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Résumé

Les systèmes informatiques sont devenus omniprésents dans les objets de la vie quotidienne, et

disposent de nombreux moyens de communiquer des informations entre eux. Aussi la capacité de

garantir la confidentialité ou l’authenticité d’une information est-elle devenue un besoin crucial

de nombreux utilisateurs de ces systèmes. La cryptographie offre des moyens de résoudre les

problèmes inhérents à ce besoin, en définissant des techniques de communication sécurisée par

des canaux non-fiables. Plus précisément, la cryptographie consiste en la conception et l’analyse

de protocoles satisfaisant des aspects variés de sécurité de l’information comme l’intégrité,

l’authenticité ou le caractère secret d’une donnée. Utiliser des outils cryptographiques ne

résout pas tous les problèmes de sécurité de l’information, puisque la sécurité d’un système

dépend aussi, par exemple, de ses conditions d’utilisation. Cependant, l’utilisateur doit pouvoir

avoir confiance en les outils proposés par les cryptographes. Proposer des preuves formelles

de l’évaluation exacte de la sécurité garantie par un protocole est l’objet de la cryptographie

prouvable. C’est à la construction de telles preuves que s’attache le travail proposé dans cette

thèse.

Bien que le besoin de confidentialité de communications, pour des raisons militaires par

exemple, se soit fait sentir dès l’Antiquité, c’est Shannon [Sha48, Sha49], au milieu du XXe

siècle, qui propose la première tentative de formuler une définition précise de la sécurité d’une

information. Avant cela, beaucoup de procédés de chiffrement de messages avaient été inventés,

mais jamais on n’avait formalisé et prouvé les garanties fournies par un système en terme de

sécurité. Un système était considéré comme sûr tant que personne n’avait trouvé d’astuce

pour extraire une quantité significative d’information sur les données transmises en l’utilisant.

De nos jours, il existe deux grandes approches formelles pour traiter de la cryptographie

prouvable : le modèle symbolique et le modèle calculatoire. Du point de vue symbolique [DY83],

les messages sont formalisés par les termes d’une algèbre et un adversaire est représenté par un

ensemble de règles d’inférence qu’il peut utiliser sur les termes qu’il intercepte sur les canaux

de communication pour construire de nouvelles quantités. Dans le modèle calculatoire [GM84],

les messages sont considérés comme des suites de bits, tandis que les adversaires sont des

machines de Turing probabilistes qui interagissent avec les systèmes cryptographiques en

appelant des oracles.



Dans cette thèse, nous remédions à l’absence de système de preuves qui soit dédié à

la sécurité calculatoire des systèmes cryptographiques. De même que des techniques de

vérification spécifiques ont été développées pour divers systèmes critiques, nous proposons un

cadre propre aux systèmes cryptographiques dans lequel effectuer les preuves de satisfaction

de critères de sécurité calculatoire. Par rapport aux systèmes concurrents, les systèmes étudiés

en sécurité sont caractérisés par l’importante asymétrie des parties qui interagissent. En

effet, les critères de sécurité sont en général définis au moyen de jeux probabilistes qui font

intervenir deux parties : d’une part les éléments relevant de l’objet cryptographique, d’autre

part l’adversaire de ce dernier. Aucune restriction n’est imposée aux adversaires, alors que

l’on connait entièrement la spécification de la construction que l’on veut prouver. De plus, les

théorèmes à établir ne sont en général pas formulés en terme d’existence ou de non-existence

d’une trace satisfaisant une propriété, mais plutôt de l’une des manières suivantes. Soit on

souhaite borner la probabilité que le système global (i.e. le système cryptographique et son

adversaire) satisfasse une certaine condition, soit on veut prouver que du point de vue de

l’adversaire, il est équivalent d’interagir avec l’une ou l’autre de deux versions du système

cryptographique (par exemple, le système réel et un système complètement alétoire).

Contexte des travaux

Le modèle symbolique

Dans le modèle symbolique, les messages sont représentés par des termes algébriques et les

adversaires comme l’ensemble des règles qui caractérisent leurs capacités de déduction. Ce

modèle s’appuie sur l’hypothèse de la cryptographie parfaite, selon laquelle les schémas de

chiffrement ne permettent à l’adversaire la déduction d’aucune information sur un message

à la vue de son chiffré, à moins que l’adversaire ne connaisse la clé utilisée pour calculer

ce chiffrement. L’analyse de protocoles cryptographiques, c.a.d. de programmes distribués

permettant de communiquer en utilisant un canal contrôlé par l’adversaire, peut donc s’effectuer

en utilisant cette modélisation.

Par comparaison au modèle calculatoire, l’approche symbolique a l’avantage de se placer à

un plus haut niveau d’abstraction. Ceci a rendu possible l’analyse symbolique de protocoles

en utilisant des techniques de vérification automatique dans les années 90. Il en a résulté

une preuve éclatante de la criante nécessité de concevoir et vérifier les preuves des systèmes

cryptographiques avec le plus grand soin. En effet, en 1995, Gavin Lowe a utilisé un model-

checker pour vérifier le protocole de Needham-Shroeder, décrit en 1978 [NS78] et considéré

comme sûr jusque là. Ce faisant, il a mis à jour l’existence d’attaques par interposition d’un

tiers (appelées man-in-the-middle attack en Anglais) sur le protocole (cf. [Low95, Low96]).

Des efforts significatifs ont été dédiés à la création d’outils automatiques pour la vérification

de critères de sécurité classiques, en présence d’adversaires passifs comme actifs. L’outil

automatique ProVerif en est un exemple ; conçu par Blanchet et al. [BAF08], il est basé sur la

résolution de clauses de Horn. Les deux principales plateformes maintenant disponibles sont

CAPSL1 et AVISPA2, elles regroupent diverses techniques d’analyse et utilisent un certain

1Common Authentication Protocol Specification Language, cf. http ://www.csl.sri.com/users/millen/capsl/
pour l’outil et de plus amples références.

2 Automated Validation of Internet Security Protocols and Applications, cf. http ://avispa-project.org/
pour l’outil et de plus amples références.



nombre d’autres outils d’analyse formelle.

Les garanties en matière de sécurité fournies par des preuves symboliques ne sont pas

complètement claires vis-à-vis d’un contexte d’utilisation réelle du protocole. Cela constitue

un important inconvénient de la modélisation symbolique des protocoles. Par comparaison

au modèle calculatoire dans lequel les adversaires sont plus proches des capacités réelles

d’un attaquant du système cryptographique, il apparaît préférable de développer des preuves

calculatoires de ces systèmes. Dans l’article fondateur [AR00], Abadi et Rogaway suggèrent

de mettre à profit le meilleur de chacune des approches en démontrant des résultats dits de

correction calculatoire. De tels théorèmes sont typiquement des affirmations de la forme “s’il

existe une preuve symbolique que le système cryptographique est sûr, alors il est également

sûr dans le modèle calculatoire”. De tels résultats, couvrant des situations de plus en plus

diverses, ont été prouvés depuis. Le lecteur intéressé peut se référer à l’article de Cortier et

al. [CKW11], dans lequel les auteurs inventorient les différentes variantes de ces techniques et

résultats qui ont été développées.

Le modèle calculatoire

Suivant l’approche calculatoire, les messages sont formalisés par des suites de bits et les

adversaires comme des machines de Turing probabilistes. Les preuves conçues dans ce modèle

ne constituent pas des preuves à proprement parler de la sécurité des systèmes. En effet,

ce sont des arguments de réduction basés sur la théorie de la complexité. Comme celle de

Rabin [Rab79], qui justifie l’équivalence entre casser un cryptosystème de sa conception et la

factorisation de nombres entiers, les preuves calculatoires attestent qu’il est au moins aussi

difficile de briser la sécurité d’un système que de résoudre un problème difficile connu, ou un

problème conjecturé difficile.

Pour effectuer une preuve par réduction, les problèmes sous-jacents aux critères de sécurité

doivent être paramétrés, de manière à ce que l’on puisse parler de réduction efficace. En

pratique, on fixe un paramètre de sécurité. Par exemple, dans le cas des schémas de chiffrement,

il s’agit de la longueur des clés utilisées par le schéma. En plus de cela, l’adversaire est paramétré

par deux quantités : une borne supérieure sur le temps dont il dispose pour déployer son

attaque, ainsi qu’une borne supérieure sur le nombre d’appels qu’il effectue pour chaque oracle.

Plus particulièrement, si k est une fonction qui associe un entier à chaque nom d’oracle et

t est un entier désignant le temps, les adversaires paramétrés par (k, t) sont les machines

de Turing dont le temps d’exécution est borné par t et qui effectuent au plus k(o) appels à

l’oracle o pour chaque oracle o disponible. Effectuer une réduction fournit deux informations :

le temps nécessaire à l’exécution de l’adversaire et la probabilité de résoudre le problème

difficile sous-jacent. Ces résultats peuvent être traités de deux manières. D’une part, suivant

l’approche asymptotique, on peut considérer suffisant de s’assurer que tout adversaire ayant

un temps d’exécution polynomial en le paramètre de sécurité possède une probabilité de succès

négligeable en ce dernier3. D’autre part, on peut exhiber des preuves de sécurité concrète,

c.a.d. en fournissant les bornes exactes nécessaires à la réduction. Les preuves de sécurité

concrète (ou exacte) fournissent plus d’information à l’utilisateur du système cryptographique

que leurs homologues asymptotiques : elles exhibent une borne sur les ressources nécessaires

pour mener à bien une attaque contre le système. Cela permet en particulier d’effectuer un

3Une fonction est dite négligeable si et seulement si quel que soit le polynôme considéré, il existe toujours
un stade à partir duquel la fonction devient plus petite que l’inverse du polynôme.



choix pertinent de paramètre de sécurité. Dans cette thèse, nous présentons un système dans

lequel développer des preuves de sécurité concrète.

Nous avons mentionné plus haut que beaucoup de critères de sécurité sont construits autour

de la notion d’équivalence entre deux comportements, ou entre deux jeux. Formellement, cela

se traduit par l’indistingabilité de deux expériences probabilistes, ou de deux distributions,

concept fondamental du modèle calculatoire. En termes asymptotiques, l’idée est de formaliser

le fait que deux “mondes”, c.a.d. deux distributions, sont indistingables si aucun adversaire

polynômial n’est capable de trouver une stratégie de réponse significativement plus intelligente

que tirer au hasard pour savoir duquel des deux mondes l’argument qui lui est fourni est

issu. De manière similaire, on dit que deux expériences probabilistes sont indistingables si

l’exécution de l’une ou de l’autre est indifférente à l’adversaire. L’indistingabilité de deux

distributions est formalisée de la manière suivante.

Definition (Indistingabilité concrète de deux distributions). Soient D0 et D1 des dis-

tributions sur un ensemble de mémoires. Soit O un ensemble d’oracles que l’adversaire peut

interroger. Etant donnée une fonction ε : (k, t) Ô→ ε(k, t) ∈ [0, 1], les distributions sont

ε-indistingables si et seulement si pour tout adversaire paramétré par (k, t),

| Pr[m ← D0; b ← AO(m) : b = true] − Pr[m ← D1; b ← AO(m) : b = true]| ≤ ε(k, t) �

Preuves effectuées dans le modèle calculatoire

Les preuves conçues directement dans le modèle calculatoire ne sont pas exemptes d’imperfec-

tions ou même d’erreurs. Dans son article [Sho02], Shoup présente une erreur dans la preuve de

sécurité du schéma de chiffrement OAEP n’étant pas prise en compte par la preuve proposée

par ses créateurs Bellare et Rogaway dans l’article [BR94]. Une preuve correcte de la sécurité

de ce schéma dans le cas de l’utilisation de RSA comme primitive est plus tard présentée par

Fujisaki et al. [FOPS04]. Peu après avoir trouvé cette erreur, Shoup rédige l’article [Sho04],

dans lequel il propose d’utiliser les transformations de jeux probabilistes pour structurer et

clarifier les preuves cryptographiques. La technique des jeux consiste à considérer l’expérience

probabiliste définissant le critère de sécurité comme un jeu se déroulant entre l’adversaire et

le cryptosystème. Il faut alors proposer une série de modifications successives de ce jeu pour

le transformer en un jeu équivalent dans lequel l’adversaire doit résoudre un problème difficile,

ou dans lequel il n’a aucune chance de gagner. Chaque pas de la preuve doit être justifié, et

ce en fournissant une borne supérieure de la probabilité qu’un adversaire puisse déterminer

s’il joue au jeu non-modifié ou au jeu comportant la modification effectuée à ce pas de preuve.

Cette technique de présentation des preuves est très utilisée par les cryptographes. Après

l’article fondateur de Shoup, Halevi [Hal05] a plaidé en faveur de la conception de techniques

de vérification formelle, et a exprimé la nécessité de l’implémentation d’un outil utilisable par

la communauté des cryptographes. Dans [BR04], Bellare et Rogaway proposent d’effectuer

des preuves en travaillant sur des expériences probabilistes exprimées en pseudo-code, que

l’on peut modifier d’une manière qui rappelle la technique des jeux. Bien que ces propositions

permettent d’organiser et de faciliter la lecture des preuves de sécurité, il n’en reste pas moins

qu’elles ne fournissent pas de cadre formel dans lequel véritablement concevoir ces preuves.



Contributions

La logique CIL

Nous proposons une logique, CIL, permettant d’effectuer des preuves de sécurité concrète de

cryptosystèmes, directement dans le modèle calculatoire. Notre cadre formel est versatile en

ce qu’il n’est lié ni à un langage ni à des hypothèses particulières : on peut y réaliser des

preuves dans le modèle à oracle aléatoire comme dans le modèle standard. Produit de l’analyse

transverse de nombreuses preuves de sécurité, notre système de preuve remédie à l’absence

de cadre formel dédié en proposant un petit nombre de règles traduisant les principes de

raisonnement communs sous-jacents à de nombreuses preuves de sécurité. La formalisation de

ces principes est basée sur des outils classiques de théorie des langages de programmation ou

d’analyse de systèmes concurrents, comme les relations de bisimulation et les contextes. Par

ailleurs, grâce à quelques règles supplémentaires, il est possible d’effectuer des hypothèses ou

des morceaux de raisonnement nécessaires aux preuves mais vérifiés en dehors du cadre du

système CIL (par exemple, des calculs simples de probabilités, du raisonnement en logique du

premier ordre, etc. ).

Dans la logique CIL, on raisonne avec des systèmes d’oracles. Il s’agit de systèmes à états

qui formalisent l’interaction de l’adversaire avec un cryptosystème. La logique comporte deux

jugements : un jugement d’indistingabilité, dénoté O ∼ε O′, qui formalise l’indistingabilité à ε

près de deux systèmes d’oracles, et un jugement O :ε E qui traduit le fait que l’événement

E possède une probabilité bornée de se réaliser lors de l’interaction du système O avec un

adversaire. Le système de preuve et toute la formalisation qui lui est nécessaire sont présentés

dans le chapitre III.

Par rapport aux possibilités existantes d’effectuer une preuve sur papier ou grâce à un

outil automatique comme un assistant de preuve, CIL offre la possibilité de réaliser une preuve

à un niveau d’abstraction intermédiaire. D’ailleurs, une formalisation des règles de CIL est

développée au sein du laboratoire VERIMAG. Nous avons conçu CIL indépendamment de

tout langage de programmation. Il est donc aisé de passer d’une représentation d’un système

à une autre suivant ce qui paraît le plus approprié au pas de preuve à réaliser. De plus, la

sémantique solide sur laquelle la logique s’appuie permet une compréhension et une vérification

plus systématique des preuves de cryptographie concrète.

Preuve automatique de schémas de chiffrement asymétrique dans le modèle de

l’oracle aléatoire

Nous proposons une logique de Hoare qui permet de prouver la sécurité concrète de schémas de

chiffrement asymétrique spécifié dans un langage de programmation fixé de manière totalement

automatique, en se plaçant dans le modèle de l’oracle aléatoire. Par comparaison à l’approche

développée dans CIL, qui fournit des manières de raisonner de manière globale sur les systèmes

à oracles, la logique de Hoare permet de raisonner de manière locale sur les propriétés de

distributions des valeurs prises par les variables utilisées par l’implémentation du chiffrement.

Il s’agit donc d’un point de vue orthogonal, qui permet de prouver des résultats qui peuvent

ensuite être importés dans une preuve en CIL.

La logique de Hoare proposée s’appuie sur la composition de trois prédicats atomiques,

qui fournissent des informations sur les distributions des variables du programme. L’un traite

d’indistingabilité d’une valeur aléatoire, un second borne la capacité d’un adversaire à calculer
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la valeur d’une variable, le troisième de la probabilité d’avoir déjà calculé le hachage d’une

variable. Le caractère compositionnel de la logique permet de déduire de ces propriétés locales

des distributions des conclusions correctes sur la distribution du résultat du programme

considéré.

De manière assez classique, nous avons développé grâce à notre logique de Hoare un

algorithme de recherche de preuve qui, bien qu’incomplet, permet de conclure de manière

automatique pour des exemples intéressants tels le schéma proposé par Bellare et Rogaway

dans [BR93] ou par Pointcheval dans [Poi00].

Indifférentiabilité d’un oracle aléatoire de fonctions de hachage itératives

Un troisième volet de nos contributions traite des fonctions de hachage. Le concours SHA-3

mis en place par le NIST pour l’établissement d’un nouveau standard de fonction de hachage

cryptographique a donné lieu au développement de nombreux candidats et des preuves

respectives de leur sécurité. L’indifférentiabilité est un concept proposé par Maurer et al.

dans [MRH04] pour formaliser la différence de comportement existant entre un système donné

et le même système dans lequel un composant a été remplacé par un autre (par exemple

une idéalisation du composant). L’idée a été adaptée plus particulièrement aux fonctions de

hachage, qu’on souhaite pouvoir remplacer par un oracle tirant aléatoirement ses réponses

sur le même espace d’arrivée, dans le travail de Coron et al. [CDMP05]. Pour prouver qu’une

fonction de hachage est indifférentiable d’un oracle aléatoire, il faut exhiber un simulateur

qui soit capable de compenser les écarts de comportement entre la fonction réelle et son

idéalisation aléatoire vis-à-vis d’un adversaire, et ce en donnant à l’adversaire un accès à tous

les composants internes de la fonction de hachage.

Comme pour les autres critères de sécurité, beaucoup de preuves ont été produites pour

un grand nombre de constructions, sans qu’un formalisme spécifique ne soit développé pour

les concevoir et les vérifier. Notre contribution consiste en la preuve d’un théorème générique

permettant de prouver l’indifférentiabilité d’un oracle aléatoire pour un sous-ensemble de

fonctions de hachage itératives. Ce théorème fournit à la fois un simulateur générique et

une manière de calculer une borne supérieure à l’indifférentiabilité de la construction traitée

par rapport à un oracle aléatoire. La preuve de ce théorème est conçue et exposée en CIL,

constituant un bon exemple de l’utilisation de notre système de preuve pour la formalisation de

raisonnements de sécurité concrète. Nous illustrons notre théorème par son application sur l’un

des finalistes du concours SHA-3, Keccak, et sur la construction Chop-Merkle-Damgård, pour

laquelle nous obtenons des bornes satisfaisantes. L’application du théorème à Keccak a même

permis de mettre en exergue une erreur dans sa preuve originale et de justifier l’apparition

d’un terme supplémentaire dans le calcul de la borne d’indifférentiabilité, déjà pressenti mais

pas justifié par les concepteurs de son concurrent Shabal dans [BCCM+08].
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Chapter I

Introduction

With the increasing ubiquity of computing and communications, the need to guarantee

security properties such as privacy, secrecy or authenticity has become critical. Cryptography

addresses these issues by proposing techniques for secure communication over untrusted

channels. In particular, cryptography consists in the conception and analysis of protocols

achieving various aspects of information security such as data confidentiality, integrity or

authentication. Cryptography is not a magical way to solve each and every security issue: a

construction can never be more secure than its weakest component. However, users need to

know that they can rely on the solutions proposed by cryptographers. This is what provable

cryptography is about: the conception of proofs accounting for the exact amount of security

supplied by cryptographic protocols.

Whereas the need for secret communications, e.g. for obvious military reasons, dates back

to Antiquity, the first attempt to scientifically define security only took place during the

second part of the twentieth century with the works of Shannon [Sha48, Sha49]. Before that,

the essential processes for ciphering messages had been invented, but a cryptosystem had

never been proven secure. It was simply considered secure until some cryptanalyst had found

a clever way of breaking it. Nowadays, there exist two major formal approaches to provable

cryptography: the symbolic and the computational model. In the symbolic approach [DY83],

messages are defined as terms of an algebra and an adversary is represented as a set of

deduction rules that can be used to deduce knowledge from the terms intercepted on the

network. In the computational model [GM84], messages are bitstrings and adversaries are

probabilistic Turing machines interacting with cryptosystems via oracle access.

In this thesis, we address the lack of proof systems dedicated to proving the computational

security of cryptographic modes of operations directly in the computational model. In the same

way specific verification techniques have been developed for several types of critical systems,

we design a proper framework for cryptographic systems and their computational security

criteria. Compared to concurrent systems, the systems studied in security are characterized

by a profound asymmetry between interacting parties. Indeed, security criteria are generally

defined as some kind of probabilistic games involving two kinds of parties: those behaving as

specified by the cryptographic construction and the adversarial parties. No restrictions are
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imposed on the adversarial parts of the system, whereas we know the complete specification

of the design to be proven secure. Furthermore, the statements that we want to prove are

usually not formalized as the existence or non-existence of a trace satisfying a property, but

rather in one of the two following forms. We either want to bound the probability that the

global system, i.e. the cryptosystem and the adversary, realizes some condition, or we want to

prove equivalence for an adversary to

In the symbolic model, messages are algebraic terms, and adversaries are represented by

a set of rules capturing their abilities. The symbolic view relies on the perfect cryptography

assumption. The idea is to assume the cryptographic primitives to be perfect. As an example,

encryption schemes are modeled so that the only way to extract a plaintext from a ciphertext

is to know which key to use to decipher the ciphertext. The symbolic model proves useful

for the analysis of cryptographic protocols, i.e. distributed programs for communicating over

channels controlled by an attacker.

The symbolic approach has a great advantage on the computational one in that it has

a higher level of abstraction. This has allowed the symbolic analysis of protocols using

automated verification techniques in the nineties, confirming that security proofs have to be

carefully designed and checked to avoid overlooking attacks. Indeed, in 1995, Gavin Lowe

has run a model-checker to verify the Needham-Shroeder protocol, described in 1978 [NS78]

and believed to be secure. He uncovered man-in-the-middle attacks on the construction

(see [Low95, Low96] for details).

Consequently, significant effort has been devoted to the creation of automated tools to

check usual security requirements, in the presence of passive as well as active adversaries. The

automatic tool ProVerif, has been designed by Blanchet et. al. [BAF08] and is based on Horn

clauses resolution. In a nutshell, two platforms are nowadays available, CAPSL (Common

Authentication Protocol Specification Language1) and AVISPA (Automated Validation of

Internet Security Protocols and Applications2), grouping various analysis techniques and built

on top of a various number of other formal tools.

I.1 The Computational Model

As we said earlier, in the computational model, messages are represented by bitstrings

and adversaries are probabilistic Turing machines with oracle access. Such machines are

standardly denoted AO, where O is the set of oracles which the adversary can query. The

proofs performed in this model are not stand-alone arguments. Indeed, they are complexity-

theoretic based reduction proofs. In the line of Rabin [Rab79], who proved the equivalence

between breaking the security of a cryptosystem that he designed and performing integer

factorization, computational proofs provide evidence that breaking the security of systems

is as least as difficult as solving a known difficult problem, or as solving a problem strongly

believed to be difficult.

To perform a reduction proof, we need to decide on a way to parameterize our problems, in

order to decide on the efficiency of the reduction. This is done by fixing a security parameter.

For example, in the case of encryption schemes, it is the length of the generated keys. Then,

the adversarial Turing machine is parameterized by two quantities: an upper-bound on the

1See http://www.csl.sri.com/users/millen/capsl/ for the tool and references.
2See http://avispa-project.org/ for the tool and references.
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time it takes to carry out its attack, and an upper-bound on the number of queries it can

issue to each of its oracles. Given a function k mapping every oracle name to an integer and

a time t, (k, t)-adversaries are Turing machines whose running time is upper-bounded by t

and number of queries to an oracle O by function k(O). Performing the reduction provides

two results: a time necessary to run the adversary, and a probability of success to solve the

underlying hard problem. These can be interpreted from two points of view. One can adopt

an asymptotic approach; then, security follows from two conditions: the running time of the

adversary must be bounded by a polynomial in the security parameter, and its probability

of success must be negligible in the security parameter3. The other possibility is to provide

concrete security proofs. They are more valuable than their asymptotic counterparts, in the

sense that they provide a definite bound on the resources it takes to mount an attack against

the cryptosystem. This in turn allows to choose the security parameter appropriately. In this

thesis, we develop a framework to carry out concrete security proofs.

We mentioned that a great deal of security criteria involve the use of a notion of equivalence

between two behaviors, or games. Formally, this is captured by the concept of indistin-

guishability of two probabilistic experiments, or two distributions, which is a cornerstone of

computational security criteria. Intuitively, in asymptotic terms, as is illustrated in figure I.1,

two “worlds”, i.e. two distributions on a probability space, are said to be indistinguishable if

no polynomial time adversary can tell in which world an argument was picked. Equivalently,

two possible behaviors during a probabilistic experiment are indistinguishable iff an adversary

cannot tell which behavior was chosen to compute the challenge it was provided. We provide

a formal definition of the concrete indistinguishability of two distributions on memories,

mapping variables to values: it captures that sampling a memory in one distribution or the

other looks the same to an adversary.

Definition (Concrete Indistinguishability of Distributions). Let D0 and D1 be distribu-

tions on a set of memories. Let O be a set of oracles which the adversary can access. Given a

function ǫ : (k, t) Ô→ ǫ(k, t) ∈ [0, 1], the distributions are (k, t, ε)-indistinguishable w.r.t. O iff

for any (k, t)-adversary,

| Pr[m ← D0; b ← AO(m) : b = true] − Pr[m ← D1; b ← AO(m) : b = true]| ≤ ε(k, t) �

I.2 Computational Proofs

I.2.1 — Using the Symbolic Model

One of the main drawbacks of the symbolic way of modeling protocols is that the security

guarantees which proofs bring w.r.t. practical use of the protocols are not clear. In comparison,

it seems highly preferable to develop a proof in the computational model, where adversaries

look more realistic. In [AR00], Abadi and Rogaway suggested to make the best of both

approaches by proving computational soundness results. Such theorems typically argue that

if proven in the symbolic model, a security criterion also holds in the computational model.

More and more relevant computational soundness results have been developed ever since. The

interested reader can see the survey of Cortier, Kremer and Warinschi in [CKW11] for an

inventory of the different flavors of results and practices.

3A function is said to be negligible if it is ultimately bounded by the inverse of every polynomial.
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Adversary
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with distribution
Probability space

with distribution
Probability space

D0 D1

Figure I.1 – Indistinguishability of Distributions D0 and D1

I.2.2 — The Direct Approach

Proofs carried out directly in the computational approach are not immune to imprecisions or

errors. In [Sho02], Shoup uncovered a mistake in the security proof of security of the widely

used encryption scheme OAEP (for Optimal Asymmetric Encryption with Padding), originally

proposed by Bellare and Rogaway in [BR94]. A corrected proof is later presented in [FOPS04]

by Fujisaki et al. when using RSA as a one-way function in the implementation of the scheme.

In [Sho04], Shoup presents the use of games as a way to clarify and structure them. The

game-playing technique consists in considering the probabilistic experiment defining a security

criterion as a game played between an adversary and a cryptosystem. Then, the idea is to

provide a security-preserving sequence of modifications, which step after step turn the game

into an equivalent one solving of a difficult problem. At each step, one has to justify security

preservation by arguments such as indistinguishability between playing one game or the other

for the adversary. As a result, one can conclude that the probability that an adversary wins

the original game is bounded by the sum of the probability that it solves the difficult problem

and the probabilities that it distinguishes between two consecutive game of the sequence.

Figure I.2 illustrates this technique.

Game-playing has been extensively used by cryptographers. After the seminal article of

Shoup, Halevi has argued in [Hal05] that the design of formal verification techniques and their

implementation in a tool that could be used by the cryptographic community was crucial to

support the trust in cryptographic proofs. In [BR04], Bellare and Rogaway propose code-

based proofs resembling game-playing techniques, as a first step towards enabling automatic

verification of the proofs. However, though the game-based technique yields well-organized

proofs, it does not provide a formalism in which to carry them out.
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Figure I.2 – The Game-playing Technique

I.3 Contributions

I.3.1 — Computational Indistinguishability Logic

In this thesis, we present a general logic, the Computational Indistinguishability Logic (CIL),

for proving concrete security of cryptographic schemes. It enables reasoning about schemes

directly in the computational setting. Moreover, the framework is versatile, in that it is not

committed to particular hypotheses on cryptographic primitives: proofs in the standard model

as well as idealized models such as the random oracle model can be carried out in the logic.

Product of the cross-analysis of many security proofs, our tool addresses the lack of proof

systems by capturing common reasoning principles underlying security proofs. To this end,

CIL features a small set of deduction rules allowing to apprehend these reasoning patterns.

Their formalization relies on classic programming language and concurrency tools such as

bisimulation relations and contexts. Furthermore, a few additional rules allow to interface

with external reasoning (e.g. probability computations, first-order logic reasoning, etc.).

CIL allows to reason on oracle systems. They are stateful systems modeling adversarial

interactions with cryptosystems. The logic is built around two judgments: firstly, statements

of the form O ∼ε O′ express the ε-indistinguishability of the pair of oracles systems O and

O′. Secondly, statement O :ε E means that the probability that event E happens when

an adversary interacts with O is bounded by ε. The framework and rules are presented in

chapter III.

The main contribution of CIL is to support the design of proofs at a level of abstraction

which allows to bridge the gap between pencil-and-paper fundamental proofs and existing

practical verification tools. Namely, the proof system has been formalized in the proof-assistant

Coq 4. We have designed CIL independently of any programming language; thus, at any step

of a proof, one can switch to the representation of oracle systems which is the most adapted

to carry on with the step. Moreover, the solid semantic foundations on which the logic is built

allows for a more systematic investigation of cryptographic proofs.

4References concerning the formal proof management system Coq, including an up-to-date reference manual
can be found on coq.inria.fr
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I.3.2 — A Hoare Logic to Prove Security of Asymmetric Schemes

In order to automate the generation of proofs for a subset of cryptographic primitives, we

have designed a Hoare logic to prove concrete security statements, in particular Real-Or-

Random-ciphertext security (ROR-ciphertext security) of asymmetric encryption schemes in

the Random Oracle Model [BR93]. It is presented in chapter V.

The logic allows to reason on oracles described in a small fixed programming language.

It is built out of three atomic predicates on distributions of the variables: the first captures

ε-indistinguishability of a variable from random, the second bounds the probability that an

adversary can recover a value for a variable, and the third bounds the probability that the

value of a variable has been hashed previously. The semantics of the predicates is given

with respect to resource-bounded computational adversaries, yielding a computational logic.

Contrary to CIL rules, this framework is not based on global transformations of a program but

on local properties and their conservation. It provides an orthogonal tool to obtain statements,

which we can then import in CIL thanks to the dedicated set of interface rules.

Hoare logics are quite standardly turned into automated verification procedures; ours can

be too. Our logic thus yields an incomplete but fully automatic proof search algorithm. We

illustrate the use of the logic on two asymmetric schemes: a first one proposed by Bellare and

Rogaway in [BR93], and a second one proposed by Pointcheval in [Poi00].

I.3.3 — About Hash Functions and Their Security

There are two ways in which we look at hash functions in the present work. On one hand, when

studying cryptographic primitives as encryption or signature specifications, hash functions

are considered as atomic primitives. On the other hand, we look into the problem of how to

design the hash constructions. In this case, these latter are no longer atomic primitives.

Designing a Hash Function. Hash functions are usually functions compressing their inputs,

mapping them to a fixed output length. They are supposed to take inputs of arbitrary length

(or “almost arbitrary”, e.g. less than 264). Cryptographic hash functions are supposed to

guarantee security properties such as non-malleability. In other words, two slightly different

inputs must result in completely uncorrelated outputs; the input-output association should

look like random to an adversary. Moreover, hash constructions should ideally be very unlikely

to produce collisions, that is to say, that two different inputs map to the same output. This

collision-resistance requirement seems quite far-fetched mathematically: there must be huge

sets of inputs mapping to the same output given the respective size of input and output

spaces. Consequently, collision-resistance rather requires that collisions are difficult to exhibit.

Several formalizations can be proposed: there are various flavors of collision-resistance in the

literature. A good overview and classification of various possibilities can be found in [RS04].

To address the problem of dealing with inputs of almost any length, hash designers

classically provide two-tier constructions: they define a fixed input-output length compression

function, and a way to iterate it to deal with any length: a domain extension technique.

A domain extender is a series (Cj) of input transformations which create successive inputs

to an underlying primitive out of previous outputs and the global domain extender input.

This design paradigm has been proposed by Merkle in [Mer89] and Damgård in [Dam90].

Their construction, now called the Merkle-Damgård transform (or MD for short), is a domain

extender where Cj(hj−1, xj) = hj−1||xj : up to padding to have a suitable length, the input
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x2x1 xL

C1 C2 CLf f f

MDf (x) = x := x1|| . . . ||xL;
h0 := IV ;
for j = 1 to L do

hj := f(hj−1||xj)
endfor

return hL

Here, Cj(hj−1, xj) = hj−1||xj .

Figure I.3 – A Domain Extender and the Merkle-Damgård Design

x is chopped into blocks of fixed length x1, . . . , xL, before starting applying a compression

function f to an initial value IV and x1, and then iteratively apply f to its previous output

and xj . It is illustrated in figure I.3. Later on, tree-based hash designs have been proposed.

We do not go into further details about these since we do not study them in this work.

Indifferentiability From a Random Oracle. In their seminal article [MRH04], Maurer,

Renner and Holenstein introduce indifferentiability as a concept generalizing indistinguisha-

bility: an adversary of indifferentiability is provided with access to additional information

about the internal state of systems. In this paper, they also prove indifferentiability to be

a necessary and sufficient condition to impose on a couple of systems in order to soundly

replace one by the other as cryptosystem components, as long as the composition of adversary

and simulator yields an adversary (see [RSS11]). This question is fundamental when we try

to figure out what guarantees may come of proofs in models such as the ideal cipher model

(ICM) or the ROM. In particular, the question was raised when Canetti, Goldreich and Halevi

have proven in [CGH04] that no hash function can implement a random oracle in case the

pseudo-randomness parameter (e.g. the function key) is public. Then, soundness of modeling

hash functions as random oracles became all the more debatable. Consequently, an argument

quantifying the loss of security induced by such a replacement was much needed and can be

found in indifferentiability. Rather than presenting the general definition, we only present

indifferentiability from a random oracle as the notion tailored to hash functions by Coron et.

al. in [CDMP05]. In this paper, they show that plain Merkle-Damgård does not satisfy the

notion because of length-extension possibilities, and propose and prove a series of fixes such

as chopping off some bits or using a prefix-free padding function on the input.

The idea behind indifferentiability from a random oracle is to measure the impact of

the additional information provided to the adversary via a simulation-based argument. We

consider an algorithm H depending on an ideal inner-primitive f . The adversary is provided

with oracle access to H and f : direct access to f models the aforementioned additional public

information. The idealization of H is a random oracle: it provides a randomly sampled output

for every new input. To measure the gap between H and its idealization, we investigate



8 I. Introduction

simulator

hash

oracle

inside

primitive

random

oracle
S

A

H
∼

f RO

A

Figure I.4 – Indifferentiability From A Random Oracle

the existence of a simulator S such that for all adversaries, the pair (RO, S) consisting of

the random oracle and the simulator is indistinguishable from the original pair (H, f). To

compensate potential incoherence of behavior, in the idealized setting the simulator S is

provided with (direct) access to RO. This is depicted in figure I.4. The difficulty to elaborate

a good simulator lies in the fact that the simulator does not have access to the random oracle

memory. As a result, an adversary trying to distinguish both systems can issue a query to the

random oracle, with the simulator being none the wiser. It is thus delicate for a simulator to

mimic the real-world consistency between inner primitive queries.

Definition (Indifferentiability From a Random Oracle). A Turing machine H with

oracle access to an ideal primitive f is (k, t, ε)-indifferentiable from an ideal primitive RO if

there exists a simulator S such that for any (k, t)-adversary A,

| Pr[AH,f = true] − Pr[ARO,S = true]| ≤ ε(k, t)

where H has oracle access to f and the simulator S has oracle access to RO. �

If this criterion holds, then system Hf can replace RO in any cryptosystem, yielding a

cryptosystem at least as secure as the former one in the following sense. To any environment

interacting with a cryptosystem Sys and an adversary A, there exists an adversary A′ such

that the interaction looks almost the same when cryptosystem and adversary A have access to

Hf as when Sys and A′ are provided with access to RO. This can be formally put as follows.

Definition (At Least As Secure As). A cryptosystem Sys is ε-at least as secure in the

f model with H as in the RO model if for all environment E and adversary (k, t)-A, there

exists a (k′, t′)-adversary A′ such that

| Pr[E(SysH, Af ) = true] − Pr[E(SysRO, A′RO) = true| ≤ ε(k, t).

�

The formal proof that indifferentiability of H from RO is sufficient to replace the former

by the latter and obtain a system at least as secure is provided in [MRH04]. The intuition

is illustrated in figure I.5. The idea is to consider the triple composed of environment,

cryptosystem and adversary as a distinguisher between (Hf , f) and (RO, SRO). It allows

to replace one by the other and provides a bound on the default of simulation that it can

introduce. Then, adversary A and simulator S can be unified to form a new adversary A′

interacting with the cryptosystem and RO.

Acknowledging the weaknesses of existing standards SHA-1 and SHA-2, the National

Institute of Standards and Technology has started a competition to decide on a new hash

standard SHA-3. Though composition matters need to be dealt with carefully when using the
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Figure I.5 – Motivation For Indifferentiability

indifferentiability security notion as defined originally (see [RSS11]), this criterion remains a

standard security goal to be achieved by candidates. Roughly, it allows to track down structural

design weaknesses allowing generic attacks. Therefore, following Coron et al. in [CDMP05], a

lot of effort has been devoted to developing concrete security proofs of indifferentiability.

A Reduction Theorem for Indifferentiability. Submissions to the SHA-3 competition

proposed by the NIST have been invited to include “any security argument that is applicable,

such as a security reduction proof”. Consequently, numerous candidates such as JH in [BMN10],

Grøstl in [AMP10], Shabal in [BCCM+08], Keccak in [BDPA08] have been submitted along

with a formal proof of indifferentiability. Surprisingly enough, as underlined in [BCCM+08],

no real specific provable security framework was ever developed to carry out such proofs.

This is the issue we address in our last contribution, presented in chapter VI. Focusing

on iterative hash constructions, we propose a generic strategy to design these proofs in our

framework, in the form of a generic simulator implementation and a theorem proven in CIL

providing a generic bound to the indifferentiability from a random oracle of a construction,

using the generic simulator. Some extensions of our core framework are required to carry out

the formalization of the two-tier structure composing hash designs, and to deal with graph

structures. Eventually, we show on two examples that the bounds provided by our theorem are

relevant: for the chop solution, we achieve the same result as Maurer and Tessaro in [MT07] in

case of prefix-free padding and a better bound than that of Chang and Nandi in [CN08] in the

general case. Moreover, the application of our result on the sponge construction (underlying

the Keccak design) highlights the lack of an additional term in the bound provided by Bertoni

et al. in [BDPA08], as was anticipated but not justified by Bresson et al. in [BCCM+08].

I.4 Related Work

I.4.1 — Logics for Cryptographic Proofs in the Computational Model

Impagliazzo and Kapron were the first to develop a logic to reason about indistinguishability

in [IK06]. It is based on a more general logic whose soundness relies on non-standard arithmetic,
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it does not support oracles or adaptive adversaries. Later, Zhang has proposed a logic built on

top of Hofmann’s SLR, named computational SLR [Zha08]. His logic, as that of Impagliazzo

and Kapron, allows for a proof that next-bit unpredictability implies pseudo-randomness

and to show a pseudo-random generator correctness. Nevertheless this logic presents the

same drawbacks as the first one: there is no formalism to reason about oracles or adaptive

adversaries. Another genre of framework is proposed by Corin and den Hartog in [CdH06].

They present an adapted version of a general probabilistic Hoare logic to model game-based

proofs, and put it to work on to prove semantic security of ElGamal.

In [DDMR07], Datta, Derek, Mitchell and Roy present a survey of the Protocol Composition

Logic (PCL), which is a logic in Hoare style to prove security properties of network protocols,

using symmetric and asymmetric schemes. The logic is built on a process calculus based on

atomic actions such as generating new nonces, sending and receiving a message, etc. The logic

exhibits axioms and proof rules assuming the presence of an active Dolev-Yao style adversary.

The rules allow both for sequential and a restricted parallel composition. It has been applied

to prove security achievements of widely used protocols such as SSL/TLS, IEEE 802.11i and

Kerberos V5. While PCL is more of a symbolic model tool, it has been provided with a

computational semantics: it is the Computational Protocol Composition Logic presented

in [BDD+06]. Compared to PCL, the logic comprises a couple of new predicates, but the

reasoning is not performed in the computational model directly: computational soundness

follows from a theorem which assumes an IND-CCA encryption scheme. In [DDMW06], an

extension of the logic to deal with security of key exchange protocols is presented. Weakening

the requirements on the key by taking into account the way in which it is supposed to be used

afterwards allows to capture more protocols. The article features the example of key-exchange

protocol ISO-9798-3 followed by a session using the exchanged key. A new soundness result is

provided, taking into account new primitives which the case study requires (e.g. decisional

Diffie-Hellman assumption, unforgeability of a signature). Moreover, in [RDDM07], Roy

et. al address the problem of proving secrecy properties. The fact that these latter are

not trace-based properties (i.e. indistinguishability over a set of possible runs is not defined

by summing the probability of indistinguishability on each run) seem to disable inductive

reasoning. This motivates the introduction of secretive protocols, defined by a trace-based

property dedicated to the treatment of secrecy, which allowing inductive and compositional

reasoning. Finally, a further refinement of the logic is proposed in [RDM07], tailored to

Diffie-Hellman based protocols. It is illustrated by proofs of the Diffie-Hellman variant of

Kerberos and IKEv2, the revised standard key management protocol for IPSEC.

I.4.2 — Machine-Checked Proofs and Automation

Among the first to achieve machine-checked proofs of computational security without the

perfect cryptography assumption, Barthe, Cederquist and Tarento have used the Coq-proof

assistant to prove hardness of the discrete logarithm in the generic model [BCT04] and security

of signed ElGamal encryption against interactive attacks [BT04]. Nowak [Now07] also shows a

preliminary implementation of the game-based approach in Coq. Backes, Berg, Unruh [BBU08]

propose a formalization of a language for games in the Isabelle proof assistant, and provide a

proof of the fundamental lemma of game-playing; however, subsequent work [BMU10] rather

presents symbolic analysis with computational soundness results.

Nowadays, there exist two principal automated verification frameworks for computa-
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tional security concrete proofs: CryptoVerif and Certicrypt + EasyCrypt. We start with

CryptoVerif [BP06, BJST08, Bla08], a tool developed by Bruno Blanchet. It is based on

observational equivalence, which induces rewriting rules applicable in contexts satisfying

specific properties. The rules allow to transform games into equivalent or almost equivalent

ones. CryptoVerif can be used in two modes: it can either generate proofs of security by itself,

or offer the possibility of human interaction to direct the proof towards its conclusion. In both

cases, rewriting rules are applied until the adversary plays a game in which its probability of

success is null. The global success probability is then the sum of the leaps taken from one

game to the next. Cases studies include an automated proof of Kerberos 5 and Diffie-Hellman

based constructions. Further progress have been reported in [BP10, Bla11].

Developed by Barthe, Grégoire and Zanella, CertiCrypt [BGZB09] is a framework enabling

machine-checked design and verification of code-based concrete security proofs. It is built

on top of the proof assistant Coq, and features reasoning elements of various domains,

such as probabilities, algebra, complexity theory. The core layer of Certicrypt consists in

a formalization of language pWhile, an imperative programming language with random

assignments, structured data types and procedure calls. Moreover, a relational Hoare logic

and a theory of observational equivalence are used to prove correctness of many classic

transformations used in code-based proofs, e.g. lazy sampling. Case studies include existential

unforgeability of the FDH signature scheme and semantic security of OAEP. Finally, Barthe

et. al have recently presented EasyCrypt [BGHB11], an automated tool generating partial

verifiable evidence of cryptographic proofs out of proof sketches. The sketches are checked

using SMT solvers and automated theorem provers, and then compiled into verifiable proofs

in the Certicrypt framework. Our line of research takes place right in the middle of the level

of operation of Certicrypt and Easycrypt: we analyze extensively cryptographic proofs and

provide a formalization of arguments which can in turn be implemented in a tool such as

Certicrypt. For example, our framework has significantly helped in the conception of the

proof of IND-CCA security presented in [BGLB11].

I.4.3 — Hash Functions

The problem is the same for hash functions as it is for public-key cryptography: while hash

designs increase in number and complexity, their security proofs become more and more

involved and difficult to check. To address this issue, a first possibility is to aim to broaden

our view of what is required to ensure indifferentiability (e.g. [FGL10]). In this respect, Dodis

et al. [DRS09] propose for example a new security notion, preimage-awareness, and show it to

be a sufficient condition for indifferentiability.

In a slightly different approach, our ambition is to provide a framework and a generic

simulator, along with a macro-theorem to compute an indifferentiability bound. Our work

is not the first to aim to address the lack of unified provable security infrastructure in

which to carry out indifferentiability proofs. It follows in the steps of Chang et al. who

provide in [CLNY06] generic proofs for respectively most popular prefix-free padding designs,

Bhattacharyya et al. who propose in [BMN09] a generic simulator and a list of events to

optimally bound indifferentiability of a certain number of domain extenders, Shabal designers

who set formal definitions of graph-based proofs and present their proof of Shabal as a roadmap

to carry out others in [BCCM+08]. A similar procedure is followed in Bhattacharyya et. al in

the proof of JH [BMN10].
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Our formalization of the two-tier structure of hash constructions captures all iterative

designs that we are aware of, e.g. the SHA-3 finalists JH [Wu11], Grøstl [GKM+11], Kec-

cak [BDPA11], Skein [FLS+10] and BLAKE [AHMP10], Shabal [BCCM+08], the EMD

transform [BR06], HMAC and NMAC modes [BCK96]. Our definition generalizes that of

generic domain extenders proposed by Bhattacharyya et al. in [BMN09] since it allows post-

processing and multiple inner-primitives. Finally, the bounds that we obtain for the examples

Sponge and ChopMD that we exhibit are the best currently known for these constructions.



Chapter II

Notations and Preliminaries

II.1 Notations

Memories. Memories map variables to values. To describe a particular memory, we can

describe the mapping by enumerating variables between brackets [ and ] using symbol Ô→

between each variable and its value. For example, [x Ô→ 0, y Ô→ 1] denotes the memory mapping

two variables x and y, to values of respectively 0 and 1. The value associated by m to variable

x is denoted by m.x. Given a memory m, and a variable x in its domain, m.[x Ô→ 1] denotes

the memory m′ mapping every variable in the domain of m to the same value as m but x,

which is mapped to 1.

Functions. Given a function f ranging over real numbers and a real number a, we write

f < a as a shorthand for f(x) < a for every x in the domain of definition of f . Given two

functions f and g, f ◦ g denotes the usual composition of functions (∀x, f ◦ g(x) = f(g(x))),

assuming inclusion of the range of g in the domain of f . Function 1a is the function defined

as for all element b, 1a(b) = 1 iff a = b, 1a(b) = 0 otherwise. Finally, a function f : A ⇀ B is

a partial function from A to B.

Bitstrings. The set of bitstrings of length n is denoted by {0, 1}n, while {0, 1}∗ stands for

the set of bitstrings of finite length. For bs ∈ {0, 1}k and ℓ ≤ ℓ′ ∈ [1..k], bs[ℓ, ℓ′] denotes the

bitstring corresponding to the bits of bs at positions ℓ, . . . , ℓ′ and bs[ℓ] denotes bs[1, ℓ], i.e.

the prefix of bs of length ℓ. The length of bs is denoted by |bs|. Moreover, given a bitstring

bs of length l ≥ n Firstn(bs) denotes the prefix of length n of bs, while Lastn(bs) denotes

the suffix of length n of bs. Furthermore, given two bistrings bs1 and bs2, bs1||bs2 denotes

their concatenation while bs1 ⊕ bs2 denotes their bitwise exclusive or. A string of length 0 is

denoted λ.

Probabilities. Given a set finite Set, D(Set) is the set of distributions on Set. U(Set)

denotes the uniform distribution on the elements of Set. When Set is the set of bitstrings of

a given length m, U(m) is preferred to U({0, 1}m). The Dirac distribution putting all weight
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on element a ∈ Set is denoted by δa, or δ(a) when the description of element a is lengthy.

Given a distribution X, x ← X denotes the operation of sampling a value according to X

and assigning it to x.

Lists. Given a set A, we denote by A∗ the set of finite lists with elements in A. The empty

list is denoted by [ ].

— Given a list L of k-tuples (e.g. elements of the form (a1, . . . , ak)) we denote by domi(L) the

list obtained by projecting each tuple on its i-th component. As we mostly use dom1(L),

we shortly denote it by dom(L).

— Given a list L of k-tuples, concatenation of k-tuple t is denoted L :: t no matter whether t

already appears in L. When we want to build association lists, we rather use L.t, which

systematically suppresses all occurrences of t in L and concatenates it at the end of the

list. Elimination of all occurrences of t in list L is denoted as L − t. Moreover, if we write

k-tuple t as (a, t′) with a (k − 1)-tuple t′, L • (a, t′) denotes the list mapping a to t′, i.e. the

list defined as L :: (a, t′) if a /∈ dom(L), and (L − (a, _)) :: (a, t′) if a ∈ dom(L).

— L[i] denotes the i-th element of list L of length at least i.

Miscellaneous. The unit type is denoted by 1. Given sets A and B, A + B is the disjoint

union of A and B. We use _ to denote elements which we do not need to name. The set of

integers between two given integers a and b (a < b) is denoted [a..b], while [a, b] denotes the

real interval defined by a and b. Given a real number x, ⌈x⌉ denotes the ceiling of x.

II.2 Computational Security Definitions

II.2.1 — One-Way Function

A one-way function is a function with the property that one can compute the image of any

element in reasonable time, whereas it is difficult, in a complexity-theoretic sense, to find a

pre-image to a randomly sampled element from its range.

Definition (One-way Function). Let f : {0, 1}m → {0, 1}n be a function. The function

f is said to be ε-one-way iff there exists a function ε(t) such that for all adversary A running

in time at most t,

| Pr[x ← U(m); y := f(x); s ← A(f, y) : f(s) = y]| ≤ ε(t)

In the sequel, we generally write OW (t) for ε(t). �

II.2.2 — Asymmetric Encryption Schemes

An asymmetric encryption scheme consists of three algorithms (K, E , D): the first generates

the public and secret keys, the second one is the encryption algorithm and the third is the

decryption algorithm. For the scheme to remain coherent (and the addressee to be able to

recover its message), encryption and decryption are required to verify functional correctness:

for any message m, D ◦ E(m) = m.

We provide here a concrete formalization of indistinguishability under chosen plaintext

attack (IND-CPA) (equivalent to the other classic notion of semantic security [GM84]), of an

asymmetric encryption scheme.
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Definition (ε-IND-CPA Security). Given a function ǫ : N × N → [0, 1], an asymmetric

encryption scheme (K, E , D) is ε-secure iff for all (k, t)-adversary A = (A1, A2) provided with

access to the encryption oracle E ,
| Pr[(pk, sk) ← K; (m0, m1, σ) ← AE

1 (pk); y ← E(pk, m0); b ← AE
2 (y, σ) : b = 0]

− Pr[(pk, sk) ← K; (m, σ) ← AE
1 (pk); y ← E(pk, m1);

b ← AE
2 (y, σ) : b = 0]| ≤ ε(k, t)

�

A stronger criterion, indistinguishability under ciphertext attack (IND-CCA), consists

in imposing the same bound but when providing the adversary with oracle access to the

decryption algorithm too. In addition to these two, there exist a lot of variants of security

criteria for asymmetric encryption schemes. For more details and classification of criteria,

see for example [BDPR98, BBM00, PP04, BHK09]. In our work, we use a formalization of a

criterion called Real-Or-Random Ciphertext (ROR-C) security, appearing in [BDJR97]. It

resembles a lot to semantic security, except that the adversary is supposed to distinguish

whether it is provided with an actual ciphertext corresponding to the plaintext it submitted,

or rather with a randomly sampled bitstring of the same length as the actual ciphertext.

Consequently, it is a stronger criterion than IND-CPA (and implies it). A frequent alternative

to ROR-C security is Real-Or-Random Plaintext security, in which game the adversary gets

either a ciphertext matching its message or the encryption of a random plaintext.

Definition (ε-Real-Or-Random Ciphertext Security). Given a function ǫ : N×N → [0, 1],

and (K, E , D) be an asymmetric encryption scheme. It is ε-Real-or-Random Ciphertext secure

iff there exists a function ε ranging in [0, 1] such that for all (k, t) adversary A = (A1, A2),

| Pr[(pk, sk) ← K; (m, σ) ← AE
1 ; y ← E(pk, m); b ← AE

2 (y, σ) : b = true]

− Pr[(pk, sk) ← K; (m, σ) ← AE
1 ; y ← E(pk, m);

y ← U(|y|); b ← AE
2 (y, σ) : b = true]| ≤ ε(k, t)

�

II.2.3 — Signature Schemes

Besides privacy, we have briefly mentioned another security goal: authentication, i.e. the

willingness to ensure that a message was issued by who we think it was. Though there

exists designs to achieve this constraint in the symmetric setting, we only here present the

asymmetric constructions for authentication, namely digital signature schemes. There is no

reason other than our choice of examples to account for this restriction.

The idea behind the signature of a message is to create something characterizing uniquely

the signer and the message, in the same way one can sign a paper. Moreover, the signer wants

anybody to be able to verify that it is indeed them who signed a message, in the same way

that we can read the name signed at the bottom of a letter. A notorious problem of pencil-

and-paper signatures is forgery: it is quite easy to train and imitate correctly the signature of

somebody else. Therefore, we would like the signer to add a secret in the creation process

of message signatures, so that forgeries become difficult. On the contrary to asymmetric

encryption, the idea is there to use a secret key to sign and then send a message, while a

public key is used to verify the validity of signatures.

Formally, a digital signature scheme consists of three algorithms (K, S, V). The first

algorithm is used to generate keys, usually called a signature key (meant to remain secret)

and a verification key (meant to be broadcasted). The signature algorithm takes as inputs

a signature key and a message and produces a signed message. The verification algorithm



16 II. Notations and Preliminaries

takes as input a signed message, a verification key, and the message, and verifies whether

signed message and message are a match using the verification key. As in the encryption case,

schemes are generally probabilistic, and we impose functional correctness: for all message m,

V(S(m), pk, m) = true.

Quite intuitively, security criteria imposed on signatures deal with hardness of forgery.

We present existential forgery against chosen message attack (EF-CMA) (see [GMR88]). The

idea is to assess the ability of the adversary to forge the valid signature of a message of its

choice; a valid forgery is characterized by the fact that it is not the product of a query of the

signature oracle, and the fact that it passes verification. The formalization of this criterion is

as follows.

Definition (Existential Forgery Security of Signature Schemes). Let (K, S, V) be a

digital signature scheme. It is ε-secure for existential forgery against chosen message attack

iff for all (k, t)-adversary A,

|Pr[(pk, sk) ← K; (m, s) ← AS(pk) : V(s, pk, m) = true ∧ m /∈ Query(S)] ≤ ε(k, t) �

In the same way as for encryption, we could choose to provide A with oracle access to a

verification oracle, alternatively to giving it the verification key. It influences a little the time

bound we get in practice, but is essentially the same.

II.2.4 — Formalizing Randomness of Atomic Primitives

At the heart of security proofs of many probabilistic cryptographic schemes or hash construc-

tions lies properties of randomness of one or several of its constituents. Hence, we propose to

provide some details about the computational formalization of randomness properties.

We call a function family a map F : Keys × D → R, where Keys is a finite set of keys

and D and R are the domain and finite range of the functions in the family. The functions

of the family are (FK)K∈Keys, where FK(x) = F (K, x). We let Fun(D, R) denote the family

of all functions from D to R. What we formalize is not actually randomness of a function

of Fun(D, R). We rather equip the key space with the uniform distribution, and assess the

ability of an adversary to distinguish between two worlds: one in which a key is drawn at

random and it interacts with g = FK and one in which a function g is drawn at random in

Fun(D, R). As a result, the randomness property refers to the way the function g is sampled,

rather than to a feature of the function g itself. What is expressed can be thought of as a

property of the coverage of the whole set of functions from D to R by a family F . This is

formalized in the following way.

Definition (Pseudo-Randomness of Families of Functions). Let F : Keys × D → R be

a family of functions. The family is ε-pseudo-random iff for all (k, t)-adversary A,

| Pr[K ← U(Keys); b ← AFK : b = true] − Pr[g ← U(Fun(D, R)); b ← Ag : b = true]| ≤

ε(k, t)

�

It is all the more difficult to really keep in mind that pseudo-randomness is a property

of function families than we often use a dynamic way of implementing a random function

g (where “random”, we insist, refers to the fact that g is sampled at random in Fun(D, R)).

In the dynamic view, instead of drawing at the beginning of the probabilistic experiment

a function g, we draw new images for elements of D by g whenever the adversary asks for

them. This is done by maintaining an association list Lg of pairs (x, g(x)) which the adversary

has queried on, and drawing uniformly in R a new element in case of a fresh query. This
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implementation is currently used in practice.

In the thesis presented here, though our framework is totally independent of any hypothesis

we make on atomic cryptographic primitives, we propose proofs of constructions in two models.

On the one hand, we prove hash constructions under the hypothesis that the fixed-input

length inner primitives on top of which they are built are random functions or permutations.

As these inner primitives are often instantiated by block-ciphers, we could say that we prove

hash constructions in the Ideal-Cipher Model (ICM) - which means that we identify block-

ciphers with random permutations and provide oracle access to them and their inverses to any

adversary attacking the construction. Similarly, when the hash functions are considered as

atomic primitives, it is often the case that security proofs are performed under the hypothesis

that they are random oracles: this is the Random Oracle Model (ROM) [BR93]. Here again,

the adversary is granted oracle access to all hash functions. Classically, in the examples we

present, we instantiate random oracles using the dynamic approach described above.





Chapter III

The Computational

Indistinguishability Logic

III.1 Semantics and Judgments

Usual security criteria of the computational model are defined in terms of the probability of

occurence of an event at the end of a probabilistic experiment. These experiments involve

three kinds of elements: drawings (e.g. keys), adversaries, and the oracles these latter can query.

The event captures the capacity of an adversary to achieve a goal (e.g. compute a specific

value) depending on the results of drawings and oracle queries. The probabilistic experiments

describing security criteria involve two parties. On one side, there is an adversary, which can do

whatever it wants and on which we do not impose any restriction but maximum total running

time and maximum number of oracle queries. On the other side, we have all the remaining

computations and drawings, e.g. initialization of keys, specification of oracle behavior, etc.

We chose to mirror this decomposition in our formalization of security experiments as the

interaction of two entities: adversaries and oracle systems.

III.1.1 — Oracle Systems and Adversaries

In this section, we define oracle systems and adversaries. They are modeled as stateful systems

meant to interact with each another. Let us start with oracle systems.

Definition (Oracle System). An oracle system O is given by:

— a finite set MO of oracle memories (or states) and an initial memory m̄O∈MO,

— a finite set NO of oracle names,

— for each o ∈ NO, a query domain In(o), an answer domain Out(o) and an implementation:

Imp(o) : In(o) × MO → D(Out(o) × MO)

— distinguished oracles oI for initialization and oF for finalization, such that In(oI) =

Out(oF) = 1. We let Res= In(oF).

�

Note that the initialization oracle takes no input, while the finalization oracle has no
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output. This is captured by requiring that the corresponding types are 1. However, these

distinguished oracles can modify the state of the system. Intuitively, the finalization oracle is

the oracle which the adversary is supposed to call with its result whenever it feels that it has

achieved its security goal. This motivates the distinguished notation Res for the input type of

oracle oF.

Example 1. We consider a classic game that can be played by two parties as follows. One

participant draws a number N between 0 and 100 at random and keeps it secret. The other

player has to guess this secret number. Before providing its final guess, the second player can

give a number N ′ to the first one, who replies whether N ′ is superior or inferior to N .

The first player can be modeled as an oracle system O:

— memories MO of this system map variable N to a value between 0 and 100. We choose

[N Ô→ 0], the memory where N is assigned 0, as the initial memory.

— in addition to oI, oF, NO contains Comp.

— oracle Comp has for input domain In(Comp) = [0..100] and outputs values in Out(Comp) =

{≤, ≥}. Its implementation is the following:

Imp(Comp) : [0..100] × MO → D({≤, ≥} × MO)

(M, [N Ô→ N0]) Ô→ if M ≤ N0 then (≤, [N Ô→ N0])

else (≥, [N Ô→ N0])
The initialization oracle has {0} for output domain, and is implemented by:

Imp(oI) : 1 × MO → D({0} × MO)

(_, _) Ô→ let N0 ← U([0..100]) in (0, [N Ô→ N0])
Finally, the finalization oracle has [0..100] as input domain and has an “idle” implementation.

Namely,
Imp(oF) : [0..100] × MO → D(1 × MO)

(M, [N Ô→ N0]) Ô→ (1, [N Ô→ N0])

♦

For this example, we have used functional description of the implementations, showing

explicitly the side-effect on memories. To describe more involved examples of implementations,

we rather use usual imperative commands augmented with probabilistic sampling.

Definition (Compatibility). Two oracle systems are compatible iff they have the same

set of names, and each name has identical query and answer domains in each system. However,

state space and implementations may vary. �

In practice, we often build compatible systems out of systems we have already defined

by modifying the implementation of one of the oracles. When doing so, we only explain the

modification and do not specify the whole system again.

Example 2. In the previous example, if we change the implementation of the oracle

Comp so that whenever queried on M = N0, the oracle answers ≥, we obtain a new oracle

system compatible with the original one. ♦

For a given oracle system O, we call exchange a triple of the form (o, q, a), consisting of an

oracle name o ∈ NO, a query q ∈ In(o) and an answer a ∈ Out(o). Their set is denoted by Xch.

Initial and final exchanges are distinguished by appropriate indices. Finally, the set Que of

queries (resp. Ans of answers) is defined as {(o, q) | (o, q, a) ∈ Xch} (resp. {a | (o, q, a) ∈ Xch}).

We often abusively omit the oracle name in queries when it is clear from the context.

Once we have defined an oracle system O, we can define matching adversaries. Intuitively,

adversaries ask queries to one of the oracle in the system and receive answers. They are thus
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formalized by a function to compute new queries and a function to update their state once

they get an answer back.

Definition (Adversary). An O-adversary A is given by a finite set MA of adversary

memories, an initial memory m̄A ∈ MA and (possibly partial) function for querying and a

function for updating:
A : MA ⇀ D(Que × MA)

A↓ : Xch × MA → D(MA)

�

III.1.2 — Formalization of the Interaction

Informally, the interaction between an oracle system and an adversary proceeds in three

successive phases. During the first phase, the initialization oracle sets the initial memory

distributions of the oracle system and of the adversary. Then, in a second phase, A performs

computations, updates its state and submits a query to O. In turn, O performs computations,

updates its state, and replies to A, which updates its state. This goes on until finally, A

outputs a result by calling the finalization oracle, which is the third and last phase.

This interaction can be seen as the iteration of the pattern consisting in the query of

an oracle, the computation of an answer by the oracle, and the update of its state by the

adversary. To formalize these intuitions, we provide our definition of a probabilistic transition

system and execution sequences.

Definition (Transition System). A transition system S consists of:

— a (countable non-empty) set M of memories (states), with a distinguished initial memory

m̄,

— a set Σ of actions, with distinguished subsets ΣI and ΣF of initialization and finalization

actions,

— a (partial probabilistic) transition function st : M ⇀ D(Σ × M).

�

A partial execution sequence of S is a sequence η of the form

m0
x1−→ m1

x2−→ . . .
xk−→ mk

such that m0 = m̄, xi ∈ Σ, mi−1, mi ∈ M, and Pr[st(mi−1) = (xi, mi)] > 0 for i = 1 . . . k.

Their set is denoted PExec(S). Any subsequence of the form m
x

−→ m′ is called a step, and

often denoted σ. Given a partial execution η = m0 . . .
xk−→ mk, the concatenation of η and a

step σ of the form mk
xk+1
−→ mk+1 is a partial execution m0 . . .

xk−→ mk
xk+1
−→ mk+1 denoted by

η · σ. Moreover, if 1 ≤ i ≤ k, Pref(η, i) denotes the prefix of length i of η, i.e. m0 . . .
xi−→ mi.

The i-th step of η, denoted η[i], is mi−1
xi−→ mi and Last(η) denotes the last step of partial

execution η.

If x1 ∈ ΣI and either xk ∈ ΣF or mk Ó∈ dom(st)1, then η is an execution sequence (or

execution) of length k. An execution sequence is thus a partial execution sequence starting

with an initialization action and terminating with a finalization action or in a state where no

transition is defined. The set of executions is denoted by Exec(S).

1We consider this case to capture partial executions that reach an end without last step involving a
finalization action. This is useful in the proof of rule Cut.
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A finite partial execution sequence η is mapped to a probability corresponding to the

product of the probabilities of taking each of its steps successively. Consequently, a probabilistic

transition system S yields a sub-distribution on finite executions denoted again S:

Pr[S = η] = Πk
i=1 Pr[st(mi−1) = (xi, mi)],

when η = m0 . . .
xk−→ mk. We notice that S is not a distribution since it is possible that

infinite execution sequences have positive weight. If all executions of a system have length at

most k, then we say that the system is of height k. In such a case, S is a distribution.

The interaction between adversary and oracles can be formalized in terms of a transition

system, where a step consists in one occurence of the following three step pattern: the

adversary computes a query to submit, the queried oracle computes an answer to this query

and then the adversary updates its state with this answer.

Definition (Composition A | O). Let O be an oracle system and A be an O-adversary .

The composition A | O is a transition system such that:

— the memories are M=MA × MO and the initial memory is (m̄A, m̄O),

— the set of actions is Σ=Xch, and initialization (resp. finalization) actions are initial (resp.

final) exchanges (i.e. ΣI =XchI and ΣF =XchF),

— the step function is given by:

stA|O(mA, mO)
def
= let ((o, q), m′

A) ← A(mA) in

let (a, m′
O) ← Imp(o)(q, mO) in

let m′′
A ← A↓((o, q, a), m′

A) in

return ((o, q, a), (m′′
A, m′

O))

�

We are interested in expressing concrete security results. Therefore, we consider adversaries

whose resources are bounded by two parameters: the number of queries they perform to the

oracles and their running time. Bounds on the number of oracle calls are specified by giving a

function k : NO → N, mapping each oracle name to a maximum number of queries.

Definition ((k, t)-bounded Adversary). Given function k : NO → N and integer t ∈ N,

an O-adversary is (k, t)-bounded iff:

— it runs in time at most t, i.e. the total time taken by the executions of the adversarial

functions A and A↓ (but not the time to get answers from oracles) is bounded by t,

— for all o ∈ NO and all executions η of A | O, the number of queries to o in η is at most

k(o).

The set of (k, t)-bounded adversaries is denoted by Adv(k, t). �

We say that an adversary is bounded iff there exists such a pair (k, t).

III.1.3 — Computing the Probability of Events

When reasoning about the security of a system, we do not want to impose any restriction

on the state of adversaries. Thus, we reason on events abstracting away these latter, only

keeping track of exchanges and oracle memories. This motivates the introduction of traces.

Definition (Trace). Let O be an oracle system. An O-partial trace is a sequence τ of
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the form

m0
x1−→ m1

x2−→ . . .
xk−→ mk

where mi ∈ MO and xi = (oi, qi, ai) ∈ Xch such that Pr[Imp(oi)(qi, mi−1) = (ai, mi)] > 0 for

i = 1 . . . k.

The projection mapping sequences of steps to partial traces is denoted by T . An O-partial

trace is an O-trace iff it is the projection of an execution sequence. �

Definition (Event). An O-event E is a predicate over O-traces.

An extended O-event E is a predicate over partial O-traces. �

To assign a probability to an event defined by a given predicate, we consider the subset

of traces verifying the predicate. Several executions can project to the same trace. The

probability of a trace τ can then be obtained by summing the weights of all executions

projecting to τ . Similarly, the probability of an event is defined as the sum of weights of all

traces satisfying the predicate.

Definition (Probability of an (Extended) Event). The probability of an (extended)

event is derived from the definition of A | O:

Pr[A|O : E] =
∑

{η∈Exec(A|O)|E(T (η))=true} Pr[A|O : η]

In particular, the probability that a system yields a trace τ is the sum of probabilities

that the system yields execution η projecting to τ , which we write:

Pr[A|O : τ ] =
∑

{η∈Exec(A|O)|T (η)=τ} Pr[A|O : η]. �

Proofs in CIL use several common operations on (extended) events and traces. First, one

can define the conjunction, disjunction and all other classic logic operators on events.

Definition (Step Predicate). We call a step-predicate any predicate φ on Xch×MO×MO.

�

We use temporal logic operators combined with step-predicates. We define for a step-

predicate φ the event “eventually φ”, denoted by Fφ, corresponding to φ being satisfied at one

step of a trace. Furthermore, the event “always φ”, denoted by Gφ, is true iff φ is satisfied at

every step of the trace.

On the other hand, we introduce two more technical operators, corresponding to the usual

“until” along with a stronger version of the latter, as follows. If E denotes an event, then

E U φ holds if φ becomes true at some step of the trace and E holds until this step. Formally,

if τ is a trace of the form:

m0
x1−→ m1

x2−→ . . .
xk−→ mk

then (E U φ)(τ) = true iff there exists i ∈ [1..k] such that φ(xi, mi−1, mi) holds and E(τ [i−1]) =

true, where τ [i − 1] is the partial trace from m0 to mi−1. Finally, we say that (E; φ)(τ) = true

iff E(τ [k − 1]) and φ(xk, mk−1, mk). Intuitively, E; φ holds if φ is true at the last transition,

and E is always true before that.

Example 3. Let us provide some examples of events by expressing different winning

conditions for the guessing game defined previously. The adversary plays the role of the

second participant.

— The adversary wins if it queries the finalization oracle on the value N0 of N . The

predicate φ1 formalizing “querying the finalization oracle with N0” can be written as

φ1 = λ((o, q, a), mO, m′
O).(o = oF) ∧ (q = mO.N0). The winning event is then Fφ1 .

— The adversary wins if it manages to issue a query equal to N0. “Querying an oracle
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with N0” is formalized via the step-predicate φ2 = λ((o, q, a), mO, m′
O).(q = mO.N0). Our

winning event is Fφ2 .

— The adversary wins if it queries the finalization oracle on N0 but has never issued a query

worth N0 before. The winning condition is satisfied for traces for which at every step

before last, ¬φ2 holds, and for the last step, φ1 does. This is expressed by G(¬φ2); φ1.2

♦

We often need to express that the finalization oracle is queried on a value satisfying a given

constraint formalized by a property P . We thus introduce the notation r to designate the value

of the query performed to oF, and write P (r) as a short for event Fλ((o,q,a),mO,m′

O
).(o=oF)∧P (q).

If P depends on the memory and the finalization oracle modifies memories, we cannot use

this notation and need to precise in which memory variables are to be evaluated.

III.1.4 — Two Judgments

Concrete security proofs use two kinds of statements on probabilities: the fact that the

probability of an event is bounded by a function of the resources of the adversary, and the

indistinguishability of the distributions yielded by systems. We formalize below these two

types of statements.

We generically denote by ε : ((NO → N) × N) → [0, 1] the function mapping adversarial

resources (k, t) to a value between 0 and 1.

Definition (Judgment Bounded-by). A statement O :ε E is valid, written ⊢ O :ε E, iff

for every (k, t)-bounded adversary A,

Pr[A|O : E] ≤ ε(k, t)

�

Example 4. Let G be a group of prime order q and Gen = Gr1G the set of its generators.

We want to express the Computational Diffie Hellman (CDH) assumption in G. We define an

oracle system CDH as follows:

— the memories map variable g to values in Gen, and variables α and β to values [0..(q − 1)],

— the initialization oracle draws uniformly at random a value for g and α, β, and outputs

(g, gα, gβ).

— the finalization oracle takes as input an element of G (in addition to a memory).

Here, bounding the number of calls of the adversary to oracles is irrelevant; we let 1k

denote the function mapping oI and oF to 1.

Given a function ε, the ε-CDH assumption holds for group G iff for all (1k, t)-adversary

we have ε − CDH ⊢ CDH :ε(1k,t) r = gα.β . ♦

Definition (Judgment Indistinguishable from). Let O and O′ be compatible oracle

systems which expect a boolean as result (i.e. OutF = 1). Statement O ∼ǫ O
′ is valid, written

⊢ O ∼ǫ O
′, iff for every (k, t)-adversary A,

| Pr[A|O : r = true] − Pr[A|O′ : r = true]| ≤ ǫ(k, t)

�

2Here G(¬φ2) U φ1 is also satisfactory since traces cannot contain two calls to the finalization oracle.
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Example 5. We keep the notations introduced previously and provide the formalization

of the Decisional Diffie-Hellman (DDH) hypothesis in group G. We define two oracles systems

RealDH and RandDH. The first system has memories mapping variable g to some fixed

value g0, and variables α and β to integers in [0..(q − 1)]. Its initialization oracle draws

values for α and β uniformly at random which we denote α0 and β0. The output is the triple

(gα0
0 , gβ0

0 , gα0.β0
0 ). The finalization oracle is characterized by Res = Bool.

RandDH is a system compatible with RealDH, but with memories with an additional

variable r mapped to [0..(q −1)]. The initialization oracle draws values for α, β and r, denoted

with index 0. It outputs the triple (gα0
0 , gβ0

0 , gr0
0 ).

The ε-DDH hypothesis holds for group G iff for all (1k, t)-adversary we have ε − DDH ⊢

RealDH ∼ε(1k,t) RandDH. ♦

Proofs often rely on assumptions (e.g. DDH). Hence, CIL deals with sequents of the form

∆ ⊢ φ, where ∆ is a set of statements (the assumptions) possibly formalized outside our

framework, and φ is a statement (the conclusion) in our framework, that is, either a bounded-by

or an indistinguishability statement.

We omit hypotheses in the sequel of our presentation, as well as the usual structural and

logical rules for sequent calculi, e.g. if ∆1 ⊆ ∆2 and ∆1 ⊢ φ then ∆2 ⊢ φ.

III.2 Basic Rules

We start with three rules translating in the system that the indistinguishability relation is an

equivalence relation.

Lemma III.1 (Refl, Sym, Trans). The following rules Refl, Sym and Trans are sound.

Refl
O ∼0 O

O ∼ǫ O
′

Sym
O′ ∼ǫ O

O ∼ǫ O
′ O′ ∼ǫ′ O′′

Trans
O ∼ǫ+ǫ′ O′′

We omit the proof of this lemma, which follows directly from the definition of indistin-

guishability for reflexivity and symmetry, and from the triangle inequality for transitivity.

In addition, CIL features a rule which proves useful to close branches in proof trees: given

a bound on the probability that a step-predicate φ holds for one query, the rule allows to

bound the probability of Fφ w.r.t. the total number of calls. To do so, we introduce for every

(o, q, a) ∈ Xch and every m1 a global bound on the probability that φ((o, q, a), m1, m′
1) holds

for m′
1. In particular, we have that given (o, q, a) and memories m1 and m′

1,

Pr[Imp(o)(q, m1) = (a, m′
1) ∧ φ((o, q, a), m1, m′

1)] ≤
∑

m′∈MO

φ((o,q,a),m,m′)

Pr[Imp(o)(q, m) = (a, m′)]

As a consequence, for an exchange with o,

ǫφ(o) = max
q∈Que,m∈MO

a∈Ans

∑

m′∈MO

φ((o,q,a),m,m′)

Pr[Imp(o)(q, m) = (a, m′)]

bounds the probability to satisfy φ when querying oracle o.

Lemma III.2 (Fail). Rule Fail defined as follows is sound.

Fail
O :ε Fφ

where ε = λ(k, t).
∑

o∈NO
k(o)ǫφ(o).
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Proof. Let A be a (k, t)-adversary for oracle system O. We denote by T the set of traces

satisfying Fφ,

To show our inequality, we divide traces of set T in subgroups using an equivalence relation.

Two traces are related iff φ is true for the first time at step i for a query to oracle o. Classes

are denoted C(i, o). They realize a partition of T .

Let τ ∈ C(i, o). We recall that Pref(η, i) is the prefix of length i of partial execution η,

and η[i] its i-th step. Then, we have:
∑

τ∈C(i,o)

Pr[A | O : τ ]

=
∑

τ∈C(i,o)
T (η)=τ

Pr[A | O : η]

≤
∑

τ∈C(i,o)
T (η)=τ

Pr[A | O : Pref(η, i)]

=
∑

τ∈C(i,o)
T (η)=τ

Pr[A | O : Pref(η, i − 1)] Pr[A | O : η[i]]

≤
∑

τ∈C(i,o),T (η)=τ
T (η[i])=((o,q,a),mO,m′

O
)

Pr[A | O : Pref(η, i − 1)]. Pr[Imp(o)(q, mO) = (a, m′
O)]

≤
∑

τ∈C(i,o),T (η)=τ
T (η[i])=((o,q,a),mO,m′

O
)

Pr[A | O : Pref(η, i − 1)].ǫφ(o)

≤ ǫφ(o)
This last inequality results from the fact that the sum is taken on all possible last steps

consisting in a query to o, and we take a maximum on all possible values of q, a and mO,

leaving only a sum on values of m′
O. Then, we use the fact that equivalence class form a

partition to conclude:
Pr[A | O : Fφ] =

∑

τ∈T Pr[A | O : τ ]

=
∑

i,o

∑

τ∈C(i,o) Pr[A | O : τ ]

≤
∑

i,o ǫ(o)

≤
∑

o k(o)ǫ(o)
�

Example 6. We illustrate the use of rule Fail on the example based on the principle of

the French lottery.

We consider an oracle system L with empty memories and trivial initialization and

finalization oracles. It contains an oracle Loto taking as input five distinct integers between 1

and 52, drawing its own five distinct integers at random and answering WIN ! if they coincide

and Try Again otherwise. As in the lottery, we emphasize that the tuple is drawn at every

query of the oracle.

We let Win be the step-predicate λ((o, q, a), _, _).(o = Loto) ∧ (a = WIN !). The

probability that Win is true is 0 when an adversary calls initialization or finalization oracle

and α = 1
52.51.50.49.48 when it calls oracle Loto. Applying Fail, we get |= L :ε FW in, where

ε(k, t) = α.k(Loto). ♦

Lemma III.3 (Union Rule). The following rule is sound for any countable set of index I.

O :εi
Ei (i ∈ I) E ⇒

∨

i∈I Ei
UR

O :∑
i∈I

εi
E
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Proof. Let A be an (k, t)-adversary.

Pr[A | O : E] ≤ Pr[A | O :
∨

i∈I Ei]

≤
∑

i∈I Pr[A | O : Ei]

≤
∑

i∈I εi(k, t)

�

The following rule allows to import in the proof system the preservation of invariants.

We stress that proving the preservation is not the point of our logic. It can be for example

obtained as a result of a Hoare logic specifically designed for a language in which the oracle

system is written.

Lemma III.4 (Post). We let E be an event holding for every execution of A | O, for all

adversaries A, which we denote by O{E}. The following rule is sound.

O{E}
Post

O :0 ¬E

We now introduce the first rule capturing a reduction-based argument. We consider an

extended event E and a step-predicate φ. The purpose of the rule is to obtain tight reductions.

It is based on the idea that as soon as we know an adversary able to achieve E U φ, we

should be able to build one capable to achieve E; φ with the same probability. Intuitively, our

adversary should terminate its run as soon as φ becomes true. Nevertheless, cutting short an

execution only yields a partial execution. Consequently, we have to modify the state space by

adding a sink state in which A gets stuck and make A↓ transition into it as soon as φ gets

true. According to our definition, this behavior results in a proper execution, which yields a

trace. All this reasoning relies on the capacity for the adversary to test the truth value of φ

at each step. As step-predicates take oracle memories as arguments, this testability cannot be

taken for granted. It can be formalized as follows.

Definition (Testability). Let φ be a step-predicate. An effective function Testerφ :

Xch∗ × Que → Bool is called a φ-tester, if for every trace τ of the form m0
x1−→ . . .

xk−1
−→

mk−1
(ok,qk,ak)

−→ mk, we have φ((ok, qk, ak), mk−1, mk) = Testerφ([x1, . . . , xk−1], (ok, qk)).

A step-predicate φ is called testable, if a φ-tester exists. �

We now state the rule capturing the reduction argument we have just developed.

Lemma III.5 (Cut). Let E be an extended event and φ be a step-predicate. The following rule

is sound.

O :ǫ(k,t) E; φ φ admits a φ-tester Testerφ
Cut

O :ǫ(f(φ,k,t)) E U φ

where T (φ) is a bound on the time necessary for an evaluation of Testerφ and f(φ, k, t) =

(k, t + T (φ).
∑

o∈NO
k(o)).

Proof. Given an O-adversary A and the φ-tester Testerφ, we define an adversary ATesterφ that

stops its execution as soon as φ occurs.

— The set of memories of ATesterφ is M′
A = (MA × Xch∗) + {⊥a}.

— The initial memory of ATesterφ is (m̄A, [ ]), where m̄A is the initial memory of A.
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— ATesterφ : ATesterφ(⊥a) is undefined and

ATesterφ(m, list) =

let ((o, q), m′) ← A(m) in

if Testerφ(list, (o, q)) = false then return ((o, q), (m′, list))

else return ((o, q), ⊥a)

— A
Testerφ

↓ : A
Testerφ

↓ (⊥a, (o, q, a)) = δ⊥a
and

A
Testerφ

↓ ((m, list), (o, q, a)) =

let m′ ← A↓(m, (o, q)) in

return (m′, list · (o, q, a))

For every partial execution η ∈ PExec(A | O) consisting of steps whose projection satisfying

¬φ, by induction on the length of η, we have Pr[A | O : η] = Pr[ATesterφ | O : η]. Then,

if we denote (m, ma) the last state of η, Pr[A | O : η
(o,q,a)
−→ (m′

a, m′) ∧ φ((o, q, a), m, m′)] =

Pr[ATesterφ | O : η
(o,q,a)
−→ (⊥a, m′)].

It follows that Pr[A | O : E U φ] = Pr[ATesterφ | O : E; φ].

Finally, if A is a (k, t)-bounded adversary then ATesterφ is bounded by f(ϕ, k, t) = (k, t +

T (φ).
∑

o∈NO
k(o)). The conclusion follows.

�

III.3 Contexts

In this section, we present the notion of context, which captures a lot of classical reduction

proofs of security using the embedding of one adversary into another. Contexts act like an

interface between adversaries and oracles: they can be seen as a top layer of an oracle system

through which an adversary has to ask its queries, or they can be composed with adversaries

themselves, which they run as subroutines. Thus, a context C can yield an oracle system

C[O] when composed with system O, and an O-adversary A ‖ C when composed with a

C[O]-adversary A. It yields two transition systems, corresponding to (A ‖ C) | O and A | C[O].

We argue that the intuition according to which these systems are two sides of a same coin

is mathematically grounded. In conclusion of this section, we provide two new rules named

I-Sub and B-Sub, allowing the embedding of a system in a context for statements based on

both types of judgments.

III.3.1 — Definition and Composition with an Oracle System

In a lot of aspects, the definition of contexts resembles that of oracle systems. However, a

context c alone does not define a system. It contains procedures, each of which is defined

by two functions: C→
c to transform queries to c into queries to an oracle of O, and C←

c to

transform the result of this call back into an output of procedure c. These transformations

are probabilistic, which is modeled by functions C→
c and C←

c outputting distributions. Finally,

we also want to capture the possibility that no query to O is needed to compute the answer

to a procedure query. In such a case, C→
c outputs ⊥.

Definition (Context). An O-context C is given by:

— finite sets MC of context memories and an initial memory m̄C,
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— a finite set NC of procedure names,

— for every c ∈ NC, a query domain In(c), an answer domain Out(c), and two functions:

C→
c : In(c) × MC → D((Que ∪ {⊥}) × MC)

C←
c : In(c) × Xch × MC → D(Out(c) × MC)

— distinguished initial and finalization procedures cI and cF such that In(cI) = Out(cF) = 1,

and for any input, C→
cI

(resp. C←
cF

) outputs a query to oI (resp. oF).

�

As was done in the case of oracle systems, we introduce the following notations: QueC
is the set of context queries, AnsC the set of context answers, and XchC the set of context

exchanges.

Let us explain the intuition behind the composition of a context C and an oracle system

O, denoted C[O]. Composition yields a new oracle system, in which each procedure of C

defines an oracle, including initialization and finalization oracles. However, no oracle of O is

“directly” accessible to an adversary of the composed system. We now describe informally one

step of the interaction of system C[O] with a C[O]-adversary A. It is represented in figure

III.1. First, the adversary computes a query (c, qC), which it sends to system C[O]. Then,

oracle c generates a query to an oracle of O using C→
c . The query is forwarded to O and

answered, then the resulting exchange is used as an input for C←
c to compute the answer aC

to query (c, qC).

uses C→
c

aC

to generate query

aO

(o, qO)

A

C

to compute answer
aC

(o, qO)
O

(c, qC)

uses C←
c

system C[O]

Figure III.1 – One Step of Interaction Between C[O] and an Adversary A

In our definition, we require that one query (c, qC) to a procedure in the context C yields

one query to an oracle in O. It is sometimes the case that no query is needed to compute the

answer to (c, qC). To deal with this particular case, we add a dummy oracle, named ⊥, to

the oracle system O. Its implementation is trivial: it returns the value it receives and does

not change the state. This augmented system O is still denoted O. Then, C→
c (qC) can output

(⊥, 1).

Definition (Composition of Context with an Oracle System). The composition of an

O-context C with O defines an oracle system C[O] such that:

— the set of memories is MC × MO, and the initial memory is (m̄C, m̄O),

— the oracles are the procedures of C, and their query and answer domains are given by C.

The initialization and finalization oracles are the initialization and finalization procedures

of C,
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— the implementation Imp(c) of an oracle c is the function:

λ(qC, (mC, mO)).

let ((o, qO), m′
C) ← C→

c (qC, mC) in

let (aO, m′
O) ← Imp(o)(qO, mO) in

let (aC, m′′
C) ← C←

c (qC, (o, qO, aO), m′
C) in

return (aC, (m′′
C, m′

O))

�

The important thing to notice about this definition is that a context can only obtain

outputs of oracles of the inner system. Namely, no way of reading or writing in memories of

the inner oracle system is provided to a context. This limits the expressivity of the concept

but plays a key-role in the composability of adversaries and contexts: it guarantees black-box

access to oracles of the inner system for a composed adversary. Details about that follow

shortly (see III.3.2).

Example 7. We recall briefly the encryption algorithm of ElGamal in a group G of prime

order q, with a generator g. Key generation computes a pair of matching public and secret

keys (pk, sk) as follows:

x ← U(Zq); pk := gx; sk := x.

To encrypt a message gm ∈ G, the following steps are performed:

y ← U(Zq); a := gy; b := pky; c := (a, b.gm).

The ciphertext resulting is the pair c. We want to build an oracle system ElGamal which we

can use later to express semantic security of this scheme. It consists in three oracles: one for

key generation, one for the computation of a challenge, and a finalization oracle. We consider

the oracle system RealDH = (oI, oF) defined in III.1.4, and provide a context C such that its

composition with RealDH yields the desired system ElGamal. Context C is given by:

— memories containing a variable for pk, a and b.

— Intuitively, we want cI to perform key generation. As a result, it must call oI to get a

value for variable pk. This satisfies the requirement that cI calls oI (expressed in the last

point of the definition of context). On result (v0, v1, v2) from oI, we want cI to store these

values in pk, a and b and to output pk. This is done by means of function C←
cI

.

— Oracle E is a one-time cipher. On its first query q = gµ, it outputs the pair (a, b.gµ). We

set it to answer λ if queried more than once.

— The finalization oracle of the context forwards the answer it gets to oF.

The system ElGamal = C[RealDH] models the oracles to which an adversary against

semantic security has access.

An interesting thing to notice about this example is that, would we want to write the

decryption oracle of the ElGamal scheme as a context of RealDH, we could not do it without

computing the logarithm of the public key to obtain the secret key (namely, α given a = gα).

The reason is that, as underlined previously, states of C and RealDH are separated, and the

value stored in α is not output when querying oracles of RealDH. ♦
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III.3.2 — Composition of a Context and an Adversary

The intuition behind the composition of context C and a C[O]-adversary A is pretty similar

to that of the composition with an oracle system. This time, the context is considered as a

part of an adversary playing with system O. One step of interaction between A composed

with C on the one hand, and O on the other hand is illustrated in figure III.2. The idea is

that the composed adversary first runs A, which outputs a query (c, qC) to an oracle c of

C[O]; then, C→
c is applied to generate a query to an oracle of system O. This query is then

submitted to O, which answers it. Finally, to be usable by the update part of A, this answer

is put through C←
c . We can see here that this composition really corresponds to the usual

embedding of an adversary into another one which runs it as a subroutine and simulates the

oracles the subroutine needs.

querying part

of A ‖ C

update part

of A ‖ C

aO

(o, qO)

O

aC

to generate query

A

C

to compute answer
aC

(o, qO)

(c, qC)

uses C←
c

Adversary A ‖ C

uses C→
c

Figure III.2 – One Step of Interaction Between Composed Adversary A ‖ C and O

As for the composition with an oracle system, we are now left with adding states where

they are needed. We notice that the new adversary needs to store the current query in its

state because the procedure name is required to know which function C←
c to apply, and value

qC is needed as an input of this function.

Definition (Composition of Context and Adversary). The composition of an O-context

C to a C[O]-adversary A defines an O-adversary A ‖ C such that:

— the set of memories is MC × MA × QueC, and the initial memory is (m̄C, m̄A, _),

— the querying function is:

λ(mC, mA, _).

let ((c, qC), m′
A) ← A(mA) in

let ((o, qO), m′
C) ← C→

c (qC, mC) in

return ((o, qO), (m′
C, m′

A, (c, qC)))

— the update function is:

λ((o, qO, aO), (mC, mA, (c, qC))).

let (aC, m′
C) ← C←

c (qC, (o, qO, aO), mC) in

return (m′
C, A↓((c, qC, aC), mA), _)

�

Now that we have given a semantics to the composition of contexts and adversaries, we

can see why it is essential that states of C and O are disjoint. If it was not the case, we could

not define A ‖ C as an adversary. Indeed, this latter could have information or side-effect
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on oracle memories via other means than querying oracles, and this is not captured by our

definition of adversary.

As the judgments in our logic express concrete security statements, we need to relate

resource consumption of the composed adversary to that of the inner adversary and time

consumption of the context computations. To do so, we define two auxiliary functions for

contexts. On the one hand, we assume that there exists an upper bound T (c) on the time

needed to compute both C→
c and C←

c , for any of their arguments. On the other hand, we let

Calls : NC × NO → {0, 1} be a function such that Calls(c, o) = 1 iff c may call o, i.e., there are

mc ∈ MC and qc ∈ In(c) such that Pr[C→
c (mc, qc) = ((o, q), m′

c)] > 0 for some q ∈ In(o) and

m′
c ∈ MC.

Lemma III.6. Let C be an O-context and A be a C[O]-adversary. If A has resources bounded

by (k, t), then A ‖ C has resources bounded by

f(C, k, t) = (λo.
∑

c∈NC

Calls(c, o)k(c), t +
∑

c∈NC

k(c)T (c))

Proof. Let us consider one step of (A ‖ C) | O involving procedure c. The time of execution

of this step corresponds to the time used up by A plus the time taken by the computations of

C→
c and C←

c , bounded by T (c). Concerning queries, we notice that at most one call is placed

to an oracle in O, but we have no means of anticipating which one (we recall that this choice

is probabilistic). To be safe, we increase by one the number of calls of every oracle of O which

the computation of C→
c can result in calling. Function λo.Calls(c, o), defined to be worth 1 if

c may call o, bounds the number of calls to o performed during the step.

This reasoning has been performed for one step involving a particular c. The conclusion

follows by summing on all procedures. �

III.3.3 — Links Between A | C[O] and (A ‖ C) | O

The two ways of composing an O-context bring forth two transition systems, namely A | C[O]

and (A ‖ C) | O. They informally seem to bear quite a lot of similarities. In fact, we can

see the same computations take place in both systems, and only the fact that we decompose

transition systems into adversary and oracle system introduces a difference between them.

In this subsection, we formalize this intuition by showing that A | C[O] and (A ‖ C) | O are

two projections of a same underlying transition system which we call A × C × O. This latter

merely corresponds to the description of computations carried out without imposing the split

between an adversarial part and an oracle part. Let us start with the definition of A × C × O.

Definition (Product System A × C × O). For an oracle system O, an O-context C and

a C[O] adversary A, we define their product probabilistic transition system A × C × O as

follows:

— the set of memories of A×C×O is MA×MC×MO and the initial memory is (m̄A, m̄C, m̄O);

— actions are pairs of exchanges in XchC × XchO, with as initialization actions those of the

form ((cI, −, −), (oI, −, −)) and as finalization actions ((cF, −, −), (oF, −, −));
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— the probabilistic transition function stA×C×O is:

λ(mA, mC, mO).

let ((c, qC), m′
A) ← A(mA) in

let ((o, qO), m′
C) ← C→

c (qC, mC) in

let (aO, m′
O) ← Imp(o)(qO, mO) in

let (aC, m′′
C) ← C←

c (qC, (o, qO, aO), m′
C) in

let m′′
A ← A↓((c, qC, aC), m′

A) in

return (((c, qC, aC), (o, qO, aO)), (m′′
A, m′′

C, m′
O))

�

Similarly to what we did for oracle systems, we can define product traces as executions

of the product system where adversary memories have been erased. Formally, it yields the

following definition.

Definition (Product Execution, Product Trace). A partial product execution is a

sequence ηprod

(m0
C, m0

O, m0
A)

(x1,y1)
−→ (m1

C, m1
O, m1

A)
(x2,y2)
−→ . . .

(xk,yk)
−→ (mk

C, mk
O, mk

A)

where (mi
C, mi

O, mi
A) ∈ MC × MO × MA for all i in [0, k] and (m0

C, m0
O, m0

A) = (m̄C, m̄O, m̄A),

and for i in [1, k], xi = (oi, qi
O, ai

O) ∈ XchO and yi = (ci, qi
C, ai

C) ∈ XchC are such that there is

a positive probability that the step occurs, i.e. there exists m′
C, m′

A s.t.































Pr[A(mi−1
A ) = ((ci, qi

C), m′
A)] > 0

Pr[C→
ci

(qi
C, mi−1

C ) = ((oi, qi
O), m′

C)] > 0

Pr[Imp(oi)(q
i
O, mi−1

O ) = (ai
O, mi

O)] > 0

Pr[C←
ci

(qi
C, (oi, qi

O, ai
O), m′

C) = (ai
C, mi

C)] > 0

Pr[A↓((ci, qi
C, ai

C), m′
A) = mi

A] > 0

A product execution is a partial product execution ending with an exchange with cF and oF or

in a sink state.

A partial product trace τprod is a the projection on MC × MO of a subsequence of a partial

execution (i.e. it does not necessarily start with the initial states).

We call product step a partial product trace of length 1. Finally, a product trace is the

projection of a product execution. �

We underline that if we project a product trace to keep only O-elements of the traces, we

obtain a trace of interaction of A ‖ C with O, while if we keep only C-elements, we obtain the

result of an interaction between A and C[O]. The only element we miss is the correspondence

between probabilities granted to these traces. If we consider a product step and want to

associate a probability to its projection as an O-step, we naturally think of summing all

probabilities of C-elements projecting to this particular O-step. This is indeed the way we

choose to deal with probabilities in projected transition systems.

Definition (Projected Transition System). Consider a probabilistic transition system S

with a set of actions Σ = (a : Σa) × (b : Σb), that is, Σ is the cartesian product of two set of

actions Σa and Σb.

The a-projection of S, denoted by πa(S), is a probabilistic transition system that has

the same set of memories as S, the same initial memory, Σa as alphabet and the transition
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probability function sta : M → D(Σa × M) defined as follows:

λm. let ((a, b), m′) ← st(m) in return (a, m′)

Similarly, we can define the b-projection πb(S) of S. �

This definition captures exactly the relation existing between A × C × O and A | C[O] on

the one hand, and A × C × O and (A ‖ C) | O on the other hand. We write πC[O](A × C × O)

for πXchC
(A × C × O) and πO(A × C × O) for πXchO

(A × C × O).

Lemma III.7. For every C[O]-adversary A, we have:

1. A | C[O] = πC[O](A × C × O),

2. (A ‖ C) | O = πO(A × C × O).

Proof. Firstly, the initial memory of A | C[O], A × C × O and its projections and (A ‖ C) | O

are identical modulo tuple isomorphism. Secondly, the following equalities obviously follow

from code rewriting:

1. stA|C[O] = stπC[O]
;

2. st(A‖C)|O = stπO
.

We provide a few details for the first item, the second one being completely similar. The

definition of the transition function of A | C[O] states:

stA|C[O](mA, (mC, mO))
def
= let ((c, qC), m′

A) ← A(mA) in

(∗) let (aC, (m′
C, m′

O)) ← Imp(c)(qC, (mC, mO) in

let m′′
A ← A↓((c, qC, aC), m′

A) in

return ((c, qC, aC), (m′′
A, m′

O))

Besides, the definition of stπC[O]
provides by developing stA×C×O:

λ(mA, (mC, mO)).

let ((c, qC), m′
A) ← A(mA) in

let ((o, qO), m′
C) ← C→

c (qC, mC) in

let (aO, m′
O) ← Imp(o)(qO, mO) in

let (aC, m′′
C) ← C←

c (qC, (o, qO, aO), m′
C) in

let m′′
A ← A↓((c, qC, aC), m′

A) in

– here stA×C×O would return (((c, qC, aC), (o, qO, aO)), (m′′
A, m′′

C, m′
O))

return ((c, qC, aC), (m′′
A, m′

O))

To see the equality between both functions, one just has to detail computations performed at

line (∗) in the first one. �

III.3.4 — Rules Involving Contexts

In this subsection, we provide new rules allowing the use of contexts in the proof system. Two

instances of rules can be stated, one based on the preservation of each judgment of the logic.

We first present the rules and then proceed to their proofs. These latter are performed using

the link between (A ‖ C) | O and A | C[O].

Let us start by looking at what happens for indistinguishability statements. We assume

that we have two compatible systems O and O′ and a function ε such that |= O ∼ε O′. Given
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some O-context, we want to find a function ε′ such that we can prove |= C[O] ∼ε′ C[O′].

First, we have to put a little restriction to the kind of context C which can be used. This

simply follows from the fact that we want to talk about indistinguishability of C[O] and

C[O′]: we must impose that the finalization oracle cF take a boolean as input. We also

assume that it merely forwards its input to inner finalization oracles oF and o′
F. Such contexts

are called indistinguishability contexts. As for ε′, we must take into account the change in

resources needed by an C[O]-adversary A and an adversary A ‖ C (see lemma III.6). Given

this computation, it is actually easier to express ε as a function of ε′. We have the following

rule.

Lemma III.8 (I-Sub). If C is an indistinguishability O-context, rule I-Sub defined as follows

is sound, where ε = λ(k, t).ε′(f(C, k, t)).
O ∼ε O′

I-Sub
C[O] ∼ε′ C[O′]

To present the second rule, we proceed backwards, in the sense that we suppose that

we are provided with a system such that |= C[O] :ε E for an event E on C[O]-traces. We

have to define the counterpart in O of event E, which we denote E ◦ C. Here we provide

intuition about the definition on E ◦ C. The formal proof of the rule provides more details

about the preservation of probabilities. We use the projections introduced in the previous

subsection. The C[O]-event E induces an event Eprod on product traces, which holds for a

product trace τprod iff πC[O](τ
prod) verifies E. If we identify the events with the set of traces

they characterize, we can reformulate the definition of Eprod as Eprod = π−1
C[O](E). Now that we

have a product event equivalent to E, we can deduce from it an O-event which describes the

same underlying set of product traces, namely πO(Eprod). We thus let E ◦ C = πO(π−1
C[O](E)),

and state the following rule.

Lemma III.9 (B-Sub). If C is an O-context and E a C[O]-event, rule B-Sub defined as follows

is sound, where ε = λ(k, t).ε′(f(C, k, t)), and E ◦ C = πO(π−1
C[O](E)).

O :ε E ◦ C
B-Sub

C[O] :ε′ E

Before actually proving the rules, we introduce a useful intermediate lemma about projected

transition systems. We believe that citing them in the general setting and then applying them

makes the proof easier to read.

Lemma III.10. Let S be a probabilistic transition system provided with a set of actions

Σ = (a : Σa) × (b : Σb). Then,

— for all executions η of S, Pr[πa(S) = η] = Pr[S : π−1
a (η)]

— for any set of executions E ⊆ Exec(S) such that π−1
a (πa(E)) = E,

Pr[πa(S) : πa(E)] = Pr[S : E].

Similar statements hold for b.

Proof. First item results directly from the more general following claim.

Claim. For any partial execution η ∈ PExec(πa(S)),

Pr[πa(S) = η] =
∑

η′∈PExec(S), η′∈π−1
a (η)

Pr[S = η′].

This can be proven by induction on the length of partial executions. If η is of length 1,

then η is a step (m, a, m′), and η′ ∈ PExec(S) ∩ π−1
a (η) iff there exists b ∈ Σb such that η′ is

step (m, (a, b), m′) . Then,
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Pr[πa(S) = η] = Pr[sta(m) = (a, m′)]
def
=

∑

b∈Σb

Pr[st(m) = ((a, b), m′)]

=
∑

η′∈PExec(S), η′∈π−1
a (η)

Pr[S = η′]

The induction step follows from decomposing the partial execution of length n into one of

length (n − 1) for which the induction hypothesis holds and one last step for which we can do

the same reasoning as we just did. We omit the details of the computation.

Second item can be justified thanks to the first one and the hypothesis on E: Pr[πa(S) :

πa(E)] = Pr[S : π−1
a (πa(E))] = Pr[S : E]. �

We now continue with the proof of our context rules, which are quite easy to derive now

that we have all the material we need.

Proof. We start with I-Sub. The rule results of the following equality:

Pr[A | C[O] : r = true] = Pr[(A ‖ C) | O : r = true]

If tt denotes the set of executions of the product system A × C × O ending with action

(cF, true, _), (oF, true, _), we have:

πO(tt) = T −1
O (r = true) and πC[O](tt) = T −1

C[O](r = true).

We can deduce that:
Pr[A|C[O] : r = true]=Pr[A|C[O] : T −1

C[O](r = true)]

=Pr[A|C[O] : πC[O](tt)]

=Pr[πC[O](A × C × O) : πC[O](tt)]

and similarly that

Pr[A ‖ C|O : r = true]=Pr[A ‖ C|O : T −1
O (r = true)]

=Pr[A ‖ C|O : πO(tt)]

=Pr[πO(A × C × O) : πO(tt)]

After noticing that the fact that we impose the context finalization oracle to forward the

same answer and do nothing else yields π−1
C[O](πC[O](tt)) = tt = π−1

O (πO(tt)), we apply the

second item of our lemma III.10 and deduce
Pr[πC[O](A × C × O) : πC[O](tt)] = Pr[A × C × O : tt]

= Pr[πO(A × C × O) : πO(tt)]

This allows us to conclude to the desired equality.

As for rule B-Sub, we want to prove that:

Pr[A | C[O] : E] ≤ Pr[(A ‖ C) | O : πO(π−1
C[O](E))]

which we can rewrite as

Pr[πC[O](A × C × O) : E] ≤ Pr[πO(A × C × O) : πO(π−1
C[O](E))]

Besides, item 1 of lemma III.10 yields two equalities:

— Pr[πC[O](A × C × O) : E] = Pr[A × C × O : π−1
C[O](E)],

— Pr[πO(A × C × O) : πO(π−1
C[O](E))] = Pr[A × C × O : π−1

O (πO(π−1
C[O](E)))].
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As for any set Set, Set ⊆ π−1
O (πO(Set)), we then have the inequality

Pr[A × C × O : π−1
C[O](E)] ≤ Pr[A × C × O : π−1

O (πO(π−1
C[O](E)))], which yields the result we

want. �

III.3.5 — Bits and Pieces of ElGamal Security Proofs

In this subsection, we provide a detailed illustration of the use of the context rules introduced

in this section. We examine the possibility to deduce the confidentiality of a plaintext ciphered

with the ElGamal algorithm from the computational Diffie-Hellman assumption, and how to

prove ROR-plaintext security. In addition to allowing us to show instances of applications of

context rules, these two examples allow us to acknowledge the limitations of the set of rules

we have established so far. In the sequel, we suppose that we have fixed a group G of prime

order q.

Confidentiality. Our goal is to prove that provided with a tuple (g, gα, gβ, gα.β .gµ), an

adversary has a probability to retrieve the value of gµ bounded by that of computing gα.β.

This can naturally be translated as a CIL “bounded-by” statement via the introduction of

system CElGamal consisting of only the two mandatory oracles and states mapping variables

g, α, β and µ to values in G for g and in [0..(q − 1)] for the others. Initialization draws

uniformly at random values g0, α0, β0 and µ0 for g, α, β and µ, before releasing values for

(g0, gα0
0 , gβ0

0 , gµ0
0 .gα0.β0

0 ) (and the adequately updated state). In the sequel we omit indices

differentiating variables and values for the sake of readability. Finalization oracle has an input

type G and does not modify the state. Then, confidentiality is captured by:

CElGamal :ǫ r = gµ

We would like to transform CElGamal into CElGamal′, identical in everything except

that the initialization oracle outputs (g, gα, gβ, gµ). It is intuitively obvious that both systems

are yielding the same distribution on states and initialization output modulo the fact that in

CElGamal′, µ − α.β plays the role of what is µ in CElGamal. Thus, we should be able to

prove that an adversary has the same probability of computing gµ given (g, gα, gβ, gµ.gα.β) as

to compute gµ.(gα.β)−1 given (g, gα, gβ, gµ). In CIL, it translates into:

CElGamal′ :ǫ r = gµ.(gα.β)−1

CElGamal :ǫ r = gµ

However, we find there the first limit of the rules we have presented until now: we are at

a loss when it comes to changing the system into another one yielding same distribution on

states and translating soundly the event we want to bound according to changes performed. At

this point, we admit this step3 and continue with the proof of CElGamal′ :ǫ r = gµ.(gα.β)−1.

We use the oracle system CDH introduced in example III.1.4, and decompose CElGamal

into a context C of CDH. C has a memory containing a variable for µ, and consists in two

procedures, cI and oF, such that:

— cI prompts oI, which returns a triple. It then draws an integer µ0 ∈ [0..(q − 1)], outputs

the triple together with the value of gµ together with an updated memory [µ Ô→ µ0].

3A formal proof in CIL of the step can be found in III.4.3
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— cF gets an input in and calls oF on gµ.(in)−1.

We denote t′ the time necessary to perform these computations. The application of B-Sub

to this system yields the following proof:

CDH :ǫ(1k,t+t′) r = gα.β

B-Sub
CElGamal′ :ǫ(1k,t) r = gµ.(gα.β)−1

We must now justify that the composition of event r = gµ.(gα.β)−1 with C equals event

r = gα.β. Figure III.3 displays a representation of the product traces of our system, where

m denotes the state mapping variables g, α, β, µ to their values with index 0. It allows us to

deduce that inC = gµ.(gα.β)−1 iff in = gµ.(inC)−1 = gµ.(gµ.(gα.β)−1)−1 = gα.β .

initial
memories m0

(cI, _, (g0, gα0
0 , g

β0
0 , g

µ0
0 )) (cI, inC, _)

(oI, _, (g0, gα0
0 , g

β0
0 )) (oI, in = g

µ0
0 .(inC)−1, _) final

state

Figure III.3 – Product traces

ROR-plaintext Security. We now turn to proving ROR-plaintext security of the ElGamal

encryption scheme. We recall that we have defined the oracle system ElGamal in example 7.

We formalize ROR-plaintext security with an adversary provided with access to a one-time

cipher oracle and the public key. In the sequel we suppose that a generator g of G is fixed. We

define the system outputting the random plaintext encryption instead of the real encryption

of a message gµ. Named RElGamal, this system is identical to ElGamal except that its state

contains an additional variable r and that implementation of E consists in drawing a random

integer r ∈ [0..(q − 1)], and outputting (a, b.gr) (together with an updated memory) instead

of (a, b.gµ). We aim at showing RElGamal ∼ε ElGamal for some function ε.

Since we defined ElGamal as a context C of system RealDH, it seems a good step forward

to apply rule I-Sub to the DDH hypothesis RealDH ∼ε RandDH (defined in example 5).

Every execution of C[.] generates exactly one query to inner initialization and finalization

oracles. If we denote by t′ the time necessary to compute the result of an E query, rule I-Sub

provides:

RealDH ∼ε(1k,t) RandDH
I-Sub

C[RealDH] ∼ε(k,t−k(E).t′) C[RandDH]

Unfortunately, while the left term is ElGamal by definition, C[RandDH] is not exactly

the same system as RElGamal. Figure III.4 shows a table displaying synoptic descriptions of

the pair of systems on both extremities. The column in the middle provides the description

of a system which is yielding the same distribution on traces as each of its neighbors. As

a result, the middle system is 0-indistinguishable of its left and right counterparts4. Once

we have justified this latter claim, we can conclude to by applying the transitivity rule that

C[RandDH] ∼ε(k,t−k(E).t′) RElGamal.

Unfortunately, we are again in cases for which the current means at our disposal seem

insufficient to prove the claim. Equality, or 0-indistinguishability, of systems on the left is

4We recall that the encryption oracle is a one-time cipher.
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C[RandDH] Interm RElGamal
oI : oI : oI :
draws α, β, r draws α, β draws α, β
return gα return gα return gα

E(gµ) : E(gµ) : E(gµ) :
return (gβ, grgµ) draws r draws r

return (gβ , grgµ) return (gβ , gα.βgr)

Figure III.4 – Transition Between C[RandDH] and RElGamal

obtained in proofs of the literature by using so-called lazy sampling lemmas, stating that we

can draw values for variables exactly when we need them instead of any place before in the

execution of an experiment. The reverse move is symmetrically named eager sampling. We

generalize this kind of arguments in determinization rules. They are introduced at section

III.5.

As for the other equality, it resembles the one which we have encountered in the confiden-

tiality proof above. Indeed, we can easily justify that after every step, outputs are equally

distributed in both systems by computing the probabilities. This leads us to a new set of

rules to formalize this sort of arguments, namely bisimulation rules, introduced in the next

section. Formal proofs of C[RandDH] ∼0 RElGamal and Interm ∼0 RElGamal can be found

respectively in III.5.3 and III.4.3.

III.4 Forward Bisimulation up to Relations

In the previous section, we show that we have no formal way to deal with certain types of

transformations on oracles systems. If we try to perform an analogy with the game-based

framework introduced in [Sho04], these are generally situations corresponding to “bridging

steps” (e.g. those we have highlighted in our previous trial to prove security of ElGamal) and

“failure events”. About “bridging steps”, Victor Shoup writes that they are transitions based

on “purely conceptual changes”, which are “typically a way of restating how certain quantities

can be computed in a completely equivalent way”. However, for our purpose of design of a

framework to enable automatic verification or security-dedicated proof-assistance, this is not

a formal enough notion to capture the proper nature of the steps. As for “transitions based

on failure events”, the notion encompasses a more precise set of transformations: games are

identical “unless some failure event occurs”, in which case we are provided with a way of

bounding the difference between probabilities of winning in both games. Though our work is

not directly abstracting away from game-based proofs, we do perform our proofs by successive

transformations of the oracle systems. As a result, situations similar to those mentioned here

occur. In this section, we introduce a tool to reason about transformations of oracle systems

into systems that are equivalent, or equivalent up to the fact that some property is verified.

Namely, we formalize these near-equivalence relations through our definition of the relation

of bisimulation up to between systems. We then introduce rules of the logic putting this

powerful concept to use.



40 III. The Computational Indistinguishability Logic

III.4.1 — Definition of Forward Bisimulation Up to Relations

The definition provided below is inspired from the classical notion of bisimulation between

probabilistic transition systems (e.g. see [BH97]). Yet bisimulation on its own is insufficient to

capture some particular cases of imperfect bisimulation, which occur quite frequently, and

for which we can still derive some interesting properties of probabilities. Instead of just

adapting the definition of bisimulation to our setting, we therefore define bisimulation up to a

step-property φ. Intuitively, φ is there to ensure that the step performed remains within the

conditions of preservation of the bisimulation. While φ is true, the condition of “compatibility”

guarantees that probabilistic bisimulation holds for the next step.

We now introduce formally these relations between systems. We start by presenting the

definition of probabilistic forward bisimulation in our framework, and then add a step-property

to the already quite involved definition. However, rules are directly written and proven for

the complete version of bisimulation up to relations. The term ’forward’ is used to distinguish

two different bisimulation: forward and backwards bisimulation.

Let us consider two compatible oracle systems O and O′. For every oracle name, we let

MO+O′ be MO + MO′ and for every o ∈ NO, we let ImpO+O′(o) be the disjoint sum of ImpO(o)

and ImpO′(o), i.e.

ImpO+O′(o) : In(o) × MO+O′ → D(Out(o) × MO+O′)

(q, m) Ô→

{

ImpO(o)(q, m) if m ∈ MO

ImpO′(o)(q, m) otherwise

We write m1
(o,q,a)
−→>0 m2 iff Pr[ImpO+O′(o)(q, m1) = (a, m2)] > 0.

Definition (Forward Bisimulation for Oracle Systems). Let R ⊆ MO+O′ × MO+O′ be an

equivalence relation. O and O′ are bisimilar w.r.t. R, written O ≡R O′, iff m̄ R m̄′, and for

all m1
(o,q,a)
−→ >0 m2 and m3 such that m1 R m3, we have

Pr[ImpO+O′(o)(q, m1) ∈ (a, C(m2))] = Pr[ImpO+O′(o)(q, m3) ∈ (a, C(m2))]

where C(m2) is the equivalence class of m2 under R and

Pr[ImpO+O′(o)(q, m1) ∈ (a, C(m2))] =
∑

m R m2

Pr[ImpO+O′(o)(q, m1) ∈ (a, m)]. �

The idea behind this definition is the following: states are grouped in classes according to

an equivalence relation R. This relation is relevant if given two states in a same class, they

offer the same possibility of evolution with the same probabilities. This is exactly what is

captured by the equality between probabilities above. If the relation is relevant, then the

systems are bisimilar w.r.t. the relation. Intuitively, we can foresee that, as we impose initial

states to be in relation, then partial traces starting in the initial state and going through

states related by R at each step are going to weigh the same in O and O′.

After having provided this definition to familiarize the reader with the notion of bisimulation

in our setting, we formally introduce the more complete concept of bisimulation up to as

follows.

Definition (Forward Bisimulation Up to For Oracle Systems). Let φ ⊆ Xch × MO+O′ ×

MO+O′ be a step-predicate and let R ⊆ MO+O′ × MO+O′ be an equivalence relation. O and

O′ are bisimilar up to φ, written O ≡R,φ O′, iff m̄ R m̄′, and for all m1
(o,q,a)
−→ >0 m2 and

m3
(o,q,a)
−→ >0 m4 such that m1 R m3, the following properties hold:
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— stability: if m2 R m4 then

φ((o, q, a), m1, m2) ⇔ φ((o, q, a), m3, m4)

— compatibility: if φ((o, q, a), m1, m2), then

Pr[ImpO+O′(o)(q, m1) ∈ (a, C(m2))] = Pr[ImpO+O′(o)(q, m3) ∈ (a, C(m2))]

where C(m2) is the equivalence class of m2 under R, and

Pr[ImpO+O′(o)(q, m1) ∈ (a, C(m2))] =
∑

m R m2

Pr[ImpO+O′(o)(q, m1) ∈ (a, m)].

�

Here we capture the notion of imperfect bisimulation. The addition of φ is quite intuitive

for compatibility: we require equality between probabilities only if φ is true for the step

we perform. On the contrary, when φ does not hold, we do not know anything about the

evolution of probabilities. The need for stability is quite easy to imagine. Since we want to

reason about classes of states in which we can end up after a step, we intuitively need φ to

have the same truth-value on whole classes.

We now turn to traces to see what kind of conclusions we can draw from two systems

being bisimilar up to some property. In the remainder of this subsection, we consider fixed O,

O′, R and φ satisfying the above definition. The relation defined on states can be lifted to

(partial) executions and traces quite easily.

Definition (Lifting The Relation). Let η and η′ be two partial executions of A | O

or A | O′ of length k such that η = (m0, m0
a)

x1−→ (m1, m1
a)

x2−→ . . .
xk−→ (mk, mk

a) and

η′ = (m′
0, m0

a)
x1−→ (m′

1, m1
a)

x2−→ . . .
xk−→ (m′

k, mk
a). They are said to be in relation by R,

denoted η R η′, iff mi R m′
i for all i ∈ [0..k].

Similarly, two traces τ = m̄O
x1−→ m1

x2−→ . . .
xk−→ mk and τ ′ = m̄O

x1−→ m′
1

x2−→ . . .
xk−→ m′

k

are in relation (τ R τ ′) iff mi R m′
i for all i ∈ [0..k]. �

Now that we can speak of equivalence classes for partial executions, we can assign them a

probability.

Definition (Probability of an Equivalence Class w.r.t. Relation R of Partial Executions).

Let η be a partial execution of A | O or A | O′. The equivalence class of η is defined by

C(η) = {η′ | η R η′}. The O-class of η, denoted CO(η), is the intersection with O-traces of

C(η). Its probability is given by:

Pr[A | O : CO(η)] =
∑

η′∈CO(η)

Pr[A | O : η′]

A similar definition can be written for O′. �

Consider a state m1 ∈ MO, in relation with m3 ∈ MO′ . According to the definition of

bisimulation up to, if we perform one step for which φ holds from m1 and its successor or m3

and its successor, then we can move to the same equivalence classes of states with the same

probability. Say we have gone through such a step: m1
x

−→ m2 and m3
x

−→ m4, and m2 R m4.

We can iterate the same reasoning on m2 and m4. Informally, we can anticipate that if we

perform a series of steps for which φ holds, it yields equivalence classes on executions with

same probabilities in O and O′.

Lemma III.11. Let η be a partial execution of A | O of length k such that η = (m0, m0
a)

x1−→
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(m1, m1
a)

x2−→ . . .
xk−→ (mk, mk

a).

Pr[A | O : CO(η)] = Πk
i=1Pr[A | O : CO((mi−1, mi−1

a )
xi−→ (mi, mi

a))]

where

Pr[A | O : CO((mi−1, mi−1
a )

xi−→ (mi, mi
a))] =

∑

m̃i R mi

Pr[(mi−1, mi−1
a )

xi−→ (m̃i, mi
a)]

Proof. We prove the result by induction on the length of partial executions. The case for

k = 1 is obvious: then the partial execution is just a step.

Let us assume that the result holds for partial executions of length k − 1. We notice that:

CO(η) = {η′ = (m̃0, m0
a)

x1−→ (m̃1, m1
a)

x2−→ . . .
xk−→ (m̃k, mk

a)|m̃i R mi, m̃i ∈ MO}

Then,
Pr[A | O : CO(η)]

def
=

∑

η′∈CO(η) Pr[A | O : η′]

=
∑

m̃i R mi, mi∈MO, i=1..k

η′=(m̃0,m0
a)

x1
−→(m̃1,m1

a)
x2

−→...
xk

−→(m̃k,mk
a)

Pr[A | O : Pref(η′, k − 1)] Pr[A | O : η′[k]]

=
∑

m̃i R mi, mi∈MO, i=1..(k−1)

η′=(m̃0,m0
a)

x1
−→(m̃1,m1

a)
x2

−→...
xk

−→(m̃k,mk
a)

Pr[A | O : Pref(η′, k − 1)]
∑

m̃k R mk
m̃k∈MO

Pr[A | O : η′[k]]

=
∑

m̃i R mi, mi∈MO, i=1..(k−1)

η′=(m̃0,m0
a)

x1
−→(m̃1,m1

a)
x2

−→...
xk

−→(m̃k,mk
a)

Pr[A | O : Pref(η′, k − 1)]. Pr[A | O : CO((mk−1, mk−1
a )

xk−→ (mk, mk
a))]

and we can conclude using the induction hypothesis. �

We can now continue with a lemma formally translating the intuition we have provided

above. It also shows that given related traces for which φ holds at every step, we have

equal probabilities to make a next step not verifying φ when interacting with A | O as when

interacting with A | O′.

Lemma III.12. Let η be a partial execution of A | O of length k such that φ holds for each of

its steps:

η = (m0, m0
a)

x1−→ (m1, m1
a)

x2−→ . . .
xk−→ (mk, mk

a) and ∀i = 1..k, φ(xi, mi−1, mi)

— Let σ = (mk, mk
a)

xk+1
−→ (mk+1, mk+1

a ) be a step. Let η′ = η · σ. If φ(xk+1, mk, mk+1) then

Pr[A | O : CO(η′)] = Pr[A | O′ : CO′(η′)]

— Pr[A | O : η0 · σ0 ∧ (η0 R η) ∧ ¬φ(σ0)] = Pr[A | O′ : η0 · σ0 ∧ (η0 R η) ∧ ¬φ(σ0)]

Proof. The first item can be proven by mathematical induction on the length n of the

resulting partial execution η′. For the case when n = 1, η′ is a step σ which we can write

σ = (m̄O, m̄A)
x1−→ (m1, m1

a), where x1 = (oI, q1, a1). Then we have:

Pr[A | O : CO(σ)] =
∑

m̃1 R m1,m̃1∈MO

Pr[A | O : (m̄O, m̄A)
x1−→ (m̃1, m1

a)]

Moreover, if we denote σ̃ = (m̄O, m̄A)
x1−→ (m̃1, m1

a), by definition of the probability of a

partial step, Pr[A | O : σ̃] is:
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∑

m′
a

Pr[A(m̄A) = ((oI, q1), m′
a)].

Pr[ImpO+O′(oI)(q1, m̄O) ∈ (a1, m̃1)]. Pr[A↓((oI, q1, a1), m′
a) = m1

a]
We continue by swapping both sums in our computation of Pr[A | O : CO(σ)]. As the

adversary’s execution does not depend on m̃1, we can consider that terms containing adversarial

computations are multiples of

∑

m̃1 R m1, m̃1∈MO

Pr[ImpO+O′(oI)(q1, m̄O) ∈ (a1, m̃1)]

We know φ(x1, m̄O, m1) holds, hence we can use compatibility to replace the above term

by the following one:

∑

m̃1 R m1, m̃1∈M
O′

Pr[ImpO+O′(oI)(q1, m̄′
O) ∈ (a1, m̃1)]

After this, we can undo all of the manipulations we just did: first put adversarial

probabilities inside the sum on states in relation “
∑

m̃1 R m1, m̃1∈M
O′

”, then swap both sum

symbols and replace our three terms with Pr[A | O′ : σ̃], to finally conclude that

∑

m̃1 R m1, m̃1∈M
O′

Pr[A | O′ : σ̃] = Pr[A | O′ : CO′(σ)]

which is our result for n = 1.

For the induction step, if η is a partial execution of length n > 1 and σ = (mn, mn
a)

xn+1
−→

(mn+1, mn+1
a ), is a step, we use lemma III.11 to write

Pr[A | O : CO(η · σ)] = Pr[A | O : CO(η)]Pr[A | O : CO(σ)]. (∗)

A similar equation can be written for A | O′. By performing the same reasoning as for

the initial case, we can obtain easily Pr[A | O : CO(σ)] = Pr[A | O′ : CO′(σ)]. The induction

hypothesis provides Pr[A | O′ : CO′(η)] = Pr[A | O′ : CO′(η)]. The conclusion follows from (*).

As for the second item, it is justified by the computations below:
Pr[A | O : η0 · σ0 ∧ η0 R η ∧ ¬φ(T (σ0))]

= 1 − Pr[A | O : η0 · σ0 ∧ η0 R η ∧ φ(T (σ0))]

= 1 −
∑

σ0|φ(T (σ0)) Pr[A | O : η0 · σ0 ∧ η0 R η] (1)

where (1) holds by definition of the probability of a step-predicate (or an event) as the

sum of probabilities of elements satisfying it. We divide the set of steps verifying φ into

distinct classes of equivalence of σ1, . . . , σm. Then we can regroup terms and go on with our

computation as follows:
Pr[A | O : η0 · σ0 ∧ η0 R η ∧ ¬φ(σ0)]

= 1 −
∑

i=1..m Pr[A | O : η0 · σ0 ∧ η0 R η ∧ σ0 R σi]

= 1 −
∑

i=1..m Pr[A | O : CO(η0 · σi)]

= 1 −
∑

i=1..m Pr[A | O′ : CO′(η0 · σi)] (2)

= 1 −
∑

σ0|φ(T (σ0)) Pr[A | O′ : η0 · σ0 ∧ η0 R η]

= 1 − Pr[A | O′ : η0 · σ0 ∧ η0 R η ∧ φ(T (σ0))]

= Pr[A | O′ : η0 · σ0 ∧ η0 R η ∧ ¬φ(T (σ0))]
where (2) follows from the first item of the lemma, and subsequent equalities mirror the

beginning of our computation.
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�

III.4.2 — Rules Using Bisimulation Up to

We have just seen that equivalence classes of traces for which steps verify φ have the nice

property of uniting traces of A | O and A | O′ weighing the same probability. Consequently,

when considering events gathering whole classes of traces, the equality scales up. We call this

type of events compatible with the relation R.

Definition (Compatible Events). Let E be an event, defining a subset of executions

of A | O and A | O′. We say that E is R-compatible iff for all related partial traces τ and τ ′

starting with initial memories (i.e. τ R τ ′), if E(τ) then E(τ ′).

If E is an event on A | O traces and E′ is an event on A | O′ traces, E and E′ are said

R-compatible iff E ∪ E′ is R-compatible. This is denoted E R E′. �

We are now ready to state and prove rules using bisimulation up to.

Lemma III.13. We consider two compatible oracle systems O and O′. The following rules are

sound:

O :ǫ E ∧ Gϕ O ≡R,ϕ O′ E R E′

B-BisG
O′ :ǫ E′ ∧ Gϕ

O :ǫ E U ¬ϕ O ≡R,ϕ O′ E R E′

B-Bis U
O′ :ǫ E′ U ¬ϕ

O :ǫ F¬ϕ O ≡R,ϕ O′

I-Bis
O ∼ǫ O

′

Proof. Most of the work to prove the rules was actually done proving lemmas in the previous

subsection.

For rule B-BisG we start by noticing that E ∧Gφ is a compatible event. We can decompose

the set of traces created by A | O and A | O′ and verifying E ∧Gφ (resp. E′ ∧Gφ) into (distinct)

classes of equivalences of a finite number of executions σ1, . . . , σm.
Pr[A | O : E ∧ Gφ] =

∑

i=1..m Pr[A | O : CO(ρi)]

=
∑

i=1..m Pr[A | O′ : CO′(ρi)] (1)

= Pr[A | O′ : E′ ∧ Gφ] (2)

To justify (1), we can apply first item of lemma III.12 to CO(σi). (2) follows from the

compatibility property of the events: the same classes of executions verify E ∧ Gφ and E′ ∧ Gφ.

For rule B-Bis U we perform a similar kind of analysis and decompose the set of executions

verifying E U (¬φ) into disjoint classes represented by η1, . . . , ηm. We then apply the second

item of lemma III.12. It provides:
Pr[A | O : E U ¬φ] =

∑

i=1..m Pr[A | O : CO(ηi)]

=
∑

i=1..m Pr[A | O′ : CO′(ηi)] (1)

= Pr[A | O′ : E′ U ¬φ] (2)

Again, compatibility implies that the same classes of traces verify E U (¬φ) and E′ U (¬φ).

Finally, the third rule follows from the equalities between probabilities shown above.

Indeed,
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Pr[A | O : r = true] − Pr[A | O′ : r = true]

= Pr[A | O : r = true ∧ Gφ] + Pr[A | O : r = true ∧ F¬φ]

−Pr[A | O′ : r = true ∧ Gφ] − Pr[A | O′ : r = true ∧ F¬φ]

= Pr[A | O : r = true ∧ F¬φ] − Pr[A | O′ : r = true ∧ F¬φ]

which implies |Pr[A | O : r = true] − Pr[A | O′ : r = true]| ≤ Pr[A | O : F¬φ] and allows

to conclude to I-Bis.

�

III.4.3 — Examples of Use

We provide here the justifications of steps missing in proofs of ElGamal properties which can

be obtained by application of a bisimulation rule.

Confidentiality of ElGamal. We present the bisimulation argument for the first trans-

formation of systems necessary to prove confidentiality of the ElGamal encryption scheme.

We recall the initialization oracles of systems CElGamal and CElGamal′ in the table below.

Finalization oracles coincide.

ImpCElGamal(oI)(_, _) = ImpCElGamal′(oI)(_, _) =

g ← U(G); g ← U(G);

α ← U([0..(q − 1)]); α ← U([0..(q − 1)]);

β ← U([0..(q − 1)]); β ← U([0..(q − 1)]);

µ ← U([0..(q − 1)]); µ ← U([0..(q − 1)]);

return (g, gα, gβ, gµ.gα.β) return (g, gα, gβ, gµ)

We define an equivalence relation R between states m, m′ as follows:

— if m, m′ ∈ MCElGamal or m, m′ ∈ MCElGamal′ , m R m′ iff m = m′

— if m ∈ MCElGamal and m′ ∈ MCElGamal′ m R m′ iff m.α = m′.α, m.β = m′.β and m.µ +

m.α ∗ m.β = m′.µ.

We can then verify that CElGamal ≡R,true CElGamal′. We let E be the event r = gµ,

while E′ denotes r = gµ.(gα.β)−1. To apply rule B −BisG, we still have to check compatibility

of E ∪ E′ with R, i.e. that given two states m ∈ MCElGamal and m′ ∈ MCElGamal′ in relation

by R, E holds in state m iff E′ holds in state m′, which is obvious by the definition of the

relation.

The rule yields the following proof, which, up to two straightforward applications of rule

UR to introduce and remove conjunctions with Gtrue, fills in the gap left in the confidentiality

proof of ElGamal:

CElGamal′ :ǫ E′ ∧ Gtrue CElGamal ≡R,true CElGamal′ E′ R E
B-BisG

CElGamal :ǫ E ∧ Gtrue

This concludes the proof of confidentiality, for which a proof tree summing all the steps

can be found in VII.1.

ROR-plaintext Security of ElGamal. The statement left aside involves systems Interm

and RElGamal whose state consist in variables α, β, r and implementaions of oracles are as

follows:
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Interm RElGamal

ImpInterm(oI)(_, _) : ImpRElGamal(oI)(_, _) :

α ← U([0..(q − 1)]); α ← U([0..(q − 1)]);

β ← U([0..(q − 1)]); β ← U([0..(q − 1)]);

r := λ; r := λ;

return gα return gα

E(gµ, m) : E(gµ, m) :

if r = λ then if r = λ then

r ← U([0..(q − 1)]); r ← U([0..(q − 1)]);

return (gβ , grgµ) return (gβ, gα.βgr)

else else

return λ return λ

We want to establish their 0-indistinguishability. We exhibit an equivalence relation R

between both systems based on a similar idea to the relation we use above for confidentiality.

Indeed, states m, m′ are in relation if:

— m, m′ ∈ MInterm or m, m′ ∈ MRElGamal, m R m′ iff m = m′

— if m ∈ MInterm and m′ ∈ MRElGamal m R m′ iff m.α = m′.α, m.β = m′.β and m.r =

m′.r = λ or m.r Ó= λ ∧ m′.r Ó= λ.

Applying I-Sub results in:

Interm :0 F¬true Interm ≡R,true RElGamal
I-Sub

Interm ∼0 RElGamal

To complete the argument, one needs to apply rule Fail to obtain a proof of Interm :0 F¬true

in CIL.

Examples of use of bisimulation rules where the bisimulation is not perfect can be found

in chapter IV.

III.5 Determinization

While capturing a vast number of transformations on oracle systems, bisimulation up to

relations are useless for some kind of moves involving complex modifications of the distributions

yielded on traces. Indeed, the notion of bisimulation up to requires a conservation of

probabilities at each step. Even the possibility of grouping states through an equivalence

relation cannot stretch the concept enough to encompass early or belated drawing of elements.

However, the frequent use of these latter arguments, commonly referred to as “lazy” or “eager

sampling”, demands that our system provides a formal treatment for those.

III.5.1 — Determinization of a System by Another

The concept which we introduce is inspired from an automata determinization technique.

It is based on the possibility to decompose states of a system into two components, and to

exhibit a distribution - say γ - allowing to obtain the second component given the first one.

We consider two oracle systems O and O′, and assume that states m′ ∈ MO′ can be seen as

pairs (m, m′′) ∈ MO × M′′
O. We consider an exchange (o, q, a) and states m1 and m2 such
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that Pr[ImpO(o)(q, m1) = (a, m2)] = p1. We must relate p1 with Pr[ImpO′(o)(q, (m1, m′′
1)) =

(a, (m2, m′′
2))] for some states m′′

1 and m′′
2. When m′′

2 is fixed, we denote this last probability

by p2(m′′
1).

m1 m′′
1

Pr[γ(m1) = m̃1
′′]

Pr[γ(m1) = m′′
1]

m̃1
′′

Pr[γ(m1) = m′′
1]

m′′
2

m1
′′

m2

Pr[ImpO′(o)(q, (m1, m1
′′)) = (a, (m2, m′′

2))]

Pr[ImpO′(o)(q, (m1, m′′
1)) = (a, (m2, m′′

2))]

Pr[γ(m2) = m′′
2]

Pr[ImpO(o)(q, m1) = (a, m2)]
Pr[ImpO′(o)(q, (m1, m̃1

′′)) = (a, (m2, m′′
2))]

Figure III.5 – Two Ways to End Up in State (m2, m′′

2)

The intuition behind determinization is illustrated in figure III.5. The idea is that there

are two ways to compute the probability to end up in state (m2, m′′
2) for a fixed m′′

2 knowing

that the step starts with a state of first component m1. The first possibility is to perform the

exchange in O and then draw m′′
2 according to γ. In the figure, it corresponds to going down

first and then right. A second way is to look at all possible m′′
1 which γ map to m1 and then

perform the exchange in O′. This is, in the figure, pictured by paths going from left to right

and then downward. Intuitively, imposing the equality between these two ways of computing

probabilities is going to compel the same equality to hold for steps, which in turn propagates

to traces. The formalization of these insights is as follows.

Definition (System O Determinizes System O′). Let O and O′ be compatible oracle

systems. O determinizes O′ by distribution γ : MO → D(M′′
O), written O ≤det,γ O′, iff firstly

MO × M′′
O = MO′ , secondly, there exists m̄′′

O such that (m̄O, m̄′′
O) = m̄′

O and γ(m̄O) = δm̄′′

O
, and

lastly for all o ∈ NO, q ∈ In(o), a ∈ Out(o), m1, m2 ∈ MO and m′′
2 ∈ M′′

O:

Pr[γ(m2) = m′′
2] p1 =

∑

m′′

1 ∈M′′

O

Pr[γ(m1) = m′′
1] p2(m′′

1)

where:
p1 = Pr[ImpO(o)(q, m1) = (a, m2)]

p2(m′′
1) = Pr[ImpO′(o)(q, (m1, m′′

1)) = (a, (m2, m′′
2))]

�

Example 8. As an example, we choose the simplest possible case of eager sampling. We

consider oracle systems O and O′ such that states of O contain variable r, while those of O′

contain variable r and r′. Both variables take values in bitstrings of length l. Initial states

are m̄O for O and (m̄O, m̄′′
O) for O′. The oracles given in the following table:
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O :

ImpO(oI)(_, _) = ImpO(o)(_, m) =

r := λ; if r = λ then

return λ r ← U(l);

endif

return r

O′ :

ImpO′(oI)(_, _) = ImpO′(o)(_, m) =

r′ ← U(l); r := r′;

r := λ; return r′

return λ

We choose distribution γ mapping m̄O to m̄′′
O with probability 1, states of the form [r Ô→ λ]

to [r′ Ô→ r′
0] with probability 1

2l , and states of the form [r Ô→ r0] to [r′ Ô→ r0] with probability

1.

Let us justify that O ≤det,γ O′ by checking that the equation on probabilities holds. For

the initialization oracle, if we write the only possibility for left and right terms to be non-null,

we obtain:

Pr[γ([r Ô→ λ]) = [r′ Ô→ r′
0]] Pr[ImpO(oI)(_, m̄O) = (λ, [r Ô→ λ])] =

Pr[γ(m̄O) = m̄′′
O] Pr[ImpO′(oI)(_, (m̄O, m̄′′

O)) = (λ, ([r Ô→ λ], [r′ Ô→ r′
0]))]

According to the definition of γ, the left term is worth 1/2l and so is the right term.

As for the other oracle, we have to verify that for any r0, r′
0 and a0 we have:

Pr[γ([r Ô→ r0]) = [r′ Ô→ r′
0]] Pr[ImpO(o)(_, [r Ô→ r1]) = (a0, [r Ô→ r0])] =

∑

r′′

0
Pr[γ([r Ô→ r1]) = [r′ Ô→ r′′

0 ]].

Pr[ImpO′(o)(_, ([r Ô→ r1], [r′ Ô→ r′′
0 ])) = (a0([r Ô→ r0], [r′ Ô→ r′

0]))]
where r1 can be either λ or a value of positive length.

In any case, the only term in the sum is for r′′
0 = r′

0 (otherwise the second probability is

null). We now verify the equality when r1 has null length first, and then when it is of length l.

For r1 = λ the previous equation yields:
Pr[γ([r Ô→ r0]) = [r′ Ô→ r′

0]] Pr[ImpO(o)(_, [r Ô→ λ]) = (a0, [r Ô→ r0])] =

Pr[γ([r Ô→ λ]) = [r′ Ô→ r′
0]].

Pr[ImpO′(o)(_, ([r Ô→ λ], [r′ Ô→ r′
0])) = (a0([r Ô→ r0], [r′ Ô→ r′

0]))]

Now the left term is non-null iff r0 = r′
0 for the first probability and r0 = a0 for the second

one. The right term requires the same conditions for the second probability to be positive.

After simplification, we again obtain 1/2l on both sides.

Finally, when r1 is of positive length, we have to check
Pr[γ([r Ô→ r0]) = [r′ Ô→ r′

0]] Pr[ImpO(o)(_, [r Ô→ r1]) = (a0, [r Ô→ r0])] =

Pr[γ([r Ô→ r1]) = [r′ Ô→ r′
0]].

Pr[ImpO′(o)(_, ([r Ô→ r1], [r′ Ô→ r′
0])) = (a0, ([r Ô→ r0], [r′ Ô→ r′

0]))]

Left term still requires r0 = r′
0 and r0 = a0 to be non-null, while the right term is positive

iff r1 = r′
0 and a0 = r′

0 = r0. In conclusion, the terms are either both null or both worth 1.

♦

III.5.2 — Rules Using Determinization

Before stating rules, we proceed to the proof of a lemma formally linking probabilities of

partial executions in both systems. We define a projection function π from A | O′-partial
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executions to A | O-partial executions by extending the projection from MO × M′′
O to MO to

executions.

Informally, we can foresee that if we consider a partial execution η in A | O finishing with

state m, we have to gather in a set all partial executions in A | O′ finishing with state (m, m′′)

for a given m′′ and projecting to η. Then, from the equation imposed for one query by the

definition of determinization, we can extrapolate that the set of A | O′-partial executions

weighs the same probability as trace η multiplied by the probability that m is mapped to m′′

by γ. This is proven by the lemma below.

Lemma III.14. Let O and O′ be such that O ≤det,γ O′, and let η be a partial O-execution:

η = (m̄O, m̄A)
x1−→ . . .

(o,q,a)
−→ (m, ma). For every O-adversary A and every m′′ ∈ M′′

O:

Pr(A|O : η)Pr[γ(m) = m′′] =
∑

η′|π(η′)=η
Last(η′)=((m,m′′),ma)

Pr(A|O′ : η′)

where τ ′ is any partial O′-execution.

Proof. The proof is by induction on the length of partial executions.

If η is a step σ, then we can write σ = (m̄O, m̄A)
(oI,q,a)
−→ (m, ma). Let σ′ be a candidate

in the sum. Then there exists m′′
1 such that σ′ = ((m̄O, m′′

1), m̄A)
(oI,q,a)
−→ ((m, m′′), ma). The

definition of determinization provides:

Pr[A | O : σ] Pr[γ(m) = m′′] =
∑

m′′

1 ∈M′′

O

Pr[γ(m̄O) = m′′
1] p2(m′′

1)

where p2(m′′
1) = Pr[A | O′ : σ′]. Since γ(m̄O) = δm̄′′

O
, there is just one term in the sum, with

weight 1. It yields our result:

Pr[A | O : σ] Pr[γ(m) = m′′] = Pr[((m̄O, m̄′′
O), m̄A)

(oI,_,a)
−→ ((m, m′′), ma)]

We now continue with the induction step. We consider an execution η · σ, which we

decompose as follows: η = (m̄O, m̄A) −→ . . . −→ (µ, µa) and (µ, µa)
(o,q,a)
−→ (m, ma).

Pr[A|O : η · σ] Pr[γ(m) = m′′]

= Pr[A|O : η] Pr[A|O : σ] Pr[γ(m) = m′′]

= Pr[A|O : η]
∑

m′′

1
Pr[γ(µ) = m′′

1] Pr[A|O′ : ((µ, m′′
1), µa)

(o,q,a)
−→ ((m, m′′), ma)]

by applying determinization definition to last terms

=
∑

m′′

1
(Pr[γ(µ) = m′′

1] Pr[A|O : η]). Pr[A|O′ : ((µ, m′′
1), µa)

(o,q,a)
−→ ((m, m′′), ma)]

reorganizing terms

=
∑

m′′

1

∑

η′|π(η′)=η
Last(η′)=((µ,m′′

1 ),µa)

Pr[A|O′ : η′] Pr[A|O′ : ((µ, m′′
1), µa)

(o,q,a)
−→ ((m, m′′), ma)]

using the induction hypothesis on τ

=
∑

η′·σ′ | π(η′·σ′)=η·σ,
Last(η′·σ′)=((m,m′′),ma)

Pr[A | O′ : η′ · σ′]

and we can conclude.

�

We now present the set of rules formalizing the intuition provided by the previous lemma.
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Given an event E defined on O-traces, E ◦ π is the event on O′-traces which is defined by

E ◦ π(τ ′) = true iff π(τ ′) verifies E, where τ ′ is any O′-trace.

Lemma III.15. We consider two compatible oracle systems O and O′. The following rules are

sound:

O ≤det,γ O′ O :ǫ E
B-Det-Right

O′ :ǫ E ◦ π

O ≤det,γ O′ O′ :ǫ E ◦ π
B-Det-Left

O :ǫ E

O ≤det,γ O′

I-Det
O ∼0 O′

Proof. Pretty much all the work has already been done by proving lemma III.14, which

immediately results in Pr(A|O : E) = Pr(A|O′ : E ◦ π) for every O-event E and adversary A.

In turn, this equality results in all three rules cited above. �

III.5.3 — Example of Use of Determinization

The leftover step of the proof of ROR-plaintext security of ElGamal cipher scheme is exactly the

same as the simple determinization example developed after the definition. As a consequence,

we choose to provide details for another example: we prove that we can draw results of random

oracles in advance without it having any observable influence. A proof tree summarizing the

ElGamal security proof can be found in VII.1.

We start by introducing a standard specification for random oracles.

Definition (Functional Random Oracle). We say that oracle H in O is a functional

random oracle if oracle memories contain a list LH taking values in XchH initialized to the

empty list by the initialization oracle, and the implementation of H is as follows:

ImpO(H)(x) = if x ∈ dom(LH) then

return LH(x)

else h ← U(n)

LH := LH :: (x, h);

return h

endif

where n is the length of outputs of H. �

In our example, we consider two oracle systems. First, system O has two functional

random oracles H and G (of respective output length n and l) in addition to its initialization

and finalization oracles. This latter has input type Res = Bool and does nothing.

Moreover, we define system O′, compatible with O, but with an additional list LH′ in the

state, and in which oracles H and G are implemented by:
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ImpO′(G)(x) = if x ∈ dom(LG) then return LG(x)

else g ← U(l); h ← U(n);

LG := LG :: (x, g);

LH′ := LH′ :: (g, h);

return g

endif

ImpO′(H)(x) = if x ∈ dom(LH) then return LH(x)

elsif x ∈ dom(LH′) then

LH := LH :: (x, LH′(x));

return LH′(x)

else h ← U(n);

LH := LH :: (x, h);

return h

endif

System O is determinizing O′ with distribution γ mapping (LH, LG) to (LH, LG , LH′)

where LH′ has for domain the range of list LG , and for x ∈ dom(LH′), if x ∈ dom(LH) and

images coincide (i.e. LH(x) = LH′(x)), otherwise images are distributed uniformly at random.

We can apply rule I − Det to deduce that systems yield identical distributions:

O ≤det,γ O′

I-Det
O ∼0 O′

III.6 Backward Bisimulation up to Relations

The previously introduced notions of forward bisimulation up to and determinization are

powerful concepts which allow us to capture a lot of reasonings. However, we meet a limitation

of these tools when we try to capture arguments meant to tamper with values computed in

past steps instead of changing the way we compute values in the current step or in future steps.

To the cryptographer, it might evocate non-interference properties - the idea that no matter

what the high values are worth, it is transparent to the adversary. To a concurrent system

analysis specialist, it can bring up the typical fall of forward bisimulation, where reasoning is

performed on the state in which we end up, but is useless to reason on the state from where

we come. In [Buc99], Buchholz addresses this issue on stochastic automata by formalizing and

studying exact performance equivalence. This latter notion has inspired the definition which

we propose for backwards bisimulation up to. Our formal definition mimics the way in which

we formalized forward bisimulation: we introduce a notion of stability and compatibility, but

impose hypotheses on classes of states from which we start the exchange with an oracle.

Let us consider two compatible oracle systems O and O′. For every oracle name, we let

MO+O′ be MO + MO′ and for every o ∈ NO, we let ImpO+O′(o) be the disjoint sum of ImpO(o)

and ImpO′(o).

Definition (Backwards Bisimulation Up to Relation for Oracle Systems). Let R ⊆

MO+O′ × MO+O′ be an equivalence relation and φ be a predicate. O and O′ are in backwards

bisimulation with R up to φ iff the initial states are alone in their equivalence class and for

all m1
(o,q,a)
−→ >0 m2 and m′

2 such that m2 R m′
2 we have:
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— stability on an equivalence class: for all m′
1 ∈ MO+O′ such that m′

1
(o,q,a)
−→ >0 m′

2 and

m′
1 R m1,

φ((o, q, a), m1, m2) ⇔ φ((o, q, a), m′
1, m′

2)

— backwards compatibility: if φ((o, q, a), m1, m2)

Pr[ImpO+O′(o)(q, C(m1)) = (a, m2)] = Pr[ImpO+O′(o)(q, C(m1)) = (a, m′
2)]

where C(m1) is the equivalence class of m1 under R, and

Pr[ImpO+O′(o)(q, C(m1)) = (a, m2)] =
∑

m′

1 R m1

Pr[ImpO+O′(o)(q, m′
1) = (a, m2)].

We write O ≡b
R,φ O′. �

We define a projection AdvT on partial executions which erases all oracle memories (only

exchanges and adversarial memories are left). It defines the set of partial adversarial traces,

for which we often use meta-variable α.

In the remaining of this subsection, we consider given systems O and O′ and a backwards

bisimulation up to φ relation, all of which satisfy the definition above. The fundamental

property of backwards bisimulation is captured by the following lemma. It mostly states that

the probability that a partial execution ends up in states (m, ma) is constant on equivalence

classes: it does not depend on the actual class representative m.

Lemma III.16. Let α be a partial adversarial trace of length k α = m0
a

x1−→ m1
a

x2−→ . . .
xk−→ mk

a.

Then, for all exchange xk+1, all adversary memory mk+1
a and for all mk+1, m′

k+1 ∈ MO such

that mk+1 R m′
k+1:

∑

η∈PExec(A|O) | AdvT (η)=α

Gφ(T (η
xk+1
−→ (mk+1,mk+1

a )))

Pr[A | O : η
xk+1
−→ (mk+1, mk+1

a )]

=
∑

η∈PExec(A|O) | AdvT (η)=α

Gφ(T (η
xk+1
−→ (m′

k+1,mk+1
a )))

Pr[A | O : η
xk+1
−→ (m′

k+1, mk+1
a )]

And if mk+1 ∈ MO, m′
k+1 ∈ MO′ such that mk+1 R m′

k+1:
∑

η∈PExec(A|O) | AdvT (η)=α

Gφ(T (η
xk+1
−→ (mk+1,mk+1

a )))

Pr[A | O : η
xk+1
−→ (mk+1, mk+1

a )]

=
∑

η∈PExec(A|O′) | AdvT (η)=α

Gφ(T (η
xk+1
−→ (m′

k+1,mk+1
a )))

Pr[A | O′ : η
xk+1
−→ (m′

k+1, mk+1
a )]

Proof. Proof by induction of the first equality.

Initialization (k=0):

Only partial executions starting in (m̄, m̄A) have a positive probability of occurrence. Hence,

we look at adversarial partial traces of the form m̄A
x1−→ m1

a, for an exchange x1. Given two

memories m1 and m′
1 in relation (i.e. m1 R m′

1) we have to prove that if φ(x1, m̄, m1):

Pr[A | O : (C(m̄), m̄A)
x1−→ (m1, m1

a)] = Pr[A | O : (C(m̄), m̄A)
x1−→ (m′

1, m1
a)]

which is true by compatibility.

Let us proceed with the induction step:

Let mk+1 R m′
k+1. We let Set(O) be the set of partial traces η and state mk such that
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trace η
xk−→ (mk, mk

a)
xk+1
−→ (mk+1, mk+1

a ) ∈ PExec(A | O), AdvT (η
xk−→ (mk, mk

a)) = α and

Gφ(T (η
xk−→ (mk, mk

a)
xk+1
−→ (mk+1, mk+1

a ))).

We have:
∑

η,mk∈Set(O)

Pr[A | O : η
xk−→ (mk, mk

a)
xk+1
−→ (mk+1, mk+1

a )]

=
∑

η,mk∈Set(O)

Pr[A | O : η
xk−→ (mk, mk

a)] Pr[A | O : (mk, mk
a)

xk+1
−→ (mk+1, mk+1

a )]

According to the induction hypothesis, the first term is constant on equivalence classes.

As a result, if we choose mi
k to be a representative of the equivalence class of mk, then we can

write that:
=

∑

mi
k

∈MO/R

η∈Set(mi
k

,O)

Pr[A | O : η
xk−→ (mi

k, mk
a)](

∑

mk | mk R mi
k

φ(xk+1,mk,mk+1)

Pr[A | O : (mk, mk
a)

xk+1
−→ (mk+1, mk+1

a )])

where η ∈ Set(mi
k,O) iff η

xk−→ (mi
k, mk

a) ∈ PExec(A | O), AdvT (η
xk−→ (mi

k, mk
a)) = α and

Gφ(T (η
xk−→ (mi

k, mk
a)).

Consequently, if we can replace our right term by the same term featuring m′
k+1 in place

of mk+1, we can conclude. We thus examine the right term, for a given equivalence class, and

apply compatibility:
∑

mk | mk R mi
k

φ(xk+1,mk,mk+1)

Pr[A | O : (mk, mk
a)

xk+1
−→ (mk+1, mk+1

a )]

= Pr[A | O : (C(mi
k), mk

a)
xk+1
−→ (mk+1, mk+1

a )]

= Pr[A | O : (C(mi
k), mk

a)
xk+1
−→ (m′

k+1, mk+1
a )]

=
∑

mk | mk R mi
k

φ(xk+1,m′

k
,m′

k+1)

Pr[A | O : (mk, mk
a)

xk+1
−→ (m′

k+1, mk+1
a )]

This allows to conclude.

As for the proof of the second equality, it is very similar. Indeed, the initialization step

follows from the fact that the initial states are alone in their equivalence class.

The induction step is done by performing the same factorization on equivalence classes

(using the lemma we have just proved), and if we let m̃i
k be a representative of the equivalence

class of mi
k in MO′ ,

∑

mi
k

∈MO/R

η∈Set(mi
k

,O)

Pr[A | O : η
xk−→ (mi

k, mk
a)](

∑

mk | mk R mi
k

φ(xk+1,mk,mk+1)

Pr[A | O : (mk, mk
a)

xk+1
−→ (mk+1, mk+1

a )])

=
∑

m̃i
k

∈M
O′ /R

η′∈Set(m̃i
k

,O′)

Pr[A | O′ : η′ xk−→ (m̃i
k, mk

a)](
∑

m′

k
| m′

k
R m̃i

k

φ(xk+1,m′

k
,m′

k+1)

Pr[A | O′ : (m′
k, mk

a)
xk+1
−→ (m′

k+1, mk+1
a )])

if we apply the induction hypothesis on the right term and compatibility on the left term.

The conclusion follows.

�

Definition (Compatibility with Adversarial Projection). An event is said to be compatible

with adversarial projection if it has a constant truth value on all partial executions projecting

to the same adversarial partial trace. �

These are events which only depend on what the adversary actually sees. A typical such

event is r = true used in the indistinguishability advantage. We now show how the previous

lemma transfers to systems in backwards bisimulation.
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Lemma III.17 (Conservation of Probability of Compatible Events). Let E be an event

compatible with adversarial projection. Then,

Pr[A | O : E ∧ Gφ] = Pr[A | O′ : E ∧ Gφ]

As a corollary,

Pr[A | O : E U ¬φ] = Pr[A | O′ : E U ¬φ]

Proof. We define the set AEx of adversarial partial traces α for which one of the partial

executions projecting in α satisfy E ∧ Gφ. The fact that E is compatible with adversarial

projection allows to say that for any α ∈ AEx, all partial executions projecting on α satisfy

E ∧ Gφ. We can thus use the equality we have just proven.

Pr[A | O : E ∧ Gφ] =
∑

α∈AEx
η∈Exec(A|O) | AdvT (η)=α

E∧Gφ(T (η))

Pr[A | O : η]

=
∑

α∈AEx
η∈Exec(A|O′) | AdvT (η)=α

E∧Gφ(T (η))

Pr[A | O′ : η]

= Pr[A | O′ : E ∧ Gφ]

As for the corollary, it mostly follows from the previous equality. Indeed, if α, m′ and m′
a

are fixed, and if m denotes the oracle memory in which η ends, Π1(Last(η)).
∑

α∈AEx
η∈Exec(A|O) | AdvT (η)=α

Gφ(T (η))

Pr[A | O : η
x

−→ (m′, m′
a) ∧ ¬φ(x, m, m′)]

= 1 −
∑

α∈AEx
η∈Exec(A|O) | AdvT (η)=α

Gφ(T (η))

Pr[A | O : η
x

−→ (m′, m′
a) ∧ φ(x, m, m′)]

= 1 −
∑

α∈AEx
η∈Exec(A|O′) | AdvT (η)=α

Gφ(T (η))

Pr[A | O′ : η
x

−→ (m′, m′
a) ∧ φ(x, m, m′)]

=
∑

α∈AEx
η∈Exec(A|O′) | AdvT (η)=α

Gφ(T (η))

Pr[A | O′ : η
x

−→ (m′, m′
a) ∧ ¬φ(x, m, m′)]

The corollary directly follows from this equality.

�

III.6.1 — Rules Using Backwards Bisimulation

The rules presented in this section mirror those which we have proven for forward bisimulation

up to.

Lemma III.18. Let E be an event compatible with projection on adversarial partial traces.

The following rules are sound:

O :ǫ E ∧ Gφ O ≡b
R,φ O′

B-BackBisG
O′ :ǫ E ∧ Gφ
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O :ǫ E U ¬ϕ O ≡b
R,φ O′

B-BackBis U
O′ :ǫ E U ¬ϕ

O :ǫ F¬φ O ≡b
R,φ O′

I-BackBis
O ∼ǫ O

′

Proof. These rules are consequences of the previous lemma and noticing that r = true is an

event compatible with projection on adversarial executions. �

In addition to the set of rules dealing with one kind of bisimulation up to at a time, we

need a rule to compose them. Indeed, if we are to use them one after the other with the same

condition φ, the rules that we have already proven compel us to bound twice the probability

that φ happens, once in O and then in its bisimilar counterpart. But both these probabilities

are equal and we would count twice the same bad simulation event, augmenting artificially by

a factor of two the indistinguishability bound in our conclusion. To tackle this problem, we

propose the following rule.

Lemma III.19. The following rule is sound:

O :ǫ F¬φ O ≡b
R,φ O′′ O′′ ≡R′,φ O′

I-2-Bis
O ∼ǫ O

′

Proof. The key lies in using the same predicate φ. From previous rules which we have shown,

we have Pr[A | O : r = true ∧ Gφ] = Pr[A | O′′ : r = true ∧ Gφ] and Pr[A | O′ : r = true ∧ Gφ] =

Pr[A | O′′ : r = true ∧ Gφ].

These equalities allow us to write:
Pr[A | O : r = true] − Pr[A | O′ : r = true]

= Pr[A | O : r = true] − Pr[A | O′′ : r = true]

−(Pr[A | O′ : r = true] − Pr[A | O′′ : r = true])

= Pr[A | O : r = true ∧ F¬φ] − Pr[A | O′′ : r = true ∧ F¬φ]

−(Pr[A | O′ : r = true ∧ F¬φ] − Pr[A | O′′ : r = true ∧ F¬φ])

= Pr[A | O : r = true ∧ F¬φ] − Pr[A | O′ : r = true ∧ F¬φ]
Consequently,

| Pr[A | O : r = true] − Pr[A | O′ : r = true]| ≤ max(Pr[A | O : F¬φ], Pr[A | O′ : F¬φ])

Moreover, we have Pr[A | O : F¬φ] = Pr[A | O′′ : F¬φ]

and Pr[A | O′ : F¬φ] = Pr[A | O′′ : F¬φ]

We can conclude to | Pr[A | O : r = true] − Pr[A | O′ : r = true]| ≤ Pr[A | O : F¬φ]. �

An illustration of the use of backwards bisimulation up to is provided in the proof of the

main theorem of chapter VI. Then, backwards bisimulation is crucial to carry out our proof.





Chapter IV

Examples of Proofs in CIL

In this chapter we develop two examples of proofs carried out in CIL: unforgeability of signature

schemes Full-Domain Hash (FDH) and Probabilistic Signature Scheme (PSS). We start by

explaining the formalization in CIL of the cryptographic hypotheses needed to carry out the

proofs, before the presentation of the proofs themselves.

IV.1 Preliminaries

IV.1.1 — Guessing an Output of a Random Oracle

Let ROM(H, k) be the oracle system consisting of the hash oracle H implemented as a

functional random oracle with outputs in {0, 1}k. More precisely, the system has a list LH for

state and implementations of oracles defined by:

Imp(oI)(x) = LH := [ ];

return 1

Imp(H)(x) = if x ∈ dom(LH) then

return LH(x)

else y ← U(k);

LH := LH.(x, y);

return y

endif

Imp(oF)(x) = match r1 : {0, 1}∗ | r2 : {0, 1}k with x;

return Imp(H)(r1)

We want to formalize in our logic that the probability that an adversary exhibits a pair

r1, r2 such that H(r1) = r2, without querying for H(r1), is bounded by 1
2k . The guessing

event is expressed as:

Guess = λ((o, x, _), m, m′). match r1 : {0, 1}∗ | r2 : {0, 1}k with x;

o = oF ∧ m′.LH(r1) = r2 ∧ r1 Ó∈ dom(m.LH)

Moreover, since Guess can only be satisfied when querying oF, applying rule Fail allows

to conclude that ROM(H, k) :1/2k FGuess.
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IV.1.2 — Formalization of One-Wayness

We define an oracle system OW (f) to capture the game played by an adversary when trying

to invert a one-way function. It comprises an initialization oracle that draws matching public

and secret key, an oracle Chall that outputs a randomly sampled challenge for the adversary,

and a finalization oracle that the adversary calls with its candidate pre-image.
ImpOW (f)(oI)(x) = (pk, sk) ← K;

y := λ;

return pk

ImpOW (f)(Chall)(x) = if y = λ then

let y ← U(η) in ;

endif

return y

ImpOW (f)(oF)(x) = return 1

We define the successful inversion of fpk by event FInvert, with predicate Invert defined as:

Invert = λ((o, x, _), m, m′). o = oF ∧ fpk(x) = m.y

We then can state OW :OW (t) FInvert.

IV.1.3 — Macro-rule Up-to-bad

We provide here a macro-rule proving useful in the proof of PSS. It is a generalization of the

“fundamental lemma” of game-playing. The rule that we prove is the following one, where E

and E′ are events compatible with R:

O′ :ǫ E′ O′ :ǫ′ F¬ϕ O′ ≡R,ϕ O E R E′

UpToBad
O :ǫ+ǫ′ E

We present a proof tree to derive this rule in our proof system.

O′ :ǫ E′

UR
O′ :ǫ E′ ∧ Gϕ O′ ≡R,ϕ O E R E′

B − BisG
O :ǫ E ∧ Gϕ

O′ :ǫ′ F¬ϕ O′ ≡R,ϕ O
B − Bis U

O :ǫ′ F¬ϕ
UR

O :ǫ′ E ∧ F¬ϕ
UR

O :ǫ+ǫ′ E

IV.2 FDH

IV.2.1 — Description of the Scheme

We define an oracle system O corresponding to the signature scheme Full-Domain Hash

(FDH) [BR96]. The signature algorithm consists in applying the inverse of a one-way permu-

tation to the hash value of the message to be signed. We denote η the length of bitstrings in

the hash and signature range, and U(η) the uniform distribution on bitstrings of this length.

In our framework, the scheme translates in a system with four oracles named oI, H, S, oF.

States contain variables pk, sk for keys corresponding to the permutation fpk and its inverse

fsk (which we more naturally denote f and f−1 in the sequel) and lists LS and LH to store
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ImpFDH(oI)(x) = (pk, sk) ← K;
LS := [ ];
LH := [ ];
return pk

ImpFDH(H)(x) = if x ∈ dom(LH) then

return LH(x)
else y ← U(η);

LH := LH .(x, y);
return y

endif

ImpFDH(S)(z) = y ← ImpFDH(H)(z);
t := f−1(y);
LS := LS .(z, t);
return t

ImpFDH(oF)(x) = match r1 : {0, 1}∗ | r2 : {0, 1}k with x;
y ← ImpFDH(H)(r1)
return 1

Figure IV.1 – Implementations of Oracles in FDH

queries and answers to corresponding oracles. The implementations of the four oracles are

given in figure IV.1.

This choice of finalization oracle follows from the fact that to verify that a signature (or a

forgery) for r1 is valid, one must draw a value for H(r1) whenever it has not already been

done. The event corresponding to forging a signature can be captured via the following event

Forge, obtained by the conjunction of two events: VSig and Fresh. The first predicate captures

the validity of the signature provided (“m′.LH(r1) = f(r2)”) while the second predicate

captures freshness of the forgery.

VSig (r1, r2) = Fλ((o,q,_),m,m′). o=oF∧q=r1||r2∧m′.LH(r1)=f(r2)

Fresh(r1, r2) = Gλ((o,q,a),_,_). ¬(o=S∧q=r1)

We then define Forge as the event:

∃r1, r2. VSig (r1, r2) ∧ Fresh(r1, r2)

Theorem IV.1. The FDH signature scheme is (k(H).OW (t) + 1
2η )-secure against existential

forgery:

FDH :(k(H).OW (t)+2−η) Forge

Proof Overview. The complete outline of the proof is illustrated by the proof tree in

figure IV.2. The proof starts by splitting the event in two cases, according to whether the

hash value of the message r1 used for the forgery has been asked by the adversary. Intuitively,

if this hash value is not requested by the adversary at some point of the execution, then it

looks random and is thus improbable to guess. This argument is captured in left branch of

the tree. In case the adversary does query H of r1, then we can build another adversary

inverting the underlying one-way permutation f out of it. This is done in the tree at the right.

We have two major changes to perform: first, we have to remove occurences of f−1 from the
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implementations, and then we must replace the answer to the hash query corresponding to

the forged signature by the one-way challenge.



I
V

.2
.

F
D

H
6
1

Fail
ROM(H, η) :2−η Guess Guess ⇒ (Forge ∧ G¬Asked(r1)) ◦ C

UR
ROM(H, η) :2−η (Forge ∧ G¬Asked(r1)) ◦ C

B − Sub
FDH = C[ROM(H, η)] :2−η Forge ∧ G¬Asked(r1)

Right tree

FDH :k(H).OW (t) Forge ∧ FAsked(r1)
UR

FDH :k(H).OW (t)+2−η Forge

Right tree (1):

(∗)

Tree (2)

(∀i, FDH2 :OW (t) Fvsig[i] ∧ Gφs∧φh
)

UR
FDH2 :k(H).OW (t) Forge ∧ FAsked(r1)(∧Gtrue) FDH1 ≡R,true FDH2

B − BisG
FDH1 :k(H).OW (t) Forge ∧ FAsked(r1)(∧Gtrue) FDH ≤det,γ FDH1

B − Det − Right
FDH :k(H).OW (t) Forge ∧ FAsked(r1)

where (∗) is
∨

i=1..k(H)(Fvsig[i] ∧ Gφs∧φh
) ⇒ Forge ∧ FAsked(r1)

Tree (2):

OW (f) :OW (t) Invert (Fvsig[i] ∧ Gφs∧φh
) ◦ C′ ⇒ Invert

UR
OW (f) :OW (t) (Fvsig[i] ∧ Gφs∧φh

) ◦ C′

B − Sub
FDH3 = C′[OW (f)] :OW (t) Fvsig[i] ∧ Gφs∧φh

FDH3 ≡R′,φh∧φs
FDH2

B − BisG
FDH2 :OW (t) Fvsig[i] ∧ Gφs∧φh

Figure IV.2 – Proof Tree For FDH
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IV.2.2 — Details of the Proof

We let Asked(r1) denote step-predicate λ((o, q, a), _, _). (o = H ∧q = r1). The proof naturally

starts with a case split between Forge ∧ G¬Asked(r1) and Forge ∧ FAsked(r1).

When H(r1) has not been queried. In this left part of the tree, the idea is to reduce

success in realizing event Forge ∧ G¬Asked(r1) into success in guessing a hash value, namely

realizing event Guess when interacting system ROM(H, η). We can write FDH as a context

C of ROM , by choosing to decompose states in (pk, sk, LS) ∈ MC and LH ∈ MROM and

choosing for applications:

C→
cI

(x) : return (oI, 1)

C←
cI

(x, (o, q, a)) : (pk, sk) ← K;

LS := [ ];

return pk

C→
H (z) : return (H, z)

C←
H (z, (o, q, a)) : return a

C→
S (z) : return (H, z)

C←
S (z, (o, q, a)) : t := f−1(y);

LS := LS .(z, t);

return t

C→
cF

(x) : match r1 : {0, 1}∗ | r2 : {0, 1}η with x;

return (oF, r1||f(r2))

We then apply rule B − Sub. The idea is, when interacting with the composed system, if

the forgery is successful and r1 has not been signed nor hashed, then H(r1) is equal to f(r2)

and has been successfully guessed by the adversary. Formally, the composition FForge ◦ C

implies FGuess.

When H(r1) has been queried. To eliminate occurences of f−1 in the implementations of

oracles, we proceed in two steps. First, we transform the hash oracle H so that it anticipates

signatures f−1(H(x)) matching the hash queries x it receives. Then, we change the method

of computation of these values: we draw y and update our memory with (f(y), y) rather than

drawing H(x) and updating our memory with (H(x), f−1(H(x))).

Let us provide formal details for the step anticipating the values for signatures of messages

at the moment of the corresponding hash query. We introduce system FDH1, with memories

composed of variables pk, sk and lists LH , LS and Lant
S . Implementations of oracles H and S

are precised in IV.3. The system FDH determinizes system FDH1 for distribution γ mapping

pk, sk and lists LH , LS to a list Lant
sig . As this last list of anticipated signatures is completely

determined by LH and LS , distribution γ is defined as a Dirac distribution providing the list

Lant
sig such that dom(Lant

Sig) = dom(LH)−dom(LS) and ∀x ∈ dom(Lant
Sig), Lant

Sig(x) = f−1(LH(x)).

After that, we consider the system FDH2 obtained from FDH1 by adding an integer

variable j in its state space and using it as a counter for H queries. Formally, we change the

implementation of two oracles of FDH1: the initialization oracle, which now initializes j to 0,

and the hash oracle which is now implemented as follows:
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ImpFDH1
(H)(x) = if x ∈ dom(LH) then

return LH(x)
else y ← U(η);

LH := LH .(x, y);
Lant

S := Lant
S .(x, f−1(y));

return y
endif

ImpFDH1
(S)(x) = if x ∈ dom(LS) then

return LS(x)
elsif x ∈ dom(LH) then

t := Lant
S (x);

Lant
S := Lant

S − (x, t);
LS := LS .(x, t);
return t

else y ← U(η);
LH := LH .(x, y);
LS := LS .(x, f−1(y));
return f−1(y)

endif

Figure IV.3 – Implementations of Oracles in FDH1

ImpFDH2
(H)(x) = if x ∈ dom(LH) then

return LH(x)

else j := j + 1;

y ← U(η);

LH := LH .(x, y);

Lant
S := Lant

S .(x, f−1(y));

return y

endif

System FDH2 is in perfect bisimulation with FDH1, with the equality on the commmon

components of their states as a relation R : FDH1 ≡R,true FDH2. We now have to bound

Forge ∧ FAsked(r1) in system FDH2.

We then apply UR and decompose event FAsked(r1) according to the position i in which r1

is queried to H. More precisely, we choose a formulation of the event suiting our need at the

next step of the proof. Indeed, we define predicates φh and φs capturing respectively that the

i-th query performed to oracle H has never been signed (this is φh) and that it is never signed

afterwards (this is φs). Moreover, we introduce event VSig[i](r1, r2), a modified version of

VSig(r1, r2) where r1 is the i-th element of LH . Formally, we write Forge as the disjunction
∨

i=1..k(H)(Fvsig[i] ∧ Gφs∧φh
) where:

vsig[i]((o, q, _), m, m′) = o = oF ∧ q = r1||r2 ∧ m′.LH(r1) = f(r2) ∧ r1 = dom(m.LH)[i]

φs((o, q, a), m, m′) = (o = S) ∧ ((j ≥ i) ⇒ q Ó= dom(m.LH)[i])

φh((o, q, a), m, m′) = (o = H) ∧ ((j = i − 1 ∧ q /∈ m.LH) ⇒ q /∈ m.LS)

Our next step is a bisimulation-up-to argument. We now modify the system FDH2 to

obtain a system FDH3, which is in bisimulation-up-to φs ∧ φh for the relation R′ consisting
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ImpFDH3
(S)(x) = if x ∈ dom(LS) then

return LS(x)
elsif x ∈ dom(LH) then

t := Lant
S (x);

Lant
S := Lant

S − (x, t);
LS := LS .(x, t);
return t

else y ← U(η);
LH := LH .(x, f(y));
LS := LS .(x, y);
return y

endif

ImpFDH3
(H)(x) = if x ∈ dom(LH) then

return LH(x)
else j := j + 1;

y ← U(η);
if j = i then

LH := LH .(x, y);
Lant

S := Lant
S .(x, λ);

return y
else

LH := LH .(x, f(y));
Lant

S := Lant
S .(x, y);

return y
endif

endif

Figure IV.4 – Implementations of Oracles in FDH3

in imposing equality of states but on the anticipated signature for the i-th query to H. Our

event FForge[i] is compatible with this relation because it does not depend on the value of the

anticipated signature.

We can write this last system FDH3 as a context C′ of system OW (f) as follows:

C→
cI

(x) : return (oI, 1)

C←
cI

(x, (o, q, a)) : LH := [ ];

Lant
S := [ ];

LS := [ ];

return pk

C→
H (z) : return (Chall, z)

C←
H (z, (o, q, a)) : if x ∈ dom(LH) then

return LH(x)

else j := j + 1;

if j = i then

LH := LH .(x, z);

Lant
S := Lant

S .(x, λ);

return z

else

y ← U(η);

LH := LH .(x, f(y));

Lant
S := Lant

S .(x, y);

return y

endif

endif

C→
cF

(x) : match r1 : {0, 1}∗ | r2 : {0, 1}η with x;

return (oF, r2)

Finally, we notice that (Fvsig[i] ∧ Gφs∧φh
) ◦ C′ yields FInvert, which allows us to conclude.
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IV.3 PSS

The Probabilistic Signature Scheme [BR96] (PSS for short) is a generic signature scheme that

transforms any one-way trapdoor permutation f into a secure probabilistic signature scheme,

and has been adopted as part of the PKCS standard. PSS involves three hash functions

H : {0, 1}∗ → {0, 1}k2 , F : {0, 1}k2 → {0, 1}k0 and G : {0, 1}k2 → {0, 1}k1 . These functions

are modeled as functional random oracles. In addition, PSS involves a (public) one-way

permutation fpk and its (private) inverse fsk on bitstrings of length k with k = k0 + k1 + k2.

Keys (pk, sk) are sampled and stored in matching variables by the initialization oracle, and

we refer to fpk as f (resp. to fsk as f−1) in the sequel. Let us describe the algorithms to sign

a message and verify a signature:

— The probabilistic signature oracle computes the signature of a message msg in two steps:

first, it samples uniformly a random value r in {0, 1}k1 ; then, it computes w1 = H(msg||r),

w2 = G(w1) ⊕ r and w3 = F (w1), and returns f−1(w1||w2||w3).

— The signature verification algorithm V takes as input a bitstring bs ∈ {0, 1}k and a message

msg ∈ {0, 1}∗ and checks whether bs is a valid signature for msg. It proceeds in two

steps: first, it computes y = f(bs) and parses it as w = w1||w2||w3 with w1 ∈ {0, 1}k2 ,

w2 ∈ {0, 1}k1 and w3 ∈ {0, 1}k0 ; then it computes r = w2 ⊕ G(w1), and checks whether

w1 = H(msg||r) and w3 = F (w1).

Henceforth, for any bitstring bs ∈ {0, 1}k2+k1+k0 , we denote by r(bs, m) the r-bitstring

computed as in the verification algorithm using hash values stored in memory m.

Formally, PSS is modeled by the oracle system PSS0 with memories consisting in variables

pk and sk and lists LG, LH and LF . As an initial memory, one can choose any memory

(the output of the initialization oracle does not depend on its input memory). System PSS0

comprises six oracles: oI, F, G, H, S and oF. The implementations of F, G and H are those of

functional random oracles. The implementation of the finalization oracle consists in computing

the hash values involved in the verification of the validity of the signature of a given message.

We emphasize that it does not perform this verification, which is only checked in the event

translating a successful forgery. Implementations for initialization, finalization and signature

oracles are provided in figure IV.5.

Forgery is modeled by the event Forge stating that the adversary has returned a pair

(r1, r2) that is a valid signature, and that has not been produced by the signing oracle:

∃r1, r2. VSig (r1, r2) ∧ Fresh(r1, r2)

where VSig (r1, r2) and Fresh(r1, r2) are the following events:

VSig (r1, r2) = Fλ((o,q,_),m,m′). o=oF∧q=r1|r2∧V(R1,R2,m′)

Fresh(r1, r2) = Gλ((o,q,a),_,_). ¬(o=S∧q=r1∧a=r2)

Theorem IV.2. PSSis ǫ-secure w.r.t. existential forgery against chosen message attack, where

ǫ(k, t) = 1
2k2

+ (k(S) + k(H))(k(S)

2k1
+ k(F )+k(G)+k(H)+k(S)

2k2
) + OW (t):

PSS0 :ǫ Forge

Proof Overview. The adversary submits a candidate to forgery by querying the finalization

oracle on a bitstring we denote r1||r2. The proof starts with a case analysis on whether
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ImpPSS0
(oI)(x) = (pk, sk) ← K

LH := [ ];
LG := [ ];
LF := [ ];
return pk

ImpPSS0
(S)(x) : r ← {0, 1}k1 ;

w1 ← ImpPSS0
(H)(x||r);

w2 ← ImpPSS0
(G)(w1);

w3 ← ImpPSS0
(F )(w1);

return f−1(w1||(w2 ⊕ r)||w3)

ImpPSS0
(oF)(x) = match r1 : {0, 1}∗ | r2 : {0, 1}η with x;

y := f(r2);
match w1 : {0, 1}k2 | w2 : {0, 1}k1 | w3 : {0, 1}k0 with y;
r∗ := w2 ⊕ ImpPSS0

(G)(w1);
w∗

1 := ImpPSS0
(H)(r1||r∗);

w∗
3 := ImpPSS0

(F ); (w1)
return 1

Figure IV.5 – Implementations of Oracles in PSS0

the hash query to H necessary to construct the signature r2 of r1 has been performed by

the adversary. If this hash query has not been performed, we use that the hash function is

modeled as a random oracle to bound the probability of success of the adversary. This the

right tree on figure IV.6. However, if the hash query is issued, then the idea is to replace

the answer to hash queries by values related to a challenge to invert the underlying one-way

function. As a result, a successful forgery yields a valid pre-image.

IV.3.1 — Details of the Proof

First Step. Formally, if m is the input memory of the finalization oracle and m′ its output

memory, then this corresponds to verifying whether r1||r(r2, m′) belongs to the list m.LH .

This yields two events Forge1 and Forge2 where Forgei is defined as

∃r1, r2. VSigi (r1, r2) ∧ Fresh(r1, r2)

and where VSigi (r1, r2) are the following events:

VSig1 (r1, r2) = Fλ((o,q,_),m,m′). o=oF∧q=r1|r2∧V(R1,R2,m′)∧r1||r(r2,m′)/∈m.LH

VSig2 (r1, r2) = Fλ((o,q,_),m,m′). o=oF∧q=r1|r2∧V(R1,R2,m′)∧r1||r(r2,m′)∈m.LH

The first step of the proof is to apply the union rule to perform the case split.

Right Tree. To apply B −Sub we define a context C of system ROM(H, k2), and see PSS0

as the composition of C and ROM(H, k2). The idea is that the inner oracle H plays the role

that H plays in PSS0.

A memory of C has the form (pk, sk, LG, LF ). Its initial memory is the same as the

projection on these variables of the initial memory of PSS0. The procedures of C are named

cI, cF, F , G, H and S. The implementations of the matching functions are provided in
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Left Tree
PSS0 :ǫ1+OW (t) Forge2

Fail
ROM(H, k2) :2−k2 FGuess Forge1 ◦ C ⇒ FGuess

UR
ROM(H, k2) :2−k2 Forge1 ◦ C

B − Sub
PSS0 = C[ROM(H, k2)] :2−k2 Forge1

UR
PSS0 :ǫ Forge

Left Tree:

PSS1 ≡R,ϕ PSS2
Fail

PSS2 :ǫ1 F¬ϕ

OW :OW (t) Invert
B − Sub

PSS2 :OW (t) Forge2
UpToBad

PSS1 :ǫ1+OW (t) Forge2
B − Det − Right

PSS0 :ǫ1+OW (t) Forge2

Figure IV.6 – Proof Tree of Scheme PSS

figure IV.7 (except for those associated to F , very similar to those of G where LF takes place

of LG and k0 takes place of k1). Procedures F and G do not use any oracle of ROM(H, k2);

they are implemented with input procedures outputting queries to the dummy oracle. However,

H forwards its queries to H, and forwards back the answer it gets. Finally, on a query x, the

signature oracle draws a seed r and forwards to H the query (x||r), instead of computing

H(x||r). Afterwards, on input an answer a for H(x||r), C←
S resumes the computation of the

signature of x.

We know that ROM(H, k2) :2−k2 FGuess. The event FGuess is captured by the issue to the

finalization oracle of a query of the form r1||H(r1). We want FGuess to be realized when

Forge1 is. If Forge1 is verified for r||r′, then a valid signature has been issued and hence, if we

denote f(r′) = w1||w2||w3 then we have H(r||r(r||r′)) = w1. Consequently, the finalization

procedure of the context does everything the finalization oracle of PSS0 does but computing

the value of H on x||r∗. Then, it forwards r||r(r||r′) as a guess to the internal finalization

oracle of ROM(H, k2) to realize FGuess. As a result of this choice, we have Forge1 ◦C ⇒ FGuess.

Left Tree. The first step in this left tree is to use a determinization argument to allow the

hash oracle H to anticipate values for the other hash functions: every time it is queried on

some fresh value x and answers a value w1, H also samples values for F (w1) and G(w1) if they

do not already exist, which correspond to hash queries made to F and G during a signature

computation.

The formalization of this proof step requires the definition of oracle system PSS1, which

is determinized by PSS0. In addition to those present in a state of PSS0, states of PSS1 use

two new variables L′
F and L′

G, which have the same type as LF and LG. The idea is to store

the “pre-computed” hash values in L′
F and L′

G, and to transfer them from L′
F (resp. L′

G) to

LF (resp. LG) whenever the values are directly requested to F and G respectively. We stress

that this transfer only takes place if there is not already values to which F or G bounds the

queries that we try to anticipate. The implementations of oracles of this system are provided

in figure IV.8. Finally, the signature oracle has the same implementation as in the previous

system except that it naturally calls oracles H, G and F of PSS1.

Let us define the distribution γ such that PSS0 ≤det,γ PSS1. Given a memory of PSS0
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C→
cI

(x) : return (oI, 1)
C←

cI
(x, (o, q, a)) : (pk, sk) ← K

LF := [ ];
LG := [ ];
return pk

C→
G (x) : return (⊥, 1)

C←
G (x, (o, q, a)) : if x ∈ dom LG then return LG(x)

else g ← {0, 1}k1 ;
LG := LG.(x, g);
return g

endif

C→
H (x) : return (H, x)

C←
H (x, (o, q, a)) : return a

C→
S (x) : r ← {0, 1}k1 ;

return (H, x||r)
C←

S (x, (o, q, a)) : match x : {0, 1}∗ | r : {0, 1}k1 with q;
/ ∗ computation of G(a) ∗ /
if a ∈ dom LG then

g := LG(a);
else g ← {0, 1}k1 ;

LG := LG.(a, g);
endif

/ ∗ computation of F (a) ∗ /
if a ∈ dom LF then

w := LF (a);
else w ← {0, 1}k1 ;

LF := LF .(a, w);
endif

return f−1(a||g ⊕ r||w)
C→

cF
(x) : match r : {0, 1}∗ | r′ : {0, 1}k with x;

match w1||w2||w3 with f(r′);
/ ∗ computation of G(w1) ∗ /
if w1 ∈ dom LG then

g := LG(w1);
else g ← {0, 1}k1 ;

LG := LG.(w1, g);
endif

/ ∗ computation of F (w1) ∗ /
if w∗

3 ∈ dom LF then

w∗
3 := LF (w1);

else w∗
3 ← {0, 1}k1 ;

LF := LF .(w1, w∗
3);

endif

r∗ ← w2 ⊕ g;
return (oF, r||r||w1)

Figure IV.7 – Implementations of the Context Procedures of C
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ImpPSS1
(H)(x) = if x ∈ dom(LH) then return LH(x)

else w1||w2||w3 ← {0, 1}k2 × {0, 1}k1 × {0, 1}k0 ;
LH := LH .(x, w1);
if w1 /∈ dom(LG) then

match msg : {0, 1}∗ | r : {0, 1}k2 with x;
L′

G := L′
G.(w1, w2 ⊕ r);

endif

if w1 /∈ dom(LF ) then

L′
F := L′

F .(w1, w3);
endif

return w1

endif

ImpPSS1
(G)(x) = if x ∈ dom(LG) then return LG(x)

elsif x ∈ dom(L′
G) then

g := L′
G(x);

LG := LG.(x, g);
L′

G := L′
G − (x, g);

return g
else g ← {0, 1}k1 ;

LG := LG.(x, g);
return g

endif

ImpPSS1
(F )(x) = if x ∈ dom(LF ) then return LF (x)

elsif x ∈ dom(L′
F ) then

w := L′
F (x);

LF := LF .(x, w);
L′

F := L′
F − (x, w);

return w
else w ← {0, 1}k0 ;

LF := LF .(x, w);
return w

endif

ImpPSS1
(S)(x) : r ← {0, 1}k1 ;

w1 ← ImpPSS1
(H)(x||r);

w2 ← ImpPSS1
(G)(w1);

w3 ← ImpPSS1
(F )(w1);

return f−1(w1||(w2 ⊕ r)||w3)

Figure IV.8 – Implementation of oracles in PSS1



70 IV. Examples of Proofs in CIL

ImpPSS2
(H)(x) = if x ∈ dom(LH) then return LH(x)

else

u ← {0, 1}k;
v ← f(pk, u) ⊗ y;
match w1||w2||w3 with v;
match msg : {0, 1}∗ | r : {0, 1}k1 with x;
LH := LH .(x, w1);
L′

F := L′
F .(w1, w3);

L′
G := L′

G.(w1, w2 ⊕ r);
Lu := Lu.(msg, r, u, w1);
return w1

endif

ImpPSS2
(S)(x) = r ← {0, 1}k1 ;

u ← {0, 1}k;
v ← f(pk, u);
match w1||w2||w3 with v;
LH := LH .(x, w1);
L′

F := L′
F .(w1, w3);

L′
G := L′

G.(w1, w2 ⊕ r);
return u

Figure IV.9 – Implementations of Signature Oracle and H in PSS2

containing lists LH , LF and LG, lists L′
G and L′

F have fully determined domains, respectively

given by dom(L′
G) = range(LH) \ dom(LG) and dom(L′

F ) = range(LH) \ dom(LF ). Moreover,

the lists L′
G and L′

F are filled in by randomly sampling a value of length k1 (resp. k0) for

every element in their domain.

We continue with an application of the rule UpToBad. We define the oracle system PSS2.

We do a number of changes w.r.t. PSS1:

1. We anticipate the computation of F (h) and G(h) regardless of whether they have been

previously computed. This makes the new system differ from the previous PSS1 in case

H produces a hash value that has been either produced before for a different input or

directly queried by the adversary or by the signing oracle.

2. We introduce a new variable y whose value is uniformly sampled in {0, 1}k. This prepares

for the one-way challenge.

3. In the implementation ImpPSS2
(H), we modify the way in which w1||w2||w3 is determined

by sampling a value u in {0, 1}k and computing w1||w2||w3 as f(u) ⊗ y, where ⊗ is the

inner law of group G. Since f is a permutation, both ways of computing w1||w2||w3

yield identically distributed bitstrings. In the signing oracle, we do not perform the

group operation and compute w1||w2||w3 as f(u).

4. We introduce a list Lu that allows us find the value u from which originates a H-hash

value computed as the k2 prefix of f(u) ⊗ y.

The implementations of the oracles S and H of PSS2 are given in Figure IV.9. The rest

of the oracles remain implemented as in PSS1. Now, let the step-predicate ϕ be defined on
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triples ((o, q, a), m, m′) as the conjunction of the clauses:

• if o = H ∧ q Ó∈ m.LH then

a Ó∈ dom (m.LF ∪ m.L′
F ∪ m.LG ∪ m.L′

G)(∗)

• if o = S then

w1 Ó∈ dom (m.LF ∪ m.L′
F ∪ m.LG ∪ m.L′

G)(∗∗)

• if o = S then

∀g s.t. (w1, g) ∈ m′.LG, q||(w2 ⊕ g) Ó∈ dom m.LH(∗ ∗ ∗)

where w1 = f(a)[1, k2] and w2 = f(a)[k2 + 1, k2 + k1 + 1].

PSS1 and PSS2 are R-bisimilar until ϕ, where R is such that m R m′ iff m and m′ coincide

on their common components, namely LH , LG, L′
G, LF , L′

F , pk, sk.

After application of the macro-rule UpToBad, we have two branches left to close. The

left one is an application of rule Fail. Indeed, we can establish PSS2 :ǫ1 F¬ϕ, with

ǫ1 = (k(S) + k(H))(
k(S)

2k1
+

k(F ) + k(G) + k(H) + k(S)

2k2
).

Indeed, a and w1, respectively w2, are freshly uniformly sampled value in {0, 1}k2 , resp. {0, 1}k1 .

Hence, the probability of breaking property (∗) or (∗∗) in a single call to oracle H or S is
k(F )+k(G)+k(H)+k(S)

2k2
. Summing over all calls, it yields term (k(S) + k(H)).k(F )+k(G)+k(H)+k(S)

2k2

Moreover, the probability of breaking property (∗ ∗ ∗) during a call of S is bounded by
k(S)+k(H)

2k1
. Summing over all calls to S, it yields term k(S).k(S)+k(H)

2k1
.

Finally, the right branch is concluded by an application of rule B − Sub. Indeed, the oracle

implementations of PSS2 do not use f−1 or the trapdoor key sk. Therefore, we can write

PSS2 as a context C′ applied to OW (f), i.e. PSS2 = C′[OW (f)]. Only the initialization,

finalization and signature oracle are performing non-dummy queries to the inner system

OW (f). Procedures for H, F and G perform dummy queries and resume their computation

independently of the answer they get. However, the initialization procedure queries the

initialization oracle, the signature oracle queries the challenge oracle Chall and uses the

answer in place of the randomly sampled y in system PSS2. Finally, we want to choose the

context C′ such that:

Forge2 ◦ C′ ⇒ Invert

To this end, we define the forward implementation of the finalization procedure of C′ as follows
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(where oF denotes the finalization oracle of OW (f)):

C→
cF

(x) : match r1 : {0, 1}∗|r2 : {0, 1}k with x;

match w1||w2||w3 with f(r2);

if w1 ∈ dom(L′
G) then

g := L′
G(w1);

elsif w1 ∈ dom(LG) then

g := LG(w1);

else return (oF, 1)

endif

if w1 ∈ dom(L′
F ) then

w := L′
G(w1);

elsif w1 ∈ dom(LF ) then

w := LF (w1);

else return (oF, 1)

endif

r := w2 ⊕ g;

(u, w∗
1) ← Lu(r1||r);

return (oF, r2 ⊘ u)

When Forge2 is satisfied, we have w1 ∈ dom(LG ∪ L′
G) and w1 ∈ dom(LG ∪ L′

G), w∗
1 =

LH(w2) = w1, w3 = LF (w1) = w and w1||w2||w3 = f(u) ⊗ y. Since f is homomorphic, it

entails that u ⊘ r2 = f(sk, y), where ⊘ is the inverse operation of ⊗ in group G. Hence,

f(r2 ⊘ u) = y and Invert is satisfied.



Chapter V

Automated Proofs of Security for

Asymmetric Encryption Schemes in

the Random Oracle Model

V.1 Asymmetric-Dedicated Framework

In this section, we first present a novel framework, refered to as the asymmetric-dedicated

framework, mostly capturing asymmetric encryption constructions in the random oracle

model. This framework is based on programs specified using a small fixed programming

language operating on what we call constructible distributions. After having provided a

semantics for this language and defined these distributions, we introduce three predicates

capturing properties of the distributions of values for given variables. These predicates are

the cornerstones on which the Hoare logic which we present in the next section is built.

V.1.1 — Programming Language and Constructible Distributions

Syntactic Categories. We suppose that we have a finite set of symbols þH, representing a

finite collection of hash functions; H is a meta-variable ranging over þH. Each hash function

H is mapped to an integer ℓ(H), which is a (public) parameter of the system and represents

the length of outputs of the hash function. Moreover, each element H ∈ þH is associated to a

specific list, the variable LH . The collection of all these lists is denoted HList. In addition, we

have two special variables pk and sk which are meant to store public and secret key values;

symbol f̃ denotes an algorithm which can be instantiated for any value of pk and then yield a

trapdoor permutation f . In the whole chapter, we suppose that f̃ is fixed and known to the

adversary, and OW (t) denotes an upper-bound of the probability that an adversary succeeds

in inverting f on a random argument in time at most t. Additionally, K denotes the key

generation algorithm. Another special variable, σ, takes values in bitstrings of finite length,
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and denotes the variable in which the adversary can store its state. Finally, we have a finite

set of variables Var to denote any other variables. We use any symbol different from those

above to denote elements in Var, e.g. x, y, t, q, a. Though finite, the set Var is assumed to be

large enough to contain all symbols that we introduce in programs.

Language Description. We now describe the programming language that we work with.

It consists in a simple imperative language with random assignment, but does not include

loops. Indeed, public-key constructions do not typically require the use of loops. Moreover,

whereas the language allows the application of a trapdoor permutation f , it does not include

the application of the inverse of such permutations. It remains relevant since even without

loops and inverses, we can still capture a significant number of oracle systems on which to

apply our results.

Our programming language is built according to the BNF described in Table V.1, where:

— x ← U(l) samples a value in U(l) and assigns it to x, with U the uniform distribution over

the set of bitstrings of length l. Since we do not suppose that all the bitstrings are drawn

in the same set {0, 1}l, we have to specify a length for each drawing command. In the

sequel, we use l as a generic notation each time a length needs to be specified.

— x := f(y) applies the trapdoor one-way function f to the value of y and assigns the result

to x.

— x := α ⊕H(y), where α is a constant or a variable. This command first applies the random

oracle H to the value v of y, i.e. a new hash value h is drawn whenever v has not been

already hashed. As a side effect, the pair (v, h) is added to the variable LH if it was not

stored yet. After the hash computation, the bitwise exclusive or of α and the hash value

is assigned to x.

— x := y ⊕ z applies the exclusive or operator to the values of y and z and assigns the result

to x.

— x := y||z represents the concatenation of the values of y and z.

— c1; c2 is the sequential composition of commands c1 and c2.

Command c ::= x ← U(l) | x := f(y) | x := α ⊕ H(y) |
x := y ⊕ z| x := y||z | c; c

Table V.1 – Language Grammar.

In accordance with common practice in concrete security proofs, we disregard the execution

time needed for all these operations but the application of f . We assume that command

x := f(y) admits an upper-bound on the time required for its execution, independent of the

input, which we denote Tf . We can then define Tc for any command in the language by

summing the number of applications of f involved.

Semantics. States m ∈ M map pk, sk, σ and all variables of Var to bitstrings1, and variables

HList to lists of pairs of bitstrings. The semantics of our language is specified in Table V.2.

Notice that the semantic function of commands can be lifted in the usual way to a function

1We do not need to worry about introduction of new variables, we have assumed Var large enough to suit
our needs.
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from D(M) to D(M). That is, let F : M → D(M) be a function. Then, F defines a unique

function F ∗ : D(M) → D(M) such that F ∗(D) = [m ← D; m′ ← F (m) : m′]. By abuse of

notation we denote the semantic function of commands and their lifted counterparts by [[c]]:

according to our semantics, commands denote functions that transform distributions on states

into distributions on states.

[[x ← U(l)]](m) = [u ← U(l) : m.[x Ô→ u]]

[[x := f(y)]](m) = δ(m.[x Ô→ f̃(m.pk, m.y)])
[[x := α ⊕ H(y)]](m) =
{

δ(m.[x Ô→ m.α ⊕ LH(m.y)]) if m.y ∈ dom(m.LH)
[v ← U(ℓ(H)) : m.[x Ô→ m.α ⊕ v, LH Ô→ LH :: (m.y, v)]] if m.y /∈ dom(m.LH)

[[x := y ⊕ z]](m) = δ(m.[x Ô→ m.y ⊕ m.z])
[[x := y||z]](m) = δ(m.[x Ô→ m.y||m.z])
[[c1; c2]] = [[c2]] ◦ [[c1]]

Table V.2 – The semantics of the programming language

However, we are only interested in a subset of these distributions, namely, the constructible

ones.

Definition (Constructible Distribution). Let χ be a function mapping each H ∈ þH to a

positive integer. A χ-constructible distribution is of the form:

[

(pk0, sk0) ← K; m ← A
þH(pk0) : m[pk Ô→ pk0, sk Ô→ sk0]

]

where A is a probabilistic algorithm with oracle access to the hash functions in þH, making a

number of calls bounded by χ. Moreover, A’s queries to the hash oracles are recorded with

their answers in the lists of HList in m; in other words, A cannot tamper with these lists.

Finally, we require that for all hash function H ∈ þH, Card(dom(LH)) ≤ χ(H).

The set of χ-constructible distributions is denoted by constD(χ). A distribution X is said

constructible if there exists a tuple χ such that X ∈ constD(χ). The set of constructible

distributions is denoted constD. �

We emphasize that the algorithm denoted above by A can, but does not necessarily

represent an adversary, e.g. it can be the sequence of an adversary and a command of the

language. In any case, each and every computation of a hash function value does appear

in the list LH output by A. Furthermore, we notice that no command in the language can

modify the value stored by an adversary in σ. As a consequence, even if an adversary collects

all its queries and answers to hash oracles in a list copied in σ, only the values that it asked

can appear, which is not necessarily the whole content of lists of HList.

Since the hash command has a side effect on LH , the distribution resulting from its

application to a constructible distribution in constD(χ) may not belong to the same set,

though it remains constructible. In fact, we can be more precise about this remark and write

that for all atomic command c and function χ:

X ∈ constD(χ) ⇔ [[c]](X) ∈ constD(χ + χc)

where χc equals either 1H (which denotes the function where (1H)(H ′) = 0 if H Ó= H ′
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and 1 if H = H ′) in case of a hash command, or 0 in the other cases.

We can always find a function χ such that two (or any finite number of) constructible

distributions belong to the same set constD(χ), by taking the maximum bound on calls for

each hash function. Therefore, we choose to simplify the statement of some subsequent results

by considering that the distributions that they involve all belong to constD(χ), for a given

function χ. We do not even specify its value when not needed and speak of constructible

distributions then.

V.1.2 — Flavors of Indistinguishability of Constructible Distributions

Before specifying the assertion language, we give a few definitions and notations that we later

use to define the predicates of the logic.

Definition (Indistinguishability). Let A denote a (k, t)-adversary, and let X and X ′

be two constructible distributions in constD(χ). Let ε : (k, χ, t) Ô→ ε(k, χ, t) be a function

ranging in [0, 1]. The advantage of A in distinguishing X and X ′ is denoted Adv(A, X, X ′)

and defined as

| Pr[m ← X : A
þH(m.[sk Ô→ λ]) = 1] − Pr[m ← X ′ : A

þH(m.[sk Ô→ λ]) = 1]|

We say that distributions X and X ′ are ε-indistinguishable iff for all (k, t)-adversary A,

Adv(A, X, X ′) ≤ ǫ(k, χ, t). In this case, we write X ∼ε X ′. �

We stress that A is provided with the whole information stored in the state but the

secret key value. In particular, it includes lists (LH)H∈ þH of hash values computed during the

construction of X or X ′. As a consequence, whenever A queries one of its oracle H on a value

appearing in list LH , it gets the same answer that is stored in LH . We emphasize that the

function k bounding the number of queries to oracles in þH does not - and has no reason to -

take into account queries performed during the construction of X or X ′.

Definition (Distribution Restricted to Sets of Variables). Let X be a constructible

distribution, let V1 and V2 be sets of variables such that V1 ⊆ Var ∪ {σ} and V2 ⊆ Var. By

D(X, V1, V2) we denote the following distribution:

D(X, V1, V2) = [m ← X : (m.V1, f(m.V2))]

where m.V1 denotes the values of variables in V1 in state m, and f(m.V2) denotes the point-wise

application of f to the values given by state m to variables in V2. �

Definition (Restricted Indistinguishability). Let X and X ′ be two constructible distribu-

tions. X and X ′ are V1; V2; ε-indistinguishable, denoted by X ∼V1;V2;ε X ′, iff D(X, V1, V2) ∼ε

D(X ′, V1, V2). �

We emphasize that in the above definition, V1 and V2 cannot contain any list LH , since

HList and Var are disjoint. Hence, every time we use the equivalence ∼V1;V2;ε, the variables

(LH)H∈ þH are not given to the adversary.

Example 9. Let X0 be the following constructible distribution: X0 = [(pk0, sk0) ← K :

[pk Ô→ pk0, sk Ô→ sk0]]. Given an integer l, we define two other constructible distributions:

— X1 = [[x ← U(l); y := H(x)]](X0),

— X2 = [[x ← U(l); y := H(x); y ← U(ℓ(H))]](X0).

Of course, we do not have X1 ∼ε X2 for any ε < 1, no matter how many queries are allowed:

any adversary can compare the value given for y with that associated to x in LH .
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Neither can we state X1 ∼{x,y};∅;ε X2 for any ε < 1 as soon as the adversary is allowed

one query to H.

However, X1 ∼{y};{x};ε X2 is possible for lower values of function ε: to perform an attack

based on the computation of H(x) given a value for f(x), where x is randomly drawn, an

adversary has to invert the trapdoor one-way function. ♦

Replacing the value of a given variable by an independently uniformly drawn bitstring of

the right length is an operation on constructible distributions that we often use. We introduce

the notation νx.X to denote distributions:

[v ← U(l); m ← X : m.[x Ô→ v]] and [m ← X; v ← U(l) : m.[x Ô→ v]]

given any contructible distribution X and variable x of length l. These distributions coincide,

so that we do not need to introduce two notations. We notice that if X ∈ constD(χ), then

νx.X belongs to the same set constD(χ).

V.1.3 — The Assertion Language

In the framework we propose in this chapter, we use another kind of formal method to

characterize distributions of values taken by the variables: a Hoare logic. Hoare logics are

inspired from the seminal works of logicians C. A. R. Hoare [Hoa69] and R. Floyd [Flo67].

They are inference systems based on Hoare triples, that is, statements of the form {P} c {Q},

where P and Q are assertions (on a given predicate language) on the variables used in the

program and c is a command. Traditionally, P is called a precondition and Q a postcondition,

and a Hoare triple is valid if whenever the precondition is met, the postcondition is verified

after the command execution. The inference system is usually completed with a sequence rule

to allow compositionality of reasoning.

The key of the success of this kind of approaches lies in the choice of the predicates. Indeed,

too precise predicates would not express general enough properties to be useful outside of

their strict context of design, whereas too weak choices of predicates would not allow many

preservation rules. We propose three predicates capturing three different arguments frequently

appearing in proofs of constructions in the literature.

The first predicate deals with indistinguishability. We want to write that one variable

x is indistinguishable from random from the adversary’s point of view. This is often false

if the adversary has access to the value of every variable. We thus weaken the assertion by

specifying which variables the adversary can safely access (this is V1). Some variables can

be given to the adversary only under the cover of the trapdoor permutation: this is set V2.

Therefore, the predicate expresses a property of variable x, seen through V1 and f(V2). The

formal definition of the predicate is the following.

Definition (Indis Predicate). Let x be a variable in Var, V1 ⊆ Var ∪ {σ} and V2 ⊆ Var.

If X is a χ-constructible distribution, X |= Indis(x; V1; V2; ε) iff X ∼V1;V2;ε νx.X �

The second predicate which we define points out the inability of an adversary to compute

the value of a given variable. It is denoted WS, which stands for “weak secrecy”. The idea is

that bounded resources do not grant enough power to an adversary to compute the value of

a variable provided the knowledge of others. Yet it is weaker than Indis, since one does not

need to be able to compute something to distinguish it from random. Namely, an adversary
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can know how to compute the beginning of a bitstring but not the whole sequence of bits,

in which case Indis is not true but WS can be. Here is the formal definition of this second

predicate.

Definition (WS Predicate). Let x be a variable in Var, V1 ⊆ Var ∪ {σ} and V2 ⊆ Var,

and ε : (k, χ, t) Ô→ ε(k, χ, t) a function ranging in [0, 1]. For X ∈ constD, X |= WS(x; V1; V2; ε)

iff for any (k, t)-adversary A, Pr[m ← X : A
þH((m.V1), f(m.V2)) = m.x] ≤ ε(k, χ, t). �

For the sake of readability, sets V1 and V2 appearing in the predicates are enumerated as

collections of variables only separated by commas. For example, in Indis(x; y; t, z; 0), V1 = {y}

and V2 = {t, z}, and in WS(x; V, t; y; ε), V1 = V ∪ {t} and V2 = {y}.

Example 10. We consider the following constructible distribution X:

X = [(pk0, sk0) ← K; u ← U(l) : [pk Ô→ pk0, sk Ô→ sk0, x Ô→ u, y Ô→ f(u)]]. We can state that

X |= WS(x; y; ∅; OW (t)), or even X |= WS(x; y; x; OW (t)) (here we provide an adversary with

the same value twice). However, we notice that X Ó|= Indis(x; y; x; OW (t)): here, according

to the definitions, a new value v for x is drawn independently the sampling of a state in X,

but before the evaluation of adversarial inputs. It is extremely likely to result in y Ó= f(x)

(i.e. f(u) Ó= f(v)). ♦

The two predicates we have yet defined do not express anything about arguments of hash

oracles. Consequently, nothing in our assertion language is designed to take advantage of the

fact that we work in the random oracle model. True randomness of hash functions allows to

consider that the link between an input and its hash value is so thin that, except for the case

in which the same argument has already been hashed, the hash value is seemingly random.

It is precisely the exceptional case that we want to capture and to rule out. Thus we need

a predicate to capture that an expression has not been hashed yet, except with bounded

probability. Notice that this predicate is independent of any adversarial intervention, the

bound only depends on function χ.

Definition (H(H; .) Predicate). Let ε : χ Ô→ ε(χ) be a function ranging in [0, 1]. Let e

be an expression in the language constructed out of variables of Var stored in state m. Then,

X |= H(H; e; ε) iff Pr[m ← X : m.e ∈ dom(m.LH)] ≤ ε(χ) where m.e is the evaluation of

expression e in state m. �

The predicates cited above are meant to be combined using rules of the Hoare logic we

provide in section V.3. Our assertion language is defined by the following grammar, where ψ

defines the set of atomic assertions:

ψ ::= Indis(x; V1; V2; ε) | WS(x; V1; V2; ε) | H(H; e; ε)

ϕ ::= true | ψ | ϕ ∧ ϕ

Formally, the meaning of the assertion language is defined by a satisfaction relation X |= ϕ,

already defined for all atomic assertions, and that we complete with:

— X |= true and

— X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.

We combine predicates of our assertion language to prove validity of Hoare triples

{ϕ} c {ϕ′}, whose meaning is that for all X ∈ constD, X |= ϕ implies that [[c]](X) |= ϕ′.
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V.2 Preliminary Results

V.2.1 — Preservation Results

When two distributions are indistinguishable, it seems fair to expect that predicates holding

for one of them are transmitted to the other, maybe up to some additional term. This intuition

is formalized by the following lemma.

Lemma V.1 (Compatibility Lemma). Let X, X ′ ∈ constD(χ). For any sets of variables

V1 ⊆ Var ∪ {σ} and V2 ⊆ Var, and any variable x ∈ Var:

1. if X ∼V1;V2;ε X ′ then X |= Indis(x; V1; V2; ε′) ⇒ X ′ |= Indis(x; V1; V2; ε′′), where

ε′′(k, χ, t) = 2.ε(k, t) + ε′(k, χ, t).

2. if X ∼V1;V2,x;ε X ′ then X |= WS(x; V1; V2; ε′) ⇒ X ′ |= WS(x; V1; V2; ε′′), where ε′′(k, χ, t) =

ε(k, t + Tf ) + ε′(k, χ, t).

3. if X ∼ε X ′ then X |= H(H; e; ε′) ⇒ X ′ |= H(H; e; ε′′), where ε′′(χ) = ε(ke, te) + ε′(χ).

Proof. 1. The following sequence of inequalities justifies the result, with A
þH a (k, t)-

adversary,

| Pr[m ← X ′ : A
þH(m.V1, f(m.V2)) = true]−

Pr[m ← νx.X ′ : A
þH(m.V1, f(m.V2)) = true]|

≤ | Pr[m ← X ′ : A
þH(m.V1, f(m.V2)) = true]−

| Pr[m ← X : A
þH(m.V1, f(m.V2)) = true]|

+| Pr[m ← X : A
þH(m.V1, f(m.V2)) = true]−

Pr[m ← νx.X : A
þH(m.V1, f(m.V2)) = true]|

+| Pr[m ← νx.X : A
þH(m.V1, f(m.V2)) = true]−

Pr[m ← νx.X ′ : A
þH(m.V1, f(m.V2)) = true]|

≤ ε(k, t) + ε′(k, χ, t) + | Pr[m ← X : B
þH(m.V1, f(m.V2)) = true]

− Pr[m ← X ′ : B
þH(m.V1, f(m.V2)) = true]|

where B is the adversary executing the assignment to x of a newly sampled random

value and then running A before forwarding this latter’s output. Its advantage is thus

bounded by that of A, in turn bounded by ε(k, t). We can conclude from here.

2. Let A
þH be a (k, t)-adversary against WS(x; V1; V2; ε′′). We can build an (X, X ′)-

distinguisher B
þH as follows:

B
þH(V1; f(V2 ∪ {x})) = x0 ← A

þH(V1; f(V2 ∪ {x}))

if f(x0) = f(x) then return true

else return false

From X ∼V1;V2,x;ε X ′ we can deduce:

| Pr[m ← X ′ : B
þH(m.V1, f(m.(V2 ∪ {x})) = true]−

Pr[m ← X : B
þH(m.V1, f(m.V2 ∪ {x})) = true]| ≤ ε(k, t + Tf )

Besides, the code of B allows to write:

Pr[m ← X : B
þH(m.V1, f(m.(V2 ∪ {x})) = true]

= Pr[m ← X : f(A
þH(m.V1, f(m.V2))) = f(m.x)]

= Pr[m ← X : A
þH(m.V1, f(m.V2)) = m.x]

≤ ε′(k, χ, t)
which we can write because f is a bijection.

We can now use a similar equality and conclude using a triangle inequality:
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| Pr[m ← X ′ : A
þH(m.V1, f(m.V2)) = m.x]|

= | Pr[m ← X ′ : B
þH(m.V1, f(m.(V2 ∪ {x})) = true]|

≤ | Pr[m ← X ′ : B
þH(m.V1, f(m.(V2 ∪ {x})) = true]−

Pr[m ← X : B
þH(m.V1, f(m.(V2 ∪ {x})) = true]|+

| Pr[m ← X : B
þH(m.V1, f(m.(V2 ∪ {x})) = true]|

≤ ε(k, t + Tf ) + ε′(k, χ, t)

3. The proof of the last statement is based on an idea similar to the previous one. We can

build an (X, X ′)-distinguisher B
þH as follows:

B
þH(m) = if m.e ∈ dom(m.LH) then return true

else return false

From X ∼ε X ′ we can deduce:

| Pr[m ← X ′ : B
þH(m) = true] − Pr[m ← X : B

þH(m) = true]| ≤ ε(ke, te)

where ke and te denote the number of queries and the time necessary to compute e.

Besides, the code of B allows to write:

Pr[m ← X : B
þH(m) = true] = Pr[m ← X : m.e ∈ dom(m.LH)],

which is bounded by ε′(χ).

We can now use a similar equality and conclude using a triangle inequality:
| Pr[m ← X ′ : m.e ∈ dom(m.LH)|

= | Pr[m ← X ′ : B
þH(m) = true]|

≤ | Pr[m ← X ′ : B
þH(m) = true] − Pr[m ← X : B

þH(m) = true]|+

| Pr[m ← X : B
þH(m) = true]|

≤ ε(ke, te) + ε′(χ)
�

Similar proofs can be performed to prove the following lemma.

Lemma V.2 (Conservation Lemma). Let X, X ′ ∈ constD such that X ∈ constD(χ0) iff

X ′ ∈ constD(χ0 + χ′), with χ′ ≥ 0. For any sets of variables V1 ⊆ Var ∪ {σ} and V2 ⊆ Var,

and any variable x ∈ Var:

1. if X ∼V1;V2;0 X ′ then X |= Indis(x; V1; V2; ε) ⇒ X ′ |= Indis(x; V1; V2; ε′), where ε′(k, χ, t) =

ε(k, χ − χ′, t).

2. if X ∼V1;V2,x;0 X ′ then X |= WS(x; V1; V2; ε) ⇒ X ′ |= WS(x; V1; V2; ε′), where ε′(k, χ, t) =

ε(k, χ − χ′, t + Tf ).

V.2.2 — Weakening Lemmas

When building a Hoare logic, it is in our interest to require the weakest possible premises and

show the strongest possible conclusion. As a result, we want to be able to weaken predicates

so as to be able to obtain premises of rules from too strong hypotheses. This is the role of the

two lemmas presented below.

Lemma V.3 (Weakening Lemma). Let X be a χ-constructible distribution.

1. If X |= Indis(x; V1; V2; ε), V ′
1 ⊆ V1 and V ′

2 ⊆ V1 ∪ V2 then X |= Indis(x; V ′
1 ; V ′

2 ; ε′), where

ε′(k, χ, t) = ε(k, χ, t + Card((V1 r V2) ∩ V ′
2).Tf ).

2. If X |= WS(x; V1; V2; ε), V ′
1 ⊆ V1 and V ′

2 ⊆ V1 ∪ V2 then X |= WS(x; V ′
1 ; V ′

2 ; ε), where

ε′(k, χ, t) = ε(k, χ, t + Card((V1 r V2) ∩ V ′
2).Tf ).
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The intuition behind the proofs is the simple fact that the adversary cannot have a better

chance to win when given less information. Formally, this translates in the fact that any

adversary against the predicate in conclusion of the lemma can be used as an adversary against

the predicate in its hypothesis up to the application of f to arguments in (V1 r V2) ∩ V ′
2 .

Lemma V.4 (Hybrid Weakening Lemma). Let X be a constructible distribution. If X |=

Indis(x; V1; V2, x; ε) and x /∈ V1 then X |= WS(x; V1; V2, x; ε′), with ε′(k, χ, t) = ε(k, χ, t+Tf )+

OW (t).

Proof. Let A be a (k, t)-adversary against WS(x; V1; V2, x; ε′). We build the following (k, t+Tf )-

adversary B against Indis(x; V1; V2, x; ε):

B
þH(V1; f(V2 ∪ {x})) = x0 ← A

þH(V1; f(V2 ∪ {x}))

if f(x0) = f(x) then return true

else return false

The hypothesis on X yields:

| Pr[m ← X : B(m.V1, f(m.(V2 ∪ {x})) = true] −

Pr[m ← νx.X : B(m.V1, f(m.(V2 ∪ {x})) = true]| ≤ ε(k, χ, t + Tf )

We also notice that if B answers true on a random input f(x), then the value x0 is a

pre-image of f applied on a random value, entailing:
| Pr[m ← νx.X : B(m.V1, f(m.(V2 ∪ {x}))) = true]|

= | Pr[m ← νx.X : x0 ← A(m.V1, f(m.(V2 ∪ {x}))) : f(x0) = f(x)]|

≤ OW (t)
Moreover,

Pr[m ← X; x0 ← A(m.V1, f(m.(V2 ∪ {x}))) : x0 = m.x]

= Pr[m ← X; x0 ← A(m.V1, f(m.(V2 ∪ {x}))) : f(x0) = f(m.x))]

= Pr[m ← X : B(m.V1, f(m.(V2 ∪ {x}))) = true]

≤ | Pr[m ← X : B(m.V1, f(m.(V2 ∪ {x}))) = true]

− Pr[m ← νx.X : B(m.V1, f(m.(V2 ∪ {x}))) = true]|

+| Pr[m ← νx.X : B(m.V1, f(m.(V2 ∪ {x}))) = true]|

≤ ε(k, χ, t + Tf ) + OW (t)
�

V.2.3 — About Expressions

We first define the set of subvariables of an expression, which are variables appearing as a

substrings of an expression.

Definition (Subvariable Set subvar(e)). The set of variables used as substring of an

expression e is denoted subvar(e): x ∈ subvar(e) iff e = x or e = e1||e2 and x ∈ subvar(e1) ∪

subvar(e2), for some expressions e1 and e2. Each subvariable x of expression e is associated

to an extraction function g, such for all state m, g(m.e) = m.x. The execution time of g is

disregarded. �

Example 11. For example, we assume that we consider the following expression:

e = (R||q||f(R||r)) || (h ⊕ G(R)). Here, subvar(e) = {R, q}, but r, h /∈ subvar(e). ♦

Moreover, given sets (V1; V2), some commands of the type x := e can be executed by the

adversary on its own. These expressions e are called constructible. We emphasize that we talk

about constructibility in one command application, not constructibility in a finite number of

them.
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Definition (Constructible Expressions). Let V1, V2 ⊆ Var. Then, the set of expressions

constructible from (V1; V2) are:

— f(x) for all variables x ∈ V1 ∪ V2,

— α ⊕ H(x) for all variables x ∈ V1 and α ∈ V1, or for any constant value of α,

— exclusive or and concatenation of all pairs of variables in V1.

�

Lemma V.5. We let X, X ′ ∈ constD(χ0) such that X ∼V1;V2;ε X ′, e be an expression con-

structible from (V1 r {σ}; V2), and c ≡ x := e. Then,

[[x := e]](X) ∼V1,x;V2;ε′ [[x := e]](X ′), where ε′(k, χ, t) = ε(k + χc, χ − χc, t + Tc).

Proof. We recall that X, X ′ ∈ constD(χ0) iff [[x := e]](X), [[x := e]](X ′) ∈ constD(χ0 + χc).

To any (k, t)-adversary A trying to distinguish between [[x := e]](X) and [[x := e]](X ′) we

can associate a counterpart B trying to distinguish between X and X ′ by prepending A’s

execution by the construction of e. This latter adversary distinguishes between distributions

constructible in at most χ0 requests, performs at most k + χc queries, and takes a time

bounded by t + Tc to compute A’s inputs. The conclusion follows. �

The same ideas allow to prove the following statements. We notice that in the case of the

indistinguishability statement, we need to impose that z does not appear at all in e, even

under any function symbol. Indeed, the idea of the proof above is that the adversary is able

to construct e. If to do so, an adversary needs z and is provided with a random value in place

of it, then our argument does not hold.

Lemma V.6. Let X ∈ constD(χ0), let e be an expression constructible from (V1 r {σ}; V2),

and z Ó= x. Let c ≡ x := e.

1. If X |= Indis(z; V1; V2; ε) and z does not (syntactically) appear in e, then [[x := e]](X) |=

Indis(z; V1, x; V2; ε′)

2. If X |= WS(z; V1; V2; ε) then [[x := e]](X) |= WS(z; V1, x; V2; ε′)

where ε′(k, χ, t) = ε(k + χc, χ − χc, t + Tc)).

V.2.4 — Hash-Related Lemmas

As hash functions are implemented by random oracles, the images that they associate to

different inputs are completely independent from one another. Therefore, while a hash

value has not been queried, then one can redraw it without this changing anything from the

adversary’s point of view. We can even go a little further in our reasoning: to execute the

command x := α ⊕ H(y), we can either draw a value for H(y) at random and bind it by

storing it in LH , or draw x at random and bind H(y) to be worth x ⊕ α. Of course, we shall

carefully take into account the side effects of the command on LH . To deal with rebinding

matters, we introduce a new operator on states.

Definition (Rebinding Operator). For any state m, variable y ∈ Var, expression e and

function H ∈ þH,

rebind
y Ô→e
H (m) = m[LH Ô→ m.LH • (m.y, m.e)],
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where L • (a, b) = (L − [(a, L(a))]) :: (a, b), i.e. the association list L where a is mapped to b,

no matter whether it did already appear in dom(L). This definition can easily be lifted to

distributions in constD by setting rebind
y Ô→e
H (X) = [m ← X : rebind

y Ô→e
H (m)]. �

We stress that, given a constructible distribution X, while [[x := α ⊕ H(y)]](X) asso-

ciates to X another constructible distribution, it is not the case of the rebinding operator:

rebind
y Ô→e
H (X) /∈ constD.

The following lemma is the formalization of the intuition that we can freely rebind the

hash value associated to a variable y to a random value of our choice as long as y does not

appear in LH already.

Lemma V.7 (Rebinding Lemma). For any X ∈ constD(χ0), any hash function H, any

variables x and y in Var, if X |= H(H; y; ε), then

[[x := α ⊕ H(y)]](X) ∼ε rebind
y Ô→α⊕x
H (νx.X),

where α is either a constant or a variable.2

Proof. We start by developping the terms involved in the distance computation. Firstly,
Pr[m ← [[x := α ⊕ H(y)]](X) : m = m0]

= Pr[m ← X : m.y ∈ dom(m.LH) ∧ m0 = m.[x Ô→ m.α ⊕ LH(m.y)]]

+ Pr[m ← X; v ← U(ℓ(H)) : m.y /∈ dom(m.LH)

∧ m0 = m.[x Ô→ v ⊕ m.α, LH Ô→ LH :: (m.y, v)]]

by applying the definition provided in the semantics for the command.
In addition to that,
Pr[m ← rebind

y Ô→α⊕x
H (νx.X) : m = m0]

= Pr[m ← X; v ← U(ℓ(H)) : m0 = m.[x Ô→ v, LH Ô→ LH • (m.y, m.α ⊕ v)]]

by definition of the rebind operator,

= Pr[m ← X; v ← U(ℓ(H)) : m0 = m.[x Ô→ v ⊕ m.α, LH Ô→ LH • (m.y, v)]]

since x is uniformly distributed,

= Pr[m ← X; v ← U(ℓ(H)) : m.y /∈ dom(m.LH)

∧ m0 = m.[x Ô→ v ⊕ m.α, LH Ô→ LH :: (m.y, v)]]

+ Pr[m ← X; v ← U(ℓ(H)) : m.y ∈ dom(m.LH)

∧ m0 = m.[x Ô→ v ⊕ m.α, LH Ô→ LH :: (m.y, v)]]
Using the results of these computations, we can compute the statistical distance between

distributions:
| Pr[[[x := α ⊕ H(y)]](X) = m0] − Pr[rebind

y Ô→α⊕x
H (νx.X) = m0]|

= | Pr[m ← X : m.y ∈ dom(m.LH) ∧ m0 = m.[x Ô→ LH(m.y)]]

− Pr[m ← X; v ← U(ℓ(H)) : m.y ∈ dom(m.LH)

∧ m0 = m.[x Ô→ v ⊕ m.α, LH Ô→ LH :: (m.y, v)]]|
Both probabilities are bounded by Pr[m ← X : m.y ∈ dom(m.LH)], which is in turn worth

less than ε(χ0). Consequently, both quantities belong to [0, ε(χ0)], so that we can deduce that

ε(χ0) is a uniform bound on the statistical distance between the distributions, which allows

us to conclude.

�

Now we are interested in formally proving the useful and intuitive following lemma, which

states that to distinguish between a distribution and its “rebound” version, an adversary must

2The indistinguishability statement here does not involve a pair of constructible distributions. We consider
the function ε to depend on (k, t) bounding an adversary’s resources, and see χ as a constant.
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be able to compute the argument y whose hash value has been rebound. Indeed, even though

V1 can contain the adversary variable σ in which a previously asked value for H(y) might be

stored, there is no distinguishing between both distributions without querying once more for

H(y) to acknowledge a possible change. Therefore a distinguishing adversary is only as good

as it is to compute y given V1 and V2.

Lemma V.8 (Hash vs. Rebind Lemma). For any X ∈ constD(χ0), any two variables x and y

in Var, any two finite sets of variables V1 ⊆ Var ∪ {σ} and V2 ⊆ Var, and any hash function

H, if X |= WS(y; V1; V2; ε), then

X ∼V1;V2;ε′ rebind
y Ô→α⊕x
H (X).

where α is either a constant or a variable in Var, and ε′(k, t) = k(H) ∗ ε(k, χ0, t).3

Proof. This result follows from the fact that the distributions coincide on everything but

the value to which y is mapped by LH . Indeed, the inputs to the adversary are identically

distributed:

Pr[m ← rebind
y Ô→α⊕x
H (X) : (m.V1, f(m.V2))]

= Pr[m ← X; m′ = m.[LH Ô→ LH • (m.y, m.α ⊕ v)] : (m′.V1, f(m′.V2))]

= Pr[m ← X; m′ = m.[LH Ô→ LH • (m.y, m.α ⊕ v)] : (m.V1, f(m.V2))]

since LH /∈ Var then we have LH /∈ V1 ∪ V2

= Pr[m ← X : (m.V1, f(m.V2))]

Moreover, for all hash queries performed to any function different from H, distribution of

answers obviously coincide. In addition to that, except for a query on the value of y, answers

of queries to H are distributed identically in both settings, whether or not hash values have

already been computed.

As a result, by splitting the probabilities according to whether the value of y has been

queried to H, we can bound the advantage of a distinguisher by the probability that y is

queried. In turn, out of a distinguisher issuing a query worth y amongst the k(H) which

it performs, we can build an adversary computing y by picking one of the k(H) queries at

random. The conclusion follows. �

From the last part of the previous proof, we can notice that if we have a way to identify

amongst queries performed the one corresponding to y, we can build a more performant

adversary to compute a value for y. Namely, if an adversary has a value for f(y), it can

determine which of the values from a set is y (f is a permutation so f(y) has only one

pre-image). The additional time taken by this adversary is the number of values to test

multiplied by the time of a test, i.e. k(H) ∗ Tf . With these updates in the proof, we can state

the following weakened version of the lemma above.

Lemma V.9 (Weak Hash vs. Rebind). For any X ∈ constD(χ0), any two variables x, y ∈ Var,

any two finite sets of variables V1 ⊆ Var ∪ {σ} and V2 ⊆ Var, and any hash function H, if

X |= WS(y; V1; V2, y; ε), then

X ∼V1;V2;ε′ rebind
y Ô→α⊕x
H (X),

3As for the previous result, ε′ can only be a function of (k, t).
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where α is either a constant or a variable in Var and with ε′(k, t) = ε(k, χ0, t + k(H) ∗ Tf ).

V.3 The Hoare Logic

Now that basic predicates and properties are set, we must provide the rules that ensure

their conservation or sound transformation when commands are applied. Rules fall into two

categories: preservation rules that express how a property is modified after the command,

and creation rules that state a property of a variable newly assigned. The rules are given

along with some inequality restrictions, which are meant to be understood syntactically, e.g.

x Ó= t, y means that x and t, y are not the same variable name. In all the rules we state, and

as their definitions require, predicates take as arguments a variable in Var, a set V1 included

in Var ∪ {σ} and a set V2 is included in Var.

Hereafter, except for the first set of general preservation cases, the rules are sorted accord-

ing to the command which they deal with.

Generic Preservation Rules. The first two rules deal with predicates on a variable z

different from variables appearing in the command c that is applied. The idea is that the

predicates Indis and WS are quite intuitively preserved as soon as the newly assigned variable

(here x) does not appear in sets V1, V2.

Lemma V.10 (Rules (G1) and (G2)). The following rules are sound, when z Ó= x, and c is

x ← U or of the form x := e′ with e′ being either w||y, w ⊕ y, f(y) or α ⊕ H(y), provided

x Ó∈ V1 ∪ V2:

(G1) {Indis(z; V1; V2; ε)} c {Indis(z; V1; V2; ε′)}

(G2) {WS(z; V1; V2; ε)} c {WS(z; V1; V2; ε′)}

where ε′(k, χ, t) = ε(k, χ − χc, t)

Proof. Let X ∈ constD(χ). Let us notice that for any of these commands c, [[c]] affects at

most x and LH . It follows that for any sets V1 and V2 not containing x, D(X, V1, V2) =

D([[c]](X), V1, V2). We know that [[c]](X) belongs to constD(χ + χc). The above equality be-

tween distributions can be stated as X ∼V1;V2;0 [[c]](X). Applying the conservation lemma V.2

with this hypothesis and X |= Indis(z; V1; V2; ε) provides [[c]](X) |= Indis(z; V1; V2; ε′), where

ε′(k, χ, t) = ε(k, χ−χc, t). Similarly, [[c]](X) |= WS(z; V1; V2; ε′) ensues from X |= WS(z; V1; V2; ε)

and the second item of the conservation lemma. �

The same kind of statement can be made when executing a command concerning an

expression which is constructible out of the pair of sets V1 and V2.

Lemma V.11 (Rules (G1’) and (G2’)). The following rules are sound, when z Ó= x, and c is

of the form x := e′ with e′ being either w||y, w ⊕ y, f(y) or α ⊕ H(y):

(G1’) {Indis(z; V1; V2; ε)} c {Indis(z; V1, x; V2; ε′)}, if e′ is constructible from (V1 r {z}; V2 r {z}).

(G2’) {WS(z; V1; V2; ε)} c {WS(z; V1, x; V2; ε′)}, if e′ is constructible from (V1; V2),

where ε′(k, χ, t) = ε(k + χc, χ − χc, t + Tc)).
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Proof. As e′ is constructible from (V1 r {z}; V2 r {z}), we can apply lemma V.6 which yields

[[x := e′]](X) |= Indis(z; V1, x; V2; ε′), where ε′(k, χ, t) = ε(k + χc, χ − χc, t + Tc)).

The same lemma allows to conclude to weak secrecy. �

We also propose rules covering the preservation of predicate H(H ′; e). Firstly, no matter

what the command assigning a new value to x is, if it does not use H ′ and x does not appear

in e, the probability of e appearing in LH′ is the same before and after the command execution.

Secondly, the probability of finding in LH′ the value of e where x is replaced by e′ remains

unchanged if e does contain x and we execute x := e′. Hereafter, e[e′/x] denotes the expression

obtained from e by replacing x by e′.

Lemma V.12 (Rules (G3) and (G3’)). The following rules are sound, when H ′ Ó= H and c is

of the form x := e′ with e′ being either t||y, t ⊕ y, f(y) or α ⊕ H(y):

(G3) {H(H ′; e[e′/x]; ε)} c {H(H ′; e; ε′)}, where ε′(k, χ, t) = ε(k, χ − χc, t).

(G3’) {H(H ′; e; ε)} x ← U(l) {H(H ′; e; ε)}, if x does not appear in e.

Proof. Let X ∈ constD(χ0). As mentioned previously, side effects of c can only appear on x

and LH . As a result, probability of belonging to LH′ is conserved:

Pr[m ← X; m′ ← [[c]](m) : m′.e ∈ dom(m′.LH′)]

= Pr[m ← X; m′ ← [[c]](m) : m.(e[e′/x]) ∈ dom(m′.LH′)]

because c ≡ x := e′

= Pr[m ← X; m′ ← [[c]](m) : m.(e[e′/x]) ∈ dom(m.LH′)]

since m.LH′ = m′.LH′

= Pr[m ← X : m.(e[e′/x]) ∈ dom(m.LH′)]

≤ ε(k, χ0, t)

As a conclusion, we can choose ε′(k, χ, t) = ε(k, χ − χc, t).

In a similar manner, if x does not appear in e,

Pr[m ← X; m′ ← [[x ← U(l)]](m) : m′.e ∈ dom(m′.LH′)]

= Pr[m ← X; m′ ← [[x ← U(l)]](m) : m.e ∈ dom(m.LH′)]

which justifies the perfect conservation of the bound. �

Rules for Random Assignment. After the random draw of a bitstring for x, we can of

course state that x is perfectly indistinguishable from random given any set of variables:

this is what is captured by the first rule. Furthermore, for any expression containing x as a

subvariable, we can bound the probability that e appears in a given set if x is distributed

uniformly at random. This idea accounts for rule (R2).

Lemma V.13 (Rules (R1) and (R2)). The following rules are sound:

(R1) {true} x ← U(l) {Indis(x; Var ∪ {σ}; ∅; 0)}

(R2) {true} x ← U(l) {H(H; e; χ(H)
2l )} if x ∈ subvar(e).

Proof. Only the second rule needs justification. Since x ∈ subvar(e), there exists a function g

to extract x such that g(m.e) = m.x for any state m. We are interested in evaluating, for
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X ∈ constD(χ):

Pr[m ← [[x ← U(l)]](X) : m.e ∈ dom(m.LH)]

= Pr[m ← X; u ← U(l); m′ := m.[x Ô→ u] : m′.e ∈ dom(m′.LH)]

= Pr[m ← X; u ← U(l); m′ := m.[x Ô→ u] : m′.e ∈ dom(m.LH)]

because m.LH = m′.LH

≤ Pr[m ← X; u ← U(l) : u ∈ g(dom(m.LH))]

because g(m′.e) = g(m′.x) = u

≤ χ(H)
2l

since Card(g(dom(m.LH))) ≤ Card(dom(m.LH)) ≤ χ(H).

�

We then present a pair of rules providing a little more than sheer preservation of predicates.

They are based on the consideration that if a predicate holds for sets V1, V2 before the

execution of x ← U(l), then it cannot help to provide an adversary with the value of x after

the execution of the command: the same predicate should hold for sets V1 ∪ {x} and V2.

Lemma V.14 (Rules (R3) and (R4)). Additionally, we have the following preservation rules,

where we assume x Ó= y:

(R3) {Indis(y; V1; V2; ε)} x ← U(l) {Indis(y; V1, x; V2; ε)}

(R4) {WS(y; V1; V2; ε)} x ← U(l) {WS(y; V1, x; V2; ε)}

Proof. We prove these rules by reduction. Let A be a (k, t) adversary against the conclusion

predicate. Firstly, let us assume x /∈ V1 ∪ V2. Let B be the adversary obtained out of A by

prepending the execution of x ← U(l) to the execution of A on the same arguments given to

B. Then the adversaries have the same output distribution. Besides, B’s execution time is

bounded by that of A. As a result, A’s advantage is bounded by ε(k, χ, t).

Secondly, if x ∈ V1 ∪ V2, the same arguments hold except that A has to be provided

inputs where x’s value is updated to its newly drawn random value (and/or its image by f if

x ∈ V2). �

Rules for Hash Commands. In this subsection, we present rules for hash commands.

Let X ∈ constD(χ0), we know that [[x := α ⊕ H(y)]](X) ∈ constD(χ0 + 1H) is equivalent to

X ∈ constD(χ0).

The idea behind the first two creation rules is that if a variable has not been mapped to a

hash value yet, then once it is, the only way to differentiate its hash value from random is to

know how to compute the variable and perform the adequate query to the hash oracle.

Lemma V.15 (Rules (H1) and (H2)). The following rules are sound when x Ó= y:

(H1) {WS(y; V1; V2; ε) ∧ H(H; y; ε′)} x := α ⊕ H(y) {Indis(x; V1, x; V2; ε′′)}, where ε′′(k, χ, t) =

ε′(χ − 1H) + k(H) ∗ ε(k, χ − 1H , t).

(H2) {WS(y; V1; V2, y; ε) ∧ H(H; y; ε′)} x := α ⊕ H(y) {Indis(x; V1, x; V2, y; ε′′)} if y Ó∈ V1, where

ε′′(k, χ, t) = ε′(χ − 1H) + ε(k, χ − 1H , t + k(H) ∗ Tf )

Proof. Let X ∈ constD(χ0) be a distribution satisfying both our hypotheses. We prove rule

(H1) by proving three indistinguishability statements and then using transitivity.
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Firstly, X |= WS(y; V1; V2; ε) and x Ó= y results in νx.X |= WS(y; V1, x; V2; ε1) using

rule (R4), where ε1(k, χ, t) ≤ ε(k, χ0, t). Now, applying the hash vs. rebind lemma V.8,

νx.X ∼V1,x;V2;ε2 rebind
y Ô→α⊕x
H (νx.X) with ε2(k, t) = k(H) ∗ ε(k, χ0, t).

In addition to that, predicate H(H; y; ε′) allows to use the rebinding lemma V.7, providing:

[[x := α ⊕ H(y)]](X) ∼ε′ rebind
y Ô→α⊕x
H (νx.X),

which of course implies the following restricted indistinguishability statement [[x :=

α ⊕ H(y)]](X) ∼V1,x;V2;ε′ rebind
y Ô→α⊕x
H (νx.X).

Finally, we observe that νx.X ∼V1,x;V2;0 νx.[[x := α ⊕ H(y)]](X). Indeed, the command

x := α ⊕ H(y) affects x and LH only, and x is resampled in both distributions so that

obviously,

D(νx.X, V1 ∪ {x}, V2) = D(νx.[[x := α ⊕ H(y)]](X), V1 ∪ {x}, V2).

In addition, answers of queries to hash functions are distributed identically in both settings.

Therefore, provided with identical input distribution and interacting with oracles yielding

identical answer distributions, distinguishers output equal distributions.

In conclusion, the transitivity of the indistinguishability relation allows to deduce νx.[[x :=

α ⊕ H(y)]](X) ∼V1,x;V2;ε3 [[x := α ⊕ H(y)]](X) where ε3(k, t) ≤ ε′(k, χ0, t) + k(H) ∗ ε(k, χ0, t).

In addition to the fact that [[x := α⊕H(y)]](X) is an element of constD(χ0 +1H), this justifies

our choice of ε′′(k, χ, t) = ε′(k, χ − 1H , t) + k(H) ∗ ε(k, χ − 1H , t) for a bound in our conclusion

predicate.

As for rule (H2), the same proof as above can be carried out, but using the weak version

of the hash vs rebind lemma V.9 to end up with the desired result. �

The next rule takes advantage of randomness of H(y) when y does not belong to LH .

Indeed, if H(y) looks random to the adversary, then so does x after we execute x := α ⊕ H(y).

If x appears as a subvariable of an expression e, we can use its seemingly randomness to

bound the probability that e belongs to a list LH′ , for a different hash function H ′.

Lemma V.16 (Rule (H3)). The following rule is sound when x Ó= y, and x ∈ subvar(e):

(H3) {H(H; y; ε)} x := α ⊕ H(y) {H(H ′; e; ε′)}

where ε′(χ) = ε(χ − 1H) + χ(H)

2ℓ(H) .

Proof. Let X ∈ constD(χ0). The hypothesis that H(H; y; ε) enables to use the rebinding

lemma V.7, providing:

[[x := α ⊕ H(y)]](X) ∼ε(χ0) rebind
y Ô→α⊕x
H (νx.X).

Let e be an expression containing x as a subvariable. We show below that rebind
y Ô→α⊕x
H (νx.X) |=

H(H; e; χ0(H)+1

2ℓ(H) ). We let g be an extracting function for x ∈ subvar(e).
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Pr[m ← rebind
y Ô→α⊕x
H (νx.X) : m.e ∈ dom(m.LH′)]

≤ Pr[m ← νx.X; m′ ← rebind
y Ô→α⊕x
H (m) : m′.e ∈ dom(m.LH′) ∪ {m.y}]

since dom(m′.LH′) ⊆ dom(m.LH′) ∪ {m.y},

= Pr[m ← νx.X; m′ ← rebind
y Ô→α⊕x
H (m) : m.e ∈ dom(m.LH′) ∪ {m.y}]

using m.e = m′.e by definition of the rebinding

= Pr[m ← νx.X : m.e ∈ dom(m.LH′) ∪ {m.y}]

because m′ does not appear in the event

= Pr[m ← X; u ← U(ℓ(H)); m′ := m.[x Ô→ u] : m′.e ∈ dom(m.LH′) ∪ {m.y}]

since we imposed x Ó= y

≤ Pr[m ← X; u ← U(ℓ(H)); m′ := m.[x Ô→ u] :

g(m′.e) ∈ g(dom(m.LH′)) ∪ {g(m.y)}]

≤ Pr[m ← X; u ← U(ℓ(H)); m′ := m.[x Ô→ u] :

u ∈ g(dom(m.LH′)) ∪ {g(m.y)}]

since g(m′.e) = m′.x by definition of g

≤ χ0(H)+1

2ℓ(H)

because Card(g(dom(m.LH′))) ≤ Card(dom(m.LH′)) ≤ χ0(H)
Now, though we cannot directly use the compatibility lemma since it has only been proven

for constructible distributions, and the rebinding operator does not yield a constructible

distribution, a very similar demonstration justifies that [[x := α ⊕ H(y)]](X) |= H(H; e; ε1),

where ε1(k, χ, t) ≤ χ0(H)+1

2ℓ(H) + ε(χ0). Since [[x := α ⊕ H(y)]](X) ∈ constD(χ0 + 1H), we have

our conclusion. �

The next rule investigates the condition of improvement of a weak secrecy predicate

WS(z; V1; V2; .) into WS(z; V1, x; V2; .). The intuition is that providing the adversary with

knowledge of variable x is not of much help to compute z as long as x looks random.

Lemma V.17 (Rule (H4)). The following preservation rule is sound provided that x Ó= y, z:

(H4) {WS(y; V1; V2; ε1) ∧ WS(z; V1; V2; ε2) ∧ H(H; y; ε3)} x := α ⊕ H(y)

{WS(z; V1, x; V2; ε4)}

where ε4(k, χ, t) = k(H) ∗ ε1(k, χ − 1H , t) + ε2(k, χ − 1H , t) + ε3(χ − 1H).

Proof. Let X ∈ constD(χ0) satisfying our assumptions. First, we use rule (R4) and x Ó= y, to

deduce νx.X |= WS(y; V1, x; V2; ε′
1) from X |= WS(y; V1; V2; ε1), with ε′

1(k, χ, t) ≤ ε1(k, χ0, t).

Then, from the hash vs. rebind lemma V.8 applied on νx.X, we obtain that νx.X ∼V1,x;V2;ε′′

1

rebind
y Ô→α⊕x
H (νx.X), where ε′′

1(k, t) = k(H) ∗ ε1(k, χ0, t).

Now, using the assumption X |= H(H; y; ε3) and the rebinding lemma V.7, we ob-

tain rebind
y Ô→α⊕x
H (νx.X) ∼ε3(χ0) [[x := α ⊕ H(y)]](X). In turn, this statement yields that

rebind
y Ô→α⊕x
H (νx.X) ∼V1,x;V2;ε3(χ0) [[x := α ⊕ H(y)]](X).

Hence, by transitivity, νx.X ∼V1,x;V2;ε′′

1 (k,t)+ε3(χ0) [[x := α ⊕ H(y)]](X). Besides, as X |=

WS(z; V1; V2; ε2), rule (R4) along with x Ó= z allows to deduce that νx.X |= WS(z; V1, x; V2; ε′
2)

where ε′
2(k, χ, t) ≤ ε2(k, χ0, t). Thanks to the compatibility lemma V.1, we can conclude that

[[x := α⊕H(y)]](X) |= WS(z; V1, x; V2; ε′
4), where ε′

4(k, χ, t) ≤ k(H)∗ε1(k, χ0, t)+ε2(k, χ0, t)+

ε3(χ0).

Since [[x := α ⊕ H(y)]](X) belongs to constD(χ0 + 1H), we have [[x := α ⊕ H(y)]](X) |=

WS(z; V1, x; V2; ε4). �

Rule (H5) looks into the preservation of predicate H(H; e; .) after the execution of a hash

command using H on a variable y. We have to consider the possibility that LH is extended
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with y during the execution, which can potentially increase the probability that e ∈ LH . The

idea is that, if there is in e a subvariable z such that the probability to retrieve z from y is

bounded by ε′, then we can use it to bound the increase of probability that e ∈ LH .

Lemma V.18 (Rule (H5)). The following preservation rule is sound provided that z ∈

subvar(e) ∧ x /∈ subvar(e):

(H5) {H(H; e; ε) ∧ WS(z; y; ∅; ε′)} x := α ⊕ H(y) {H(H; e; ε′′)}

where ε′′(χ) = ε(χ − 1H) + ε′(0, χ − 1H , 0).

Proof. Since z ∈ subvar(e), there is a function g such that for every m, g(m.e) = m.z. Let

X ∈ constD(χ0).

Pr[m ← X; m′ ← [[x := α ⊕ H(y)]](m) : m′.e ∈ dom(m′.LH)]

= Pr[m ← X; m′ ← [[x := α ⊕ H(y)]](m) : m′.e ∈ dom(m.LH) ∪ {m.y}]

using that dom(m′.LH) = dom(m.LH) ∪ {m.y},

= Pr[m ← X; m′ ← [[x := α ⊕ H(y)]](m) : m.e ∈ dom(m.LH) ∪ {m.y}]

m.e = m′.e because of the rebinding definition and x /∈ subvar(e)

= Pr[m ← X : m.e ∈ dom(m.LH) ∪ {m.y}]

since m′ does not appear in the event

≤ Pr[m ← X : m.e ∈ dom(m.LH)] + Pr[m ← X : m.e = m.y]

≤ ε(χ0) + Pr[m ← X : m.e = m.y]

The second term can be bounded as follows:

Pr[m ← X : m.e = m.y] ≤ Pr[m ← X : g(m.e) = g(m.y)]

= Pr[m ← X : m.z = g(m.y)]

by definition of g

≤ ε′(0, χ0, 0)

seeing g as an adversarial function.

Consequently, we obtain that ε′′(χ) ≤ ε(χ0) + ε′(0, χ0, 0). With [[x := α ⊕ H(y)]](X) ∈

constD(χ0 + 1H), we obtain ε′′(χ) ≤ ε(χ − 1H) + ε′(0, χ − 1H , 0), our result. �

The last two of rules are more instances of slightly improved preservation rules, which,

again, are based on the idea that providing a random-looking x should not help any adversary

to solve a challenge.

Lemma V.19 (Rule (H6)). The following preservation rule is sound provided that x Ó= y:

(H6) {WS(y; V1; V2, y; ε) ∧ H(H; y; ε′)} x := α ⊕ H(y) {WS(y; V1, x; V2, y; ε′′)}

where ε′′(k, χ, t) = ε(k, χ − 1H , t + (k(H) + 1) ∗ Tf ) + ε′(χ − 1H) + ε(k, χ − 1H , t).

Proof. Let X ∈ constD(χ0) satisfy our assumptions. From the first hypothesis, the fact

that x Ó= y and rule (R3), we get that νx.X |= WS(y; V1, x; V2, y; ε1), where ε1(k, χ, t) ≤

ε(k, χ0, t). Using the weak hash vs. rebind lemma V.9, we deduce that νx.X ∼V1,x;V2,y;ε′

1

rebind
y Ô→α⊕x
H (νx.X), where ε′

1(k, t) = ε(k, χ0, t + k(H) ∗ Tf ). Also, the rebinding lemma V.7

(with H(H; y; ε′)) implies that rebind
y Ô→α⊕x
H (νx.X) ∼ε′(χ0) [[x := α ⊕ H(y)]](X). If we restrict

this last statement, and use transitivity, we can conclude that νx.X ∼V1,x;V2,y;ε′′

1
[[x :=

α ⊕ H(y)]](X) with ε′′
1(k, t) = ε(k, χ0, t + k(H) ∗ Tf ) + ε′(χ0).
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Finally, we apply the compatibility lemma V.1 to νx.X and [[x := α ⊕ H(y)]](X), which

result in [[x := α ⊕ H(y)]](X) |= WS(y; V1, x; V2, y; ε′′) with ε′′(k, χ, t) ≤ ε′′
1(k, t + Tf ) +

ε1(k, χ, t).

In other words, we can choose ε′′(k, χ, t) = ε(k, χ − 1H , t + (k(H) + 1) ∗ Tf ) + ε′(χ − 1H) +

ε(k, χ − 1H , t). �

Lemma V.20 (Rule (H7)). The following preservation rule is sound provided that x Ó= y, z:

(H7) {Indis(z; V1, z; V2; ε1)∧WS(y; V1, z; V2; ε2)∧H(H; y; ε3)} x := α⊕H(y) {Indis(z; V1, z, x; V2; ε4)}

where ε4(k, χ, t) = ε1(k, χ − 1H , t) + 2.k(H) ∗ ε2(k, χ − 1H , t) + 2.ε3(χ − 1H).

Proof. Consider any X ∈ constD(χ0) satisfying the three predicates. From the first two

predicates and rules (R3) and (R4) (which we can use since x Ó= z, y), we get that νx.X |=

Indis(z; V1, z, x; V2; ε′
1) ∧ WS(y; V1, z, x; V2; ε′

2), with ε′
1(k, χ, t) ≤ ε1(k, χ0, t) and ε′

2(k, χ, t) ≤

ε2(k, χ0, t) . Therefore, the weak secrecy predicate combined with the hash vs rebind lemma V.8

allows to conclude that

rebind
y Ô→α⊕x
H (νx.X) ∼V1,z,x;V2;ε νx.X

with ε(k, t) = k(H) ∗ ε2(k, χ0, t). Besides, the rebinding lemma V.7 and H(H; y; ε3) entails

[[x := α ⊕ H(y)]](X) ∼ε3(χ0) rebind
y Ô→α⊕x
H (νx.X). By transitivity, we thus can state [[x :=

α ⊕ H(y)]](X) ∼V1,z,x;V2;ε′ νx.X, where ε′(k, t) = ε(k, t) + ε3(χ0). Remembering that νx.X |=

Indis(z; V1, z, x; V2; ε′
1), the compatibility lemma V.1 provides us with [[x := α ⊕ H(y)]](X) |=

Indis(z; V1, z, x; V2; ε′
4) where ε′

4(k, χ, t) ≤ ε′
1(k, χ, t) + 2.ε′(k, t), which allows us to conclude

by replacing terms to: ε′
4(k, χ, t) ≤ ε1(k, χ0, t) + 2.ε(k, t) + 2.ε3(χ0). This justifies our choice

for ε4.

�

One-Way Permutation Rules. We provide four rules concerning the command x := f(y),

amongst which two are creation rules and the others deal with preservation of predicates. The

first rule captures the fact that distinguishing argument of f or image by f from randomness

amounts to the same thing.

Lemma V.21 (Rule (P1)). The following rule is sound, if x, y Ó∈ V1 ∪ V2:

(P1) {Indis(y; V1; V2, y; ε)} x := f(y) {Indis(x; V1, x; V2; ε)}

Proof. Let X ∈ constD(χ) be a distribution satisfying our hypothesis. We notice that

D(νy.X, V1, V2 ∪ {y})

= Pr[m ← X; u ← U(l); m′ := m.[y Ô→ u] : ((m′.V1), (f(m′.V2), f(u)))]

= Pr[m ← X; u ← U(l); m′ := m.[y Ô→ u, x Ô→ f(u)] : ((m′.V1), (f(m′.V2), m′.x)]

because x /∈ V1 ∪ V2

= Pr[m ← X; u ← U(l); m′ := m.[y Ô→ f−1(u), x Ô→ u] :

(m′.V1, (f(m′.V2), m′.x))]

if we denote f−1 the inverse of permutation f

= Pr[m ← X; u ← U(l); m′ := m.[x Ô→ u] : (m′.V1, (f(m′.V2), m′.x))]

because y /∈ V1 ∪ V2

= Pr[m ← X; m′ := m.[x Ô→ f(m.y)]; u ← U(l); m′′ := m′.[x Ô→ u] :

(m′′.V1, (f(m′′.V2), m′′.x)]

= D(νx.[[x := f(y)]](X), V1 ∪ {x}, V2)
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Consequently, up to a reorganization of its inputs, any adversary against [[x := f(y)]](X) |=

Indis(x; V1, x; V2; ε) can be turned into an adversary attacking X |= Indis(y; V1; V2, y; ε) with

the same advantage.

�

The second rule that we present formalizes in our logic one-wayness of the function. Indeed,

it states that given the image by f of a random-looking input as a challenge, an adversary’s

probability to compute a value for the input is bounded by that of inverting f .

Lemma V.22 (Rule (P2)). The following rule is sound if y Ó∈ V1 ∪ {x}:

(P2) {Indis(y; V1; V2, y; ε)} x := f(y) {WS(y; V1, x; V2, y; ε′})}

where ε′(k, χ, t) = ε(k, χ, t + Tf ) + OW (t).

Proof. Let X ∈ constD, such that X |= Indis(y; V1; V2, y; ε). Since y /∈ V1, applying the

hybrid weakening lemma V.4 allows to deduce that X |= WS(y; V1; V2, y; ε′) with ε′(k, χ, t) =

ε(k, χ, t + Tf ) + OW (t). Moreover, as f(y) is a constructible from (V1; V2 ∪ {y}) in no time

and y Ó= x, then lemma V.6 provides us with X |= WS(y; V1, x; V2, y; ε′). �

Our third rule expresses a slightly improved preservation of indistinguishability from

random: x appears in the conclusion.

Lemma V.23 (Rule (P3)). The following rule is sound if z Ó= x, y:

(P3) {Indis(z; V1, z; V2, y; ε)} x := f(y) {Indis(z; V1, z, x; V2, y; ε)}.

Proof. This is a direct application of lemma V.6: we have z Ó= x, z Ó= y implies that z does

not syntactically appear in e and and f(y) is constructible from (V1, z; V2, y) in no time. �

Last but not least, the fourth preservation rule allows to preserve and possibly improve a

weak secrecy predicate. Indeed, the capacity to compute the value of a variable z given some

sets V1 and V2 should not fundamentally change when additionally provided with x and f(y)

as long as y looks random w.r.t. V1 and V2.

Lemma V.24 (Rule (P4)). The following rule is sound if z Ó= x, y:

(P4) {WS(z; V1; V2; ε) ∧ Indis(y; V1; V2, y, z; ε′)} x := f(y) {WS(z; V1, x; V2, y; ε′′)}

where ε′′(k, χ, t) = ε(k, χ, t + Tf ) + ε′(k, χ, t + Tf ).

Proof. Notice that when z = y this rule is actually an instance of (P2), so that we can

impose z Ó= y without regret. Let X ∈ constD(χ0) be a distribution satisfying our two

hypotheses. We start by rewriting X |= Indis(y; V1; V2, y, z; ε′)} as X ∼V1;V2,y,z;ε′

1
νy.X with

ε′
1(k, t) = ε′(k, χ0, t). Lemma V.5 provides us with statement [[x := f(y)]](X) ∼V1,x;V2,y,z;ε′

1

[[x := f(y)]](νy.X) (*).

We then propose ε1 such that [[x := f(y)]](νy.X) |= WS(z; V1, x; V2, y; ε1). Let A
þH be a

adversary against this last statement. We construct the following (k, t + Tf )-adversary against

our hypothesis predicate X |= WS(z; V1; V2; ε).

B
þH(V1; f(V2)) = u ← U(l)

z0 ← A
þH(V1, f(u); f(V2), f(u))

return z0
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Then, we show that the advantages of both adversaries coincide:

Pr[m ← X : B
þH(m.V1; f(m.V2)) = m.z]

= Pr[m ← X; u ← U(l) : A
þH(m.V1, f(u); f(m.V2), f(u)) = m.z]

= Pr[m ← X; u ← U(l); m′ = m.[y Ô→ u, x Ô→ f(u)] :

A
þH(m′.(V1 ∪ {x}); f(m′.(V2 ∪ {y}))) = m.z]

= Pr[m ← [[x := f(y)]](νy.X) : A
þH(m′.(V1 ∪ {x}); f(m′.(V2 ∪ {y}))) = m.z]

As X |= WS(z; V1; V2; ε), the probability that B wins is bounded by ε(k, χ, t + Tf ). Then, so

is the advantage of A. Therefore, we can choose ε1(k, χ, t) = ε(k, χ, t + Tf ).

The compatibility lemma V.1 applied to (*) and this latter statement enables us to deduce

that [[x := f(y)]](X) |= WS(z; V1, x; V2, y; ε′′
1) where ε′′

1(k, χ, t) ≤ ε′
1(k, t + Tf ) + ε1(k, χ, t).

In conclusion, by replacing terms and remarking that X ∈ constD(χ0) iff [[x := f(y)]](X)

belongs to it too, our function ε′′(k, χ, t) can be chosen equal to ε(k, χ, t + Tf ) + ε′(k, χ, t +

Tf ). �

Exclusive Or Rules. The following creation rule captures the properties of the execution

of x := y ⊕ z, assuming y and z are syntactically distinct. It can remind the reader of the

properties of a one-time pad encryption of z with key y: even given x and z, if key y looks

random enough, then so does x.

Lemma V.25 (Rule (X1)). The following rule is sound if y Ó∈ V1 ∪ V2, y Ó= x, z:

(X1) {Indis(y; V1, y, z; V2; ε)} x := y ⊕ z {Indis(x; V1, x, z; V2; ε)}

Proof. Let X ∈ constD(χ0) such that X |= Indis(y; V1, y, z; V2; ε). It can be rewritten as

X ∼V1,y,z;V2;ε(k,χ0,t) νy.X. With the fact that y ⊕ z is constructible from y and z and

lemma V.5, we get [[x := y ⊕ z]](X) ∼V1,x,y,z;V2;ε(k,χ0,t) [[x := y ⊕ z]](νy.X), which we weaken

into [[x := y ⊕ z]](X) ∼V1,x,z;V2;ε(k,χ0,t) [[x := y ⊕ z]](νy.X). Now we study this last distribution.

D([[x := y ⊕ z]](νy.X), V1 ∪ {x, z}, V2)

= Pr[m ← X; u ← U(l); m′ := m.[y Ô→ u, x Ô→ u ⊕ m.z] :

((m′.V1, m′.x, m′.z), f(m′.V2))]

= Pr[m ← X; u ← U(l); m′ := m.[y Ô→ u ⊕ m.z, x Ô→ u] :

((m′.V1, m′.x, m′.z), f(m′.V2))]

since ⊕ is idempotent

= Pr[m ← X; u ← U(l); m′ := m.[x Ô→ u] : ((m′.V1, m′.x, m′.z), f(m′.V2))]

because y /∈ V1 ∪ V2 ∪ {x, z}

= Pr[m ← X; m′ := m.[x Ô→ m.y ⊕ m.z]; u ← U(l); m′′ := m′[x Ô→ u] :

((m′′.V1, m′′.x, m′′.z), f(m′′.V2))]

= D(νx.[[x := y ⊕ z]](X), V1 ∪ {x, z}, V2)

As a result of this and transitivity, [[x := y ⊕ z]](X) ∼V1,x,z;V2;ε(k,χ0,t) νx.[[x := y ⊕ z]](X),

which in turn can be rewritten [[x := y ⊕ z]](X) |= Indis(x; V1, x, z; V2; ε(k, χ0, t)). Considering

that X ∈ constD(χ0) iff [[x := y ⊕ z]](X) ∈ constD(χ0), we can conclude. �

Preservation rules for exclusive or take advantage of the constructibility of y ⊕ z given y

and z, and are simple applications of lemma V.6.
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Lemma V.26 (Rules (X2) and (X3)). The following rules are sound:

(X2) {Indis(w; V1, y, z; V2; ε)} x := y ⊕ z {Indis(w; V1, x, y, z; V2; ε)}, if w Ó= x, y, z,

(X3) {WS(w; V1, y, z; V2; ε)} x := y ⊕ z {WS(w; V1, x, y, z; V2; ε)}, if w Ó= x,

Concatenation Rules. We have two creation rules to deal with concatenation command

x := y||z. The first rule, (C1), states that computing a value for x is at least as difficult as

computing a substring of x.

Lemma V.27 (Rule (C1)). The following rule is sound if x Ó∈ V1 ∪ V2:

(C1) {WS(y; V1; V2; ε)} x := y||z {WS(x; V1; V2; ε)}

A dual rule applies for z.

Proof. The proof captures the idea that out of any adversary A
þH computing x one can obtain

an adversary B
þH computing y by extracting the head of the bitstring computed for x. We

disregard the time necessary to the extraction. The bounding of A
þH ’s advantage is justified

by the following computation:

Pr[m ← [[x := y||z]](X) : A
þH(m.V1, m.V2) = m.x]

= Pr[m ← X; m′ := m.[x Ô→ m.y||m.z] : A
þH(m′.V1, m′.V2) = m′.x]

= Pr[m ← X; m′ := m.[x Ô→ m.y||m.z] : A
þH(m′.V1, m′.V2) = m.y||m.z]

= Pr[m ← X; m′ := m.[x Ô→ m.y||m.z] : A
þH(m.V1, m.V2) = m.y||m.z]

because x Ó∈ V1 ∪ V2

= Pr[m ← X : A
þH(m.V1, m.V2) = m.y||m.z]

= Pr[m ← X : B
þH(m.V1, m.V2) = m.y]

≤ ε(k, χ, t)

�

The idea behind (C2), our second creation rule, is that y and z being random implies

randomness of x, with respect to V1 and V2. Of course, y has to be random given y and z

and not just only y; otherwise, there might exist a dependency between both substrings of x

that allows an adversary to distinguish this latter from a random value. Obviously the same

goes for z.

Lemma V.28 (Rule (C2)). The following rule is sound if y, z Ó∈ V1 ∪ V2 ∪ {x}:

(C2) {Indis(y; V1, y, z; V2; ε) ∧ Indis(z; V1, y, z; V2; ε′)} x := y||z {Indis(x; V1, x; V2; ε + ε′)},

Proof. Let X ∈ constD(χ0) be a distribution satisfying both premises. On the one hand,

X |= Indis(y; V1, y, z; V2; ε) can be written as X ∼V1,y,z;V2;ε1 νy.X, where ε1(k, t) = ε(k, χ0, t).

Therefore, νz.X ∼V1,y,z;V2;ε2 νz.νy.X, where ε2(k, t) = ε(k, χ0, t). On the other hand,

X |= Indis(z; V1, y, z; V2; ε′) rewrites as X ∼V1,y,z;V2;ε′

1
νz.X where ε′

1(k, t) = ε′(k, χ0, t).

By transitivity, we deduce that X ∼V1,y,z;V2;ε2+ε′

1
νz.νy.X. As y||z is constructible from y

and z, lemma V.5 provides us with [[x := y||z]](X) ∼V1,x,y,z;V2;ε3 [[x := y||z]](νz.νy.X), where

ε3(k, t) = ε2(k, t) + ε′
1(k, t). This statement can be weakened as [[x := y||z]](X) ∼V1,x;V2;ε3

[[x := y||z]](νz.νy.X)
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Now, we show that D([[x := y||z]](νz.νy.X), V1 ∪ {x}, V2) = D(νx.[[x := y||z]](X), V1 ∪

{x}, V2):

D([[x := y||z]](νz.νy.X), V1 ∪ {x}, V2)

= D([m ← νz.νy.X : m.[x Ô→ m.y||m.z]], V1 ∪ {x}, V2)

= D([m ← X; u ← U(l); v ← U(l′) :

m[y Ô→ u, z Ô→ v, x Ô→ u||v]], V1 ∪ {x}, V2)

= D([m ← X; w ← U(l + l′) : m.[x Ô→ w]], V1 ∪ {x}, V2)

because y, z /∈ V1 ∪ V2 ∪ {x}

= D(m ← νx.X, V1 ∪ {x}, V2)

In conclusion, [[x := y||z]](X) ∼V1,x;V2;ε3 νx.[[x := y||z]](X) by transitivity. Rewritten as

[[x := y||z]](X) |= Indis(x; V1, x; V2; ε3), together with X ∈ constD(χ0) iff [[x := y||z]](X) ∈

constD(χ0), it yields our conclusion. �

Finally, the following preservation rules follow directly from lemma V.6: capacity to

distinguish t from random or to compute it are not improved by the additional knowledge of

y||z when one already is provided with y and z.

Lemma V.29 (Rules (C3) and (C4)). The following rules are sound:

(C3) {Indis(w; V1, y, z; V2; ε)} x := y||z {Indis(w; V1, x, y, z; V2; ε)}, if w Ó= x, y, z,

(C4) {WS(w; V1, y, z; V2; ε)} x := y||z {WS(w; V1, y, z, x; V2; ε)}, if w Ó= x.

Additional General Rules. To reason on programs built according to the language gram-

mar described in Table V.1, we additionally need the two following rules.

Lemma V.30. Let ϕ0, ϕ1, ϕ2, ϕ3 be assertions from our language, and c, c1, c2 be any commands.

The following rules are sound:

— (Csq) if ϕ0 ⇒ ϕ1 and {ϕ1} c {ϕ2} and ϕ2 ⇒ ϕ3 then {ϕ0} c {ϕ3}.

— (Seq) if {ϕ0} c1 {ϕ1} and {ϕ1} c2 {ϕ2} then {ϕ0} c1; c2 {ϕ2}.

— (Conj) if {ϕ0} c {ϕ1} and {ϕ0} c {ϕ2}, then {ϕ0} c {ϕ1 ∧ ϕ2}.

We omit the proofs of these classical rules. The soundness of the Hoare logic follows by

induction from the soundness of each rule.

V.4 Verification Procedure and Interface to CIL

V.4.1 — Public-Key Oracle Systems

The asymmetric-dedicated framework can be related quite easily to a subset of oracle systems.

Namely, constructible distributions call to mind oracle systems containing only random oracles

in addition to one other oracle whose implementation can be written in the programming

language defined in this chapter. We consider fixed a trapdoor algorithm and a matching

key-generation procedure, together with a finite collection of hash functions þH.

Definition (Oracle Declaration). An oracle declaration is of the form o(q, a) : var V ; c,

where o is an oracle name, c is a command in our language, q and a are respectively the input

and output variables, and variables of V ⊆ Var are those used in the procedure in addition to

q and a. We also require that no assignment to variable q is performed by command c. �
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Definition (Public-Key Oracle System). We let o(q, a) : var V ; c be an oracle declaration

from the previous programming language. The public-key oracle system O(c) based on this

declaration is given by:

— memories MO containing variables pk, sk, one list LH for every element in þH and a list Lo.

— in addition to the initialization and finalization oracles, the system contains an oracle for

each element in þH and oracle o. They are implemented as follows:

1. for the initialization oracle:
Imp(oI)(_, _) = (pk0, sk0) ← K;

return (pk0, [pk Ô→ pk0, sk Ô→ sk0, (LH Ô→ [ ])H∈ þH, Lo Ô→ [ ]])

2. every H ∈ þH is implemented as the functional random oracle with outputs of length

ℓ(H)4,

3. for oracle o:
Imp(o)(q, m) = if q ∈ dom(m.Lo) then

return (Lo(q), m)

else

let m′ ← [[c]](m) in

return (m′.a, m′.[Lo Ô→ Lo :: (q, m′.a, m′.V ), V Ô→ m.V ])
where V Ô→ m.V is short for the assignment to every variable in V of its value

according to m.

4. finally, the finalization oracle is chosen to have a trivial idle implementation, but we

do not fix its input type, which can be set according to the context of use of the

system (e.g. Res = Bool to use the system in an indistinguishability statement).

This defines the deterministic public-key oracle system matching a declaration. The

probabilistic version of the system is identical except for the implementation of o, which does

not test for belonging in list Lo and directly applies c.

�

The list Lo stores values of every query, along with final values of variables in V used to

compute an answer, and the answer itself. We reset the values of variables in V after every

call to the oracle o. As a result, variables of V are local variables of the oracle implementation.

In the remainder, we come to use a restriction of the list Lo containing only the pairs of query

and answer, which is the part of the list visible to the adversary. This restricted list is denoted

by (Lo)|(q,a).

V.4.2 — Plug-In Theorems

Theorem V.31. Let O(c) be the public-key oracle system based on declaration o(q, a) : var V ; c,

with the finalization oracle taking boolean as inputs. The following rule is sound:

{true} c {Indis(a; q, a, σ; ∅; ε)}
Indis

O(c) ∼k(o)∗ε(k,k,t) O(c; a ← U(l))

Before starting with the proof, we introduce the following notation. For a given integer

i, we denote O(c/c; a ← U(l))[i] the oracle system whose oracle o is implemented as in O(c)

until it has been queried on i fresh queries, and as O(c; a ← U(l)) for the remaining queries.

As an example, O(c/c; a ← U(l))[0] actually is O(c; a ← U(l)).

4See definition in subsection III.5.3 of the previous chapter.
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Proof. Let A be an O(c)-adversary whose resources are bounded by (k, t). To prove the

theorem, we have to show that we have:

|Pr(A|O(c) : r = true) − Pr(A|O(c; a ← U(l)) : r = true)| ≤ k(o) ∗ ε(k, k, t).

In fact, we notice that system O(c) coincides with O(c/c; a ← U(l))[k(o)], while O(c; a ←

U(l)) corresponds to O(c/c; a ← U(l))[0]. Consequently, it is sufficient to show the inequality

for those systems.

In order to obtain such a statement, we apply what is seemingly a hybrid argument: we

prove that for any i in [0..(k(o) − 1)],

|Pr(A|O(c/c; a ← U(l))[i] : r = true)

−Pr(A|O(c/c; a ← U(l))[i + 1] : r = true)| ≤ ε(k, k, t)

and can then conclude using triangle inequality.

We let i be a fixed integer in [0..(k(o) − 1)], and A an O(c)-adversary trying to distinguish

between O(c/c; a ← U(l))[i] and O(c/c; a ← U(l))[i + 1]. In other words, A has to find out

whether the (i + 1)-th fresh query it performs to oracle o is followed by a redraw of a in the

end. The idea is to relate the advantage of A to that of an adversary A trying to break our

indistinguishability premise. To do so, we are going to decompose the interaction of A with its

oracle system into the three parts appearing in the statement of our hypothesis: the first one

corresponds to a constructible distribution, the second one to the issue of a challenge obtained

by applying the command and the third and last one is the execution of an adversary A.

In the remainder of this proof, we write O when the oracle system we consider can either be

O(c/c; a ← U(l))[i] or O(c/c; a ← U(l))[i + 1]. Firstly, we let (A | O)[i] denote the transition

system which can be obtained by running A | O until reaching the step during which the i-th

fresh query is performed to o, and outputting result of this step, or outputting the last step’s

result if A | O never reaches such a step. This transition system (A | O)[i] yields a distribution

on Xch × MO × MA. We assume the existence of a function Encode(.) which takes as input

a state and encodes it as a bitstring of finite length. Furthermore, this function is assumed

to admit an inverse that we denote Decode(.). We consider the distribution X obtained as

follows:

X = let ((o′, q′, _), mO, mA) ← (A | O)[i] in

if o′ = o then

let ((o, qi+1), m′
A) ← A(mA) in

return [(pk, sk, LH) Ô→ mO, σ Ô→ Encode((mA, (mO.Lo)|(q,a))), q Ô→ qi+1]

else / ∗ here, we have o′ = oF ∗ /

return [(pk, sk, LH) Ô→ mO, σ Ô→ Encode([(o′, q′)]), q Ô→ λ]

where (pk, sk, LH) Ô→ mO is short for “variables pk, sk and all lists LH receive the values

stored for them in state mO”. This distribution is constructible for some function χ such

that χ(H) ≤ k(H). Indeed, (A | O)[i] is a sequence of alternating adversarial querying and

update functions A and A↓, calls to hash oracles and calls to oracle o. In addition to this,

these latter calls consist in the execution of the implementation of o in O(c). As far as calls

to hash oracles are concerned, we have no knowledge of when A places them, so that we can

only say that their number is bounded by function k.

Our premise provides us with c(X) |= Indis(a; q, a, σ; ∅; ε).
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We now build a specific adversary A
þH against this statement. It takes as inputs values

q, a and σ, and first runs the decoding algorithm Decode(σ) to retrieve m′
A and a list L

or [(oF, q′)] from σ. We are sure that for any state output by X, c(X)(m).σ = m.σ and

(c; a ← U(l))(X)(m).σ = m.σ, because commands of the language are designed to leave the

adversarial variable σ unchanged. If the decoding results in [oF, q′], then A forwards q′ as its

answer. Otherwise, A goes on with updating L with the new pair (q, a).

After that, the idea is that A runs A as a subroutine and forwards this latter’s answer. To

do so, A runs adversary A’s update function A↓ on ((o, q, a), m′
A), and then goes on running A.

The oracle calls that A places to hash functions are forwarded by A to its own hash oracles.

As previously, we have no way of providing a better bound to the number of hash function

calls performed by A after its i-th fresh call to o than by means of function k. Of course, for

every execution, we know that the total number of hash calls is bounded by k. However, since

A is probabilistic, there may not exist a tighter function bounding calls performed before

(resp. after) A’s i-th fresh call to o uniformly over all the executions.

The oracle calls to o are simulated by A as follows. A knows the list of calls previously

performed by A (they appear in L), so that it can answer consistently to potential queries

performed twice, and remaining fresh calls are answered by executing the command c; a ← U(l)

and updating L.

We have built X and A
þH such that they perfectly simulate the execution of A | O.

Therefore,
| Pr(A|O(c/c; a ← U(l))[i] : r = true)

− Pr(A|O(c/c; a ← U(l))[i + 1] : r = true)|

= | Pr[m ← [[c]](X) : A
þH(m.q, m.a, m.σ) = true]

− Pr[m ← νa.[[c]](X) : A
þH(m.q, m.a, m.σ) = true]|

≤ ε(k, k, t)

�

A good example of use of this first theorem is when the oracle declaration is an encryption

algorithm. Then, if we manage to derive the premise Indis(a; q, a, σ; ∅; ε) for some function

ε, we can use the theorem to conclude to O(c) ∼k(o)∗ε(k,k,t) O(c; a ← U(l)). This is nearly

the statement in CIL of ROR-ciphertext security of the encryption algorithm, which would

be O(c) ∼k(o)∗ε(k,k,t) O(a ← U(l)). An application of bisimulation rule can bridge the gap

by providing O(c; a ← U(l)) ∼0 O(a ← U(l)), using as a relation the equality on common

components of states.

Theorem V.32. Let O(c) be the public-key oracle system based on the declaration o(q, a) :

var V ; c, with the finalization oracle taking bitstrings of length l as inputs. Let x be one of the

local variables used in c, taking values in {0, 1}l. The operator Πx maps list Lo of tuples of

the form (q, a, V ) to the corresponding list of values taken by x. The following rule is sound:

{true} c {WS(x; q, a, σ; ∅; ε)}
WS

O(c) :k(o)∗ε(k,k,t) r ∈ Πx(Lo)

Proof. Let i be an integer between 1 and k(o), and A be an O(c)-adversary. We reuse elements

of the proof of theorem V.31 to prove that:

O(c) :ε(k,k,t) r = Πx(Lo[i])
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where we recall that Lo[i] is the i-th element of list Lo.

We consider distribution X defined from (A | O)[i] as the previous proof.

Our premise provides us with c(X) |= WS(x; q, a, σ; ∅; ε).

We now build a specific adversary A
þH trying to compute a value for x. It takes as inputs

values q, a and σ, and first runs the decoding algorithm Decode(σ) to retrieve m′
A and a list of

queries and answers L or [(oF, q′)] from σ. If the decoding results in [oF, q′], then A forwards

q′ as its answer. Otherwise, A goes on with updating L with the new pair (q, a).

After that, A runs A like a subroutine and forwards this latter’s answer. To do so, A runs

adversary A’s update function A↓ on ((o, q, a), m′
A), and then goes on running A. The oracle

calls that A places to hash functions are forwarded by A to its own hash oracles. Queries to

o are answered by A in the following way: the list of calls Lo previously performed by A in

known to A, so that it can answer consistently redundant queries, and remaining fresh calls

to o are answered by executing the command c and updating L accordingly.

The oracle system interacting with A is perfectly simulated by this transformation. As a

consequence, if A outputs a result worth Πx(Lo[i]), then A has computed a satisfactory value

for its challenge.
Pr[A|O(c) : r = Πx(Lo[i])]

≤ Pr[m ← [[c]](X) : A
þH(m.q, m.a, m.σ) = m.x]

≤ ε(k, k, t)

where we have bounded the number of hash function calls performed for the construction of

X and by A by function k. The details concerning the reasons why we cannot be tighter are

the same as in the proof of rule Indis.

An application of the CIL rule UR allows to conclude:

O(c) :ε(k,k,t) r = Πx(Lo[i]) r ∈ Πx(Lo) ⇒
∨

i=1..k(o) r = Πx(Lo[i])
UR

O(c) :k(o)∗ε(k,k,t) r ∈ Πx(Lo)

�

V.4.3 — Generalization to Systems with Multiple Oracles

The theorems we have presented before only capture systems with one non-random oracle.

We may want to use rules dealing with oracle systems containing multiple oracles. To this

end, we propose the following definition.

Definition ((Generalized) Public-Key Oracle System). We let (op(qp, ap) : var Vp; cp)p=1..P

be a finite family of oracle declarations from the previous programming language. The public-

key oracle system O(c1, . . . , cp) based on these declarations is given by:

— memories MO containing variables pk, sk, one list LH for every element in þH and a list

Lop for each declaration of the form op.

— in addition to the initialization and finalization oracles, the system contains an oracle for

each element in þH and oracles op. They are implemented as follows:

1. for the initialization oracle:
Imp(oI)(_, _) = (pk0, sk0) ← K;

return (pk0, [pk Ô→ pk0, sk Ô→ sk0, (LH Ô→ [ ])H∈ þH, Lo Ô→ [ ]])
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2. every H ∈ þH is implemented as the functional random oracle with outputs of length

ℓ(H),5

3. for oracle op:

Imp(op)(qp, m) = if qp ∈ dom(m.Lo) then

return (Lo(qp), m)

else

let m′ ← [[c]](m) in

return (m′.ap, m′.[Lo Ô→ Lo :: (m′.qp, m′.ap, m′.Vp), V Ô→ m.Vp])

4. finally, the finalization oracle just outputs its input memory. Its input type can be

set according to the context of use of the system.

�

Rule Indis can be generalized quite easily. Indeed, since the variable taken as an argument

of the predicate is either a local or the output variable, other oracle implementations are blind

to a possible redraw. Thus, the proof performed for rule Indis can be adapted by considering

that calls to oracles different from the one (say, o) that we want to change are simulated

using their code together with a list of queries and answers. Of course, these lists have to be

encoded and forwarded to adversary A constructed in the proof, along with the restricted list

(Lo)|(q,a).

Theorem V.33. The following rule is sound, where xi ∈ Vi ∪ {ai}:

{true} c {Indis(xi; qi, ai, σ; ∅; εi)}
Indismult

O(c1, . . . , cp) ∼(k(oi)∗εi(k,k,t)) O(c′
1, . . . , c′

p)

where c′
j = ci; xi ← U(l) if j = i and c′

j = cj otherwise.

By changing one oracle at a time, we can use several Hoare logic statements on the same

system.

The generalization of the weak secrecy plug-in theorem is done similarly to its Indis

counterpart.

Theorem V.34. The following rule is sound, where x ∈ Vi:

{true} c {WS(x; qi, ai, σ; ∅; εi)}
WSmult

O(c1, . . . , cp) :k(oi)∗εi(k,k,t) R ∈ Πx(Loi
)

V.4.4 — Using the Verification Procedure as a Proof Strategy

The Hoare logic developed in the previous section offers an opportunity to perform automatic

search for a proof of statements expressed in the form of conclusions of rules Indis, WS,

Indismult or WSmult.

A search algorithm for a given program and conclusion can be implemented in two steps:

roughly, the first step provides a pattern for a satisfactory derivation, which the second step

fills in.

Concerning the first step, we notice that, though our logic is presented to derive concrete

security statements, we can obtain an asymptotic version of the rules by forgetting about

5See definition in III.5.3.
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expressing a bound function for every predicate. By doing so, we conceptually replace

being bounded by a specific function ε by just being bounded by a negligible function.

With these new versions of the rules, we can compute the invariants by going through the

program backwards, starting from the conclusion we want to establish. A difficulty is that

several rules can lead to the same postcondition. As a result, given a postcondition, we

compute a set of sufficient conditions before the execution of each command. For each set (of

postconditions) {Inv1, . . . , Invn} and each command c, we can compute a set of preconditions

{Inv′
1, . . . , Inv′

m} such that, for each i = 1, . . . , n, there exists a subset J ⊆ [1, . . . , m] such

that
{

∧

j∈J Inv′
j

}

c Invi can be derived using the rules (with a possible use of the consequence

rule (Cons) and the weakening lemmas). To compute the precondition set {Inv′
1, . . . , Inv′

m},

we successively apply all possible Hoare rules to get Invi on the right side of command c.

This provides us with an intermediate finite set of preconditions PreCond(Invi), for each

assertion Invi in the post-conditions. Then, the consequence rule is applied along with the

weakening lemmas, which results in replacing PreCond(Invi) by stronger assertions, leading

to the finite set {Inv′
1, . . . , Inv′

m}. Since the commands we consider do not include loops

and the set of invariants we compute for each command is finite, our verification procedure

always terminates. However, this verification is potentially exponential in the number of

instructions in the program which we examine, as each postcondition may potentially have

several preconditions. Nevertheless, this technique has been implemented and outputs a

derivation for the examples which we present in section V.5 quasi-instantaneously.

Once we have obtained an asymptotic version of a derivation allowing to conclude, the

last step to obtain a concrete security version of it is to go through the proof tree from top to

bottom to actually compute the functions which are the last arguments of predicates. This

verification procedure is not guaranteed to derive the best possible bound. Indeed, to do

that, we ought to compute all possible asymptotic proofs and the bounds corresponding to

their concrete version. Practice has led us to believe that if there was a proof derivable for a

predicate, it was usually the only possible one, modulo the version of the preservation rule

used or some weakenings. However, formalization or exploitation of the consequences of these

observations have not been investigated. In a nutshell, the only result we know for certain

with this verification procedure is that if a proof exists, we find it. However, in case no proof

is found, it does not mean that the CIL statement is invalid.

V.5 Examples and Extensions

V.5.1 — Example of Application

We illustrate our proposition with Bellare & Rogaway’s generic construction [BR93], which

can be shortly described as f(r)||(q ⊕ G(r))||H(q||r), where q is a plaintext to be ciphered. A

description of the algorithm in our framework, under the form of an oracle declaration, is the

following:

o(q, a) : var {r, g, b, c, d, s, t};

(r ← U(l); b := f(r); g := G(r); c := q ⊕ g; s := q||r; d := H(s); t := b||c; a := t||d)

We propose a detailed proof of the construction by applying the rules of our logic. The

table below provides a synoptic description of the proof for which we detail which rule is
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applied and what the bound is worth one predicate at a time afterwards. In the sequel,

V = {q, a, σ, r, g, b, c, d, s, t}:

1) r ← U(l)

Indis(r; V ; ∅; 0) ∧ H(G; r; χ0(G)
2l ) ∧ H(H; q||r; χ0(H)

2l )

2) b := f(r)

Indis(b; V r {r}; ∅; 0) ∧ WS(r; V r {r}; r; OW (t))

∧H(G; r; χ0(G)
2l ) ∧ H(H; q||r; χ0(H)

2l )

3) g := G(r)

Indis(b; V r {r}; ∅; ε) ∧ Indis(g; V r {r}; r; ε)∧

WS(r; V r {r}; r; ε/2) ∧ H(H; q||r; χ0(H)
2l )

4) c := q ⊕ g

Indis(b; V r {r}; ∅; ε) ∧ Indis(c; V r {g, r}; r; ε)∧

WS(r; V r {r}; r; ε/2) ∧ H(H; q||r; χ0(H)
2l )

5) s := q||r

Indis(b; V r {r, s}; ∅; ε) ∧ Indis(c; V r {g, r, s}; r; ε)∧

WS(s; V r {r, s}; r; ε/2) ∧ H(H; s; χ0(H)
2l )

6) d := H(s)

Indis(b; V r {r, s}; ∅; ε′) ∧ Indis(c; V r {r, g, s}; r; ε′)∧

Indis(d; V r {r, s}; r; ε′′)

7) t := b||c

Indis(t; V r {b, c, r, g, s}; ∅; 2.ε′)

Indis(d; V r {b, c, r, s}; r; ε′′)

8) a := t||d

Indis(a; q, a, σ; ∅; 2.ε′ + ε′′)

We let X ∈ constD(χ0) be a distribution to which we successively apply the commands

above. We notice that χ is preserved by the first couple of commands; namely [[r ← U(l); b :=

f(r)]](X) ∈ constD(χ0). The third command transforms the distribution into a χ0 + 1G

constructible distribution. Fourth and fifth commands preserve this value, sixth command

turns it into a χ0 + 1G + 1H constructible distribution, which it remains until the end.

First Command. Predicate Indis(r; V ; ∅; 0) is a consequence of rule (R1). Rule (R2)

provides both H(G; r; χ0(G)
2l ) and H(H; q||r; χ0(H)

2l ). We then use (Conj) to end up with our

conjunction. In the remaining of the proof, we do not precise use of (Conj) anymore. Neither

do we specify uses of (Seq) or (Csq) after weakening.

Second Command. To obtain Indis(b; V r {r}; r; 0), we first weaken Indis(r; V ; ∅; 0) into

Indis(r; V r{r, b}; r; 0), and then apply (P 1) (we do have r, b /∈ V r{r, b}). Weakened predicate

Indis(r; V r {r}; r; 0) is used in (P2) to derive WS(r; V r {r}; r; OW (t)). Indeed, we can do

this because r /∈ (V r {r}) ∪ {b}. The preservation of both other predicates is an aplication

of (G3).

Third Command. Using Indis(b; V r {r}; ∅; 0) ∧ WS(r; V r {r}; r; OW (t)) ∧ H(G; r; χ0(G)
2l )

and rule (H7) (since g Ó= b, r) allows us to deduce that Indis(b; V r {r}; ∅; ε) where ε(k, χ, t) =

2.k(G) ∗ OW (t) + 2.χ0(G)
2l . Moreover, WS(r; V r {r}; r; OW (t)) ∧ H(G; r; χ0(G)

2l ) can be used
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as the premises of rule (H1) (since g Ó= r) to derive Indis(g; V r {r}; r; ε). On top of that, the

same hypotheses used with rule (H4) (and g Ó= r) yield WS(r; V r {r}; r; ε/2). Rule (G3) and

H Ó= G account for the preservation of the last predicate.

Fourth Command. Predicate Indis(b; V r {r}; ∅; ε) follows from the application of rule

(X2), along with b Ó= c, q, g. Now, we apply rule (X1) to Indis(g; V r {g, r}, g; r; ε), with

g /∈ V r {g, r} ∪ {r} and g Ó= q, c, to obtain Indis(c; V r {g, r}; r; ε). Furthermore, rule (X3) is

applied with predicate WS(r; V r {r}; r; ε/2) and r Ó= c to preserve it. Eventually, rule (G3)

justifies the preservation of the remaining predicate.

Fifth Command. Firstly, Indis(b; V r {r}; ∅; ε) can be weakened in Indis(b; V r {r, s}; ∅; ε).

Then, rule (G1), s /∈ (V r {r, s}) ∪ {r} and b Ó= s provide its conservation. The same

reasoning can be done to obtain Indis(c; V r {g, r, s}; r; ε). Weakening WS(r; V r {r}; r; ε/2)

into WS(r; V r {r, s}; r; ε/2) enables to use (C1) and get WS(s; V r {r, s}; r; ε/2): we do have

s /∈ (V r{r, s})∪{r}. Finally, rule (G3) and H(H; q||r; χ0(H)
2l ) allow us to write H(H; s; χ0(H)

2l ).

Sixth Command. First, we apply (H7) using that d Ó= s, b, Indis(b; V r{r}; ∅; ε), WS(s; V r

{r, s}; r; ε/2) and H(H; s; χ0(H)
2l ). We get Indis(b; V r {r}; ∅; ε′) where ε′(k, χ, t) = (1 +

k(H))ε(k, χ − 1H , t) + 2.χ0(H)
2l = 2.(1 + k(H))(k(G) ∗ OW (t) + χ0(G)

2l ) + 2χ0(H)
2l . The same rule

applied with d Ó= s, c, Indis(c; V r{g, r, s}; r; ε) and WS(s; V r{r, s}; r; ε/2) and H(H; s; χ0(H)
2l )

provides us with Indis(c; V r{g, r, s}; r; ε′). Moreover, rule (H1) taking as premises WS(s; V r

{r, s}; r; ε/2) and H(H; s; χ0(H)
2l ), along with d Ó= s, yield Indis(d; V r {r, s}; r; ε′′), where

ε′′(k, χ, t) = χ0(H)
2l + k(H) ∗ (k(G) ∗ OW (t) + χ0(G)

2l ).

Seventh Command. First, Indis(b; V r{r, s}; ∅; ε′) is rewritten as Indis(b; V r{r, b, c, s}, b, c; ∅; ε′)

and Indis(c; V r{g, r, s}; r; ε′) is weakened in Indis(c; V r{g, r, s, b, c}, b, c; ∅; ε′). From rule (C2),

Indis(b; V r{r, b, c, s}, b, c; ∅; ε′), Indis(c; V r{g, r, s, b, c}, b, c; ∅; ε′) and b, c /∈ (V r{r, b, c, s})∪

{r}, we get Indis(t; V r{g, r, s, b, c}; ∅; 2.ε′). In addition to that, we can use rule (C3), d Ó= t, b, c

and Indis(d; V r {r, s}; r; ε′′) to get Indis(d; V r {r, s}; r; ε′′).

Eighth Command. We start by weakening predicate Indis(d; V r{r, s}; r; ε′′) into predicate

Indis(d; V r {r, s, g, b, c}; ∅; ε′′) Using rule (C2) with Indis(t; V r {g, r, s, b, c, t, d}, t, d; ∅; 2.ε′),

Indis(d; V r {r, s, g, b, c, t, d}, t, d; ∅; ε′′) and t, d /∈ (V r {r, s, g, b, c, t, d}) ∪ {r, a}, we get

Indis(a; V r{r, s, g, b, c, t, d}; ∅; 2.ε′ +ε′′). A last weakening provides Indis(a; q, a, σ; ∅; 2.ε′ +ε′′).

V.5.2 — Extensions of the Logic

We have developped rules for a command x := f(y) where f is a one-way permutation.

However, bijectivity is a strong requirement for a cryptographic primitive. In this subsection,

we show how we can relax this assumption and comment on which rules it invalidates, before

exploring what we can do with functions with a stronger property than one-wayness.

Let us first deal with the case when function f is not surjective. It sometimes makes the

Indis predicate too strong to still hold. Indeed, the output values of an algorithm of the form

f(.), with f an only injective function, can never be uniformly distributed among the set of

all bitstrings of the right length, but they may be uniformly distributed among f ’s range. To

capture this new notion, we introduce another predicate.
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Definition (Indisf Predicate). Let X be a constructible distribution, ε be a function

mapping (k, χ, t) to [0, 1], x be a variable in Var, and sets of variables V1 ⊆ Var ∪ {σ},

V2 ⊆ (Var r {x}). X |= Indisf (x; V1; V2; ε) iff

X ∼V1;V2;ε [u ← U(l); m ← X : m.[x Ô→ f(u)]] �

If f is bijective, then Indisf is strictly the same predicate as Indis.

We can derive new versions of compatibility and weakening lemmas. We omit the proofs,

which are very similar, when not exactly identical, to those of their counterpart lemmas of

section V.2.

Lemma V.35 (Adapted Lemmas). Let X, X ′ ∈ constD(χ). For any sets of variables V1 ⊆

Var ∪ {σ} and V2 ⊆ Var, and any variable x ∈ Var r V2:

1. Compatibility: if X ∼V1;V2;ε X ′ then X |= Indisf (x; V1; V2; ε′) ⇒ X ′ |= Indisf (x; V1; V2; ε′′),

where ε′′(k, χ, t) = 2.ε(k, χ, t) + ε′(k, χ, t). The conservation version of this lemma is

verified too.

2. Weakening: if X |= Indisf (x; V1; V2; ε), V ′
1 ⊆ V1 and V ′

2 ⊆ (V1 ∪ V2 r {x}) then X |=

Indisf (x; V ′
1 ; V ′

2 ; ε′), where ε′(k, χ, t) = ε(k, χ, t + Card(V1 ∩ V ′
2).Tf ).

3. Hybrid weakening: if X |= Indisf (x; V1, x; V2; ε) and x /∈ V1∪V2 then X |= WS(x; V1; V2, x; ε′),

with ε′(k, χ, t) = ε(k, χ, t + Tf ) + OW (t)

4. Constructible expression: let e be an expression constructible from V1 r {σ} and V2, and

z Ó= x. Let c ≡ x := e. If X |= Indisf (z; V1; V2; ε) and z does not (syntactically) appear in

e, then [[x := e]](X) |= Indisf (z; V1, x; V2; ε′), where ε′(k, χ, t) = ε(k + χc, χ − χc, t + Tc)).

The rule concerning one-way permutations (P1) must be replaced by the following one.

Lemma V.36 (Rule for One-Way Function). The following rule is sound if x, y Ó∈ V1 ∪ V2:

(P1)f {Indis(y; V1; V2, y; ε)} x := f(y) {Indisf (x; V1, x; V2; ε)} .

Proof. To prove this rule, we start by noticing that:
Pr[m ← νy.X : (m.V1, f(m.y), f(m.V2))]

= Pr[m ← X; u ← U(l); m′ := m[y Ô→ u] : (m′.V1, f(m′.y), f(m′.V2))]

= Pr[m ← X; u ← U(l) : (m.V1, f(u), f(m.V2))]

because y /∈ V1 ∪ V2

= Pr[m ← X; u ← U(l); m′ := m[x Ô→ f(u)] : (m′.V1, m′.x, f(m′.V2))]

since x /∈ V1 ∪ V2

From this equality and the fact that no hash oracle is modified by the command, we

deduce that any adversary against one of the predicate can be used to attack the other one

up to a reorganization of its inputs and succeeds with the same advantage. The conclusion

follows. �

As for the other rules, here are the new instances that we can obtain by generalizing their

counterparts presented in section V.3.

Lemma V.37 (Adapted Preservation Rules). c is x ← U or of the form x := e′ with e′ being

either w||y, w ⊕ y, f(y) or α ⊕ H(y),

(G1)f {Indisf (z; V1; V2; ε)} c {Indisf (z; V1; V2; ε′)}, when z Ó= x, x Ó∈ V1∪V2, and where ε′(k, χ, t) =

ε(k, χ − χc, t).

(G1′)f {Indisf (z; V1; V2; ε)} c {Indisf (z; V1, x; V2; ε′)}, when z Ó= x, if e′ is constructible from

(V1 r {z}; V2 r {z}) and where ε′(k, χ, t) = ε(k + χc, χ − χc, t + Tc)).
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(R3)f {Indisf (y; V1; V2; ε)} x ← U(l) {Indisf (y; V1, x; V2; ε)}, if x Ó= y.

(H7)f {Indisf (z; V1, z; V2; ε1)∧WS(y; V1, z; V2; ε2)∧H(H; y; ε3)} x := α⊕H(y) {Indisf (z; V1, z, x; V2; ε4)}

if x Ó= y, z and where ε4(k, χ, t) = ε1(k, χ−1H , t)+2.k(H)∗ε2(k, χ−1H , t)+2.ε3(χ−1H).

(P3)f {Indisf (z; V1, z; V2, y; ε)} x := f(y) {Indisf (z; V1, z, x; V2, y; ε)} if z Ó= x, y.

(X2)f {Indisf (w; V1, y, z; V2; ε)} x := y ⊕ z {Indisf (w; V1, x, y, z; V2; ε)}, if w Ó= x, y, z.

(C3)f {Indisf (w; V1, y, z; V2; ε)} x := y||z {Indisf (w; V1, x, y, z; V2; ε)}, if w Ó= x, y, z.

We have cited adapted versions of all the results on which the proofs of the original

counterparts of these rules rely. Proofs of adapted rules are the same reasonings as original

rules but put to use adapted lemmas. As for the rest of the rules, they remain sound as

they are cited in section V.3, since nothing in their proofs depends on the fact that f is a

permutation. We have now at our disposal a four predicate assertion language and a more

complete Hoare logic, to deal with the case when f is not a bijection.

Let us consider an oracle declaration o(q, a) : var V ; c associated with an encryption

scheme. We have seen that one of the major application of our three predicate Hoare logic is to

deduce ROR-ciphertext security of the encryption scheme from predicate Indis(a; q, a, σ; ∅; _).

Nevertheless, we notice that in the definition of the ROR-ciphertext security notion, a

ciphertext is sampled in the range of the encryption scheme. This does not raise any issue as

long as this range is the whole set of bitstrings of a given length. However, in case this range is

strictly included in the set of bitstrings of a given length, then a predicate such as Indis(a; . . . )

is too demanding: either it is not possible to prove such a statement, or the function ε one

gets is too high to be interesting. To tackle this problem, we decompose the output of the

encryption into a := f1(a1)|| . . . ||fn(an), where fi is a function defined on {0, 1}li . Such a

decomposition is always possible. The relevance of a decomposition can be evaluated in

terms of the bound it results in. Usually, the most natural decomposition is the best. To

transpose the notion of ROR-ciphertext security, we propose to show that an adversary cannot

distinguish between a real ciphertext and f1(a1)|| . . . ||fn(an) computed using random values

for ai’s. Yet another plug-in theorem is needed to be able to use our Hoare logic to derive

such conclusions in CIL.

Theorem V.38. Let O(c; a := f1(a1)|| . . . ||fn(an)) be the public-key oracle system based on

declaration o(q, a) : var V ∪{a1, . . . an}; c; a := f1(a1)|| . . . ||fn(an), with the finalization oracle

taking boolean as inputs. The following rule is sound:

{true} c Indisfj
(aj ; q, a1, . . . , an, σ; ∅; εj)}

Indisf
O(c) ∼k(o)∗εj(k,k,t) O(c; aj ← U(lj); a := f1(a1)|| . . . ||fn(an))

This theorem can be proven by the same hybrid argument and simulation as the first

plug-in theorem. However, this does not yield exactly the ROR-ciphertext security of the

oracle in CIL, which reads:

O(c) ∼ε(k,k,t) O(c; a1 ← U(l1); . . . ; an ← U(ln); a := f1(a1)|| . . . ||fn(an))

If we can derive {true} c
∧

j=1..n Indisfj
(aj ; q, a1, . . . , an, σ; ∅; εj)}, such a statement can be

obtained by iteratively applying rule Indisf as follows. Let us first remark that conjunction
∧

j=1..n Indisfj
(aj ; q, a1, . . . , an, σ; ∅; εj)} implies Indisf1(a1; q, a1, . . . , an, σ; ∅; ε1). We apply our

rule and get O(c) ∼k(o)∗ε1(k,k,t) O(c; a1 ← U(l1); a := f1(a1)|| . . . ||fn(an)). Now, we denote
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c1 the command c; a1 ← U(l1). From {true} c
∧

j=2..n Indisfj
(aj ; q, a1, . . . , an, σ; ∅; εj)} and

(R3)f , we get {true} c1
∧

j=2..n Indisfj
(aj ; q, a1, . . . , an, σ; ∅; εj)}. In particular, Indisf2(a2; . . . )

is verified. Therefore, we can apply rule Indisf to O(c1). We get O(c1) ∼k(o)∗ε2(k,k,t) O(c1; a2 ←

U(l2); a := f1(a1)|| . . . ||fn(an)). The iteration of this reasoning until we reach j = n, combined

with transitivity of relation ∼ allows us to conclude to:

O(c) ∼k(o)∗(
∑

j
εj(k,k,t)) O(c; a1 ← U(l1); . . . ; an ← U(ln); a := f1(a1)|| . . . ||fn(an))

Now that we have shown how to relax the hypothesis of bijectivity of f , let us elaborate

a little on another axis of extension of our logic, to capture cases when f is not a one-way

function but something stronger, namely an injective partially trapdoor one-way function.

Hereafter, we give the definition of partially trapdoor one-way function as is formalized

in [Poi00].

Definition (Partially Trapdoor One-Way Function).

A function f : X × Y → Z is said to be partially trapdoor one-way iff

1. from any z = f(x, y), for all adversary A,

Pr[x ← U(X), y ← U(Y ) : ∃y′ ∈ Y s.t.f(A(f(x||y))||y′) = f(x||y)] ≤ POW (t)

2. for any z ∈ Z, there exists a partial trapdoor t such that given t one can easily compute

a partial preimage x, that is, such that ∃y ∈ Y s.t. z = f(x||y). Notice that the trapdoor

does not necessarily provide a value for y (hence its name).

�

The fact that we impose our primitive to be injective allows to state the first item of

partial one-wayness as:

Pr[x ← U(X), y ← U(Y ) : A(f(x||y)) = x] ≤ POW (t)

Dealing with a stronger primitive, all the rules that we have cited are sound. We reformulate

rules for x := f(y) into rules for z := f(x||y) so that they take into account the new properties

of f .

Lemma V.39 (Rules for Injective Partially Trapdoor One-Way Functions). The following

rules are sound if x, y, z Ó∈ (V1 ∪ V2):

(IPO1)f {Indis(x; V1, x, y; V2; ε) ∧ Indis(y; V1, x, y; V2; ε′)} z := f(x||y)

{Indisf (z; V1, z; V2; ε + ε′)}.

(IPO2) {Indis(x; V1, x, y; V2; ε) ∧ Indis(y; V1, x, y; V2; ε′)} z := f(x||y)

{WS(x; V1, z; V2; ε′′)}. where ε′′(k, χ, t) = POW (t) + ε(k, χ, t + Tf ) + ε′(k, χ, t + Tf ).

Proof. First, the couple of hypothesis allow us to write:

Indis(x; V1, x, y; V2; ε) ∧ Indis(y; V1, x, y; V2; ε′) w := x||y Indis(w; V1, w; V2; ε + ε′)

by applying (C2) with x, y /∈ V1 ∪ V2.

Then, to prove (IPO1)f , we can weaken this predicate into Indis(w; V1; V2, w; ε + ε′) and

use (P1)f (and w, z /∈ V1 ∪ V2) to get Indisf (z; V1; V2; ε + ε′).

As for rule (IPO2), given a (k, t)-adversary A for WS(x; V1, z; V2; _), we can build a

(k, t + Tf )-adversary B against Indis(w; V1, w; V2; ε + ε′). We suppose that x is of length l and

y of length l′.
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B(V1, w; V2) = x0 ← A(V1, f(w); V2);

if [w]l1 = x0 then return true

else return false

On the one hand, given a constructible distribution X, | Pr[m ← X; B(m.V1, m.w; f(m.V2)) =

true] − Pr[m ← νw.X; B(m.V1, m.w; f(m.V2)) = true]| ≤ ε(k, χ, t + Tf ) + ε′(k, χ, t + Tf ).

On the other hand,
Pr[m ← νw.X; B(m.V1, m.w; f(m.V2)) = true]

= Pr[m ← νw.X : A(m.V1, f(m.w); f(m.V2)) = [w]l1]

= Pr[m ← X; u ← U(l); v ← U(l′) : A(m.V1, f(u||v); f(m.V2)) = [w]l1]

≤ POW (t)
As a result, a triangle inequality allows us to conclude to

Pr[m ← [[z := f(x||y)]](X) : A(m.V1, m.z; f(m.V2)) = x] ≤ POW (t) + ε(k, χ, t + Tf ) +

ε′(k, χ, t + Tf ). �

With these extensions, we can prove Pointcheval’s transformer [Poi00], which can be

written shortly as f(r||H(q||s))||(q||s) ⊕ G(r). where q is a plaintext to be ciphered. A

description of the algorithm in our framework, under the form of an oracle declaration, is the

following:

o(q, a) : var {r, s, w, h, t, u};

r ← U(l); s ← U(l′); w := q||s; h := H(w); t := f(r||h); u := w ⊕ G(r); a := t||u

We let V = {q, a, σ, r, s, w, h, t, u}.

true

1) r ← U(l)

Indis(r; V ; ∅; 0) ∧ H(G; r; χ(G)
2l )

2) s ← U(l′)

Indis(s; V ; ∅; 0) ∧ Indis(r; V ; ∅; 0)∧

H(G; r; χ(G)
2l ) ∧ H(H; q||s; χ(H)

2l′
)

3) w := q||s

WS(w; V r {s, w}; ∅; POW (t)) ∧ Indis(r; V r {s, w}; ∅; 0)∧

H(G; r; χ(G)
2l ) ∧ H(H; w; χ(H)

2l′
)

4) h := H(w)

Indis(h; V r {w, s}; ∅; ε) ∧ Indis(r; V r {w, s}; ∅; 2.ε)

∧H(G; r; χ(G)
2l )

5) t := f(r||h)

Indisf (t; V r {r, s, w, h}; ε)∧

WS(r; V r {r, s, w, h}; ε′) ∧ H(G; r; χ(G)
2l )

6) u := w ⊕ G(r)

Indis(u; V r {r, s, w, h}; ε′′) ∧ Indisf (t; V r {r, s, w, h}; ε3)

7) a := t||u

Indisf (t; V r {r, s, w, h, a}; ε3)

Indis(u; V r {r, s, w, h, a}; ε′′)

First Command. Using rule (R1), we generate Indis(r; V ; ∅; 0) and rule (R2) provides us

with H(G; r; χ(G)
2l ).
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Second Command. Rule (R1) allows to obtain Indis(s; V ; ∅; 0). Predicate Indis(r; V ; ∅; 0)

follows from preservation rule (R3), together with s Ó= r. Moreover, H(G; r; χ(G)
2l ) is preserved

thanks to (G3′) and s Ó= r. Eventually, H(H; q||s; χ(H)
2l ) is created by an application of rule

(R2).

Third Command. We start by weakening Indis(s; V ; ∅; 0) into WS(s; V r{s, w}; ∅; POW (t)).

Then, we check that w /∈ V r{s, w} and apply rule (C1) to get WS(w; V r{s, w}; ∅; POW (t)).

Indis(r; V ; ∅; 0) is weakened into Indis(r; V r {s, w}; ∅; 0), which is preserved thanks to (G1),

w Ó= r and w /∈ V r {s, w}. As for H(G; r; χ(G)
2l ), it is preserved thanks to (G3), while this

same rule applied with premise H(H; q||s; χ(H)
2l ) provides H(H; w; χ(H)

2l ).

Fourth Command. We apply (H1) on WS(w; V r {s, w}; ∅; POW (t)) and H(H; w; χ(H)
2l )

and h Ó= w, to obtain Indis(h; V r {s, w}; ∅; ε) with ε(k, χ, t) = χ(H)

2l′
+ k(H) ∗ POW (t). Fur-

thermore, we can apply rule (H7) on Indis(r; V r{s, w}; ∅; 0), WS(w; V r{s, w}V ; ∅; POW (t))

and H(H; w; χ(H)

2l′
) and h Ó= w, r. It provides us with Indis(r; V r {s, w}; ∅; 2.ε). Eventually,

H(G; r; χ(G)
2l ) is preserved thanks to (G3).

Fifth Command. Indis(h; V r{w, s, h, r, t}, h, r; ∅; ε) ∧ Indis(r; V r{w, s, h, r, t}, h, r; ∅; 2.ε)

provides with rule (IPO1)f and h, r, t /∈ V r{w, s, h, r, t} the predicate Indisf (t; V r{w, s, h, r}; ∅; 3.ε).

WS(r; V r {r, s, w, h}; ε′) follows from the same premises and rule (IPO2), where we let

ε′(k, χ, t) = 3.ε(k, χ, t + Tf ) + POW (t). Finally, an application of rule (G3) allows to preserve

H(G; r; χ(G)
2l ).

Sixth Command. We apply (H1) with premises WS(r; V r{r, s, w, h}; ε′) and H(G; r; χ(G)
2l )

(and of course u Ó= r). This generates predicate Indis(u; V r {r, s, w, h}; ε′′) with ε′′(k, χ, t) =

k(G)∗ε′(k, χ, t)+ χ(G)
2l . We apply (H7)f with premises Indisf (t; V r{r, s, w, h}; 3.ε) WS(r; V r

{r, s, w, h}; ε′) and H(G; r; χ(G)
2l ) (and of course u Ó= r, t). Indisf (t; V r {r, s, w, h}; ε3) where

ε3 = ε + 2.k(G) ∗ ε′ + 2.χ(G)
2l .

Seventh Command. Applying (G1)f and (G1) after having weakened the predicates by

removing a from the first set of variables.



Chapter VI

A Reduction Theorem for Hash

Constructions

VI.1 Semantic Extensions of Our Framework

VI.1.1 — Our Motivation for a New Definition

In this chapter, we investigate problems raised by a particular way of modifying dependencies

which can exist between oracles. In the definition of oracle systems, we specify that they are

stateful, thus allowing oracles of the system to share a state and modify it at will without

imposing any restriction. That being said, we remark that we can draw useful conclusions

whenever an oracle uses another as a black-box, namely, when an oracle o depends on an

oracle o′ in such a way that the implementations of o and o′ can be written without a shared

memory component, but the implementation of o contains calls to o′. In fact, for each oracle

in a system, we can specify the set of other oracles on which it depends in a black-box manner,

leaving the other forms of dependency (including independence) for oracles outside of this set.

This is captured by the following definition.

Definition (Notation for Black-Box Dependency). We consider an oracle system O

featuring oracles {o1, . . . , on} in addition to initialization and finalization oracles, with a

memory set MO = M1 × · · · × Mn.

The notation Imp(oi)
oj1

,··· ,oji means that the implementation Imp(oi) of oi has exclusive

access to memories in
∏

k∈[1..n]−{j1,...,ji} Mk. However, while executing Imp(oi), the oracles

oj1 , · · · , oji
may be called, which causes reading and writing in Mj1 , · · · , Mji

. We allow

ourselves to write either oi or use the more explicit name o
oj1

,··· ,oji
i for oracle oi.

Given a function k : NO → (NO → N) and t ∈ N, we say that Imp(oi)
oj1

,··· ,oji is (k(oi), t)-

bounded, if one execution makes at most k(oi)(ojm) calls to ojm and takes at most time

t.

We write {o1, . . . , on}oj1
,··· ,oji instead of {o

oj1
,··· ,oji

1 , . . . , o
oj1

,··· ,oji
n }.

�

In the sequel of this chapter, the oracles systems which we specify are written according

to these conventions, in particular with respect to the memory decomposition.

Observing cryptographic primitives at the level of abstract constructions, we notice that
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they are classically constructed on top of a set of probabilistic inner primitives, e.g. hash

functions or block-ciphers, which are applied successively to the input message. In the

definition of the security notions associated with these constructions, an adversary has the

possibility to query both the global construction and inner primitives. In these systems, the

only link between the inner primitives lies in the executions of the global construction. In this

section, we propose a new notion to capture the particular architecture of the resulting oracle

system in our framework.

VI.1.2 — Definition of Overlayers and Their Application to a System

We notice that two things are quite common in existing designs. Firstly, it is frequent that

the order of the application of the inner primitives in the algorithm does not depend on the

input. Secondly, it is often the case that during an execution of the algorithm, from one point

on, inner primitive results appear in the computation of the final output. This separation

in two phases of the implementation of primitives is what is later captured by the notion of

pivot. These remarks are particularly well illustrated by iterative hash constructions. In the

sequel, we restrict our scope and comments to hash constructions in particular.

Hash functions deal with input messages of any length and produce a hash of a fixed

length, whereas the inner primitives on top of which they are built have fixed input/output

length. Therefore, hash functions are based on domain extenders, which specify how the

input message is split into blocks and how the inner primitives are applied to one block

and the previous inner primitive outputs. A widely used domain extender was proposed by

Merkle [Mer89] and Damgård [Dam90].

In [BMN09], Bhattacharyya et. al. present a formal definition for domain extenders.

Though applicable to several known constructions, this definition is limited in that it does

not capture constructions that include a post-processing function. Such a function is used

to compute the global hash result out of the multiple inner primitive outputs; it cannot

contain any application of an inner primitive. Another limitation is that it does not deal with

the case of multiple inner primitives. For instance, neither the ChopMD [CDMP05] nor the

Grøstl [GKM+11] constructions fall in the scope of this definition. These limitations motivate

the introduction of the new notion of overlayer.

Intuitively, the set of inner primitives are gathered in an oracle system O. An O-overlayer h

provides everything needed to specify an oracle H calling successively oracles in O. Moreover,

the definition of overlayers exploits that the order in which the inner primitives are called does

not depend on the input. In other words, the sequence of calls of inner primitives generated

by every hash input is the prefix of a statically known finite sequence [o1, . . . , oL] of inner

primitives.

Definition (Overlayer). Consider an oracle system O with oracle names in NO. An

O-overlayer h is a tuple (InH, OutH, [o1, . . . , oL], init, piv, Θ, (Hj)j∈{1..L}, Hpost), where:

— InH and OutH are finite sets of bitstrings defining query and answer domain of the hash

design.

— [o1, . . . , oL] is the statically known sequence of oracles in NO, which describes the order in

which the oracles are queried.

— init : InH → [1,L] outputs the number init(x) of oracle calls necessary for computing the

hash of x. For computing the hash of an input x, the sequence of oracle calls is the prefix
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of [o1, . . . , oL] of length init(x).

— piv : InH → [1,L] outputs a pivot index, which we require to be less than the number of calls

to compute the hash of the input (i.e. ∀x, piv(x) ≤ init(x)). We require that for any x, x′,

the pivot oracle for x is the same as the pivot oracle for x′, namely, that opiv(x) = opiv(x′).

This common oracle is referred to as the pivot oracle, and denoted by opiv.

— Input transformation
Θ : InH → ({0, 1}≤r)+

x Ô→ Θ(x) = (θ1(x), . . . , θinit(x)(x))

where θj(x) is the function of the input used to compute the j-th query to oracle oj . It

usually consists in a block of length r of the padded input x. We suppose that Θ is

injective.

— functions H1 : {0, 1}≤r → In(o1) and Hj : {0, 1}≤r × Xch → In(oj) for j ≥ 2 compute the

j-th query performed by H using θj(x) and when j ≥ 2 the previous step exchange with

oracle oj−1.

— Post-processing function
Hpost : InH × Outopiv

× Xch∗ → OutH

(x, y, Q) Ô→ Hpost(x, y, Q)

computing the hash of x, if Q = (ok, qk, ak)k∈[1,init(x)] is the list of exchanges generated by

the Hj functions for x. We impose that Hpost only depends on pivot and post-pivot queries.

Namely, for all lists Q and Q′ of exchanges that coincide on post-pivot exchanges, outputs of

Hpost coincide: for all x, y, if [Q]k>piv(x) = [Q′]k>piv(x) then Hpost(x, y, Q) = Hpost(x, y, Q′).

�

We emphasize that the post-processing function Hpost is defined as a deterministic function

and does not perform any oracle call. The set of O-overlayers is denoted by O-OverL. We can

now proceed with the definition of the oracle H resulting from the composition of O-overlayer

h with O.

Definition (Composition of an Overlayer with an Oracle System). The composition of

an O-overlayer h with O defines an oracle system which contains the oracles of O augmented

with the overlayer oracle H given by:

— the memory LH of oracle H is a mapping from InH to OutH × Xch∗; its initial value is the

empty mapping.

— The implementation of oracle H is:
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Figure VI.1 – The Sponge Construction

Imp(H)o1,...,oL(x) = if x ∈ dom(LH) then

return LH(x)

else

l := init(x);

(x1, . . . , xl) := Θ(x);

q1 := H1(x1);

let a1 ← Imp(o1)(q1) in

Q := [(o1, q1, a1)];

for j = 2 to l do

qj := Hj(xj , (oj−1, qj−1, aj−1));

let aj ← Imp(oj)(qj) in

Q := Q :: (oj , qj , aj);

endfor

af := Hpost(x, apiv(x), Q);

LH := LH.(x, af , Q);

return af

endif

�

In the remainder, we slightly abusive use notations and write Hpost(x, apiv(x), [Q]k>piv(x))

instead of Hpost(x, apiv(x), Q) appearing in the implementation. It is allowed by the assumption

that Hpost only depends on post-pivot queries imposed on the post-processing function in the

definition of overlayer.

Example 12. The sponge construction [BDPA07] relies on an inner primitive F , which

is a random function from {0, 1}r+c into {0, 1}r+c, where r is the length of blocks parsed

during preprocessing. The output size is parameterized by an integer we denote K. While the

general design deals with any possible K, in the sequel we assume for sake of simplicity that

K = kr, and refer the readers to [BDPA07] for more details. The sponge algorithm comprises

two phases: in a first phase, the input is padded using Padsp, an injective, easily computable

and invertible padding function that outputs a bitstring x1|| . . . ||xp of length p ∗ r. Then, the

algorithm iteratively applies a bitwise xor operation to (xj ||0c) and the previous answer from

F to compute its next query. In a second phase, it queries (k − 1) more times F to get a

collection of answers (ap, . . . , al). The final output is then obtained by concatenation of the

first r bits of each aj : Firstr(ap)|| . . . ||Firstr(al). The implementation is provided below and

illustrated in figure VI.1.

The sponge hash oracle results from the application of an overlayer to F . As a bound

Lsp on the number of oracle calls it is possible to perform during an execution of the hash

oracle, we choose ⌈264

r ⌉. 1 The sequence of oracles is the list [F , . . . , F ] (of length Lsp).

Function initsp is given by ⌈|x|/r⌉ + 1Lastr(x)=0r + k − 1, which corresponds to number of

1This value is arbitrary; our choice is motivated by the fact that it is quite classic to choose a maximum
length of 264 for hash inputs in the literature.
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r-blocks in the padding of input x and the (k − 1) calls necessary to finish the computation.

The algorithm naturally falls into two parts, which allow us to specify a pivot value worth

pivsp(x) = initsp(x) − k + 1. Indeed, after having gone through the pivsp(x) blocks of the

padded message, all (k − 1) calls performed are used in the computation of the final output.

In addition to that, for j = 1..p, we define Hj(α, (F , qj−1, aj−1)) = (α||0c) ⊕ aj−1 and

Hpost(x, apivsp(x), [(F , qj , aj)]j>pivsp(x)) = Firstr(apivsp(x))|| . . . ||Firstr(ainitsp(x)). Moreover, we

let θj(x) = xj for j ∈ [1..pivsp(x)], and θj(x) = 0r for j ∈ [pivsp(x) + 1..init(x)sp].

In(Sponge) = {0, 1}≤264
, Out(Sponge) = {0, 1}K

Imp(Sponge)(x) =

if x ∈ dom(Lsp) then

return Lsp(x)

else

l := initsp(x);

w := Padsp(x);

p := pivsp(x);

(x1, . . . , xp) := (w[1, r], . . . , w[r ∗ (p − 1) + 1, r ∗ p]);

for j = 1 to p do

qj := (xj ||0c) ⊕ aj−1;

let aj ← F(qj) in

Q := Q :: (F , qj , aj);

endfor

for j = p + 1 to l do

qj := aj−1;

let aj ← F(qj) in

Q := Q :: (F , qj , aj);

endfor

af := Firstr(ap)|| . . . ||Firstr(al);

Lsp := Lsp.(x, af , Q);

return af

endif

♦

VI.1.3 — Security of Layered Systems : Indifferentiability

In the remaining of this chapter, the systems which we consider are all consisting of a set

of inner primitives and an overlayer. Now that we have a formal definition of this kind of

systems, we want to express a security notion for them in our framework: indifferentiability

of a random oracle [MRH04, CDMP05].

To describe the security of hash functions, the idea is to assess their deviation from

randomness. As stand-alone constructions, it is generally not really difficult to imagine that

hash constructions look utterly random to any system or adversary interacting with them.

Nevertheless, the task is more delicate to handle when taking into account the inner primitives.

Unfortunately, in most of the systems we model, the adversary is granted access to inner

primitives, so that we have to allow for these latter in the definition of a relevant security

notion.
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In a nutshell, we have on one side the layered system as defined by the overlayer designers,

and on the other side a system which we call the idealized system, in which we want to

implement the overlayer oracle as a completely independent random oracle. The problem is

that, in this latter system, we still have to provide an implementation for inner primitives. If

we leave them as in the original system, it would be easy to distinguish between original and

idealized systems. Indeed, any adversary with access to the inner primitives can potentially

verify the answers provided by the overlayer oracle by computing them on its own, querying

inner primitives adequately.

However, whereas the idealized overlayer oracle cannot query inner primitives in the

idealized system, inner primitives can query the idealized oracle. So here is the intuition

behind the security notion we choose : find a way to implement the set of inner primitives in

the idealized system so that it makes up for the total independence and randomness of the

idealized overlayer oracle, possibly by querying this latter.

More formally, let us denote by U(H) the oracle system where H is the functional

oracle distributed as the uniform distribution on OutH. Given a system S implementing

inner primitives, which we call the simulator, we estimate the advantage of adversaries in

distinguishing the original system (HO,O) and its idealization (U(H),SU(H)). It brings forth

the following definition, which captures in our framework the classic notion of indifferentiability.

Definition (Indifferentiability). Consider an oracle O and an O-OverL h. The system

(HO,O) defined by the composition of h with O is said to be (ks, ts, ǫ)-indifferentiable from

its idealization U(H), if there is an oracle set SU(H) that is (ks, ts)-bounded and such that the

oracle systems (HO,O) and (U(H),SU(H)) are compatible and for any adversary A ∈ Adv(k, t),

Indiff(H,O,S) ≤ ǫ(k, t), where Indiff(H,O,S) denotes

|Pr[A|(HO,O) : true] − Pr[A|(U(H),SU(H)) : true]|

�

Notice that the oracle set S in this definition is usually not a stand-alone oracle system,

since it requires access to U(H) to compute its outputs. If we remember the discussion about

dependencies at the beginning of the chapter, we can remark that what we try to do here is

to covertly invert dependencies between one set of oracles and another.

VI.1.4 — Aim of This Chapter

If we aim to establish formal proofs of indifferentiability, it seems that the first thing to do

is to find a proper way of defining the simulator. Indeed, it must be conceived keeping in

mind that its outputs must look coherent with the outputs of the overlayer oracle. The main

problem lies in the direct access that the adversary has to the overlayer oracle. Indeed, the

simulator, while able to query the overlayer oracle, does not know the list of queries and

answers performed to this latter by the adversary. As a consequence, coherence relies on the

ability of the simulator to query the random oracle soon enough and on the right value. These

two issues are illustrated by two examples below.

This first example is strongly inspired from the article [CDMP05] by Coron et. al. and

illustrates the possible difficulty raised by computing the value of the relevant query to ask to

the random oracle. We consider an oracle system composed of two oracles (in addition to

initialization and finalization): a random oracle o2 and an oracle o1 which, on input x, queries
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o2 on f(x), with f a one-way permutation drawn during initialization2. In this system, the

overlayer oracle is o1, it is this oracle which we replace with a random oracle. To design an

interesting simulator, we have to find a way to implement o2 to simulate the global behavior

of the original system. Therefore, the equation o1(x) = o2(f(x)) must remain true, meaning

that to a query y, o2 must answer o2(y) = o1(f−1(y)). Otherwise, an efficient attack of the

adversary would be to query o1 on a random x, query o2 on f(x) and check whether answers

match. Of course, unless the time bound given to the simulator version of o2 to compute an

answer to a query y is large enough, it shall be very difficult for this oracle to compute f−1(y).

In conclusion, the indifferentiability between our system and its idealization is lower bounded

by the one-way bound of f .

A second issue is raised by the timing in which the overlayer oracle should be queried.

Here is another example of system that illustrates this problem. Now, we have three oracles

in addition to initialization and finalization. The overlayer oracle o1 calls o2 and then o3 on

its input: o1(x) = o3(o2(x)). We assume that o3 is a functional random oracle. If we want to

replace o1 by a random oracle and find a suitable simulator for o2 and o3, we have to take

into account the following attack. An adversary can compute o3(y), and then try to find x

such that o2(x) = y. In the real setting, the answers to o3(y) and o1(x) should coincide. In

the simulated setting, the problem is that a simulator potentially becomes aware that the

adversary can build the answer to o1(x) at the moment o2(x) is queried. It is fine as long

as o3(o2(x)) has not been queried already - because then the simulator can query o1(x) and

impose o3 to output o1(x) when queried on o2(x) - but it is a problem if the adversary has

already asked for the value o3(o2(x)). The conclusion that we can draw from this example

is that a simulator should be able to answer with very good probability at the moment it is

queried on a value whether this value can be used in the construction of an output for the

overlayer oracle.

The problem we aim to solve in this chapter is to build well-suited simulators, in that

they should yield a reasonable indifferentiability bound. In the sequel, we present a generic

process to construct such simulators. However, finding a simulator does not complete the

work, since it remains to bound the advantage of indifferentiability adversaries. Thus, we

subsequently develop a proof in the logic CIL of a theorem providing a generic way to compute

the indifferentiability bound for these simulators.

VI.2 A Generic Theorem for Independent Inner Primitives

VI.2.1 — The Setting: Restriction on the Set of Inner Primitives

In the remainder of the chapter, we consider a given hash construction that uses a set of inner

primitives which we assume independent. It is modeled by an overlayer h applied to an oracle

system O. Our goal is to provide a proof that the overlayer oracle H is (ks, ts, ε)-indifferentiable

from oracle U(H) when O implements independent random functions for a specific function

ε we shall detail further. Formally, we denote U(O) the oracle system compatible with O,

such that any oracle oi of the system is functional and distributed as U(Outi). We must then

provide an implementation for a generic simulator, which has the same set of oracles as O. It

could be the case that some of the oracles in O do not appear in the overlayer static sequence

2Notice that f is not an oracle of the system here.
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of oracles to call. In such a case, it is clear that the oracle in the real and simulated world

can be implemented in the same way. Therefore, we suppose that all oracles in O do appear

in the overlayer sequence.

VI.2.2 — Construction of the Generic Simulator

We have seen in subsection VI.1.4 that one of the essential preoccupations when developing

a simulator must be to preserve dependencies existing between oracle outputs in the real

setting. Indeed, any inconsistency may allow the attacker to distinguish between the real and

simulated world. In particular, if an equality holds in the real world and can be efficiently

checked by the adversary, then the simulator has to contrive it to hold as well. Consequently,

we get down to designing a way to represent these dependencies which the simulator can

effectively use.

We are interested in depicting what we call request chains, that is, lists of exchanges with

oracles in O that correspond to sequences of requests appearing during the computation of

some hash value. To do that, graphs appear to be well-suited data structures, justifying our

choice to define simulator graphs. They represent all potential chains that can be constructed

out of a given list of exchanges. The idea is to represent these latter by vertices, and to draw

an edge between two vertices if they can be two subsequent queries during the computation

of a hash value. Edges of the form ((o, q, a), xj , (o′, q′, a′)) are labeled with the function of

hash input xj which would be necessary to compute q′ out of (o, q, a) during the j-th step

of computation of a hash value, i.e. q′ = Hj(xj , (o, q, a)). To identify potential first queries,

we choose to link them to a particular vertex that we name the root. It is the only vertex

which is not related to an exchange, and which cannot be the target of an edge. Formally,

this translates in the following definition.

Definition (Simulator Graph). A simulator graph SG = (vroot, V, E) is given by:

— a root vroot,

— a finite set of vertices V ⊆ Xch,

— a set E ⊆ (V ∪ vroot) × {0, 1}≤r × V of labeled edges such that:

1. for all (oj−1, q, a), (oj , q′, a′) ∈ V (with j ≥ 2), for all xj ∈ {0, 1}≤r,

((oj−1, q, a), xj , (oj , q′, a′)) ∈ E if and only if q′ = Hj(xj , (oj−1, q, a)),

2. for all (o1, q, a) ∈ V , (vroot, x1, (o1, q, a)) ∈ E if and only if q = H1(x1).

�

The set of simulator graphs is denoted by SG, and we define the initial simulator graph

SGinit = (vroot, {vroot}, ∅). The way in which we have defined these graphs calls for the fact

that paths are evocative of the existence of request chains. The idea is that vertices represent

control points through which the execution of the computation of a hash value has to go. The

existence of a path between them represents their belonging to the execution of the hash oracle

on a same input. Consequently, the simulator can identify which hash values the adversary

can compute out of the queries it has asked: it corresponds to the existence of rooted and

complete paths. This leads us to the following useful definitions.

Definition (Paths Properties in a Simulator Graph).

— Given a graph, a path is a chain v0
l1→ v1

l2→ . . .
ln→ vn of vertices vi such that for all i, edge

(vi, li, vi+1) belongs to the graph.
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— A rooted path is a path starting with vertex vroot. A vertex is rooted whenever it belongs

to a rooted path.

— A meaningful path is a rooted path such that if [x1, . . . , xL] is the list of labels on the

sequence of edges, then there exists x such that ∀j = 1..L, θj(x) = xj .

— A meaningful path is said to be determined when L = piv(x). A meaningful path is said to

be complete when L = init(x). In such cases, bitstring x is then said to label the meaningful

path to which it corresponds.

�

The definition of edges in a simulator graph implies that such a graph is completely

determined by its vertex set. We can thus define an application mapping a vertex set to the

corresponding set of edges. Moreover, we provide an update function for the graph, to be

applied by the simulator at every query it receives.

Definition (Edge Functions for Simulator Graphs). A simulator edge function SEdge

maps a vertex set to the matching set of edges appearing in the corresponding simulator

graph. Namely, if V is a vertex set, then SEdge(V ) contains all edges such that:

1. for all (oj−1, q, a), (oj , q′, a′) ∈ V (with j ≥ 2), for all xj ∈ {0, 1}≤r,

((oj−1, q, a), xj , (oj , q′, a′)) ∈ E if and only if q′ = Hj(xj , (oj−1, q, a)),

2. for all (o1, q, a) ∈ V , (vroot, x1, (o1, q, a)) ∈ E if and only if q = H1(x1).

A graph update function UpSG is a function which, on input an exchange (o, q, y) and a

simulator graph SG = (vroot, V, E), outputs the simulator graph SG′ given by:

— V ′ = V ∪ {(o, q, y)};

— E′ = SEdge(V ′).

�

We assume that there exists a function tUpSG(α) bounding the execution time of the update

process independently of the added vertex, in function of the number α of vertices in the

graph3.

At this point, we have enough elements at our disposal to sketch a simulating strategy.

We must determine when the simulator has enough information to figure out which hash

value can be anticipated. Indeed, if the simulator can do that, so does a smart adversary.

Therefore, in such a situation, the simulator can outsmart the adversary by first querying

the hash oracle itself and then imposing the values of the remaining exchanges necessary to

complete a meaningful path, before the adversary has asked for them.

To pinpoint this situation, we have made two observations about the hash constructions we

have come across. First, let us recall that in our definition of overlayer, the hash computation

falls into two parts, namely before and after the pivot query is performed. The expression

“pivot query of a hash value” is a shorthand that we use to name the pivot query to be

performed to opiv during the computation of a hash value in the real setting. Pre-pivot queries

are those performed before the pivot query in a real execution, post-pivot queries are those

performed after. The first observation is that in most hash constructions, it is difficult for an

adversary to compute a hash value without querying for its matching pivot query, and before

the pivot query, every pre-pivot query. Furthermore, we have observed that it is difficult for

an adversary to perform a post-pivot query before the matching pivot query.

3This is a sound assumption in the sense that the number of edges that can exist between two vertices is
bounded.
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Therefore, a strategy to outsmart the adversary consists in trying to identify potential

pivot queries when they are asked to O, compute a hash input to which it is associated, query

the random oracle on this input to get an answer t, and impose adequate values to post-pivot

queries so that they are coherent with t. We move on to the formalization of the hypotheses

required to put to work this strategy.

Obviously, we are going to use determined paths to achieve the two first steps of our

strategy. As a result, we need to impose that given a prefix to a determined path and a query

q which can make this path determined, the labels x1, . . . , xL appearing on the edges of the

resulting determined path allow to compute a value x ∈ InH such that ∀j ∈ [1..L], θj(x) = xj .

Afterwards, we assume the existence of an algorithm which, on input a graph and a query,

identifies a rooted path rendered determined by this query when it exists, and in such a case

outputs it along with a hash input labeling it. Such an algorithm is called a path-finder.

Intuitively, it should have a non-trivial output as soon as there exists a satisfactory path,

and any non-trivial output should correspond to a satisfying answer. This is captured by the

following definition.

Definition (Path-Finder Algorithm). A path-finder algorithm PathFinder takes as input

a query q ∈ Inopiv
and a simulator graph SG. Its output is either the triple (false, λ, [ ]), or a

triple of the form (true, x, List), with (x, List) ∈ InH × V ∗ such that:

1. if, for any answer y to q, there exists in the updated simulator graph UpSG((opiv, q, y), SG)

a determined meaningful path then PathFinder outputs (true, _, _)

2. if PathFinder(q, SG) = (x, [(o1, q1, y1), . . . , (op−1, qp−1, yp−1)]) then for any answer y to

q, there exists in the updated graph UpSG((opiv, q, y) , SG) a determined meaningful

path vroot
x1→ (o1, q1, y1)

x2→ . . .
xp
→ (opiv, q, y) which is labeled by x (i.e. p = piv(x) and

∀j ∈ [1..p] θj(x) = xj).

�

We assume that the execution time of the path-finder algorithm is bounded by a function

tPathFinder(α) of the number α of vertices in the input simulator graph.

In case PathFinder outputs some bitstring and request chain (x, [v1, . . . , vpiv(x)−1]), our

simulating strategy imposes on the answer y provided by the simulator to match a query q

and the values of the vertices [vpiv(x)+1, . . . , vinit(x)] to be coherent with H(x). More precisely,

we would like to guarantee Hpost(x, y, [vj ]j>piv(x)) = H(x) in the simulated world. When H

is implemented by U(H), the only way to compute the value for t = H(x) is to query the

random oracle on x. After that, we would have to provide the simulator with a sampling

algorithm to find a value for y and [vpiv(x)+1, . . . , vinit(x)] such that the equation holds.

For given values of x and t0, there is a set of lists of vertices [vj ]j>piv(x) and values for y

such that Hpost(x, y, [vj ]j>piv(x)) = t0, which we denote PreIm(t0). Notice here that if we have

specified the overlayer such that OutH is larger than the actual range of H, then PreIm(t0)

may be empty. In the sequel we suppose that OutH is the range of H. We can define an

algorithm sampling a solution and preserving the original distribution on ((y, [vj ]j>piv(x)), t)

as follows. Notice that the very existence of this algorithm is conditioned by the fact that for

all (x, t0), PreIm(t0) contains at least one element.

Definition (Forward Sampler Algorithm). A forward sampler algorithm FwdSplr is

an algorithm which, on any input (x, t0) outputs a pair (y0, [v0
j ]j>piv(x)) Ó= (λ, [ ]) sampled

according to:
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Pr[(y, [vj ]j>piv(x)) ← FwdSplr(x, t0) : (y, [vj ]j>piv(x)) = (y0, [v0
j ]j>piv(x))] =

1
P r[U(H)=t0]

× Pr







y ← U(opiv); vpiv(x) := (opiv, q, y);
(

yj ← U(oj); vj = (oj , Hj(θj(x), vj−1), yj);
)

j>piv(x) :

(y, [vj ]j>piv(x)) = (y0, [v0
j ]j>piv(x)) ∧ Hpost(x, y0, [v0

j ]j>piv(x)) = t0







�

We assume that the execution time of this algorithm is upper-bounded by time tFwdSplr,

independently of possible inputs.

We can now provide implementations of oracles in the generic simulator. It uses a table

LS shared by all oracles in O, which stores all triples of the form (oi, q, y). We recall that

LS(oi) denotes the list of all tuples starting with oi appearing in LS and that if (oi, q, y) is

one of these tuples, LS(oi, q) denotes the value y4.

Definition (Generic Simulator Definition). Under the assumption that the choice

of the pivot of our overlayer oracle allows to define both path-finder and forward sampler

algorithms with execution times bounded respectively by tPathFinder(α) and tFwdSplr, we let the

generic simulator S be the following set of oracles compatible with O. They have memories

(LS , SG) ∈ Xch∗ × SG, and the initial memory m̄ of a system containing the simulator is

chosen so that m̄.(LS , SG) = ([ ], SGinit). Moreover opiv is implemented as follows:

ImpS(opiv)H(q) = if q ∈ dom(LS(opiv)) then

return LS(opiv, q)

elsif PathFinder(q, SG) = (true, x, List) then

let t ← H(x) in

(y, L) := FwdSplr(x, t);

LS := LS .((opiv, q, y) :: L);

else let y ← U(opiv) in

LS := LS .(opiv, q, y);

endif

SG := UpSG((opiv, q, y), SG);

return y

For any o Ó= opiv in NO, the simulator implementation is:

ImpS(o)H(q) = if q ∈ dom(LS(o)) then

return LS(o, q)

else let y ← U(o) in

endif

G := UpSG((o, q, y), G);

LS := LS .(o, q, y);

return y

The number of vertices in the simulator graph is bounded by the total number K of

calls to oracles in O. The implementation of opiv is (ks, ts)-bounded, where ks(o) = 1o=H,

and ts = tUpSG(K) + tFwdSplr + tPathFinder(K). The implementation of the other oracles is

(0, t′
s)-bounded, where t′

s = tUpSG(K).

�

4This value is unique by construction.
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This simulator works completely independently of the fact that an update might result

in creating a great number of edges between two given vertice of the simulator graph, or

that there can exist multiple determined paths from which the path-finder has to choose.

However, we notice that if it is possible that the path-finder can answer two distinct hash

inputs x, x′ corresponding to meaningful determined paths, the simulator can only anticipate

the adversary queries for one of these inputs to H. If the adversary can easily uncover such

values, our simulation strategy is flawed and should yield a large indifferentiability bound.

VI.2.3 — A Generic Way to Bound Indifferentiability

Even though the path-finder and forward sampler can prevent some obvious inconsistencies

with respect to the idealized system, there are still cases in which they are not sufficient.

We try to provide a little intuition about what can go wrong before presenting the formal

definitions capturing sources of incoherence. When a pivot query is made to the simulator,

consistency can only be enforced if, first, the path-finder can detect that it is a pivot query,

and secondly, the pivot and post-pivot queries are not already bound to an answer.

Concerning the first point, given the hypotheses we have imposed on the path-finder, we

can only expect that it detects pivot queries in case all pre-pivot queries have been performed

before by the adversary. In this case, the meaningful path does exist in the simulator graph.

On the contrary, if the adversary manages to anticipate hash values without asking all pre-pivot

queries and then the matching pivot query, our path-based simulating strategy does not work:

there is probably no path to identify in the graph when the pivot query is performed. This

situation highlights a first possible source of incoherence between idealized and real systems.

Furthermore, concerning the eventuality that a pivot or post-pivot query corresponding

to a hash input x is already bound to an answer, we notice that pivot or post-pivot queries

can be determined in two ways : either as an adversary query to an oracle in O, or during

the construction of a hash output for a hash input x′ Ó= x. In both cases, when the simulator

detects that it is asked the pivot query corresponding to x, it carries on running the forward

sampler, but when updating the simulator graph and list of queries, it stumbles upon a

preexisting vertex.

This discussion allows to foresee that some kind of graph structure can become handy

to capture our inconsistency events. The simulator graph deals with direct O queries and

represents all possible vertices existing between them. What we need is more than that: we

want to capture dependencies enforced in the real setting by intermediate queries (performed

by H to oracles in O) in addition to direct and anticipated queries. To this end, we introduce

an intermediate system, the anticipating system Oant, mostly consisting of the real system

augmented with the anticipation of the post-pivot queries by oracle opiv, and a matching

graph construction.

We start by introducing the concept of visibility to help categorizing vertices in function

of what the adversary knows about them and in function of the order in which oracles are

queried for them. If a vertex appears in the graph as a result of a direct query to oracles in

O, it is considered visible to the adversary. Concerning vertices appearing in the graph on

behalf of intermediate queries involved in the computation of the output for a query to H, the

pivot vertex and post-pivot vertices are considered partially visible, whereas pre-pivot queries

are considered invisible. Finally, the last class of vertices we have to deal with is anticipated

queries, which we consider visible. We take these elements into account in our definition for a
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characteristic graph below.

Definition (Characteristic Graph). A characteristic graph CG is defined by a tuple

(vroot, CV, CE, V) where :

— vroot, CV and CE are such that for all edge (v, l, (o, q, y)), either v = vroot and q = H1(l)

or v Ó= vroot and there exists j ≥ 2 s.t. q = Hj(l, v).

— V is a visibility map, which associates to every vertex in CV a value in {Inv, PV is, V is}

(standing for invisible, partially visible and visible and are ordered this way).

— The edge set of the simulator graph one can build out of the visible vertices is included in

CE. Formally, SEdge(V−1(V is)) ⊆ CE.

�

The set of characteristic graphs is denoted by CG. We distinguish a particular graph

CGinit = (vroot, [ ], ∅, Vinit) with dom(Vinit) = ∅ which we call the initial characteristic graph.

We use the term non-visible to refer to vertices which are either partially visible or invisible.

Moreover, we talk about visibility of queries: the visibility of a query (o, q) is the same as that

of the (unique) vertex v in a characteristic graph such that v = (o, q, _). We will construct

the characteristic graph so that a pair of non-visible vertices are linked if an execution of H

has successively been through them, while an edge will link two visible vertices as soon as it

is possible: we have imposed that the simulator graph on visible queries is included in the

characteristic graph.

We say that a vertex (or even a query) is visibly (resp. non-visibly) rooted when there

exists a path linking it to the root containing only visible vertices (resp. containing at least

one non-visible vertex).

We can now provide the precise implementations of the anticipating system Oant, which

anticipates values of post-pivot queries when pivot queries are detected by a path-finder

algorithm, and computes visibility labels dynamically. To this end, we substitute the code of

oi to every call to another oracle oi in the implementation of H. We also create a table LS

shared and updated by all oracles, containing all tuples of the form (oi, q, y, lbl) ever computed,

in order to ensure coherence between direct and indirect calls to oi. As previously, LS(oi)

denotes the list of exchanges starting with oi and belonging to LS ; if (oi, q, y, lbl) is one of these

tuples, then LS(oi, q) denotes the pair (y, lbl) (which is unique by construction). We denote

(L, lbl) a list of exchanges consisting in L except that all visibility labels are replaced by lbl,

and (L|lbl) denotes the restriction of list L to the elements of label lbl. The implementations

are provided in figure VI.2.

Let us describe what the inconsistency events outlined above correspond to in terms of a

characteristic graph updated at each direct or indirect query to an oracle in O. Intuitively,

many situations which we have depicted above result in some sort of collision. We formalize

what we mean by collision vertex as follows.

Definition (Collision Vertex). Given a characteristic graph CG, v is a collision vertex,

denoted v ∈ CollVertex(CG), if there exist at least two distinct edges having v as a target

(i.e. there exists (v′, l′) Ó= (v′′, l′′) such that edges (v′, l′, v) and (v′′, l′′, v) appear in the graph),

and one of them belongs to a meaningfully rooted path going through v. �

A careful examination reveals that all inconsistencies result in the creation of a connection

between a preexisting vertex and a rooted meaningful path. The configurations in which

this can happen fall into three categories. First, it can result in a collision vertex: this first

event is named Collide. Second, it can happen due to the creation of a visible vertex linking a
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ImpOant
(H)(x) =

if x ∈ dom(LH) then

(af , Q) := LH(x);
LH := LH.(x, af , Q);
return af

else

l := init(x);
p := piv(x);
(x1, . . . , xl) := Θ(x);
(o1, q1) := H1(x1);
if q1 ∈ dom(LS(o1)) then

(a1, lbl) := LS(o1, q1);
Q := [(o1, q1, a1, lbl)];

else let a1 ← U(o1) in

LS := LS .(o1, q1, a1, Inv);
Q := [(o1, q1, a1, Inv)];

endif

for j = 2 to p − 1 do

(oj , qj) := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then

(aj , lbl) := LS(oj , qj);
Q := Q :: (oj , qj , aj , lbl);

else let aj ← U(oj) in

LS := LS .(oj , qj , aj , Inv);
Q := Q :: (oj , qj , aj , Inv);

endif

endfor

for j = p to l do

(oj , qj) := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then

(aj , lbl) := LS(oj , qj);
LS := LS .(oj , qj , aj , max(PV is, lbl));
Q := Q :: (oj , qj , aj , max(PV is, lbl));

else let aj ← U(oj) in

LS := LS .(oj , qj , aj , PV is);
Q := Q :: (oj , qj , aj , PV is);

endif

endfor

af := Hpost(x, ap, [Q]j>p);
LH := LH.(x, af , Q);
return af

endif

If oi Ó= opiv:

ImpOant
(oi)(q) =

if q ∈ dom(LS(oi)) then

(y, _) := LS(oi, q);
else let y ← U(oi) in

endif

LS := LS .(oi, q, y, V is);
SG := UpSG((oi, q, y), SG);
return y

ImpOant
(opiv)H(q) =

if q ∈ dom(LS(opiv)|V is) then

(y, V is) := LS(opiv, q);
elsif PathFinder(q, SG) = (true, x, List) then

let t ← H(x) in

(opiv, q, y) :: L := Π3(LH(x))j≥piv(x);

LS := LS .((opiv, q, y, V is) :: (L, V is));
elsif q ∈ dom(LS(opiv)|PV is, Inv) then

(y, _) := LS(opiv, q);
LS := LS .(opiv, q, y, V is);

else let y ← U(opiv) in

LS := LS .(opiv, q, y, V is);
endif

return y
SG := UpSG((opiv, q, y), SG);

Figure VI.2 – Implementations of the Oracles in the Anticipating System Oant
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Figure VI.3 – Inconsistency Events

preexisting meaningfully and visibly rooted path and a preexisting visible vertex. Namely,

if the adversary manages to ask all the direct queries necessary to compute a hash value in

another order than that imposed by the implementation of H, this configuration happens.

This event is named Link. Third, a meaningful non-visibly rooted path can be connected with

a preexisting visible vertex. Then, there exists an edge between a non-visible and a visible

vertex. This event is called Reveal. The events are pictured in figure VI.3.

We now define a way to map traces to graph sequences, to be able to capture the occurrence

of our inconsistency events. Let us start by the definition of a mapping from memories of the

system to characteristic graphs.

Definition (Memory to Characteristic Graph Map). We let Γ be the function mapping

memories m containing lists LS and LH to a characteristic graph CG = (vroot, CV, CE, V) as

follows:

— For all (o, q, y, lbl) ∈ LS , (o, q, y) ∈ CV and V((o, q, y)) = lbl.

— The set of edges CE contains all edges in SEdge(V−1(V is)), and for all (x, t, Q) ∈ LH,

edge (vroot, θ1(x), Q[1]) and edges (Q[j − 1], θj(x), Q[j]) for 2 ≤ j ≤ init(x) belong to CE.

�

We notice that the blunt solution to map traces to sequences of graphs by changing each

memory into a graph using Γ turns out to be unsound, because traces only take into account

exchanges performed with the adversary. Indeed, let us assume that Reveal happens during a

query to H as a result of an adversarial call to opiv. If we look at the graph before the call

to opiv, it certainly shows a visible and meaningfully rooted path to the query made by the

adversary. Now looking at the graph after the call to opiv shows that the latter path has been

completed and is fully visible. One cannot know whether Reveal has occured by looking at

this pair of graphs: the usual granularity of a trace does not allow us to properly capture our

inconsistency events.

To address this issue, we need to deduce from input and output memories of each step

whether an internal H call has been performed and in such a case the value of the intermediate

memory, before all vertices are colored visible. These ideas are formalized by the following

mapping, called a step transformer.

Definition (Step Transformer). Given a step m
(o,q,a)
−→ m′ and an input characteristic

graph, the step transformer StTr : MOant × MOant × Xch → CG∗ maps it to a graph sequence

according to the following conditions:
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StTr(m, m′, (o, q, a)) =



































Γ(m)
(o,q,a)
−→ Γ(m′) if o Ó= opiv or q is not

visibly rooted in m.SG

Γ(m)
(H,x,t)
−→ Γ(m′′)

(opiv,q,a)
−→ Γ(m′)

otherwise, where (x, t, Q) = Last(m′.LH),

m′′ = m.[LS Ô→ LS .Q, LH Ô→ LH.(x, t, Q)]
�

We call graph stages the graph sequences of the form CG
(o,q,a)
−→ CG′. Now that we know

how to transform a step into a graph stages, we can provide a definition for a function

transforming a partial trace starting with the initial state m̄ into graph stages.

Definition (Trace Transformer). The trace transformer GraphTr is an application that

maps a partial trace of interaction with Oant given by

m̄
xch1−→ m1

xch2−→ . . . mk−1
xchk−→ mk

to a partial graph trace defined as

StTr(m̄
xch1−→ m1) · . . . · StTr(mk−1

xchk−→ mk),

where · denotes the concatenation of sequences. �

A graph trace is the image by the transformer of a trace. A graph event is a predicate ECG

over partial graph traces. We choose to abusively denote ECG too the event ECG ◦ GraphTr

on partial traces.

Events on traces can be defined by means of a temporal operator and a step-predicate.

Similarly, we can use predicates on graph stages and temporal operators to define graph events.

Such predicates are called graph stage predicates, they are mappings of type (CG×CV ×CG) →

Bool. Our problematic events Collide, Reveal and Link which we have introduced before are

formally defined as graph stage predicates as follows.

Definition (Inconsistency Predicates). Let CG = (vroot, CV, CE, V) and CG′ =

(vroot, CV ′, CE′, V ′) be two characteristic graphs such that CG
(o,q,y)
−→ CG′ is a graph stage.

— Collide is true at graph stage CG
(o,q,y)
−→ CG′ iff a collision vertex is created at this step,

i.e. CollVertex(CG′) − CollVertex(CG) Ó= ∅.

— Reveal is true at graph stage CG
(o,q,y)
−→ CG′ if CG′ contains a vertex which is the first

visible vertex of a meaningful non-visibly rooted path: there exists v, v′ ∈ CV ′ s.t. firstly,

V ′(v) = V is and V ′(v′) Ó= V is, secondly, a meaningful path goes through v′ in CG′ and

lastly edge (v′, _, v) is in CE′.

— Link is true at graph stage CG
(o,q,y)
−→ CG′ if (o, q, y) is a visible vertex of CG′ not belonging

to CG and there exists a visible vertex (o′, q′, y′) in CV such that a visibly meaningfully

rooted path of CG′ goes through (o, q, y) and (o′, q′, y′).

�

We have now defined all the elements needed to state the expected theorem, according to

which the advantage of an adversary in distinguishing real from simulated setting (with the

generic simulator) is bounded by the probability that either Collide, Reveal or Link become

true at some point of the execution of the anticipating system.
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Theorem VI.1. Let h be an overlayer using as inner-primitives the oracle system idealized as

U(O). The composition of the overlayer and U(O) yields oracle system (HU(O), U(O)),

We denote by S the generic simulator and Oant the anticipating system, which we have

defined above. Then, for all adversaries A ∈ Adv(k, t),

— S is (ks, ts)-bounded with ks(H) = 1 and ks is null otherwise, and ts = tUpSG(k′ + 1) +

tpost + tPathFinder(k
′ + 1), where k′ =

∑

o∈O k(o).

— the indifferentiability advantage is bounded by the probability of inconsistency events:

|Pr[A|(HU(O), U(O)) : true] − Pr[A|(U(H), SU(H)) : true]| ≤ Pr[A|Oant : FCollide∨Reveal∨Link]

where tUpSG, tFwdSplr and tPathFinder respectively bound of the execution time of UpSG,

forward sampler FwdSplr and path-finder PathFinder used in the simulator.

VI.3 Proof of the Theorem

In this section we provide a detailed proof in CIL for the generic theorem VI.1. The trees

summing up the proof can be found in figure VI.4. Here is the outline of our reasoning. The

proof starts with a layered oracle system implemented as in the definition, which we must

relate to the anticipating system Oant. The formal relation between the real setting and the

anticipating system is mostly one of determinization, though it seems easier to introduce

intermediate systems to write the underlying distribution properly. This is developped in VI.3.1

and corresponds to the left tree in figure VI.4.

Then, the anticipating system is transformed into a system Q5 closer to the simulated

setting. We show that the probability to distinguish between Oant and Q5 is bounded by the

same bound as our theorem: Pr[A|Oant : FCollide∨Reveal∨Link]. To justify this, we successively

present a series of modified systems, from Q2 to Q5, and the formal link existing between one

and the next, before being able to conclude in VI.3.6. This corresponds to the middle tree in

figure VI.4.

Eventually, we argue that Q5 is determinized by the simulated setting. The global

conclusion finally follows from transitivity of the indistinguishabiltiy relation.

VI.3.1 — Relation Between (HO,O) and Oant: Left Tree

We provide the specification of the intermediate system Q0 in figure VI.5. It mostly consists

in the anticipating system but the anticipation part. Namely the visibility labels are added

and computed dynamically, and the branching is modified in opiv, but H is not called by

opiv to anticipate post-pivot queries. Moreover, a list Pivot is added to the memory, to

collect detected pivot queries, their answers and the value of x output by the path-finder

PathFinder. Memories of (HO,O) contain lists Loi
, LH. Memories of Q0 contain a shared

table LS collecting all tuples of the form (oi, q, y, lbl), a simulator graph SG, a list LH and

list Pivot. This system is in bisimulation up to with the real setting, for relation R defined as

follows. Memories m and m′ are in relation iff they are equal when they belong to the same

memory space and if m ∈ M(HO,O) and m′ ∈ MQ0 :

— (x, af , Q) ∈ m.LH iff (x, af , Q) ∈ m′.LH, but the order of appearance might not be the

same,



126 VI. A Reduction Theorem for Hash Constructions

Left tree

(HO,O) ∼0 Oant

Middle tree
Oant ∼ǫ Q5

(U(H),SU(H)) ≤det,γ′ Q5
I-Det

(U(H),SU(H)) ∼0 Q5

(HO,O) ∼ǫ (U(H),SU(H))

Left tree:

(HO,O) ≡R,true Q0
I-Bis

(HO,O) ∼0 Q0

Q0 ≤det,γ Q1
I-Det

Q0 ∼0 Q1

Q1 ≡R′,true Oant
I-Bis

Q1 ∼0 Oant

(HO,O) ∼0 Oant

Middle tree:

Oant :ǫ E F¬φ ⇒ E
UR

Oant :ǫ F¬φ Oant ≡b
R′′,φ Q2 Q2 ≡=,φ Q5

I-2-Bis
Oant ∼ǫ Q5

where E = FCollide∨Reveal∨Link

Figure VI.4 – Trees Of The Proof Of The Generic Theorem

— lists (m.Loi
)i and list m′.LS contain the same queries and answers, which we formalize as:

(1.) ∀(q, y) ∈ m.Loi
, there exists a label lbl such that (oi, q, y, lbl) ∈ m′.LS ;

(2.) ∀(oi, q, y, lbl) ∈ m′.LS , (q, y) ∈ m.Loi
.

We then have (HO,O) ≡R,true Q0.

We now define a second intermediate system, Q1, which is similar to Q0 but for the four

lines starting with † in the implementation of opiv, which are replaced by:

let t ← H(x) in

(opiv, q, y) :: L := Π3(LH(x))j≥piv(x);

LS := LS .(L, V is);

To apply a determinization rule, we should separate LS into two tables LS and Lant
S .

However, we bypass this step and just provide the distribution γ induced by a memory on

Lant
S , table of anticipated queries. System Q0 determinizes Q1 for distribution γ for which we

provide a constructive definition:

γ(m) = Lant
S := [ ];

for q in dom(Pivot) do

let (y, x) ← Pivot(q) in

let t ← ImpQ0
(H)(x) in

L := Π3(Last(LH(x)));

LS := LS .([L]j>piv(x), V is);

Lant
S := Lant

S .([L]j>piv(x), V is);

endfor

return Lant
S − m.LS

Finally, the justification of the step from Q1 to Oant is again a perfect bisimulation relation

R′ induced by equality on lists LH, LS and graph SG.
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ImpOant
(H)(x) =

if x ∈ dom(LH) then

(af , Q) := LH(x);
LH := LH.(x, af , Q);
return af

else

l := init(x);
p := piv(x);
(x1, . . . , xl) := Θ(x);
(o1, q1) := H1(x1);
if q1 ∈ dom(LS(o1)) then

(a1, lbl) := LS(o1, q1);
Q := [(o1, q1, a1, lbl)];

else let a1 ← U(o1) in

LS := LS .(o1, q1, a1, Inv);
Q := [(o1, q1, a1, Inv)];

endif

for j = 2 to p − 1 do

qj := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then

(aj , lbl) := LS(oj , qj);
Q := Q :: (oj , qj , aj , lbl);

else let aj ← U(oj) in

LS := LS .(oj , qj , aj , Inv);
Q := Q :: (oj , qj , aj , Inv);

endif

endfor

for j = p to l do

qj := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then

(aj , lbl) := LS(oj , qj);
LS := LS .(oj , qj , aj , max(PV is, lbl));
Q := Q :: (oj , qj , aj , max(PV is, lbl));

else let aj ← U(oj) in

LS := LS .(oj , qj , aj , PV is);
Q := Q :: (oj , qj , aj , PV is);

endif

endfor

af := Hpost(x, ap, [Q]j>p);
LH := LH.(x, af , Q);
return af

endif

If oi Ó= opiv:

ImpOant
(oi)(q) =

if q ∈ dom(LS(oi)) then

(y, _) := LS(oi, q);
else let y ← U(oi) in

endif

LS := LS .(oi, q, y, V is);
SG := UpSG((oi, q, y), SG);
return y

ImpQ0
(opiv)(q) =

if q ∈ dom(LS(opiv)|V is) then

(y, V is) := LS(opiv, q);
elsif PathFinder(q, SG) = (true, x, List) then

† if q ∈ dom(LS(opiv)|PV is, Inv) then

† (y, _) := LS(opiv, q);
† else let y ← U(opiv) in

† endif

Pivot := Pivot.(q, y, x);
elsif q ∈ dom(LS(opiv)|PV is, Inv) then

(y, _) := LS(opiv, q);
else let y ← U(opiv) in

endif

return y
LS := LS .(opiv, q, y, V is);
SG := UpSG((opiv, q, y), SG);

Figure VI.5 – Implementations Of Q0
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VI.3.2 — Redrawing Some Invisible Vertices

The idea behind this step is to allow the oracles to redraw new images for values of which the

image has already been used, or in other words to resample some vertices. When can such a

resampling be a problem for coherence of the simulation? The idea is to preserve the structure

of the input characteristic graph during oracle calls. Of course, if the image we consider is

visible or partially visible, we do not redraw it. Furthermore, even when the vertex we want to

modify is invisible, we have to be careful. The idea is that we have to preserve paths existing

in the input graph. To this end, we introduce a new terminology: a vertex v′ is one of the

next neighbors of a vertex v in graph CG iff there exists an edge (v, _, v′) between v and v′.

The set of next neighbors of v in graph CG is denoted Next(v, CG). Every time we change

an invisible vertex into another vertex, we want to modify its next neighbors so that the same

edges still exist between them. This is doable only if such neighbors are non-visible. Besides,

in case one of the next neighbors is a collision vertex, redrawing suppresses the collision and

changes the structure of the graph. This is also a case we want to exclude.

Formally, we define a function ReSamp taking as input a query (o, q) and a memory m

such that query (o, q) corresponds to a vertex (o, q, y) in m. The function outputs a boolean

corresponding to whether we can redraw vertex (o, q, y) in memory m. The characteristic

graph associated to m is Γ(m) = (vroot, CV, CE, V).

ReSamp : Que × MOant → Bool

((o, q), m) Ô→



















true if V((o, q, y)) = Inv,

Next((o, q, y), Γ(m)) ∩ V−1(V is) = ∅

Next((o, q, y), Γ(m)) ∩ CollVertex(Γ(m)) = ∅

false otherwise.

In particular, we emphasize that for all values corresponding to partially visible and visible

vertices, ReSamp outputs false.

To form up again the paths existing in the input graph, we define a function named

Stitch : Xch × {Inv, PV is} × MOant → MOant , which takes as input a (possibly resampled)

vertex (o, q, ỹ), a visibility label for this latter and a memory m and outputs a new memory

m′. If (o, q, y) appears in the memory m for some y, Stitch modifies the memory so that

(o, q, ỹ) replaces (o, q, y) with the visibility label given in input of Stitch and next neighbors of

the vertex (o, q, y) in Γ(m) become next neighbors of the new vertex (o, q, ỹ) in Γ(m′) (with

the same edges). Thus, paths existing in the input graph exist in the output graph too.

Formally, if (o, q, y) appears in the memory m and (o, q, ỹ) is the new vertex, Stitch

outputs m′ computed as follows. To build m′.LS , we start with m′.LS = m.LS and then

proceed in the following way. For all edges ((o, q, y), l, (o′, q′, y′)) in Γ(m) where (o, q′, y′) ∈

Next((o, q, y), Γ(m)), if j is an index such that q′ = Hj(l, (o, q, y)), then we let q̃ = Hj(l, (o, q, ỹ)).

Then, if (o′, q̃) does not appear in m′.LS yet, (o′, q′, y′, lbl) is removed from m′.LS and

(o′, q̃, y′, lbl) is added to m′.LS . If (o′, q̃) already appears in m′.LS , we do not modify it.

Finally, we remove (o, q, y, _) from m′.LS and replace it by (o, q, ỹ, lbl), where lbl is given in

input of Stitch. List m′.LH is then built out of m.LH by rebuilding the third component of

every triple it contains: given (x, af , Q) ∈ m.LH, (x, af , Q′) is put in m′.LH, where Q′ is the

list of calls necessary to compute H(x) in m′.LS .

Notice that we cannot turn a vertex into a collision vertex when we resample it: the fact

that a collision occurs in a vertex depends only on its query part and we only change the
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answer. However, there is a possibility when we apply Stitch that we change the structure of

the characteristic graph. Namely, we can stumble upon a preexisting vertex by computing a

value q̃ which already corresponds to a vertex.

The set of values ỹ such that it happens is:

PbSet((o, q), m) = {ỹ ∈ Out(o) | ∃j s.t. q̃ = Hj(l, (o, q, ỹ)) ∈ dom(m.LS(oj))}

To write our new system Q2, we introduce an auxiliary procedure Adjust. It takes as input

a query (o, q) and a visibility label lbl, resamples the vertex if it is possible and modifies the

lists with Stitch, which adds the query and answer to list LS(o) with the desired visibility

label.
Adjust ((o, q), lbl, m) =

if q ∈ dom(LS(o)) then

if ReSamp((o, q), m) then

let a ← U(o) in

m′ := Stitch((o, q, a), lbl, m);

else (a, lbl′) := Lo(q);

LS := LS .(o, q, a, max(lbl, lbl′));

endif

else let a ← U(o) in

LS := LS .(o, q, a, lbl);

endif

return (o, q, LS(o, q))

Then, we can define the implementation of oracle H in the adjusted system as in figure VI.6,

while both other oracles remain implemented as in Oant. The claim proven above justifies the

existence and unicity of related adjusted states when φ holds.

To formalize our proof step, we use a relation of backwards bisimulation. Two states are

in relation R′′ iff they yield graphs with the same structure. As the number of neighbors of a

resampled vertex can potentially be modified by stitching, we impose that it is equal in two

states in relation. Formally, we impose the conditions:

m R′′ m′ iff there exist n ≥ 0 and a list [(o1, q1, a1), . . . , (on, qn, an)] of distinct vertices

and labels, such that, if we denote m0 = m and mn = m′:

— For all i = 1..n, mi = Stitch((oi, qi, ai), Inv, mi−1).

— For all i = 1..n, ReSamp((oi, qi), mi−1) or qi /∈ mi−1.LS(oi).

— For all i = 1..n, ai /∈ PbSet((oi, qi), mi−1).

— For all i, if yi is the image of qi by oi in state mi−1, then Card(Next((oi, qi, yi), Γ(mi−1))) =

Card(Next((oi, qi, ai), Γ(mi))), i.e. the stitch operation conserves the number of neighbors

of the resampled vertex.

To be able to apply rule I − 2 − Bis, we need a common set of conditions φ for backward

and forward bisimulation relations. Therefore, we choose for φ the conjunction of every

condition that we need to require in the next steps determining Q5. To do so, we express two

conditions on the execution of an exchange m1
xch
−→ m2, one is a condition on the characteristic

graph from which we start (this is φ1) and one is a condition on what happens during the

exchange execution (this is φ2).

The first condition expresses that the input characteristic graph exhibits no collision or
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ImpQ2
(H)(x) = if x ∈ dom(LH) then

(af , Q) := LH(x);
LH := LH.(x, af , Q);
return af

else

l := init(x);
p := piv(x);
(x1, . . . , xl) := Θ(x);
q1 := H1(x1);
if q1 ∈ dom(LS(o1)) then

(a1, lbl) := LS(o1, q1);
Q := [(o1, q1, a1, lbl)];

else let a1 ← U(o1) in

LS := LS .(o1, q1, a1, Inv);
Q := [(o1, q1, a1, Inv)];

endif

for j = 2 to p − 1 do

qj := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then

(aj , lbl) := LS(oj , qj);
Q := Q :: (oj , qj , aj , lbl);

else let aj ← U(oj) in

LS := LS .(oj , qj , aj , Inv);
Q := Q :: (oj , qj , aj , Inv);

endif

endfor

for j = p to l do

qj := Hj(xj , (oj−1, qj−1, aj−1));
let (oj , qj , aj , lbl) ← Adjust((oj , qj), PV is) in

Q := Q : (oj , qj , aj , lbl);
endfor

af := Hpost(x, ap, [Q]j>p);
LH := LH.(x, af , Q);
return af

endif

Figure VI.6 – Implementation of H in System Q2
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non-resamplable vertex. This is naturally formalized as

φ1(m) =

{

CollVertex(Γ(m)) = ∅

∀i, ∀(o, q, a) ∈ (m.LS(oi)|Inv), ReSamp((o, q), Γ(m)) = true

The second condition captures that neither Collide nor Reveal happen during the execution

of the exchange, using the function mapping execution of exchanges to graph sequences defined

in the previous section. We also impose that no query to oracles oi Ó= opiv is labeled partially

visible (this is P1) and that all hash queries, if they have a matching pivot query that is visible,

are not fresh hash queries (this is P2).

φ2(xch, m1, m2) = G¬Collide∧¬Reveal(StTr(m1
xch
−→ m2)) ∧ P1(m1) ∧ P2(m1, m2)

where










P1(m) (xch = (oi, q, y) ∧ oi Ó= opiv ∧ q ∈ dom(m.LS(oi))) ⇒ V(q) Ó= PV is

P2(m, m̃) (xch = (H, x, af )∧

Π3(m̃.LH)[piv(x)] ∈ dom(m.LS(opiv)|V is)) ⇒ x ∈ dom(m.LH)

We now let φ(xch, m1, m2) = φ1(m1) ∧ φ2(xch, m1, m2). We must show that R′′ is a relation

of backwards bisimulation up to φ for our oracle system. We start by showing the following

useful claim.

Claim. Given m1
xch
−→>0 m2, and a state m′

2 such that m′
2 R′′ m2, if φ(xch, m1, m2),

there exists a unique state m′
1 such that m1 R′′ m′

1 and m′
1

xch
−→>0 m′

2. Moreover, the same

number of vertices are added in the graph Γ(m2) w.r.t. Γ(m1) and in the graph Γ(m′
2) w.r.t.

Γ(m′
1).

Proof. We know that m2 R′′ m′
2. Hence there exist n ≥ 0 and a list [(o1, q1, a1), . . . , (on, qn, an)]

of distinct vertices such that, if we denote m0 = m2 and mn = m′
2, we have:

— For all i = 1..n, mi = Stitch((oi, qi, ai), Inv, mi−1).

— For all i, ReSamp((oi, qi), mi−1) or qi /∈ mi−1.LS(oi).

— For all i, ai /∈ PbSet((oi, qi), mi−1).

— For all i, if yi is the image of qi by oi in state mi−1, then Card(Next((oi, qi, yi), Γ(mi−1))) =

Card(Next((oi, qi, ai), Γ(mi))).

Let us define the following candidate for m′
1:

m′
1 = Stitch((o1, q1, a1), Inv, . . . Stitch((on, qn, an), Inv, m1) . . . )

The state m′
1 defined satisfies m1 R′′ m′

1. Indeed, without loss of generality, we can assume

that the (oi, qi) are distinct. The stitching application has no effect on a state m if its first

argument (oi, qi, ai) is such that (oi, qi) does not satisfy qi ∈ dom(m.LS(oi)).

Let us show now that every time a new vertex is added to m1.LS during the execution

leading to m2, it is added in any state in relation with m1 leading to m′
2 too.

Suppose that we reason about an exchange xch with an oracle oi. First, we argue that

related states coincide on visible vertices, so in particular on visible parts of the domain of list

LS(oi). Moreover, the only invisible queries that can be asked without realizing Reveal are
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vertices directly linked to the root. If φ1 holds, none of these vertices can be a collision vertex.

Therefore, there is no possibility that their query part be resampled as neighbors of another

vertex. Consequently, if an invisible query is asked and φ holds, it is in the domain of LS(oi)

for all related memories. Furthermore, in case we ask a partially visible query, either oi Ó= opiv

and it breaks P1, or it has to be visibly rooted, otherwise Reveal becomes true. Hence, since

it has a visible (previous) neighbor and no other previous neighbor (otherwise it is a collision

vertex), it cannot be resampled as a next neighbor of some vertex. As a result, it is in the

domain of all related memories.

Suppose now that we reason on an exchange xch with H. The trick is to notice that our

equivalence relation is built so that the same paths exist in related states. Consequently, if

at step j, we meet the first query resulting in the addition of a new vertex in Γ(m1), then it

is also the first query resulting in the addition of a vertex in any related memory, or there

would exist a rooted path in one graph and not the other. Furthermore, once we start adding

vertices during the execution, we have to draw new vertices until the end, or we contradict φ

by either creating a collision vertex or realizing Reveal. The conclusion follows. �

Let us first check stability, i.e. that given m1
xch
−→ m2, and m′

2 such that m′
2 R′′ m2, all states

m̃1 in relation with m1 such that m̃1
xch
−→ m′

2 are such that φ(xch, m1, m2) iff φ(xch, m̃1, m′
2).

This follows from the claim: if φ(xch, m1, m2), then there is one possibility of state m̃1, it is

m′
1. Moreover, φ1(m′

1) holds: no collision vertex or non-resamplable vertex can be created.

This allows us to say that φ1(m2) holds iff φ1(m′
2) holds. Therefore, if Reveal happens or a

collision vertex is created, then it is in both cases. This justifies stability of G¬Collide∧¬Reveal.

Concerning P1, it only deals with input states. Visible vertices are equal in related states,

so we only need to justify that there cannot exist a vertex which is partially visible in one

state and invisible in the other. In fact, P1 is not a stable property, but ¬Reveal ∧ φ1 ∧ P1 is.

If ¬Reveal ∧ φ1 holds for an exchange, then the only invisible queries that an adversary can

perform are directly linked to the root, otherwise Reveal happens, and linked only to the root,

since φ1 holds. Since we do not resample the root, the set of invisible queries not breaking

¬Reveal ∧ φ1 coincide in related states. Therefore, if visible and invisible queriable vertices

coincide, P1 holds for all or none of the states in relation. Finally, stability of P2 follows from

the visibility property imposed on the pivot: it has the same value in m1 and m′
1, so does LH.

Stability follows.

We have to verify compatibility. We consider states m1, m2 and m′
2 and an exchange

xch = (o, q, a) such that m1
xch
−→>0 m2 and φ(xch, m1, m2). The claim proves that there is

only one state m′
1 such that m′

1
xch
−→>0 m′

2 and that executions starting in states m1 and m′
1

lead to the same number of draws. It yields the equality between probabilities:

Pr[A | Oant : m1
xch
−→>0 m2] = Pr[Q3 : m′

1
xch
−→>0 m′

2]

Then, we deduce from the one-to-one mapping between m1 and m′
1 that it yields:

Pr[A | Oant : C(m1)
xch
−→>0 m2] = Pr[Q2 : C(m′

1)
xch
−→>0 m′

2]

VI.3.3 — Replacing Adjust by Simple Sampling

We keep the same overall implementations but change the implementation of Adjust into:
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Adjust′ ((o, q), lbl) =

let a ← U(o) in

if q ∈ dom(LS(o)) then

m′ := Stitch((o, q, a), lbl, m);

else LS := LS .(o, q, a, lbl);

endif

return (o, q, a)

In other words, we redraw a value for q, no matter whether it is resamplable. This yields

a system we name Q3.

This step is formalized using a bisimulation up to φ, with as a relation the equality

of states. φ is obviously stable for this relation. Now let us check compatibility. Given

that only the implementation of H possibly resamples vertices, the simulation is imperfect

during an execution of H(x) (not necessarily called directly). It can happen if we resample a

non-resamplable vertex.

Let v be the first vertex posing a simulation problem during an execution of H.

— If v has been resampled whereas it was partially visible, it means v belongs to the pivot

and post-pivot queries of another hash input x′. Necessarily the paths of x and x′ meet in

some vertex v′ (not necessarily distinct of v), which is a collision vertex. The execution of

H(x) realizes Collide at the moment of the query for v′.

— If v has been resampled whereas it was visible and v is not the pivot then Reveal happens:

the visibility label of the pivot is partially visible, so that sequence of labels has to increase.

— If v has been resampled whereas it was a visible pivot query matching x, then P2 is broken.

We conclude that Q2 ≡=,φ Q3.

VI.3.4 — Changing Oracles in NO

In this step, we modify the implementation of the oracles in NO assuming that pivot queries

are on the one hand always detected when queried directly, and on the other hand always

asked before any of their matching post-pivot queries. It gives us a new system Q4, for which

the implementations are provided in figure VI.7.

If the first assumption holds, we can safely simplify the end of the implementation of opiv by

replacing the test of belonging to (LS(opiv)|PV is, Inv) by that of belonging to (LS(opiv)|Inv).

If the second assumption holds, no partially visible query should be directly asked to an oracle

oi Ó= opiv. Indeed, the pivot query being queried on before implies that all post-pivot queries

become visible vertices. We thus modify the implementation of oi Ó= opiv by just checking if a

query already belongs to dom(LS(oi)|Inv, V is) before drawing an answer.

The formal justification of this step is that Q3 ≡=,φ Q4. Indeed, the simulation is perfect

except when:

— opiv is queried on a partially visible vertex, but does not branch in the path-finder branch,

meaning the vertex is non-visibly meaningfully rooted. Yet, it is meaningfully rooted since

it is partially visible. This is captured by Reveal.

— During an execution of oi, if we redraw a new answer to a partially visible query, but then

P1 is broken.
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If oi Ó= opiv:

ImpQ4
(oi)(q) =

if q ∈ dom(LS(oi)|Inv, V is) then

(y, _) := LS(oi, q);
else let y ← U(oi) in

endif

LS := LS .(oi, q, y, V is);
SG := UpSG((oi, q, y), SG);
return y

ImpQ4
(opiv)H(q) =

if q ∈ dom(LS(opiv)|V is) then

(y, V is) := LS(opiv, q);
elsif PathFinder(q, SG) = (true, x, List) then

let t ← H(x) in

(opiv, q, y) :: L := Π3(LH(x))j≥piv(x);

LS := LS .((opiv, q, y, V is) :: (L, V is));
elsif q ∈ dom(LS(opiv)|Inv) then

(y, Inv) := LS(opiv, q);
else let y ← U(opiv) in

endif

LS := LS .(opiv, q, y, V is);
SG := UpSG((opiv, q, y), SG);
return y

Figure VI.7 – Implementations of Oracles in Q4
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VI.3.5 — Changing H

In this last step, we define a system Q5 (see in figure VI.8) and replace the series of uniform

sampling of the pivot and post-pivot vertices, followed by the computation of af , by the

sampling of af and the execution of the forward sampler algorithm. According to the

hypotheses we have formulated on this latter, both implementations yield equal distributions

on the lists (LH, LS) as soon as the forward sampler does not sample elements for which there

are yet vertices in the characteristic graph. This last condition is captured by the fact that

neither Collide nor Reveal happen. It follows that Q4 ≡=,φ Q5

VI.3.6 — Conclusion of the Tree in the Middle

We start by providing details about the application of rule I − 2 − Bis. In the last three

transformations, we have created systems Q2 to Q5, and such that Q2 ≡=,φ Q3, Q3 ≡=,φ Q4

and Q4 ≡=,φ Q5. From these statements, we can deduce that Q2 ≡=,φ Q5. As Q2 is expressed

as an adjusted system of Oant, we can apply rule I − 2 − Bis.

Furthermore, we want to justify that F¬φ yields that eventually, Collide, Reveal or Link

happens, i.e. F¬φ ⇒ FCollide∨Reveal∨Link. To do so, we prove that ¬P1 and ¬P2 imply that Reveal

or Link have happened. Concerning P1, if when querying oi Ó= opiv on q, q ∈ dom(m1.LS(oi))

is part of a partially visible vertex, then this latter is meaningfully rooted. If it is not visibly

meaningfully rooted, then we can conclude that Reveal has happened. Otherwise, if all queries

on the path from the root to our queried vertex are visible, since it is a post-pivot query, but

still tagged with a partially visible label, it means that the matching pivot was not visibly

meaningfully rooted at the time of its query. Consequently, we are sure that at some point, a

query was issued to one of the oi’s to link two chains of visible vertices, i.e. Link has happened.

Finally, for property P2, if a fresh query on x is issued to H with a pivot already visible,

it means that the pivot has been directly queried for, but that at the time of query, it was

not visibly rooted (otherwise H(x) would have been called). Similarly to the previous event,

we can show that either all queries before the pivot are visible, and at some point Link has

happened, or there exists an invisible query on the path from the root to the pivot, and Reveal

holds.

This concludes the discussion about the middle tree.

VI.3.7 — Determinization of Q5 to Obtain the Simulated System

As we did previously, we abuse a little the determinization rule and only provide the distribution

yielded by a memory on anticipated queries in LS , which we name Lant
S . To build possible

anticipated components of state out of a state m = (LS , LH) of the simulated system, we

have to generate the list of queries matching every pair (x, af ) in LH and to tag them with

visibility labels. Given the first pair (x, af ), this can be done by executing the implementation

ImpQ5
(H) given as input x and the list LS where every vertex has been deemed visible. It

provides us with a new table LS , on which to iterate what we have just done with the following

pairs in list LH. This provides us with a constructive definition for a distribution γ′ such that

(U(H),SU(H)) ≤det,γ′ Q5:
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ImpQ5
(H)(x) = if x ∈ dom(LH) then

(af , Q) := LH(x);
LH := LH.(x, af , Q);
return af

else

l := init(x);
p := piv(x);
(x1, . . . , xl) := Θ(x);
(o1, q1) := H1(x1);
if q1 ∈ dom(LS(o1)) then

(a1, lbl) := LS(o1, q1);
Q := [(o1, q1, a1, lbl)];

else let a1 ← U(o1) in

LS := LS .(o1, q1, a1, Inv);
Q := [(o1, q1, a1, Inv)];

endif

for j = 2 to p − 1 do

qj := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then

(aj , lbl) := LS(oj , qj);
Q := Q :: (oj , qj , aj , lbl);

else let aj ← U(oj) in

LS := LS .(oj , qj , aj , Inv);
Q := Q :: (oj , qj , aj , Inv);

endif

endfor

qp := Hp(xp, (op−1, qp−1, ap−1));
let af ← UH in

let (ap, Q′) ← FwdSplr(x, af ) in

LS := LS .((opiv, qp, ap, PV is) :: (Q′, PV is));
LH := LH.(x, af , Q :: (opiv, qp, ap) :: Q′);
return af

endif

Figure VI.8 – Implementation Of H In System Q5
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v2

v0
v1

x0 Ô→2 x1 Ô→2

Figure VI.9 – Vertices Involved in FCollide

γ′(m.LS , m.LH) = m′.LS := (m.LS , V is);

Lant
S , m′.LH := [ ];

for x in m.LH do

let af ← ImpQ5
(H)(x, m′) in

Lant
S := Lant

S .Π3(Last(m′.LH));

endfor

return Lant
S − m.LS

VI.4 Examples of Application

We first want to underline that the generic theorem proven in the previous section reminds

hash construction designers of the importance of preventing length-extension attacks. A

length-extension attack is an attack in which the adversary is able to produce two hash inputs

x1 and x2, x1 being a strict prefix of x2 such that the value for H(x2) can be computed out

of the result of a query of H(x1), that is, without asking any intermediate query necessary to

compute H(x1). In other words, this adversarial capacity is a threat to indistinguishability of

real and simulated worlds because the adversary can then predict things about one or several

inner-primitive queries: those needed to compute H(x2) out of H(x1). In particular, length-

extension attacks are a well-known weakness of the Merkle-Dåmgard extension technique. In

our result, the indifferentiability bound we obtain for this construction is 1. Indeed, length

extension allows to realize Reveal with probability 1.

We show next the results provided by our theorem on two constructions: the Sponge

construction, introduced in section VI.1, and the ChopMD construction. We do not provide

implementation for a path-finder algorithm (though to obtain an instantiated bound on the

execution time we should), we only specify forward sampler algorithms.

As the events FCollide, FReveal and FLink can intersect, we take care to evaluate slightly

weaker events which partly avoid that some overlapping artificially increasing the bound.

The following decomposition which proves useful in both examples we develop5. In our

examples, the hash constructions are such that there is only one possible label for an edge

between two vertices. Consequently, when event FCollide happens and results in the creation

of a collision vertex v2, then it necessarily involves vertices v0, v1 linked to v2 such that

v0 Ó= v1. Without loss of generality, we suppose that v0 is created before v1. Our reasoning is

illustrated in figure VI.9; we reason on conditions neccessarily filled by v0 and v1 for v2 to

exist. We denote v1 = (F , q1, a1). We let RootCollide be the predicate capturing the event

5Without any specific argument about the relevance of this decomposition for other constructions, we have
chosen to cite the theorem with events ’naturally’ appearing in the proof, leaving the choice of a decomposition
up to the users.
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FwdSplr(x, t) =
(t0, . . . , tk−1) := (t[1..r], . . . , t[(k − 1)r + 1, r]);
t′ ← U(c)
y0 := t0||t′;
q1 := y0;
for j = 1 to k − 1 do

t′
j ← U(c)

yj := tj ||t′
j ;

vj := (F , qj , yj);
qj+1 := yj ;
endfor

return (y0, [vj ]j=(piv(x)+1)..(piv(x)+k−1))

Figure VI.10 – Forward Sampler Algorithm for the Sponge Construction

that v0 = vroot and v1 is created such that the collision happens. Then necessarily, there exist

j, x0 Ô→2, x1 Ô→2 such that H1(x0 Ô→2) = Hj(x1 Ô→2, (F , q1, a1)) since they both equal the query part

of v2. Furthermore, we let WkCollide be the predicate verified when v0 Ó= vroot, denoted by

v0 = (F , q0, a0), and vertex v1 is created: namely, if there exist x1 Ô→2 and x0 Ô→2 such that

Hj(x1 Ô→2, (F , q1, a1)) = Hj′(x0 Ô→2, (F , q0, a0)), since they both equal the query part of v2. We

reason on the appearance of v1 in the graph, which can indifferently occur before or after

creation of v2 and edge (v1, _v2). It allows us to state that FCollide implies FRootCollide∨WkCollide.

We define WkLink as the event in which a vertex v1 is created and gets linked to a preexisting

vertex v2, without imposing any visibility constraint on the vertices v1 and v2. We can see

that FCollide∨Reveal∨Link is implied by FWkLink ∨ FRootCollide∨WkCollide ∨ FReveal∧¬WkLink∧¬Collide.

VI.4.1 — The Sponge Construction

As a forward sampler FwdSplr, we choose the algorithm described in figure VI.10. Intuitively,

it parses a hash output t into k blocks of r bits and draws iteratively the c missing bits of the

answers to pivot and post-pivot queries.

We start by the computation of an upper-bound of event FWkCollide. Let us assume it

happens at the ℓ-th fresh query, when vertex v1 is created. There exist x1 Ô→2 and x0 Ô→2 such that

Hj(x1 Ô→2, (F , q1, a1)) = Hj′(x0 Ô→2, (F , q0, a0)), which imposes Lastc(a0) = Lastc(a1). Since the

answer a1 is drawn uniformly at random, the probability that it satisfies Lastc(a0) = Lastc(a1)

is bounded by ℓ−1
2c . Summing on ℓ, it results in a bound of ktot(ktot−1)

2c+1 .

We now turn to bound the probability of FRootCollide. If at some point of the execution,

there exists v1 such that H1(x0 Ô→2) = Hj(x1 Ô→2, (F , q1, a1)) for some labels x0 Ô→2 and x1 Ô→2 and

index j, then it translates in imposing the last bits of a1 to be worth 0c. The probability that

this happens is bounded by ktot

2c .

Let now bound the probability that FWkLink. If it happens at the ℓ-th direct query, when a

vertex v1 is created, then there exists a vertex v2 to which v1 gets linked by an edge labeled

by xj . Since the answer a1 is drawn uniformly at random, the probability that there is a v2

such that Hj(xj , (F , q1, a1)) = q2 is bounded by ℓ−1
2c . Summing on ℓ, it results in a bound of

ktot(ktot−1)
2c+1 .

Finally, a bound to FReveal∧¬WkLink∧¬Collide remains to be computed. When the event
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occurs, there exists a vertex v1 = (F , q1, a1), non-visible, which gets linked to v2 = (F , q2, a2),

visible, by an edge labeled by xj . Again, we reason in terms of which vertex is the first to

appear in the graph. Since we assume ¬WkLink, necessarily, v1 is created before v2. Realizing

Reveal means that Hj(xj , (F , q1, a1)) = q2. Since we assume ¬Collide, there is only one vertex

v1 which can satisfy this equation. Since v1 is at most partially visible, we know that the

probability to issue a satisfactory query q2 is bounded by 1
2c . We then have to sum over the

total number of direct queries issued, which results in a bound worth k(F)
2c .

We can now collect the bounds and cite the following theorem.

Theorem VI.2. We consider the Sponge construction and simulator S implemented as in

section VI.2. For an adversary A ∈ Adv(k, t),

Indiff(Sponge, F ,S) ≤
k2

tot

2c
+

k(F)

2c

where ktot = k(F) + Lsp ∗ k(H).

In [BDPA08], Bertoni et. al. present a clever proof of the indifferentiability the sponge

construction concluding to a bound of ktot(ktot+1)
2c+1 . We obtain a greater bound, containing terms

which are omitted in their final bound computation, as was first suggested in [BCCM+08].

The missing term corresponds to the probability that length-extension attacks can be carried

out, which, even though the authors propose a simulator different from ours, should not be

overlooked in their computation. Nevertheless, it does not alter the merits of their proof

which mainly lie in the graph construction and simulator they propose.

VI.4.2 — The ChopMD Construction

We consider the hash function ChopMD introduced in [CDMP05] and inspired of [DGH+04].

It is obtained from the Merkle-Damgård construction by chopping off the last s bits of the

output in order to prevent extension attacks. This construction can be described as an oracle

system that contains two oracles: ChopMDs and F . The memory of ChopMDs consists of

a mapping Lchop and that of F of a mapping LF . Their implementations are described in

figure VI.11.

The oracle system chopMD can be seen as the application of an overlayer to F . The

statically known list of oracles is the list of length ⌈264

r ⌉ whose elements are the oracle

F , init(x) = ⌈|x|/r⌉, Θ(x) is the function padding x into w and then cutting it into r-

blocks, Hj(xj , (F , qj−1, aj−1)) = aj−1||xj , and finally Hpost(x, (F , q, a)) = Firstn−s(a). Lastly,

piv(x) = init(x), since the only exchange used by Hpost is the last one performed during an

execution of ChopMDs.

The forward sampler algorithm FwdSplr, on input (x, t), samples uniformly the s missing

bits to compute the result of the pivot query ypiv(x), and outputs the concatenation of t with

these bits as a value for ypiv(x).

We start by bounding the probability that WkCollide happens, at the ℓ-th fresh query,

when vertex v1 is created. The equation between v0 and v1 imposes a0 = a1. Since the answer

a1 is drawn uniformly at random, the probability that it satisfies a1 = a0 is bounded by ℓ−1
2n .

Summing on ℓ, it results in a bound of ktot(ktot−1)
2n+1 .

Moreover, to bound the probability that FRootCollide holds at some point of the execu-

tion, at some point v1 is created such that there exist j, x0 Ô→2, x1 Ô→2 such that H1(x0 Ô→2) =
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Oracle ChopMDs

In(ChopMDs) = {0, 1}≤264
, Out(ChopMDs) = {0, 1}n−s

Imp(ChopMDs)F (x) =
if x ∈ dom(Lchop) then

return Lchop(x)
else

l := ⌈|x|/r⌉;

w := x||10l∗r−|x|−1;
(w1, . . . , wl) := (w[1, r], . . . , w[r ∗ (l − 1) + 1, r ∗ l]);
a0 := 0n;
for j = 1 to l do

qj := aj−1||wj ;
let aj ← F(qj) in

endfor

af := Firstn−s(al);
Lchop := Lchop.(x, af );
return af

endif

Oracle F
In(F) = {0, 1}n+r, Out(F) = {0, 1}n

F(q) =
if q ∈ dom(LF ) then

return LF (q)
else

let a ← U({0, 1}n) in

LF := LF .(q, a);
return a

endif

Figure VI.11 – ChopMD Implementation

Hj(x1 Ô→2, (F , q1, a1)). We notice that necessarily, j > 1, otherwise v1 = v2. It translates in

imposing a1 to be worth 0n. The probability that this happens is bounded by ktot

2n .

Then we upper-bound of the probability that event FWkLink occurs. If it happens at the

ℓ-th fresh computation of an image by F , when a vertex v1 is created, then there exists a

vertex v2 to which v1 gets linked by an edge labeled bu xj . Since the answer a1 is drawn

uniformly at random, the probability that there is a v2 such that Hj(xj , (F , q1, a1)) = q2 is

bounded by ℓ−1
2n . Summing on ℓ, it results in a bound of ktot(ktot−1)

2n+1 .

Finally, we have to bound FReveal∧¬WkLink∧¬Collide. When the event occurs, there exists

a vertex v1 = (F , q1, a1), non-visible, which gets linked to v2 = (F , q2, a2), visible, by an

edge labeled by xj . Again, we reason in terms of which vertex is the first to appear in the

graph. Since we assume ¬WkLink, necessarily, v1 is created before v2. The fact that Reveal

happens means that Hj(xj , (F , q1, a1)) = q2. Since we assume ¬Collide, there is only one

vertex v1 which can satisfy this equation. Since v1 is at most partially visible, we know that

the probability to issue a satisfactory query q2 is bounded by 1
2s . We then have to sum over



VI.4. Examples of Application 141

the total number of direct queries issued, which results in a bound worth k(F)
2s .

These three bounds result in a global bound of
k2

tot

2n + k(F)
2s .

Theorem VI.3. We consider the ChopMDs construction and simulator S implemented as in

section VI.2.2. For an adversary A ∈ Adv(k, t),

Indiff(ChopMDs, F ,S) ≤
k2

tot

2n
+

k(F)

2s

where ktot = k(F) + L ∗ k(H).

Results concerning indifferentiability of the Chop construction already appear in various

works. In [CDMP05], Coron et. al. determine a bound for this construction considering

a random permutation in place of F . We only have a result for random functions, but we

however notice that their proof results in a bound of O( (L∗ktot)2

2s ), which is the same magnitude.

Later, Maurer and Tessaro show in [MT07] that using a prefix-free padding function allows

to conclude to a bound of O( (L∗ktot)2

2n ). This result is particularly interesting, since it beats

the usual birthday bound: indeed, n − s bits are output by the hash function, and n is the

output-length of the inner primitive. We notice assuming prefix-free padding, we obtain the

same bound. Since no meaningful path can be obtained as an extension of a meaningful path,

Reveal can only happen when y′ = Firstn(q) belongs to an invisible vertex. As a consequence,

the adversary has to guess all n bits of y′ and its probability of success is bounded by 1
2n . Our

second term is turned into k(F)
2n .

Eventually, in [CN08], Chang and Nandi provide a very refined computation for ChopMDs

without assuming prefix-free padding. It leads to a bound of

k2
tot

2n+1
+

(3(n − s) + 1) ∗ k(F) + (n − s) ∗ k(H)

2s
+

k(F) + k(H)

2n−s−1

or O(3(n−s)(k(F)+k(H))
2s ). This improves the result given by [CDMP05], quadratic in the

number of queries.





Chapter VII

Conclusion

First, we have introduced the logic CIL, a general proof system enabling concrete proofs directly

in the computational model. The framework is designed independently of any particular

cryptographic hypothesis. Indeed, while it allows to formalize and use hypotheses such as

one-wayness of a function or working in the Random Oracle Model, no built-in assumption

comes as a limiting feature of our proof system. Along with the independence of any particular

formalism or programming language to describe oracle systems and adversaries, this versatility

is one of the strong advantages of CIL.

We have also presented a framework dedicated to the asymmetric setting. Different from

the approach developed in CIL, this system is based on the derivation of invariants via a

compositional Hoare logic. To design such a Hoare logic, we consider a programming language

enriched with primitives that enable the description of asymmetric encryption schemes. The

presented Hoare Logic can be used to automate proofs in CIL via proof rules.

Using CIL, we proved a reduction theorem for iterative hash constructions that we use to

analyze many of the constructions presented in the SHA-3 competition. For example, we point

out and correct a mistake in the indifferentiability proof of Sponge construction associated to

the SHA-3 finalist Keccak. This reduction theorem provides a bound for the indifferentiability

of the considered hash construction in terms of the bounds of pre-defined simple events.

Perspectives. There are many ways in which we shall pursue the development of our

reasoning framework. Let us start the discussion with the critical need for automation of

the verification of the proofs and for the design of a suitable user interface. Halevi makes a

point in [Hal05] writing that “Just like any other software product, the usefulness of a tool

will depend crucially on the willingness of the customers to use it”. We are aware that the

framework in its current status is yet another pencil-and-paper logic framework and that it is

not to be adopted by a significant number of cryptographers as is. However, in the context of

the ANR projects SCALP and PROSE, a formalization in Coq of the semantics and set of

rules of CIL is near completion, along with a specific module for probabilities. In addition to

that, we propose to develop a security-dedicated proof assistant on top of this formalization,

maybe with cross-overs with Certicrypt. We strongly believe that the intermediate level of



abstraction of our framework is the right one to develop such a tool. Indeed, looking at a proof

tree in CIL already allows to separate the “mundane” parts of the proofs from the fundamental

cryptographic arguments.

To obtain a relevant level of automatic verification, we think that a logic dedicated to the

derivation of proofs of bisimulation relations would bring a significant amount of confidence

in these judgments. Indeed, forward and backward bisimulation are in the present work

external judgments to the CIL framework. Therefore, they have to be established outside the

system, thus constituting non-verified inputs. Besides, we want to exploit further the possible

connections with our Hoare logic (and even other variants of the same kind of approaches) to

further automate the derivation of CIL statements. Indeed, we think that the plug-in rules

proposed in this work are only capturing the most basic possibility of interaction between the

two approaches. Namely, present rules exclusively allow for the use of internal variables in

oracle implementations, thus forbidding dependencies of implementations of one another. We

want to investigate further the possibility of invariant preservation by oracle implementations

exhibiting more complex use of variables.

Last constribution but not the least, our first example of a proof strategy, the reduction

theorem for hash functions, has to be generalized to more general constructions. Namely, the

overlayer definition imposes a restriction on the constructions that it captures: the query

issued to an inner-primitive at the j-th step only depends on the (j − 1)-th exchange. This

restriction, in addition to the independence of inner-primitives from one another, limits our

possible applications. In practice, two examples come to mind: hash functions are generally

built on top of block-ciphers, and proofs in the Ideal Cipher Model assume that the adversary

is provided access to the cipher and its inverse, which are obviously not independent from

each other. Moreover, if we take the example of the Grøstl construction, it is not readily

the composition of an overlayer with innner-primitives; e.g. , some queries would have to

depend on the two previous exchanges. The problem is then to find a suitable trade-off

between hypotheses on the dependency between inner-primitives and a generalization of the

definition of the overlayer definition, which still allow to derive interesting bounds on the

indifferentiability of the constructions.

Finally, we strongly believe that this strategy is a first step to a more fruitful use

of simulation-based arguments in security proofs. More precisely, we want to investigate

formulations of other security properties in terms of the existence of a simulator. We also want

to allow multiple oracles in the overlayer. In particular, we are looking at plaintext-awareness

and believe that it can allow modular proofs of IND-CCA security of encryption schemes.

The idea underlying these research directions is that since cryptographic proofs are essentially

reduction arguments, a cryptosystem has one way or another to be decomposed into a context

and an inner-system to allow for a reduction. In CIL, this corresponds to rule I −Sub. However,

it is often the case that such a decomposition is not possible because of dependencies between

oracles that prevent the split of the state space in two independent state spaces. In such

a case, we believe that simulation-based rules would provide relevant strategies to obtain

intermediate systems with which to carry out the reduction, in addition to a bound on the

indistinguishability between these intermediate systems and the original cryptosystems.
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CDH :ǫ(1k,t+t′) r = gα.β

B − Sub
CElGamal′ :ǫ r = gµ.(gα.β)−1 CElGamal ≡R,true CElGamal′

B − BisG
CElGamal :ǫ r = gµ(∧Gtrue)

RealDH ∼ε(1k,t) RandDH
I − Sub

ElGamal = C[RealDH] ∼ε(k,t−k(E).t′) C[RandDH]

right tree

C[RandDH] ∼0 RElGamal
Trans

ElGamal ∼ε(k,t−k(E).t′) RElGamal

Interm ≤det,γ C[RandDH]
I − Det

C[RandDH] ∼0 Interm

Interm :0 F¬true Interm ≡R,true RElGamal
I-Sub

Interm ∼0 RElGamal
Trans

C[RandDH] ∼0 RElGamal

Figure VII.1 – Proof Trees for ElGamal Encryption Confidentiality (Top) and ROR-plaintext
Security (Bottom)

Generic preservation rules:

Below, c is x ← U or of the form x := e′ with e′ being either w||y, w ⊕ y, f(y) or α ⊕ H(y).

Provided x Ó∈ V1 ∪ V2, and z Ó= x:

(G1) {Indis(z; V1; V2; ε)} c {Indis(z; V1; V2; ε′)}

(G2) {WS(z; V1; V2; ε)} c {WS(z; V1; V2; ε′)}

where ε′(k, κ, t) = ε(k, κ − κc, t).

When z Ó= x:

(G1’) {Indis(z; V1; V2; ε)} c {Indis(z; V1, x; V2; ε′)}, if e′ is constructible from (V1 r {z}; V2 r {z}),

(G2’) {WS(z; V1; V2; ε)} c {WS(z; V1, x; V2; ε′)}, if e′ is constructible from (V1; V2),

where ε′(k, κ, t) = ε(k + κc, κ − κc, t + Tc)).

When H ′ Ó= H:

(G3) {H(H ′; e[e′/x]; ε)} c {H(H ′; e; ε′)}, where ε′(k, κ, t) = ε(k, κ − κc, t).

(G3’) {H(H ′; e; ε)} x ← U(l) {H(H ′; e; ε)}, if x does not appear in e.

Random assignment rules:

(R1) {true} x ← U(l) {Indis(x; Var ∪ {σ}, ∅; 0)}

(R2) {true} x ← U(l) {H(H; e; κ(H)
2l )} if x ∈ subvar(e).

If x Ó= y:

(R3) {Indis(y; V1; V2; ε)} x ← U(l) {Indis(y; V1, x; V2; ε)}

(R4) {WS(y; V1; V2; ε)} x ← U(l) {WS(y; V1, x; V2; ε)}



Hash functions rules:

When x Ó= y:

(H1) {WS(y; V1; V2; ε) ∧ H(H; y; ε′)} x := α ⊕ H(y) {Indis(x; V1, x; V2; ε′′)}, where ε′′(k, κ, t) =

ε′(κ − 1
H) + k(H) ∗ ε(k, κ − 1

H , t).

(H2) {WS(y; V1; V2, y; ε) ∧ H(H; y; ε′)} x := α ⊕ H(y) {Indis(x; V1, x; V2, y; ε′′)} if y Ó∈ V1, where

ε′′(k, κ, t) = ε′(κ − 1
H) + ε(k, κ − 1

H , t + k(H) ∗ Tf )

When x Ó= y, and x ∈ subvar(e):

(H3) {H(H; y; ε)} x := α ⊕ H(y) {H(H ′; e; ε′)}

where ε′(κ) = ε(κ − 1
H) + κ(H)

2ℓ(H) .

Provided that x Ó= y, z:

(H4) {WS(y; V1; V2; ε1) ∧ WS(z; V1; V2; ε2) ∧ H(H; y; ε3)} x := α ⊕ H(y)

{WS(z; V1, x; V2; ε4)}

where ε4(k, κ, t) = k(H) ∗ ε1(k, κ − 1
H , t) + ε2(k, κ − 1

H , t) + ε3(κ − 1
H).

Provided that z ∈ subvar(e) ∧ x /∈ subvar(e):

(H5) {H(H; e; ε) ∧ WS(z; y; ∅; ε′)} x := α ⊕ H(y) {H(H; e; ε′′)}

where ε′′(κ) = ε(κ − 1H) + ε′(0, κ − 1H , 0).

If x Ó= y:

(H6) {WS(y; V1; V2, y; ε) ∧ H(H; y; ε′)} x := α ⊕ H(y) {WS(y; V1, x; V2, y; ε′′)}

where ε′′(k, κ, t) = ε(k, κ − 1H , t + (k(H) + 1) ∗ Tf ) + ε′(κ − 1H) + ε(k, κ − 1H , t).

When x Ó= y, z:

(H7) {Indis(z; V1, z; V2; ε1)∧WS(y; V1, z; V2; ε2)∧H(H; y; ε3)} x := α⊕H(y) {Indis(z; V1, z, x; V2; ε4)}

where ε4(k, κ, t) = ε1(k, κ − 1H , t) + 2.k(H) ∗ ε2(k, κ − 1H , t) + 2.ε3(κ − 1H).

One-way function rules:

If x, y Ó∈ V1 ∪ V2:

(P1) {Indis(y; V1; V2, y; ε)} x := f(y) {Indis(x; V1, x; V2; ε)}

If y Ó∈ V1 ∪ {x}:

(P2) {Indis(y; V1; V2, y; ε)} x := f(y) {WS(y; V1, x; V2, y; ε′})}

where ε′(k, κ, t) = ε(k, κ, t + Tf ) + OW (t).

If z Ó= x, y:

(P3) {Indis(z; V1, z; V2, y; ε)} x := f(y) {Indis(z; V1, z, x; V2, y; ε)}.

If z Ó= x, y

(P4) {WS(z; V1; V2; ε)∧Indis(y; V1; V2, y, z; ε′)} x := f(y) {WS(z; V1, x; V2, y; ε′′)} where ε′′(k, κ, t) =

ε(k, κ, t + Tf ) + ε′(k, κ, t + Tf ).



Exclusive or rules:

If y Ó∈ V1 ∪ V2, y Ó= x, z:

(X1) {Indis(y; V1, y, z; V2; ε)} x := y ⊕ z {Indis(x; V1, x, z; V2; ε)}

(X2) {Indis(w; V1, y, z; V2; ε)} x := y ⊕ z {Indis(w; V1, x, y, z; V2; ε)}, if w Ó= x, y, z

(X3) {WS(w; V1, y, z; V2; ε)} x := y ⊕ z {WS(w; V1, x, y, z; V2; ε)}, if w Ó= x

Concatenation rules:

If x Ó∈ V1 ∪ V2:

(C1) {WS(y; V1; V2; ε)} x := y||z {WS(x; V1; V2; ε)}

A dual rule applies for z.

If y, z Ó∈ V1 ∪ V2 ∪ {x}:

(C2) {Indis(y; V1, y, z; V2; ε) ∧ Indis(z; V1, y, z; V2; ε′)} x := y||z {Indis(x; V1, x; V2; ε + ε′)},

(C3) {Indis(w; V1, y, z; V2; ε)} x := y||z {Indis(w; V1, x, y, z; V2; ε)}, if w Ó= x, y, z,

(C4) {WS(w; V1, y, z; V2; ε)} x := y||z {WS(w; V1, y, z, x; V2; ε)}, if w Ó= x,

Consequence and sequential composition rules:

(Csq) if ϕ0 ⇒ ϕ1, {ϕ1} c {ϕ2} and ϕ2 ⇒ ϕ3 then {ϕ0} c {ϕ3}

(Seq) if {ϕ0} c1 {ϕ1} and {ϕ1} c2 {ϕ2}, then {ϕ0} c1; c2 {ϕ2}

(Conj) if {ϕ0} c {ϕ1} and {ϕ0} c {ϕ1}, then {ϕ0} c {ϕ1 ∧ ϕ2}

Rules for Indisf : c is x ← U or of the form x := e′ with e′ being either w||y, w ⊕ y, f(y)

or α ⊕ H(y).

(P1)f {Indis(y; V1; V2, y; ε)} x := f(y) {Indisf (x; V1, x; V2; ε)} if x, y Ó∈ V1 ∪ V2.

(G1)f {Indisf (z; V1; V2; ε)} c {Indisf (z; V1; V2; ε′)}, when z Ó= x, x Ó∈ V1∪V2, and where ε′(k, κ, t) =

ε(k, κ − κc, t).

(G1′)f {Indisf (z; V1; V2; ε)} c {Indisf (z; V1, x; V2; ε′)}, when z Ó= x, if e′ is constructible from

(V1 r {z}; V2 r {z}) and where ε′(k, κ, t) = ε(k + κc, κ − κc, t + Tc)).

(R3)f {Indisf (y; V1; V2; ε)} x ← U(l) {Indisf (y; V1, x; V2; ε)}, if x Ó= y.

(H7)f {Indisf (z; V1, z; V2; ε1)∧WS(y; V1, z; V2; ε2)∧H(H; y; ε3)} x := α⊕H(y) {Indisf (z; V1, z, x; V2; ε4)}

if x Ó= y, z and where ε4(k, κ, t) = ε1(k, κ − 1H , t) + 2.k(H) ∗ ε2(k, κ − 1H , t) + 2.ε3(κ − 1H).

(P3)f {Indisf (z; V1, z; V2, y; ε)} x := f(y) {Indisf (z; V1, z, x; V2, y; ε)} if z Ó= x, y.

(X2)f {Indisf (w; V1, y, z; V2; ε)} x := y ⊕ z {Indisf (w; V1, x, y, z; V2; ε)}, if w Ó= x, y, z.

(C3)f {Indisf (w; V1, y, z; V2; ε)} x := y||z {Indisf (w; V1, x, y, z; V2; ε)}, if w Ó= x, y, z.



Injective partially trapdoor one-way functions:

If x, y Ó∈ (V1 ∪ V2 ∪ {z}):

(IPO1)f {Indis(x; V1, x, y; V2; ε) ∧ Indis(y; V1, x, y; V2; ε′)} z := f(x||y)

{Indisf (z; V1, z; V2; ε + ε′)}.

(IPO2) {Indis(x; V1, x, y; V2; ε) ∧ Indis(y; V1, x, y; V2; ε′)} z := f(x||y)

{WS(z; V1, z; V2; ε′′)}, where ε′′(k, κ, t) = POW (t) + ε(k, κ, t + Tf ) + ε′(k, κ, t + Tf ).




