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Abstract

A zero-knowledge proof (ZKP) allows a prover to prove to a verifier that it
knows some secret, such as a solution to a difficult puzzle, without revealing
any information about it. In recent years, ZKP protocols using only a deck of
playing cards for solutions to various pencil puzzles have been proposed. The
previous work of Lafourcade et al. deals with a famous puzzle called Slitherlink.
Their proposed protocol can verify that a solution forms a single loop without
revealing anything about the solution, except this fact. Their protocol guarantees
that the solution satisfies the single-loop condition, by interactively constructing
a solution starting from a state that holds a simple single loop, and proceeding
via steps that preserve the invariant of encoding a single loop, until the proper
solution is reached. A drawback of their protocol is that it requires additional
verifications to guarantee a single loop. In this study, we propose a more efficient
ZKP protocol for such a puzzle with fewer additional verifications. For this, we
employ the previous work of Robert et al., which addressed the connectivity
property in a puzzle. That is, we verify that a solution is connected but not
split, to be a single loop. Applying our proposal, we construct a card-based ZKP
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protocol for Moon-or-Sun, which has its specific rule of alternating pattern in
addition to the single-loop condition.

Keywords: Physical zero-knowledge proof, Pencil puzzle, Card-based cryptography,
Moon-or-Sun, Nikoli puzzle

1 Introduction

A zero-knowledge proof (ZKP) protocol is a cryptographic tool enabling a party to
prove a statement without revealing information about it. Due to their versatility,
numerous variants of these protocols exist with different possible applications. For
instance, a ZKP could help to determine if a database contains information without
revealing it. A ZKP protocol is also used for e-voting system to ensure that ballots are
correctly shuffled [39]. Lastly, ZKP protocols are also used for cryptocurrencies like
Monero or ZCash to allow anonymous transactions.

We focus on a particular ZKP: interactive ZK Proof of Knowledge protocols using
physical objects. In this context, there are two parties involved: a prover P and a
verifer V face-to-face. The prover wishes to convince the verifier that it knows specific
information about a given statement without revealing it. These protocols have three
properties:

• Completeness: if the statement is true, then P who knows a secret s can convince
V that P knows s without failure;

• (Perfect) Soundness: any party in the prover role cannot convince V , if there is
no solution;

• Zero-Knowledge: any party in the role of the verifier learns nothing about s.
That is, a probabilistic polynomial-time simulator that does not know s exists,
such that the outputs of both the protocol and the simulator follow the same
probability distribution.

In this paper, we study ZKP protocols using only a deck of playing cards. In
recent years, many theoretical studies on proposing such physical ZKP protocols for
solutions to pencil puzzles have been addressed. For the most famous puzzle called
Sudoku, various efficient ZKP protocols [38, 40, 46] have been proposed after the
appearance of the first physical ZKP protocol by Gradwohl et al. [8]. In this line of
research, the previous work of Lafourcade et al. [16] deals with a famous puzzle called
Slitherlink. Given lattice dots, the goal of a Slitherlink puzzle is to connect adjacent
dots to draw a single loop satisfying other rules. Hereinafter, we call this rule the loop
condition. Their proposed protocol can verify that a solution P knows forms a single
loop without revealing anything other than it. The novelty of their protocol is that
it does not first make P place a solution on a given board and make V verify it but
makes P interactively create a solution whose form is guaranteed to be a single loop.
This idea has been applied to ZKP protocols for other puzzles, such as Nurikabe [24],
Nurimisaki [27], and Usowan [26]. However, a possible drawback of the protocol in [16]
is that it requires additional verifications to guarantee a single loop when creating it

2



as discussed in Sect. 3.1. Therefore, there is room for improvement to have a better
ZKP protocol for the loop condition.

Contributions. We design a more efficient ZKP protocol for puzzles having the loop
condition with fewer additional verifications. For this, we employ the previous work
of Robert et al. [24], which addressed the connectivity property in a puzzle. Their
protocol is an interactive protocol that can verify that given a grid, colored cells are
connected to form a continuous block. We employ this existing protocol to verify that
lines of a solution P knows is connected but not split, to be a single loop.

Applying our proposal, we construct a card-based ZKP protocol for Moon-or-Sun,
which has its specific rule of alternating pattern in addition to the loop condition.
We rely on some existing techniques, such as computing the sum of multiple commit-
ments [35, 41, 42], but also propose original and simple sub-protocols, such as showing
alternating pattern, to obtain a ZKP protocol. Our description is also accompanied
by security proofs to show the completeness, perfect soundness, and zero-knowledge
of our protocol. We also demonstrate that our proposed ZKP protocol is related to a
well-known NP-hard problem in graph theory. This may prove the significance of our
protocol for a Moon-or-Sun puzzle.

This study is an extended version of a published conference paper [9]; we construct
a new card-based protocol for puzzles with the loop condition, which is more efficient
than the existing protocol [16]. More specifically, Sect. 3 contains new research results.

Moon-or-Sun. The Moon-or-Sun rules are given in Fig. 1. We also illustrate an
example in Fig. 2 taken from Nikoli’s Webpage1.

Moon-or-Sun Rules:
1. Construct a loop.
2. The loop never crosses itself, branches off, or goes through the

same cell twice.
3. The loop goes through each room (i.e., continuous cells delim-

ited by thick edges) only once.
4. The loop goes through all moon or all sun cells for each room.

This means that the loop cannot pass through moon and sun
cells for a given room.

5. After the loop goes through the moons in one room it has to
go through all the suns in the next room it enters and vice
versa.

Fig. 1: Rules for Moon-or-Sun.

In [12], the Moon-or-Sun puzzle is proven to be NP-complete, which implies that
a ZKP protocol exists because any problem in NP has a ZKP protocol [7]. Note that
the result of [7] is based on the Turing machines, but it also implies the existence
of card-based ZKP protocol because any problem in NP can be reduced to a SAT
problem in polynomial time, and any Boolean circuit can be computed with a deck

1https://www.nikoli.co.jp/en/puzzles/moon or sun/
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Fig. 2: Example of a Moon-or-Sun instance, with initial values on the left and the
solution on the right.

of cards without leaking any information about private inputs [22]. While [7] showed
a constructive proof that implies the existence of a ZKP protocol, there is always the
need to design a specific protocol for a given problem. Indeed, the generic construction
is not efficient in terms of the number of cards required due to the overhead caused
by the reduction2 nor interesting in itself.

Related work. The first physical ZKP protocol [8] for a Sudoku grid was con-
structed using a deck of cards. Since this novel protocol was devised, several papers
have proposed physical ZKP protocols using a deck of cards for pencil puzzles, such
as Sudoku [38, 40, 46], Akari [2], Takuzu [2], Kakuro [2, 17], KenKen [2], Makaro [3],
Norinori [5], Slitherlink [16], Suguru [23], Nurikabe [24], Ripple Effect [35], Num-
berlink [33], Bridges [34], Cryptarithmetic [11], and Nonogram [4, 29]. More recent
puzzles have been considered such as Shikaku [36], Makaro (using a standard deck of
cards) [37], Nurimisaki [25], Topswops [14], Pancake Sorting [15], Usowan [26], ABC
End View [6, 32], Ball Sort [30], Goishi Hiroi [32], Five Cells [31], 15-puzzle [45], and
Sumplete [10].

Outline. We begin by introducing notations and existing protocols used in our ZKP
protocol in Sect. 2. In Sect. 3, we design our card-based protocol for puzzles having
the loop condition. In Sect. 4, we present our ZKP protocol for a Moon-or-Sun puzzle.
In Sect. 5, we prove that our ZKP protocol satisfies the required properties. In Sect. 6,
we discuss our ZKP protocol. We conclude this study in Sect. 7.

2 Preliminaries

We present the general notions needed for our ZKP protocol, such as encoding and
sub-protocols.

2The number of shuffles required can be one (but complicated) regardless of the size of a given Boolean
circuit [43], and hence, there is a tradeoff between such a generic construction and specific protocols. We note
that a reduction from any Moon-or-Sun puzzle to a SAT problem is not addressed, because the NP-hardness
proof in [12] shows the reduction from any Hamiltonian cycle problem to a Moon-or-Sun puzzle.
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Cards and Encoding. We use a deck of cards consisting of two suits: clubs ♣ and
hearts ♡ . We then let an ordered pair of these cards represent a bit value according
to the following encoding:

♣ ♡ → 0, ♡ ♣ → 1. (1)

Each card in the deck has an identical back ? , and we refer to an ordered pair
of face-down cards satisfying encoding (1) for a bit x ∈ {0, 1} as a commitment to x.
Such a commitment to a bit x is then denoted by:

? ?︸ ︷︷ ︸
x

.

We also define two converse encodings for integers modulo p [35]:
• ♣-scheme: to encode x ∈ Z/pZ use a row of p cards with one ♣ in position (x+1)
from the left and the remaining p− 1 positions occupied by ♡s. As an example,
we would represent 2 with ♡ ♡ ♣ ♡ in Z/4Z.

• ♡-scheme: equivalently as above, but with ♡ and ♣ exchanged. Here 2 is instead
represented by ♣ ♣ ♡ ♣ in Z/4Z.

2.1 Shuffle

We explain two types of shuffles that introduce randomness into the order of a sequence
of cards. These shuffles are usually employed in card-based cryptography, particularly
within ZKP protocols.

Consider a pile consisting of ℓ cards, where ℓ > 0. Both shuffles are applied to
multiple piles of cards, making the order of the piles unknown to everyone, while
preserving the order of cards within each pile. Suppose that we have m piles denoted
by (p1,p2, . . . ,pm), each containing ℓ cards.

Pile-scramble shuffle. This shuffling method, initially introduced in [21], completely
randomizes the order of piles. Applying a pile-scramble shuffle to (p1,p2, . . . ,pm)
yields (pr−1(1),pr−1(2), . . . ,pr−1(m)), where r is a random permutation uniformly dis-
tributed in the symmetric group of degree m, denoted by Sm. This shuffling is denoted
by [·|| . . . ||·].

Pile-shifting shuffle. This shuffling method, initially introduced in [44], ran-
domly and cyclically shifts the order of piles. Applying a pile-shifting shuffle to
(p1,p2, . . . ,pm) yields (ps+1,ps+2, . . . ,ps+m), where s is chosen randomly and uni-
formly from {1, 2, . . . ,m} and pk means pk−m for k > m. This shuffling is denoted by
⟨·|| . . . ||·⟩.

When m = 2, this shuffle is called a random bisection cut [20], i.e., bisecting a
sequence of cards and randomly swapping the two halves. When ℓ = 1, this shuffle is
known as a random cut invented by Den Boer [1].
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2.2 XOR and Copy Protocols

Our protocol uses the existing card-based protocols for computing a logical function of
two-input XOR and duplicating an input commitment [20]. Here, we briefly introduce
them, and their full descriptions are in Appx. A.

Given commitments to a, b ∈ {0, 1}, the Mizuki–Sone XOR protocol [20] outputs
a commitment to a⊕ b:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ · · · → ? ?︸ ︷︷ ︸
a⊕b

.

Given a commitment to a ∈ {0, 1} along with two commitments to 0, the Mizuki–
Sone copy protocol [20] outputs two commitments to a:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

→ · · · → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a

.

2.3 Chosen Pile Protocol [5]

This protocol is an extended version of the “chosen pile cut” proposed in [13] and
used in various card-based ZKP protocols. Given m piles (p1,p2, . . . ,pm) with 2m
additional cards, the chosen pile protocol consists of two rounds; first, it allows P and
V to obtain the i-th pile pi previously chosen by P without revealing the index i.
Second, after performing some operations on the chosen pile pi, it reverts the order of
the sequence of m piles to their original order.
1. P places m face-down cards (denoted by row 2 ) below the given piles, such that

only the i-th card (from the left) is ♡ . We further place m face-down cards
(denoted by row 3 ) below the cards, such that only the first card is ♡ :

?︸︷︷︸
p1

?︸︷︷︸
p2

. . . ?︸︷︷︸
pi−1

?︸︷︷︸
pi

?︸︷︷︸
pi+1

. . . ?︸︷︷︸
pm

,

?
♣

?
♣

. . . ?
♣

?
♡

?
♣

. . . ?
♣
← row 2,

?
♡

?
♣

. . . ?
♣

?
♣

?
♣

. . . ?
♣
← row 3.

2. Apply a pile-shifting shuffle to the sequence of piles where the cards in the same
column are regarded as a single pile.

〈 ?

?

?

∥∥∥∥∥∥∥
?

?

?

∥∥∥∥∥∥∥ · · ·
∥∥∥∥∥∥∥

?

?

?

〉
→

? ? · · · ?

? ? · · · ?

? ? · · · ? .

3. Reveal all face-down cards in row 2. This should result in exactly one ♡ appearing
at a random position; the pile above the revealed ♡ is pi because a pile-shifting
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shuffle is a cyclic shuffling and the m cards in row 2 comprise exactly one ♡ on
the i-th in step 1. After this step is invoked, other operations may be applied to
pi and those around pi. Consequently, it is reverted back to its position in the
sequence.

4. Turn over the revealed cards, i.e., the cards in row 2. Subsequently, apply a
pile-shifting shuffle again.

5. Reveal all face-down cards in row 3. Similarly, this should result in exactly one
♡ appearing, and the pile above the revealed ♡ is p1. Therefore, shifting the
sequence of piles (such that p1 becomes the leftmost pile in the sequence) results
in a sequence of piles of the same order as the original one.

2.4 Sum of Commitments

This protocol is defined in [35]; we give a general description given as an example.
Suppose that we have commitments to a, b ∈ {0, 1}, and we want to output a + b ∈
Z/3Z (in the ♡-scheme, see the begining of Sect. 2):

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♡ → ? ? ?︸ ︷︷ ︸
a+ b

.

1. Swap the two cards of the commitment to a and add a ♣ face-down to the right.
Those three cards represent a in the ♡-scheme in Z/3Z:

−→←−
? ?︸ ︷︷ ︸
a

?
♣
→ ? ? ?︸ ︷︷ ︸

a

.

2. Add a ♡ on the right of the commitment to b. Those three cards represent b in
the ♣-scheme in Z/3Z: ? ?︸ ︷︷ ︸

b

?
♡
→ ? ? ?︸ ︷︷ ︸

b

.

3. Obtain three cards representing a+r and those representing b−r for a uniformly
random value r ∈ Z/3Z as follows.
(a) Place in reverse order the three cards obtained in step 2 below the three

cards obtained in step 1:

? ? ?︸ ︷︷ ︸
a

? ? ?︸ ︷︷ ︸
b

→

? ? ?︸ ︷︷ ︸
a

? ? ?︸ ︷︷ ︸
2−b

.

(b) Apply a pile-shifting shuffle as follows:

〈
?

?

∥∥∥∥ ?

?

∥∥∥∥ ?

?

〉
→

? ? ?︸ ︷︷ ︸
a+r

? ? ?︸ ︷︷ ︸
2−b+r

.
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For a uniformly random value r ∈ Z/3Z, we obtain three cards representing
a+ r and 2− b+ r.

(c) Reverse the order of the three cards representing 2 − b + r to obtain b − r:

? ? ?︸ ︷︷ ︸
a+r

? ? ?︸ ︷︷ ︸
b−r

.

4. Reveal the three cards representing b − r, and shift to the right the three cards
representing a+ r to obtain those representing a+ b in the ♡-scheme.

Notice that we described the sum protocol for an output of two bit commitments in
Z/3Z. We can generalize by inductively applying the protocol for n bit commitments
giving an output in Z/(n+ 1)Z.

3 Card-Based Protocol for Single Loop Property

In this section, we present our card-based protocol for puzzles with the loop condi-
tion. (For the sake of clarity, this section deals with a Moon-or-Sun puzzle.) Before
presenting it, let us overview the existing protocol [16] and discuss its drawback.

3.1 Existing Protocol

This existing protocol proposed by Lafourcade et al. [16] enables a prover P to create
any single loop without revealing information about the loop shape, while simulta-
neously convincing a verifier V that the resulting loop is indeed a single loop. That
is, this protocol creates a figure respecting the loop condition rather than verifying
it. Briefly, this protocol starts from the single loop going along the boundary of the
board. P and V interactively create the solution P has from the single loop. Dur-
ing this process, V cannot obtain information other than that the process proceeds
correctly, and hence, the resulting shape is indeed a single loop.

Setup. To represent a loop with a sequence of cards, the protocol places a commitment
between each cell in a Moon-or-Sun puzzle. The value of such a commitment represents
the existence of line, i.e., line passes through them if the value is 1, and no line passes
if it is 0 as follows:

? ?︸ ︷︷ ︸
1

→

Thus, the protocol begins by placing a commitment to 1 between each cell adjacent
to the border of a given board and commitments to 0 on the remaining positions,
representing a single loop.

Idea and Procedure. Let us briefly introduce its idea and procedure3. After placing
commitments in such a way, the protocol repeats to let P “dent” the loop to reduce
the loop size one by one so that the loop represents a solution P has (where we

3Refer to [16] for specific methods on creating the solution P has.
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assume that the size of each cell is one). In this iteration, the protocol ensures that
the resulting figure should represent a single loop. Its procedure is as follows.
1. P uses the chosen pile protocol introduced in Sect. 2.3 to select four commitments

around an intersection of a given Moon-or-Sun board.
2. V swaps two cards comprising each commitment selected in the previous step as

follows: ←→
? ?

←→
? ?

←→
? ?

←→
? ?

→
? ?

? ? ? ? .

? ?

This swapping results in negating the value of each commitment, i.e., the
existence of a line, and the loop size is decreased by one.

3. V returns the four commitments and ends the remaining steps of the chosen pile
protocol. The above steps are repeated.

Drawback. As seen before, the idea behind the protocol [16] is simple, and reducing
the loop size is easy-to-implement, just swapping two cards comprising each com-
mitment. However, to ensure that the resulting figure represents a single loop, two
additional verifications are required in each iteration above, which affects the efficiency
of the protocol. The two additional verifications are as follows.

• In step 1, because V cannot see the position of the commitments selected by P ,
any position can be selected, such as the one where no line exists, without V
noticing it4. Therefore, an additional verification is required to ensure that the
position selected by P via the chosen pile protocol is correct. This verification
requires the application of the chosen pile protocol once, i.e., two pile-shifting
shuffles.

• In step 2, even if P selected a correct position in step 1, the resulting figure after
swapping may be split into two loops because of loop denting. To prevent this,
another verification is required, which comprises the applications of the chosen
pile protocol four times, i.e., eight shuffles.

To summarize, the existing protocol [16] requires the two additional verifications of 10
shuffles in each iteration as well as two pile-shifting shuffles for the chosen pile protocol
in step 1.

3.2 Idea

To construct an efficient protocol, we employ another existing protocol proposed by
Robert et al. [24], which deals with puzzles with the connectivity condition, such as
Nurikabe and Hitori, where the goal is to color cells to be a continuous wall with sat-
isfying some other rules given a grid. This protocol is an interactive protocol between
P and V and repeats to let P “color” a cell to represent a solution using the chosen
pile protocol. In each iteration, V verifies that a new cell to be colored is next to a
colored cell, so that the resulting figure represents a continuous wall.

In this study, we apply this existing protocol [24] for the loop condition; we let P
“draw” a line one by one, i.e., selecting and negating a commitment to 0, so that the

4If P selects such a position, another loop would be created, violating the loop condition.
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resulting figure represents a single path, and at the last iteration, P connects the start
and end of the path to be a single loop. For this, only one simple verification is required
in each iteration to ensure that a new line to be drawn is next to a previously drew
line and that the new line is at the tip. That is, V confirms that the value of exactly
one commitment is 1 among six commitments around the selected commitment. The
positions of those six commitments depend on whether the selected commitment is
between two horizontally or vertically adjacent cells; if it is between two vertically
adjacent cells, those six commitments are as follows:

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

Here, the position of the commitment to 1 is denoted as an example. If the selected
commitment is between two horizontally adjacent cells, those six commitments are as
follows:

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

However, information about the position of the selected commitment should be secret.
We elaborate on achieving such a verification using the chosen pile protocol twice as
seen later.

Because this verification requires four pile-shifting shuffles (and two pile-shifting
shuffles for executing the chosen pile protocol), our protocol is efficient compared to the
existing protocol [16], which requires 12 shuffles in each iteration. As will be discussed
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in Sect. 3.3, the number of iterations required for the above protocol is almost the same
as in the existing protocol [16], i.e., the number of cells in a given board. Therefore,
our improvement results in half the number of shuffles required.

The number of iterations leaks (is equal to) information about the length of a
solution loop. To hide this information, we use the same strategy used in the existing
protocols [16, 24], in which the number of iterations is equal to the maximum length
of possible solution loops in a given board. Observe that our drawing, i.e., negating
a commitment, can be applied to “erase” a line, and the condition that the resulting
path is a single path even if a single line of the path is erased can be verified exactly
in the same way, i.e., , a line to be erased should be at the tip. Therefore, we let P
repeat to execute the above steps to draw and erase a line, leaking no information
about the length of a solution loop.

3.3 Procedure

We are ready to present the procedure of our card-based protocol.

Setup. A prover P and a verifier V place a commitment to 0 between each cell in
a given Moon-or-Sun board. As in the existing protocols [16, 24], we further place
“dummy” commitments on the top and left part of the outer line of a given grid. Such
a dummy commitment consists of two heart cards. For example, commitments on a
3 × 3 board are placed as follows, where descriptions of rooms and symbols of moon
and sun are omitted:

?
♡

?
♡

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

?
♡

?
♡

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

?
♡

?
♡

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

?
♡

?
♡

?
♡

?
♡

?
♡

?
♡

Drawing and Verification. After the setup, the protocol proceeds to draw a single
loop as follows.
1. P uses the chosen pile protocol introduced in Sect. 2.3 to select and negate a com-

mitment to 0 and ends the chosen pile protocol. For this, P selects a commitment
placed on the solution loop P has (in any position).
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2. Let ℓ denote the maximum length of possible loops in the given Moon-or-Sun
puzzle, namely the maximum number of commitments to 1. (The value of ℓ will
be given in the next paragraph.) P and V repeat the following steps ℓ− 2 times
to draw lines, such that the resulting path require one more line to be a single
loop, as follows.
(a) P uses the chosen pile protocol to select two commitments at the top and

left of a cell, as in the existing protocols [16, 24]. For this, P selects two
commitments such that they include either a commitment to 0 placed around
the edge of the current path drawn by P (if P wants to draw a line), or a
commitment to 1 placed on the edge of the current path (if P wants to erase
a line). Note that P should memorize the current path/line drawn by P in
the previous steps. The detail of how to execute the chosen pile protocol is
described in Appx. B.

(b) V also picks eight commitments around the two commitments selected via
the chosen pile protocol. Assuming that the two selected commitments are
shifted so that they are placed on the middle cell, the positions of the eight
commitments are specified as follows (The detail is described in Appx. B):

a

? ?
g

? ?

b

? ?
α

? ?
h

? ?

c

? ?
β

? ?

d

? ?

e

? ?

f

? ?

Here, each commitment is denoted by a letter above it; the commitments
a, b, and c (d, e, and f) are used to verify the selected commitment α (β)
because it is between two horizontally (vertically) adjacent cells. Note that
the commitments g and h are common to α and β for the verification.

(c) P uses the chosen pile protocol to select either the commitments α, a, b, and
c or β, d, e, and f :

α

? ?
a

? ?
b

? ?
c

? ? or
β

? ?
d

? ?
e

? ?
f

? ? .

Note that P has already decided whether to select α or β in mind as described
in step 2a.
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(d) Let γ denote the selected commitment among the commitments α and β. V
negates the commitment γ.

(e) V confirms that the value of exactly one commitment is 1 among the six
commitments around the commitment γ as follows.
(i) V places the following six commitments at any order: g, h, the three

commitments along with γ selected in step 2c, and the non-selected
commitment among α and β.

(ii) V places a face-down card below each commitment as follows:

? ? ? ? ? ? ? ? ? ? ? ?

?
♡

?
♣

?
♣

?
♣

?
♣

?
♣

(iii) V applies a pile-shifting shuffle to the six piles where cards in the same
column are regarded as a single pile.

(iv) V reveals only the right card of each commitment to confirm that exactly
one ♣ appears; otherwise, V aborts. Note that this means that the value
of exactly one commitment among the six commitments is 1 because of
the encoding rule defined in Eq. (1).

(v) V turns over revealed cards and applies a pile-shifting shuffle again.
(vi) V reveals the card below each commitment to revert the order of the six

commitments to their original order similar to the chosen pile protocol.
(f) After returning the commitments, V ends the chosen pile protocol executed

in steps 2c and 2a.
3. After repeating the previous step ℓ−2 times, P uses the chosen pile protocol twice

to select the commitment γ and pick the six commitments around γ (i.e., g, h,
the three commitments along with γ, and the non-selected commitment among
α and β) similar to the previous step. For this, P selects the commitment γ such
that the current path becomes a single loop if the value of γ becomes 1.

4. V confirms that the value of the commitment γ is 0 and negates it. If not, V
aborts.

5. V confirms that the value of exactly one commitment is 1 among the three com-
mitments of those selected along with γ and also confirms that the value of exactly
one commitment is 1 among the three commitments of g, h, and the non-selected
commitment among α and β. This verification is similar to step 2e and is omitted.

6. V ends the above chosen pile protocols.
As seen above, each iteration requires a verification with six pile-shifting shuffles. The
correctness and security proof are given in Sect. 3.4.

An Upper Bound on the Length of the Loop in Moon-Or-Sun. For concrete-
ness, we determine how long a loop in a Moon-or-Sun puzzle can maximally be, i.e.,
ℓ. Given such a puzzle with n > 1 rows and m > 1 columns, the longest possible loop
would be one that visits at most every cell. If we view the puzzle as an n ×m-grid
graph, where each cell of the puzzle is a vertex and each line between two neighboring
cells is an edge, the number of lines between the neighboring cells that are crossed by

13



our loop then translates to the number of edges of the respective cycle on this grid
graph.

To get an upper bound, we assume this cycle visits all n × m vertices (i.e., the
graph is Hamiltonian). Then, the number of edges in this cycle would be also n×m.
Note that if the graph is not Hamiltonian, n ×m is still an upper bound, as then a
possible loop just passes through fewer vertices and hence uses fewer edges. Overall, it
is safe to allow P at most ℓ = n×m steps, where they can choose between extending
the length of the current path by one, or not, to be able to draw any allowed loop in
the puzzle. Note that ℓ is almost the same as in the ZKP protocol for Slitherlink [16],
where the protocol repeats to “dent” the loop n ×m − 1 times to hide information
about the size, because the maximum size of a possible loop is clearly n×m and the
minimum size is one.5

3.4 Security Proof

Our proposed protocol satisfies the following theorems. These theorems will be used
in part to prove the three properties of our ZKP protocol for Moon-or-Sun.
Theorem 1. A prover P can represent any single loop using our protocol described
in Sect. 3.3.

Proof. Remember that our protocol uses the chosen pile protocol to let P select a
position in which P wants to draw a line one by one, i.e., negate a commitment to 0.
Briefly, P can represent any single loop simply by drawing its lines.

Because P can select either draw or erase a line, the parity of the length of a
solution loop and ℓ should be the same. Note that the length of any single loop, i.e.,
perimeter of any rectilinear polygon, is even if the length of a single line is assumed
to be one. Therefore, P can always connect a single path to be a single loop in the
last step.

Theorem 2. The resulting figure after running our protocol described in Sect. 3.3
always represents a single loop, no matter how P acts.

Proof. We prove that our protocol never produces a loop crossing and/or branching off
and a path not being closed. Remember that our protocol lets P draw a new line next
to a previously drawn line, so that the new line becomes the tip because the protocol
confirms that there is only a single line around the new line. That is, if P selects
α (resp. β) to draw a line in step 2c, the protocol reveals the values of a, b, c, β, h, g
(resp. d, e, f, α, g, h) to confirm that there is only a single line in step 2e. Therefore,
multiple loops cannot be drawn in the protocol, because if a malicious P tries to do
so, P needs to draw a new line such that there is no line around it. Similarly, a loop
branching off cannot occur because if so, P needs to draw a line such that there are
two lines around it. This discussion also holds when P selects to erase a line. Finally,
because lines P draws are connected to be a loop at the last iteration, it results in a
loop that does not cross and does not branch off, i.e., single loop.

5Clearly, the minimum loop cannot satisfy other rules, and we can further reduce the number of iterations
for the existing ZKP protocol for Slitherlink [16] in this sense, but it was not discussed.
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We note that adding dummy commitments in the setup phase is necessary to
delimit the action area. Also note that a dummy commitment should consist of ♡ ♡
to prevent cheating. P could select a dummy commitment to draw a line, but this does
not matter because negating a dummy commitment results in the dummy commitment
itself.

Theorem 3. Our protocol described in Sect. 3.3 leaks no information about P ’s
solution of a given board to a verifier V .

Proof. We follow the security definition formalized in the computational model for
card-based protocols [19]. Here, the security of card-based protocols means that both
the input and output are stochastically independent to a visible sequence trace, i.e.,
what we can observe from a sequence of cards operated during the protocol. In our
protocol, the input is the solution P has; more precisely, it is a sequence of commit-
ments placed on the board and a sequence of cards placed by P when executing the
chosen pile protocol. The output is a sequence of commitments on the board after
executing the protocol, and hence, it is obviously independent because they are face-
down cards. Therefore, we prove that the input is independent to a visible sequence
trace. We note that the number of iterations ℓ can be computed from the board. That
is, the number of actions on the sequence of cards is independent to the input. Thus,
let us focus on steps where face-down cards are revealed as follows.

• The security of step 1 is obvious, as it just uses the chosen pile protocol once
and negates the selected commitment. The security of the chosen pile protocol
is also obvious from its description in Sect. 2.3; revealing all cards in row 2 (and
row 3) leaks no information about the position of ♡ initially placed by P in
row 2, because before revealing, a pile-shifting shuffle is applied, resulting in the
♡ appearing at a random position. We note that the output of the chosen pile
protocol is a sequence of commitments, which is visually the same as the sequence
of commitments initially given to the protocol.

• The security of steps 2a, 2c, and 3 (and also 2f and 6) is clear from the above
description.

• In step 2(e)iv, one ♣ is revealed in a random position among (the right cards
of) the six commitments, because a pile-shifting shuffle is applied in step 2(e)iii.
This means that the value of only one commitment among them is 1, i.e., ♡ ♣ ,
which is exactly what V wants to confirm.

• In step 2(e)vi, one ♡ appears in a random position because of the application of
a pile-shifting shuffle.

• The security of step 5 is clear from the above description.

4 ZKP Protocol for Moon-or-Sun

We present a card-based ZKP protocol for a Moon-or-Sun puzzle. Our protocol has two
phases: the setup and verification phases. The setup phase uses our protocol proposed
in Sect. 3 to construct a loop. The verification phase verifies all the rules other than
rules 1 and 2.
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4.1 Setup

As constructed in Sect. 3, a solution is represented with a commitment between each
adjacent cells. Moreover, we place a commitment on each cell to represent the loop
passing through a symbol (i.e., moon or sun symbol). The setup is done in two steps:
1. Draw the loop using our protocol presented in Sect. 3;
2. Place the commitments inside the cells. Notice that we modify only cells with

moon or sun symbol.

Forming the loop. We directly use the construction described in Sect. 3. At this
point, there are commitments between the cells but no commitment inside them.

Filling the grid. We want to put commitments inside the cells to model the line
passing through it (or not). For each cell (corresponding to a moon or sun symbol),
if the line passes through it, we observe that the sum of the values of the neighbour
commitments on its edge is always equal to two (otherwise, zero). Based on this
observation, we place a commitment inside every cell as follows. We note that we
execute the Mizuki–Sone copy protocol introduced in Sect. 2.2 whenever a commitment
on the board is taken, so that the same commitment can be used for several times.
1. Apply the sum protocol (Sect. 2.4) to the neighbors of the targeted cell ct . The

result is in ♡-scheme:

? ?

? ?

? ? ? ?ct → ? ? ? ? ? .

Here, the number of neighbors around ct is four, and the number of cards in the
resulting sequence is five. If it is at the border of the grid, the number of cards
will be either four or three; in any case, remember that if the sum is two, the
third card from the left in the resulting sequence is a ♡ .

2. Make a commitment consisting of the third and first cards in the resulting
sequence (in this order) by taking them and place it on ct .

V is convinced that each cell (containing a moon or a sun) is equal to 1 = ♡ ♣ if and
only if the line passes through it, i.e., there are two neighbours equal to 1, exactly.

At this point, P has placed commitments according to its solution, and V wants
to check that each rule is respected.

4.2 Verification Phases

The loop has been constructed in the previous step, so V wants to check if the other
rules are respected.

Only moon or only sun (rule 4). The loop must pass through only moon or only
sun symbols in a given room but exactly one of them. The following verification is
done for each room:
1. Consider all the commitments on sun cells, and place them in a sequence (in any

order). Apply a random cut introduced in Sect. 2.1 and reveal it. If the result has
alternating pattern, then continue; otherwise, abort.
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We show an example when the room has three sun cells as follows:〈
? ? ? ? ? ?

〉
→ ♣ ♡ ♣ ♡ ♣ ♡ or ♡ ♣ ♡ ♣ ♡ ♣ .

2. Repeat the previous step for moon cells.
3. Execute the Mizuki–Sone XOR protocol [20] with a commitment on any sun cell

and a commitment on any moon cell. If the protocol outputs a commitment to
1, then V continues; otherwise, V aborts.

Note that no information is leaked if the rule 4 is respected. Indeed, if the com-
mitments are equal (for a given symbol), the random cut hides the initial values of
commitments (V does not know if they are 0s or 1s). However, if the rule is not
respected, then V knows the number of commitments that are different (i.e., it can
deduce the Hamming weight of the sequence).

One enter, one exit (rule 3). The loop must be passing through a room only once.
This means that for each room, the loop crosses its edge exactly twice (one for entering
and one for exiting the room). The idea is thus to shuffle the commitments located at
the edge of a room and reveal them. Formally, we proceed as follows:
1. Consider a room and take all the commitments located at the edge.
2. Apply a pile-scramble shuffle to them.
3. Reveal all the commitments. If exactly two commitments to 1 appear, then

continue; otherwise, abort.
4. Repeat the previous step until visiting all rooms.

Alternating pattern (rule 5). The loop must pass through a different symbol to the
one in the previous room it enters. Let us first present the idea behind our verification
for this rule.

Given a solution as in Fig. 2, consider verifying whether a room (referred to as the
target) satisfies rule 5 or not. For this, we examine the two rooms connected to the
target room (i.e., those through which line passes) and ensure that the loop passes
through different symbols within the target room and the connected rooms. That is,
we determine whether the two connected rooms are either both “sun rooms” or “moon
rooms” and both of them differ to the target room. Our approach follows a similar
logic: for every adjacent room, we collect a commitment on any sun cell6. Subsequently,
from among the commitments, we somehow choose two commitments corresponding
to the two connected rooms without leaking any information. The remaining steps
are simple; we confirm that the values of the chosen commitments XORed with a
commitment on any sun cell within the target room both yields ones.

Now we are ready to describe the verification method. Suppose that we verify
the rule 5 for a target room R0 with k (≥ 2) adjacent rooms, R1, R2, . . . , Rk. Let ni,
1 ≤ i ≤ k, denote the number of commitments on the border between R0 and Ri. The
verification proceeds as follows.
1. For every adjacent room Ri, let cj denote each of the ni commitments on the

border between R0 and Ri, for 1 ≤ j ≤ ni (in any order). Collect one cj for every
j and add “dummy” commitments to 0 so that the total number of collected

6Remember that the value of a commitment on a cell indicates the presence of line passing through the
cell.
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commitments becomes nmax = max(n1, . . . , nk) as follows:

ni commitments︷ ︸︸ ︷
? ? ? ? · · · ? ? →

ni commitments︷ ︸︸ ︷
? ? ? ? · · · ? ?

nmax − ni commitments︷ ︸︸ ︷
? ?︸ ︷︷ ︸

0

? ?︸ ︷︷ ︸
0

· · · ? ?︸ ︷︷ ︸
0

.

Let si denote the sequence of the nmax commitments. Apply a pile-scramble
shuffle to si as follows:

si :
[

? ?
∥∥ ? ?

∥∥ · · ·∥∥ ? ?
]
→ si : ? ? ? ? · · · ? ? .

2. For every adjacent room Ri, 1 ≤ i ≤ k, let c′i denote a commitment on any
sun cell within Ri. Place one c′i above si. (If Ri has no sun, then let c′i denote
a commitment on any moon cell and swap the two cards constituting c′i before
placing it.)

si : ? ? ? ? · · · ? ? →
c′i : ? ?

si : ? ? ? ? · · · ? ? .

3. Apply a pile-scramble shuffle to the nk piles consisting of si and c′i, 1 ≤ i ≤ k, as
follows: [

c′1 : ? ?

s1 : ? ? ? ? · · · ? ?

∥∥∥∥· · ·∥∥∥∥ c′k : ? ?

sk : ? ? ? ? · · · ? ?

]
.

4. Reveal all the commitments constituting si for all i, 1 ≤ i ≤ k. Then exactly two
commitments to 1 should be revealed, each appearing in different si (rule 3) 7; if
not, V aborts. Denote these positions as a and b (a < b) as follows:

· · ·
c′r−1(a) : ? ?

sr−1(a) : ♣ ♡ · · · ♡ ♣ · · · ♣ ♡
· · ·

· · ·
c′r−1(b) : ? ?

sr−1(b) : ♣ ♡ · · · ♡ ♣ · · · ♣ ♡
· · · ,

where r ∈ Sk is the random permutation generated through the application of a
pile-scramble shuffle at step 3.

5. Let c′0 denote a commitment on any sun cell in the target room R0. (If there is
no sun, then denote a commitment on any moon cell by c′0 and swap the two
cards constituting c′0.) Execute an extended version of the Mizuki–Sone XOR
protocol [20] with c′0, c

′
r−1(a), and c′r−1(b) as follows.

7This means that rule 3 can be simultaneously verified for the target room.
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(a) Place c′0, c
′
r−1(a), and c′r−1(b) and apply a random bisection cut as follows:

c′0 : ? ?
c′r−1(a) : ? ?

c′r−1(b) : ? ?

→

 ?

?

?

∣∣∣∣∣∣
?

?

?

→ ? ?

? ?

? ? .

(b) Reveal all the cards. If the values of the middle and bottommost commit-
ments both differ from the value of the topmost commitment, then continue;
otherwise, abort.

? ?

? ?

? ?

→
♣ ♡
♡ ♣
♡ ♣

or

♡ ♣
♣ ♡
♣ ♡

→ Continue.

We execute these steps for all the rooms. If V does not abort, then V is convinced that
the commitments on the board respect rule 5. We discuss on reducing the number of
executions of these steps in Sect. 6.

4.3 Efficiency

Let us evaluate the number of required shuffles for our proposed ZKP protocol for
efficiency. Because the verification for rule 5 (alternating pattern) can also verify rule 3
(one enter, one exit) as mentioned, our protocol does not execute the verification for
rule 3 in this evaluation. The evaluation of the part of constructing a single loop is
given in Sect. 3.

Let nr denote the number of rooms in a given Moon-or-Sun puzzle and p×q denote
the size of the puzzle. For verifying rule 4, our protocol uses two random cuts and one
random bisection cut (for the XOR protocol [20]) for each room, i.e., 3nr. For verifying
rule 5 for each room, our protocol uses one pile-scramble shuffle, one random bisection
cut, and a number of pile-scramble shuffles corresponding to the number of adjacent
rooms. For duplicating commitments, our protocol applies the copy protocol [20], i.e.,
one random bisection cut, to each commitment between each pair of adjacent rooms
and on moon and sun cells. For making a commitment placed on each of moon and sun
cells, our protocol applies the sum protocol [35] to the four neighbour commitments,
i.e., three pile-shifting shuffles. In total, because the number of commitments between
each pair of adjacent rooms (and on moon and sun cells) is less than p2 × q2, our
protocol uses O(p2q2) shuffles.

5 Security Proofs

Our protocol needs to verify three security properties given as theorems.
Theorem 4 (Completeness). If P knows a solution of a Moon-or-Sun grid, then P
can always convince V ( i.e., V does not abort).

Proof. In the setup phase, P knowing the solution can first form any loop using our
proposed protocol described in Sect. 3 as in Theorem 1, and hence, P can form the
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solution loop. For placing a commitment inside a cell, we use the sum protocol [35]
so that the value of the commitment represents the presence of line. Because the
configuration of the four neighbors is either the following two (up to rotation), the
resulting sequence at step 1 is always ♣ ♣ ♡ ♣ ♣ , representing two if line passes
through the cell (the loop never branches off):

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

or

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

If line does not pass, then the resulting sequence is ♡ ♣ ♣ ♣ ♣ because all the four
neighbors are commitments to 0. Therefore, constructing a commitment with the first
and third cards, from the previous sequence, correctly represents the presence of line
for a cell.

For the verification phase, described in Sect. 4.2, we divide the proof into three
parts, each corresponding to one rule.
Only moon or only sun (rule 4): Because P knows a solution, the values of all the

commitments on sun cells considered at step 1 are either 0s or 1s, i.e.,
♣ ♡ ♣ ♡ · · · or ♡ ♣ ♡ ♣ · · · . Thus, applying a random cut to them always
yields a sequence having an alternating pattern. This holds true for moon cells
at step 2 as well. Finally, because rule 4 implies that the value of a commitment
on any sun cell must differ to that on any moon cell within the same room, the
XOR protocol [20] always outputs a commitment to 1 at step 3.

One enter, one exit (rule 3): The number of commitments to 1 among all the com-
mitments located at the edge must be two for every room. Therefore, two
commitments to 1 always appear when revealing all of them at step 3.

Alternating pattern (rule 5): At step 5, c′r−1(a) and c′r−1(b) come from commitments
on any sun cell within different rooms such that lines exist between each of them
and R0. This is because a commitment to 1 is revealed among each of sr−1(a)

and sr−1(b), and si comes from commitments on the border between R0 and Ri.
Rule 5 implies that the values of c′r−1(a) and c′r−1(b) must be both different to the

value of c′0, i.e., the first configuration at step 5(a) is as follows:

c′0 : ♡ ♣
c′r−1(a) : ♣ ♡
c′r−1(b) : ♣ ♡

or

c′0 : ♣ ♡
c′r−1(a) : ♡ ♣
c′r−1(b) : ♡ ♣ .

Thus, V never aborts when revealing all the cards at step 5(b).

Theorem 5 (Soundness). If P does not know a solution of a Moon-or-Sun grid, then
V always rejects ( i.e., the protocol aborts).
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Proof. Our protocol is a proof-of-knowledge because commitments placed on the grid
after the setup phase represent a solution. Thus, in the remaining part of this proof,
we prove that V always aborts if P does not provide a solution, i.e., at least one rule is
not respected. We consider the case that each of the rules is not respected as follows.
Only moon or only sun (rule 4): For a given room, two cases are considered: (1) the

loop does not pass through all suns (or moons) but only some of them, and (2)
the loop passes through all moons and suns (or nothing). The first case can be
detected at either step 1 or step 2 because a sequence of commitments on all sun
(moon) cells does not have an alternating pattern, e.g., ♣ ♡ ♣ ♡ ♡ ♣ . The
second case can be detected at step 3 because the value of commitment on any
sun cell is the same as on any moon cell.

One enter, one exit (rule 3): Because all commitments located at the edge of a given
room and the target room are revealed at step 3, the number of times the loop
enters the given room is revealed. Thus, V always detect the case in which rule 3
is violated.

Alternating pattern (rule 5): If this rule is violated, it means that for a given room,
there is at least one adjacent room such that line exists between them but the
loop passes through the same symbol (assuming that rule 4 is respected). As
stated in the above proof, because c′r−1(a) and c′r−1(b) come from commitments
on any sun cell within such rooms at step 5, V learns whether the values of them
are equal to c′0 using the XOR protocol [20]. Thus, V always aborts.

In any case, the verifier always rejects. Note that the loop condition cannot be violated
as in Theorem 2.

Theorem 6 (Zero-knowledge). Any party in the verifier role learns nothing about P ’s
solution.

Proof. We use the same proof technique as in [8], namely the description of an efficient
simulator which simulates the interaction between an honest prover and a cheating
verifier. As described in [8], this simulator does not have a correct solution, but has
an ability that a sequence of cards can be swapped with the same number of cards
in any time; this ability is the replaced one with the rewind ability in cryptographic
ZKP protocols.

Informally, our protocol is zero-knowledge because it applies an appropriate shuf-
fling to a sequence of cards before revealing them. The simulator can always swap the
sequence such that the real and simulated protocols are indistinguishable.

Formally, in the setup phase, the simulator first constructs arbitrary loop executing
our protocol for the loop condition. Subsequently, it applies the sum protocol [35]
introduced in Sect. 2.4. Note that our protocol and this existing protocol are proved to
leak no information as in Theorem 3 and [35], respectively. In the verification phase,
for each of the remaining rules, it acts as follows.
Only moon or only sun (rule 4): At steps 1 and 2, during each application of a ran-

dom cut, the simulator swaps the commitments with commitments to 1. Because
a random cut cyclically and randomly shifts a sequence of cards, this swapping
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results in any of the alternating patterns with a probability of 1/2, which is indis-
tinguishable from a real execution. At step 3, it executes the Mizuki–Sone XOR
protocol [20], which leaks no information as proved in [20].

One enter, one exit (rule 3): At step 2, the simulator swaps the commitments with
the ones where the number of commitments to 1 is exactly two. Because a pile-
scramble shuffle randomly rearranges the order of piles consisting cards, the two
commitments to 1 appear in random positions.

Alternating pattern (rule 5): At step 1, the simulator swaps the nmax commitments
with the ones having exactly one commitment to 1 if i = 1, 2 and with nmax com-
mitments to 0 otherwise. At step 3, it acts nothing, but applying pile-scramble
shuffles results in the case where the two commitments to 1 appears in different
sequences of random positions. Finally, at step 5, it swaps c′0, c

′
r−1(a), and c′r−1(b)

with commitments to 1, 0, and 0, respectively. Because applying a random bisec-
tion cut to them results in either commitments to 1, 0, and 0 or commitments to
0, 1, and 1 with a probability of 1/2, V learns nothing other than that the value
of c′0 differs to those of c′r−1(a) and c′r−1(b).

6 Discussion

Here, we discuss whether we can reduce the number of executions of our method for
rule 5 described in Sect. 4.2. Suppose that we execute the verification phase described
in Sect. 4.2 for all rooms surrounding a given room. Then we prove that such a room
does not need to be verified for rule 5 as in the following theorem.
Theorem 7. A room always satisfies rule 5 if all rooms surrounding the room satisfy
all the rules.

Proof. Suppose, for the sake of contradiction, that there exists a room R that does
not satisfy rule 5, while all rooms surrounding R are verified to satisfy all the rules
through the execution of our verification phase described in Sect. 4.2. Then, as R does
not satisfy rule 5, there should exist a room R′ such that the line passes between R
and R′, passing through the same symbol in both.

However, R′ surrounds R, and this contradicts our assumption that all rooms
surrounding R satisfy all the rules. Therefore, our initial assumption must be false,
and hence, R satisfies rule 5.

Theorem 7 implies that we do not need to verify all rooms for rule 5. We observe
that optimally reducing the number of rooms for which rule 5 is verified in our protocol
is related to one of the classical NP-hard problems, namely, the minimum vertex cover
problem. This connection emerges if we consider a Moon-or-Sun puzzle as an undirected
graph, wherein a vertex set comprises rooms, and an edge denotes the adjacency of
rooms. A vertex cover of graph is a set of vertices where every edge of the graph has
at least one vertex in the set. The minimum vertex cover problem asks the minimum
size of such vertex covers if they exist.

Because a vertex cover represents rooms surrounding all the remaining rooms, it
suffices to verify whether such rooms satisfy rule 5, as indicated in Theorem 7. However,
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if we wish to verify rule 5 for a minimum number of rooms we must initially find a
minimum vertex cover. As mentioned, finding such a cover is an NP-hard problem, even
on planar graphs, thus we are unable to perform this initial step efficiently. Although
techniques for evaluating the execution time of card-based protocols exist [18], doing
so in this case is non-trivial, due to this additional computationally expensive step.
Additionally, constructing ZKP protocols for a Moon-or-Sun puzzle may prove more
challenging than those in existing work because in essence, rule 5 involves not verifying
a given room itself but comparing a given room with all of its adjacent rooms.

It is still possible to bound the number of rooms that we must verify rule 5 for,
without requiring a computational step of infeasible running time. To begin, we note
that any planar graph always has a vertex cover with at most 3n

4 vertices, and thus
we have the following theorem:
Theorem 8. It is possible to convince the verifier that all rooms satisfy rule 5 by
checking this rule for at most 3

4 of the rooms.

Proof. It follows from theorem 7 that it suffices to verify rule 5 only for rooms in a
vertex cover. Furthermore every planar graph has a vertex cover containing at most
3
4 of the vertices. Thus it is only ever necessary to verify rule 5 for only 3

4 of the
rooms.

Furthermore, we know that we can find a cover of this size in polynomial time. To
do so, we find a four coloring of the graph, and then take our cover to be the union of
the three smallest color classes, yielding a cover that is of size most 3n

4 . It is possible
to compute a four coloring for a planar graph in polynomial (quadratic) time [28].

7 Conclusion

We proposed a card-based protocol for pencil-and-paper puzzles with the single loop
property, which is more efficient than the existing protocol [16]. This proposed protocol
is applied to the construction of a ZKP protocol for Moon-or-Sun, which has an
interesting rule: the loop must pass through different symbols within two consecutive
rooms. Through the construction, we found this rule to be related to a well-known
problem in graph theory, which leads some challenging problems.
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Appendix A Full Description of XOR and Copy
Protocols

XOR protocol. Given commitments to a, b ∈ {0, 1}, the Mizuki–Sone XOR
protocol [20] outputs a commitment to a⊕ b:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ · · · → ? ?︸ ︷︷ ︸
a⊕b

.

This protocol proceeds as follows.

1. Rearrange the sequence:
1

?
2

?
3

?
4

? →
1

?
3

?
2

?
4

? .
2. Apply a random bisection cut:

[
? ? | ? ?

]
→ ? ? ? ? .

3. Rearrange the sequence:
1

?
2

?
3

?
4

? →
1

?
3

?
2

?
4

? .
4. Reveal the first and second cards in the sequence to obtain the output commit-

ment as follows: ♣ ♡ ? ?︸ ︷︷ ︸
a⊕b

or ♣ ♡ ? ?︸ ︷︷ ︸
a⊕b

.

Copy protocol. Given a commitment to a ∈ {0, 1} along with two commitments to
0, the Mizuki–Sone copy protocol [20] outputs two commitments to a:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

→ · · · → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a

.

This protocol proceeds as follows.
1. Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
5

?
2

?
4

?
6

? .

2. Apply a random bisection cut to the sequence as follows:[
? ? ? | ? ? ?

]
→ ? ? ? ? ? ? .

3. Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
4

?
2

?
5

?
3

?
6

? .

4. Reveal the first and second cards in the sequence to obtain the output commit-
ments as follows:

♣ ♡ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a

or ♡ ♣ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a

.
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Appendix B How to Execute Chosen Pile Protocol

Let us describe the procedure with the example of commitments placed on a 3 × 3
board as shown in Sect. 3.3. To select two commitments at the top and left of a cell
via the chosen pile protocol, we make a sequence of 4-card pile as follows: we pick a
commitment at the left of each cell and place it right to the one at the top of the cell.

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?

Then, each two commitments is picked from top to bottom to make a sequence of
4-card piles as follows:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · ? ? ? ? .

Therefore, using the chosen pile protocol, P can select two commitments at the top
and left of a cell, among which P wants to negate the value of a commitment.

After P selects the two commitments, V picks eight commitments around them.
Since the chosen pile protocol uses the pile-shifting shuffle to select a pile, we can
further shift the sequence of 4-card piles so that the selected pile (i.e., the two
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commitments) is placed in the middle cell as follows:

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?

β α

Here, the two selected commitments are specified by α and β to be consistent with
Sect. 3.3. Therefore, V can always pick the eight commitments around them, without
knowing their original positions.
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