Duck Attack on Accountable Distributed Systems

Amrit Kumar”
National University of Singapore
Singapore
amrit.kumar@polytechnique.org

ABSTRACT

Accountability plays a key role in dependable distributed systems.
It allows to detect, isolate and churn malicious/selfish nodes that
deviate from a prescribed protocol. To achieve these properties, sev-
eral accountable systems use at their core cryptographic primitives
that produce non-repudiable evidence of inconsistent or incorrect
behavior.

In this paper, we show how selfish and colluding nodes can
exploit the use of cryptographic digests in accountability protocols
to mount what we call a duck attack. In a duck attack, selfish and
colluding nodes exploit the use of cryptographic digests to alter the
transmission of messages while masquerading as honest entities.
The end result is that their selfish behavior remains undetected. This
undermines the security guarantees of the accountability protocols.

We first discover the duck attack while analyzing PAG — a cus-
tom cryptographic protocol to build accountable systems presented
at ICDCS 2016. We later discover that accountable distributed sys-
tems based on a secure log (essentially a hash-based data structure)
are also vulnerable to the duck attack and apply it on AcTinG —a
protocol presented at SRDS 2014. To defeat our attack, we modify
the underlying secure log to have high-order dependency on the
messages stored in it.

CCS CONCEPTS

« Security and privacy — Distributed systems security; Domain-
specific security and privacy architectures;

KEYWORDS
Accountability, Duck attack, Secure log, Public verifiability

ACM Reference Format:

Amrit Kumar, Cédric Lauradoux, and Pascal Lafourcade. 2017. Duck Attack
on Accountable Distributed Systems. In the 14th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3144457.3144480

1 INTRODUCTION

Distributed systems are often plagued by nodes exhibiting selfish
and malicious behavior. Selfish (rational) nodes may deviate from

“Work done while at Université Grenoble Alpes and Inria, France

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5368-7/17/11...$15.00
https://doi.org/10.1145/3144457.3144480

Cédric Lauradoux
Inria
France
cedric.lauradoux@inria.fr

Pascal Lafourcade
Université Clermont Auvergne
France
pascal.lafourcade@uca.fr

the prescribed protocol as and when there is an incentive to do
so. Malicious or byzantine nodes can deviate arbitrarily from the
protocol without having any well-defined incentive. The end result
is that the quality of the service to honest nodes gets affected and
very often the honest nodes do not get served at all. For instance,
in a live streaming system, selfish nodes would download the video
stream faster while saving upload bandwidth [25].

To this end, several approaches [3, 15, 16, 20, 23] have been pro-
posed in the past to force these “rebellious” nodes to be compliant
(to the underlying protocol) and to make them accountable for their
actions in the network. By making every node accountable, self-
ish nodes do not have incentive to deviate as any such attempt
will eventually be detected resulting in their churn out from the
network.

While considering accountability, attacks resulting from col-
lusion between nodes are certainly hard to thwart as previously
evidenced in [12, 28]. This is because colluding nodes generally
perform unobservable actions from the point of view of the protocol
making their deviations difficult to detect. In fact, this is also why
the number of accountable protocols capable of handling colluding
nodes is rather limited. FlightPath [20] fights collusion using Tit-
for-Tat incentives. LiFTinG [15] uses cross checking and statistical
analysis. Finally, AcTinG [23] and PAG [8] rely on cryptography
to ensure that nodes’ actions are bound, non-repudiable, tamper-
evident and verifiable [29, 30]. This last category of solutions is the
focus of our work. We analyze the security provided by two recent
accountability proposals that handle selfish and colluding nodes:
PAG [8] and AcTinG [23].

PAG [8] is a privacy-preserving accountability protocol for gossip-
based message dissemination, where, each node in the network is
expected to forward a message (received from a previous hop) to a
set of other nodes. The goal is to detect nodes that receive a message
but do not forward it. It relies on a custom cryptographic protocol
(details are given in Section 3.1). AcTinG [23] is a more general
purpose protocol to detect nodes that do not comply with an under-
lying protocol. It requires nodes to log each message sent/received
pertaining to the underlying protocol in a secure log that cannot
be tampered with. The log is periodically audited by other nodes to
detect any selfish/malicious behavior (details are given in Section 4).

In this work, we report a new kind of logical attack that we refer
to as the duck attack. The attack can be mount on both AcTinG
and PAG. Duck attack is named after the duck test! and it can be
summarized as the following expression of abductive reasoning:

! Duck test is 2 humorous term and has the following expression: “If it looks like a duck,
swims like a duck, and quacks like a duck, then it probably is a duck”. The test implies
that a person can identify an unknown subject by observing that subject’s habitual
characteristics. It is sometimes used to counter abstruse, or even valid, arguments
that something is not what it appears to be. This definition is taken from https://en.
wikipedia.org/wiki/Duck_test

https://doi.org/10.1145/3144457.3144480
https://doi.org/10.1145/3144457.3144480
https://en.wikipedia.org/wiki/Duck_test
https://en.wikipedia.org/wiki/Duck_test

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

If you provide me the cryptographic digest H(m) of a
message m, then it probably means that you know the
message m.

Note that this reasoning is incorrect because if you give me H(m),
the best that I should be able to say is that you know H(m).I can-
not conclude anything about your knowledge on m. To see this,
consider the example of an authentication service that stores a
user’s password (m) in the form of a digest (H(m)). If the authen-
tication service gives the password digest to a third party, say a
password auditing service, it does not mean that the authentication
service knows the user’s password (assuming the password is long
enough and well-chosen). Digest H(m) only serves as a “commit-
ment” to the message m. An entity holding the “commitment” may
not necessarily know the underlying message.

We found this logical flaw in both the accountability protocols
that we study in this work: PAG [8] and AcTinG [23]. Roughly
speaking, the duck attack exists on PAG because nodes exchange
H(m) to prove that they have received a message m. As for AcTinG,
the existence of duck attack is not so apparent. In fact, the attack
exists due to the underlying secure-log, where a node logs H(m)
instead of logging m for every message m received or sent by it.

Duck attack in PAG and AcTinG manifests itself in the following
manner: Two colluding nodes execute the protocol without ex-
changing the messages. Instead, they exchange the message digests
and later transmit the messages, when it is more advantageous to
do so. For instance, they can use data compression techniques to
send batches of messages and therefore save bandwidth. The duck
attack is very similar to terrorist fraud [2] and distance hijacking
attacks [7] against authentication and distance bounding protocols,
where colluding attackers attempt to confuse an authentication
server.

We also propose a countermeasure for AcTinG. To this end, we
revisit the tamper-evident log data structure of AcTinG, which is
a secure-log initially proposed in [26] and later also employed in
several other protocols such as in PeerReview [16]. Our approach
consists in modifying the secure-log. In AcTinG, a secure-log is
maintained by each node and each entry (message sent by the node)
of the secure-log yields an authenticator. The authenticator attests
the creation of the log entry and can be publicly verified to detect
deviation from the protocol. In our countermeasure, the compu-
tation of the authenticator depends in the extreme case on all the
previous messages stored in the secure log. Cheating through the
duck attack is prevented because one of the colluding parties cannot
maintain the log only by herself: the other accomplice cannot post-
pone anymore the sending of the messages and it will eventually
cost a lot of communication.

While studying duck attack on PAG, we further discover other
design flaws that lead to several other attacks on its security and
privacy guarantees. This is an orthogonal contribution of our paper.
For reasons explained in Section 5, we do not attempt to fix PAG.

Contributions: In summary, we make the following contributions

in this paper:

(1) We devise a new form of collusion attack on accountable
systems: the duck attack. Duck attacks requires selfish and
colluding nodes - a standard adversary model supported by
several systems such as PAG and AcTinG.

Amrit Kumar, Cédric Lauradoux, and Pascal Lafourcade

(2) We demonstrate how the duck attack can be mount on two
state-of-the-art accountability protocols namely, PAG and
AcTinG and the impact that they exert on the security guar-
antees of the respective systems.

(3) We provide a countermeasure for AcTinG and study the
ensuing security-performance trade-off.

(4) An orthogonal contribution of this work is that we found
several other attacks on the security and privacy guarantees
of PAG. These attacks render PAG insecure.

Outline: In Section 2, we discuss the threat model and colluding
adversaries. We first demonstrate the power of the duck attack on
PAG (Section 3). In Section 4, we also illustrate the duck attack on
AcTinG, a protocol that inherits the secure-log system of PeerRe-
view [16]. Our log system with extended dependency is presented
in Section 5 to thwart the attack. In Section 6, we conclude the
paper and mention some future works. We leave in Appendix A
the presentation of other attacks on PAG.

2 THREAT MODEL

We consider a network composed of correct nodes, individual (non
colluding) malicious nodes and malicious colluding nodes. Correct
nodes respect the normal execution of the protocol. Individual ma-
licious nodes tamper with the execution of the protocol. They can
modify the messages they receive and forward the modified version
to the rest of the network for instance. Malicious colluding nodes
can behave exactly as individual malicious nodes to harm the sys-
tem. The colluding nodes can also have a rational behavior (see [1]).
They follow the protocol if it is not in their interest but they are
willing to deviate from it if they can save resources like bandwidth
or computation. In order to do so, they can communicate using
off-the-record channels or use covert channels [12] to exchange
data beyond those prescribed by the underlying protocol.

We assume throughout the paper that nodes are set up with some
long term asymmetric cryptographic keys. We assume that nodes do
not share their long term private keys with anybody. This is a limit
to which the colluding nodes can share information to cheat. This
assumption is implicitly made in most papers like PeerReview [16].
Without it, colluding nodes sharing secrets would be equivalent to
a single adversary controlling two nodes. A similar assumption is
made in the analysis of authentication protocol resistant to certain
form of collusion [2, 7].

3 DUCK ATTACK (AND MORE) ON PAG

PAG [8] has been designed to provide accountability to fight both
individual malicious nodes and malicious colluding nodes in gossip-
based message dissemination schemes, where nodes periodically
exchange data chunks with randomly chosen nodes [5, 17]. In addi-
tion, it provides privacy guarantees for the messages provided by
the nodes. As our duck attack does not take advantage of the pri-
vacy mechanism, privacy properties are not detailed here and left
in Appendix A. The appendix also provides attacks on the privacy
guarantees of PAG.
The main goal of PAG is to ensure that nodes respect the obligation-

to-receive and the obligation-to-forward properties which are infor-
mally defined in [8] as follows:

Duck Attack on Accountable Distributed Systems

e Obligation-to-receive: At a given communication round,
a node must receive the messages sent by its predecessors.

e Obligation-to-forward: A node must forward the mes-
sages it received at a given communication round R to all its
successors during round R + 1.

In the next section, we describe how PAG enforces these obligations.

3.1 PAG’s Description

Below, we first describe the assumptions, setup and the building
block namely keyed homomorphic hash function and then present
the PAG protocol.

3.1.1 Assumptions and Setup. Consider a simple network com-
posed of five nodes: A, B, C, D and E (see Fig. 1). The point of
interest in this network is D which receives messages (in the form
of updates) from the producers A, B and C. In practice, A, B and
C may just forward the messages received from a previous hop
rather than creating them. The expected task of D is to forward the
messages to E. The nodes A, B and C are called predecessors of D,
while the node E is referred to as a successor of D.

(&)
Ui, uz,u3

Figure 1: Gossip based message dissemination.

PAG assumes secure channels between the nodes: all node-to-
node communications are encrypted with the help of a public-key
infrastructure. Messages are also digitally signed to ensure their au-
thenticity. However, in order to simplify the presentation, we ignore
all node-to-node encryptions and the accompanied signature.

The core primitive used in PAG is a keyed homomorphic hash
function. The function allows a witness (an auditor) to perform the
privacy preserving verification. Following the notation used in [8],
we denote this hash function by Hy, where p is the key. The hash
function is homomorphic in the sense that for any two messages u
and v, and keys p, p1 and py, the following two properties hold:

Hp(“) : Hp(U) Hp(u -),
Hp,(Hp,(u)) = Hp,p,(w).
The operation ’-” denotes product between the messages that come
from a group.
In PAG, Hp, is instantiated by a variant of the RSA function with

a prime exponent p and a modulus M. Hence, for any message
u € {0,1}", the digest of the hash function Hp, is given as:

Hp(u) = u? mod M.

The modulus is chosen once at the start of the protocol, while a

different key (the exponent) is used for every predecessor node.

The keys are also updated at the start of each round.

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

3.1.2 Protocol Core. We continue with the example network
of Fig. 1 with six nodes: A, B, C, D, and E, where D is the point of
interest. It has three predecessors A, B and C and a successor E. We
augment this network with a witness W for D.

The protocol runs in rounds and assumes that the network is syn-
chronous. A schematic representation of the messages exchanged
in a round of PAG is given in Fig. 2. Step 1, each predecessor node
asks for a key. D hence generates three random keys p1, p2, p3 and
sends p1,p2 - p3 to A; pa,p1 - p3 to B and p3,p; - p2 to C. Step 2,
the predecessor nodes send their respective messages u1, uz and u3
to D. Step 3, each predecessor node computes the homomorphic
hash of its message with the key received from D and sends to the
witness the computed digest along with the received product of
two keys. For instance, A sends Hp, (u1), p2 - p3 to W. Meanwhile,
upon reception of the messages from its predecessors, D forwards
them to its successor E along with the product of all the keys. E
then computes Hp, .p,-p; (U1 - u2 - u3) and sends the digest to W.

3. Hp, (u3), p1 - p2

3. Hp, (u1), p2 - ps /L\ 5. Hpy py-ps (1 - iz - u3)

)

3. Hp, (u2), p1 - p3

1.p2. p1-p3

(®)
4. uy, up, us, p1 - P2 - P3

1.p1. p2 - p3

1.ps3, p1- P2

Figure 2: A round of PAG with three predecessors (A, B,C)
and one successor (E). W is a witness for D.

Upon reception of all the messages from the predecessors and the
successor, W computes: x = Hp,.p, (Hp, (u1)), y = Hp, .p;(Hp, (u2)),
and z = Hp, .p,(Hp,(u3)). Values x, y and z are computed using the
messages received from A, B and C respectively. The witness then
checks for equality between x - y - z and Hp, .p, .p, (U1 - u2 - u3) (the
last digest was sent by E). If the messages were correctly forwarded,
the homomorphic properties of the hash function ensure that the
two terms are equal. Indeed,

x-y-z = Hp,p,(Hp,(u1)) - Hp, p;(Hp,(u2)) - Hp, p,(Hp,(u3))
Hp, -py-ps(u1) - Hpy-py -ps (u2) - Hp,-p,-ps (43)
= Hp,.pyps(u1 - uz - u3)
If the equality test fails, then W may conclude that D did not
correctly forward the messages to E.

We note that the actual protocol is slightly more complicated
since it assumes several witnesses for a given node and that the

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

node E does not directly communicate with the witness. In fact, the
witnesses for D and E communicate with each other to crosscheck
the messages sent by the monitored nodes. The protocol simplifi-
cation is only meant to ease the understanding of the presented
attacks. It does not limit in any manner the scope of the attacks on
the actual protocol.

3.2 Key Recovery Attack

It is argued in [8] that in order to ensure the privacy preserving
auditing of the nodes, the witness should not learn the keys gen-
erated by a node. Moreover, it is claimed in [8] that if every node
has three predecessors, then the witness can not learn the keys.
We first show that this claim is unfounded by illustrating an attack
on our example network of three predecessors in Fig. 2. The goal
of this attack is to further simplify the PAG protocol so that the
presentation of our duck attack becomes easier.

The witness W receives p1 -pz from C, and p; -p3 from B (Cf. Fig. 2).
In order to recover the key p1, it simply computes ged(ps - p2, p1 - p3)-
Since, the keys are prime numbers and generated randomly, this
computation yields p;. Other keys ps and p3 can be obtained like-
wise. It is evident that this attack trivially extends to any network
with arbitrary number of predecessors.

As a result, all the keys can eventually be recovered by the
witness. Hence, the keyed hash function now reduces to an un-
keyed hash function. Apart from being an attack, this result allows
us to further simplify the protocol by assuming that instead of
generating one key per predecessor, nodes create a unique key
p per round. The key is public to any node participating in the
network (valid under the assumption that nodes collude). This does
not change the verification procedure at the witness node. In the
rest of this section, we work with only two predecessors to simplify
the presentation.

3.3 Duck Attack with Colluding Nodes

We now present the duck attack against PAG, where, a unique key
known to the witness node is used. To this end, we assume the
message transmission scenario as depicted in Fig. 3, where two
predecessor nodes A and B send messages u and v respectively
to C. The node W is the witness for C. We assume that nodes C
and D collude and we color them in gray in Fig. 3. Hence, to save
bandwidth C sends to D the digest Hp,(v) instead of the message v.
Since, D colludes with C, D does not raise alarm and sends Hy (u - v)
to the witness W. The witness cannot detect the discrepancy and
declares the verification as successful. Hence, PAG does not ensure
the obligation-to-forward guarantee, because C does not send v to
D and D proves the contrary to W.

Another variant of the duck attack is possible. To this end, we
consider a situation where a predecessor node (B) and the receptor
node (C) are malicious and collude to save bandwidth (also colored
in gray in Fig. 4). Under this setting, we consider the message
transmission scenario as depicted in Fig. 4, where two predecessor
nodes A and B wish to send the same message u to C. The latter
may inform B before the transmission of the actual message that it
is about to receive or (has received) the same message from another
of its predecessors. Hence, to save bandwidth B does not send the
message to C. However, it sends Hy, (u) to W to convince the witness

Amrit Kumar, Cédric Lauradoux, and Pascal Lafourcade

Figure 3: Duck attack on a round of PAG. C instead of for-
warding the message v to D, forwards H(v). In red, we show
the message sent as an adversary.

that it in fact went through with the transmission. C colludes with B
and forwards two copies of u to D and the rest of the protocol round
runs as any other. The protocol does not respect the obligation-to-
forward, because B never sent to C the message u while D and B
prove the contrary to W.

Figure 4: Collusion attack on a round of PAG. Dashed arrow
and the symbol X is to denote that this transmission never
occurred.

Clearly, with the existing mechanism in PAG, it is not possible
for witnesses to detect such behaviors. The fundamental reason
why this selfish behavior goes undetected in PAG is that the witness
has no way to learn that the digest sent by D on the message u did
originate from B.

4 DUCK ATTACK ON ACTING

AcTinG [23] is a protocol presented at SRDS 2014 and inspired
by PeerReview [16] and FullReview [9]. These protocols rely on
maintaining a secure data structure on each node. The data struc-
ture implements a tamper evident log. The log is used to record
the messages a node has sent and received. Eventually, any node
(verifier) may request the log of another node (prover) and perform
an audit and thereby determine whether the prover has deviated
from its expected behavior. In this section, we present an overview
of AcTinG and the demonstrate how to mount a duck attack.

We first describe how two nodes interact when a message is
exchanged and how the secure-log is built. We then demonstrate
our duck attack to this exchange. Next, we show another attack

Duck Attack on Accountable Distributed Systems

that allows colluding adversaries to predict when the audits take
place. Ability to predict the audits can be exploited by a malicious
node to deviate from the protocol in the rounds when it will not
get audited.

4.1 Secure-Log in AcTinG

Each node in AcTinG maintains a secure-log that forms a chained-
digest. The log is an append-only linked list that contains records
pertaining to messages sent or received by a node.

The log entry for a node at any given round i is given by T;||i||m;
which contains an authenticator T; (later used for audit), a sequence
number i (a monotonic counter) and a message m; sent by it. The
notation || denotes message concatenation. The next entry of the
log is then given as Tj11||i + 1||m;+1, where T;11 is computed in
the following manner:

Ti+1 = H(Til|i + 1{|H(mi+1)),

with H a cryptographic hash function and Ty a publicly known
value. Note that the authenticator chains all previous messages
sent/received and generates a single digest. Checking the validity
of an authenticator means checking that all previous messages have
been correctly logged and that the log has not been tampered with.
Fig. 5 presents the chained-digest for a node.

i+1
H(miy1)

Figure 5: Linear hash chain in AcTinG records each message
sent by a node.

Fig. 6 describes how the log entries are created during a com-
munication between two nodes A and B. We assume that A sends
a message m to B. In addition to the message m, node A sends

aﬁrl =o(i+ 1I|Tf+1)’ with o a digital signature algorithm. The

A
value af’
to check the correctness of A. In fact, by sending aﬁrl, A commits
to having logged the entry Tl.‘il ||i + 1||m and to the content of its

can then be used by any node during the audit process

. . A . .
log before it. Any node that receives a;, ; can use it to inspect the

log entry Tl.‘il [|i + 1||m and all the entries preceding it in the log of
A

4.2 Luring AcTinG

We consider the communication scenario of Fig. 6 and assume that
nodes A and B are colluding. The duck attack against AcTinG is
based on the observation that node B does not need to know m to
compute leil but only H(m) because T}il = H(T}5 [+ 1[|H(mj+1))
and m = mj,1. Since nodes A and B are colluding, it suffices for A to

send H(m) to B. Then, B can create a blank entry Tj]il [lj+1]|0@ which
does not contain the message but has a valid authenticator Tj’il

that can be used to compute ijiz' Node B can continue to create

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

Node A Node B
m, oA
Create entry: > %it1 Create entry:
T4, 11+ 1|m TE 11+ 1]Im

Figure 6: Log entries created by AcTinG during the transmis-
sion of m by A to B. We assume that this creates (i+1)-th entry
in the log of A and (j + 1)-th entry in the log of B.

new entries in its log despite the absence of m. If a node performs
an audit of B, then it will discover the blank entries. Therefore, it
is important that before an audit, A sends m to B. The attack is
schematically presented in Fig. 7. In the next section, we show how
a node may easily determine when it will get audited. This renders
the duck attack stealthy and impossible to detect.

Node A Node B

A
Create entry: H(m), i’y

TA |l +1]|m

Create entry:
B .
B, [lj+1]l0

Figure 7: A and B collude to mount the duck attack. Instead
of sending the message m, A sends H(m) to B. H(m) suffices
for B to generate the correct authenticator Tjﬁl.

At first sight, the duck attack may appear to be pointless: execut-
ing the attack strategy is more costly than following the protocol.
In the duck attack, node A sends H(m) and then must late commit
m to B. The communication of H(m) is an extra overhead compared
to the normal execution of the protocol. The duck attack is not
interesting if the colluding nodes execute it for a single message.
The attack is interesting if they use it for several messages. Let us
assume that node B has created two blank entries with the help
of A. Each entry is associated with message m and m’. Node A
needs to commit m and m’ before the audit of B. Node A can use
data compression to send m and m’ with gain bounded by informa-
tion theory argument and reduce the cost of communicating with
B. With many blank entries, the colluding nodes can even expect
greater gain.

The attack presents an interest even when no compression can
be achieved. Node A can pursue other important activities like
exchanging other messages with B while still pretending to follow

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

the protocol. A sends m and m’ to B when she is less busy. The only
overhead communication overhead is the digests.

4.3 Predicting AcTinG’s Audit

In order for the duck attack to go undetected, nodes must exchange
the message before the audit takes place. It is hence crucial for the
nodes to know when the audit will be performed. In this section,
we show how colluding nodes can predict the round in which they
will get audited.

The auditing process in AcTinG is as follows. The system ensures
that each node gets audited by a set of other nodes. When a node
A is associated as an auditor to a node B, A decides if it performs a
full audit of B or not. The full audit of B implies checking:

o the secure log of B;

o the secure logs of all the nodes which have communicated
with B;

e B has forwarded all the messages it was supposed to;

o B has performed all the necessary audits.

Auditing in AcTinG is a costly operation and hence is invoked
(if at all) at the start of every & rounds (a system parameter). In fact,
authors of AcTinG further suggest that the decision to run the audit
in a round i (a multiple of) be taken using a non-deterministic
process. However, they provide two deterministic solutions to take
this decision:

o Node A chooses a signature a;‘ = o(j| |TjA) amongst all the
signatures in the log after the end of round (i — 1) and com-

putes:

r= aj‘ mod 100

e Or, A computes:
r = H(PK 4||PKg||i) mod 100,
with PK 4, PKp the respective public keys of A and B.

If the value r is greater than a certain threshold then A audits B.
The paper suggests a threshold of 30.

The first solution favors selfish nodes: Node A chooses a signa-
ture which does not trigger the audit. If the signature is probabilistic
(the authors mention in the paper to use RSA 1024 bits signature
scheme), the situation is even worse: A can choose the internal ran-
domness used for the signature to make any a mod 100 smaller
than the threshold and hence no audit takes place.

The second solution is deterministic and predictable. Nodes A
and B can compute in advance all the values H(PK 4||PKp||i) for all
the nodes to determine when they are going to be audited. There-
fore, they can determine when they can execute the duck attack
without any risk of being caught. The conjunction of the duck at-
tack and the fact that the audit of AcTinG is predictable makes
the risk analysis presented AcTinG [23] too optimistic about the
probability to detect a fraud.

5 COUNTERMEASURES

We believe that it is hard if not impossible to find countermeasures
for PAG that guarantee both security and privacy. The reasons to
this are three-fold: 1) Duck attack is only one of the several possible
attacks on PAG. Additional security and privacy issues with PAG
are given in Appendix A. 2) There is a lack of well-defined security

Amrit Kumar, Cédric Lauradoux, and Pascal Lafourcade

and privacy properties that a PAG-like system should achieve. PAG
only informally presents these properties. Hence, any attempt to fix
PAG (if at all possible) would require at the very least well-defined
security and privacy definitions. These definitions should be further
investigated for any incompatibility. 3) Since the underlying design
in PAG is flawed, any possible fix would require building a clean-
slate solution which we believe is beyond the scope of this paper.
We consider such explorations as important future work.

For the above reasons, we focus on fixing AcTinG. We propose
two modifications of AcTinG to defeat the duck attack: employ-
ing verifiable random functions [10, 13, 14, 22] and hardening the
underlying secure-log data structure.

5.1 Using Verifiable Random Function

Recall that in AcTinG, nodes need to use randomness to decide
when the audit should be performed and also to choose the nodes
they should communicate with. As discussed in Section 4.3, the
random number generator as used in AcTinG is either deterministic
(and hence predictable) or can be made to output biased coins when
used by selfish nodes.

Clearly, randomness is necessary to ensure that malicious or
selfish nodes cannot predict the rounds in which they will be au-
dited. Furthermore, one must ensure that malicious nodes abide
by the (unbiased) randomness and any attempt to use an alterna-
tive source of randomness can be detected. This problem was first
tackled by Backes et al. in CSAR [3] to extend PeerReview [16] to
nodes exhibiting non-deterministic behavior. The underlying idea
in CSAR is to use a random number generator that is unpredictable
and yet verifiable. This property was achieved using a primitive
called verifiable random functions (VRF) [22].

Informally speaking, a VRF is a pseudo-random function f for a
secret seed s such that the owner of the seed can as usual evaluate
fs at any point x but also prove that the obtained value fs(x) is
indeed correct without compromising the unpredictability of fs
at any point x for which no proof of correctness is given. Several
constructions of VRFs exist in the literature [10, 13, 14, 22]. For
instance, [22] is based on the RSA function, while [10] is based on
bilinear maps.

VREFs are the natural option to fix AcTinG. Each node can main-
tain its own seed s and whenever randomness is required, the node
can invoke the VRF f; on a publicly known input such as a sig-
nature or concatenation of public keys (refer to Section 4.3). The
output of f; and the corresponding proof can then be logged to
prove to the auditor that the randomness was correctly generated
using the function f; without sacrificing its unpredictability.

Guerraoui et al. [15] have proposed a different approach that con-
sists in measuring entropy, but the guarantees are not as strong as
those provided by a VRF. Using a VRF ensures that adversaries can
not predict or influence the result of the random number generator
without being detected.

5.2 Hardening Secure-Log Data Structure

AcTinG [24], PeerReview [16] and several other solutions [3, 9] rely
on the secure-log data structure proposed by Maniatis and Baker
in [26]. Our attacks described in Section 4 also exploit the same
data structure. Hence, in this section, we follow the natural path

Duck Attack on Accountable Distributed Systems

to fix AcTinG by modifying the secure-log data structure. To this
end, we present a hardening solution motivated by [26]. The key
idea is to ensure that the authenticator in round i depends on the
current and all previous messages, i.e., m;, mj_1,...,my and not
simply on the current message m;. Additionally, we introduce a
final signature to acknowledge reception of a message.

Our approach does not aim to directly detect or prevent duck
attacks but to limit its benefit. To this end, we also discuss some
limitations and the ensuing security-performance trade-off. The fix
presented here is a sketch and we do not provide formal proofs of
the guarantees that it yields. This is mainly due to a lack of formally
defined security properties against which the efficacy of the fix
could be studied.

5.2.1 Adding a Final Signature. Use of digital signatures is a
standard way to prevent forgery attacks. A similar modification
was proposed in PeerReview [16]. To see how we employ signa-
tures, let us consider two nodes A and B which exchange messages
and maintain a log of their communication using our modification
(presented in the next section). We assume that each time a node B
receives a message m; from A, it sends to A an acknowledgement
TiB | |0(TiB) with O'(TiB) a cryptographic signature.

It appears that the duck attack still applies. The only difference
with the duck attack previously described in this paper is that node
B needs to provide to A the current authenticator of its log (see
Fig. 8). At the end, B sends its signature to A to end the communi-
cation. The use of a randomized signature does not make the attack
more difficult because A can recompute everything for B (except
the final signature). Having said that, by introducing a final digital
signature, the bandwidth required to mount the duck attack can be
increased.

Node A Node B
1|78
TB
Compute: 1 Create entry:
T8 = HQ||TP [Imy) 0||T3
TPllo(TP)

Figure 8: Duck attack on the secure-log structure with a fi-
nal signature. Introducing a signature as in PeerReview [16]
does not help: A and B can exchange values such that B can
produce the final signature without knowing the message.

As a side remark, one must note that the duck attack presented
above does not apply to PeerReview (which also employs digital
signatures) because the protocol does not consider colluding adver-
saries.

5.2.2 Increased Dependency. We now present the idea of in-
creased message dependency of authenticators. We first look at the
secure-log design proposed by Maniatis and Baker in [26]. They
in fact present a secure timeline log. The security of their design

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

is based on one-way hash function H (instantiated using SHA-1
in 20022). At round i, the last entry in the log contains message
m; and is associated with authenticator T;. Then, the next entry is
associated to Tj1 defined as:

Ti+1 = H(i + 1||T;||G(m;+1)), where, Tj is a fixed value.

The function G is also a one-way hash function. The security
argument given to justify their design works as follows. Given
Ti+1 = H(i+1||T;||G(mj+1)), it is not possible to produce a message
B and an authenticator T, # T; such that T;41 = H(i + 1||T]||G(B))
since H is second pre-image resistant.

The authors of [26] justified the use of G in their construction
by the fact that the m; can be very large (complete Merkle tree [21]
or a large authenticated data structure). To this end, G(m;) yields a
small digest that can be used instead of m; to reduce the effective
size, while maintaining some information about m; in G(m;). For
instance, in the case of a Merkle tree m; represents the entire tree,
while G(m;) may represent the root hash of the tree. G(m;) still
helps in ensuring the integrity of the tree leaves.

We modify the above design such that each T; depends on all
previous messages. To this end, we first note that it is possible with-
out loss of security to get rid of the function G as we assume now
that H is a collision-resistant hash function (SHA-3 [11]) instead
of being only one-way. Our hardened solution modifies the way
authenticators are computed. In our modified scheme, we compute
the authenticator as follows:

Tivr = H(i + 1[Til|miv|[mil] - - - [[m1).

The computation of T;4+1 depends on all the previous messages
stored in the log instead of only m;4; as in AcTinG. Now, for a
given Tjy1 = H(i + 1||T;||mi+1||mi]| - - - ||m1)), it is intractable for
an adversary to find Tl.’ # T; and/or & # m; such that:

Tiv1 = H(i + 1|T][Imizallal] - - |Im1)).

This is due to the collision resistance property of H. Therefore our
modification is secure.

In summary, if we compare the hardened authenticator with the
authenticator as used in AcTinG, we have made three changes: 1) A
final signature is added at the end of the protocol. 2) The modified
authenticator does not depend on the hash of the message (as in
AcTinG) but the message itself. 3) It depends on all current and
previous messages.

We reiterate that our approach is not to detect or prevent directly
the duck attack but to make it more costly than any benefit that
two selfish and colluding parties can expect. Let consider a case in
which node B colludes with node A and exchanges messages with
an honest node C. This situation is represented in Fig. 9. A and B
first execute the duck attack to avoid sending message mj. Node
A computes and sends TlB to B. Then, node B receives message my
from C. Without the knowledge of m1, node B cannot compute TZB
and cannot send the acknowledgement to C. To solve this problem,
there are two options for the colluding nodes: A sends m to B or
B sends my to A and wait to receive TZB. If A sends mj to B, they
have exchanged more data than if they had followed the protocol.
The same conclusion holds if B sends m to A. This problem occurs
each time B must log a message from an honest node.

2SHA-1 has been recently declared as insecure [27].

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

A
1|78

B
Tl

TP |o(T)

Amrit Kumar, Cédric Lauradoux, and Pascal Lafourcade

C

T,B

TP (Tf)

Figure 9: Duck attack when colluding node B receives messages from multiple participants (A and C). Node B must compute
TzB = H(2| |TlB ||m1||m2) but does not know mj. Only, node A is able to compute TZB if B forwards m; to A. When A sends TZB to B,

she can compute o? (TZB) and send the acknowledgement signature to C.

Node B might be tempted to acknowledge the reception of my
with a random value r||o(r). However, an audit of B and C will
detect this action. Note that maintaining multiple logs per partner
is an attack beyond the scope of this paper. This issue has been
tackled in [16] for instance.

5.2.3 Security-Performance Trade-off. Fig. 9 clearly shows the
benefit of increasing the dependency order of the authenticators. If
node B tries to create a blank entry with A, it affects the computation
of the next authenticators obtained from an honest node. An issue
with our proposed hardening is that the complexity to compute
the authenticators in the log grows linearly with the log size. It
is possible to find a trade-off between complexity and security by
using a window of A previous entries:

H(i + 1|TilImisa|lmi]| - - - [Imi—paer) iz A
Tiv1 = HG+1[Ti||miza|lm] - - |Im1) ifo<i<A
H(i + 1|Til|mi+1) ifi=0

We have computed the time to create a secure log of 100 entries in
Python 2.7.12 onan Intel Core i7-5500U (2.40GHz) processor . The
size of each message is 10KB (arbitrarily chosen). We have used SHA-
3 using 512-bit digests. When the computation of authenticators
depends on all the previous entries, we observe a slowdown of x64
compared to the original secure log presented in [26]. Fig. 10 shows
that the slowdown grows linearly with the value of A. The value
A = 1 has only a small impact on the performance and can prevent
the duck attack if there is a high probability that two consecutive
messages are never sent by the same source. This can be achieved
by randomly choosing the source in each round.

6 CONCLUSION & FUTURE WORK

We have applied the duck attack on a custom cryptographic system
PAG and on AcTinG based on secure log. The origin of the attack is
the use of cryptographic hash function as a core of more complex
primitives. It allows attackers to exchange digests instead of the
real messages and therefore be selfish. After discovering our attacks
on PAG, we have been unable to propose corrections that fix all the
flaws. It seems difficult to do so for PAG. We believe that designing

Slowdown ratio

Figure 10: Slowdown observed for the creation of the log
when the authenticators depends on the A previous entries.

a protocol that guarantees the accountability property and at the
same time respects the privacy of the nodes might be very challeng-
ing if not impossible. Designs based on a secure log can however
be fixed by increasing the dependency order of the authenticators’
computation and by using verifiable random functions.

The proposed fix of AcTinG is a sketch and we do not provide
any formal proof of its guarantees. This is due to a lack of formally
defined security properties. We consider formally defining the se-
curity properties and providing formal proofs as important future
work.

More generally, a key issue to go forward in the design of account-
able distributed protocols is the definition of the selfish adversaries.
Recently in [19] Kuesters et al. presented a formal definition of
accountability and some possible links with verifiability properties.
It might be interesting to see how these definitions are sensitive to
the duck attack and how they match selfish adversaries. In other
words, we can investigate whether the two protocols studied in

Duck Attack on Accountable Distributed Systems

this paper satisfy their definitions or if the duck attack allows us to
prove the contrary.

ACKNOWLEDGMENT

The work was partly supported by the LabEx PERSYVAL-Lab (ANR-11-

LABX-0025), the project-team SCCyPhy and the Digital Trust Chair
from the University of Auvergne Foundation.

REFERENCES

[1] AmitanandS. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin, Jean-Philippe
Martin, and Carl Porth. 2005. BAR Fault Tolerance for Cooperative Services. In
Proceedings of the 20th ACM Symposium on Operating Systems Principles 2005,
SOSP 2005, Brighton, UK, October 23-26, 2005. ACM, New York, NY, USA, 45-58.
Gildas Avoine, Muhammed Ali Binggl, Stileyman Kardas, Cédric Lauradoux, and
Benjamin Martin. 2011. A framework for analyzing RFID distance bounding
protocols. Journal of Computer Security 19, 2 (2011), 289-317. https://doi.org/10.
3233/JCS-2010-0408

Michael Backes, Peter Druschel, Andreas Haeberlen, and Dominique Unruh.

2009. CSAR: A Practical and Provable Technique to Make Randomized Systems

Accountable. In Proceedings of the Network and Distributed System Security Sym-

posium, NDSS 2009, San Diego, California, USA, 8th February - 11th February 2009.

The Internet Society, Virginia, USA, 13.

Elaine B. Barker and Allen L. Roginsky. 2015. Transitions: Recommendation for

Transitioning the Use of Cryptographic Algorithms and Key Lengths. Technical

Report. National Institute of Standards and Technology (NIST).

[5] Thomas Bonald, Laurent Massoulié, Fabien Mathieu, Diego Perino, and Andrew
Twigg. 2008. Epidemic Live Streaming: Optimal Performance Trade-Offs. In Pro-
ceedings of the 2008 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, SSGMETRICS 2008, Annapolis, MD, USA, June
2-6, 2008. ACM, New York, NY, USA, 325-336.

[6] S. H. Cavallar, B. Dodson, A. K. Lenstra, W. M. Lioen, P. L. Montgomery, B.
Murphy, H. J. J. te Riele, K. Aardal, J. Gilchrist, G. Guillern, P. C. Leyland, J.
Marchand, F. Morain, A. Muffet, C. Putnam, C. Putnam, and P. Zimmermann.
2000. Factorization Of A 512-Bit RSA Modulus. In Advances in Cryptology (Lecture
Notes in Computer Science), B. Preneel (Ed.), Vol. 1807. Springer, California, USA,
1 - 18. http://oai.cwi.nl/oai/asset/10351/10351D.pdf

[7] Cas].F. Cremers, Kasper Bonne Rasmussen, and Srdjan Capkun. 2012. Distance
Hijacking Attacks on Distance Bounding Protocols. In 19th Annual Network and
Distributed System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5-8, 2012. IEEE, California, USA, 113-127.

[8] Jeremie Decouchant, Sonia Ben Mokhtar, Albin Petit, and Vivien Quéma. 2016.
PAG: Private and Accountable Gossip. In 36th IEEE International Conference on
Distributed Computing Systems, ICDCS 2016, Nara, Japan, June 27-30, 2016. IEEE,
Nara, Japan, 35-44.

[9] Amadou Diarra, Sonia Ben Mokhtar, Pierre-Louis Aublin, and Vivien Quéma.

2014. FullReview: Practical Accountability in Presence of Selfish Nodes. In 33rd

IEEE International Symposium on Reliable Distributed Systems, SRDS 2014. IEEE

Computer Society, Nara, Japan, 271-280.

Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function

with Short Proofs and Keys. In Proceedings of the 8th International Conference on

Theory and Practice in Public Key Cryptography (PKC’05). Springer-Verlag, Berlin,

Heidelberg, Article 28, 16 pages.

[11] Morris J. Dworkin. 2015. SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions. Technical Report FIPS 202. NIST.

Raphael Eidenbenz, Thomas Locher, and Roger Wattenhofer. 2011. Hidden

communication in P2P networks Steganographic handshake and broadcast. In

30th IEEE International Conference on Computer Communications, INFOCOM 2011.

IEEE, Shanghai, China, 954-962.

[13] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Risten-

part. 2015. The Pythia PRF Service. In Proceedings of the 24th USENIX Conference

on Security Symposium (SEC’15). USENIX Association, Berkeley, CA, USA, Article

35, 16 pages.

Matthew Franklin and Haibin Zhang. 2013. Unique Ring Signatures: A Practical

Construction. Springer Berlin Heidelberg, Berlin, Heidelberg, 162-170.

[15] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Monod,

and Swagatika Prusty. 2010. LiFTinG: Lightweight Freerider-Tracking in Gossip.

In Middleware 2010 - ACM/IFIP/USENIX 11th International Middleware Conference

(Lecture Notes in Computer Science), Vol. 6452. Springer, Bangalore, India, 313-333.

Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. 2007. PeerReview:

Practical Accountability for Distributed Systems. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washing-

ton, USA, October 14-17, 2007. ACM, Washington, USA, 175-188.

[17] Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. 2003. Prob-

abilistic Reliable Dissemination in Large-Scale Systems. IEEE Trans. Parallel

[2

[

3

=

[4

=

[10

[12

[14

[16

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

Distrib. Syst. 14, 3 (2003), 248-258.

Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel
Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery,
Dag Arne Osvik, Herman J. J. te Riele, Andrey Timofeev, and Paul Zimmermann.
2010. Factorization of a 768-Bit RSA Modulus. In Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19,
2010. Proceedings. Springer, California, USA, 333-350.

Ralf Kisters, Tomasz Truderung, and Andreas Vogt. 2010. Accountability: defini-
tion and relationship to verifiability. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010. ACM, llinois, USA, 526-535.

Harry C. Li, Allen Clement, Mirco Marchetti, Manos Kapritsos, Luke Robison,
Lorenzo Alvisi, and Michael Dahlin. 2008. FlightPath: Obedience vs. Choice in
Cooperative Services. In 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008. USENIX Association, San Diego, California, USA,
355-368.

Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In A Conference on the Theory and Applications of Cryptographic Tech-
niques on Advances in Cryptology (CRYPTO °87). Springer-Verlag, London, UK,
UK, Article 32, 10 pages.

Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Verifiable Random
Functions. In 40th Annual Symposium on Foundations of Computer Science, FOCS
’99. IEEE Computer Society, New York City, USA, 120-130.

Sonia Ben Mokhtar, Jeremie Decouchant, and Vivien Quéma. 2014. AcTinG:
Accurate Freerider Tracking in Gossip. In 33rd IEEE International Symposium
on Reliable Distributed Systems, SRDS 2014. IEEE Computer Society, Nara, Japan,
291-300.

Sonia Ben Mokhtar, Jeremie Decouchant, and Vivien Quéma. 2014. AcTinG:
Accurate Freerider Tracking in Gossip. In 33rd IEEE International Symposium
on Reliable Distributed Systems, SRDS 2014, Nara, Japan, October 6-9, 2014. IEEE,
Nara, Japan, 291-300.

[25] Jodo Oliveira, Italo S. Cunha, Eliseu C. Miguel, Marcus V. M. Rocha, Alex Borges
Vieira, and Sérgio Vale Aguiar Campos. 2013. Can Peer-to-Peer Live Streaming
Systems Co-exist With Free Riders?. In 13th IEEE International Conference on Peer-
to-Peer Computing, IEEE P2P 2013, Trento, Italy, September 9-11, 2013, Proceedings.
IEEE, Trento, Italy, 1-5.

Petros Maniatis and Mary Baker. 2002. Secure History Preservation Through
Timeline Entanglement. In Proceedings of the 11th USENIX Security Symposium.
USENIX, San Francisco, USA, 297-312.

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
2017. The first collision for full SHA-1. IACR Cryptology ePrint Archive 2017
(2017), 190. http://eprint.iacr.org/2017/190

Edmund L. Wong and Lorenzo Alvisi. 2013. What’s a little collusion between
friends?. In ACM Symposium on Principles of Distributed Computing, PODC ’13.
ACM, Montreal, QC, Canada, 240-249.

Aydan R. Yumerefendi and Jeffrey S. Chase. 2004. Trust but Verify: Accountability
for Network Services. In Proceedings of the 11st ACM SIGOPS European Workshop,
Leuven, Belgium, September 19-22, 2004. ACM, Leuven, Belgium, 37.

Aydan R. Yumerefendi and Jeffrey S. Chase. 2005. The Role of Accountability in
Dependable Distributed Systems. In Proceedings of the First Conference on Hot
Topics in System Dependability (HotDep’05). USENIX Association, Berkeley, CA,
USA, 6.

[18

[19

IS
=

[21

[22

[23

[24

[26

[27

[28

[29

@
=

APPENDIX A: MORE ATTACKS ON PAG

During our analysis of PAG, we discovered several other vulnerabil-
ities. Some of these can be fixed but at the cost of some important
properties (privacy for instance). In this Appendix, we present these
vulnerabilities and the ensuing attacks.

A.1 Hash Collisions

PAG is also insecure because the cryptographic primitive used to
instantiate the function Hj, of Section 3.1 has collisions. Recall that
H) is instantiated by a variant of the RSA function with a prime
exponent p and a modulus M. For any message u € {0,1}", the
digest of the hash function Hp is given as: Hy(u) = uP mod M.

https://doi.org/10.3233/JCS-2010-0408
https://doi.org/10.3233/JCS-2010-0408
http://oai.cwi.nl/oai/asset/10351/10351D.pdf
http://eprint.iacr.org/2017/190

MobiQuitous 2017, November 7-10, 2017, Melbourne, VIC, Australia

A trivial collision exists for two messages u and v such that
v =1u+kxM for any k € N*:
Hp(v) P mod M,
= (u+kxM)? mod M,
= uP mod M.
= Hp(u)

We note that the RSA function defined using a modulus M is a
permutation on the set [0, M — 1]. Hence, a hash function defined
using it should not yield collisions when the message space is
restricted to [0, M — 1]. However, PAG assumes that any message u

exchanged between the nodes is larger than M. This assumption
clearly leads to collisions.

A.2 From Collisions to Downgrade Attack

We now show how to exploit the hash collisions to mount a down-
grade attack, where, instead of forwarding a content, a node for-
wards a downgraded content.

We consider the network depicted in Fig. 11. For this network,
we also consider the following situation during a round: Node A
sends u’ = u + M to C and node B sends an arbitrary message v’.
Node C can substitute u” by u without being detected. Indeed, C
forwards u and v’ to D. Then D sends Hp(u - v’) to W. We recall
our assumption that a unique p is used throughout and is known
to all the participants of the network (a consequence of our key
recovery attack). Also note that, ' = u mod M, but, u and u” are
different messages as PAG assumes that any message exchanged
between the nodes is larger than M.

Figure 11: Downgrade attack on a round of PAG. In red, we
show the message sent as an adversary.

Now, the witness W upon receiving Hy(u’) and Hp(v’) from A
and B respectively verifies that:

Hp(u') : Hp(U')

Hp(u-v")
= Hy(u)- H(").

W therefore concludes that C has indeed respected the obligation-to-
receive and the obligation-to-forward properties. In reality though,
C has not respected the obligation-to-forward by substituting u” by
u. The node C has successfully downgraded u’ to u by exploiting
the collision.

A.3 Breaking Unlinkability

A strength of PAG is that the node W does not need to know u and v
to check that C respects its obligation-to-receive and its obligation-
to-forward properties. PAG enforces privacy at the witness level.

Amrit Kumar, Cédric Lauradoux, and Pascal Lafourcade

More concretely, PAG aims to guarantee the following privacy
property (taken verbatim from [8]):

Unlinkability between message updates and nodes: Sup-
pose that node A sends an update u to node B. Nodes other than A
and B should not be able to link A or B with u.

In this section, we present two attacks to break the unlinkability
guarantee of PAG. Our first attack that we refer to as short-term
linkability exploits the fact that PAG employs a small RSA modulus.
Our second attack that we refer to as long-term linkability exploits
our key recovery attack that makes the hash function behave de-
terministically.

A.3.1 Short-term Linkability. Contrary to the claim that PAG is
preserving privacy, the witness can in fact invert the hash function
and learn the message corresponding to a received digest. This
allows the witness to link the message to the node that sent the
digest and hence break the claimed unlinkability property.

Inversion of digests is possible since the hash function Hj, is
instantiated with a modulus M of size 512 bits. It is argued in [8]
that a 512-bit modulus suffices when the RSA function is used as
a hash function. However, for a small modulus M of 512 bits, it is
possible to obtain the prime factorization of M and compute ¢(M)
where, ¢ is the Euler’s totient function. Knowledge of ¢(M) allows
to invert any digest Hy(u) and obtain u as:

Hp(u)p_1 mod (M) yo0d M = u.

It is to note that an RSA modulus of 512 bits named RSA-155 was
successfully factored by Herman te Riele et al. [6] as early as in 2000.
The most recent RSA modulus factored is of 768 bits. The feat was
achieved by Kleinjung et al. in 2010 [18]. In 2015, NIST published
a standard [4] which recommends using a modulus of 2048 bits.
These references clearly suggest that the choice of modulus size in
PAG is inappropriate.

The linkability attack based on inverting the hash function holds
as long as the modulus size is small enough. Choosing an appro-
priately large modulus prevents inversion. We hence refer to this
attack as a short-term linkability attack.

A.3.2 Long-term Linkability. Choosing a sufficiently large mod-
ulus however does not prevent other linkabiliy attacks that the
witness may mount. In fact, since the key of the hash function is
known, the function now becomes deterministic. As a result, the
witness can detect if a message is replayed by a node. It is also
possible to relate two nodes if they send the same message. We
refer to these attacks as long-term linkability attacks since they
exist even when the modulus size is sufficiently large.

In order to understand the ensuing implications, let us consider a
content sharing PAG network. If two different nodes send the same
digest to a witness, then it may learn the interest graph between
nodes sharing similar interests, thus possibly inferring private in-
formation about them.

3RSA-155 was a part of the RSA Factoring Challenge put forward by RSA Laboratories.

	Abstract
	1 Introduction
	2 Threat model
	3 Duck attack (and more) on PAG
	3.1 PAG's Description
	3.2 Key Recovery Attack
	3.3 Duck Attack with Colluding Nodes

	4 Duck attack on AcTinG
	4.1 Secure-Log in AcTinG
	4.2 Luring AcTinG
	4.3 Predicting AcTinG's Audit

	5 Countermeasures
	5.1 Using Verifiable Random Function
	5.2 Hardening Secure-Log Data Structure

	6 Conclusion & Future Work
	References
	A More attacks on PAG
	A.1 Hash Collisions
	A.2 From Collisions to Downgrade Attack
	A.3 Breaking Unlinkability

