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Abstract. We consider swarms of luminous myopic robots that run in
synchronous Look-Compute-Move cycles. These robots evolve in a finite
grid and are disoriented, i.e., they have neither global compass nor a
common chirality. In this context, we propose optimal solutions for the
perpetual exploration of a finite grid. Precisely, we investigate optimality
in terms of the visibility range, number of robots, number of colors. In
more detail, under the optimal visibility range one, we give an algorithm
which is optimal w.r.t. the number of robots: it uses three robots and
three colors. Under visibility two, we design an algorithm that uses five
robots and only one color, i.e., robots are oblivious.

Keywords: Luminous myopic robots, perpetual exploration, finite grid, exclu-
siveness.

1 Introduction

We consider swarms of luminous robots [16], i.e., autonomous robots endowed
with visibility sensors, motion actuators, and lights of different colors. Those
robots operate in synchronous Look-Compute-Move cycles, where they first sense
the environment (Look), then choose a destination and update their light color
(Compute), and finally move to the chosen destination (Move).

Our goal is to investigate the computational power of such robot swarms.
Hence, we consider luminous robots with limited capabilities. First, they are
myopic, i.e., they are only able to sense their surroundings within a bounded
visibility range. Furthermore, they are fully disoriented since they have neither a
global compass nor a common chirality. Finally, except from their lights, robots
have neither persistent memories nor communication capabilities.

* This study was partially supported by the French ANR projects ANR-16-CE40-0023
(DESCARTES) and ANR-16 CE25-0009-03 (ESTATE).
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We are interested in coordinating such weak robots to solve a infinite global
task called the perpetual exploration. Given a space which is partitioned into
locations, it requires each of these locations to be visited infinitely often by at
least one robot. Here, we conveniently discretize the space by a finite graph,
where nodes represent locations and edges represent the possibility for a robot to
move from one location to another.

In this paper, we look for optimal ezclusive solutions to the perpetual explo-
ration of a finite grid, both in terms of visibility range and number of robots.
Exclusiveness [1] requires any two robots to never simultaneously occupy the
same position nor traverse the same edge.

Related Work. The exploration problem is a problem that has been exten-
sively investigated. Various topologies have been considered, e.g., lines [13],
rings [2,14,10,15,7], trees [12], torus [9], finite [8,3] and infinite grids [4,5]. In
particular, it is shown in [4] that, without a common chirality, exploring an
infinite grid with oblivious* synchronous robots is impossible under visibility
range one, whatever be the number of robots. This latter result is established by
proving that, under these settings, robots are not able to move from an arbitrary
distance. Hence, it also applies to grid of unbounded size.

In finite graphs, many papers [12,13,14,10,7,9,8] consider the terminating
version of the exploration (henceforth called terminating exploration), which
requires that all robots eventually stop moving after all nodes have been visited.
The perpetual exploration requires each location to be visited infinitely often
by all or a part of robots. Perpetual exploration of finite graphs has been, for
example, considered in [2,3,6].

A large part of the literature deals with “non-myopic” robots, i.e., robots with
an unbounded visibility range allowing them to sense the whole graph and the
positions of all the robots; see [12,2,3,13,14,10,9,8]. In such a context, robots are
always assumed to be anonymous and oblivious. Exploration algorithms satisfying
exclusiveness are proposed in both finite [2,3,6] and infinite graphs [4,5].

Chirality is usually assumed in the 2D Euclidean plan; see for example [11].
However, recently, few works dedicated to discrete environment, e.g., in (infinite)
graphs [4], investigated the exploration problem assuming robots which have a
common chirality. Chirality is important when dealing with optimal solutions.
For example, with visibility range one and few colors (O(1)), five (resp. six)
synchronous robots are necessary and sufficient to explore an infinite grid with
(resp. without) the common chirality assumption [4,5].

A recent work [6] studies the exploration problem in finite grid, with myopic,
synchronous, and luminous robot (like our model here), yet assuming robots
agree on a common chirality. In a nutshell, it is shown in [6] that two robots
with three colors and a common chirality are necessary and sufficient to solve
the problem under visibility range one. Moreover, under visibility range two and
assuming a common chirality, three robots are necessary and sufficient when
robots have only one color.

4 Oblivious robots have no state and cannot remember past actions.
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Visibility|# Robots|# Colors Algorithm
1 2 finite |Impossible (Thm. 1)
1 3 3 Vonej
2 5 1 Vitwo;

Table 1: Summary of our results.

Contribution. To the best of our knowledge, the present work is the first study
of the (perpetual) exclusive exploration with myopic (luminous) robots in finite
grids with robots without chirality.

Our contribution is threefold. We prove that, under any finite visibility range,
the perpetual exploration is not solvable using only two robots, whatever be
the finite number of available colors. Then, we present a perpetual exploration
algorithm that is optimal in terms of visibility range (1) and number of robots (3).
Moreover, this algorithm only requires 3 colors per robots. Finally, we propose an
algorithm that requires five oblivious robots, i.e., each of those five robots needs
only one color (the optimal), yet assuming visibility range two. Nevertheless,
following results in [4], visibility range two is the smallest range where a solution
with oblivious robots is possible. Table 1 summarizes our contributions.

Roadmap. Section 2 is devoted to the computational model and definitions.
In Section 3, we prove our impossibility result. We present our algorithm in
Sections 4 and 5. We make concluding remarks in Section 6.

2 Model

We consider a set of n > 0 robots located on a finite grid made of £ > n lines
and C > n columns,’ i.e., robots evolve in an undirected graph G(V, E) where
V=A{G4) : i€[0,C—-1],5 €[0,£—1]} and E = {{(4,5),(k, )} : (i,j) €
V A(k1) € VAJi—k|+|j—1 =1}. The size of the grid is then £ x C. Grid
coordinates are used for the analysis only, i.e., robots cannot access them.

We assume a discrete time where, at each round, the robots synchronously
perform a Look-Compute-Move cycle. In the Look phase, a robot gets a snapshot
of the subgraph induced by the nodes within distance ¢ € N* from its position.
@ is called the wvisibility range of the robots. The snapshot is not oriented in any
way as the robots do not agree on a common North. However, it is implicitly
ego-centered since the robot that performs a Look phase is located at the center of
the subgraph in the obtained snapshot. Then, each robot computes a destination
(either Up, Left, Down, Right or Idle) based only on the snapshot it received.
Finally, it moves towards its computed destination.

5 The requirement on the numbers of lines and columns is only made for the sake of
simplicity.
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We forbid any two robots to occupy the same node simultaneously. A node
is occupied when a robot is located at this node, otherwise it is empty. Robots
may have lights with different colors that can be seen by robots within distance
@ from them. We denote by Cl the set of all possible colors.

The state of a node is either the color of the light of the robot located at this
node, if it is occupied, or 1 otherwise. In the Look phase, the snapshot includes
the state of the nodes (within distance ®@). During the compute phase, a robot
may decide to change the color of its light.

In all our algorithms, we also prevent any two robots from traversing the same
edge simultaneously. Since we already forbid them to occupy the same position
simultaneously, this means that we additionally prevent robots from swapping
their position. Algorithms verifying this property are said to be exclusive. However,
to be as general as possible, we do not make this additional assumption in our
impossibility results.

Configurations. A configuration C in a grid G(V, E) is a set of pairs (p, ¢), where
p € V is an occupied node and ¢ € Cl is the color of the robot located at p. A
node p is empty if and only if Ve, (p,c) ¢ C. We sometimes just write the set of
occupied nodes when the colors are clear from the context.

Views. We denote by G, the globally oriented view centered at the robot r, i.e.,
the subset of the configuration containing the states of the nodes at distance
at most ¢ from r, translated so that the coordinates of r is (0,0). We use this
globally oriented view in our analysis to describe the movements of the robots
(see, for example, Fig. 1): when we say “the robot moves Up”, it is according
to the globally oriented view. However, since robots do not agree on a common
North, they have no access to the globally oriented view. When a robot looks
at its surroundings, it instead obtains a snapshot. To model this, we assume
that the local view acquired by a robot r in the Look phase is the result of an
arbitrary indistinguishable transformation on G,. The set ZT of indistinguishable
transformations contains:

1. the rotations of angle 0 (to have the identity), 7/2, 7 and 37/2, centered at
T’

2. the mirroring (robots cannot distinguish between clockwise and counterclock-
wise), and

3. any combination of rotation and mirroring.

Here, we assume that robots are self-inconsistent, meaning that different
transformations may be applied at different rounds.

It is important to note that when a robot r computes a destination d, it is
relative to its local view f(G,), which is the globally oriented view transformed
by some f € Z7. So, the actual movement of the robot in the globally oriented
view is f~1(d). For example, if d = Up but the robot sees the grid upside-down
(f is the m-rotation), then the robot moves Down = f~!(Up). In a configuration
C, V(i,j) denotes the globally oriented view of a robot located at (i, 7).

A robot is said to be isolated when the only robot in its view is itself.
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Algorithm. An algorithm A is a tuple (Cl, Init, T) where CI is the set of possible
colors, Init is a mapping from any considered grid to a non-empty set of initial con-
figurations in that grid, and T is the transition function Views — {Idle, Up, Left,
Down, Right} x Cl, where Views is the set of local views. When the robots are
in Configuration C, a configuration C’ obtained after one round satisfies: for all
((,7),c) € C, there exists a robot in C with color ¢’ € Cl and a transformation
f € ZT such that one of the following conditions holds:

— ((1,9),¢) € C and f~N(T(F(Ve(i. ) = (Idle, o),

~ ((1=1,9).¢) € C and fH(T(f(Veli—1,7)))) = (Right,c),

— ((i+1,5),¢) € C and FHT(f(Voli+1.5))) = (Left,c),

— (1,4~ 1),¢) € C and FHT(f(Voli,j — 1)) = (Up,c), or

— ((i,j+1),¢) € Cand f~HT(f(Ve(i,j +1)))) = (Down,c).
We denote by C' +— C’ the fact that C” can be reached in one round from C (n.b.,
> is then a binary relation over configurations). An execution of Algorithm A in
a grid G is then a sequence (C;);en of configurations such that Cy € Init(G) and
Vi > 0, Ci — Ci+1.

Perpetual finite grid exploration. An execution (C;)ien in a grid G = (V, E)
achieves the Perpetual Finite Grid Ezxploration (PFGE) if for every node u € V
and for every time ¢, there exists a time ¢’ > ¢ such that u is occupied in Cy .

An algorithm A that uses n robots solves the Perpetual Finite Grid Exploration
(PFGE) problem if for every finite grid G = (V, E) with at least n lines and n
columns and every initial configuration Cy € Init(G), we have every execution of
A in G starting from Cj that achieves the PFGE.

An algorithm as a set of rules. We write an algorithm as a set of rules, where a
rule is a triplet (V,d, c) € Views x {Idle, Up, Left, Down, Right} x CI.

We say that an algorithm (Cl, Init, T) includes the rule (V,d,¢), if T(V) =
(d, ¢). By extension, the same rule applies to indistinguishable views, i.e., Vf €
IT7T,T(f(V)) = (f(d),c). Consequently, we forbid an algorithm to contain two
rules (V,d,c) and (V',d’, ') such that V' = f(V) for some f € Z7. Hence, an
algorithm corresponds to a set of rules if each destination is the result of applying
one of its rules.

As an illustrative example, consider the rule R; given in Fig. 1. This rule is
defined for robots having a visibility range of two. This rule means that, when a
blue robot B sees two robots with color R, one on top and one in diagonal, then
the blue robot is dictated to move Up. By extension the same rule applied if the
view is rotated by m, but in that case, the destination would be Down.

In the same figure, Rule R is a rule where the three black nodes represent a
part of the outer boundary of the grid, that we call a wall in the remaining of
the paper. In our algorithms, we often define similar rules that apply regardless
of the presence of a wall in some part of the view. Thus, to avoid defining several
time rules with very similar views, we propose a notation to represent several
rules in just one picture. For example, Rule R3 in Fig. 1 has three nodes hatched
with vertical lines, which means that the rule applies regardless of the presence of
a wall located at those nodes. In practice, every rule that contains such vertical
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(resp. horizontal) hatched lines, represents a set of rules obtained by replacing
each of those lines either by walls, or by empty nodes. For example, Rule R3 in
Fig. 1 is a concise representation of Rules R; and Rs.

Notice also that, due to the absence of orientation and chirality, a rule
(V,d, c¢) may be ambiguous, meaning that there exists f € ZT such that T'(V') #
fUT(f(V))). In the figures, we illustrate such ambiguities by depicting the
possible destinations with several arrows. For example, Figure 2 shows an am-
biguous rule where the robot has a symmetric view. Hence depending on the
transformation f chosen by the adversary, the robot moves either left or right
when executing this rule.

Ry Ry R3

Q Q Q

090  ©oe ®oo &
O

OO0 O-(B) @ OO B0

Fig.2: Example of
an ambiguous rule.

Fig. 1: Examples of rules.

Algorithms having locally-defined initial configurations. In a given grid, the set of
possible initial configurations of an algorithm can be reduced to a singleton. In
such a case, the scalability and flexibility of the algorithm is weak. To be more
general, we propose algorithms with locally-defined sets of initial configurations.
Configurations in a locally-defined set of initial configurations are defined by one
and the same pattern which fixes the colors and relative positions of the robots.
Hence, for a given grid, every two possible initial configurations are equal up
to a translation applied to all robot positions and the set of all possible initial
configurations is closed by such translations.

3 Impossibility Results

It has been shown in [6] that the PFGE problem is not solvable using only one
robot for any finite visibility range. We now extend this result by proving that
the PFGE problem is also not solvable using two robots if they have a visibility
range of one. Hence, throughout this section, we assume two robots under
visibility range one.

First, we observe that in large enough grids, if robots travel a long distance
without seeing any wall, or seeing one and the same wall without reaching its
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corner, then they must execute a periodic sequence of movements. Indeed, the
maximum number of distinct relative positions and colors two robots endowed
with |Cl| colors can have is the number of 2-combination with repetitions B =

((‘C;”)) = % Thus, if robots travel a distance at least B without seeing

a wall, or seeing one and the same wall without reaching its corner, then they
are actually executing a periodic sequence of movements. Of course, the value
of B depends on the algorithm, yet it is always finite. Notice also that |Cl| > 1,
since it has been shown in [6] that two oblivious robots with visibility range 1
are not sufficient to solve the PFGE problem. Hence, B > 3.

The above observations are important to prove our impossibility results.
First, we use them to show that once robots move far away from the wall, their
movements are restricted. In more detail, they can only move in straight line; see
Lemmas 1 and 2.

Lemma 1. Let A be an algorithm solving the PFGE problem with two robots. If
there exists an execution of A containing a configuration C' where the two robots
are at distance at least 2B from any wall and, from C, the robots perform a
periodic sequence of movements with no ambiguous rules, then the robots move
in a straight line until reaching a wall.

Sketch of proof: When a robot executes unambiguous rules, it can only move
from or towards the other robots, hence remains on the same line. Indeed, any
view containing another robot has an axis of symmetry passing through the
other robot (recall that we assume visibility range 1), and the destination of an
unambiguous rule must be on the axis as well. ad

Lemma 2. Let A be an algorithm solving the PFGE problem with two robots.
If there exists an execution of A containing a configuration C where robots are
at distance at least 2B from any wall and, from C, robots perform a periodic
sequence of movements, then this sequence does not include any ambiguous rule.

Sketch of proof: Every time robots execute an ambiguous rule, robots are making
a turn, and the adversary can decide on which side the robots are turning. If
the periodic sequence of movements contains an ambiguous move, the robots
will make at least one turn per period, hence the adversary can make the robots
remain in the same square grid of size B (the period of the sequence is at most
B). While doing so, the robots do not see any wall, and do not explore the whole
grid. a

Due to the limited visibility range, the two robots cannot be to far from each
other, as stated in the following three lemmas.

Lemma 3. Robots are always at distance at most 6 for each other.

Lemma 4. No exploration algorithm can reach a configuration where the two
robots are at distance at least 3, one robot sees no wall, and the other sees zero
or one wall.
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Lemma 5. If both robots see no wall, then they should be at distance one from
each other.

The next Lemma states that, if two robots are on the same line, this line
must be an axis of symmetry of their views and they cannot break this symmetry
without executing an ambiguous rule (due to the lack of chirality agreement).
Hence, the adversary can decide on which side of the axis it will keep the robots.

Lemma 6. Let A be an algorithm solving the PFGE problem using two robots.
Let C be a configuration where the two robots are on the same line L. Let R be
a set of nodes delimiting a rectangle for which L is an axis of symmetry. Let
Ry C R such that the union of Ry and the symmetric of Ry, with respect to L, is
equal to R. Then, from C, a configuration where a robot is located at a node in
Ry is reachable.

We now prove our main lemma, which states that the robots cannot move
further than a distance of 4B from all walls. To achieve this, we need two
additional definitions. A corner box is the set of nodes forming a square of size
2B including a corner of the grid. We say robots are in a T-configuration when
they are adjacent, only one is adjacent to a wall, and they are both at distance
at most 3B from another wall.

Lemma 7. If A solves the PFGE problem with two robots, then, if at a given
time t > B, a robot is in a corner box or if robots are in a T-configuration, then
there exists an execution after C such that a robot ends up a time t' > t either in
a corner boz or in a T-configuration, and between time t and t' the robots remain
at distance at most 4B from a wall.

Proof. We consider a grid of size greater than 4B, otherwise the lemma is proven
regardless of what the robots are doing (a robot is infinitely often in a corner
box and any wall at distance 4B).

Then, assume a robots is in a corner box in a configuration C' (the case where
robots are in a T-configuration is treated in the last paragraph of this proof)
at a given time ¢t > B. To explore the grid, the robots must leave the corner
box. Indeed, if a robot stays forever in a corner box, then both robots remain
as distance at most 2B + 6 (by Lemma 3) from that corner and, since, B > 3,
2B + 6 < 4B meaning that some node are only finitely often visited. We denote
by W7 and W5 the two walls adjacent to the corner contained in the corner box
where a robot was located in C; see Figure 3. Without the loss of generality, we
assume that at a given time tg, the last robot, say r, leaving the corner box of
size 2B is at distance 2B + 1 from W7, and so at distance at most 2B from W5.
Claim 1: After leaving the corner box from a given side, either (i) the robots

move until reaching the wall opposite to Wy, in a T-configuration, while

remaining at distance 2B from Wall Wy, or (ii) end up in a line L parallel
and at distance at most 4B to W1, while remaining at distance at most 2B +1
from Wall Ws.
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Fig. 3: The different cases in Lemma 7.

From the previous claim, we saw that two cases can occur; see Figure 3. In
the first case, the lemma is proven.

In the second case, robots end up in a line L parallel to W7 at time a given
t1 > to, while remaining at distance at most 2B 4+ 1 < 4B from wall W,. We
consider the set of nodes Ry = R§°™™¢" U R}'" where R°™" is the segment of
nodes at distance 2B from the wall W and with distance to W5 in the interval
[0,2B +1], and R}" is the segment of nodes at distance 2B +1 from W5 and at
distance from W7 in the interval [2B,d], where d; is the distance of the robots
to Wi; see Figure 3 (from the previous Claim, d; < 4B). The union of Ry with
its symmetric with respect to L delimits a rectangle (dotted line in the figure) so
that, using Lemma 6, there exists an execution such that a robot reaches R;.

If a robot reaches R{°""°", then a robot reaches a corner box and the lemma is
proven. If a robot reaches R} " then the robots have traveled a distance at least
B without seeing a wall, hence are executing a periodic sequence of movements.
The sequence cannot contain an ambiguous rule (by Lemma 2) because the
robots are at distance at least 2B from any wall, so they are moving in a straight
line (by Lemma 1), and they end up in the wall opposite to W5 and reach a
T-configuration, while remaining at distance at most 4B from Wj.

We now consider the case where robots are in a T-configuration in configu-
ration C. Then, they are on a line L perpendicular to a wall, say W5. Using a
similar argument, we know that either the robot enter the closest corner box, or
move in a straight line to the opposite wall until they reach a T-configuration.

(|

We can now prove our impossibility result.

Theorem 1. The PFGE is not solvable with a only two robots with visibility
range 1, for any bounded number of colors.

Proof. Assume that algorithm A solves the PFGE problem and consider a grid of
size 9B x 9B. Since the robots should explore the entire grid, a robot is eventually
in a corner box. Using Lemma 7 repeatedly, we can construct a execution from
there where the two robots remain at distance at most 4B from any wall. Hence,
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Fig. 6: Sequence of configurations during a turn around.

nodes at distance more than 4B from all the walls are not visited anymore, a
contradiction. a

4 Visibility range one: Voneg

In this section, we present an algorithm, denoted by Voneg , which assumes
visibility range one (the optimal) and uses three robots endowed with three colors.
By Theorem 1, Voneg is optimal in terms of number of robots. We encourage
the reader to take a look at the online animation illustrating the behavior of
Voneg [17] while reading the following explanation.

The algorithm defines three roles for the robots using the colors: L (leader), F'
(follower), X (landmark). The roles are not fixed, robots will alternate between
several roles along the execution. Moreover, in few particular situations, roles
will not exactly correspond to their default meanings.

Initially, the three robots are aligned, two of them have color L while the
third one has color F'; moreover the two robots with color L are adjacent. In
the following, we denote this pattern by LLR. Since initial configurations are
locally-defined, the possible initial configurations are then all those containing
the pattern LLR.

Since we assume the synchronous model and we consider the perpetual
exploration, the execution is necessarily eventually periodic. So, from an initial
configuration, the goal is to lead robots to a configuration C), from which they
will start to perform periodic journeys around the grid. We first explain how
periodic journeys are built. Then, we will see how robots can easily reach a
configuration of the journey starting from any initial configuration.

The main idea of the algorithm is to make the leader and the follower move
and explore a given line while the landmark robot remains idle to keep track of
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Fig.9: Up and turn. This sequence occurs when the robots are not in a corner.
The case when the robots are in a corner is presented in Figure 11.

the next line to explore. Every time a line is explored, the three robots, including
the landmark robot, move “up” by one row (assuming, for illustration purpose,
that robots are visiting a line from left to right). Then, once the robots reach a
corner, they change their direction and repeat the same process.

It is easy to make move the leader and the follower on the same direction to
explore a line: the leader moves away from the follower while the follower, as
suggested by its name, follows the leader. The rules executed by those two robots
to move along a straight line are presented in Figure 4.

During the line exploration by the leader and the follower, the landmark
robot is left beside a wall on a line adjacent to the line traversed by the two
other robots; refer to Figure 5. When the leader and the follower reach the other
wall, the idea is to make them move back and cross the same line again since
they do not have any sense of direction. For this purpose, they need to swap
their respective positions. This is done as follows: the first robot that detects the
wall is the leader, in this case, it moves to an adjacent empty node (except for
the last line, there is a symmetry and so the scheduler chooses which direction
to take) and changes its color to X. In the next round, the follower reaches the
wall and observes the landmark, i.e., the previous leader. Since the follower sees
only one other robot, it detects that they are moving back to traverse the same
line in the other direction. So, the follower moves back to its previous position
followed by the landmark. Moreover, the follower becomes the leader while the
landmark becomes a follower. Finally, they both start moving straight on the
opposite direction. The rules executed during the moving back process are those
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Fig. 10: Last corner preparation - Rules.

given in Figure 7 plus the first rule of Figure 9 (this latter will also be used when
switching to an upper line).

When the leader and follower reach again the wall again, the leader can
observe this time that a robot (the landmark robot) is located on a different
line in the neighborhood of the wall. Hence, an orientation can be defined to
indicate the next line to be explored i.e., the line containing the only unoccupied
node adjacent to the one hosting the leader. The idea is to make the robots
move to the next line in such a way they can repeat the previous behavior. The
lines of the grid are then explored in a given direction one by one until robots
reach the last line. The rules that are executed to make a line change, when
the landmark robot is reached, are presented in Figure 8. Figure 9 shows the
sequence of configurations occurring during a line change.

Given an orientation of the grid, assume without the loss of generality that the
robots are exploring the grid line by line in a given direction. As the grid is finite,
eventually the robots reach the last line with respect to the current exploring
direction. When this happens, the robots change the exploring direction by a
clockwise angle of . The robots then exhibit the same behavior as previously:
they explore the lines of the grid with respect to the new orientation. Note that
this change of direction is initiated by the first robot to join the last line (the
leader) as it is located at a corner. The change of direction is done through
several rules that are presented in Figure 10, while the sequence of configurations
composing this process are presented in Figure 11.

Assume initially the robots are all adjacent to a wall (remember that they
are aligned and their colors are respectively F'; L and L). Then, we have defined
few rules in order for the robot to reach, after one round, a configuration of
the periodic journey. After that, robots behave exactly as previously explained.
Starting from any other initial configuration, the goal is to move straight toward
a wall. Once the leader robots see the wall, it moves to an unoccupied node and
the reached configuration is exactly the same as the first one of an “up and turn’
sequence. Hence after that, the periodic journeys start. The rules used by the
robots to do this are shown in Figure 13.

For the grids with 3 lines or 3 columns, a specific rule is needed as any “up
and turn” sequence is considered to be done at a corner. The rule is shown in
Figure 14 and the sequence of movements when the grid has only 3 lines or 3
columns is shown in Figure 15 (the specific rule is used in the fifth round of the
sequence).

)
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F1g 11: Corner turn After the sequence, the exploratlon continues as before but
everything is rotated by a clockwise angle of .
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Fig. 12: Flrst “up and turn” after the corner turn
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Fig.14: Rules used
by robots to han-

dle grid with only 3
columns.

Fig. 13: Rules used by the robots to reach the wall
starting from a configuration where they shape an
LLF pattern.

Theorem 2. Voneg solves the perpetual exploration problem with three robots,
having three colors and visibility range one.

Sketch of proof: Using our simulation tool, we were able to prove that our
algorithm is correct for any grid n x m, with m,n € {3,4}. Then, we have shown
that when a group of robots is traveling along a row, adding a column does
not change the relative position of the robots when they reach a wall. Similarly,
adding a row does not change the relative position of the robots when they reach
a corner. The sequence of movement performed in a corner does not depend on
the size of the grid, so that, regardless of the size of the grid, the robots explore
the entire grid in a perpetual manner. ad

5 Visibility range two : Vtwof

We now outline our second algorithm, Algorithm Vtwof , which requires five
oblivious robots (i.e., they all have the same fixed color) and visibility range of 2.
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Fig. 15: Sequence of configurations when the grid has only 3 columns.
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Fig. 17: Move in a straight Fig. 18: Follow the wall.

line.

Again, we encourage the reader to follow the explanation of the algorithm while
looking at the animations available online [17].

The initial relative position of robots in QO@Q
Vtwoi5 is given in Figure 16. Starting from an ini- O@@O
tial configuration, the principles of the algorithm _ O @ @ O

are similar, yet simpler, than for the previous . .

one. Indeed, the robots remain grouped together, Fig.16: Initial relative posi-
and they move from left to right, without mak- tions.

ing any rotation when reaching a wall. Every time the group of robots reaches a
wall, they perform a turn sequence to move back to the opposite wall, one row
above or below, depending on the current orientation of the group (see Figure 19
for a turn one row below). After moving straight (see Figure 17) to the opposite
wall, everything is mirrored, so they do the same. They move back an forth until
they reach the top wall. After following the top wall (using a specific periodic
sequence of movements, see Figure 18), they make a special turn in order to
move back and forth in the other direction.

The proof of the next theorem is similar to that of Theorem 2.

Theorem 3. Vtwof solves the perpetual exploration problem with five oblivious
robots under visibility range two.
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Fig.20: Turn at a corner.

6 Conclusion

We have investigated the perpetual exclusive exploration of a finite grid by a
swarm of myopic luminous synchronous robots that have neither a common sense
of direction nor a common chirality. In these settings, We have proposed optimal
solutions with respect to either the number of robots, the visibility range, and
the number of colors.

In more detail, we have first shown that if robots have only a visibility range
one, then the problem is not solvable with two robots, regardless of the number of
colors. Then, we have proposed Voneg which uses three robots and three colors.
This algorithm is optimal both in terms of visibility range and number of robots.

Next, under visibility range two, we gave Algorithm Vone{ . This latter requires
five oblivious robots, i.e., five robots that use the minimal number of color (one).
Following the impossibility result of [4], visibility range two is the smallest range
admitting a solution in our settings.

The immediate open questions related to this work are about determining
whether Voneg is also optimal with respect to the number of colors and whether
Vonef is optimal with respect to the number of robots. Finally, it would be
interesting to extend our study to other topologies such as torus-shaped networks.
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