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Abstract. We show several results about unification problems in the
equational theory ACUNh consisting of the theory of exclusive or with
one homomorphism. These results are shown using only techniques of
automata and combinations of unification problems.

We show how to construct a most-general unifier for ACUNh-unification
problems with constants using automata. We also prove that the first-
order theory of ground terms modulo ACUNh is decidable if the signature
does not contain free non-constant function symbols, and that the exis-
tential fragment is decidable in the general case. Furthermore, we show
a technical result about the set of most-general unifiers obtained for gen-
eral unification problems.

1 Introduction

In this paper we are interested in unification, disunification, and more generally
in deciding the first-order theory of terms modulo the equational theory ACUNh.
This theory consists of the following equational axioms:

(A) zo6@Wydz)=(xdy) d=z
(C) TOYy=ydx

(U) r®0=z

(N) r@®xr=0

(b) h(z ®y) = h(z) ® h(y)

Our interest in these problems was raised by our recent work on the symbolic
verification of cryptographic protocols modulo the equational theory ACUNh
[DLLTO06]. The result of that paper is a complete constraint solving algorithm
for the particular kind of symbolic constraints that correspond to the existence
of an attack against the security of a cryptographic protocol, taking into account
some properties of the cryptographic primitives described by the equational the-
ory ACUNh. The constraint solving algorithm proceeds by several successive
simplification steps. The completeness of these steps relies on the notion of a
non-collapsing solution: A solution o to a constraint system C is non-collapsing
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if so # to for different terms s,t taken from some finite set derived from the
constraint system C.

In order to use completeness assertions for non-collapsing solutions to show
overall completeness of our algorithm we had at one step to guess the equations
between terms (how this is done is described in [DLLTO06]), and for each guess
of equations compute a finite and complete set of unifiers (this is subject of the
present paper).

Furthermore, in the case of unification with free function symbols (general
unification) we needed a technical lemma assuring that the most general uni-
fiers obtained do not introduce “new structural elements” not already present
in the constraint system. This was necessary since one of the early steps of our
algorithm consisted in guessing a particular specialization of our constraint sys-
tem by guessing from the structural elements present in the constraint system.
The technical lemma assures us that the guessing of equalities and the subse-
quent application of the resulting unifiers does not invalidate our earlier choice of
“structural elements”. The definition of “structural elements” and the statement
of the technical lemma will be made precise later in the paper.

Finally, our constraint solving algorithm for cryptographic protocols relies
on a notion of well-definedness, which is in particular satisfied for all determin-
istic protocols. Determinism of a protocol can be expressed as a dis-unification
problem in the equational theory ACUNh.

The equational theory ACUNh is one example of a monoidial, or more gener-
ally a commutative equational theory. There is a wealth of results on this class
of equational theories and on particular theories from this class. Before recalling
the existing results relevant in our context let us recall the classical syntactic
hierarchy of E-unification problems [BS01]:

— elementary E-unification problems are systems of equations between terms
built with functions symbols in F and variables;

— F-unification problems with constants are systems of equations where the
terms are built with functions symbols from F, free constants, and variables;

— general E-unification problems are systems of equations of terms built from
function symbols from F, free function symbols, and variables.

ACUNh-unifiability with constants has been shown in [GNWO00] to be decid-
able in polynomial time (this problem has been called elementary unification
there, in deviance from the now established terminology). Furthermore, that
paper states NP-completeness of the general ACUNh-unification problem, refer-
ring to the Baader-Schulz combination technique [BS96] for the existence of an
NP-algorithm, and for NP-hardness to the proof of NP-hardness of the similar
theory ACUN in [GNWO0].

Baader gives an algorithm for the unification of several equational theories
that involve homomorphism, for instance Abelian groups [Baa93]. On the one
hand the results obtained in this and subsequent papers are general in that they
apply to a whole class of commutative theories. Their drawback, on the other
hand, is that they rely on the machinery of Grébner bases for solving equations
over the semi-ring associated to an equational theory.



Some results obtained by general methods for unification problems in com-
mutative theories (see [BS01]) useful in our context are:

— ACUNHh is unitary for elementary unification. This has been shown in [Baa93|
for the similar theory AGh (Abelian groups with a homomorphism). This
proof should transfer immediately to our setting ACUNh. An independent
proof is given in this paper.

— As a consequence, and due to the fact that the corresponding semi-ring
Z/27Z[h] is a ring, ACUNh is unitary for unification with constants [BS01].

— Again as a consequence, ACUNh is finitary for general unification [BS01].

In this paper we use an alternative proof technique based on automata theory
and prove that even the complete first-order theory of terms modulo ACUNh with
free constants (but without free non-constant functions symbols) is decidable. We
obtain from our automata construction an alternative algorithm for computing a
finite complete most general set of unifiers for unification with constants. Finally,
we use combination techniques [BS96] to obtain algorithms for computing finite
complete sets of most general unifiers for general ACUNh-unification, and to
decide general ACUNh-disunification problems. The above mentioned result of
general ACUNh-unification not introducing “new structural elements” is based
on an analysis of the combination algorithm applied to our setting.

Decidability of the first-order theory of terms modulo ACUNh in presence of
free function symbols remains open.

2 Preliminaries: Automatic Structures

The exposition of the general method of automatic structures follows [BGOO]
which is the first systematic investigation of this concept.

The basic idea is to first provide an encoding of elements of the structure
by words, and then to construct for any formula an automaton that accepts ex-
actly those words that encode a solution of the formula. For technical reasons,
this construction is restricted two purely relational signatures, that is signatures
which do not contain constant symbols of function sysmbols. Note that it is
always possible to transform a structure into a structure over a relational signa-
ture: we just have to replace the constants by unary predicates, and replace all
n-ary functions by n + l-ary relations.

Another technical problem consists in the fact that the set of solutions of a
formula is not a set of values, but a set of n-tuples of values where n is the number
of free variables of the formula. That is, we have to provide a way to extend our
encoding of elements of the structure to encodings of tuples of elements.

Definition 1. Let X be a finite alphabet and OO ¢ X'. The convolution of words
T1,...,Tn € X* is defined as

7] 7]

1 R... Xy =

S



where | = max{|x;| | i < i < n} is the length of the longest word among the x;,
and
i

j_ the j-th symbol of x; if j < |xz;]
O otherwise

Definition 2. Let A be a structure over a relational signature with relation
symbols Ry, ..., R,. An automatic representation of A is given by

1. a finite alphabet .

2. a regular language Ls C X*

3. a surjective function v: Ly — A

4. a regular language Lr C (X U {0})* for every relation symbol R of the
signature of A, such that for all xv,...,z, € Ls :

21 ®...0 %, € Ly iff (v(x1),...,v(xy)) € RA
A structure having an automatic representation is called automatic.

Note that there may be several possible automata for a given atomic formula
since the behaviour of the automaton is not specified when the input word is
notin Ls® ---® Ls.

Theorem 1 (|[BGO00]). Let A be a relational structure with an automatic rep-
resentation. Then the theory of A is decidable.

The probably best-known example of an automatic structure is Presburger
arithmetic (see, for instance, [CDG97]).

3 Unification and Diophantine Equations

In this section we recall the relation between unification with constants in ACUNh
and linear equation solving in the ring Z/27Z[h]. This is in fact an instance of the
by now classical connection between F-unification with constants for monoidial
equational theories and linear equation solving over the associated semi-ring (see,
for instance, [Nut90]). This section just serves as a reminder of some basic and
well-known results used in the following sections.

In the rest of the paper, we use some notations that are useful to deal with
terms and polynomials of Z/2Z[h]. The multiplication between polynomials p
and ¢ is denoted by p-q. A polynomial p(h) € Z/2Z[h| can be written ) ., b;h’
where b; € Z/27Z. The product ® of a polynomial by a term is a term defined as

follows: .

O bwhhot= Y Bt
i=0 i=0 | b;0

For instance (h2+1)® (X @ h(a)) = h?(X) ® X ®h3(a) ® h(a). Conversely, a
term ¢ such that V(t) = {X1,..., X, } can be written tX1© X1 &...®t%» © X, @t
for some tX1,... tX» € Z/2Z[h], and to a ground term.

Note that we use the symbol + for the addition operation in Z/2Z[h], while
@ is the binary operator of the term algebra.

We denote by deg(p) the degree of a polynomial, that is deg(>"_,bih') = n
in case b; # 0. By extension, deg(p1,...,pn) = (deg(p1),...,deg(py))-



3.1 Linear Diophantine Equations in Z/2Z[h]

Let (HE) be a homogeneous system of equations of the following form:

Ag- X1+ ...+ 41, X,=0
(HE)
At - X1 4o A X = 0

where the A; ;’s are polynomials in Z/2Z[h|, and the unknowns take values in
Z/27Z[h). We denote by Sol(HE) the set of solutions to (HE).

Definition 3. We define a quasi-order on (Z/2Z[h])™ by

(D1 0m) S5, am) © VI <i<m: deg(p;) < deg(q;)

The pertaining strict order is derived from this as usual by

(p17"'7pm) < (Q17-~-7Qm) <~ (p17"'7pm) 5 (q1>"‘7Qm)
and not (Q1a e aqm) S (plv s ,pm)
For instance, (h?,1) < (h?,h%) and (h3 + h, h?) < (b3, h? + 1), while (h2, h?)
and (h, h*) are not comparable by the quasi order <. Note that the strict order

< is well-founded.
From this quasi-order we derive an equivalence relation as usual:

Definition 4. We define an equivalence relation on (Z/2Z[h])™ by

(pla"'apm) ~ (qlv---7Qm)<:> (p17"'apm) S (Q1a"'7qm)
and (Q17"'7q’m) 5 (pla"'ap’m)

In other words, (p1,...,0m) ~ (q1,.-.,qm) iff deg(p;) = deg(q;) for each i. Note
that the equivalence classes of ~ are uniquely identified by m-tuples of integers
(the vector of degrees of the polynomials), and that every equivalence class is
finite (since the coefficients are in {0,1}).

Fact 1 The number of minimal solutions to a system of equations (HE) is finite.

Proof. We recall Dickson’s classical lemma [Dicl3]: every infinite sequence of
distinct tuples of natural numbers contains at least two (actually infinitely many)
comparable tuples.

Let us assume that the number of minimal solutions to (HE) is infinite. This

yields an infinite sequence T7,T5, . .. of distinct incomparable tuples of polyno-
mials. Therefore we would have an infinite sequence of incomparable tuples of
natural numbers deg(Th1), deg(T2), . .., in contradiction to Dickson’s lemma. O

Fact 2 Every solution to (HE) is a linear combination (with coefficients in
Z/2Z[h]) of minimal solutions to (HE).



Proof. Let o be a non-minimal solution to (HE). Since < is well-founded there
exists a minimal solution 7 to (HE) with 7 < 0. Let

d = min{deg(o;) — deg(m;)|]1 <i<m}
We define o’ by
(X)) =o(X;) —ht 7(X;) foralli,1<i<m

which obviously is again a solution to (HE) since the set of solutions is closed
under multiplication with scalars and under sums. Furthermore, by the choice
of d, 0’ < 0. The claim follows by induction. O

3.2 From Linear Equations over Z/2Z[h] to ACUNh-Unification with
Constants

The rest of this section is devoted to the construction of a most general unifier
for a given ACUNh-unification problem with constants. As a consequence of the
construction, ACUNh is unitary for unification with constants.

Let Yo = {c1,...,ck} be a given finite set of free constant symbols. We
consider a unification problem, i.e. a conjunction of equations s; = t; for j =
1,...,m where s;,t; are terms containing free constants from X, the homo-
morphism symbol h, the binary operator &, and the constant 0. Let x1,..., 2,
be the variables occurring in the unification problem. Using the notation intro-
duced in the previous section and the algebraic properties of ®, we get that the
unification problem is equivalent to a system of equations (U):

ZAZJ@.T,L:bJ for j:]_’“.’m (U)
i=1

where A; ; are polynomials of Z/2Z[h], the b; are ground terms, and where the
variables x; range over terms. Let (HU) be the equation system obtained from
(U) by replacing all the right hand sides by the term 0:

ZAW.@%:O for 7=1,...,m (HU)

=1

We denote by Sol(U) (resp. Sol(HU)) the set of ground substitutions that are
solutions to (U) (resp. (HU)).

Fact 3 For any o € Sol(U) we have Sol(U) = o @ Sol(HU)
Proof. This follows immediately from the properties ACUNh. a

An arbitrary ground solution of (U) can be obtained as follows: Each of the
terms occurring on the right-hand side of (U) can be decomposed as

i=k
b= Bjoc
i=1



For any i = 1,...,k, let (E;) be the equation system
ZAZ,]XZZB; for j:l,...,m (EZ)
i=1
where the variables X, range over polynomials from Z/2Z[h|. If o; is a solution
to (E;) for each i = 1,...,k, then we obtain a solution o to (U) by

i=k
o(x;) = ch(Xj) oy

A most-general unifier of (HU) is obtained as follows: Let (HE) be the equa-
tion system

i=n

> A X;=0 for j=1,....m (HE)
i=1
where variables X; range over polynomials from Z/2Z[h]. By Fact 1, the system
(HE) has a finite set of minimal solutions {c71,...,0,}. In the follwoing we denote

I,={1,...,u}.

Fact 4 The homogeneous unification problem (HU) has a most general unifier
on defined by vion = Xyer, Pix © yr, where o, = {X1 < Prg, ..., Xy < Pog}
with Py, € Z/2Z[h], and where the y;, are fresh variables.

Proof. — Firstly we prove that o is a solution of (HU). For j =1,...,m, we
have:

(EZE{IAZJ Oxi)og = EZ;{IAZJ © (zioH)

=221 Ai; © (Zker, (Pik © yr))

= 221 Yker, (Aij © (Pik © yx))

= X2 Yer, (Aij - Pik) © yk)

= Yyer, (X2 Aij - Pix) © yr)

=0

— Then we prove that any solution o of (HU) is an instance of opy.

Let Z be the set of variables occuring in z;0. Since these variables are no
longer instantiated, they are treated as constants in the following. For i =
1,...,n we have ;0 = (Xecx X ©c) ® (XiezZf © 2) and (210, ...,2,0)
is a solution of (HU) iff for each ¢ € X, for each z € Z we have that
(X§,...,X¢) and (Z%, ..., Z%) are solutions of (HE).
Therefore for each ¢ € Yo, (X§,...,X¢) is a linear combination of the
minimal solution of (HE), i.e. X§ = Xy Qf - Pix for i = 1,...,n where
the Q¢’s are the coeflicients of the linear combination. For each z € Z, the
same holds for (Z7,...,Z})’s, yielding Z7 = Yycr, R}, - P; 1.
Therefore for i =1,...,n,

zi0 = (Xeexe (Zrer, QF - Pix) ©¢) ® (Xocz(Zker, Ri - Pix) © 2)
= Yker, (Zeesc Pir © (QF, ©¢) @ (XiezPik © (R © 2)))
= Yker,(Pik © (Zeexe (QF ©¢) @ (Pip © Xoez(RE © 2)))
= Yrer, Pir © (Xeex QF ©c® Y.ez R © 2)



which terminates the proof (choose y;, = (Zeex Q5 0c)®(X,ezR;©2)). O

Fact 5 Let o be a ground solution to (U) and o a most-general unifier of (HU).
The substitution o @ o is a most-general unifier of (U).

Proof. This follows from Facts 3 and 4 since o is ground. a
Fact 6 The theory ACUNh is unitary for unification with constants.

Proof. This follows from Fact 5. a

4 Finding Minimal Solutions of Systems of Equations
Using Automata

What we need is a way to compute the minimal solutions to a homogeneous
system of Diophantine equations (HE), and to compute some (small) solution
to an inhomogeneous system (E). One possible approach is to perform algebraic
computations similar to what is done by AC-unification algorithms. Instead, we
shall use an automata-theoretic approach that yields a more general result:

Let (Z/27Z[h], <,+,0, h) denote the structure consisting of the universe Z/27Z[h]
with the relation < and the operations +, 0, and h. We show that the first-order
theory of this structure is decidable since it is an automatic structure [BGO0O].
Lemma 1. The first-order theory of (Z/27Z[h], <, +,0,h) is decidable.

I~

Proof. We show that the structure is automatic [BGO0O].

A polynomial p(h) = >"'_1 b;h € Z/2Z[h], where b; = 1, is represented by
the word v(p) = bg - - - by, (that is, the least significant bit first). The polynomial
0 is represented by the the word 0. The image of v is described by the regular
expression 0 U 0*1 and hence recognizable.

We now give automata accepting the representations of tuples of polynomials
that are in the three relations of the structure (Z/2Z[h], <, +,0) (We have to
replace the constant 0 by a unary relation X; = 0, and the function h by
a relation X; = h(X3)). The general construction as explained in Section 2
requires usage of a padding symbol [J when representing tuples of values. In the
case of arithmetic, we can for the sake of simplicity just replace the symbol [
by the symbol 0.

The automaton for X; = 0 is trivial and omitted. The automaton for X; <
X5 is given in Figure 1.

The automaton for X; = X5 + X3 is given in Figure 2. Note that the au-
tomaton is simpler than the automaton for the addition of Presburger arithmetic
since there is no carry-over to deal with.

The automaton accepting the pairs (X7, X5) such that X; = h(X5) is more
complex: it contains two states which remember the previous values of Xs. It is
described in Figure 3. O



()
(-0 6) (o) o C 6

Fig. 1. Automata for X; < Xo.

Fig. 3. Automaton for X; = h(X2)
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We can now easily obtain a small ground solution for an inhomogeneous sys-
tem of linear equations by constructing the automaton for the equation system,
and reading off a short solution (for instance one which does not pass twice by
the same state). We also obtain the minimal solutions to a homogeneous system
of Diophantine equations (HFE).

Fact 7 The set of minimal solutions to a homogeneous system of linear Dio-
phantine equations is computable.

Proof. A vector X is a minimal solution to a system of Diophantine equations
¢(X) iff it is a solution of the following formula:

#(X) AVY (Y§XA¢(Y)—>X§Y>

The set of elements X which satisfy this formula is accepted by an automaton
which is effectively computable. The language of this automaton is finite since
there is only a finite number of minimal solutions. To obtain the set of minimal
solutions, we simply use the automaton to generate all the terms of its language.

O

5 General ACUNh-Unification

5.1 A Unification Algorithm

To apply the combination algorithm of [BS96], we must prove that unification
with linear constant restriction is finitary. Given a unification problem (i.e. a
finite set of equations s; = t;), we associate to each constant ¢ appearing in the
problem a set V. of variables that are the variables in which ¢ must not occur.

Assume that we have a linear ordering < on the set of constants Y¢ and
variables X, then we define V. = {z € X | x < ¢}. A unification problem with
linear constant restriction is a unification problem with the additional constraint
restriction corresponding to the given ordering <. This amounts to stating that
each variable x of the problem can be instantiated only by terms containing
constants ¢ such that z ¢ V.. This set is computable and finite and we can write
r = Ygv.y XicOc for X; . a polynomial of Z/27Zh]. Therefore unification prob-
lems with linear constant restriction are solved in the same way as unification
problems are.

As a result, we get a unification algorithm for the theory ACUNh in X ex-
tended with free symbols as a simple application of the combination algorithm
(actually we can even choose the simpler version designed for the combination
with the empty theory, see [BS96]).

5.2 A Technical Result about Unification

To prove the next result (Lemma 2), we shall rely on notations and algorithms
introduced in the study of combination algorithms, see [BS96] for more details.

10



From now on, we assume that F = X' W X’ where X’ is a set of free symbols
which contains at least one symbol of arity greater than or equal to 2. The
context notation is extended as follows: t = C[ty,...,t,] if C is a context made
of symbols of X' only and the ¢;’s do not have a symbol from X at their root, or
if C' is a context made of symbols of X’ and the ¢;’s do not have a symbol from
X at their root.

If a term ¢ contains only symbols of X and variables, or only symbols of X’
and variables we say that it is pure.

The number of theory alternation in a term is defined by #(¢) = 0 if ¢ is
pure, otherwise #(C[t1,...,tn]) =1 +maz{#(;) |i=1,...,n}.

Definition 5. The set AF(t) of alien factors of t is defined by:

— AF(t) = {t} if t is pure,
— AF(t=Clt1,...,tn]) = {t} UAF(t1)U... U AF(t,)

Definition 6. The set Ste(t) of subterms of t is the smallest set such that:

- 0,te StE(t),
— i f(t1, ... tn) € Ste(t) with f € X' then t1,...t, € Ste(t),
—if s= f(t1,...,tn) € Ste(t) with f € X then AF(s) C Ste(t).

Ezample 1. Let t; = h?(a) ® b® z and t = h({a,b)) ® z, we get Ste(t;) =
{t1,a,b,2} and Stg(ta) = {t2, (a,b),a,b,z}.

Lemma 2. Let P be a general (that is, including free function symbols) unifi-
cation problem in the theory E = ACUNh and 0 be an mgug of P. Then for all
x € dom(0) and v € Stg(x0) \ V(x0) there exists t € Ste(P) such that v =g t0.

Actually, we prove the result for the complete set of unifiers computed by
the combination algorithm described by Baader and Schulz in [BS96].

Proof. Firstly, we remark that the lemma is true for a pure unification with linear
constant restriction. This is obvious for the empty theory, and for ACUNh it is
a consequence of our results on unification: a solution of a system of equations
Dic; Pi(h) 026D, ; Q;(h) ©c; = 0 with linear constant restriction is a linear
combination of fresh variables and c¢;’s.

To generalize to the union of the theories, we analyze the combination algo-
rithm. We recall this (non-deterministic) algorithm.

(1) Replace each non pure term t = C[ty,...,t,] by Clz4,, ...,z ] and add the
equations z;, = t; where the x;,’s are fresh variables.

(2) Replace each equation s = t such that s,¢ are pure but not in the same
theory by z,; =1t Az, = s where z,; is a new variable.

(3) Choose a partition of the set of variable Xj,...,&,, for each X; choose a
representative x; and replace all variables € X; by z; (this amounts to
adding equations x; = z for all z € X;).

(4) Label each variable by X or X’ non-deterministically, and choose a linear
ordering x1 < ... < xp.

11



(5) The problem is decomposed into two pure unification problems with linear
constant restrictions (otherwise return fail). Each problem is solved by taking
the variable of the other theories as constant and the variables of the theory
as variables. The unifier is given by the combination of the solutions of
both unification problems (some replacement can be done to get the actual
substitution).

We use the following properties of the algorithm. Assume that the algorithm
returns the substitution 6.

— For each pair of variables z,y in the same equivalence class 6 = y#.

For each alien factor t = C[ty,. .., t,] of P, there exist variables x4, zy,, . .., x;
such that x:0 = t0 = Clxy,0, ...z, 0].

For variable z, ;, we have z;:0 = s = t6.

For each term Clz1, ..., 2;] occurring in the final pure unification problems,
there exist y;, in the same equivalence class as z1,.. ., y;, in the same equiv-
alence class as x; such that C[tq,...,#] is an alien factor of P.

n

The solution of the pure unification problems has the form: © = C'[z1, . .., x,)
or z is a linear combination of fresh variables and variables z;’s and constants
of Y. In any case the factors of x6 for a variable x of the initial problems are
either X6, or are some z.0 for a variable x; hence there are some t6 for a factor
t of P or fresh variables. ad

Actually, the combination algorithm computes a complete finite set of uni-
fiers. To find the actual most general and minimal set of unifiers, one must add
a last step which detects the unifiers that are subsumed by other unifiers. This
step does not change the result and it is irrelevant for our purpose, since what
is required in our result is that all possible ground substitutions covered by the
set of unifiers that we consider.

6 Disunification and Beyond

6.1 General Disunification

We now turn to disunification problems, that is the problem of deciding the
existential fragment of the first-order theory. In the following lemma we denote by
=4 the equality relation modulo the axioms of associativity and commutativity.
Let us recall that = denotes equality modulo the axioms ACUNh.

Lemma 3. Let t1,81,...,tn,8n € T(F,X) terms in normal form. Then the
following two assertions are equivalent:

1. There exists no ground substitution o with tyo # s10 A ... Nt,0 # Sp,0
2. t; =ac s; for some i€ {l,...,n}

12



Proof. (2)=(1): 1Ift; =sc s; for some i then t; = s; and t;0 = s;0 for all
substitutions. Hence, there exists no substitution o with t10 # s1o0A ... At,o #
Sp0.
(1)=(2): Let us assume that (1) doesnot hold. Let T' = {s1,...,8p,t1,...,tn}-
If t; #ac s; for all i,1 < i < n, then we proceed by induction on the cardinality

n of the set V(T') of free variables of T.

— If n = 0 then the s; and the ¢; are ground. Hence, the empty substitution e
satisfies that t1€ £ s1e A ... Atp€e # spe
— If n > 0 then let z € V(T'), and let g be some ground term that
1. is different from 0
2. does not containing the symbol +
3. is not a syntactic subterm of a term in T’
Let t; = t;[zr — g] and s = s;{x — g] for 1 < ¢ < n. We have that
t; #ac s; for all i, and all the ¢; and s, are terms in normal form. Since
{th,...,t,,sh,...,s,} contains n — 1 variables there exists by induction hy-
pothesis a substitution ¢’ such that

tho' #£sha' N N0 # sho!
Hence, setting o = ¢’ o [z — g] we obtain that
t1o # 810 N ... Ntpo # 5,0 O

Theorem 2. The existential fragment of the first-order theory of terms modulo
the equational theory ACUNh is decidable.

Proof. Given a closed existential formula ¢ = 3T, where 1 is a quantifier-free
formula, let ¢; V ...V ¢, be a disjunctive normal form of . Validity of ¢ is
equivalent to validity of some JZc;.
Let
c=(r=wmA.. AT =unANS1ZtLN...ASp £ 1y)

This formula is satisfiable if there exists a most general unifier u of
L =ULN... ATy = U

such that the following formulas is satisfiable:

S F LA A St F tnpt

There is a finite set of most general unifiers p which can be computed, and
satisfiability of the disequations is decidable due to Lemma 3. a

6.2 The First-Order Theory with Constants

Theorem 3. The first order theory of terms over ACUNh with finitely many
free constants is decidable.

Proof. This follows immediately from Lemma 1 since the algebra of ground terms
modulo the equational theory ACUNh with m free constants is isomorphic to the
m-fold direct product of (Z/2Z[h],+, h,0). O
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7 Conclusions

We have shown that the first-order theory of ground terms modulo ACUNh is de-
cidable if the signature contains only the symbols from ACUNh and free constant
symbols, and that the existential fragment of this first-order theory is decidable
for arbitrary signatures. The obvious question whether the complete first-order
theory is decidable in the general case remains open.

As a consequence of the fact that the first-order theory of (Z/2Z[h], +, h,0)
is automatic, and by the nature of the isomorphism between the m-fold product
of this structure and the algebra of ground terms module ACUNh with m free
constants, it follows that the latter structure is itself automatic. This result does
not seem to extend to the general case: The natural extension to free function
symbols would consist in using tree automata with component-wise equality
tests. Unfortunately, this class of tree automata has an undecidable emptiness
problem [SANT05], and is of no help in establishing decidability results.
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