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Abstract7

Takuzu and Juosan are logical Nikoli games in the spirit of Sudoku. In Takuzu, a grid must be8

filled with 0’s and 1’s under specific constraints. In Juosan, the grid must be filled with vertical9

and horizontal dashes with specific constraints. We give physical algorithms using cards to realize10

zero-knowledge proofs for those games. The goal is to allow a player to show that he/she has the11

solution without revealing it. Previous work on Takuzu showed a protocol with multiple instances12

needed. We propose two improvements: only one instance needed and a soundness proof. We also13

propose a similar proof for Juosan game.14
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1 Introduction26

James Bond and Q decide to spend most of their holidays on the Spiaggia Praia beach27

(located at Isola di Favignana, Sicily, Italy). Before swimming in the sea, they like to play28

© Daiki Miyahara, So Takeshige, Kazumasa Shinagawa, Atsuki Nagao, Pascal Lafourcade, Takaaki
Mizuki, Leo Robert, and Hideaki Sone;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2020).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 20; pp. 20:1–20:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5818-8937
mailto:daiki.miyahara.q4@dc.tohoku.ac.jp
https://orcid.org/0000-0002-9638-3143
mailto:leo.robert@uca.fr
https://orcid.org/0000-0002-4459-511X
mailto:pascal.lafourcade@uca.fr
mailto:so.takeshige.q1@dc.tohoku.ac.jp
https://orcid.org/0000-0002-8698-1043
mailto:tm-paper+zerotate@g-mail.tohoku-university.jp
https://orcid.org/0000-0002-5219-1975
mailto:shinagawakazumasa@gmail.com
https://orcid.org/0000-0002-1370-5240
mailto:a-nagao@is.ocha.ac.jp
https://doi.org/10.4230/LIPIcs.FUN.2020.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Card-Based ZKP Protocols for Takuzu and Juosan

with logical games. James Bond is a specialist of Takuzu. Takuzu is a puzzle invented29

by Frank Coussement and Peter De Schepper in 20091. It was also called Binero, Bineiro,30

Binary Puzzle, Brain Snacks or Zernero. Figure 1 contains a simple Takuzu grid and its31

solution. Q is an expert of Juosan, which was published by Nikoli2. Figure 2 contains a32

Juosan grid and its solution.33

Each one proposes his favorite game to the other as a challenge. Both are competitive,34

and each challenge ends to be so hard that the other cannot solve it. James Bond immedi-35

ately supposes that something is wrong and asks Q a proof that the grid has a solution. Of36

course, Q thinks the same way about Bond’s challenge. Since they are both suspicious, they37

want to prove that there is a solution without giving any information about the solution.38

In cryptography, the process, which allows a party to prove that it has a data without39

leaking any information on this data, is called Zero-Knowledge Proof (ZKP).40

More formally, a ZKP is a protocol which enables a prover P to convince that it has a41

solution s of a problem to a verifier V . This proof cannot leak any information on s. The42

protocol must observe three properties.43

Completeness: If P knows s then it can convince V .44

Soundness: If P does not know s, it can convince V with only a negligible probability.45

Zero-Knowledge: V learns nothing about s. This can be formalized by showing that46

the outputs of a simulator and outputs of the real protocol follow the same probability47

distribution.48

The concept of interactive ZKP was introduced by Goldwasser et al. [12]. Then it was49

shown that for any NP complete problem there exists an interactive ZKP protocol [11].50

There is also an extension showing that every provable statement can be proved in zero-51

knowledge [2].52

There exist protocols where the prover and the verifier do not need to interact. Such53

protocols are called non-interactive ZKP [4]. For a complete background on ZKP’s, see [18].54

Usually ZKP protocols are executed by computers, yet, our aim is to design a solution55

for Bond and Q’s dilemma using physical objects such as cards, since on the Spiaggia Praia56

beach they do not want to use their computers. We first recall the rules of these two games57

before presenting our contributions.58

Takuzu’s Rules:59

The goal of Takuzu is to fill a rectangular grid of even size with 0’s and 1’s. An initial60

Takuzu grid already contains a few filled cases. A grid is solved when it is full (i.e., no61

empty cases) and respects the following constraints.62

1. Equality Rule: Each row/column contains exactly the same number of 1’s and 0’s.63

2. Uniqueness Rule: Each row (column) is unique among all rows (columns).64

3. Adjacent Rule: In each row and each column there can be no more than two same65

numbers adjacent to each other; for example 110010 is possible, but 110001 is impossible.66

The problem of solving a Takuzu grid was proven to be NP complete in [3, 34].67

1 https://en.wikipedia.org/wiki/Takuzu
2 http://www.nikoli.co.jp/en/puzzles/juosan.html

https://en.wikipedia.org/wiki/Takuzu
http://www.nikoli.co.jp/en/puzzles/juosan.html


D. Miyahara et al. 20:3

0 0 1 1 0 1 0 1 0

0 0 1 1 0 0 1 0 1 0 1

0 1 0 1 0 0 1 0 1 1 0

1 0 1 1 0 1 0 0 1

0 0 1 1 0 0 1 1 0 1 1 0

1 1 0 0 1 1 0 1 0

1 1 0 1 1 1 0 0 1 0 0 1

1 1 0 1 1 0 0 1 0 1

Figure 1 Example of a 8×8 Takuzu challenge, and its solution. We can verify that each row and
column is unique, contains the same number of 0’s and 1’s, and there are never three consecutive
1’s or 0’s.

3 1

3 3 3

.
4

4

3 1

3 3 3

4

4

Figure 2 Example of a Juosan challenge, and its solution from Nikoli website.

Juosan’s Rules:68

A Juosan grid is divided into territories by bold lines, where a territory is possibly associated69

with a number. The goal is to fill in all cells with a vertical (|) or horizontal (—) dash such70

that the following three constraints are satisfied.71

1. Room Rule: The number in every territory equals the number of either vertical or72

horizontal dashes in it (in some cases, there may be equal numbers of both). Territories73

with no number may have any number of vertical dashes and horizontal dashes.74

2. Adjacent (horizontal) Rule: Horizontal dashes can extend more than three cells75

horizontally but no more than two cells vertically.76

3. Adjacent (vertical) Rule: Vertical dashes can extend more than three cells vertically77

but no more than two cells horizontally.78

In 2018, the problem of solving a Juosan grid was proven to be NP complete in [16].79

Contributions:80

We have the two main following contributions.81

1. We propose better ZKP protocols for Takuzu which improve upon the approach given82

in [5]. The latter used several instances of the protocol while ours use only one instance.83

We also improve the soundness of the proof in the sense that if the prover does not have84

a solution, he convinces the verifier with null probability.85

2. We also propose an adapted version of this technique to Juosan. Again, only one instance86

of the protocol is run for proving to V that if P does not know the solution, then P87

FUN 2020
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convinces V with probability 0. We also propose an optimized version of the Adjacent88

Verification3 which aims to show validity of four consecutive commitments.89

Related Work:90

There are works on implementing cryptographic protocols using physical objects, as in [23]91

for example, or in [9] where a physical secure auction protocol was proposed. Other imple-92

mentations have been studied using cards in [8], polarizing plates [30], polygon cards [32], a93

standard deck of playing cards [20], using a PEZ dispenser [1], using a dial lock [21], using94

a 15 puzzle [22], or using a tamper-evident seals [25, 26, 27].95

In FUN’18, the authors of [29] revisited the ZKP for Sudoku proposed by Gradwohl et96

al. in FUN’07 [13]. This is a clear progress in the construction of ZKP since the technique97

proposed in this paper uses specific protocols to perform zero-knowledge proof for Sudoku.98

Indeed, those protocols use a normal deck of playing cards and have no soundness error with99

a reasonable number of playing cards. The original technique for Sudoku was extended for100

Hanje [7]. ZKP’s for several other puzzles have been studied such as Akari [5], Takuzu [5],101

Kakuro [5, 19], KenKen [5], Makaro [6], Norinori [10], and Slitherlink [17].102

There is a ZKP proof for Takuzu puzzle [5] (recall in Appendix 2), but we propose an en-103

hanced version using only one instance of the protocol to convince the verifier. The previous104

proof is decomposed into several cases to avoid leak of information toward the solution. This105

implies the need of rerunning the protocol several times for completely convincing V that106

P has the solution. The construction of the protocol leads to have a negligible probability107

that the prover P does not know the solution. Our proof is designed in such a way that only108

one instance is run leading to a complete soundness of the proof (i.e., if P does not have109

the solution, the probability of convincing V is null). We show that this technique can be110

adapted to Juosan game which has not been studied before. The detailed security proof for111

our ZKP protocols for Takuzu is given in Section 3.4 and for Juosan in Appendix 4.4.112

Outline: In Section 2, we present an existing ZKP protocol for Takuzu. In Section 3,113

we improve the ZKP protocol for Takuzu. In Section 4, we present our ZKP protocol for114

Juosan. In the last section we conclude.115

2 The Existing ZKP Protocol for Takuzu116

We give a ZKP proof using physical objects. The goal is to show that the prover P (aka117

James Bond) can prove to the verifier V (aka Q) that he knows a solution of a given Takuzu118

grid. The material used for the proof include two printed grids on a sheet of paper, a piece119

of paper, an envelope and two kinds of cards: cards with a 0 or a 1 printed on them.120

There are two phases in this protocol, the Setup which generates the permutations used121

for the second phase called the verification.122

Let G be the n × n initial Takuzu grid and S the matrix relative to the solution known123

by P (including the initial cells).124

Setup: The prover P chooses uniformly at random two permutations: πR for the rows, and125

πC for the columns. He writes the two permutations on a paper and place the latter into an126

envelope E. Then he computes S′ = πR(πC(S)). Finally, P places cards face down on the127

second grid according to S′. We denote the configuration of these cards by the matrix S̃′128

3 Due to space restriction, this version is presented in Appendix 4.3.
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Verification: The verifier V picks c randomly among {0, 1, 2, 3}.129

If c = 0: This case corresponds to P proving that the solution is the one of the initial grid.130

V computes G′ = πR(πC(G)) with the permutations found in the envelope E. Then V131

determines the cells of G′ corresponding to the initial cells of G. Finally, V checks if132

the revealed cards are the same as the one revealed in the second grid (that are placed133

according to S̃′).134

If c = 1: This case corresponds to P proving that adjacent rule holds.135

V permutes (face down) the cards of S̃′ to obtain S̃ = π−1
c (π−1

R (S̃′)) using the permuta-136

tions in E. Then, V picks d randomly among {0, 1} and e randomly among {1, 2, 3}.137

If d = 0: For each row, V sets x = ⌊ n−e
3 ⌋ decks of three cards {(e + 3 · i + 1, e + 3 · i +138

2, e + 3 · i + 3)}{0≤i<x} where the triplet (i, j, k) denotes a deck containing the ith, the139

jth and the kth cards of the row.140

If d = 1: For each column, V sets x = ⌊ n−e
3 ⌋ decks of three cards {(e + 3 · i + 1, e + 3 ·141

i + 2, e + 3 · i + 3)}{0≤i<x} where the triplet (i, j, k) denotes a deck containing the ith,142

the jth and the kth cards of the column.143

Then, V gives the triplets to P . For each deck, P removes one of the two identical cards.144

Then P reveals the cards to V , who accepts only if he sees two different cards.145

If c = 2: This case corresponds to P proving that uniqueness rule holds.146

For this, V picks randomly one row or one column. V reveals all the cards of his chosen147

row (or column). For each of the n − 1 other rows (or columns) the verifier picks the148

cards where a 0 appears in the revealed rows (or column). At this step, V does not reveal149

those cards. Each one of these n − 1 sets of cards is shuffled by the shuffle functionality150

and given back to the prover. P reveals one card per set that is a 1. Thus each one of151

the other n − 1 rows (or columns) are different from the revealed row, since the initial152

row (or column) has a 0 where the other column (or row) has a 1. If there are several153

1’s in a deck, the prover randomly chooses which one to reveal.154

If c = 3: This case corresponds to P proving that the equality rule holds.155

The verifier V picks d randomly among {0, 1}.156

If d = 0, for each row, V takes all the cards in the row and keep them face down. Then157

V gathers the cards in order to shuffle those n decks. We assume that the verifier has158

access to a shuffle functionality which is essentially an indistinguishable shuffle of face159

down cards. Note that this action could be done by a trusted third party (M for instance)160

but not by P or V (since they could cheat and modify the cards).161

Finally, V checks that each deck contains exactly the same number of 1’s and 0’s.162

If d = 1, the same process is done except that V picks columns instead of rows.163

To have the best security guarantees, the verifier should choose his challenges c, d, etc. such164

that each combination of challenges at the end has the same probability. This protocol165

is repeated k times where k is a chosen security parameter. Note that the ZKP is again166

polynomial in the size of the grid.167

3 Our improved ZKP Protocols for Takuzu168

In this section, we propose two ZKP protocols for Takuzu; our protocols are simple and have169

no soundness error. Remember that the goal is to show the prover P (aka James Bond) can170

prove to the verifier V (aka Q) that P knows a solution of a given Takuzu grid.171

Our protocols use black cards ♣ , red cards ♡ , and number cards 1 2 · · · 6 whose172

backs ? are all identical. In the sequel, we use the following encoding rule:173

♣ ♡ = 0, ♡ ♣ = 1. (1)174

FUN 2020
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Table 1 The exact values of |tkz(n)| when n is up to ten.

n |tkz(n)|
4 6
6 14
8 34
10 84

That is, black-to-red represents 0 and red-to-black represents 1. We call two face-down cards175

that correspond to a bit x ∈ {0, 1} according to the above encoding rule (1) a commitment176

to x, and we write it as ? ?︸ ︷︷ ︸
x

. Roughly, our improved ZKP protocols for Takuzu proceed177

as follows.178

Setup phase: The prover P places a commitment to each cell according to the solution.179

Verification phases: The verifier V verifies that the placement of the commitments satisfies180

all the constraints.181

To present the complete description of our protocols in Section 3.2, we show some pre-182

liminaries in Section 3.1. In Section 3.3, we show that there is a trade-off between our two183

protocols and compare them.184

3.1 Preliminaries185

In this subsection, we introduce some notations and two subprotocols, which will be used186

to present our constructions in Section 3.2.187

3.1.1 Possible Sequences188

For an even number n, we denote by tkz(n) the set of all binary sequences satisfying the189

Uniqueness and Equality rules of Takuzu, that is, tkz(n) := {w ∈ {0, 1}n | w contains exactly190

n/2 0’s and no three consecutive digits}. For example, tkz(4) = {0011, 1100, 0101, 1010, 0110,191

1001}. The size of tkz(n) can be computed as Table 1. The size |tkz(n)| is known in the192

On-line Encyclopedia of Integer Sequences (OIES) as “the number of paths from (0, 0) to193

(n, n) avoiding 3 or more consecutive east steps and 3 or more consecutive north steps.4”194

We can also show that tkz(n) = O(( 3+
√

5
2 )nn− 1

2 ).195

3.1.2 Basic Shuffles196

Pile-scramble shuffle [15]: This is the following shuffling operation: Given a sequence197

of m piles, each of which consists of the same number of face-down cards, denoted by198

?︸︷︷︸
p1

?︸︷︷︸
p2

· · · ?︸︷︷︸
pm

, applying a pile-scramble shuffle (denoted by [· |. . .| ·]) results in199

[
?︸︷︷︸
p1

∣∣∣ ?︸︷︷︸
p2

∣∣∣ · · ·
∣∣∣ ?︸︷︷︸

pm

]
→ ?︸︷︷︸

pr−1(1)

?︸︷︷︸
pr−1(2)

· · · ?︸︷︷︸
pr−1(m)

, where r ∈ Sm is a uniformly200

distributed random permutation and Sm denotes the symmetric group of degree m. To201

implement a pile-scramble shuffle, we use physical cases that can store a pile of cards, such202

4 https://oeis.org/A177790
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as boxes and envelopes; a player (or players) randomly shuffle them until nobody traces the203

order of the piles.204

Pile-shifting shuffle: A pile-shifting shuffle (or a pile-shifting scramble [28]) is to cyclically205

shuffle piles of cards. That is, given m piles, applying a pile-shifting shuffle (denoted by206

⟨· |. . .| ·⟩) results in
〈

?︸︷︷︸
p1

∣∣∣ ?︸︷︷︸
p2

∣∣∣ · · ·
∣∣∣ ?︸︷︷︸

pm

〉
→ ?︸︷︷︸

ps+1

?︸︷︷︸
ps+2

· · · ?︸︷︷︸
ps+m

, where s is uniformly207

and randomly chosen from Z/mZ. To implement a pile-shifting shuffle, we use similar208

materials as a pile-scramble shuffle; a player (or players) cyclically shuffle them by hand209

until nobody traces the offset.210

3.1.3 Mizuki–Sone AND (OR) Protocol211

Given two commitments to a, b ∈ {0, 1} (along with additional two cards ♣ ♡ ), the Mizuki–212

Sone AND protocol [24] outputs a commitment to a∧b: ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♡ → · · · → ? ?︸ ︷︷ ︸
a∧b

.213

Note that the output commitment can be used for another protocol. The protocol proceeds214

as follows.215

1. Rearrange the sequence as follows:
1
?

2
?

3
?

4
?

5
?

6
? →

1
?

3
?

4
?

2
?

5
?

6
? .216

2. Apply a random bisection cut:
[

? ? ? | ? ? ?
]

→ ? ? ? ? ? ? . A random217

bisection cut is a special case of a pile-scramble shuffle; it bisects a sequence of cards and218

then shuffles the two halves.219

3. Reveal the first and fourth cards in the sequence. Then, the output commitment can be220

obtained as follows: ♣ ? ? ♡ ? ?︸ ︷︷ ︸
a∧b

or ♡ ? ?︸ ︷︷ ︸
a∧b

♣ ? ? .221

Note that by De Morgan’s laws we can have the Mizuki–Sone OR protocol that produces222

a commitment to a ∨ b given two commitments to a and b.223

3.1.4 Mizuki–Sone XOR protocol224

Given two commitments to a, b ∈ {0, 1}, the Mizuki–Sone XOR protocol [24] outputs a225

commitment to a ⊕ b: ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ · · · → ? ?︸ ︷︷ ︸
a⊕b

. The protocol proceeds as follows.226

1. Rearrange the sequence as follows:
1
?

2
?

3
?

4
? →

1
?

3
?

2
?

4
? .227

2. Apply a random bisection cut to the sequence:
[

? ? | ? ?
]

→ ? ? ? ? .228

3. Rearrange the sequence as follows:
1
?

2
?

3
?

4
? →

1
?

3
?

2
?

4
? .229

4. Reveal the first and second cards in the sequence. Then, the output commitment can be230

obtained as follows: ♣ ♡ ? ?︸ ︷︷ ︸
a⊕b

or ♡ ♣ ? ?︸ ︷︷ ︸
a⊕b

.231

FUN 2020
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3.1.5 Six-Card Trick232

Given three commitments to a, b, c ∈ {0, 1}, the six-card trick [31]5 outputs 1 if a = b = c233

and 0 otherwise: ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

→ · · · →

{
1 if a = b = c,

0 otherwise.
234

That is, we can know only whether the values of given three commitments are the same235

or not by using the six-card trick. We use it in our construction to verify the Adjacent rule.236

The protocol proceeds as follows.237

1. Rearrange the sequences as follows:
1
?

2
?

3
?

4
?

5
?

6
? →

1
?

6
?

3
?

2
?

5
?

4
? .238

2. Apply a random cut (which is denoted by ⟨· · · ⟩) to the sequence:
〈

? ? ? ? ? ?
〉

→239

? ? ? ? ? ? . A random cut is a special case of a pile-shifting shuffle; it cyclically240

shuffles a sequence of cards. Note that a random cut can be implemented easily with241

human hands [33].242

3. Reveal the sequence.243

a. If the resulting sequence is ♣ ♡ ♣ ♡ ♣ ♡ (apart from cyclic shifts), the output is244

1, i.e., a = b = c holds.245

b. If the resulting sequence is ♣ ♣ ♣ ♡ ♡ ♡ (apart from cyclic shifts), the output is246

0, i.e., a = b = c does not hold.247

3.1.6 Input-Preserving Function Evaluation Technique248

As seen in Section 3.1.5, we can know whether the equality of three input commitments holds249

although the input commitments are destroyed after executing the six-card trick. The input-250

preserving function evaluation technique enables us to obtain input commitments again after251

some function evaluation (such as the equality) by using some number cards.252

Let us first explain the input-preserving six-card trick as follows.253

1. Place a number card below each card, and then turn them over:254

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

→ ?
1

?
2

?
3

?
4

?
5

?
6

→ ?
?

?
?

?
?

?
?

?
?

?
?

.255

2. Rearrange the sequences as follow:
1
?
?

2
?
?

3
?
?

4
?
?

5
?
?

6
?
?

→
1
?
?

6
?
?

3
?
?

2
?
?

5
?
?

4
?
?

.256

3. Apply a pile-shifting shuffle to the sequences:257 〈
?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

〉
→

?
?

?
?

?
?

?
?

?
?

?
?

.258

4. Reveal the cards of all sequences except for the number cards; then, we obtain the output259

as shown in Step 3 in Section 3.1.5.260

5. Turn over the face-up cards and apply a pile-scramble shuffle to the sequences:261 [
?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

]
→

?
?

?
?

?
?

?
?

?
?

?
?

.262

5 The protocol had been invented independently by Heather, Schneider, and Teague [14].
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6. Reveal the number cards and rearrange the sequence of piles so that the revealed number263

cards become in ascending order; then, we have restored input commitments to a, b, and264

c. The following is an example case:265

? ? ? ? ? ?
? ? ? ? ? ?

→
? ? ? ? ? ?
3 1 5 4 6 2

→
? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

1 2 3 4 5 6
.266

More formally, assume that we have a protocol to evaluate some function with m input267

piles of cards. Then, the input-preserving function evaluation technique enables us to obtain268

m input piles again after some function evaluation by using m number cards:269

? ? · · · ?
1 2 · · · m

→ · · · → some function evaluation → · · · → ? ? · · · ? .270

This proceeds as follows.271

1. Attach a corresponding number card to each of m input piles:272

? ? · · · ?
1 2 · · · m

→ · · · →
? ? · · · ?
? ? · · · ?

.273

Together with the added number cards, execute a designated protocol to evaluate some274

function.275

2. Apply a pile-scramble shuffle to the sequence of piles:276 [
?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ · · ·

∣∣∣∣∣ ?
?

]
→

? ? · · · ?
? ? · · · ?

.277

3. Reveal only the number cards. Then, rearrange the sequence of piles so that the revealed278

number cards become in ascending order to obtain m input piles.279

3.2 Our Constructions280

We are now ready to present the full description of our ZKP protocols for Takuzu, namely281

Protocols 1 and 2.282

3.2.1 Protocol 1: Verifying Each Constraint Separately283

Given a Takuzu puzzle instance of n × n grid, Protocol 1 verifies that all the constraints,284

namely the Equality, Uniqueness, and Adjacent rules, are satisfied separately.285

Setup phase: Remember the encoding rule (1). The prover P places a commitment on286

each cell according to the solution (which is kind of a (0,1)-matrix).287

Adjacent Verification phase: In this phase, V verifies that the Adjacent rule is satisfied.288

For this, V repeats the following for every three consecutive commitments in rows and289

columns.290

1. Attach the corresponding number card to each of the six cards:291

? ? ? ? ? ? → ? ?
1 2

? ?
3 4

? ?
5 6

→ ? ?
? ?

? ?
? ?

? ?
? ?

.292

2. Perform the input-preserving six-card trick shown in Section 3.1.6 to prove that the three293

commitments are not all 0s and 1s. If the six-card trick outputs 1, V rejects it.294
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Uniqueness Verification phase: In this phase, V verifies that the Uniqueness rule is satis-295

fied. V repeats the following for every pair of rows (and columns), each of which consists296

of n commitments. Considering such a pair, let a1, a2, . . . , an ∈ {0, 1} denote the values of297

commitments placed on the first row (in the pair) and b1, b2, . . . , bn ∈ {0, 1} denote those of298

commitments on the second row.299

1. V attaches the corresponding number card to each of the 4n cards.300

2. V applies the “input-preserving” Mizuki–Sone XOR protocol obtained by Sections 3.1.4301

and 3.1.6 to the commitments to ai and bi to produce a commitment to ai ⊕ bi for every302

i, 1 ≤ i ≤ n. Note that V will return the 4n cards to their original positions after the303

next step.304

3. V uses the “input-preserving” Mizuki–Sone OR protocol obtained by Sections 3.1.3305

and 3.1.66 exactly n − 1 times to reveal the value of
∨n

j=1(aj ⊕ bj). If it is 0, it means306

ai = bi for every i, and hence, V rejects it.307

Equality Verification phase: In this phase, V verifies that the Equality rule is satisfied.308

1. For every row, V repeats the following.309

a. V attaches the corresponding number card to each of the 2n cards.310

b. V applies a pile scramble shuffle.311

c. V reveals the resulting n commitments. If the number of commitments to 0 is not312

equal to that of commitments to 1, V rejects it.313

d. Similar to the input-preserving function evaluation technique shown in Section 3.1.6,314

V returns the n commitments to their original positions.315

2. For every column, V follows the same steps except for Steps (a) and (d). Since the n316

commitments will not be used after this phase, V does not need to return them to their317

original positions.318

This protocol uses n2 black cards, the same number of red cards, and 4n number cards319

(recall that we have an n × n Takuzu grid). The numbers of required shuffles are 4n(n − 2)320

in the Adjacent Verification phase, 2n2(n − 1) in the Uniqueness Verification phase, and 3n321

in the Equality Verification phase.322

3.2.2 Protocol 2: Verifying All the Constraints Simultaneously323

Protocol 2 verifies that all the constraints are satisfied simultaneously using helping cards324

that will be placed in the Setup phase. When displaying a figure, we are given a 4 × 4325

Takuzu grid as an example.326

Setup phase: The prover P places a commitment to each cell according to the solution.327

In addition, to show that all the constraints are satisfied, P arranges face-down sequences328

corresponding to all the sequences in tkz(n) except for those in the solution (for both row329

6 For the two additional cards, we can make use of any two revealed cards appearing in the previous step
without opening the number cards.
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and column):330

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ?
? ? ? ?︸ ︷︷ ︸
help. for row

? ?
? ?
? ?
? ?︸ ︷︷ ︸

help. for column

,331

where a black card ♣ corresponds to 0 and a red card ♡ corresponds to 1 in any helping332

sequence for the row, and ♡ corresponds to 0 and ♣ corresponds to 1 in any helping333

sequence for the column. As shown in Table 1, the number of such helping sequences is two334

in each direction in this case of 4 × 4 grid.335

Verification phase: In this phase, V verifies all the constraints, namely the Equality,336

Uniqueness, and Adjacent rules by revealing the commitments along with the helping se-337

quences after applying a pile-scramble shuffle. Note that V can also verify that the commit-338

ments placed by P in the Setup phase form the valid ones according to the encoding rule (1)339

(e.g., not ♣ ♣ or ♡ ♡ ).340

1. For all the rows, take the left card of each commitment to make n sequences (along with341

the helping sequences for the rows).342

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ?
? ? ? ?︸ ︷︷ ︸
help. for row

→

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

→

?
?
?
?
?
?

.343

2. Apply a pile-scramble shuffle to the sequence of piles.344

3. Reveal the cards of all sequences. If there are either (i) a sequence whose number of345

black cards is not the same as that of red cards, (ii) two identical sequences, or (iii) a346

sequence containing more than two consecutive 0s or 1s, then V rejects it.347

4. For all the columns, take the right card of each commitment to make n sequences (along348

with the helping sequences for the columns).349

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ?
? ?
? ?
? ?︸ ︷︷ ︸

help. for column

→

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

.350

Then, the same is done.351

This protocol uses n · |tkz(n)| black cards and the same number of red cards when we352

have an n × n Takuzu grid. See Table 1 again for the value of |tkz(n)|. The number of353

required shuffles is two.354
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3.3 Comparison355

Let us compare the two protocols for Takuzu presented in the previous subsection. Table 2356

summarizes the numbers of required cards and shuffles for the protocols.357

Table 2 The numbers of required cards and shuffles for Protocols 1 and 2 when we have an n×n

Takuzu grid such that n is up to eight.

#Cards #Shuffles
n = 4 n = 6 n = 8 n = 4 n = 6 n = 8

Protocol 1 48 96 160 140 474 1112
Protocol 2 48 168 544 2 2 2

According to this table, there is a trade-off between the numbers of required cards and358

shuffles, i.e., Protocol 1 presented in Section 3.2.1 needs a less number of cards but needs359

a more number of shuffles than Protocol 2 presented in Section 3.2.2. Both protocols are360

reasonable, and hence, P and V may choose their favorite one. Let us stress that pencil361

puzzles are usually played on a board of small size, say n = 8, and also that players enjoying362

a puzzle normally do not use computers to solve it.363

3.4 Security Proofs for Takuzu364

We prove the security of our construction. We consider a shuffle functionality which is an365

indistinguishable shuffle of face down cards. The first part is dedicated to give proofs of366

protocol 1 while the second part is dedicated to prove the security for protocol 2.367

3.4.1 Security Proofs of Protocol 1368

Takuzu Completeness.369

We show that if P knows a solution of a given Takuzu grid then he is able to convince V .370

Proof. Suppose that P knows a solution S of the initial grid G and runs the input phase371

described in subsection 3.2.1. Then we show that P is able to perform the proof for the372

three phases: (AV) adjacent verification phase, (UV) uniqueness and verification phase, and373

equality verification phase (EV).374

Since S is a solution of G, S is a valid grid respecting all the constraints. If S respects
the adjacent rule so the six-card trick outputs 0 in all cases. Indeed, if the number are all
equals then the rearranging step (step 1 of the six-card trick) has the same output than the
input. For example, consider the sequence 101 which is rearrange as:

1
♡

2
♣

3
♣

4
♡

5
♡

6
♣ →

1
♡

6
♣

3
♣

2
♣

5
♡

4
♡

.375

The random cut will keep the pattern, up to a cyclic shift. The same result holds for376

other possible sequences (there are 6 of them).377

We conclude that S succeeds the AV challenge.378

We show that S passes the UV challenge. The verification is done toward each possible379

pair of row (and column) of the grid. Consider two rows where ai denote the values of380

commitments on the first row and bi the values for the second row. Since S is a solution381
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those two rows are different, meaning that there exists at least a value j for which aj ̸= bj .382

This implies that aj = bj ⊕ 1 (recall that ∀i = 1 . . . n we have ai, bi ∈ {0, 1}) meaning that383

aj ⊕ bj = 1. Thus the disjunction of all the possible ai ⊕ bi will output 1 (since at least on384

of its term is equal to 1). Repeating this process for each possible pair of rows and columns385

leads to always output 1 in step 3 of the UV.386

Lastly, we show that S succeeds the EV challenge. Since it is a solution there is the same387

number of 0 and 1 in each row and column. When shuffling the cards, only the their order388

is modified but not their value thus the equality property still holds.389

We conclude that P convinces V for AV, UV and EV phases. ◀390

Takuzu Soundness.391

We show that if P does not provide a solution of a given Takuzu grid then he is not able to392

convince V with probability 1.393

Proof. Suppose that P does not know the solution, we want to show that V will detect it394

during, at least, one verification phase.395

First, notice that if P places a commitment that respects all the Takuzu rules then it is396

a solution. Thus if at least one rule is not respected then it is not a solution. Hence, we397

consider three possible cases corresponding to each rule that is not respected:398

If the adjacent rule is not respected, then there exists three consecutive commitments
that have the same value (either 0 or 1). Without loss of generality, let consider that
those values are all 0’s. Thus the the rearrange step is:

1
♣

2
♡

3
♣

4
♡

5
♣

6
♡ →

1
♣

6
♡

3
♣

2
♡

5
♣

4
♡

.399

Thus a random cut will keep this alternating pattern. (Note that the same result holds400

with all 1 but black cards are replaced by red cards and vice-versa.) Hence, the six-card401

trick outputs 1 so V rejects P ’s commitments.402

If the uniqueness rule is not respected, then at least two rows or two columns are identical.403

Thus, for all i = 1 . . . n, we have ai = bi =⇒ aj ⊕ bj = 0. This implies that the404

disjunction of all those terms is equal to 0 so V rejects it.405

If the equality rule is not respected, then there exists a row or column where the number406

of 0 is not equal to the number of 1. W.l.o.g., consider a row with n
2 + 1 0-commitment407

and n
2 − 1 1-commitment. When applying a pile scramble shuffle the 0-commitment408

remains 0-commitment, and 1-commitment still remains 1-commitment so V will notice409

that there is n
2 +1 0-commitment and n

2 −1 1-commitment. Finally, V won’t be convinced.410

◀411

Zero-knowledge.412

We show that during the verification process, V learns nothing about P ’s solution.413

Proof. The idea of the proof is described in [13]. Proving zero-knowledge implies to describe414

an efficient simulator which is an algorithm that simulates any interaction between a cheating415

verifier and a real prover. The simulator has no access to the correct solution but it has an416

advantage over the prover: when the cards are shuffled, the simulator can swap the decks417

with different ones. We thus show how to construct a simulator for each challenge:418
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Adjacent Verification challenge: The simulator chooses randomly S such that three con-419

secutive cells never contain the same number. Note that the uniqueness and equality420

rule may not hold. Then it simulates the interaction between the prover and the verifier.421

For each three vertically (or horizontally) consecutive commitments, the six-card trick422

outputs 0 (there are exactly two identical number).423

Uniqueness Verification challenge: When the verifier checks for pair of rows or columns,424

the simulator picks cards to form distinct rows or columns (for example, during the425

Mizuki-Sone XOR shuffle phase).426

Equality Verification challenge: During the pile scramble shuffle, the simulator places n
2427

0-commitment and n
2 1-commitment in a random order.428

◀429

We conclude that our protocol for Takuzu is complete, soundness and zero-knowledge.430

3.4.2 Security Proofs of Protocol 2431

Completeness.432

We show that if P knows a solution of a given Takuzu grid then he is able to convince V .433

Proof. Suppose that P knows a solution S of the initial grid G and runs the input phase434

described in subsection 3.2.2. Then we show that P is able to perform the proof for the435

verification phase.436

Since S is a solution of G, S is a valid grid respecting all the constraints. Indeed S respects437

the adjacent rule so each three consecutive commitments cannot be all the same. Thus the438

left cards of each commitment cannot be the same (recall our encoding 1). The other rules439

can be verified using the same process since each left card (or right) fully determine the440

value of a commitment. Indeed, if the left card is ♣ the the commitment corresponds to the441

value 0 and if the left card is ♡ then it corresponds to a 1-commitment. We conclude, that442

if P ’s commitment corresponds to the solution of G then all the constraints can be verified443

by V when revealing the commitments. ◀444

Soundness.445

We show that if P does not provide a solution of a given Takuzu grid then he is not able to446

convince V with probability 1.447

Proof. Suppose that P does not know the solution, we want to show that V will detect it448

during the verification phase.449

First, notice that if P places a commitment that respects all the Takuzu rules then it is450

a solution. Thus if at least one rule is not respected then it is not a solution. Hence, we451

consider three possible cases corresponding to each rule that is not respected:452

If the adjacent rule is not respected, then there exists three consecutive commitments453

that have the same value (either 0 or 1). Since the order of the cards is kept (only the454

pile are shuffled), V can detect when three consecutive cards are identical.455

If the uniqueness rule is not respected, then at least two rows or two columns are identical.456

Again, V will detect it since all the left (right) cards are revealed and that left (right)457

cards fully determine a commitment value.458
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If the equality rule is not respected, then there exists a row or column where the number459

of 0 is not equal to the number of 1. As seen in the previous case, V won’t be convinced460

since the number of 0 does not correspond to the number 1.461

◀462

Zero-knowledge.463

We show that during the verification process, V learns nothing about P ’s solution.464

Proof. The idea is the same as for protocol 1. We show how to construct a simulator for the465

challenge. During the pile-scramble phase, the simulator replaces each pile with a sequence466

of tkz(n). Thus the set of those sequence verifies the rules. ◀467

We conclude that our protocol for Takuzu is complete, soundness and zero-knowledge.468

4 Our ZKP Protocol for Juosan469

In this section, applying the ideas shown in Section 3, we construct a ZKP protocol for470

Juosan, which allows the prover P (aka Q) to convince the verifier V (aka James Bond)471

that he really knows a solution.472

4.1 Subprotocol: Five-Card Trick473

We introduce the five-card trick [8] in this subsection, which is used in our construction to474

verify Rules 2 and 3.475

Given two commitments to a, b ∈ {0, 1} (along with a red card ♡ ), the five-card trick [8]476

outputs a ∧ b: ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♡ → · · · → a ∧ b . The protocol proceeds as follows.477

1. Rearrange the sequence as follows:
1
?

2
?

3
?

4
?

5
? →

2
?

1
?

5
?

3
?

4
? .478

2. Apply a random cut to the sequence:
〈

? ? ? ? ?
〉

→ ? ? ? ? ? .479

3. Reveal the sequence. If the resulting sequence is:480

a. ♣ ♣ ♡ ♡ ♡ (apart from cyclic shifts), the output is a ∧ b = 1.481

b. ♡ ♣ ♡ ♣ ♡ (apart from cyclic shifts), the output is a ∧ b = 0.482

4.2 Our Construction483

We are now ready to present the full description of our ZKP protocol for Juosan. Let us484

consider that we are given a 5 × 5 Juosan grid as an example.485

Our construction consists of three phases, the Setup phase, Adjacent Verification phase,486

and Room Verification phase.487

Setup phase: Regarding a vertical dash (|) as 0 and a horizontal dash (—) as 1, the prover488

P places a commitment to each cell according to the solution:489

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

.490

FUN 2020



20:16 Card-Based ZKP Protocols for Takuzu and Juosan

Adjacent Verification phase: In this phase, V repeats applications of the Mizuki–Sone491

AND protocol [24] and five-card trick [8] enhanced by the input-preserving function eval-492

uation technique to verify that the Adjacent condition is satisfied. Note that V can also493

verify that the commitments placed by P in the Setup phase form the valid ones according494

to the encoding rule (1).495

1. Let us verify that there are no three consecutive horizontal dashes in any column. The496

fact that three horizontal dashes are not consecutive to the vertical means that there is497

at least one vertical dash among them. Therefore, it suffices to confirm the AND value498

of of the corresponding three commitments is false because a vertical dash is encoded as499

0 and a horizontal dash as 1.500

Let a, b, c ∈ {0, 1} be the values of commitments on three consecutive cells in a column.501

First, for commitments to a and b, perform the Mizuki–Sone AND protocol described in502

Section 3.1.3. Then, a commitment to a ∧ b is obtained.503

2. Perform the five-card trick described in Section 4.1 for the commitments to a ∧ b and c.504

If the five-card trick outputs 1, V rejects it.505

3. Restore commitments to a, b, and c by the input-preserving function evaluation technique506

described in Section 3.1.6.507

4. The same is done for rows. In this case, let the encoding be reversed.508

Room Verification phase: In this phase, V verifies the Room rule by revealing the com-509

mitments after applying pile-scramble shuffles.510

1. Apply a pile-scramble shuffle to all commitments in a territory with a number:511

? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

→
[

? ?
∣∣ ? ?

∣∣ ? ?
]

→ ? ? ? ? ? ? .512

2. Take all the left cards and all the right cards of these commitments to make two piles.513

Then, apply a pile-scramble shuffle to the two piles:514

? ? ? ? ? ? →
? ? ?

? ? ?
→

?
?

→
[

?
∣∣ ?

]
→

? ? ?
? ? ?

.515

3. Reveal all the cards of the piles. If the number of black cards or red cards is not the516

same as the number written on the territory, V rejects it. For example, in the case of a517

3-cell territory with a number “3,” each of the following two types of card groups should518

appear with a probability of 1/2:
♡ ♡ ♡
♣ ♣ ♣

,
♣ ♣ ♣
♡ ♡ ♡

, where the order of cards in the519

card set does not matter.520

4. The same is done for all other numbered territories.521

The numbers of required shuffles are 3(m(n − 2) + n(m − 2)) in the Adjacent Verification522

phase and k in the Room Verification phase when we have an m × n Juosan grid and k523

territories. This protocol uses mn + 1 black cards, the same number of red cards, and eight524

number cards.525
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4.3 Optimized Adjacent Verification for Juosan526

In the original Adjacent Verification phase of our protocol for Juosan presented in Section 4.2,527

the AND value a ∧ b ∧ c for a, b, c ∈ {0, 1} is securely computed to show the validity of three528

consecutive commitments. We present an optimization technique to show the validity of529

four consecutive commitments as follows.530

1. Let a, b, c, d ∈ {0, 1} be commitments of four consecutive cells in a column. First, for com-531

mitments to b and c, perform the Mizuki–Sone AND protocol described in Section 3.1.3.532

Then, a commitment to b ∧ c is obtained.533

2. Let x1 = b∧c, x2 = a, and c3 = d. By slightly modifying the Mizuki–Sone AND protocol,534

the following protocol is obtained:535

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

♣ ♡ ? ?︸ ︷︷ ︸
x3

♣ ♡ → · · · → ? ?︸ ︷︷ ︸
x1∧x2

? ?︸ ︷︷ ︸
x1∧x3

.536

Note that this uses one random bisection cut only. Then, two commitments of x1 ∧ x2 =537

a ∧ b ∧ c and x1 ∧ x3 = b ∧ c ∧ d are obtained.538

3. Open the commitments of a ∧ b ∧ c and b ∧ c ∧ d. If they are not (0, 0), V rejects it.539

4. Obtain the commitments to a, b, c, and d by the input-preserving function evaluation540

technique described in Section 3.1.6.541

4.4 Security Proofs for Juosan542

We prove the security of our construction. We consider a shuffle functionality which is an543

indistinguishable shuffle of face down cards.544

Juosan Completeness.545

We show that if P knows a solution of a given Takuzu grid then it is able to convince V .546

Proof. Suppose that P knows a solution S of the initial grid G and runs the setup phase547

described in Section 4. Then we show that P is able to perform the proof for the two phases:548

adjacent verification phase (AV) and room verification phase (RV).549

Since S is a solution of the grid G, we show that S is a valid grid respecting all the550

constraints.551

We first consider the adjacent verification. Let us take an example, the other cases (here552

8 possible cases) are done the same way. We consider the case of horizontal dashes in a553

column for verifying the adjacent (horizontal) rule. We need to show that the AND value of554

these commitments is not equal to 1. Note that if we inverse the encoding rule ( ♡ ♣ = 0555

and ♣ ♡ = 1) we can verify that no three consecutive vertical dashes are placed in a given556

row.557

We consider the 101-commitment: ♡ ♣ ♣ ♡ ♡ ♣558

First we take the first four cards and apply the Mizuki-Sone AND protocol:

1
♡

2
♣

3
♣

4
♡

5
♡

6
♣ →

1
♡

3
♣

4
♡

2
♣

5
♡

6
♣

Then the random cut will output two possible combinations:559

1
♡

3
♣

4
♡

2
♣

5
♡

6
♣ or

2
♣

5
♡

6
♣

1
♡

3
♣

4
♡

Both cases has output ♣ ♡ which is simply 0.560
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Note that if we replace the second commitment by 1 (which is encoded as ♡ ♣ ) then after561

the random cut we have the two possible outputs:
1
♡

3
♡

4
♣

2
♣

5
♡

6
♣ or

2
♣

5
♡

6
♣

1
♡

3
♡

4
♣562

The output is ♡ ♣ which is simply 1 (and this corresponds with the expected value).563

Next, we compute the five-card trick for input ♣ ♡ ♡ ♣ ♡ .564

The rearrange step outputs ♡ ♣ ♡ ♡ ♣ which is the same pattern of alternating figure565

meaning that a ∧ b = 0. Note that a random cut will not modify the shape of the pattern.566

The same process is applied to all other commitments so we can conclude that S re-567

spects the adjacent verification for horizontal and vertical dashes. Hence S succeeds the AV568

challenge.569

Note that we can verify the adjacent rule by looking at three consecutives cells and the570

next three consecutives cells (that is cells a, b, c and then cells b, c, d) or directly apply the571

optimized adjacent verification in Appendix 4.3.572

S also succeeds the room verification. Indeed, we make two piles corresponding to left573

cards of each commitment and right cards of each commitment. Thus each vertical dash574

(encoded as ♣ ♡ ) adds a card ♣ in a pile and a card ♡ in the other pile. Hence, a pile575

represents the number of vertical dashes while the other represents the number of horizontal576

dashes (but those two piles are indistinguishable). It remains to count the number of cards577

that forms the majority to deduce if the room rule is achieved. Finally S is a correct solution578

for RV challenge.579

We conclude that P convinces V for AV phase and for RV phase. ◀580

Juosan Soundness.581

We show that if P does not provide a solution of a given Juosan grid then it is not able to582

convince V .583

Proof. Suppose that P is able to convince V meaning that P can provide S which succeeds584

AV challenge and RV challenge. We want to show that P knows a solution to Juosan grid585

G.586

During the input phase, P places a commitment.587

Since P is able to perform the proof of AV challenge and RV challenge we have: initial588

cells are the same as in S, horizontal bars are not arranged three times in a column, vertical589

bars are not arranged three times in a row, and a room has correct numbers of vertical or590

horizontal bars corresponding to its number.591

We deduce that S is a solution of G (since each rule is respected). Hence if P does not592

provide a solution of G then it fails the proof for at least one challenge. Since those two593

phases are perform during the proof, P receives two challenges (AV and RV) out of two594

possibilities.595

Hence, if P gives a wrong grid then at least one of those two challenges will fail.596

Thus P cannot convince V with a wrong proposition. ◀597

Juosan Zero-knowledge.598

We show that during the verification process, V learns nothing about P ’s solution.599

Proof. We follow the same process as for the zero-knowledge of Takuzu protocol. We thus600

show how to construct a simulator for each challenge:601
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Adjacent Verification challenge: The simulator chooses randomly S. Before the final output602

of the five-card trick, the simulator always chooses a deck for which red and black cards603

are alternated. Thus the output is always 0 meaning that the Adjacent Verification604

challenge succeed. Since S was chosen randomly then simulated proofs and real proofs605

are indistinguishable.606

Room Verification challenge: When the verifier checks for vertical direction, the simulator607

looks at the room number to form the corresponding number with red cards (or black608

ones) for each piles. This step is done the same way for all rooms. Since each row609

(or column) are different from one to another, the simulated proofs and real proofs are610

indistinguishable.611

◀612

We conclude that our protocol for Juosan is complete, soundness and zero-knowledge.613

5 Conclusion614

In this paper we improved the existing interactive zero-knowledge proof for Takuzu. Our615

protocols use a reasonable number of cards and shuffles, implying that they are easy to616

implement by humans. Our protocols are designed in such a way that the proof is completely617

sound meaning that a prover P convinces the verifier V with probability 1 if P has a solution.618

We also proposed an adapted version of this protocol for the Juosan puzzle which had never619

been proposed before. An interesting puzzle, called Suguru, can also be studied with this620

technique.621
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