taxonomy.

Theorem 30 We have:
— If a protocol respects (EQ), then (VP) and (SwV P9FO) are equivalent.

— If a protocol respects (EQA), then (VP) and (SwV POF4) are equivalent.

Proof We only prove the first statement, the second is analogous. We simply
need to add the case where 0, , makes the voter abstain, which is however covered

by (EQA), hence the resulting proof is the same.

— Suppose the protocol respects (VP). We have to show that it respects SwV pO-ro.
i.e. that for any voting process V P and for all votes o,, and o,, where o,,

and o,, does not make a voter abstain we have

VPA:= VPp)[VOid,00,|Viagous|0)]

~

VPia gy VOidy005|V0idgou,|0] = VPB

124

3.4. Defining Privacy for Weighted Votes

Consider

VPAH = VP{IZLB} Vid,00,|V0idyoup]
~i

VP{IZ:B} I:Vo-idAO-vB |Vo-idBO-UA] = VPBH

Obviously the votes on the right hand side are a permutation of the votes of

the left hand side and as the protocol ensures Equality of Votes we have
VPA" |, es 4 VPB | e
As the protocol respects Vote-Privacy, we conclude
VPA =~ VPB

— Suppose the protocol respects SwV PO and we want to show that it respects
(VP), i.e. for any voting process VPA = Z/ﬁ.(VUidlayfx] oo | Voig,op | A1
... | A) and VPB = Vﬁ.(VO'Z‘dIvaz | ... | Voia,ou8 | A1 | ... | A;) we have

VPAH ..o ~, VPBY|,., = VPA~ VPB

Suppose VPAH|,.s ~; VPBH|,.s. As the protocol respects (EQ), we know
that there exists a permutation 7 such that Vi : Tpa = va(i). Using the fact that
SwV POFO allows us to permute any two votes and that any permutation can
be expressed as a sequence of simple permutations, we obtain VPA ~; VPB.
Note that if we only have one voter, he has to vote the same on both sides

and the equivalence is trivially true. U

It is easy to see that for protocols violation (EQ) the equivalence does not necessary
hold: If a protocol uses weighted votes (e.g. Alice 66%, Bob 34%), it may satisfy
(VP), but not (SwV P9F0),

Similarly, assume a simple yes/no referendum, where the proposition is ac-
cepted if at least half of the voters are in favor of the proposition. If however at
the same time the ballots on the bulletin board allow to compute the number of
“yes” and “no” votes, such a protocol may ensure (SwV P9FO) — if the ballots
cannot be linked to the voters —, but not (VP) because two instances with a
different outcome based on the ballots will have the same “result” on res: for
example the instances where Alice votes “no” and Bob votes “yes” gives the same
result as the instance where both vote “yes”. Note that such a protocol would
contradict (EQ) because we have instances where the votes are not a permutation

of each other, but still give the same result.

125

3. eVoting

3.4.4 — Including Corrupted Voters

Until now, these definitions did not include corrupted voters. This can be addressed

using the following definitions.

Definition 26 (Vote-Privacy with a single corrupted voter (VP5%)) A

voting protocol ensures Vote-Privacy with a single corrupted voter (VP3) if for
any two instances VPA = Vﬁ.(VJidlavfa | ... [Voig,00a | A1 | ... | A)) and VPB
= I/ﬁ.(VO’idla'le | ... | Voig,ous | A1 | ... | A1), and a subset J C {1,...,n},
such thatVj e J: Tya = 0,5 and |J| <1 we have

VPAH‘TES ~] VPBH|T65

= VPA; [| (Val,dj)cu,czjl ~, VPB, [’ (Vo,idj)61j,62j‘|
jeJ jeJ

where VPAj and VPBj are contexts equal to VPA and VPB with a hole for
the voters in J respectively (cf. Definition |16 on page 58).

Again, we can establish a link to the existing definition.

Theorem 31 We have:
— 1If a protocol respects (EQ), then (VPSC) and SwV P'"FO are equivalent.

— 1If a protocol respects (EQA), then (VPSC) and SwV PIFA are equivalent.

Proof We only consider the first case, the second case is analogous.

— Suppose the protocol respects (VPSC). We have to show that it respects
(S’wVPI’PO), i.e. for any voting process VP and for all votes o,, and o,

where o,, and 0,, do not make a voter abstain we have

VPA = VP{Avac} [Vo-idA O-UA |VaidB UUB ‘ (Vaidc)01162]
~1

VP{A,B7C} [VO‘Z'dAO'UB |VO'idBO'UA‘(VO‘idC)Cl’CQ] =:VPB
Consider

VPAH .= VP&}BC} Vidy00alVOidg vV Oid, v
~|

Vpg"B,C} [V OidyovpVOiagou,|VOideove] = vVPBH

Obviously the votes on the right hand side are a permutation of the votes of

the left hand side. As the protocol ensures Equality of Votes we have

VPAH|7‘€S ~ VPBH‘res

126

3.4. Defining Privacy for Weighted Votes

As the protocol respects (VPSC) we conclude with J = {C}, |J| < 1, that

VPA=~; VPB

Note that technically the names of the channels of the corrupted voter are

different, however labeled bisimilarity is closed under a-renaming.

— Suppose the protocol respects (SwVPI’PO) and we want to show that it
respects (VP3C), i.e. for two instances VPA = l/ﬁ.(VUZ‘dlo'Ufl | [Vg, 000
’ Al ‘ e ‘ Al) and VPB = V’Fl.(vaidlo'le | e | VUZ‘an'UE | Al | cee | Al), and
a subset J C {1,...,n} such that Vj € J : Tys = 0,8 and |J] <1 we have

VPAH|7’ES ~ VPBH|res

= VPA; l | (Vgidj)cu,wj] ~; VPB; [| (Vaidj)clj,c%]
jeJ jeJ

Suppose VPAH | .5 ~; VPBH|,.s. As the protocol respects (EQ), we know
that there exists a permutation 7 such that Vi : oA = avf(i). Additionally we
know that Vj € J : Tys = Typ. Using the fact that (SwV PLPO) allows us to
permute any two votes of honest voters in the presence of one corrupted voter
which does not change its vote, and that any permutation (even the identity)
can be expressed as a sequence of simple permutations, we obtain

VPAJ[‘ (VUidj)Clj,C2j] ~; VPBj [| (Vaidj)cu,czj}
Jjed jet

(again after renaming).

Note that if we have no honest voter, the equivalence is trivially true (syntac-
tical equality). Similarly if we have only one honest voter, he has to vote the
same on both sides and the equivalence is again trivially true. Note also that
if we do not have a corrupted voter, we can still conclude as (VPSC) implies
(VP). d

Naturally we can also consider multiple corrupted voters.

Definition 27 (Vote-Privacy with multiple corrupted voters (VPM¢))
A woting protocol ensures Vote-Privacy with multiple corrupted voters (VPMC) jf
for any two instances VPA = vit.(Voig,0,a | ... | Voig, 000 | AL | ... | Aj) and
VPB = Vﬁ~(VUz'd10le | ... [Voig,ous | A1 | ... | A1), and a subset J C {1,...,n},
J#A{L,...,n} if n>1, such that Vj € J : Tya = 0,5 we have

VPAH|, ., ~ VPB!|,., = VPA J[| (Vaidj)%czal ~ VPB Jl \ (Vaidj)%%]
Jje€J jeJ

127

3. eVoting

where VPAj and VPBj are contexts equal to VPA and VPB with a hole for

the voters in J respectively (cf. Definition |16 on page 58).

Note that each corrupted bidder j has his own channel pair ¢y}, c2; to interact
with the attacker. This avoids confusion, in particular in the Coercion-Resistance
definitions below.

With these definitions we obtain a hierarchy of privacy notions.

Theorem 32 (Hierarchy of Privacy Definitions) We have:
— 1If a protocol respects (VPMC), then it also respects (VP3C).

— 1If a protocol respects (VPSC), then it also respects (VP).

Proof This is a consequence of the definitions: (VP) is a special case of (VP¢)
with J = 0, and (VPS) is a special case of (VPM®) with |J| < 1. O

As shown in the previous section, inside and outside attackers are in general
not the same as an inside attacker can for example employ vote-copying attacks.
However we can show that under some reasonable assumptions on the protocol
(VP), (VP and (VPMY) coincide.

To prove this, we define the notion of a “generalized voting process” which is

like a voting process, but some of the voters might be coerced or corrupted.

Definition 28 (Generalized Voting Process) A Generalized Voting Process
is a voting process V P with variables for the wvoter’s processes that can either
be a “normal” honest voter, a voter communicating with the intruder, or a
corrupted voter, i.e. VP = vn.(Vi|...|V,|A1]...|A;) where V; ~; Voq,0,, or
V\out(chci,-)

~ . o~ . C14,C24
i ~1 Voig,on, or Vi =y (Valdiavi) e,

The next definition captures the key property required for our proof.

Definition 29 (Modularity (Mod)) A wvoting protocol is modular (Mod) if

for any honest, coerced or corrupted voters Vi,...,Vy (i.e. with V; =; V4,0,

t(chei, e)
or V;\Ou (ches) ~y Voigou, or Vi =) (Voig,00,) %) and the corresponding gen-

eralized voting processes VPA = via. (Vi | ... | Vi | A1, | ... | A1), VPB =
vig.(Vigr | oo | Vo | Aig | oo | Aig) and VP =vn. (Vi | ... | Vi | A | ...]
A;) we have

VP ~, VPA|VPB.

Note that this can be applied in both directions, i.e. we can compose and decom-
pose instances with different voters in a transparent way. In particular we can
add voters by composing with an instance containing these voters, or decompose
an instance into two instances and reason about both instances independently.
Consider the following example illustrating how Modularity captures that

certain parts of a voting protocol are independent: imagine a protocol where

128

3.4. Defining Privacy for Weighted Votes

in order to escape coercion the voters can claim that a certain ballot on the
bulletin board is their ballot, but this ballot was actually prepared by some honest
authority to allow the voters to create a fake receipt. If we suppose that this ballot
exists only once no matter how many voters are attacked, it would be enough for
a single voter to fake his receipt. However we cannot compose two instances with
one attacked voter each, as they would use the same fake ballot which would be
noticeable for the attacker. Hence the above definition also captures the fact that
faking the receipt to escape coercion can be done by each voter independently.
Similarly, a modular protocol is secure against inside attackers or corrupted

voters since the different parts of the protocol are independent, as we now show.

Theorem 33 If a protocol is modular and finite (i.e. any instance or voting
process is finite), (VP) and (VPMC) are equivalent.

Proof By Theorem [32| a protocol ensuring (VPM®) also ensures (VP). We now
show that if a protocol is modular, finite and respects (VP), then it also respects
(VPMC),

We need to show that for any two instances VPA = vn.(Vog, Ty | oo
Voia,opa | A1 | ... | 4) and VPB = Vﬁ.(VJidlale | ... | Voig, o | A1 |
... | 4), and a subset J C {1,...,n}, J # {1,...,n} if n > 1, such that
VyeJ: Oy = 0yB We have

VPAH’TGS ~ VPBH|res

= VPA; [| (Vo'idj)clj’wj] ~, VPB, l | (Vo.idj)61j,62j‘|
jeJ jed

As the protocol ensures (VP), we have that for any two instances VPA =
VTNL.(VUZ'dlUUiq | ‘ VUz’dn%;;l | Al ‘ ’ Al) and VPB = uﬁ.(VJidlale | |
Voia,ous | A1 | ... | A;) we have

VPAM|, s~ VPB"|,.s = VPA~ VPB

Assume we have two instances VPA and VPB as above, and a subset J C

{1,...,n} such that Vj € J : 0,4 = 0,5 with VPAH|, . ~; VPBH|,.;. Then
J J

VPA ~; VPB. Consider now

VPA; l | (Voidj)clj’%] VPA
jedJ
By VPA =~; VPB we have

VPA J[y (Vaidj)cljvczj] [VPA =~ VPA Jl | (Vaidj)%%] |VPB
jeJ jeJ

129

3. eVoting

As the protocol is modular, we can decompose V PB, and recompose with the

corrupted voters to obtain
VPAJ [| (VO'idj)clj7CQJ"| |VPB
Jje€J

~ vn. <V(Tid10',uiq‘ v ’ (VUideUf)‘ e ‘VUidnavﬁ‘All oo ’Al> ’
JjeJ

VPB; [| (vmdj)clj’”j]
jeJ

Since Vj € J : Oyp = 0,8 We have

V. (Vaidlavfx| cee | (Vaidjavfﬂ Vg, opalAr] ... |Al> \
Jj€J
VPBJ[| (Vaidj)clj’CQj]
Jje€J
~ vn. <V0’idIJU1A’ oo ‘ (VUidja'th“)’ oo ’VUidnJv;?’Al‘ e ‘Al> ‘
JjeJ

VPBJ[| (V(Tidj)clj’CQj]
jeJ

ST VPA‘VPBJ [| (Vaidj)61j762j‘|
jeJ

Thus

VPA; [\ (VO'idj)Clj,Qj] |VPA =~ VPA|VPBy [\ (VUz‘dj)C”’m}

el jed
As the protocol is finite, we can apply Lemma to conclude
VPA;| | (Vaidj)clj’c2j ~ VPBy | | (Vaidj)clj,c%
jeJ jeJ

O

As in practical situations voting protocols need to announce the result after
a finite amount of time, assuming that they are finite appears to be realistic.
The modularity assumption used in the above theorem is also fulfilled by many
protocols, as we illustrate now using three case studies. We start with our first
case study from Section the protocol by Fujioka, Okamoto and Ohta.

Theorem 34 The protocol by Fujioka, Okamoto and Ohta ensures Modularity
(Mod).

130

3.4. Defining Privacy for Weighted Votes

Proof We analyze the structure of the voting processes. We consider the model
used in the proof of SwV P!"F'C (Theorem , i.e without any secret
channels or keys, and no trusted authorities. All keys are free names. In the case
of n voters, we have the form

Vil... [V

Hence we can rewrite this instance into n instances containing one voter each:
Vil... [V

which is syntactically equivalent. O

Remark Note that the voters use synchronization points, and that even after the
decomposition the voters in the different instances synchronize. This is necessary,
as otherwise the decomposition becomes trivially distinguishable from the initial
big instance: for example in one decomposed instance results can be published
although not all votes in the other instances have been submitted, which is
impossible in the big instance. Intuitively this means that modularity only works

for instances sharing the same deadlines.

Remark Note also that in many proofs (e.g. of Theorem |33 on page 129} but also

in the following) we replace some instances in the decomposition with bisimilar
ones. However we only showed the bisimilarity in a situation where only the
processes in this instance had to synchronize, yet now, in this new, bigger context,
they also synchronize with other processes in other instances. Although we do
not give a full formal proof here, we argue that this is sound, i.e. that the initial
composed instance is bisimilar to the one after the replacement. For instances
without synchronization we know that such a replacement is correct, as labeled
bisimilarity is closed under the application of contexts. When replacing an instance
with synchronization within a bigger instance, the only difference to a simple
context application is the synchronization. However we can see that the processes
in this instance can still only synchronize if all processes in the instances have
reached the synchronization point, as now all processes in all instances have to
reach the synchronization point. We argue similarly in the case of a k out of n
synchronization (e.g. in the case of Bingo Voting below), as at the same time the
values k£ and n are adjusted. In the case of Bingo Voting half of all processes are
required for synchronization, this remains true for the replaced instance within

the bigger instance as we have a different value for n.

Give the above result, by Theorems [30 on page 124] and [33 on page 129 we have
that FOO ensures (VPM) as it respects (EQ) (Theorem [27 on page 121)), (Mod)

(Theorem [34 on the preceding page]) and is finite. As a second example we analyze

the protocol by Okamoto.

131

3. eVoting

Theorem 35 The protocol by Okamoto ensures Modularity (Mod).

Proof We analyze the structure of the voting processes. In the case of n voters,

we have the form
vchT.(Vi]... |V, | processT),

i=1,....,n
where processT is the process executed by the timeliness member and chT is the

private channel between voters and the timeliness member. For k € {1,...,n—1},

a possible decomposition would be

vehT.(Vi|...|[Vk | processT)|vchT.(Viqq|...|Vn | processT),
i=1,....k i=k+1,..,n
which would be syntactically equivalent except for the private channel chT, which
is now decomposed into two channels. This affects only one transition, namely
the communication between the votell] and the timeliness member when the
voter reveals his random value. Consider a communication between a V; and one
processT on the left side: This can obviously be matched by the same transition
on the right, and vice versa (as the processT are all the same, it is not important

which one of them is chosen). |

This result generalizes the proof of Theorem in the proof we only

considered two honest and one corrupted voter. As (Mod) allows us to compose
instances, we can add instances with an arbitrary number of honest voters. This
formally extends the result to cases with an arbitrary number of voters. Our last

example is Bingo Voting.

Theorem 36 Bingo Voting ensures Modularity (Mod).

Proof In the case of n voters, we have the following voting process

vprivChM,; ... vprivChM,,.vprivChRM, . .. vprivChRM,,.

3.17
vprivChR; ... vprivChR,,. (V1| ... |Vo| M1, na|Ri|. .. |Rn) ()

where R; are the trusted random number generators, M ., is the voting machine
process for n voters from 1 to n and [candidates, and privChM;, privChRM;
and privChR; are the private channels between the voter and the voting machine,
the RNG and the voting machine, and the RNG and the voter respectively. For

"Here we consider generalized voting processes, however due to the condition on the V;’s we
know that there is exactly one message on this channel.

132

3.5. Multi-Voter Coercion

ke {1,...,n— 1}, this can be rewritten using Lemma |17 on page 60| as

vprivChM; ... vprivChM,.vprivChRM; ... vprivChRM,..
vprivChR; ... vprivChR,. (V1| ... |Vi| My k| R1] ... |Rk)|
vprivChMy ;... vprivChM,,.vprivChRMy, ; ... vprivChRM,,.
vprivChRy ... vprivChR,,.(Vig1| - . . [V | Mig1,.. ni| Rt 1] - - - [Rn)

(3.18)

as My ng =1 My k| Mp+1,.. ng- This can be seen from the code in the Applied
m-Calculus (Listing [3.19 on page 93|). Hence (3.17)) and (3.18)) are bisimilar. [

As for the protocol by Okamoto, this generalizes the proof of Theorem
to an arbitrary number of honest voters.

3.5 Multi-Voter Coercion

In this section we define Receipt-Freeness and Coercion-Resistance for weighted
votes. We first consider the case where only one voter is coerced, then we define

multi-voter coercion, and we also discuss the presence of corrupted voters.

3.5.1 — Single-Voter Receipt-Freeness (SRF)

We combine the approach used in Section to define Receipt-Freeness with the
generalized definition of Privacy for weighted votes (Definition 23 on page 116|): If

two instances of a voting protocol give the same result, they should be bisimilar

even if one voter reveals his secret data in one case or fakes it in the other.

Definition 30 (Single-Voter Receipt Freeness (SRF)) A voting protocol en-
sures Single-Voter Receipt Freeness (SRF) if for any two instances VPA =
Vﬁ-(VUz’dlUUfl | ... | Voig,opa [AL | ... | &) and VPB = l/ﬁ.(VO'idIO'le | oo
Void,ous | A1 | ... | A1) and any number i € {1,...,n} there exists a process V;
such that we have

V/\out(chci,~)

; ~ Voia, 0,5

and

VPAR s 2 VPBY|,0g = VPAg, [(Vaidiavfl)‘:hci} ~ VPBpy [V]].
This definition is equivalent to the existing one based on swapping if the protocol
ensures (Mod) and (EQ) or (EQA) respectively.

Theorem 37 We have:
— If a protocol respects (EQ) and (Mod), (SwRFOTC) and (SRF) are equivalent.

— If a protocol respects (EQA) and (Mod), (SwRFOF4) and (SRF) are equiva-

lent.

133

3. eVoting

Proof We only prove the first statement, the second is analogous.

— Suppose a protocol ensuring (SRF). We will now show that the protocol ensures
(SwRFOTO) ie. for any voting process V P and for all votes o,, and oy,

that do not make a voter abstain there exists a process V/ such that
VA oy Vo oy
and
VP py |[(VOiay00) ™V Oiay0us|0] %0 VP gy V'V 0iay s [0]

Consider

VPA:= VPp Via, 00,V Tidpoog]
=i

VP{AyB} [VaidAJUB‘VUidBUUA] -—VPB

Obviously the votes on both sides are a permutation of each other, thus we
we have VPAH .., ~; VPBH|,.s (by (EQ)). We can apply (SRF) to obtain

for any ¢ the existence of a process V' such that

V/\out(chci,-)

i ~ Voiao,p

and
VPAH| oo 3 VPBY|os = VP Ay [(Voia0,0) "]~ VPAgy [V]]

We choose i = A and obtain the desired property. Note that we have to
rename the channel che; to che, which is possible as labeled bisimilarity is

closed under a-renaming.

FO-PO) and we want to show (SRF), i.e.

— Suppose a protocol ensuring (SwR
for any voting processes VPA = I/fL.(VO‘idlo'Uf\ | Void, 0,4 | A1 | ... | A
and VPB = V’Fl.(VO’Z'dIO'le | ... | Voig,ou8 | A1 | ... | A) and any number
i €{1,...,n} there exists a process V such that we have

V/\out(chci,~)

f ~ Voia,o,p

and

VPAH oy 3y VPBT|os = VP Ay [(Voia,0,0)"] 2 VPBy [V]]

(2

Assume VPAH|,.; =~ VPB|,.s. Then, as we suppose (EQ), the votes on
the left are a permutation of the votes on the right. (SwRF©?) allows us

134

3.5. Multi-Voter Coercion

the swap the vote of the targeted voter ¢ with any other voter’s vote. However
the other voters in the instance can also swap votes. (SwRF9T9) implies
(SwV PO FO) (cf. Lemma , however we cannot swap the other
voter’s votes directly: As one voter is under attack, we cannot apply the
equation. If however the protocol is modular, we can decompose the protocol
into two instances where one contains only honest voters, and where we can
then swap if necessary. By composability, we can then compose both instances
and obtain the desired result. O

To see why Modularity is important in the proof, consider the following example.

Example 19 Imagine a voting protocol where each voter publishes a signed
commitment to his wvote, and reveals the randomness to open it to all other
voters and the election authority using private channels. The election authority
opens the commitments and announces the result, but does not publish the values
needed to open the commitments. To obtain Receipt-Freeness, we allow a coerced
voter to ask the other voters (before the voting starts, and using private channels)
if somebody is voting for the candidate the coercer wants him to wvote for. If
somebody does, both voters swap commitments, and the coerced voter can sign and
publish the other voter’s commitment to claim that this is his own commitment.

We can see that such a protocol ensures (SwV PP FC) as the values necessary
to open the commitments remain private for an outside attacker, yet still all voters
can compute and verify the outcome. The protocol also ensures (SwWRFPTO): the
coerced voter can successfully produce a false receipt by swapping commitments.
At the same time his receipt includes the values to open the commitments of all
voters, hence violating privacy of all other voters. The protocol also ensures (EQ)
if votes are not weighted, however it does not ensure (SRF) as the voter under
attack breaks privacy for all other voters. For the same reason the protocol is not

modular: we cannot add a corrupted voter, since he can break privacy.
Again, we can include corrupted voter(s) as follows.

Definition 31 (SRF with multiple corrupted voters (SRFM®)) A voting

protocol ensures Single-Voter Receipt Freeness with multiple corrupted voters

(SRFMY) if for any two instances VPA = l/’rNZ.(VO'idlo'vfx | ..o | Voiag,o0 | A1
‘ ’ Al) and VPB = l/ﬁ.(VO’idIO'le ’ ‘ Vgidngvf ’ Al | ’ Al) and
any number i € {1,...,n} there exists a process V; such that for any subset

JC{l,...i—1i+1,...n}, J#{1,....i—1i+1,...n} ifn > 1, with

Vj€J:o,a=o0,8 we have
J J

V/\out(chci,-)

i ~ Voiao,p

135

3. eVoting

and
VPAH’TES ~l VPBH‘T‘ES
I
VPA gy |(Voigo,a)e | (Vgidj)clj’czj] ~ VPB [V}’ | (foidj)c”’czj]
¢ jeJ jeJ

Definition 32 (SRF with a single corrupted voter (SRF°®)) A woting pro-
tocol ensures Single-Voter Receipt Freeness with a single corrupted voter (SRF3¢)
if it ensures Single-Voter Receipt Freeness with multiple corrupted voters (SRFMC)
for any |J| < 1.

Similarly to swap-based definitions, (SRF) is stronger than (VP). The proof

is analogous to the proof in the swap-based model (SwRFAtt“Cker’Abs implies
SwV pAttacker;Abs in Temma |18 on page 65)).

Theorem 38 Forany X € {(—:IEL SC, MC} we have: If a protocol respects (SRFX),
it also respects (VPX).

Proof We only show that a protocol ensuring (SRFM®) also ensures (VPMC),

the other cases follow directly.

We need to show that for any subset J C {1,...,i — 1,i +1,...n}, J #
{1,...,i—1,i+1,...n}if n > 1, such that Vj € J : 6,4 = 0,5 we have
J

J

VPAH|. .~ VPBY |, ., = VPA; [

J(VUidj)Cu,cm] ~; VPBj l | (ng.dj)cu,czj]
J

jeJ

By hypothesis there is a closed plain process so that

V;/\out(chci;) ~ VUidiavB (319)
and
VPAH|T83 ~ VPBH‘T@S
Y
VPAg |(Voigo,a)™e | (Vaidj)01j762j] ~t VPB lV/ | (V"idf)cu’cz’j]
i jeJ jet |

We suppose VPAH .., ~; VPBH|,.;. Then we can apply the context vche;.(|

12Here € denotes the empty string.

136

3.5. Multi-Voter Coercion

lin(che;, x)) on both sides, which gives

\out(chc;)
VPA () l(vgidiaw)ehci | (Vaidj)cmcm]
' jeJ
\out(chc;,)
~ VPBjui [VZ/ | (Vo-idj)clj7czj‘|
jeJ

Using Lemma we obtain

\out(chc;,")
VPAJU{Z-} [(Vaidiavf)Chci |J(V0idj)c1j,czj]
je

he \out(chc;,") .
= VPAJU{i} <Vo-idi0-'u:’4 ’) |J(V0'idj) 15+C2j
7 je

and

\out(chc;,*)
VPB ;) [Vil | (VUz'dj)clj’%]
jeJ

= VPBjui [V;/\wt(dwiy.) | (Vaidj)myczjl
jeJ

We can now apply Lemma [16 on page 60} (3.19) and use the fact that labeled

bisimilarity is closed under structural equivalence and conclude

VPA, [| (Vaz‘dj)cu,mj} =VPAjum [VgidiavA ’ (Vaidj)cu,czj]
jeJ e

~ VPBJU{Z} [VaidiUUB ‘ (VUidj)Clj’CQj] = VPBJ [| (VO'idj)clj’CZj‘|
b jed jeJ

O

We also have the following implications and equivalences.

Theorem 39 We have:
— If a protocol respects (SRFMC), then it also respects (SRFSC).

— If a protocol respects (SRF°C), then it also respects (SRF).

— If a protocol respects (EQ) and (Mod), then (SRFSC) and SwRFTTO are

equivalent.

— 1If a protocol respects (EQA) and (Mod), then (SRF°C) and SwRFIT4 are

equivalent.

— If a protocol is modular, finite (i.e. any instance is finite) and respects (SRF),
then it also respects (SRFMC).

137

3. eVoting

Proof The first two implications are true by definition: (SRF) is a special case
of (SRF*%) with J = (), and (SRF*“) is a special case of (SRFMY) with |.J| < 1.

We only show that (SRF®C) and SwRFTC are equivalent if (EQ) and (Mod)

hold, the other case is similar.

— Suppose a protocol ensuring (SRFSC). We will now show that the protocol
ensures (SwREFTTO) i.e. for any voting process V P and for all votes o, and

oy, that do not make a voter abstain, there exists a process V/ such that
V/\out(chc,-) ~ VUidA Tog

and

VPaBcy [(VaidA Ouy)Chc‘vaidB Tug| (Vaidc)cl’cﬂ

~1 VPiaBcy (V' |Viayou, | (Vi)™]

Consider

VPA:= VPpcyVoia,ousV0idgovs|VOideouc]
~i

VP ,c) Vid, 005V 0idg o0, |VOid,o0,] =VPB

Obviously the votes on both sides are a permutation of each other, thus we we
have VPAH|,.s =~ VPBH|,s (by (EQ)). We can apply (SRF®) to obtain

for any ¢ the existence of a process V; such that

Nout(che;,)

Vi ~ Voia,o,8
and
VPAH|Tes ~i VPBH|res
(2
VPAyug |(Voigoua)he | (VUz‘dj)C”’C?f] ~1 VPBpyug [V/ | (fov;dj)c”’%],
‘ jeJ jeJ

We choose i = A and J = {C'} and obtain the desired property. Note that

again we have to rename the channel.

— Suppose a protocol ensuring (SwRF!*FC) and we want to show (SRF), i.e.

for any voting processes VPA = uﬁ.(VJidlan | oo | Voig,o0a | A1 | ...
| A;) and VPB = I/ﬁ.(VO'idIO'U{B | ... | Voig,ous | A1 | ... | A1) and any
number i € {1,...,n} there exists a process V; such that for any subset

JC{1,...;i—1,i+1,...n}, JA{L,...,i—1,i+1,...n} if n > 1, such that

138

3.5. Multi-Voter Coercion

VjedJ:o,a =0, and |J| <1 we have
J J

V/\out(chci,~)

f ~ Voiag,o,p

and
VPAH"I‘ES ~ VPBH’res

U
VPAuus [(VUidi%A)Chci | (VUz‘dj)c”’ch]
¢ jeJ

~l

VPBgyug [V/ | (VJidj)Clj’c2j] ;
JjEJ
Assume VPAH|,.. ~; VPBH|..s. As the protocol respects (EQ), we know
that there exists a permutation 7 such that Vi : Tyt = a”f(i)' Additionally we
know that Vi € I : 0,4 = o, 5. (SwRFTO) allows us the swap the vote of the
targeted voter ¢ Withl any ojcher voter’s vote in presence of a corrupted voter.
As (SwRF!PO) implies (SwV PFO) (cf. Lemma , we can also
swap the votes of all other voters if necessary (as the protocol is modular),

which gives the desired result.

The last claim is a consequence of Theorems [A0] and [41] below: Theorem
[the following page|states that any modular and finite protocol ensuring (SRF)
also ensures (MRF') (as defined below), and Theorem [41 on page 142|states that
any modular and finite protocol ensuring (MRF) also ensures (MRFM®), and
hence ensures (SRF¢). O

3.5.2 — Multi-Voter Receipt-Freeness (MRF)

We now generalize the idea of Receipt-Freeness to the case where multiple voters
are attacked. Instead of only considering one attacked voter ¢, we consider a set I
of attacked voters. To be receipt-free, it should be possible for all attacked voters
to fake the receipt. Note that we assume that there is always at least one honest

voter, except for the case with only one voter.

Definition 33 (Multi-Voter Receipt Freeness (MRF)) A wvoting protocol
ensures Multi-Voter Receipt Freeness (MRF) if for any voting processes VP A
= vi. (VUz‘dlfTUf\ | ... [Voig,0p0a | A1 | ... | A), VPB = Vﬁ.(VUidldle | .o
Voig,ous | A1 | ... | Ai) and any subset I C {1,...,n}, I #{1,...,n} ifn>1,

then there exists processes V' such that we have

Vie I: V) Voygo0m

139

3. eVoting

and

VPAH| o % VPBY| s = VPA l | (v@-diav_A)Ch”] ~ VPB; [| V] ‘
iel ! iel
It is clear that (MRF) implies (SRF), and under certain conditions the converse

is also true.

Theorem 40 If a protocol is finite and modular (Mod), Single-Voter Receipt
Freeness (SRF) and Multi-Voter Receipt Freeness (MRF) are equivalent.

Proof It is easy to see that any protocol ensuring Multi-Voter Receipt Freeness

also ensures Single-Voter Receipt Freeness, we simply set I = {i}.

Assume the protocol ensures Single-Voter Receipt Freeness. We want to prove
that the protocol ensures Multi-Voter Receipt Freeness, i.e. that for any VPA
= Vﬁ.(VUz‘lefo | | VUidHO'U;? | A1 | | Al), VPB = I/ﬁ.(VUidlo‘le | |
Voig,ops | A1 | ... | Aj) and any subset I C{1,...,n}, I #{1,...,n}ifn>1,

there exists processes V; such that we have
Viel:V/\) o Vo oue (3.20)

and

VPAR|,.cs = VPBY|,.; = VP [\ Vaidiagﬁci] ~ VPB; [| v;’] (3.21)
i€l v icl

We suppose VPAH lres = vpPBH lres and we show that there exist processes V;’
such that we have (3.20) and

VPA; l y Vaidiag’;fi] | VPA
iel i je{L,..|1]-1}

~; VPB; [| Vi’]] VPB (3.22)
icl | je{1,..|I|-1}

which gives the desired result using the cancellation result from Lemma [15|and

(VP). The idea is that adding other voting processes allows us to decompose,

mix and compose the processes so that we can apply (SRF) on the individual

instances.

We start by decomposing the left side of the bisimilarity and recompose the

140

3.5. Multi-Voter Coercion

processes to have |I| instances with single-voter coercion:

VPA; l | Vaidiacfff"] VPA
iel Vi je{1,., -1}

~ | VPA?{Z.} {Vaidiacﬁc"] | VPA%} |:V0'idiO',UA:|

iel Vi ligr :

(3.23)
] (] VPAii} |:V0'idiO',UA:|>

Ge{1,...,|I|-1} \se{1,....,n} ‘
~ | VPAy, {Vaidiafjjc"]

iel i

In the first step we break the instances down to a single voter each, i.e. VPA? is
a voting processes only one voter i. In the next step, we assemble the voters and
instances in such a way that we obtain complete instances (i.e. containing voters
1 to n) with one attacked voter per instance.

We apply the same transformations on the right side and obtain:

V PB;j [| V;’] | VPB
iel | je{1,..|I]—-1}

~ | VPBi, V] | VPBY, [Voigo,p]
il ¢

iel
| (| VPB@} {VcridiavBD
j€{1,...,|T|—-1} \i€{l,....,n} ¢

~ | VPBgy [V/]
el

(3.24)

As we have VPAH lres = vpPBH |lres, we can apply Single-Voter Receipt Freeness

on the left side, i.e. we have for any ¢ € {1,...,n} there exists a process V; such
that
‘/i/\out(chcy.) ~ VO'idiO'UB (325)
and
VPA; [Vaidiagfffi} ~, VPB; [V/] (3.26)
Using this we can rewrite (3.23)) in (3.24)), and hence prove (3.22)). a

As above, we can include corrupted voter(s) as follows.

Definition 34 (MRF with multiple corrupted voters (MRF)) A vot-
ing protocol ensures Multi-Voter Receipt Freeness with multiple corrupted voters
(MRFMC) if for any two instances VPA = Vﬁ.(VJidlan; | ... | Voig,o0a | A1 |
... | A)) and VPB = Vﬁ.(vaidlale | ... | Voig,ou8 | A1 | ... | Ai) and any subset
I C{1,...,n} there exists processes V] such that for any subset J C {1,...,n},
JNI=0, JUI #{1,...,n} if n> 1, such that Vj € J:av;x =0, we have

Nout(che;,-)

Vi

i ~ Voia, 0,8

141

3. eVoting

and
VPAH|7"65 ~i VPBH‘T’@S

4

| (Voig,o,4)" | (foz‘dj)c”’%]
iel v jeJ

~

VPAg [

VPB[UJ ’ ‘/il | (VUidj)clj’czj .
icl jeJ

Definition 35 (MRF with a single corrupted voter (MRF®)) A wvoting
protocol ensures Multi-Voter Receipt Freeness with a single corrupted voter

(MRFSY) if it ensures Multi-Voter Receipt Freeness with multiple corrupted voters
(MRFMC) for any |J| < 1.

Again, we have several implications and equivalences.

Theorem 41 We have for any X € {¢,SC, MC'}:
— If a protocol respects (MRFMC), then it also respects (MRFSC).

— If a protocol respects (MRFC), then it also respects (MRF).
— If a protocol respects (MRFX), then it also respects (SRFX).

— If a protocol is modular, finite (i.e. any instance is finite) and respects (MRF),
then it also respects (MRFMC).

Proof The first three implications are true by definition: (MRF) is a special case
of (MRFSY) with J =), and (MRFS?) is a special case of (MRFM®) with |.J| < 1.
Similarly (SRFM®) is a special case of (MRFM®) and (SRF®¢) of (MRF°),
and (SRF) of (MRF), all with I = {i}.

For the last claim, assume we have two instances VPA and VPB, and a
subset I C {1,...,n}, and asubset J C {1,...,n}, JNIT =0, JUI#{1,...,n}
if n > 1, such that Vj € J : Tya = 0yB, and VPAH|,.; ~; VPBY|,.s. Then by

Nout(chei,-)

(MRF) there exits processes V/ such that V; ~ Voiq,0,5 and

VPA] [| (VO‘idiO'UA)ChCi] ~ VPB[[| V;/] .
iel ‘ i€l

Consider now

VPAIUJ[| (Voiqo,0)" | (VUidj)C”’CQj] [VPA; [| (VUidiUvA)Chci]

iel jeJ il

142

3.5. Multi-Voter Coercion

By the above we have

VPA; [| (Voig,o,a)" | (foidj)c”’CZj] |[VPA; [| (VUz‘di%.A)ChCi]

il jeJ iel

~; VPALs l | (Voig,o,4)" | (Vaidj)%%] \VPB; l | Vi’]

iel jedJ iel

As the protocol is modular, we can decompose V PBj [| V;’], and recompose
i€l

with the corrupted voters to obtain

VPA, [| (Voig,o,)" | (Vo’idj)c”’czjl |V PB; [| Vi']

icl jeJ icl

~ vn. Vaid10UA| e ’ (VO'Z'diUvA)Chci | (Vo-idjo-v_B)| ce |V0'idn0'vA|A1| e |Al |
! iel ¢ jeJ J "

VPBIUJ | V;;/ | (VUidj)clj’CQj
i€l jeJ

Since Vi € I : 0,4 = 0,5 We have
K3 7

vn. (VO’idIO'Uiq‘... ‘ (VO’idiO',UA)ChCi ‘ (VUidjO'vB)’---VUz‘dnUvg’Al‘---’Al> ‘
i€l ¢ jeJ J
VPBjuj [| ‘/i, | (VJidj)clj702j]
el jeJ
~ vn. <V0id10-vf‘| e ’ (VO'idiUvA)Chci | (Vo-idjo-v‘,A)| ce |V0-idn0v;§|A1| ce |Al> |
iel ¢ jeJ J

VPBr,j | Vi/ | (VO'z‘dj)clj’CQj
iel jeJ

~ VPAL| | (Voig,o,)" | [VPBuy | | Vi | (Voyg,)
el ¢ iel jeJ

Thus

VPA [| (Voig,o,4)"e | (Vaidj)cljyc2j] IVPA; [| (VUidiUUA)ChCi‘|

il jeJ il

~ VPAL| | (Voigo,0)" | [VPBrug | | Vi | (Voya,)9%
iel ¢ icl jeJ

As the protocol is finite, we can apply Lemma to conclude

oA | oo | Vo] v 17| o]

i€l jed i€l jeJ

143

3. eVoting

O

The last theorem allows us to show that the protocol by Okamoto is secure against

multi-voter coercion, i.e. ensures (MRFM©).

Lemma 42 The protocol by Okamoto ensures Multi- Voter Receipt Freeness with
multiple corrupted voters (MRFMC).

Proof As shown in Theorems [28 on page 122 and [35 on page 132}, the protocol

ensures (EQ) and is modular. Using Theorem [39 on page 137 we have that it

ensures (SRF°) and (SRF). It is easy to see that all instances are finite, hence

we have that it ensures (MRF) using Theorem 40 on page 140, and finally that it
ensures (MRFM®) using Theorem [41 on page 142| O

Note that we expect this to hold also for a variant of the protocol with weighted
votes. Similarly to the variant of FOO we could implement this using multiple
ballots, and expect that the resulting protocol ensures (SRF), (MRF), (MRF¢)
and (Mod), but neither (EQ) nor SwRFTF? as the votes are weighted.

3.5.3 — Single-Voter Coercion (SCR)

After discussing Receipt-Freeness, we now define Coercion-Resistance. As before,
we start with Single-Voter Coercion-Resistance.

In this case, we combine (VP) with (SwCR): if two instances of a voting
protocol give the same result, they should be bisimilar even if one voter interacts
with the attacker in one case or only pretends to do so in the other case. The
coercion is modeled by the context C' that interacts with the voter and tries to

force him to vote for a certain candidate.

Definition 36 (Single-Voter Coercion-Resistance (SCR)) A voting proto-
col ensures Single-Voter Coercion-Resistance (SCR) if for any two instances VPA
= I/ﬁ.(Vaidlavfx | oo | Voig,o08 | A1 | ... | A)) and VPB = Vﬁ.(VUidlale | ...
| Vid,oun | A1 | ... | 4)) and any number i € {1,...,n} there exists a process
V! such that for any context C; with C; = vey.vea.(_|P;) and nn fn(C) =0,

VPAy, [C’i {(Vaidiavf)cl,@” ~ VPAg, [(Val,di%?)chci}

we have

)

Ci [V,} \out(che;,-) ~ VaidiO-U_B

and

VPAH| ey 2 VPBY|os = VP ARy [Ci |[(Voiao,0)] | 2 VPBy [Ci [V]]]

144

3.5. Multi-Voter Coercion

As above, we can link this definition to the swap-based definition using (Mod),
(EQ) and (EQA).

Theorem 43 We have

— If a protocol respects (EQ) and (Mod), (SCR) and (SwCRPFO) are equivalent.
— If a protocol respects (EQA) and (Mod), (SCR) and (SwCROT4) are equiva-

lent.

Proof Analogous to the proof of Theorem [37 on page 133] O

Similarly, we can also consider corrupted voters.

Definition 37 (SCR with multiple corrupted voters (SCRM)) A voting

protocol ensures Single-Voter Coercion-Resistance with multiple corrupted vot-

ers (SCRMC) if for any two instances VPA = Vﬁ.(Vaidlanq | oo | Voig,o0a
‘ A1 ’ e ‘ Al) and VPB = Vﬁ-(vgidlgle ‘ e ’ Vgidna—’u,‘? ‘ A1 ‘ e ’ Al)
and any number i € {1,...,n} there exists a process V] such that for any

context C; with C; = vey.ves.(_|P;) and nN fn(C) = 0 and for any subset
JCAL,...;i—1i+1,...n}, JA{L,...,i—1,i+1,...n} if n > 1, such that

ViedJ:o,a =0, and
J J

VPAgus [o@- (Voigo,2)] | <Vm-dj>%%]
¢ jeJ

~ VP AGu l(VUidi%iA)Chci | (Via,)%

jeJ
we have
Ci [V;/] \out(chc;,") ~ VO'idiO',UB
and
VPAH|, ., ~ VPBY|,
U
VPA{Z'}UJ [CZ {(VO’idigvA)cl,cz} ‘ (Voidj)01j,62j]
‘ jeJ

~l

VPBiyus [Ci Vil | (Vm;dj)cljvczj}
jeJ

Definition 38 (SCR with a single corrupted voter (SCR“)) A woting
protocol ensures Single-Voter Coercion-Resistance with a single corrupted voter

(SCRSY) if it ensures Single-Voter Coercion-Resistance with multiple corrupted
voters (SCRMC) for any |J] < 1.

Again, we have the same equivalencies.

145

3. eVoting

Theorem 44 We have:
— 1If a protocol respects (SCRMC), then it also respects (SCR3C).

— 1If a protocol respects (SCRSC), then it also respects (SCR).

— If a protocol respects (EQ) and (Mod), then (SCR®) and (SwCRHFO) are

equivalent.

— If a protocol respects (EQA) and (Mod), then (SCR3C) and (SwCRLFA) are

equivalent.

— If a protocol is modular, finite (i.e. any instance is finite) and respects (SCR),
then it also respects (SCRMC).

Proof The first two implications are true by definition: (SCR) is a special case
of (SCRY) with J = (§, and (SCR®“) is a special case of (SCRM®) with |.J| < 1.
The other proofs are analogous to the proof of Theorem [39 on page 137] O

3.5.4 — Multi-Voter Coercion (MCR)

We now discuss Multi-Voter Coercion-Resistance. To model the case where

multiple voters are attacked, we consider the set I of attacked voters.

Definition 39 (Multi-Voter Coercion-Resistance (MICR)) A woting pro-

tocol ensures Multi-Voter Coercion-Resistance (MCR) if for any wvoting pro-

cesses VPA = I/ﬁ.(VO'Z'dIUviA | ... | Voig,opa | A1 | ... | A) and VPB =
V’Fl.(VO’idIO'le | ... | Voig,ous | A1 | ... | A1) and any subset I C {1,...,n},
I #{1,...,n} if n > 1, there exists processes V; such that for any contexts

Ci=veywves.(_|P),i €I and nN fn(C) =0 and

VPA; [| Ci [(Vﬂidi%f\)q’cﬂ ~ VPAp l | (VUz‘di%A)Chci]
icl v iel ¢

we have

Viel:C;[V] \out(chei,) ~ V0iq,0,8
and

VPAH|res ~i VPBH|res
a8
VPA; [| Ci [(Vaidﬁm)cl’”” ~ VPDBr [| C; [V/]} ,
el ¢ el

To consider corrupted voters, we propose the following definitions.

Definition 40 (MCR with multiple corrupted voters (MCRM)) A wot-
ing protocol ensures Multi-Voter Coercion-Resistance with multiple corrupted
voters (MCRMC) if for any two instances VPA = z/ﬁ.(Vaidlav{x | [VOid, o0

146

3.5. Multi-Voter Coercion

| A1 | ... | 4;) and VPB = Vﬁ-(VUz‘dl%lB | ... | Vaoia,ous | A1 | ... | A) and any
subset I C{1,...,n} there exists processes V| such that for any contexts C;,i € I
with C; = vey.vee.(_|P;) and 0 fn(C) = 0 and for any subset J C {1,...,n},
JNI=0, JUl#{1,....,n} if n > 1, such that Vj € JZJU? =05, and

VPAs | | G [(VaidiUUA)cl’CQ} | (Voa,) 9%
el B jeJ
~ VPA; [| (VOia,0,0)" | (Voa,)5
el o jeJ
we have
Viel:C;[V] \outehen)) Vo, 0,
and
VPAH|T’€S ~ VPBH’res
U
VPAy | | C; {<Vo-idiav,f\)cl’02} ‘ (Vaidj>c1j,c2j
el 4 jeJ

~

VPBryyJ l ’ C; [VZ/] ’ (VUidj)clj’CQj]
el jEJT

Definition 41 (MCR with a single corrupted voter (MCR?®)) A woting
protocol ensures Multi-Voter Coercion-Resistance with a single corrupted voter
(MCRSY) if it ensures Multi-Voter Coercion-Resistance with multiple corrupted
voters (MCRMC) for any |.J| < 1.

Again, we have several implications and equivalences.

Theorem 45 We have for any X € {¢,SC, MC}:
— If a protocol respects (MCRX), then it also respects (SCRX).

— If a protocol respects (MCRMC), then it also respects (MCRC).
— If a protocol respects (MCRSC), then it also respects (MCR).
— 1If a protocol respects (SCRX), it also respects (SRFX).

— If a protocol respects (MCRX), it also respects (MRFX).

Proof The first three implications are direct consequences of the definitions.
Then we only consider the case (MCRM?) implies (MRFM%), the other follow
directly.

The proof is similar to the proof of SwC RAttackerAbs jmplies Sw R FAttacker,Abs

in Lemma (18 on page 65| Assume the protocol ensures (MCRMY). Let C; be

147

3. eVoting

evaluation contexts such that C; = vey.ves.(_|P;) for some plain processes P,
which fulfill

| Ci[(Voiao,)] | (Vo)

VPA; []
iel jeJ

| (Voig,o,0)" | (Voig,)? | (3.27)

~ VPAs
iel jeJ

Note that these C; can be constructed directly from the vote process V. By

hypothesis we know that there are closed plain process V; such that
Viel:(C; [Vﬂ \out(chei,)] VUZ’diUUB

and
VPAH|res ~] VPBH|res

4

. . C1,C2 . C15,C25
ie‘]C’L {(VUzdiUUZA) :|j€|J(VO'zdj) J J‘| (328)

~1

VPA l

VPBiyy [‘ C; [VZ/] ’ (Vo'idj)clj702j‘|

1€l jeJ

We have to find other processes V;” such that

Viel: v\) o Vo oue (3.29)
and
VPA"| e 2 VPB|,cs
J
PA - che; o \C155C25
Vv uJ [iiI(VUdeUUf) j€|J(Vo'ZdJ) J J] (3.30)

~i

VPBIUJ[| Vi | (Vouq,)92
el jeJ
Let V" = C;[V/]. This directly fulfills the first requirement (Equation (3.29)). For

the second equation (3.30), we suppose VPAH|,.; ~ VPBH|,.s. We can then
use the condition on C; (Equation (3.27))) and obtain

VPA [| C; [(Vo-idiavA)cl,cz} ‘ (Vgidj)01j,62j]

icl jedJ

VP A | | (Vouoa)™ | (Vo)
iel ¢ jeJ

148

3.6. Conclusion

The second hypothesis (Equation (3.28))) gives

VPA; [| C; [(VgidiUUA)chz} ’ (Vaidj)clj,czj‘|

el jeJ
icl jeJ
As labeled bisimilarity is transitive, we can conclude

VPAL; [| (Voiag o) | (Vo)

il jeJ]

=~ VPBjuj [’ CZ [V;/] | (VO'idj)Clj’CQj‘|
el jeJ

which gives us the desired result for V" = C;[V/]. O

7

Finally we also have equivalence between (SCR) and (MCR) as well as (MCR)
and (MCRM®) under the same assumptions as in the case of Receipt-Freeness

using a similar proof.

Theorem 46 We have:
— If a protocol is modular, finite and respects (SCR), it also ensures (MCR).

— If a protocol is modular, finite and respects (MCR), then it also respects
(MCRMC),

Proof Analogous to the proofs of Theorem [40 on page 140 and Theorem
page 14 O

The last theorem allows us to show that Bingo Voting is secure against multi-voter

coercion, i.e. ensures (MCRM®),

Lemma 47 Bingo Voting ensures Multi- Voter Coercion-Resistance with multiple
corrupted voters (MCRMC).

Proof As shown in Theorem the protocol ensures SwCRHFA. In
Theorems 29 on page 123|and [36 on page 132| we showed that it ensures (EQA)
and (Mod). Using Theorem [44 on page 146/ we have that it ensures (SCR®®) and
(SCR). It is easy to see that all instances are finite, thus we have that it ensures
(MCR) and (MCRMY) using Theorem O

3.6 Conclusion

In this chapter we proposed a taxonomy of privacy notions for eVoting protocols.

We started by extending the notions originally proposed by Delaune et al. [DKR09]

149

3. eVoting

Mod, Fin
]\% MCR MCRSC ¢———— MCRMC
SCR SCRSC +— gCRMC
Mod, Fin
/_- -
/
Mod, Fin, MRF MRFSC ¢—|——— MRFMC

F SR

SR FSC «—— QRFMC

VP VPSC VpMC

\/*

Mod, Fin

Figure 3.2 — The hierarchy of generalized privacy notions. A “, B means that
under the assumption C a protocol ensuring A also ensures B.

150

3.6. Conclusion

SwC ROFPO ¢——————---— SO R PO

SCR
EQ, Mod
SRF
EQA,
Mod
EQ, Mod
VP
EQA
EQ

SwV PO ¢—— Gy pL.PO

SwCROFA —————— GyCRIFA

—— SwRFOFA e——r

—— SwVPOFA ——

SwV PLIA

SCRSC

EQA, Mod

EQ, Mod

Figure 3.3 — The links between the generalized and swap-based privacy notions.

A % B means that under the assumption C a protocol ensuring A
also ensures B.

151

3. eVoting

to cover corrupted voters and forced abstention attacks. We applied the resulting
notions on several case studies: the protocols by Fujioka et al. [FO092], the
protocol by Okamoto [Oka96], the protocol by Lee et al. [LBDT03] and Bingo
Voting [BMQRO7]. The results are summed up in and Table 3.1 on page 114} the

position of the case studies within our hierarchy is shown in Figure|3.1 on page 69

As it turns out, these notions based on swapping votes are unsuitable for cases
where votes are weighted. To address this issue we generalized the privacy notions
to cover weighted votes, multiple corrupted and multiple coerced voters. Figure|3.2
sums up the resulting notions and their relationships. We discussed
a variant of the protocol by Fujioka et al. [FOO92| as a first case study. We
also showed that under certain assumptions — a finite protocol and modularity —,
multi-voter coercion and single-voter coercion are equivalent. This allows to
prove security against multi-voter coercion by simply checking for finiteness and
modularity, which are often simpler to prove than the entire property. Similarly,
we were able to show that a finite protocol ensuring modularity is also secure
against inside attackers: the cases with and without corrupted voters coincide.
To show that this assumption is realistic, we showed that the protocol by Fujioka
et al. [FOO92], the protocol by Okamoto [Oka96] and Bingo Voting [BMQRO07]
fulfill this property, and hence ensure Vote-Privacy with multiple corrupted voters,
Multi-Voter Receipt Freeness with multiple corrupted voters and Multi-Voter

Coercion-Resistance with multiple corrupted voters, respectively.

We also analyzed the link between these notions and the previous taxonomy.
We were able to identify precise conditions: Equality of Votes and Equality of
Abstention model the fact that votes are not weighted and that additionally
abstaining voters remain anonymous, respectively. This allows to prove that some
swap-based and some generalized privacy notions coincide for protocols ensuring
one of the two properties. For Receipt-Freeness and Coercion-Resistance we also

need Modularity as the generalized notions are slightly more powerful. The links

between both taxonomies are summed up in Figure 3.3 on the previous pagel The

notions appearing in both Figures 3.2 on page 150| and [3.3 on the previous page]

are marked in bold, allowing to connect the two figures.

As future work, we would like to verify more properties automatically as
manual proofs are often cumbersome and tend to be error-prone. One of the main
problems here are the equational theories which become too complex for ProVerif
to handle. There is some first work on replacing such theories with simpler, but
equivalent ones [SAR13], which could help in dealing with more complex theories
automatically. Moreover, KISS [CDK12| and AKISS [CCK12] can deal with more
complex equational theories, which could help us in verifying more properties

automatically.

We would also like give the full formal proof that we can replace a process

152

3.6. Conclusion

P synchronizing with other processes within a context C[_|, with a bisimilar
(modulo the synchronization) processes P’ ~; P, i.e. that we have C[P] ~; C[P’].

Additionally the approach in this chapter is possibilistic: We call a protocol
secure if there is a way for the targeted voter to escape coercion. As we are in a
symbolic model, we do not consider probabilities. Hence the adversary may in
reality still have a certain probability of detecting that the coerced voter tried
to resist coercion. This is beyond the scope of this work, yet a computational
translation of our definitions should be able take this into account. There already
is some work in the computational model in this direction [KTV10b], yet they do

not consider all different dimensions of our taxonomy.

153

Chapter

eAuctions

A UCTIONS provide sellers and buyers with a way to exchange goods or services

for a mutually acceptable price. Commonly the bidders strive for the least
possible price, and the seller aims for the highest possible price. Due to the
competitive nature of the process, security is important to ensure fairness.

In this chapter we propose a formal model for different security properties. We
start by analyzing Authentication, Fairness and Privacy properties with the help
of ProVerif. We discuss the protocols due to Curtis et al. [CPS07], Brandt
and Sako [Sak00]. Then we propose an abstract model of Verifiability for different
types of auctions, and provide case studies in the symbolic as well as in the
computational model using ProVerif and CryptoVerif respectively.

Finally we discuss the idea of “true bidder-verifiable auctions”, i.e. proto-
cols that can be verified by a non-expert. This precludes relying on complex
cryptography, hence we discuss two protocols achieving verifiability based only
on the physical properties of the manipulated objects. Moreover, we propose a
first approach to model these physical objects and their properties, and use it to

provide a formal analysis of the protocols using ProVerif.

Contents
4.1 Introductionl 0 0oL 157
M1.1 Contributions o 0oL 158
[4.1.2 Outline of the Chapter|. 159
4.2 Related Workl. 159
[4.3 Fairness, Authentication and Privacy in Auctions| 162
[4.3.1 Modeling Auction Protocols|. 162
4.3.2 Fairness Properties| 166
[4.3.3 Authentication Properties| 167
[4.3.4 Privacy Properties| oL 169

[4.3.4.1 Privacyl o 170

4.

eAuctions

4.3.4.2 Receipt-Freeness| 177

4.3.4.3 Coercion-Resistancel 185

435 Casedtudies o o000 194
4.3.5.1 Protocol by Curtis, Pierprzyk and Serugal 194

4.3.5.2 Protocol by Brandt| 202

4.3.5.3 Protocol by Sako|.o 207

[4.3.6 Summary|o 212

4.4 Verifiability in Auctions| 213
441 A Different Model of Auction Protocolsl 213
[4.4.2 Defining Verifiability| 214
4.4.2.1 First-Price Auctions| 215

4.4.2.2 Other Types of Auctions| 217

443 CasedStudies o000 218
[4.4.3.1 Protocol by Sako|.o 218

4.4.3.2 Protocol by Curtisetal| 236

4.4.4 Summary| e e e e e 241
4.5 Towards True Bidder-Verifiable Auctions/ 241
“C " Protocollo 242

4.5.1.1 Description|o 242

4.5.1.2 Security Properties| 243

4.5.1.3 Formal Analysis| 244

- " Protocoll 248

4.5.2.1 Description| oo 249

4.5.2.2 Securities Properties|.o . 256

4.5.2.3 Formal Analysis| 257

4.50.3 Summary| 266
[4.6 Conclusion] o o 267
[4.6.1 Limitations and Future WorklJ. 268

156

4.1. Introduction

4.1 Introduction

Auctions are a simple method to sell goods and services. Typically a seller offers
a good or a service, and the bidders make offers. Depending on the type of
auction, the offers might be sent using sealed envelopes which are opened at
the same time to determine the winner (the “sealed-bid” auction, e.g. [Cac99,
NPS99, [AS02, [CLK03|, LAN02, BCD™09]), or an auctioneer could announce
prices decreasingly until one bidder is willing to pay the announced price (the
“dutch auction”, e.g. [RG95]). There might be several rounds, or offers might be
announced publicly directly (the “English” or “shout-out” auction, e.g. [OMO1]).
The winner usually is the bidder submitting the highest bid, but in some cases he
might only have to pay the second highest offer as a price (the “second-price”-
or “Vickrey”-Auction, e.g. [HTK9S8, [LAN02]). In general a bidder wants to win
the auction at the lowest possible price, and the seller wants to sell his good at
the highest possible price. For more information on different auction methods see
e.g. [Kri02].

Due to the competitive nature of the auction process, security is a major
concern to prohibit cheating and manipulations of the prices. As frauds are
common in eAuctions [NTJ13], different security properties have been discussed
in the literature. We studyE] the following security properties of auction protocols:
— Fairness: Firstly a fair (sealed-bid) auction protocol should not leak any

information about the other participants and their offers until the bidding

phase is over (so as to prohibit unfair tactics based on leaked information).

We call this Weak or Strong Noninterference, depending on if the number of

bidders is leaked or not. Thirdly a protocol should not allow anybody to win

although they did not submit the highest price, i.e. ensure that the Highest

Price Wins. Otherwise a losing bidder could try to cheat to win.

— Authentication: For the seller it is crucial to ensure Non-Repudiation, i.e.
that — after the winner has been announced — the winning bidder cannot claim
that he did not submit the winning bid. Additionally we might want to ensure
Non-Cancellation, i.e. that a bidder cannot cancel a submitted offer before

the winner is announced, to have binding bids.

— Privacy: Privacy is important in sealed-bid auctions to prevent information
leakage after the auction is over, for example if an auction is organized in
several rounds, or if the bids leak sensitive information e.g. to competitors or
clients [BCD™09]. Again, we distinguish several different notions: Secrecy of
Bids, Bidding-Price Unlinkability, Weak Anonymity and Strong Anonymity (of
Bidders), Receipt-Freeness and Coercion-Resistance. Secrecy of Bids guarantees

that the losing bids remain secret. In the case of Bidding-Price Unlinkability

1See Section for a detailed discussion of the properties proposed in the literature.

157

4. eAuctions

the list of bids can be public, but must not be linkable to the losing bidders.
Strong Anonymity of Bidders means that the participants, including the winner,
remain anonymous, and all losing bids remain secret. In the case of Weak
Anonymity the list of bids can be public, but the bids are not linkable to
the bidders, including the winner, who remains anonymous. Receipt-Freeness
ensures that bidders are unable to prove to an attacker (which might be
another bidder trying to force them to submit a low bid so that he wins at a
lower price) that they bid a certain offer, and Coercion-Resistance means that
even when interacting with a coercer, the bidders can still bid a price of their

choice.

— Verifiability: A verifiable protocol should allow the bidders to verify that
the winner was correctly determined, and that no bids were manipulated or
submitted by uneligible bidders. This allows to back up trust in the auctioneer
or other authorities, since they often also have a financial interest in the
auction. For example in the case of eBay the auction fees include a proportion

of the selling price [eBal3].
Note that depending on the type of auction, some properties might be different

or unachievable. For sealed-bid first-price auctions, the most common type of
protocols in the literature, all of the above are suitable. However for example
Secrecy of Bids is difficult to ensure in an English Auction where bids are announced

publicly, but anonymity might still be achievable.

4.1.1 — Contributions

In this chapter we provide the following contributions:

— In the first part we give a formal framework in the Applied m-Calculus to
model and analyze e-Auction protocols. Within this framework we define the
discussed fairness, privacy and authentication properties and analyze their

relationship.

— We provide three case studies: The protocol by Curtis et al. [CPS07], a protocol
by Brandt [Bra06] and the protocol by Sako [Sak00]. We show how the three
can be modeled in the Applied m-Calculus and verified using ProVerif [Bla01].
We discover several flaws on the first two protocols and explain how some of
their shortcomings can be addressed. We also show that the protocol by Sako

ensures all our properties except for receipt-freeness and coercion-resistance.

— In the second part, we give a high-level definition of Verifiability in eAuctions
based on an abstract protocol level. We show how this definition can be

generalized to accommodate different types of auctions.

— We apply this definition on the protocols by Sako and Curtis et al.. Again, we

158

4.2. Related Work

rely on ProVerif to execute the Verification. For the protocol by Sako, we also

provide a computational proof in CryptoVerif [BlaO6a].

— Finally we provide two examples of “true bidder-verifiable” sealed-bid auction
protocols. Although these protocols have their limitations with respect to
scalability, they illustrate two simple ways of achieving secure and verifiable
auctions by exploiting physical properties of physical objects instead of cryp-
tography. We also discuss how we can apply the previous formal models to

verify these “physical” protocols.

4.1.2 — QOutline of the Chapter

In Section [£.2] we discuss related work. Then we model auction protocols in the
Applied m-Calculus to formally define the security properties in Section In
the following Sections [.3.2] [£.3.3] and [4.3.4] we model fairness, authentication and
privacy properties respectively. In Section we analyze our three case studies.

In the following part (Section we propose our abstract model of auction
protocols for verifiability (Section as well as the definition of verifiability
(Section and the case studies (Section . In the final part we propose
two “true bidder-verifiable” protocols in Sections and .5.2] and discuss their

formal analysis. We then conclude in Section [£.6]

4.2 Related Work

In this section we discuss related work on auction protocols, the different security
properties, previous work on formal verification of auction protocols, the link
to other applications such as eVoting (in particular for privacy and verifiability)
or contract-signing, and work on modeling physical properties for security and

protocols.

Auction Protocols. Many electronic auction (e-Auction) protocols have been
proposed in the literature (see e.g. [Bra02, Bra06, BS08, PSKT01] for an overview).
They rely on a multitude of cryptographic primitives such as hash chains [SS99],
signatures of knowledge and zero-knowledge proofs [OMO01], coin-extractability,
range proofs and proofs of knowledge [LAN02], proxy-oblivious transfers and
secure evaluation functions [NPS99] and many others. There is also a protocol
by Stajano and Anderson [SA99] solely based on anonymous broadcast, arguing
that physical properties can be used to construct efficient and simple auction
protocols. As case studies, we use the protocol by Curtis et al. [CPS07], which
uses a trusted registrar and pseudonyms, the protocol by Brandt [Bra06], which
is entirely distributed using secure multi-party computation, and the protocol by
Sako [Sak00] which uses a distributed trusted authority.

159

4. eAuctions

Security Properties. The different security properties have been discussed
since the early publications on eAuctions, e.g. Franklin and Reiter [FR95] dis-
cuss secrecy of bids, anonymity of bidders, fairness, non-repudiation and non-
cancellation. Further publications [HTK98, KHT98, [LKMO01l, [(OMO01] have used
and refined these notions, also adding verifiability. Abe and Suzuki [AS02| intro-
duced and motivated Receipt-Freeness for e-Auctions. Cancellation of bids was
also discussed by Stubblebine and Syverson [SS99] who proposed a protocol imple-
menting cancellation as a feature, and another protocol ensuring non-cancellation.

Still, all definitions given in these papers are informal.

Formal Verification of Auction Protocols. Although there has been much
work on developing auction protocols ensuring various properties, there is con-
siderably less work on their formal definition and analysis. Subramanian [Sub9§]
proposed an auction protocol and analyzed it using a BAN-style logic to show
some security properties. In particular he showed the atomicity of the transaction,
weak secrecy of private keys and a form of anonymity modeled as weak secrecy of
the public key of the bidder. Using OFMC, Ksiezopolski and Lafourcade [KLO7]
identified an attack on authentication in an auction protocol. More recently Dong
et al. [DJP11] analyzed a receipt-free auction protocol in the Applied 7-Calculus.
They only considered privacy, in particular secrecy of the bidding price and

receipt-freeness, but only for losing bidders.

Link to other Applications. In the context of electronic voting there has
been much more work on formal verification, in particular in the area of privacy
as discussed in Section Some notions are similar, yet there are also some
differences to auctions. For example the information leaked by the result in both
cases is usually not the same: typically in voting the published result is the sum of
all votes (although there are more complex ways of computing the tally), whereas
in auctions the public outcome is in most cases the winning bidder and price.
Often the losing bids remain private, and in some cases even the winner stays
anonymous, e.g. the well known “bidder on the phone”. Although normally at
least the winning price is public, there is the protocol by Brandt [Bra0O6] where
only the winner and the seller learn the winner and the winning price, but to the
best of our knowledge, this is the only protocol aiming for such a high level of
privacy.

Concerning Verifiability there is a considerable amount of work in voting. The
property of individual verifiability — a voter can verify that her vote counts correctly
for the result — has been a well-established notion since the field’s inception [FO092]
BT94, [SK95, [HS00]. Similarly the concept of universal verifiability — the property
that all voters or even an outside an observer may verify (using only public

information) the correctness of the tally — has also been discussed for a long

160

4.2. Related Work

time [CE85, BT94] [SK95, Ben96]. Kremer et al. [KRS10] formalized individual
and universal verifiability in the Applied m-Calculus, and added the notion of
eligibility verifiability: the property whereby any observer may verify, using only
public information, that the set of cast votes from which the result is determined,
originates only from eligible voters, and each eligible voter cast at most one vote.
Smyth et al. [SRKK10] used ProVerif to automatically check Verifiability of voting
protocols. They express the conditions in the definitions as reachability properties,
which can be checked by ProVerif. In some of our case studies on the Verifiability
of eAuction protocols we also use the Applied m-Calculus and employ a similar
technique in ProVerif, but our model and definitions are more general and can also
be instantiated using a computational model. Moreover, Kiisters et al. [KTV10al
introduced the notion of accountability: when verifiability of a certain goal fails, it
is possible to identify the party responsible for the failure. They also give symbolic
and computational definitions of verifiability, which they identify as a weaker
variant of accountability. As a case study, they apply their definitions on Bingo
Voting. Although they also consider an auction protocol as a second case study,
the verifiability goals used do not cover all verifications required by our definition.
Finally, Guts et al [GEN09|] defined auditability, i.e. the fact that a protocol
logs sufficient evidence to convince an impartial judge that certain properties are
satisfied. In our definition of verifiability the protocol only needs to convince
the participants that the protocol execution was correct, but not necessary an
outside judge. Moreover, Guts et al. verify auditability using static typing on the
concrete protocol implementation, whereas our definition of verifiability leaves
open the choice of the concrete method of verifying the definition.

While the intuition behind the notions from voting carries (to some degree)
over to auctions, we note that auctions can be much more competitive as the
bidders are pressed for time, for example in the case of an English auction.
This can be exploited by an attacker: for example an illegal bid (e.g., by an
unregistered bidder) may increase the winning price by forcing the honest bidders
to increase their offer, while finally not changing the winner. Hence, a lack of
verifiability (which would allow the honest bidders to identify the incorrect bid)
can compromise fairness. In addition, winner and price determination can be quite
complex depending on the type of auction, e.g. for second-price or multi-good
auction&ﬂ Thus, although providing important inspiration, verification of voting
systems does not translate directly to verification of auction systems.

There has been a lot of work on Non-Repudiation in the context of contract
signing and fair exchange protocols (e.g. [KR03|, KV09, [LVI10]). We rely on the
work by Klay et al. [KV09] who propose many different flavors of non-repudiation

2Note however that although in many cases the outcome computation in voting is relatively
simple, there are more complex voting systems such as Single Transferable Vote (STV) used e.g.
in Ireland [Cit13].

161

4. eAuctions

based on agent knowledge or authentication. We only consider “Non-Repudiation
of Origin”, i.e. that the bidder cannot deny that he made an offer, implemented

as a form of authentication.

Modeling Physical Properties. In the last part of this chapter, we also
discuss the formal analysis of protocol relying on physical objects. Several such
protocols were developed for various purposes, e.g. [CK94, [FNW96l INP97, [(Cha04].
Blaze [Bla03, Bla04b] analyzed physical locks from a cryptographic point of
view, and argued that physical security should be taken into account in security
modeling [Bla06b]. Other work in this area focused on modeling physical security
in various ways. The Portunes framework by Dimkov et al. [DPHI11] allows
modeling of attacks that cross physical, digital and social domains. They focus
on access control and data breaches. Moran and Naor [MNO5|, MNO6a] proposed
several protocols using physical objects, including a “human-centric” polling
protocol based on physical envelopes, and also discussed their formal analysis in
the UC-framework. Recently Meadows et al. [MP13] describe a way to formalize
security procedures (accounting for physical objects) in logic, however again their
work is more concerned about the movement of physical objects, rather than
the properties of the objects itself. Basin et al. [BCSS11] proposed a formal
model to verify protocols based on physical attributes such as time and location.
Their model includes the constraints of these physical domains in their reasoning,
however does not express properties of physical objects that can be manipulated

by the participants.

4.3 Fairness, Authentication and Privacy in Auctions

In this section, we describe our model of auction protocols in the Applied n-
Calculus and propose definitions for multiple properties related to fairness, au-
thentication and privacy. We also discuss our three case studies: The protocols
by Brandt [Bra06|, Curtis et al. [CPS07] and Sako [Sak00].

4.3.1 — Modeling Auction Protocols

Similar to voting protocols, we model auction protocols in the Applied 7w-Calculus

as follows.

Definition 42 (Auction Protocol) An auction protocol is defined by a tuple
(B, S, A1, ..., Am, m) where B is the process executed by the bidders, S is the
process executed by the seller, and the A;’s are the processes exvecuted by the
authorities (for example an auctioneer, a registrar etc.), and m is a set of private
channels. We also assume the existence of a particular public channel res that is

only used to publish the winning bid or bidder.

162

4.3. Fairness, Authentication and Privacy in Auctions

Note that we have only one process for the bidders. This means that different
bidders will execute the same process, but with different variable values (e.g.
the keys, the bids etc.). To reason about privacy, we talk about instances of an

auction protocol, which we call auction processes.

Definition 43 (Auction Process) An instance of an auction protocol (B, S,

A1, ..., Ay,) is called an auction process, which is a closed process
vit.(Boia, op, | . . . [Boia,ob, S| A . .. [Ar),

where | < m, 1 includes the secret channel names m, Bo;q,0, are the processes
executed by the k bidders, o;q, is a substitution assigning the identity to the i-th
bidder, oy, specifies the i-th bid and A;’s are the auction authorities which are

required to be honest.

The restricted channel names model private channels or secret keys. Note that
we only model the honest authorities as unspecified parties are subsumed by the

attacker.

By abuse of notation we write b; > b, to express that the bidding price
determined by the substitution oy, is greater than the one assigned by oy, , and
max;{b;} denotes the maximal price assigned by any substitution o;,. We also
denote by arg max;{b;} the set of values ¢ for which b; corresponds to the maximal

price.

Example 20 Consider the following simple auction protocol.

Informal description: Fach bidder encrypts his bid using the auctioneer’s public
key and signs it using his secret key. The resulting bid is posted on the bulletin
board. After the deadline is over, the auctioneer checks if each ballot is signed by

an eligible bidder. He then decrypts the bids and determines the winner.

Formal description in our model: The protocol uses probabilistic public-key

encryption and signatures, which we model using the following equational theory

already used in Example|12 on page 53

dec(enc(m, pk(sk),r),sk) =
checksign(sign(m, sk),pk(sk)) = m

3

163

4. eAuctions

The protocol is then a tuple (B, S, A, () where

A = in(ch,(sig1,bidy))....in(ch, (sign, bid,)).
if checksign(sigi, pkb1) = bid; && ...
&& checksign(sigy, pkby,) = bid,, then
let by = dec(bidy, ska) in ...
let b, = dec(bid,, ska) in
if max(by,...,b,) = bythen
out(res, (sign((b1, 1), ska), (b1, 1)))

else if ...

else out(res, (sign((by, n), ska), (bp,n)))
B = vrlet ebid = enc(b,pka,r) in

out(ch, (sign(ebid, skb), ebid))
S = in(res,(sig, (price,id))).

if checksign(sig, pka) = (price,id) then ...

In this example the substitution determining the identity of a bidder assigns the
secret key, e.g. oiq, = {skx/skv}. The substitution specifying the bid would be e.g.

ob, = {ricei/b}.

Similarly to voting, we also define Honest Auction Processes, and (Honest) Auction

Contexts.

Definition 44 (Honest Auction Process) An Honest Auction Process of an

auction protocol (B, S, A1, ..., Am,m) is a closed plain process
vi.(Boiq, 0p, | ... |Boig,op,|S| A1l ... |Am)

where 1 includes the secret channel names m, Bo,g,0p, are the processes executed
by the k bidders, o;q; is a substitution assigning the identity to the i-th bidder, oy,

specifies the i-th bid and A;’s are the auction authorities.

Given an auction process
AP = vi.(Boig,0,] ... |Boig,op,|S|A1] ... |A)
we denote by APH the corresponding honest auction process, i.e.
APY = vii.(Boig,0n,] . . .| Boig,on,|S| A1 - . . |An)
Definition 45 ((Honest) Auction Context) Given an auction process

AP = Vﬁ~(BO'id10b1’ e ‘Baidkabk‘S‘Aﬂ . ’Al)

164

4.3. Fairness, Authentication and Privacy in Auctions

and a subset of bidders I we define the Auction Context APr[| as follows:

AP[[_] = I/ﬁ.(| Baidiabi ‘_|S|A1‘ . ‘Al)
i¢l

Similarly for an honest auction process
APY = vi.(Boig 00, . . .| Boig, 0, |S|A1] . . . |An)

and a subset of bidders I we define the Honest Auction Context AP[] as

follows:

APE[] = vin(| Bow,on| |S|A1] .|