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Abstract

The first step in the verification of cryptographic protocols is to decide the intruder deduction problem, that is
the vulnerability to a so-called passive attacker. We extend the Dolev-Yao model in order to model this problem
in presence of the equational theory of a commutative encryption operator which distributes over the exclusive-or
operator. The interaction between the commutative distributive law of the encryption and exclusive-or offers
more possibilities to decrypt an encrypted message than in the non-commutative case, which imply a more
careful analysis of the proof system. We prove decidability of the intruder deduction problem for a commutative
encryption which distributes over exclusive-or with a DOUBLE-EXP-TIME procedure. And we obtain that this
problem is EXPSPACE-hard in the binary case.

1 Introduction

Today, the number of interactive services proposed on the Internet blows up. Most

of them use cryptographic protocols to guarantee some level of security. They
can be seen as relatively simple programs which are executed in an untrusted
environment. There are different approaches for modeling cryptographic protocols

and analyzing their security properties. One of them is the approach of Dolev and
Yao [DY83], which consists in modeling the attacker capabilities by a deduction
system. This model is often used to analyze the security of protocols against a passive

attacker, i.e an intruder which obtains some informations by eavesdropping the
communications between honest participants and deduces some information from
these messages. The question whether a passive attacker gets a certain information

from observed messages on the network is called the intruder deduction problem.

Algebraic Properties: Usually the capabilities of the intruder are based on

the so-called perfect cryptography assumption, i.e. it is impossible to obtain any
information about an encrypted message without knowing the exact key necessary

to decrypt this message. Unfortunately, this perfect cryptography assumption is
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too idealistic: There are protocols which can be proved secure under the perfect
cryptography assumption, but which are in reality insecure since an attacker can

use properties of the cryptographic primitives in combination with the protocol
rules to learn some secret informations (see [CDL06] for a survey). It is necessary
to relax this assumption by increasing the deductive power of the intruder. One

possibility is to add the capability to take into account some algebraic properties to
model an intruder in a more realistic way, which may find new attacks.

Related Work: Solutions to the intruder deduction problem modulo an equa-
tional theory are known for the cases of modular exponentiation [CKRT03b,MS03],

of exclusive-or, of Abelian groups [CLS03,CKRT03a], of a homomorphism symbol
alone [CLT03], and of combinations of homomorphism and one of the operators
of exclusive-or or Abelian groups [LLT05a,Del06]. Another result [CKRT04] proves

that the so-called active intruder with just a commutative encryption and the clas-
sical Dolev-Yao model is decidable. We have already studied in [LLT05b] the
intruder deduction problem for a non-commutative encryption which distributes

over the exclusive-or symbol, denoted ⊕. A natural question is to consider now the
case of commutative encryption, i.e. {{u}k1}k2 = {{u}k2}k1, for instance the encyption
RSA. Notice that in this case the equational theories of the ⊕ operation and of the

commutative encryption operation which distributes over the exclusive-or symbol,
i.e. {x ⊕ y}k = {x}k ⊕ {y}k, are not disjoint because they share the encryption symbol

function, hence the combination algorithm proposed in [CR05] can not be applied.

Our contribution: We investigate the intruder deduction problem with the

equational theory of a commutative encryption, i.e. {{u}k1}k2 = {{u}k2}k1 which dis-
tributes over the exclusive-or i.e. {x ⊕ y}k = {x}k ⊕ {y}k, where exclusive-or has the
properties of Associativity, Commutativity, Unity and Nilpotency. The interaction

between the commutative distributive law of the encryption and exclusive-or offers
more possibilities to decrypt an encrypted message than in the non-commutative
case. The commutativity of encryption requires to define new notions and to find

new proof transformations, since one encrypted message can be partially decrypted
by several different keys. In the non-commutative case for solving this problem
it is enough to construct some normalization of proofs where applications of the

exclusive-or rules are applied as early as possible. In the case of the commutative
encryption, we have to apply as early as possible the decryption and after as early

as possible the exclusive-or. This raises some difficulties that we solve by character-
izing new proof notions, constructing transformations to pass from one to another,
designing a right set of subterms and proving a normalization of proof to get the

result. We obtain a decision procedure in DOUBLE-EXP-TIME for the intruder
deduction problem with the equational theory of the exclusive-or and commutative
distributive encryption over this operator. We prove also in the particular case of

the binary proofs that the intruder deduction problem is EXPSPACE-hard for this
equational theory.

Plan: We recall in Section 2 usual notions required in the rest of the paper.
In Section 3 we introduce the extended Dolev-Yao model of intruder capacities.

In Section 4 we present the generalization of McAllester’s locality algorithm. In
the rest we introduce all required notions to show the locality result in Section 9.
Finally in Section 10 we present the binary case and conclude in Section 11.
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2 Preliminaries

We refer the reader to [DJ90,BN98] for an overview of rewriting.

Let Σ be a signature. T(Σ,X) denotes the set of terms over the signature Σ and the
set of variables X, that is the smallest set such that:

(i) X ⊆ T(Σ,X);

(ii) if t1, . . . , tn ∈ T(Σ,X), and f ∈ Σ has arity n ≥ 0, then f (t1, . . . , tn) ∈ T(Σ,X).

We abbreviate T(Σ, ∅) as T(Σ); elements of T(Σ) are called Σ-ground terms. The set
of variables occurring in a term t is denoted byV(t).

The set of occurrences of a term t is defined recursively as O( f (t1, . . . , tn)) =
{ǫ} ∪

⋃

i=1...n i · O(ti). For instance, O( f (a, g(b, x))) = {ǫ, 1, 2, 21, 22}. The size |t| of a

term t is defined as its number of occurrences, that is |t| = cardinality(O(t)). We
extend the notion of size to a set of terms T by |T| = Σt∈T |t|. If o ∈ O(t) then the
subterm of t at position o is defined recursively by:

• t |ǫ= t

• f (t1, . . . , tn) | j·o= t j |o

A term r is a subterm of a term t if r is a subterm of t at some position of t.

A Σ-equation is a pair (l, r) ∈ T(Σ,X), commonly written as l = r. The relation =E

generated by a set ofΣ-equations E is the smallest congruence on T(Σ) that contains
all ground instances of all equations in E.

A Σ-rewriting system R is a finite set of so-called rewriting rules l → r where
l ∈ T(Σ,X) and r ∈ T(Σ,V(l)). A term t is in normal form if there is no term s with
t → s. If t →∗ s and s is a normal form then we say that s is a normal form of t, and

write s = t ↓.

Let T be a set of terms, the mapping S : T→ T is idempotent if for every X ⊆ T:

S(S(X)) = S(X). The mapping S is monotone if for all X,Y ⊆ T: if X ⊆ Y then
S(X) ⊆ S(Y). S is transitive if for all X,Y,Z ⊆ T, X ⊆ S(Y) and Y ⊆ S(Z) implies
X ⊆ S(Z). The following Proposition is straightforward.

Proposition 1 Let S be a mapping from sets of terms to sets of terms. If S is idempotent
and monotone then S is transitive.

3 A Dolev-Yao Model for Rewriting Modulo AC

We consider the classic model of deduction rules introduced by Dolev and Yao [DY83]
in order to model the deductive capacities of a passive intruder. We present an

extension of this model with the equational theory XCDE (eXclusive-or with a Com-
mutative Distributive Encryption over ⊕).

The knowledge of the intruder is represented by terms built over a finite signa-
ture Σ = {〈·, ·〉, {·}·,⊕} ⊎ Σ0, where Σ0 is a set of constant symbols. The term 〈u, v〉
represents the pairing of the two terms u and v. The term {u}K represents the en-

cryption of the term u by a finite multiset of keys K and we consider that {u}∅ = u.
For the sake of simplicity, we here consider symmetric commutative encryption,

all results can be extended to the asymmetric case.
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The equational theory XCDE is represented by the following convergent rewrit-
ing system R: 0 ⊕ x → x; x ⊕ x → 0; {x ⊕ y}z → {x}z ⊕ {y}z;{0}z → 0 (the last rule is

required to get the confluence of R). R is terminating and confluent modulo asso-
ciativity and commutativity of⊕, and such that for all terms t, s ∈ T(Σ) we have that
t =E s if and only if t ↓ =AC s ↓. The deduction system of Figure 1 corresponds to

the deductive capabilities of an attacker considering the equational theory XCDE.

(A)
u ∈ T

T ⊢ u ↓

(P)
T ⊢ u T ⊢ v

T ⊢ 〈u, v〉 ↓

(C)
T ⊢ u T ⊢ K

T ⊢ {u}K ↓

(D)
T ⊢ r T ⊢ K

T ⊢ u ↓

if r =E {u}K

(UL)
T ⊢ r

T ⊢ u ↓
if 〈u, v〉 = r

(UR)
T ⊢ r

T ⊢ v ↓
if 〈u, v〉 = r

(GX)
T ⊢ u1 . . . T ⊢ un

T ⊢ u1 ⊕ . . . ⊕ un ↓

Fig. 1. A Dolev-Yao proof system working on normal forms by a rewrite system R modulo AC for a commutative

encryption, where K = {k
α1
1
, . . . , kαn

n }is a multiset of keys, where αi represents the multiplicity of the keys ki in K.

This proof system is composed of the following rules: (A) the intruder may use

any term which is in his initial knowledge, (P) the intruder can build a pair of two
messages, (UL),(UR) he can extract each member of a pair, (C) he can encrypt a

message u with a multiset K of keys, (D) if he knows a multiset K of keys then he
can decrypt a message encrypted by K. Let K = {kα1

1
, . . . , kαn

n } be a multiset of keys,
the sequent T ⊢ K is short for: α1 times the sequent T ⊢ k1, . . . , αn times the sequent

T ⊢ kn. Sometimes, we shall annotate the rules (C) and (D) by the multiset of keys
that they use, yielding rules (CK) and (DK). Because of the algebraic properties of
the ⊕ operator, we add a family of rules (GX) which allows the intruder to build

a new term from an arbitrary number of already known terms by using the ⊕
operator.

Definition 1 A proof P of T ⊢ w is a finite tree such that:

• every leaf of P is labeled by v ∈ T.

• every node of P with n children (n ≥ 1) labeled with T ⊢ v1, . . . ,T ⊢ vn, is labeled with

T ⊢ v such that
T ⊢ v1 . . . T ⊢ vn

T ⊢ v
(R) is an instance of the rule of Figure 1.

• the root of P is labeled with T ⊢ w.

A sub-proof P′ of a proof P is a sub-tree of P. The size of a proof P is the number of nodes
in P, denoted by |P|.

In fact, this proof system is equivalent in deductive power to a variant of the
system in which terms are not automatically normalized, but in which arbitrary
equational proofs are allowed at any moment of the deduction. The equivalence

of the two proof systems has been shown in [CLT03] without AC axioms; and in
[LLT05a] this has been extended to the case of a rewrite system modulo AC. In the

following, all terms are normalized and we omit the normalization symbol ↓.
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4 Locality Result and Complexity

Our starting point is the locality technique introduced by McAllester [McA93]. He
considers deduction systems which are represented by finite sets of Horn clauses.
He shows that there exists a polynomial-time algorithm to decide the deducibility

of a term w from a finite set of terms T if the deduction system has the so-called
locality property. A deduction system has the locality property if any proof can be
transformed into a local proof, that is a proof where all nodes are syntactic subterms

of T∪{w}. The idea of the proof is to check existence of a local proof by a saturation
algorithm which computes all syntactic subterms of T∪{w} that are deducible from
T. In [LLT05b] we generalize McAllester’s approach, we just recall the definition of

a local proof and the locality Theorem. In the rest of the paper we denote T ∪ {w}
by T,w.

Definition 2 Let S be a function which maps a set of terms to a set of terms. A proof P of
T ⊢ w is S-local if all nodes are labeled by some T ⊢ v with v ∈ S(T,w). A proof system is
S-local if whenever there is a proof of T ⊢ w then there is also a S-local proof of T ⊢ w.

Theorem 1 Let S be a function mapping a set of terms to a set of terms, and P a proof
system. Let T be a set of terms, let w be a term and let n be |T,w|. If:

(i) one-step deducibility of S ⊢ u in P is decidable in time g(|S, u|) for any term u and set
of terms S,

(ii) the set S(T,w) can be constructed in time f (n),

(iii) P is S-local,

then provability of T ⊢ w in the proof system P is decidable in time f (n)+ f (n)∗ f (n)∗g( f (n))

(non-deterministic if one of (ii), (i) is non-deterministic).

We say that u is one-step deducible from a set of hypotheses H if there exists an

instance
T ⊢ r1 . . . T ⊢ rn

T ⊢ r
(R) of some deduction rule such that r = u and ri ∈ H.

The one-step deducibility is decidable in polynomial time for the equational theory

XCDE. Observe first that all rules of deduction of Figure 1 are binary except the rule
(GX) (rule (CK) (resp. (DK)) are shorts for finite number of consecutive applications
of rule (Cki

) (resp. (Dki
)). For all these binary rules proving the one-step deducibility

takes a polynomial time. For the rule (GX) the problem can reduce to solve system
of equations in Z/2Z as in [LLT05b]. We illustrate the idea of this reduction, with
the following example.

Example 1 Let T = {a1⊕ a2⊕ a3, a1⊕ a4, a2⊕ a4} and w = a1⊕ a2, where every ai contains
no ⊕. We introduce one numerical variable x0, x1, x2 for each element of T:

x0 for a1 ⊕ a2 ⊕ a3

x1 for a1 ⊕ a4

x2 for a2 ⊕ a4

5
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For every element of the sum we create an equation, we get the equation system:

a1 : x0 ⊕ x1 = 1

a2 : x0 ⊕ x2 = 1

a3 : x0 = 0

a4 : x1 ⊕ x2 = 0

The system has a solution over Z/2Z if and only if w is deducible in one-step from T by
(GX). In this example the system has a solution: x0 = 0, x1 = 1, x2 = 1.

In the rest of the paper, to prove the locality of the deduction system, we define
a new notion of subterms (Definition 6) and some transformations of proof which

enable us to prove that any proof can be transformed into a normal proof. Hence
we prove that a normal proof is in fact a local proof in Theorem 2, yielding the
decidability of the intruder deduction problem, using Theorem 1.

5 Terms and Subterms

Definition 3 Let u be a term in normal form, u is headed with ⊕ if u is of the form

u1 ⊕ . . . ⊕ un with n > 1. Otherwise u is not headed with ⊕. A term u in normal form is
called headed with {.}K if u is of the form u = {t}K. Otherwise u is not headed with {.}K.

We define the function atoms(u):

• If u = u1⊕. . .⊕un, where each of the ui is not headed with⊕, then atoms(u) = {u1, . . . , un}.
The ui’s are called the atoms of u.

• If u is not headed with ⊕ then atoms(u) = {u}.

Example 2 t1 = u⊕ 〈v,w〉 is headed with ⊕, but t2 = 〈u, v⊕w〉 is not, hence atoms(t1) =

{u, 〈v,w〉} and atoms(t2) = {t2}.

The definition of atoms is generalized to sets of terms T in normal form by
setting atoms(T) :=

⋃

t∈T atoms(t). According to the definition, the function atoms

is monotone and idempotent. We denote by P[K] the set of all the partitions of the
set K.

Definition 4 The set of syntactic subterms of a term t is the smallest set S(t) such that:

(i) t ∈ S(t).

(ii) if 〈u, v〉 ∈ S(t) then u, v ∈ S(t).

(iii) if {u}K ∈ S(t) and K = {kα1

1
, . . . , k

αp

p } then u ∈ S(t) and ki ∈ S(t) for all i, 1 ≤ i ≤ p.

(iv) if u = u1 ⊕ . . . ⊕ un ∈ S(t) then atoms(u) ⊆ S(t).

Example 3 If u = {a}k1,k2,k3 i.e. the term a encrypted by the keys k1, k2 and k3 then
S(u) = {u, a, k1, k2, k3, {a}k1, {a}k2, {a}k3, {a}k1,k2, {a}k2,k3, {a}k1,k3}, for instance the term {a}k1

comes from the point (iii) of the previous definition with K = {k2, k3}.

The definition of S is extended to a set T of terms in normal form by setting
S(T) :=

⋃

t∈T S(t). Since the encryption is commutative, the number of subterms

of S(T) is exponential in the size of the set of keys of T (consider all the possible

6
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combinations of keys for an encrypted term). In the definition of S(t) we do not take
care of the distributivity of encryption. Because we work only on normal forms

the notion of a syntactic subterm ignores the fact that the term {a}K ⊕ {b}K ⊕ {c}K
is equal to {a ⊕ b ⊕ c}K, and that a ⊕ b ⊕ c should be considered to be a subterm of
{a}K ⊕ {b}K ⊕ {c}K and also all sums encrypted with the set P[K].

Definition 5 For any term t, ST(t) is the smallest set such that:

• S(t) ⊆ ST(t).

• If n > 1, K = {kα1

1
, . . . , k

αp

p } and {u1}K ⊕ . . . ⊕ {un}K ∈ ST(t) then u1 ⊕ . . . ⊕ un ∈ ST(t).

By definition S(t) ⊆ ST(t). The definition is extended to a set T of terms in normal

form by setting ST(T) :=
⋃

t∈T ST(t). As in Definition 4, Definition 5 considers also
all the possible combinations of keys for an encrypted sum of terms.

Proposition 2 For any set of terms M ⊆ TΣ, we have:

• atoms(M) ⊆ S(M)

• atoms(ST(M)) ⊆ ST(M).

• S(S(M)) = S(M) and ST(ST(M)) = ST(M).

Proof. Obvious from the definitions of S, atoms and ST. �

Definition 6 Define S⊕ as all combinations of terms of ST(T) by ⊕:

S⊕(T) :=
{

(
⊕

s∈M

s) ↓ |M ⊆ ST(T)
}

Note that the size of S⊕ is double-exponential in the size of T and ST(T) ⊆ S⊕(T):

one exponential for the computation of S(T) ⊆ ST(T) and the second exponential
for all the partial sums.

Proposition 3 Let A and B be two sets of terms in normal form, the mappings S, ST and
S⊕ are monotone and have the property:

• S(A ∪ B) = S(A) ∪ S(B).

• ST(A ∪ B) = ST(A) ∪ ST(B).

• S⊕(A) ∪ S⊕(B) ⊆ S⊕(A ∪ B).

Proof. It is an immediate consequence of the definitions of S(T), ST(T) and S⊕(T).�

Remark: Let A = {a} and B = {b}, S⊕(A) = {0, a} and S⊕(B) = {0, b} then S⊕(A) ∪

S⊕(B) = {0, a, b} ⊆ S⊕(A ∪ B) = {0, a ⊕ b, a, b} but S⊕(A) ∪ S⊕(B) , S⊕(A ∪ B).

Lemma 1 Let T be a set of terms then ST(S⊕(T)) = S⊕(T)

Proof. By definition 5, S⊕(T) ⊆ ST(S⊕(T)). We prove the converse inclusion by
induction on the number of applications of the rule for ⊕ in the construction of

ST(S⊕(T)) (step (ii) in Definition 5). Let u ∈ ST(S⊕(T)), and let n be the number of
applications of the rule for ⊕. By induction hypothesis, we assume that each term
u′ ∈ ST(S⊕(T)) obtained with less than n applications of the rule for ⊕ is in S⊕(T).

Base case n = 0: u ∈ ST(v) for some v ∈ S⊕(T), where v = v1 ⊕ . . . ⊕ vp and all

vi ∈ ST(T). If u = v then u ∈ S⊕(T). Otherwise u , v. In this case u ∈ S(vi) ⊆ ST(vi)

7
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for some i (since vi ∈ ST(T) and S(ST(T)) = ST(T)). Since v ∈ S⊕(T) there exists
a ti ∈ T such that vi ∈ ST(ti). Therefore vi ∈ ST(ti) ⊆ ST(T) with ti ∈ T, hence

u ∈ ST(ST(T)) = ST(T) ⊆ S⊕(T) by idempotence of ST.

Induction step: let u = u1⊕ . . .⊕un be obtained from {u1}K⊕ . . .⊕{un}K ∈ ST(S⊕(T)).

By induction hypothesis {u1}K ⊕ . . . ⊕ {un}K ∈ S⊕(T). Hence there exists a partition
I1 ∪ . . . ∪ Iq = {1, . . . , n} such that for every j, 1 ≤ j ≤ q, w j = ⊕i∈I j

{ui}K ∈ ST(t j).
Hence, ⊕i∈I j

ui ∈ ST(t j) by definition of ST. As a consequence, u ∈ S⊕(T). �

Proposition 4 Let M be a set of terms then S⊕(S⊕(M)) = S⊕(M). The mappings S, ST

and S⊕ are transitive.

Proof. The first point is a consequence of Lemma 1 and Proposition 2. The second

is a consequence of the first point and Propositions 1 and 2. �

All these results will be used implicitly in the rest of the paper.

6 Different Kinds of Proofs

After a description of the different notions of subterms, we now introduce the dif-
ferent proof’s characterizations which is a crucial ingredient in the demonstration
of the locality result.

Definition 7 Let P be a proof of T ⊢ w. P is flat if there is no (GX) (respectively (C) and
(D)) rule immediately above another (GX) (respectively (C) and (D)) rule. P is simple if

(1) each node T ⊢ v occurs at most once on each branch, (2) each node T ⊢ v occurs at most
once as hypothesis of a rule (GX), (3) there is no consecutive application of (CK) and (DK′)
(in either order) if K ∩ K′ , ∅.

Any proof can be transformed into a simple proof since we can always cut some
branch or piece of branch of the proof. In any proof we can always merge two
consecutive applications of a rule (CK) (respectively (DK) and (GX)) and get a flat

proof. Hence a flat proof can always be transformed into a flat and simple proof.

Proposition 5 Let K and K′ be two sets of keys such that K ∩ K′ = ∅. Applying the rule

(DK) to a term u and then the rule (CK′) yields the same result as applying the rule (CK′)
to u and then the rule (DK).

Proof. The fact that K ∩ K′ = ∅ is the key of this result. �

Intuitively, in a D-eager proof the (D) rule is applied as early as possible and in
a ⊕-eager proof the (GX) rule is applied as early as possible.

Definition 8 Let P be a proof of T ⊢ w. P is a D-eager proof if: (1) there is no hypothesis
of a rule (GX) which is headed with {.}K and a rule (DK′) just after a (GX) such that
K∩K′ , ∅, (2) there is no (C) just above rule (D). P is a ⊕-eager proof if all the rules (CKi

)

immediately above a (GX) in P have Ki ∩ K j = ∅ for all i, j such that i , j.

We precise S(T)-local proof instead of S-local, where T is the set of terms on

which S is applied. A normal proof consists of initial subproofs which are S⊕(T)-
local, followed by a proof tree consisting of the rules (GX), (C), (P) only.

Definition 9 Let P be a proof of T ⊢ u. P is a normal proof if :

8
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• either u ∈ S⊕(T) and P is an S⊕(T)-local proof,

• or P = C[P1, . . . ,Pn] where every proof Pi is a normal proof of some T ⊢ vi with vi ∈ S⊕(T)

and the context C is built using the inference rules (P), (C), (GX) only.

7 Transformations of Proofs

We modify by successive transformations a proof into a simple flat proof, then
into a simple flat D-eager proof, next into a simple flat D-eager ⊕-eager proof and
finally into a normal proof. With all these transformations we first apply the rule

of decryption, after we make the sum with the (GX) rule to simplify or construct
terms to get a normal proof.

Lemma 2 Let P be a simple and flat proof of T ⊢ w. Then there exists a proof P′ of T ⊢ w
such that P′ is a simple, flat and D-eager proof.

Proof. Let P be a simple and flat proof of T ⊢ w. We transform this proof into a
simple, flat and D-eager proof of T ⊢ w by induction on the number of nodes of P.

We consider the last rule of the proof, if it is:

• (A): the result holds.

• (GX), (P), (UR), (UL), (C): we apply the induction hypotheses on all direct sub-

proofs.

• (DK2 ): we always apply the induction hypotheses on the key part of the rule
(DK2 ), for the encrypted part we consider the rule above (DK2) is :

· (A), (P), (UR), (UL) we apply the induction hypotheses on all direct sub-proofs.
· (C): we can switch the two rules using Proposition 5 and simplicity (to get a

D-eager proof) and apply the induction hypotheses on the sub-proofs.

· (GX) if all encrypted hypotheses of the (GX) are encrypted by sets of keys Ki

such that Ki∩K2 = ∅ then we apply the induction hypotheses on the sub-proofs.

Otherwise we consider that the hypotheses of the rule (GX) can be split into
smaller sums which all give an encrypted term and we apply the transformation
described in Figure 2. In certain cases some additional transformations are

required to preserve simplicity: we cut the same hypotheses of the rule (GX)
or branch of the proof for the new nodes introduced. Moreover if a rule
(GX) has just one hypothesis, this rule can be deleted. Since K2 ∩ K1 , ∅ and

n ≥ 2, the size of the initial proof is Σi=n
i=1
|πBi
| + |πK2 | + 2 is greater or equal than

Σ
i=n1

i=1
|πBi
|+ |πK2∩K1

|+ 2 the size of this sub-proof, hence we apply the induction
hypotheses on the sub-proof ended by the rule (DK2∩K1

).

�

Proposition 6 The transformations of proofs given in Figures 3 and 4 decrease the number
of nodes of the initial proof.

Proof. We denote by πx the subproof of P with root T ⊢ x. These transformations
transform a proof with some hypotheses and a conclusion into a proof of the same

hypotheses and the same conclusion. Figure 3: It is obvious.

Figure 4: The number of nodes of the initial proof is:

9



P
.
L
a
f
o
u
r
c
a
d
e

(DK2
)

(GX)

(R1)

.

..

T ⊢ B1
. . . (Rn)

.

..

T ⊢ Bn

T ⊢ {u}K1
T ⊢ K2

T ⊢ {u}K1\K2

⇓

(DK2\K1
)

(DK2∩K1
)

(GX)

(GX)

(R1)

...

T ⊢ B1
. . . (Rn1

)

...

T ⊢ Bn1

T ⊢ {u1}K1

. . . (GX)

(Rnl−1+1)

...

T ⊢ Bnl−1+1
. . . (Rnl

)

...

T ⊢ Bnl

T ⊢ {ul}K1

T ⊢ {u1}K1
⊕ . . . ⊕ {ul}K1

= {u}K1
T ⊢ K2 ∩ K1

T ⊢ {u}K1\K2∩K1
T ⊢ K2 \ K1

T ⊢ {u}(K1\K2∩K1)\(K2\K1) = {u}K1\K2

⇓

(DK2\K1
)

(GX)

(DK2∩K1
)

(GX)

(R1)

.

..

T ⊢ B1
. . . (Rn1

)

.

..

T ⊢ Bn1

T ⊢ {u1}K1
T ⊢ K2 ∩ K1

T ⊢ {u1}(K1\K2∩K1 )
. . . (DK2∩K1

)

(GX)

(Rnl−1+11)

.

..

T ⊢ Bnl−1+1
. . . (Rnl

)

.

..

T ⊢ Bnl

T ⊢ {ul}K1
T ⊢ K2 ∩ K1

T ⊢ {u1}(K1\K2∩K1 )

T ⊢ {u}(K1\K2∩K1)
T ⊢ K2 \ K1

T ⊢ {u}(K1\K2∩K1)\(K2\K1) = {u}K1\K2

F
ig

.2.
T

ran
sfo

rm
atio

n
D

-eager
K

2
∩

K
1
,
∅

an
d

n
≥

2
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(GX)

(GX)
T ⊢ x1 . . . T ⊢ xn

T ⊢ x1 ⊕ . . . ⊕ xn T ⊢ y1 . . . T ⊢ ym

T ⊢ x1 ⊕ . . . ⊕ xn ⊕ y1 ⊕ . . . ⊕ ym

⇓

(GX)
T ⊢ x1 . . . T ⊢ xn T ⊢ y1 . . . T ⊢ ym

T ⊢ x1 ⊕ . . . ⊕ xn ⊕ y1 ⊕ . . . ⊕ ym

Fig. 3. Transformation of (GX)-(GX) into (GX)

αI = Σ
i=m
i=1
|πzi
| + |πx1

| + |πx2 | + |πK1
| + |πK2 | + 3

The number of nodes of the transformed proof is:

αT = Σ
i=m
i=1
|πzi
| + |πx1

| + |πx2 | + |πK1\K2
| + |πK2\K1

| + |πK1∩K2 | + 5

Observe that |πK1
| = |πK1∩K2 | + |πK1\K2

| and |πK2 | = |πK1∩K2 | + |πK2\K1
|.

αI − αT = |πK1
| + |πK2 | − |πK1\K2

| − |πK2\K1
| − |πK1∩K2 | − 2

= |πK1∩K2 | + |πK1\K2
| + |πK2 | − |πK1\K2

| − |πK2\K1
| − |πK1∩K2 | − 2

= |πK1∩K2 | + |πK2\K1
| − |πK2\K1

| − 2

= |πK1∩K2 | − 2

Since K1 ∩ K2 , ∅, hence |πK1∩K2 | ≥ 2 and the number of nodes is decreasing. �

Lemma 3 If there is a simple, flat and D-eager proof of T ⊢ w then there is also a simple,

flat, D-eager and ⊕-eager of T ⊢ w.

Proof. Let P be a simple, flat and D-eager proof of T ⊢ w, we apply many times
the proof transformation rules given in Figures 3 and 4. The application of these
transformations terminates since Proposition 6 shows that they decrease the num-

ber of nodes of a proof and the transformation of a proof into a simple and flat
proof decreases obviously the number of nodes. Moreover these transformations

do not make appear any rule (D) just after a rule (GX) and any rule (D) just after a
rule (C), hence the proof is again D-eager. �

8 Properties of Proofs

Thanks to previous transformations we consider a simple, flat D-eager ⊕-eager proof

P of T ⊢ w. Lemma 5 shows that all nodes stemmed from a rule (UR)(UL) are in
S(T) for simple proof. Lemma 6 proves that all nodes stemmed from a rule (D) have
the encrypted hypothesis in S⊕(T) for a simple, flat, D-eager and ⊕-eager proof. In

Lemma 7 we prove that such a proof can be transformed in a normal proof using
Lemma 5 and Lemma 6.

Lemma 4 Let P be a simple proof of the form:

P =































P1 . . .Pn

T ⊢ w
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P
.
L
a
f
o
u
r
c
a
d
e

(GX)

(CK1
)
T ⊢ x1 T ⊢ K1

T ⊢ {x1}K1

(CK2)
T ⊢ x2 T ⊢ K2

T ⊢ {x2}K2

(R1)

...

T ⊢ z1

. . .(Rm)

...

T ⊢ zm

T ⊢ {x1}K1
⊕ {x2}K2 ⊕ z1 ⊕ . . . ⊕ zm

⇓

(GX)

(CK1∩K2 )

(GX)

(CK1\K2
)
T ⊢ x1 T ⊢ K1 \ K2

T ⊢ {x1}K1\K2

(CK2\K1
)
T ⊢ x2 T ⊢ K2 \ K1

T ⊢ {x2}K2\K1

T ⊢ {x1}K1\K2
⊕ {x2}K2\K1

T ⊢ K1 ∩ K2

T ⊢ {x1}K1
⊕ {x2}K2 (R1)

...

T ⊢ z1

. . .(Rm)

...

T ⊢ zm

T ⊢ {x1}K1
⊕ {x2}K2 ⊕ z1 ⊕ . . . ⊕ zm

F
ig

.4.
T

ran
sfo

rm
atio

n
D

-eager
K

2
∩

K
1
,
∅

an
d

n
≥

2
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If T ⊢ u does not occur in any of P1, . . . ,Pn and 〈u, v〉 ∈ S(w) then there is at least one Pi

and there exists w′ such that 〈u, v〉 ∈ S(w′) and either the root of Pi is T ⊢ w′ or w′ ∈ T.

Proof. We consider all possible rules for the root of P:

• The last rule is (A): obvious since all elements of T are normalized.

• The last rule is (UL) or (UR): 〈u, v〉 ∈ S(w) by hypothesis, we denote w′ = 〈u1, u2〉

and by construction w ∈ S(〈u1, u2〉). We deduce by transitivity of the subterm
relation that 〈u, v〉 ∈ S(w′) and conclude with the induction hypothesis.

• The last rule is (D): 〈u, v〉 ∈ S(w) by hypothesis, we denote w′ = {u1}u2 and by

construction w ∈ S({u1}u2 ). We deduce by transitivity of the subterm relation that
〈u, v〉 ∈ S(w′) and conclude with the induction hypothesis.

• The last rule is (GX): 〈u, v〉 ∈ S(w) by hypothesis and w = (u1 ⊕ . . . ⊕ un) ↓. Hence

by definition of the subterm relation 〈u, v〉 ∈ ∪iS(ui), more precisely there exists
i such that 〈u, v〉 ∈ S(ui), because 〈u, v〉 is not headed with ⊕ and conclude with
the induction hypothesis.

• The last rule is (P): since T ⊢ u can not occur in P we have that w = 〈w1,w2〉 ,

〈u, v〉. But 〈u, v〉 ∈ S(w) by hypothesis so 〈u, v〉 ∈ S(〈w1,w2〉). It is a subterm of w1

or of w2 and we conclude with the induction hypothesis.

• The last rule is (C): We have that w = {w1}w2 , 〈u, v〉. But 〈u, v〉 ∈ S(w) by
hypothesis so 〈u, v〉 ∈ S({w1}w2). It is a subterm of w1 or of w2 and we conclude
with the induction hypothesis.

�

Lemma 5 Let P be a simple proof of T ⊢ u or T ⊢ v. If P is one of

(UL)

...

T ⊢ 〈u, v〉

T ⊢ u
(UR)

...

T ⊢ 〈u, v〉

T ⊢ v

then 〈u, v〉 ∈ S(T).

Proof. Let us assume that the last rule is (UL), the case (UR) is similar.

P =



































P1 . . .Pn

T ⊢ 〈u, v〉

T ⊢ u

P is simple so T ⊢ u does not occur in any of P1, . . . ,Pn. Hence, we can apply

Lemma 4 to
P1 . . .Pn

T ⊢ 〈u, v〉
. Either 〈u, v〉 ∈ T, or there is some Pi with root T ⊢ w such

that 〈u, v〉 ∈ S(w) and T ⊢ u does not occur in Pi. Lemma 4 can be applied again and

the iteration of this reasoning finally leads to 〈u, v〉 ∈ T. �

13
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Lemma 6 Let P be a simple, flat, D-eager and ⊕-eager proof of T ⊢ u. If P is

(DK)

(R)

...

T ⊢ {u}K ↓ = r

...

T ⊢ K ↓

T ⊢ u

then {u}K ∈ S⊕(T).

Proof. The proof is by structural induction on P.

Base case: obvious.

Induction step: we perform a case analysis on the last rule (R) used in the

subproof of P with root {u}v ↓

• (R) is (A), (UL), (UR): the result is true by definition (rule (A)) or Lemma 5 (rule
(UL), (UR)).

• (R) is some rule (P): this cannot happen since {u}K ↓ is not a pair.

• (R) is some rule (CK′): P is D-eager by consequence it is impossible.

• (R) is some rule (DK′) impossible since P is flat.

• (R) is (GX). The last deductions in the proof P are described in Figure 5 and we

discuss the different cases according to the rules (Ri) and the structure of {u}K ↓.

(DK)

(GX)

(R1)
T ⊢ B1

T ⊢ B′1
... (Rn)

T ⊢ Bn

T ⊢ B′n

T ⊢ {u}K ↓

...

T ⊢ K ↓

T ⊢ u ↓

Fig. 5. Illustration of the case (DK) in Lemma 6

We will show that every atom of {u}K ↓ is in fact an element of ST(T). Let
a ∈ atoms({u}K ↓). Note that a is necessarily of the form {a′}K, and that there is an

i such that a ∈ atoms(B′
i
). We consider different possible cases for the rule (Ri):

· (Ri) is (A), (UL) or (UR). By definition or Lemma 5, B′
i
∈ S⊕(T).

· (Ri) is (DK′) s.t. (DK′)
T ⊢ {w1}K′ T ⊢ K′

T ⊢ w1 = B′i
By induction hypothesis {w1}K′ ∈ S⊕(T),

therefore w1 = B′
i
∈ S⊕(T).

· (Ri) is (P): B′
i
= 〈w1,w2〉, B′

i
cannot occur in {u}K ↓ by consequence B′

i
is canceled

by another hypotheses B′
j
of (GX) such that B′

i
∈ ST(B′

j
). B′

j
can not be the result

of a rule (P) by simplicity, neither a rule (C) since it is a pair, neither (GX) since

the proof is flat. In the other cases B′
j

stems from a rule (A), (UL), (UR) or (D)

by consequence B′
j
∈ S⊕(T). We deduce that B′

i
∈ S⊕(T).

· (Ri) is (C), since P is D-eager we get that B′
i

is headed with {.}K′ such that
K ∩ K′ = ∅. By consequence B′

i
is canceled by another hypotheses B′

j
of (GX)

such that B′
j
∈ ST(B′

i
). B′

j
can not be the result of a rule (P) since it is an encrypted

term, neither another rule (C) since P is ⊕-eager, neither (GX) since the proof is

flat. In the other cases the copy B′
j

stems from a rule (A), (UL), (UR) or (D) by

consequence B′
j
∈ S⊕(T). We deduce that B′

i
∈ S⊕(T).

14
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Therefore in all cases {u}K ↓ =
⊕

i=1,...,n B′
i
↓ =

⊕

{ti}K where {ti}K ∈ S⊕(T) ∩
(∪i=1,...,natoms(Bi)) since all atoms of B′

i
are in S⊕(T) or canceled.

�

Lemma 7 Let P be a flat, simple, ⊕-eager and D-eager proof of T ⊢ u. There is a normal
proof of T ⊢ u.

Proof. Consider first the case where u ∈ S⊕(T). We proceed by structural induction
on the proof P and case distinction of the last rule (R) of P:

• (R) is (A): P is obviously a normal proof.

• (R) is some rule (UL) or (UR) s.t.
T ⊢ 〈u1, u2〉

T ⊢ u
The induction hypothesis gives

that there exists a normal proof of 〈u1, u2〉. P is simple, we apply Lemma 5 and
get 〈u1, u2〉 ∈ S(T) ⊆ S⊕(T) then the normal proof of 〈u1, u2〉 is S⊕(T)-local so P is

normal since u ∈ S⊕(T).

• (R) is some rule (D) s.t.
T ⊢ {u}K T ⊢ K

T ⊢ u
The induction hypothesis gives that there

exists a normal proof of {u}K. P is flat, simple, D-eager and ⊕-eager with Lemma 6
we get {u}K ∈ S(T) ⊆ S⊕(T) and then the normal proof of {u}K is S⊕(T)-local so we
deduce that P is normal since u ∈ S⊕(T).

• (R) is some rule (P), (C) are similar. We only give the proof for u = {u1}u2 . (R) is

some (C) s.t.
T ⊢ u1 T ⊢ u2

T ⊢ {u1}u2

Since {u1}u2 = u ∈ S⊕(T) we deduce that u1 ∈ S⊕(T)

and u2 ∈ S⊕(T). Hence applying the induction hypothesis there are normal proofs
of u1 and u2 that are S⊕-local, hence P is normal.

• (R) is some rule (GX) s.t. (GX)

(R1)
T ⊢ B1

T ⊢ B′1
...(Rn)

T ⊢ Bn

T ⊢ B′n

T ⊢ u
We will show that for

every (Ri) we have that B′
i
∈ S⊕(T). We discuss the different cases for the rules

(Ri)’s:
· (Ri) is not (GX) since P is flat.

· (Ri) is (A), (UL), (UR) or (D) with the definition or Lemma 5 or Lemma 6 then
B′

i
∈ S⊕(T). Applying the induction hypothesis there is a normal proof of B′

i
which is S⊕(T)-local.
· (Ri) is (P), there are two possibilities: B′

i
is in ST(u) or not.

B′
i
∈ ST(u) ⊆ S⊕(T) we can apply the induction hypothesis and get a normal

proof of B′
i

which is S⊕(T)-local.
B′

i
< ST(u) hence B′

i
is canceled by some other elements B′

j
. B′

j
can not come

from a rule (P) since P is simple, from a rule (C) since a pair is not headed
with {.}.. So B′

j
come from a rule (A), (UL), (UR) or (D) with the definition

or Lemma 5 or Lemma 6 then B′
j
∈ S⊕(T). More precisely

⊕

B′
j
∈ S⊕(T),

since B′
i
∈ S⊕(

⊕

B′
j
) we deduce that B′

i
∈ S⊕(T). we can apply the induction

hypothesis and get a normal proof of B′
i

which is S⊕(T)-local.

· (Ri) is (CK), this case is similar to the previous case. There are two possibilities:

15
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B′
i

is in ST(u) or not:
B′

i
∈ ST(u) ⊆ S⊕(T) we can apply the induction hypothesis and get a normal

proof of B′
i

which is S⊕(T)-local.
B′

i
< ST(u) hence B′

i
is canceled by some other elements B′

j
. B′

j
can not stem

from a rule (P) since a pair is not headed with {.}., from a rule (CK′) with
K′ , K since B′

i
not headed with {.}K and not from another rule (CK′) where

K′ ∩ K , ∅ since P is ⊕-eager. So B′
j

come from a rule (A), (UL), (UR) or (D)

with the definition or Lemma 5 or Lemma 6 then B′
j
∈ S⊕(T). More precisely

⊕

B′
j
∈ S⊕(T), since B′

i
∈ S⊕(

⊕

B′
j
) we deduce that B′

i
∈ S⊕(T). we can apply

the induction hypothesis and get a normal proof of B′
i

which is S⊕(T)-local.
Since all the subproofs of T ⊢ B′

i
are normal we can conclude that P is normal.

In the second case, we assume that u < S⊕(T) and the proof is of the form
C[P1, . . . ,Pn] where P1, . . . ,Pn are maximal S⊕-local subproofs. We prove the re-
sult by structural induction on P:

• If C is empty, then u ∈ S⊕(T)

• If the last rule is (UL), (UR) or (D) we use the definition and Lemma 5 and

Lemma 6 to get u ∈ S⊕(T).

• In the others cases we apply the induction hypothesis.

�

9 Our Result

In this section, we prove Theorem 2 which says that a normal proof is equivalent
to a S⊕(T,w)-proof. Thanks to Theorem 1 we conclude that there is a DOUBLE-

EXP-TIME procedure complexity (computation of the set S⊕(T,w)) to decide the
intruder deduction problem in equational theory XCDE.

Theorem 2 Let P be a flat, simple, D-eager and ⊕-eager proof of T ⊢ w then
P is normal⇔ P is S⊕(T,w)-local.

Proof. ⇐ Let us assume that P is S⊕(T,w)-local and prove that P is normal:

• If w ∈ S⊕(T) then P is S⊕(T)-local i.e. P is normal.

• If w < S⊕(T) then we proceed by structural induction on P. The base case (A) is
trivial, consider the last rule:
· (UR), (UL), (D) impossible since Lemma 5 and Lemma 6 show that w ∈ S⊕(T)

which contradicts the hypothesis.
· (P), (C), (GX) by induction hypothesis, the hypotheses wi of the rule stem from

normal proofs. Since the last rule is (P), (C), (GX) P is normal.

⇒ Let us assume that P is normal and prove that P is S⊕(T,w)-local:

• If w ∈ S⊕(T): P is S⊕(T)-local, hence P is S⊕(T,w)-local.

• If w < S⊕(T) we proceed by structural induction on P. The base case is trivial,
consider the last rule:

· (UR), (UL), (D): impossible by definition of normal proof.
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· (P), (C) are similar, we just give the proof for (C). P is s.t.
T ⊢ w1 T ⊢ w2

T ⊢ {w1}w2

By

definition for i = 1, 2 wi ∈ S⊕(T,wi), wi ∈ ST({w1}w2) = ST(w) ⊆ S⊕(w), and

induction hypothesis which guarantees that all nodes of the sub-proof are in
S⊕(T,wi), we conclude that P is S⊕(T,w)-local.

· (GX) P is s.t. (GX)

(R1)
T ⊢ B1

T ⊢ B′1
. . . (Rn)

T ⊢ Bn

T ⊢ B′n

T ⊢ w
. We will prove that all B′

i

are in S⊕(T,w), consider the different cases for the (Ri):
(A): by definition B′

i
∈ S⊕(T),

(UR), (UL), (D): by Lemma 5 and Lemma 6 we get B′
i
∈ S⊕(T).

(GX): impossible since P is flat.
(P): if B′

i
∈ S⊕(T) the claim holds, otherwise B′

i
< S⊕(T). Either B′

i
is not

canceled in a sum, then B′
i
∈ ST(w) ⊆ S⊕(w), or otherwise B′

i
is canceled by

another element of the sum B′
j
. Since B′

i
is a pair B′

j
can not be deduced from

a rule (C) neither a rule (P) since P is simple. Hence it stems from one of

the rules (A), (UL), (UR) or (D) and B′
i
∈ ST(B′

j
). According to Lemma 5 and

Lemma 6 B′
j
∈ S⊕(T), hence we get the result by transitivity of S⊕.

(CK): if B′
i
∈ S⊕(T) the claim holds, otherwise B′

i
< S⊕(T). Note that B′

i
can be

partially canceled in a sum. There are two possibilities for the atoms of B′
i
:

to be present in w, in which case atoms(B′
i
) ∈ atoms(ST(w)) ⊆ atoms(S⊕(w)),

or to be canceled by other elements B′
j

of the sum, in which case atoms(B′
i
) ∈

atoms(S⊕(B′
j
)) ⊆ atoms(S⊕(T)). In the latter case, since B′

i
is encrypted by the

set of keys K, B′
j

can not be the result of a rule (CK′) with K′ , K, nor the

result of the rule (C′
K

) with K′ ∩ K , ∅ since P is ⊕-eager, nor (P), hence it
stems from one of the rules (A), (UL), (UR) or (D). Thanks to Lemma 5 and
Lemma 6 B′

j
∈ S⊕(T), we conclude with the transitivity of S⊕. In summary, for

all i we get that atoms(B′
i
) ∈ atoms(S⊕(T,w)), that is B′

i
∈ S⊕(T,w)). Hence P is

S⊕(T,w)-local.

�

10 The Binary Case

We call the binary case the situation where the set of assumptions T and the goal
u of the proof P of T ⊢ u do not contain terms with more than two consecutive

applications of the symbol ⊕.

In the case of a commuting encryption operation we can show an EXPSPACE

lower bound by reduction of the uniform word problem in commutative semigroups (ab-
breviated CSG) which is EXPSPACE-hard [MM82]. An instance of CSG is defined

as

α1 = β1, . . . , αn = βn |= α = β

where α, β, αi and βi are words over some alphabet. It is essential for the complexity
of the problem that the alphabet is infinite (of course, any instance C of CSG uses

only a finite portion Σ(C ) of that alphabet). Such an instance of CSG has a solution
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if and only if α = β in every commutative semigroup satisfying the axioms αi = βi.
Denoting by x =c y the equality of two words x and y modulo commutativity, this

is equivalent to the following assertion:

Either α =c β, or there exists a sequence of pairs (γ1, δ1), . . . , (γl, δl) such that each

pair (γ j, δ j) is either some αi = βi or some βi = αi

and a sequence of words c1, . . . , cl with c j ∈ Σ(C )∗ such that

α =c γ1c1 , δ1c1 =c γ2c2, . . . , δl−1cl−1 =c γlcl , δlcl =c β

We consider asymmetric encryption to prove the hardness result in the binary

case, i.e a term {u}k can be decrypted if and only if we know the inverse of the key
k, denoted Inv(k). We just need to add the Inv symbol in the signature and modify
the decryption rule:

(DK)
T ⊢ {u}K T ⊢ Inv(K)

T ⊢ u ↓

where K is the non-empty multi-set {kα1

1
, . . . , kαn

n }, Inv(K) is a notation for the
multi-set {Inv(k1)α1 , . . . , Inv(kn)αn}, and as previously T ⊢ Inv(K) denotes many times

the sequent of each inverse keys. Notice if you do not know an inverse of a key,
there is no way to generate it. In this case we have also the locality result.

Theorem 3 In case of the equational theory XCDE the binary intruder deduction problem
is EXPSPACE-hard.

Proof. We show that this is even true for binary T, u not containing any decryption
key as a subterm (i.e. there is no symbol Inv) and any term headed with the pair

function.

Given an instance C = (α1 = β1, . . . , αn = βn |= α = β) of CSG, let

T = {{i}αi
⊕ {i}βi

| 1 ≤ i ≤ n} ∪ Σ(C )

u= {i}α ⊕ {i}β

where i is some constant, and all the symbols of Σ(C ) are considered as constants.

By locality result 2 we know that all nodes of the proofs of T ⊢ u are in the set
of subterms of T ∪ {u}. Hence we know that these proofs are not using the (D) rule

(since no decryption key is a subterm of T or u) and not the rules (UR), (UL) and
(P) because there is no term headed with the pair function in T ∪ {u}. Hence theses
proofs contains only the rules (A), (C) and (GX).

Applying the transformations of the Figure 3 (merge of two (GX) rules) and
Figure 6 (switch rules (GX) and (C)), existence of such a proof is equivalent to

existence of a proof of the following form:

(GX)

(C)

(C)

(A)
{i}γ1

⊕ {i}δ1
∈ T

T ⊢ {i}γ1
⊕ {i}δ1

...

T ⊢ {i}γ1c1
⊕ {i}δ1c1

. . . (C)

(C)

(A)
{i}γl

⊕ {i}δl
∈ T

T ⊢ {i}γl
⊕ {i}δl

...

T ⊢ {i}γlcl
⊕ {i}δlcl

T ⊢ {i}α ⊕ {i}β

18
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(CK)

(GX)
T ⊢ x1 . . . T ⊢ xn

T ⊢ x1 ⊕ . . . ⊕ xn T ⊢ K

T ⊢ {x1}K ⊕ . . . ⊕ {xn}K

⇓

(GX)

(CK)
T ⊢ x1 T ⊢ K

T ⊢ {x1}K
. . . (CK)

T ⊢ xn T ⊢ K

T ⊢ {xn}K

T ⊢ {x1}K ⊕ . . . ⊕ {xn}K

Fig. 6. Permutation of the rules (GX)-(C) into (C)-(GX).

where we may assume without loss of generality that no non-empty subset of
the premises of the (GX) rule sums up to 0. There exists such a proof if either

{i}α = {i}β, or if there exists a sequence of terms {i}γ1
⊕ {i}δ1

, . . . , {i}γl
⊕ {i}δl

such
that each of them is either some {i}αi

⊕ {i}βi
or some {i}βi

⊕ {i}αi
, and a sequence

c1, . . . , cl such that:

{i}α = {i}γ1c1
, {i}δ1c1

= {i}γ2c2 , . . . , {i}δl−1cl−1
= {i}γlcl

, {i}δlcl
= {i}β

in the term algebra, which is equivalent to the existence of a solution to C . The

claim follows from the EXPSPACE-hardness of CSG [MM82]. �

11 Conclusion

We propose a DOUBLE-EXP-TIME decision procedure for solving the intruder

deduction problem in presence of the equational theory XCDE (eXclusive-or with a
Commutative and Distributive Encryption). The commutativity of the encryption
requires to consider all combinations of keys in the subterms, to be more attentive

and to develop a new normalization of proof. We also prove in the binary case that
this problem is EXPSPACE-hard. The next stage will be to find the exact complexity

of this problem. The intruder deduction problem is the first step in the verification
of cryptographic protocols as for instance in [RT01] without any equational theory,
or later in [CLS03,CKRT03a] to consider the equational theory of exclusive-or. The

second step is verifying the case of an active intruder. The active case without
equational theory but with a commutative encryption was shown to be decidable
by [CKRT04]. We prove that the problem is decidable for an active intruder with a

homomorphic operation which is not the encryption [DLLT06]. In the case of the
equational theory of the exclusive-or and non-commutative distributive encryption
over this operator, it seems impossible to solve the equations systems in the usual

way. But after having studied the first step by demonstrating the intruder deduction
problem in the XCDE case, we could apply some mathematical results for solving

these equations systems.
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