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Abstra
t. We show several results about uni�
ation problems in theequational theory ACUNh 
onsisting of the theory of ex
lusive or withone homomorphism. These results are shown using only te
hniques ofautomata and 
ombinations of uni�
ation problems.We show how to 
onstru
t a most-general uni�er for ACUNh-uni�
ationproblems with 
onstants using automata. We also prove that the �rst-order theory of ground terms modulo ACUNh is de
idable if the signaturedoes not 
ontain free non-
onstant fun
tion symbols, and that the exis-tential fragment is de
idable in the general 
ase. Furthermore, we showa te
hni
al result about the set of most-general uni�ers obtained for gen-eral uni�
ation problems.
1 Introdu
tionIn this paper we are interested in uni�
ation, disuni�
ation, and more generallyin de
iding the �rst-order theory of terms modulo the equational theory ACUNh.This theory 
onsists of the following equational axioms:(A) x⊕ (y ⊕ z) = (x⊕ y)⊕ z(C) x⊕ y = y ⊕ x(U) x⊕ 0 = x(N) x⊕ x = 0(h) h(x⊕ y) = h(x)⊕ h(y)Our interest in these problems was raised by our re
ent work on the symboli
veri�
ation of 
ryptographi
 proto
ols modulo the equational theory ACUNh[DLLT06℄. The result of that paper is a 
omplete 
onstraint solving algorithmfor the parti
ular kind of symboli
 
onstraints that 
orrespond to the existen
eof an atta
k against the se
urity of a 
ryptographi
 proto
ol, taking into a

ountsome properties of the 
ryptographi
 primitives des
ribed by the equational the-ory ACUNh. The 
onstraint solving algorithm pro
eeds by several su

essivesimpli�
ation steps. The 
ompleteness of these steps relies on the notion of anon-
ollapsing solution: A solution σ to a 
onstraint system C is non-
ollapsing
· This work has been partly supported by the RNTL proje
t PROUVÉ (n◦ 03 V 360)and the ACI-SI Rossignol.



if sσ 6= tσ for di�erent terms s, t taken from some �nite set derived from the
onstraint system C.In order to use 
ompleteness assertions for non-
ollapsing solutions to showoverall 
ompleteness of our algorithm we had at one step to guess the equationsbetween terms (how this is done is des
ribed in [DLLT06℄), and for ea
h guessof equations 
ompute a �nite and 
omplete set of uni�ers (this is subje
t of thepresent paper).Furthermore, in the 
ase of uni�
ation with free fun
tion symbols (generaluni�
ation) we needed a te
hni
al lemma assuring that the most general uni-�ers obtained do not introdu
e �new stru
tural elements� not already presentin the 
onstraint system. This was ne
essary sin
e one of the early steps of ouralgorithm 
onsisted in guessing a parti
ular spe
ialization of our 
onstraint sys-tem by guessing from the stru
tural elements present in the 
onstraint system.The te
hni
al lemma assures us that the guessing of equalities and the subse-quent appli
ation of the resulting uni�ers does not invalidate our earlier 
hoi
e of�stru
tural elements�. The de�nition of �stru
tural elements� and the statementof the te
hni
al lemma will be made pre
ise later in the paper.Finally, our 
onstraint solving algorithm for 
ryptographi
 proto
ols relieson a notion of well-de�nedness, whi
h is in parti
ular satis�ed for all determin-isti
 proto
ols. Determinism of a proto
ol 
an be expressed as a dis-uni�
ationproblem in the equational theory ACUNh.The equational theory ACUNh is one example of a monoidial, or more gener-ally a 
ommutative equational theory. There is a wealth of results on this 
lassof equational theories and on parti
ular theories from this 
lass. Before re
allingthe existing results relevant in our 
ontext let us re
all the 
lassi
al synta
ti
hierar
hy of E-uni�
ation problems [BS01℄:� elementary E-uni�
ation problems are systems of equations between termsbuilt with fun
tions symbols in E and variables;� E-uni�
ation problems with 
onstants are systems of equations where theterms are built with fun
tions symbols from E, free 
onstants, and variables;� general E-uni�
ation problems are systems of equations of terms built fromfun
tion symbols from E, free fun
tion symbols, and variables.ACUNh-uni�ability with 
onstants has been shown in [GNW00℄ to be de
id-able in polynomial time (this problem has been 
alled elementary uni�
ationthere, in devian
e from the now established terminology). Furthermore, thatpaper states NP-
ompleteness of the general ACUNh-uni�
ation problem, refer-ring to the Baader-S
hulz 
ombination te
hnique [BS96℄ for the existen
e of anNP-algorithm, and for NP-hardness to the proof of NP-hardness of the similartheory ACUN in [GNW00℄.Baader gives an algorithm for the uni�
ation of several equational theoriesthat involve homomorphism, for instan
e Abelian groups [Baa93℄. On the onehand the results obtained in this and subsequent papers are general in that theyapply to a whole 
lass of 
ommutative theories. Their drawba
k, on the otherhand, is that they rely on the ma
hinery of Gröbner bases for solving equationsover the semi-ring asso
iated to an equational theory.2



Some results obtained by general methods for uni�
ation problems in 
om-mutative theories (see [BS01℄) useful in our 
ontext are:� ACUNh is unitary for elementary uni�
ation. This has been shown in [Baa93℄for the similar theory AGh (Abelian groups with a homomorphism). Thisproof should transfer immediately to our setting ACUNh. An independentproof is given in this paper.� As a 
onsequen
e, and due to the fa
t that the 
orresponding semi-ring
Z/2Z[h] is a ring, ACUNh is unitary for uni�
ation with 
onstants [BS01℄.� Again as a 
onsequen
e, ACUNh is �nitary for general uni�
ation [BS01℄.In this paper we use an alternative proof te
hnique based on automata theoryand prove that even the 
omplete �rst-order theory of terms modulo ACUNh withfree 
onstants (but without free non-
onstant fun
tions symbols) is de
idable. Weobtain from our automata 
onstru
tion an alternative algorithm for 
omputing a�nite 
omplete most general set of uni�ers for uni�
ation with 
onstants. Finally,we use 
ombination te
hniques [BS96℄ to obtain algorithms for 
omputing �nite
omplete sets of most general uni�ers for general ACUNh-uni�
ation, and tode
ide general ACUNh-disuni�
ation problems. The above mentioned result ofgeneral ACUNh-uni�
ation not introdu
ing �new stru
tural elements� is basedon an analysis of the 
ombination algorithm applied to our setting.De
idability of the �rst-order theory of terms modulo ACUNh in presen
e offree fun
tion symbols remains open.

2 Preliminaries: Automati
 Stru
turesThe exposition of the general method of automati
 stru
tures follows [BG00℄whi
h is the �rst systemati
 investigation of this 
on
ept.The basi
 idea is to �rst provide an en
oding of elements of the stru
tureby words, and then to 
onstru
t for any formula an automaton that a

epts ex-a
tly those words that en
ode a solution of the formula. For te
hni
al reasons,this 
onstru
tion is restri
ted two purely relational signatures, that is signatureswhi
h do not 
ontain 
onstant symbols of fun
tion sysmbols. Note that it isalways possible to transform a stru
ture into a stru
ture over a relational signa-ture: we just have to repla
e the 
onstants by unary predi
ates, and repla
e all
n-ary fun
tions by n+ 1-ary relations.Another te
hni
al problem 
onsists in the fa
t that the set of solutions of aformula is not a set of values, but a set of n-tuples of values where n is the numberof free variables of the formula. That is, we have to provide a way to extend ouren
oding of elements of the stru
ture to en
odings of tuples of elements.De�nition 1. Let Σ be a �nite alphabet and � 6∈ Σ. The 
onvolution of words
x1, . . . , xn ∈ Σ

∗ is de�ned as
x1 ⊗ . . .⊗ xn :=







x1
1...
x1

n






. . .







xl
1...
xl

n






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where l = max{|xi| | i ≤ i ≤ n} is the length of the longest word among the xi,and
xj

i =

{ the j-th symbol of xi if j ≤ |xi|
� otherwiseDe�nition 2. Let A be a stru
ture over a relational signature with relationsymbols R1, . . . , Rn. An automati
 representation of A is given by1. a �nite alphabet Σ.2. a regular language Lδ ⊆ Σ

∗3. a surje
tive fun
tion ν : Lδ → A4. a regular language LR ⊆ (Σ ∪ {�})∗ for every relation symbol R of thesignature of A, su
h that for all x1, . . . , xn ∈ Lδ :
x1 ⊗ . . .⊗ xn ∈ LR i� (ν(x1), . . . , ν(xn)) ∈ RAA stru
ture having an automati
 representation is 
alled automati
.Note that there may be several possible automata for a given atomi
 formulasin
e the behaviour of the automaton is not spe
i�ed when the input word isnot in Lδ ⊗ · · · ⊗ Lδ.Theorem 1 ([BG00℄). Let A be a relational stru
ture with an automati
 rep-resentation. Then the theory of A is de
idable.The probably best-known example of an automati
 stru
ture is Presburgerarithmeti
 (see, for instan
e, [CDG+97℄).3 Uni�
ation and Diophantine EquationsIn this se
tion we re
all the relation between uni�
ation with 
onstants in ACUNhand linear equation solving in the ring Z/2Z[h]. This is in fa
t an instan
e of theby now 
lassi
al 
onne
tion between E-uni�
ation with 
onstants for monoidialequational theories and linear equation solving over the asso
iated semi-ring (see,for instan
e, [Nut90℄). This se
tion just serves as a reminder of some basi
 andwell-known results used in the following se
tions.In the rest of the paper, we use some notations that are useful to deal withterms and polynomials of Z/2Z[h]. The multipli
ation between polynomials pand q is denoted by p · q. A polynomial p(h) ∈ Z/2Z[h] 
an be written ∑n

i=0
bih

iwhere bi ∈ Z/2Z. The produ
t ⊙ of a polynomial by a term is a term de�ned asfollows:
(

n
∑

i=0

bih
i)⊙ t =

n
∑

i=0 | bi 6=0

hi(t)For instan
e (h2 +1)⊙ (X⊕h(a)) = h2(X)⊕X⊕h3(a)⊕h(a). Conversely, aterm t su
h that V(t) = {X1, . . . , Xp} 
an be written tX1⊙X1⊕. . .⊕t
Xp⊙Xp⊕t0for some tX1 , . . . , tXp ∈ Z/2Z[h], and t0 a ground term.Note that we use the symbol + for the addition operation in Z/2Z[h], while

⊕ is the binary operator of the term algebra.We denote by deg(p) the degree of a polynomial, that is deg(∑n
i=0

bih
i) = nin 
ase bi 6= 0. By extension, deg(p1, . . . , pn) = (deg(p1), . . . , deg(pn)).4



3.1 Linear Diophantine Equations in Z/2Z[h]Let (HE) be a homogeneous system of equations of the following form:






A1,1 ·X1 + . . .+A1,n ·Xn = 0
. . .
Am,1 ·X1 + . . .+ Am,n ·Xn = 0

(HE)
where the Ai,j 's are polynomials in Z/2Z[h], and the unknowns take values in
Z/2Z[h]. We denote by Sol(HE) the set of solutions to (HE).De�nition 3. We de�ne a quasi-order on (Z/2Z[h])m by

(p1, . . . , pm) . (q1, . . . , qm)⇔ ∀1 ≤ i ≤ m : deg(pi) ≤ deg(qi)The pertaining stri
t order is derived from this as usual by
(p1, . . . , pm) < (q1, . . . , qm)⇔ (p1, . . . , pm) . (q1, . . . , qm)and not (q1, . . . , qm) . (p1, . . . , pm)For instan
e, (h2, 1) < (h2, h3) and (h3 + h, h2) . (h3, h2 + 1), while (h2, h3)and (h, h4) are not 
omparable by the quasi order .. Note that the stri
t order

< is well-founded.From this quasi-order we derive an equivalen
e relation as usual:De�nition 4. We de�ne an equivalen
e relation on (Z/2Z[h])m by
(p1, . . . , pm) ∼ (q1, . . . , qm)⇔ (p1, . . . , pm) . (q1, . . . , qm)and (q1, . . . , qm) . (p1, . . . , pm)In other words, (p1, . . . , pm) ∼ (q1, . . . , qm) i� deg(pi) = deg(qi) for ea
h i. Notethat the equivalen
e 
lasses of ∼ are uniquely identi�ed by m-tuples of integers(the ve
tor of degrees of the polynomials), and that every equivalen
e 
lass is�nite (sin
e the 
oe�
ients are in {0, 1}).Fa
t 1 The number of minimal solutions to a system of equations (HE) is �nite.Proof. We re
all Di
kson's 
lassi
al lemma [Di
13℄: every in�nite sequen
e ofdistin
t tuples of natural numbers 
ontains at least two (a
tually in�nitely many)
omparable tuples.Let us assume that the number of minimal solutions to (HE) is in�nite. Thisyields an in�nite sequen
e T1,T2, . . . of distin
t in
omparable tuples of polyno-mials. Therefore we would have an in�nite sequen
e of in
omparable tuples ofnatural numbers deg(T1), deg(T2), . . ., in 
ontradi
tion to Di
kson's lemma. ⊓⊔Fa
t 2 Every solution to (HE) is a linear 
ombination (with 
oe�
ients in

Z/2Z[h]) of minimal solutions to (HE).
5



Proof. Let σ be a non-minimal solution to (HE). Sin
e < is well-founded thereexists a minimal solution τ to (HE) with τ < σ. Let
d = min{deg(σi)− deg(τi)|1 ≤ i ≤ m}We de�ne σ′ by

σ′(Xi) = σ(Xi)− h
d · τ (Xi) for all i, 1 ≤ i ≤ mwhi
h obviously is again a solution to (HE) sin
e the set of solutions is 
losedunder multipli
ation with s
alars and under sums. Furthermore, by the 
hoi
eof d, σ′ < σ. The 
laim follows by indu
tion. ⊓⊔3.2 From Linear Equations over Z/2Z[h] to ACUNh-Uni�
ation withConstantsThe rest of this se
tion is devoted to the 
onstru
tion of a most general uni�erfor a given ACUNh-uni�
ation problem with 
onstants. As a 
onsequen
e of the
onstru
tion, ACUNh is unitary for uni�
ation with 
onstants.Let ΣC = {c1, . . . , ck} be a given �nite set of free 
onstant symbols. We
onsider a uni�
ation problem, i.e. a 
onjun
tion of equations sj = tj for j =

1, . . . ,m where sj , tj are terms 
ontaining free 
onstants from ΣC , the homo-morphism symbol h, the binary operator ⊕, and the 
onstant 0. Let x1, . . . , xnbe the variables o

urring in the uni�
ation problem. Using the notation intro-du
ed in the previous se
tion and the algebrai
 properties of ⊕, we get that theuni�
ation problem is equivalent to a system of equations (U):
i=n
∑

i=1

Ai,j ⊙ xi = bj for j = 1, . . . ,m (U)where Ai,j are polynomials of Z/2Z[h], the bj are ground terms, and where thevariables xi range over terms. Let (HU) be the equation system obtained from(U) by repla
ing all the right hand sides by the term 0:
i=n
∑

i=1

Ai,j ⊙ xi = 0 for j = 1, . . . ,m (HU)We denote by Sol(U) (resp. Sol(HU)) the set of ground substitutions that aresolutions to (U) (resp. (HU)).Fa
t 3 For any σ ∈ Sol(U) we have Sol(U) = σ ⊕ Sol(HU)Proof. This follows immediately from the properties ACUNh. ⊓⊔An arbitrary ground solution of (U) 
an be obtained as follows: Ea
h of theterms o

urring on the right-hand side of (U) 
an be de
omposed as
bj =

i=k
∑

i=1

Bi
j ⊙ ci

6



For any i = 1, . . . , k, let (Ei) be the equation system
i=n
∑

i=1

Ai,j ·Xi = Bi
j for j = 1, . . . ,m (Ei)where the variables Xi range over polynomials from Z/2Z[h]. If σi is a solutionto (Ei) for ea
h i = 1, . . . , k, then we obtain a solution σ to (U) by

σ(xj) =

i=k
∑

i=1

σi(Xj)⊙ ciA most-general uni�er of (HU) is obtained as follows: Let (HE) be the equa-tion system
i=n
∑

i=1

Ai,j ·Xi = 0 for j = 1, . . . ,m (HE)where variables Xi range over polynomials from Z/2Z[h]. By Fa
t 1, the system(HE) has a �nite set of minimal solutions {σ1, . . . , σµ}. In the follwoing we denote
Iµ = {1, . . . , µ}.Fa
t 4 The homogeneous uni�
ation problem (HU) has a most general uni�er
σH de�ned by xiσH = Σk∈Iµ

Pi,k ⊙ yk where σk = {X1 ← P1,k, . . . , Xn ← Pn,k}with Pi,k ∈ Z/2Z[h], and where the yk are fresh variables.Proof. � Firstly we prove that σH is a solution of (HU). For j = 1, . . . ,m, wehave:
(Σi=n

i=1Ai,j ⊙ xi)σH = Σi=n
i=1Ai,j ⊙ (xiσH)

= Σi=n
i=1Ai,j ⊙ (Σk∈Iµ

(Pi,k ⊙ yk))
= Σi=n

i=1Σk∈Iµ
(Ai,j ⊙ (Pi,k ⊙ yk))

= Σi=n
i=1Σk∈Iµ

(Ai,j · Pi,k)⊙ yk)
= Σk∈Iµ

((Σi=n
i=1Ai,j · Pi,k)⊙ yk)

= 0� Then we prove that any solution σ of (HU) is an instan
e of σH .Let Z be the set of variables o

uring in xiσ. Sin
e these variables are nolonger instantiated, they are treated as 
onstants in the following. For i =
1, . . . , n we have xiσ = (Σc∈ΣC

Xc
i ⊙ c)⊕ (Σz∈ZZ

z
i ⊙ z) and (x1σ, . . . , xnσ)is a solution of (HU) i� for ea
h c ∈ ΣC , for ea
h z ∈ Z we have that

(Xc
1 , . . . , X

c
n) and (Zz

1 , . . . , Z
z
n) are solutions of (HE).Therefore for ea
h c ∈ ΣC , (Xc

1 , . . . , X
c
n) is a linear 
ombination of theminimal solution of (HE), i.e. Xc

i = Σk∈Iµ
Qc

k · Pi,k for i = 1, . . . , n wherethe Qc
k's are the 
oe�
ients of the linear 
ombination. For ea
h z ∈ Z, thesame holds for (Zz

1 , . . . , Z
z
n)'s, yielding Zz

i = Σk∈Iµ
Rz

k · Pi,k.Therefore for i = 1, . . . , n,
xiσ = (Σc∈ΣC

(Σk∈Iµ
Qc

k · Pi,k)⊙ c)⊕ (Σz∈Z(Σk∈Iµ
Rz

k · Pi,k)⊙ z)
= Σk∈Iµ

((Σc∈ΣC
Pi,k ⊙ (Qc

k ⊙ c))⊕ (Σz∈ZPi,k ⊙ (Rz
k ⊙ z)))

= Σk∈Iµ
(Pi,k ⊙ (Σc∈ΣC

(Qc
k ⊙ c))⊕ (Pi,k ⊙Σz∈Z(Rz

k ⊙ z)))
= Σk∈Iµ

Pi,k ⊙ (Σc∈ΣC
Qc

k ⊙ c⊕Σz∈ZR
z
k ⊙ z)7



whi
h terminates the proof (
hoose yk = (Σc∈ΣC
Qc

k⊙c)⊕(Σz∈ZR
z
k⊙z)). ⊓⊔Fa
t 5 Let σ be a ground solution to (U) and σH a most-general uni�er of (HU).The substitution σ ⊕ σH is a most-general uni�er of (U).Proof. This follows from Fa
ts 3 and 4 sin
e σ is ground. ⊓⊔Fa
t 6 The theory ACUNh is unitary for uni�
ation with 
onstants.Proof. This follows from Fa
t 5. ⊓⊔

4 Finding Minimal Solutions of Systems of EquationsUsing AutomataWhat we need is a way to 
ompute the minimal solutions to a homogeneoussystem of Diophantine equations (HE), and to 
ompute some (small) solutionto an inhomogeneous system (E). One possible approa
h is to perform algebrai

omputations similar to what is done by AC-uni�
ation algorithms. Instead, weshall use an automata-theoreti
 approa
h that yields a more general result:Let 〈Z/2Z[h],.,+, 0, h〉 denote the stru
ture 
onsisting of the universe Z/2Z[h]with the relation . and the operations +, 0, and h. We show that the �rst-ordertheory of this stru
ture is de
idable sin
e it is an automati
 stru
ture [BG00℄.Lemma 1. The �rst-order theory of 〈Z/2Z[h],.,+, 0, h〉 is de
idable.Proof. We show that the stru
ture is automati
 [BG00℄.A polynomial p(h) =
∑i=n

i=1
bih ∈ Z/2Z[h], where bi = 1, is represented bythe word ν(p) = b0 · · · bn (that is, the least signi�
ant bit �rst). The polynomial

0 is represented by the the word 0. The image of ν is des
ribed by the regularexpression 0 ∪ 0∗1 and hen
e re
ognizable.We now give automata a

epting the representations of tuples of polynomialsthat are in the three relations of the stru
ture 〈Z/2Z[h],.,+, 0〉 (We have torepla
e the 
onstant 0 by a unary relation X1 = 0, and the fun
tion h bya relation X1 = h(X2)). The general 
onstru
tion as explained in Se
tion 2requires usage of a padding symbol � when representing tuples of values. In the
ase of arithmeti
, we 
an for the sake of simpli
ity just repla
e the symbol �by the symbol 0.The automaton for X1 = 0 is trivial and omitted. The automaton for X1 .

X2 is given in Figure 1.The automaton for X1 = X2 + X3 is given in Figure 2. Note that the au-tomaton is simpler than the automaton for the addition of Presburger arithmeti
sin
e there is no 
arry-over to deal with.The automaton a

epting the pairs (X1, X2) su
h that X1 = h(X2) is more
omplex: it 
ontains two states whi
h remember the previous values of X2. It isdes
ribed in Figure 3. ⊓⊔8
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We 
an now easily obtain a small ground solution for an inhomogeneous sys-tem of linear equations by 
onstru
ting the automaton for the equation system,and reading o� a short solution (for instan
e one whi
h does not pass twi
e bythe same state). We also obtain the minimal solutions to a homogeneous systemof Diophantine equations (HE).Fa
t 7 The set of minimal solutions to a homogeneous system of linear Dio-phantine equations is 
omputable.Proof. A ve
tor X is a minimal solution to a system of Diophantine equations
φ(X) i� it is a solution of the following formula:

φ(X) ∧ ∀Y
(

Y . X ∧ φ(Y )→X . Y
)

The set of elements X whi
h satisfy this formula is a

epted by an automatonwhi
h is e�e
tively 
omputable. The language of this automaton is �nite sin
ethere is only a �nite number of minimal solutions. To obtain the set of minimalsolutions, we simply use the automaton to generate all the terms of its language.
⊓⊔

5 General ACUNh-Uni�
ation5.1 A Uni�
ation AlgorithmTo apply the 
ombination algorithm of [BS96℄, we must prove that uni�
ationwith linear 
onstant restri
tion is �nitary. Given a uni�
ation problem (i.e. a�nite set of equations si = ti), we asso
iate to ea
h 
onstant c appearing in theproblem a set Vc of variables that are the variables in whi
h c must not o

ur.Assume that we have a linear ordering < on the set of 
onstants ΣC andvariables X , then we de�ne Vc = {x ∈ X | x < c}. A uni�
ation problem withlinear 
onstant restri
tion is a uni�
ation problem with the additional 
onstraintrestri
tion 
orresponding to the given ordering <. This amounts to stating thatea
h variable x of the problem 
an be instantiated only by terms 
ontaining
onstants c su
h that x 6∈ Vc. This set is 
omputable and �nite and we 
an write
x = Σ{x6∈Vc}Xi,c⊙c forXi,c a polynomial of Z/2Z[h]. Therefore uni�
ation prob-lems with linear 
onstant restri
tion are solved in the same way as uni�
ationproblems are.As a result, we get a uni�
ation algorithm for the theory ACUNh in Σ ex-tended with free symbols as a simple appli
ation of the 
ombination algorithm(a
tually we 
an even 
hoose the simpler version designed for the 
ombinationwith the empty theory, see [BS96℄).5.2 A Te
hni
al Result about Uni�
ationTo prove the next result (Lemma 2), we shall rely on notations and algorithmsintrodu
ed in the study of 
ombination algorithms, see [BS96℄ for more details.10



From now on, we assume that F = Σ ⊎Σ′ where Σ′ is a set of free symbolswhi
h 
ontains at least one symbol of arity greater than or equal to 2. The
ontext notation is extended as follows: t = C[t1, . . . , tn] if C is a 
ontext madeof symbols of Σ only and the ti's do not have a symbol from Σ at their root, orif C is a 
ontext made of symbols of Σ′ and the ti's do not have a symbol from
Σ′ at their root.If a term t 
ontains only symbols of Σ and variables, or only symbols of Σ′and variables we say that it is pure.The number of theory alternation in a term is de�ned by #(t) = 0 if t ispure, otherwise #(C[t1, . . . , tn]) = 1 +max{#(ti) | i = 1, . . . , n}.De�nition 5. The set AF (t) of alien fa
tors of t is de�ned by:� AF (t) = {t} if t is pure,� AF (t = C[t1, . . . , tn]) = {t} ∪AF (t1) ∪ . . . ∪AF (tn)De�nition 6. The set StE(t) of subterms of t is the smallest set su
h that:� 0, t ∈ StE(t),� if f(t1, . . . , tn) ∈ StE(t) with f ∈ Σ′ then t1, . . . tn ∈ StE(t),� if s = f(t1, . . . , tn) ∈ StE(t) with f ∈ Σ then AF (s) ⊆ StE(t).Example 1. Let t1 = h2(a) ⊕ b ⊕ x and t2 = h(〈a, b〉) ⊕ x, we get StE(t1) =
{t1, a, b, x} and StE(t2) = {t2, 〈a, b〉, a, b, x}.Lemma 2. Let P be a general (that is, in
luding free fun
tion symbols) uni�-
ation problem in the theory E = ACUNh and θ be an mguE of P . Then for all
x ∈ dom(θ) and v ∈ StE(xθ) \ V(xθ) there exists t ∈ StE(P ) su
h that v =E tθ.A
tually, we prove the result for the 
omplete set of uni�ers 
omputed bythe 
ombination algorithm des
ribed by Baader and S
hulz in [BS96℄.Proof. Firstly, we remark that the lemma is true for a pure uni�
ation with linear
onstant restri
tion. This is obvious for the empty theory, and for ACUNh it isa 
onsequen
e of our results on uni�
ation: a solution of a system of equations
⊕

i∈I Pi(h)⊙xi⊕
⊕

j∈J Qj(h)⊙cj = 0 with linear 
onstant restri
tion is a linear
ombination of fresh variables and ci's.To generalize to the union of the theories, we analyze the 
ombination algo-rithm. We re
all this (non-deterministi
) algorithm.(1) Repla
e ea
h non pure term t = C[t1, . . . , tn] by C[xt1 , . . . , xt1 ] and add theequations xti
= ti where the xti

's are fresh variables.(2) Repla
e ea
h equation s = t su
h that s, t are pure but not in the sametheory by xs,t = t ∧ xs,t = s where xs,t is a new variable.(3) Choose a partition of the set of variable X1, . . . ,Xp, for ea
h Xi 
hoose arepresentative xi and repla
e all variables x ∈ Xi by xi (this amounts toadding equations xi = x for all x ∈ Xi).(4) Label ea
h variable by Σ or Σ′ non-deterministi
ally, and 
hoose a linearordering x1 < . . . < xn. 11



(5) The problem is de
omposed into two pure uni�
ation problems with linear
onstant restri
tions (otherwise return fail). Ea
h problem is solved by takingthe variable of the other theories as 
onstant and the variables of the theoryas variables. The uni�er is given by the 
ombination of the solutions ofboth uni�
ation problems (some repla
ement 
an be done to get the a
tualsubstitution).We use the following properties of the algorithm. Assume that the algorithmreturns the substitution θ.� For ea
h pair of variables x, y in the same equivalen
e 
lass xθ = yθ.� For ea
h alien fa
tor t = C[t1, . . . , tn] of P , there exist variables xt, xt1 , . . . , xtnsu
h that xtθ = tθ = C[xt1θ, . . . xtn
θ].� For variable xs,t, we have xs,tθ = sθ = tθ.� For ea
h term C[x1, . . . , xl] o

urring in the �nal pure uni�
ation problems,there exist yt1 in the same equivalen
e 
lass as x1,. . . , ytl

in the same equiv-alen
e 
lass as xl su
h that C[t1, . . . , tl] is an alien fa
tor of P .The solution of the pure uni�
ation problems has the form: x = C ′[x1, . . . , xn]or x is a linear 
ombination of fresh variables and variables xi's and 
onstantsof Σ. In any 
ase the fa
tors of xθ for a variable x of the initial problems areeither Xθ, or are some xtθ for a variable xt hen
e there are some tθ for a fa
tor
t of P or fresh variables. ⊓⊔A
tually, the 
ombination algorithm 
omputes a 
omplete �nite set of uni-�ers. To �nd the a
tual most general and minimal set of uni�ers, one must adda last step whi
h dete
ts the uni�ers that are subsumed by other uni�ers. Thisstep does not 
hange the result and it is irrelevant for our purpose, sin
e whatis required in our result is that all possible ground substitutions 
overed by theset of uni�ers that we 
onsider.
6 Disuni�
ation and Beyond6.1 General Disuni�
ationWe now turn to disuni�
ation problems, that is the problem of de
iding theexistential fragment of the �rst-order theory. In the following lemma we denote by
=AC the equality relation modulo the axioms of asso
iativity and 
ommutativity.Let us re
all that = denotes equality modulo the axioms ACUNh.Lemma 3. Let t1, s1, . . . , tn, sn ∈ T (F ,X ) terms in normal form. Then thefollowing two assertions are equivalent:1. There exists no ground substitution σ with t1σ 6= s1σ ∧ . . . ∧ tnσ 6= snσ2. ti =AC si for some i ∈ {1, . . . , n}
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Proof. (2)⇒(1): If ti =AC si for some i then ti = si and tiσ = siσ for allsubstitutions. Hen
e, there exists no substitution σ with t1σ 6= s1σ∧ . . .∧ tnσ 6=
snσ.(1)⇒(2): Let us assume that (1) does not hold. Let T = {s1, . . . , sn, t1, . . . , tn}.If ti 6=AC si for all i, 1 ≤ i ≤ n, then we pro
eed by indu
tion on the 
ardinality
n of the set V(T ) of free variables of T .� If n = 0 then the si and the ti are ground. Hen
e, the empty substitution ǫsatis�es that t1ǫ 6= s1ǫ ∧ . . . ∧ tnǫ 6= snǫ� If n > 0 then let x ∈ V(T ), and let g be some ground term that1. is di�erent from 02. does not 
ontaining the symbol +3. is not a synta
ti
 subterm of a term in TLet t′i = ti[x 7→ g] and s′i = si[x 7→ g] for 1 ≤ i ≤ n. We have that

t′i 6=AC s′i for all i, and all the t′i and s′i are terms in normal form. Sin
e
{t′1, . . . , t

′
n, s

′
1, . . . , s

′
n} 
ontains n− 1 variables there exists by indu
tion hy-pothesis a substitution σ′ su
h that

t′1σ
′ 6= s′1σ

′ ∧ . . . ∧ t′nσ
′ 6= s′nσ

′Hen
e, setting σ = σ′ ◦ [x 7→ g] we obtain that
t1σ 6= s1σ ∧ . . . ∧ tnσ 6= snσ �Theorem 2. The existential fragment of the �rst-order theory of terms modulothe equational theory ACUNh is de
idable.Proof. Given a 
losed existential formula φ = ∃x̄ψ, where ψ is a quanti�er-freeformula, let c1 ∨ . . . ∨ cn be a disjun
tive normal form of ψ. Validity of φ isequivalent to validity of some ∃x̄ci.Let

c = (r1 = u1 ∧ . . . ∧ rm = um ∧ s1 6= t1 ∧ . . . ∧ sn 6= tn)This formula is satis�able if there exists a most general uni�er µ of
r1 = u1 ∧ . . . ∧ rm = umsu
h that the following formulas is satis�able:

s1µ 6= t1µ ∧ . . . ∧ snµ 6= tnµThere is a �nite set of most general uni�ers µ whi
h 
an be 
omputed, andsatis�ability of the disequations is de
idable due to Lemma 3. ⊓⊔6.2 The First-Order Theory with ConstantsTheorem 3. The �rst order theory of terms over ACUNh with �nitely manyfree 
onstants is de
idable.Proof. This follows immediately from Lemma 1 sin
e the algebra of ground termsmodulo the equational theory ACUNh with m free 
onstants is isomorphi
 to the
m-fold dire
t produ
t of 〈Z/2Z[h],+, h, 0〉. ⊓⊔
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7 Con
lusionsWe have shown that the �rst-order theory of ground terms modulo ACUNh is de-
idable if the signature 
ontains only the symbols from ACUNh and free 
onstantsymbols, and that the existential fragment of this �rst-order theory is de
idablefor arbitrary signatures. The obvious question whether the 
omplete �rst-ordertheory is de
idable in the general 
ase remains open.As a 
onsequen
e of the fa
t that the �rst-order theory of 〈Z/2Z[h],+, h, 0〉is automati
, and by the nature of the isomorphism between the m-fold produ
tof this stru
ture and the algebra of ground terms module ACUNh with m free
onstants, it follows that the latter stru
ture is itself automati
. This result doesnot seem to extend to the general 
ase: The natural extension to free fun
tionsymbols would 
onsist in using tree automata with 
omponent-wise equalitytests. Unfortunately, this 
lass of tree automata has an unde
idable emptinessproblem [SAN+05℄, and is of no help in establishing de
idability results.
Referen
es[Baa93℄ Franz Baader. Uni�
ation in 
ommutative theories, Hilbert's basis theoremand Gröbner bases. Journal of the ACM, 40(3):477�503, 1993.[BG00℄ A. Blumensath and E. Grädel. Automati
 stru
tures. In Pro
. 15th IEEESymposium on Logi
 in Computer S
ien
e (LICS'00), pages 51�62, SantaBarbara, California, USA, 2000. IEEE Comp. So
. Press.[BS96℄ Franz Baader and Klaus U. S
hulz. Uni�
ation in the union of disjoint equa-tional theories: Combining de
ision pro
edures. J. Symboli
 Computation,21:211�243, 1996.[BS01℄ F. Baader and W. Snyder. Uni�
ation theory. In A. Robinson andA. Voronkov, editors, Handbook of Automated Reasoning, volume I, 
hap-ter 8, pages 445�532. Elsevier S
ien
e, 2001.[CDG+97℄ H. Comon, M. Dau
het, R. Gilleron, F. Ja
quemard, D. Lugiez, S. Tison,and M. Tommasi. Tree automata te
hniques and appli
ations. Available on:http://www.grappa.univ-lille3.fr/tata, 1997.[Di
13℄ L. Di
kson. Finiteness of the odd perfe
t and primitive abundant numberswith n prime fa
tors. Ameri
an Journal Mathemati
al So
iety, 35:413�422,1913.[DLLT06℄ Stéphanie Delaune, Pas
al Lafour
ade, Denis Lugiez, and Ralf Treinen.Symboli
 proto
ol analysis in presen
e of a homomorphism operator andex
lusive or . In Pro
eedings of the 33rd International Colloquium on Au-tomata, Languages and Programming (ICALP'06), Le
ture Notes in Com-puter S
ien
e, Veni
e, Italy, July 2006. Springer. To appear.[GNW00℄ Q. Guo, P. Narendran, and D. A. Wolfram. Complexity of nilpotent uni�
a-tion and mat
hing problems. Information and Computation, 162(1-2):3�23,2000.[Nut90℄ Werner Nutt. Uni�
ation in monoidal theories. In M. E. Sti
kel, editor, 10thInternational Conferen
e on Automated Dedu
tion, volume 449 of Le
tureNotes in Arti�
ial Intelligen
e, pages 618�632, Kaiserslautern, Germany,July 1990. Springer-Verlag. 14



[SAN+05℄ Zhendong Su, Alexander Aiken, Joa
him Niehren, Tim Priesnitz, and RalfTreinen. The �rst-order theory of subtyping 
onstraints, 2005. A

epted forpubli
ation in ACM TOPLAS with minor revisions.

15


