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Résumé
Cette thèse étudie la malléabilité dans le contexte du chiffrement à clé publique
et des signatures numériques, en présentant les avancées et les applications des
technologies améliorant la confidentialité.

La première partie aborde le problème de l’égalité générique des textes en clair et
les preuves d’inégalité. Étant donné deux textes chiffrés générés par un schéma
de chiffrement à clé publique, le problème de l’égalité des textes chiffrés consiste
à déterminer si les textes chiffrés contiennent la même valeur. Parallèlement, le
problème de l’inégalité du texte clair consiste à déterminer s’ils contiennent une
valeur différente. Les travaux précédents se sont concentrés sur la construction de
nouveaux schémas ou sur l’extension de schémas existants afin d’inclure le support
de l’égalité/inégalité du texte en clair. Nous proposons des preuves génériques et
simples à connaissance zéro pour les deux problèmes, qui peuvent être instanciées
avec divers schémas de chiffrement. Pour ce faire, nous formalisons les notions
liées à la malléabilité dans le contexte du chiffrement à clé publique et proposons
un cadre de définition pour le chiffrement générique aléatoire, que nous utilisons
pour construire nos protocoles.

La partie suivante est consacrée aux signatures préservant la structure sur
les classes d’équivalences, le principal élément constitutif des parties suivantes.
Initialement, nous proposons des constructions nouvelles et plus efficaces sous des
hypothèses standard. Ensuite, nous construisons un schéma d’accréditation établi
sur les attributs sous des hypothèses standard, qui étend les travaux précédents
de plusieurs façons. Nous améliorons notamment l’expressivité, les compromis
d’efficacité et proposons une notion de dissimulation de l’émetteur qui permet
aux détenteurs de lettres de créance de cacher l’identité de l’émetteur pendant
les utilisations.

La dernière partie est consacrée à la présentation de Protego, un nouveau schéma
d’accréditation pour les blockchains à autorisation. Il s’appuie sur les contributions
précédentes et bien qu’il soit discuté dans le contexte des blockchains à autorisation,
il peut également être utilisé dans d’autres contextes. Pour démontrer l’aspect
pratique de Protego, nous fournissons un prototype et des benchmarks montrant
que Protego est plus de deux fois plus rapide que les approches de l’état de l’art
basées sur Idemix, le schéma d’accréditation le plus largement utilisé pour les
blockchains à autorisation.
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Abstract
This thesis studies malleability in the context of public-key encryption and digital
signatures, presenting advances and applications to privacy-enhancing technologies.

The first part addresses the problem of Generic Plaintext Equality and Inequality
Proofs. Given two ciphertexts generated with a public-key encryption scheme,
the problem of plaintext equality consists in determining whether the ciphertexts
hold the same value. Similarly, the problem of plaintext inequality consists
in deciding whether they hold different values. Previous work has focused on
building new schemes or extending existing ones to include support for plaintext
equality/inequality. We propose generic and simple zero-knowledge proofs for both
problems, which can be instantiated with various encryption schemes. We do so by
formalizing notions related to malleability in the context of public-key encryption
and proposing a definitional framework for Generic Randomisable Encryption,
which we use to build our protocols.

The next part turns to Structure-Preserving Signatures on Equivalence Classes,
the main building block of subsequent parts. First, we propose new and more
efficient constructions under standard assumptions. Then, we build an anonymous
attribute-based credential (ABC) scheme under standard assumptions, which
extends previous work in several ways. We improve expressiveness, provide
efficiency trade-offs and propose an issuer-hiding notion that allows credential
holders to hide the issuer’s identity during showings.

The last part is devoted to presenting Protego, a new ABC scheme for permissioned
blockchains. It builds upon the previous contributions, and although it is discussed
in the context of permissioned blockchains, it can also be used in other settings.
To show the practicality of Protego, we provide a prototype implementation and
benchmarks showing that Protego is more than twice faster than state-of-the-art
approaches based on Idemix, the most widely used ABC scheme for permissioned
blockchains.
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The best known cryptographic problem is that of privacy: preventing the
unauthorized extraction of information from communications over an insecure
channel.

— Whitfield Diffie & Martin Hellman

1.1 Modern Cryptography
Cryptography (and, more generally, the field of cryptology) has gone from being
considered an art to gaining recognition as a science and mathematical discipline
throughout history. Commonly known as the science of secret, a term coined by
Jacques Stern, the father of modern French cryptology, it was not until the late
1970s that it began to show its full potential.

The groundbreaking work of Diffie and Hellman from 1976, “New Directions in
Cryptography” [DH76], presented it as “the study of “mathematical” systems for
solving two kinds of security problems: privacy and authentication”. However, the
introduction of Public-key Encryption (PKE) in [DH76] was so revolutionary that
the words “privacy” and “authentication”, although still fundamental, fall short
of describing it thereafter. Instead, the broader concept of modern cryptography
began to be used to encompass all subsequent developments in the field.

The concept of modern cryptography is best put through the words of Katz and
Lindell when they mention in their book that “it involves the study of mathematical
techniques for securing digital information, systems, and distributed computations
against adversarial attacks” [KL21].

Following the dot-com bubble and the massive adoption of the Internet, the entire
digital universe surpassed 44 zettabytes of data in 2020. In other words, in 2020
there were 40 times more bytes in the digital world than stars in the observable
universe [Des19]. This scenario highlighted the tensions of regulating the use of
digital data to protect human rights as a rocky trail.

While regulations can help individuals to exercise their rights in case of abuse,
they can also become a powerful tool for governments to restrict certain rights
whenever they are ill-defined or purposely wrong. For this reason, a lot of recent
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efforts in modern cryptography have been done in the context of Privacy-enhancing
Technologies (or simply PETs), which aim at easing the previous tensions in the
following way:

Privacy-enhancing Technologies is a system of Information and Communication
Technology (ICT) measures protecting informational privacy by eliminating or
minimising personal data, thereby preventing unnecessary or unwanted processing
of personal data without the loss of the functionality of the information system.

— [BVE+03]

In this thesis, we dive into modern cryptography through the optics of privacy-
enhancing technologies. Therefore, our focus and contributions are designing
practical and efficient techniques to protect informational privacy by preventing
unnecessary or unwanted processing of personal (or private) data.

To achieve the goals mentioned above, we present techniques based on zero-
knowledge proofs, digital signatures and, in general, malleable cryptography.

1.2 Malleable Cryptography
Historically speaking, the concept of malleability in cryptography was first
introduced by the seminal work of Dolev, Dwork, and Naor titled “Non-malleable
Cryptography” [DDN91]. Authors first observed that the notion of semantic
security was not enough for some applications in the context of public-key
encryption. Subsequently, they proposed an extension to it so that given a
ciphertext, it is impossible to generate a different one such that the respective
plaintexts are related. In other words, the key observation made by the authors
was that while semantic security ensured privacy, it did not imply independence.
Thus, their goal was to force that implication.

With the above in mind, the previous problem turned into ensuring that given
a ciphertext c, it should not be possible to somehow change it (malleate it) to
obtain another ciphertext c′ such that the message under c′ is related to that under
c. As a result, the notion was called “non-malleability”, and it was latter shown
to be equivalent to the notion of ciphertext indistinguishability under adaptive
chosen-ciphertext attacks (IND-CCA2) by Bellare and Sahai [BS99] (see Chapter 2
for a detailed discussion).

The contributions by Dolev, Dwork and Naor also included a formalization of
the previous idea in the context of string commitments and zero-knowledge proofs
of knowledge. This set the ground for further contributions in the field, which
includes the works by [Sah99] on Non-malleable Non-Interactive Zero-Knowledge
Proofs, by Dziembowski et al. on Non-malleable Codes [DPW10], and by Goyal
and Kumar on Non-malleable Secret Sharing [GK18].

While the original motivation to build non-malleable primitives continues to
be an active field of research (e.g., [RS21, BGW19, FKPS21]), malleability can
also be seen as a positive feature instead of a weakness or an attack. In this
regard, one of the first references is due to Shoup [Sho01], who suggested the term
benign malleability as a (positive) relaxation of IND-CCA2 (also further relaxed
by Prabhakaran and Rosulek [PR07], as discussed in Chapter 2). Such relaxations
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characterised ciphertext’s randomisations (without acting on the related plaintexts).
The first attempt to tackle the problem of controlled malleability in PKE with
respect to the plaintexts was made by Boneh, Segev and Waters [BSW12]. They
introduced the concept of targeted malleability to allow the computation of a specific
set of “allowable” functions.

Because the reader may find the terms “malleable” and “homomorphic” being
used interchangeably in some works, we would like to make the following distinction.
While (fully) homomorphic encryption [Gen09] realizes (general) computations over
encrypted data, our interest is broader. In this regard, the term homomorphic can
be confusing as it refers to a mathematical property. The same distinction would
apply to other primitives like fully homomorphic signatures [GVW15] and (fully
homomorphic) Non-Interactive Zero-Knowlede (NIZK) proofs [ADKL19]. Thus, we
consider the term malleable to be better suited than homomorphic to reason about
a particular functionality regardless of how it is actually implemented. Therefore,
we opt to use the term malleable and not homomorphic, emphasizing that one
would usually work with a controlled form of malleability, determined by some
concrete functionality, implemented in certain way.

Besides the work on malleable PKE, this thesis also explores malleable proof
systems [CKLM12] and malleable signatures [CKLM14]. The latter, in the form
of Structure-Preserving Signatures on Equivalence Classes (SPS-EQ) [FHS19].
Perhaps surprisingly, the idea of equivalence classes will be both, our starting and
ending point as it was a concept also discussed by Shoup in [Sho01].

1.3 Summary of Contributions
This thesis studies malleable cryptography in the context of PKE, proof systems
and digital signatures. It builds upon the following works:

• Generic Plaintext Equality and Inequality Proofs [BBLPK21a], presented at
Financial Cryptography 2021, and its full version [BBLPK21b].

• Improved Constructions of Anonymous Credentials from Structure-Preserving
Signatures on Equivalence Classes [CLPK22], presented at Public Key
Cryptography 2022, and its full version [CLPK21].

• Protego: Efficient, Revocable and Auditable Anonymous Credentials with
Applications to Hyperledger Fabric [CDLPK22], accepted at Indocrypt 2022.

As a result, advances in recent constructions and their application to
privacy-enhancing technologies are presented. Furthermore, implementations and
benchmarks considering state-of-the-art alternatives are provided to show the
practicality of our contributions. Below, we briefly present each of the above works.

1.3.1 Generic Plaintext Equality and Inequality Proofs
Given two ciphertexts generated with a PKE scheme, the problem of plaintext
equality consists in determining whether the ciphertexts encrypt the same message.
Similarly, the problem of plaintext inequality consists in deciding whether they
encrypt a different message.

Previous work has focused on building new schemes or extending existing ones
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to include support for plaintext equality/inequality. Instead, we propose generic
and simple zero-knowledge proofs for both problems, which can be instantiated
with various encryption schemes. To support this claim, we list a number of them
indicating the relation with our protocols.

First, we consider the context where a prover with access to the secret key wants
to convince a verifier, who has access to the public key and ciphertexts, on the
equality/inequality without revealing information about the plaintexts. We also
consider the case where the prover knows the encryption’s randomness instead of
the secret key. Finally, we propose sigma protocols (i.e., public coin, three-move
protocols with honest verifier zero-knowledge) for plaintext equality that lead to
NIZK proofs in the random oracle model via the Fiat-Shamir transform.

To prove our protocols security, we formalize notions related to malleability in
the context of PKE proposing a definitional framework for Generic Randomisable
Encryption, which we use to build our protocols.

Finally, we also see an added value in our contributions in terms of serving
as a pedagogical tool to introduce zero-knowledge proofs (ZKP). Usual examples
are graph 3-coloring or graph isomorphism. Although such protocols can be
explained without requiring any advanced cryptographic knowledge, they are not
used in real-world applications. On the contrary, our protocols are useful for real-
world applications of ZKP. Furthermore, the protocols that we present are very
intuitive and can easily be explained without requiring advanced cryptographic
knowledge outside the concept of PKE (i.e., it is not necessary to understand how
an encryption scheme works). For these reasons, we think our protocols can serve
as a convincing pedagogical example to explain ZKP to a larger audience with
little mathematical background.

1.3.2 Improved Constructions of Anonymous Credentials from
Structure-Preserving Signatures on Equivalence Classes

Anonymous attribute-based credentials (ABCs) are a powerful tool allowing users
to authenticate while maintaining privacy. When instantiated from SPS-EQ, one
can obtain a controlled form of malleability, leading to increased functionality and
privacy for the user.

Existing constructions consider equivalence classes on the message space,
allowing the joint randomisation of credentials and their corresponding signatures.
In this work, we additionally consider equivalence classes on the key space [CL19].
As a result, we obtain an issuer-hiding notion, where the issuing organisation is not
revealed when a user shows a credential. To realize it, we modify a recent SPS-EQ
scheme [KSD19] to support a fully adaptive NIZK proof from [CH20], showing how
to extend it to support equivalence classes on the key space.

Our work follows the ABC framework from Fuchsbauer, Hanser and Slamanig
[FHS19], improving over prior work in the following ways:

1. We extend the set-commitment scheme from [FHS19] to build a more
expressive credential system allowing the generation of witnesses for disjoint
sets ([FHS19] only allows selective disclosure of attributes). This way, users
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are able to prove that they do not hold a given set of attributes in their
credentials more easily.

2. We incorporate a proof of exponentiation to outsource part of the
computational cost from the verifier to the prover, which can be very useful
in several settings.

3. As previously mentioned, users can hide the identity of the issuer during
showings if the underlying SPS-EQ provides issuer-hiding features.

Relying on a Common Reference String, we obtain an efficient credential system
with increased expressiveness and privacy, whose security can be proven under
standard assumptions.

1.3.3 Protego: Efficient, Revocable and Auditable Anonymous
Credentials with Applications to Hyperledger Fabric

Recent works to improve privacy and auditability in permissioned blockchains like
Hyperledger Fabric relies on the Idemix credential system [Zur13] as it is the
only anonymous credential system that has been integrated to date. However,
the current Idemix implementation in Hyperledger Fabric (v2.4) only supports
a fixed set of attributes. It does not support revocation features, nor does it
support anonymous endorsement of transactions (in Fabric, transactions need
to be endorsed by a subset of peers before they can go through the consensus
process). Moreover, as Idemix uses a blind signature scheme with zero-knowledge
proofs of signature possession, it involves linear computation and communication
in the number of attributes. A prototype Idemix extension based on delegatable
credentials was proposed to include revocation, auditability, and to gain privacy
for users. This recent extension by Bogatov et al. [BDCET21] from 2021 makes
extensive use of pseudonyms and zero-knowledge proofs.

This work explores how to gain efficiency, functionality, and further privacy for
users by departing from recent work on anonymous credentials based on Structure-
Preserving Signatures on Equivalence Classes. More in detail:

1. We extend recent works in ABCs [FHS19, CLPK22] based on SPS-EQ to
support auditability features while also integrating the revocation features
from [DHS15a]. This extension relies on the random oracle model (already
present in the blockchain setting) to generate non-interactive showing proofs.

2. A showing involving k-of-n attributes (selective disclosure) has asymptotic
complexity O(n) for both the user and the verifier with Idemix. The use of
SPS-EQ lowers them to O(max{n− k, k}) and O(1), respectively.

3. We present and discuss two alternatives to the use of delegatable credentials
to hide the identity of credential issuers based on the SPS-EQ properties.

As a result, we propose Protego and Protego Duo, two alternatives for Idemix
and its recent extensions. While Protego is based on the issuer-hiding ideas
from [CLPK22], Protego Duo relies on the ones from [BEK+21]. We discuss
how they can be used in the permissioned blockchain setting and integrated to
Hyperledger Fabric. We also provide a prototype implementation, showing that
both alternatives are twice as fast as state-of-the-art approaches. Along the way,
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we review the privacy model in Fabric illustrating the various privacy requirements.

1.4 Other Contributions
We have contributed to two projects from the European Union’s Horizon 2020
Research and Innovation Programme. These are MyHealthMyData (under grant
agreement No 732907) and CUREX (under grant agreement No 826404). Both
involved the design and development of blockchain-based solutions, serving as
an inspiration for our work on zero-knowledge proofs and anonymous credentials.
Contributions related to these projects are not described here because, even though
they also target privacy-enhancing technologies, they are not associated with the
concept of malleable cryptography, which is the main topic of this thesis. Therefore,
the reader is referred to the related projects for a complete list of publications.

1.5 Organisation of this Thesis
This thesis is organised into seven chapters as follows:

Chapter 1 is the present introduction.

Chapter 2 contains the necessary preliminaries to assist the reader in subsequent
chapters. It introduces the different formalisms, security notions, notation,
cryptographic assumptions and primitives.

Chapter 3 presents our contributions in the context of PKE and is based on
the work in [BBLPK21a]. This chapter can be read independently of the
remainder of this thesis.

Chapter 4 serves as an introduction to Chapter 5 and 6. It is based on the work in
[CLPK22] and [CDLPK22]. This chapter presents constructions of SPS-EQ
under standard assumptions.

Chapter 5 presents our ABC scheme in [CLPK22], which depends on the previous
chapter.

Chapter 6 extends the ABC scheme from the previous chapter, presenting new
features and a more efficient instantiation. It discusses its integration with
permissioned blockchains and is based on the work in [CDLPK22].

Chapter 7 concludes this thesis discussing open issues and future work to expand
the work presented in this thesis.
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This is a field in which all the giants have been proven wrong multiple times. (The
trick is to be proven wrong in interesting ways.)

— Matt Blaze

2.1 Provable Security
We presented how cryptography evolved from being considered as an art to gaining
recognition as a science in the introduction. In the present section, we elaborate
on how the notion of provable security played a key role in that transition.

As beautifully explained in the brief introduction to Provable Security by
Michel Abdalla [Abd14], the most common approach to validate the security of
a cryptographic scheme in the past, was to search for attacks and to declare the
scheme secure if no attack was found to contradict its security. Unfortunately,
such an approach cannot exclude the possibility that an attack exists, demeaning
one’s hope to achieve a heuristic notion of security at best. Furthermore, ad hoc
attacks and defence mechanisms were the main resources used by both sides trying
to outsmart the other when reasoning about the security of a concrete scheme.

Provable security builds upon the following three pillars to overcome the above
limitations when arguing the security of a cryptographic scheme: definitions,
reductions and hard problems. First, it allows us to abstract and define general
notions for cryptographic primitives, which enable us to reason about their security
[Con19]. Secondly, it allows us to relate these notions formally in terms of
reductions as done in Complexity Theory to show that solving a problem A is
at least as difficult as solving another problem B. Ultimately, it relies on hard
problems to build meaningful reductions.

To define a general notion properly, definitions are given in the form of a
syntax alongside correctness and security properties. The syntax specifies the
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language used to describe a particular primitive, the expected input and output
of the related algorithms, parameters and domains. Correctness specifies the
required interactions to consider the scheme to work correctly. Finally, the security
properties specify the goal that the primitive should achieve when considering
adversaries with some specified capabilities.

All in all, provable security provides a rigorous framework for cryptographers to
define and analyze the security of cryptographic primitives, as long as the model
captures reality in a meaningful way.

2.2 Notation
Integers, sets and probabilities. We denote by Z and N the sets of integers and
positive integers. The set of integers 1, 2, ..., n is denoted [n]. If p ∈ N, we call Zp

the ring of integers modulus p, which has the structure of a field when p is prime.
For a set S and r ∈ S, we use the notation r $← S to indicate that r has been
sampled uniformly at random from S. For any finite set of elements S, |S| denotes
the cardinality of S. A function ε(λ) : N → N is negligible if for every positive
polynomial poly(λ) : N→ R, there exists λ0 ∈ N such that ε(λ) ≤ 1/poly(λ) for all
λ ≥ λ0. The notation poly(λ) is also used for polynomial functions in general. For
a random variable X and possible outcome x, we denote Pr[X = x] the probability
of the event X = x.

Algorithms. Throught this thesis, we work with probabilistic polynomial time
algorithms (or p.p.t for short). This class of algorithms has access to a random
tape, and their execution time is bounded by some polynomial poly in the size of
some input λ ∈ N, on all inputs and all random tapes. For this reason, λ is referred
to as the security parameter. Since what usually matters is its length in bits, it is
passed as input to all algorithms in the unary form 1λ.

All p.p.t algorithms are assumed to use a random tape, and produce non-
deterministic results. When a p.p.t algorithm does not use its random tape, we
explicitly refer to it as deterministic. Sometimes, we refer to p.p.t algorithms
as efficient algorithms.

For an algorithm A we denote the execution of A with input x and output y as
y ← A(x) if the execution is deterministic and by y $← A(x) if the execution is
probabilistic. Sometimes, we overload the operator ← to denote assignments. The
notation A(x; r) is used when a random value r (usually computed internally by
A) is directly passed to A on input x. Whenever an algorithm fails, the output
is set to ⊥. Public parameters (denoted as pp) are often passed implicitly to all
algorithms (although they are properly defined in the syntax of each cryptographic
primitive). Besides the usual syntax to specify algorithms in terms of flow control
sentences, we also use the sentence check to compute boolean values, assuming the
algorithm aborts whenever a result within a check block is false.

Pairing-based Cryptography. Let BGGen be a p.p.t algorithm that on input 1λ,
returns a description BG = (p,G1,G2,GT , P1, P2, e) of an asymmetric bilinear group
where G1,G2,GT are cyclic groups of prime order p with ⌈log2 p⌉ = λ, P1 and P2
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are generators of G1 and G2, and e : G1 × G2 → GT is an efficiently computable
(non-degenerate, i.e., e(P1, P2) generates GT ) bilinear map. BG is said to be of
Type-3 if no efficiently computable isomorphisms between G1 and G2 are known.
For all a ∈ Zp, we denote by [a]s = aPs ∈ Gs the implicit representation of a in
Gs for s ∈ {1, 2}. For matrices (or vectors) A, B we extend the pairing notation
to e([A]1, [B]2) = [AB]T ∈ GT .

Polynomials. For a set X with elements in Zp, we refer to ChX (X) = ∏
x∈X (X +

x) = ∑i=n
i=0 ci ·X i (a monic polynomial of degree n = |X | and defined over Zp[X]) as

its characteristic polynomial. For a group generator P , ChX (s)P can be efficiently
computed (e.g., using the Fast Fourier Transform) when given (siP )|X |

i=0 but not s.
This is because ChX (s)P = ∑i=n

i=0 (ci · si)P .

Other symbols and shorthands. Black-box algorithms used as oracles are
denoted as O and accessed as AO(x)(y). Cryptographic hash functions are denoted
by H(x). Whenever the symbol := is written, it is a shorthand for “defined as”.
The symbol ≈ is used to indicate that two probability ensembles are statistically
close. Equivalence relations are denoted with the symbol ∼R, with R being the
equivalence relation. Similarly, a member x of an equivalence class R is denoted
within brackets as [x]R (slightly overloading the same notation for pairings).

2.3 Cryptographic Background
In the following, we present the security models, algorithms and lemmas related to
working with polynomials and the cryptographic assumptions used in this thesis.

2.3.1 Models
We use models in cryptography to define the adversary’s capabilities (i.e., the
power it is assumed to have when attempting to break a cryptographic scheme).
The strongest model is known as the standard model, and it only assumes that the
adversary is limited by the amount of time and computational power available.
Execution time is usually measured in terms of computation steps for some
reasonable notion of step (i.e., CPU cycles). In contrast, computational power
is given by the computational model used (i.e., assuming the adversary can be
modeled as a Turing machine [Tur36]).

The most widely used assumptions in the standard model are the hardness of
the discrete logarithm problem and integer factorization. Although it may sound
unintuitive, weaker assumptions are preferred over stronger assumptions. This
is because if an assumption A is stronger than B, it means that A implies B.
Therefore, A represents an “easier” problem that can be reduced to a “harder”
one since ¬B implies ¬A.

As cryptographic primitives evolve towards more complex constructions and
dependant on different components, analyzing their security becomes harder. For
this reason, more than often, it is useful to work with idealised models that
capture some desired property or set of properties in a black-box manner. By
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black-box manner, we mean that access to some idealised object that realizes the
desired properties is provided using a clear interface and abstracting everything
else, which is assumed to work as exactly as specified. We work with two idealised
models, the Random Oracle Model (ROM) [BR93] and the Generic Group Model
(GGM) [Sho97, Mau05]. We also work with the Common Reference String Model
(CRS) [Dam00], which assumes the existence of a trusted setup.

Random Oracle Model. This model provides a truly random function that
returns the same value when queried with a given input twice. For this to work, the
function would require a table to store the input queries alongside the corresponding
output, leading to a description that would be exponentially large. It follows that
such a function can only be an idealised object as an efficiently-computable function
achieving that property cannot exist. In practice, real-world applications rely on
cryptographic hash functions to instantiate random oracles.

If an adversary can break the security of a scheme in the ROM, the immediate
conclusion is that the hash function used to instantiate the random oracle was
not “good enough” [Kat02]. Therefore, using the ROM gives confidence relative
to finding some weakness in the hash function used to instantiate it. That said,
a scheme secure in the ROM could be broken without finding a weakness in the
hash function used so this model is clearly a relaxation of the standard model.
Moreover, there are artificial schemes proven secure in the ROM, but for which
any instantiation with a hash function makes them insecure [CGH98, GR04]. Put
differently, a proof in the ROM does not guarantee the same security as the
standard model, but it is clear improvement over having no proof at all.

Generic Group Model. It is similar to the ROM, but abstracting computations
in a group. The aim is to encapsulate the fact that group elements do not give
any information about the underlying group structure that can be exploited to
break the scheme in question. To that end, an oracle returns a random encoding
of resulting group elements in a consistent way with respect to previous queries
and any algorithm having access to such encodings can only perform two actions:
compute the composition of two group elements and check for equality. Like the
ROM, it suffers similar shortcomings since, in practice, the group structure under
which a cryptographic primitive is implemented will usually be known and could
potentially be exploited. That being said, the GGM is a widely used model when
looking for efficient constructions. A more detailed presentation of the GGM and
related models can be found in [Plo21].

Common Reference String Model. This model assumes the existence of a
trusted third party responsible for generating a common reference string (or public
parameters) correctly and honestly (i.e., discarding any auxiliary information that
could be used to abuse the scheme in question). Sometimes this model is referred to
as the auxiliary string model or the common random string model (if the reference
string happens to be a uniformly random string).
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2.3.2 Polynomials
When working with polynomials, we use the Schwartz-Zippel lemma and the
Extended Euclidean Algorithm (EEA) as presented in [GOP+16].

Lemma 1 (Schwartz-Zippel). Let q1(x), q2(x) be two d-degree polynomials from
Zp[X] with q1(x) ≠ q2(x), then for s $← Zp, the probability that q1(s) = q2(s) is at
most d/p, and the equality can be tested in time O(d).

2.3.3 Assumptions
In the following, we recall well-known Diffie-Hellman assumptions in the
bilinear group setting and matrix assumptions introduced with the algebraic
framework from [EHK+17] and [MRV16]. We include a generalisation of
the Strong Diffie-Hellman assumption, called the q-co-Generalised-Strong-Diffie-
Hellman assumption, first introduced in [FHS19]. Besides, we also include the
extKerMDH assumption [CH20], a generalisation of the KerMDH assumption.

Let BGGen be a bilinear-group generator that outputs BG = (p,G1,G2,GT ,
P1, P2, e). For k ∈ N, we denote by Dk a matrix distribution that outputs matrices
in Z(k+1)×k

p of full rank k in polynomial time.

Diffie-Hellman Assumptions
DL. The Discrete Logarithm assumption holds in Gi for BGGen if for all
probabilistic polynomial-time (p.p.t) adversaries A, the following probability
is negligible.

Pr
[

BG $← BGGen(1λ); a $← Zp; a′ $← A(BG, aPi) : a′ = a
]

q-co-DL. The q-co-Discrete Logarithm assumption holds in BGGen if for all
p.p.t adversaries A, the following probability is negligible,

Pr
[

BG $← BGGen(1λ); a $← Zp; a′ $← A(BG, (ajP1, ajP2)j∈[q]) : a′ = a
]

DDH. The Decisional Diffie-Hellman assumption holds in Gi for BGGen, if
for all p.p.t adversaries A the following probability is negligible,

Pr
[

b $← {0, 1}, BG $← BGGen(1λ), r, s, t $← Zp

b∗ $← A(BG, rPi, sPi, ((1− b) · t + b · rs)Pi)
: b∗ = b

]
− 1

2

SXDH. The Symmetric eXternal Diffie-Hellman assumption holds for BGGen
if DDH holds in G1 and in G2.
q-co-GSDH. The q-co-Generalised-Strong-Diffie-Hellman assumption holds
for BGGen, if for all p.p.t adversaries A, the following probability is negligible,

Pr

 BG $← BGGen(1λ), s $← Z∗
p

(Q, f1, f2) $← A(BG, (siP1, siP2)0<i≤q)
:

Q ∈ G1 ∧ f1, f2 ∈ Zp[X] ∧
0 ≤ deg f1 < deg f2 ≤ q ∧
e(Q, f2(s)P2) = e(f1(s)P1, P2)


Dk-MDDH. The Dk-Matrix Diffie-Hellman assumption holds in Gs relative
to BGGen, if for every BG $← BGGen(1λ), A $← Dk, w $← Zk

p, u $← Zk+1
p and
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all p.p.t adversaries A, the following advantage is negligible,
AdvMDDH

Dk,Gs
(A) = |Pr [A(BG, [A]s, [Aw]s) = 1]− Pr [A(BG, [A]s, [u]s) = 1] |

Dk-KerMDH. Let s ∈ {1, 2}. The Dk-Kernel Diffie-Hellman assumption
holds in Gs relative to BGGen, if for every BG $← BGGen(1λ), A $← Dk and
all p.p.t adversaries A, the following advantage is negligible,

AdvKerMDH
Dk,Gs

(A) = Pr
[
[c]3−s

$← A(BG, [A]s) : c⊺A = 0 ∧ c ̸= 0
]

The Dk-KerMDH assumption is the computational analogue of the Dk-MDDH
assumption for any matrix Dk. The following lemma relates both assumptions.

Lemma 2 (Dk-MDDH⇒ Dk-KerMDH [MRV16]). Let k ∈ N and let Dk be a matrix
distribution. For any p.p.t adversary A, there exists a p.p.t adversary B such that
AdvKerMDH

Dk,Gs
(A) ≤ AdvMDDH

Dk,Gs
(B).

As stated in [GHKP18], for Q ∈ N, W $← Zk×Q
p and U $← Z(k+1)×Q

p , one can
also consider the Q-fold Dk-MDDH assumption, which states that distinguishing
tuples of the form ([A]s, [AW]s) from ([A]i, [U]i) is hard. A challenge for the Q-
fold Dk-MDDH assumption consists of Q independent challenges of the Dk-MDDH
assumption (with the same A but different randomness w). In [EHK+13], it is
shown that the two problems are equivalent, where the reduction loses at most
a factor 1 (since we work with dimensions (k + 1) × k). The following lemma
relates both problems.

Lemma 3 (Random self-reducibility of Dk-MDDH [EHK+13]). Let k, Q ∈ N with
Q > 1 and s ∈ {1, 2, T}. For any p.p.t adversary A, there exists an adversary B
with running time T (B) ≈ T (A) + Q · poly(λ), with poly(λ) independent of T (A),
and s.t.

AdvQ−MDDH
Dk,Gs,A (λ) ≤ AdvMDDH

Dk,Gs,B(λ) + 1
p−1 .

Here AdvQ−MDDH
Dk,Gs,A (λ) := |Pr [A(BG, [A]s, [AW]s) = 1] − Pr [A(BG, [A]s, [U]s) = 1],

where the probability is taken over BG ← BGGen(1λ), A ← Dk, W ← Zk×Q
p and

U← Z(k+1)×Q
p .

The Dk-l-extKerMDH assumption allows an adversary to extend the given matrix
but requires it to output multiple, linearly independent vectors in the kernel. An
explanation on why it is a natural extension of the Dk-KerMDH assumption can
be found in [CH20] (Section 4.2). Furthermore, languages used in this thesis are
trapdoor-reducible, which is a stronger notion of witness samplable (Section 4.1
from [CH20]). Hence, we present the falsifiable variant of this assumption.

Dk-l-extKerMDH Assumption [CH20]
Let Dk be a matrix distribution, l, k ∈ N, and s ∈ {1, 2}. We say that
the Dk-l-extKerMDH assumption holds in Gs relative to BGGen, if for every
BG $← BGGen(1λ), D $← Dk, and all p.p.t. adversaries A the following
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probability is negligible.

Pr

 [C]3−s ∈ G(l+1)×(k+l+1)
3 ∧ [B]s ∈ Gl×k

s

∧ [C]3−s[D′]s = 0
∧ rank(C) ≥ l + 1

∣∣∣∣∣∣∣
BG $← BGGen(1λ); D $← Dk

([C]3−s, [B]s) $← A(BG, [D]s)
[D′]s := [D

B]s



2.4 Cryptographic Primitives
2.4.1 One-way Functions
One of the most fundamental problems in cryptography is finding easy tasks in a
given context which are hard in others. One-way functions represent very well that
idea and serve as the main building block for a variety of cryptographic primitives.
Informally speaking, we say that a function is one-way if it is easy to compute
and hard to invert (i.e., finding any valid preimage of a random image). In other
words, let f be a function s.t. f : {0, 1}∗ → {0, 1}∗. We say that f is a one-way
function if the task of computing f(x) is easy given x but the task of computing
x is hard given f(x) for an x picked randomly.

The problem with one-way functions is that there are no known constructions.
In fact, the existence of a one-way function would prove that P ̸= NP , which is
the most fundamental open problem in computer science.

For the above reason, one-way functions are often seen as an assumption
themselves or one works with candidate one-way functions provided some other
assumption holds. For example, in the next section, we present the Pedersen
commitment scheme [Ped92], whose one-wayness relies on the DL assumption.

2.4.2 Cryptographic Hash Functions
An unkeyed cryptographic hash function Hκ : {0, 1}∗ → {0, 1}κ is a deterministic
polynomial-time algorithm mapping an arbitrary-length message to a bitstring of
fixed size κ, the hash value or message digest. They are assumed to be collision
resistant [Dam88], which means that it should be computationally infeasible to
find two values x, y ∈ {0, 1}∗ such that Hκ(x) = Hκ(y). In practice, cryptographic
hash functions are unkeyed and thus they do not satisfy the theoretical definition
of collision resistance [Rog06].

Two other security properties are also desirable for cryptographic hash functions.
These are preimage resistance, which requires Hκ to behave as a one-way function,
and second-preimage resistance, which is implied by collision resistance and requires
that given x it should be infeasible to find x′ such that Hκ(x) = Hκ(x′).

2.4.3 Commitment Schemes
Commitment schemes are a fundamental building block in modern cryptography.
Intuitively they allow a party to commit to a value that stays secret until
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certain conditions are met. Below we introduce the formal definition and security
properties of this primitive.

Definition 1: Commitment Scheme
A non-interactive commitment scheme Γ = (Setup, Commit, Verify) on a
message space M is a tuple such that:
Setup(1λ) is a p.p.t algorithm that, given the security parameter λ, outputs

public parameters pp.
Commit(pp, m) is a p.p.t algorithm that, given pp and a message m, outputs

a commitment/opening pair (c, d) for m.
Verify(pp, c, d, m) is a deterministic algorithm that, given pp, a commitment

and opening pair (c, d) and a message m, outputs true iff m is a valid
opening of c according to d.

The commitment scheme correctness requires that for every message m and every
security parameter λ: Pr

[
pp $← Setup(1λ) : Verify(pp, Commit(pp, m), m) = 1

]
= 1.

Two security properties are required for commitment schemes: binding and hiding.
Binding states that it should be infeasible for any party to come up with an opening
that would reveal a different value than the one initially committed. Hiding
states that it should be infeasible for any party to reveal a committed message
without the corresponding opening. If a scheme is perfectly binding, it can only
be computationally hiding or the other way round.

Definition 2: Hiding and Binding
A commitment scheme Γ has the hiding security property if the advantage
of any p.p.t algorithm A = (A1,A2) defined by

AdvHiding
Γ,A (λ) := 2· Pr

[
ExpHiding

Γ,A (λ)⇒ true
]
− 1 is negligible,

where ExpHiding
Γ,A (λ) is the experiment shown at the bottom (left side).

A commitment scheme Γ has the binding security property if the advantage
of any p.p.t algorithm A defined by

AdvBinding
Γ,A (λ) := Pr

[
ExpBinding

Γ,A (λ)⇒ true
]
− 1 is negligible,

where ExpBinding
Γ,A (λ) is the experiment shown at the bottom (right side).

ExpHiding
Γ,A (λ) ExpBinding

Γ,A (λ)
pp $← Setup(1λ) pp $← Setup(1λ)
(m0, m1, st)← A1(pp) (c, d, m, d′, m′)← A1(pp)
b $← {0, 1} if m ̸= m′ then
(c, d)← Commit(pp, mb) return Verify(pp, c, d, m) ∧ Verify(pp, c, d′, m′)
b′ ← A2(c, st) else return 0
return b = b′

The Pedersen commitment [Ped92] is perfectly hiding and computationally
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binding under the DL assumption in G. It consists of the following algorithms:
Setup(1λ): On input the security parameter λ, generates a group G of prime

order p with ⌈log2 p⌉ = λ, picks a generator P1 and τ $← Z∗
p. It outputs

pp = (G, p, P1, H = τP1) and trapdoor information τ .
Commit(pp, m): On input pp and m ∈ Zp outputs (c, d)← (mP1 + rH, r).
Verify(pp, c, d, m): On input c, d and m outputs true iff mP1 + dH = c.

We also use a slightly different formalization for commitment schemes. Instead
of defining the algorithm Verify, one can define the algorithm Open that outputs a
message m instead of a truth value as Verify does. For example, if we consider the
Pedersen commitment, one can define the opening d as (r, m) so that the algorithm
Open takes c, (r, m) as input and outputs m if mP1 + dH = c or ⊥ otherwise.
Another difference with respect to the literature depending on the application, is
the use of public parameters. One can also define a commitment scheme with
evaluation and verification keys.

2.4.4 Public-Key Encryption
As mentioned in the introduction, PKE revolutionised the field of cryptography.
To introduce this concept, we opt to quote the following extract from Whitfield
Diffie’s work “Cryptography, the Next Two Decades” [Dif81], presented during the
first CRYPTO conference in 1981:

A public key cryptosystem is one in which the conversion of plaintext to ciphertext
and the conversion of ciphertext to plaintext are done using different keys.
Furthermore, given one of the keys, it is just as difficult to discover the other
as it would be to discover the plaintext given only a sample of the ciphertext. This
separation of the keys for encrypting and decrypting makes it possible to disclose
one (the public key) while retaining the other (the secret key.)

— Whitfield Diffie
In this section, we present the formal definition and security notions for public-

key encryption schemes that are used in this thesis. By convention, we denote
the set of the plaintexts, public keys, random coins and ciphertexts by M, K,
R and C, respectively.

Definition 3: Public-key encryption scheme
A PKE scheme Π = (KGen, Enc, Dec) is a triple of (possibly randomised)
algorithms such that:
KGen(1k) is a p.p.t algorithm that, given the security parameter k, outputs

a key pair (pk, sk).
Enc(pk, m; r) is a p.p.t algorithm that, given a message m, random coins r

and pk, outputs a ciphertext c.
Dec(sk, c) is a deterministic algorithm that, given a ciphertext c and sk,

outputs a message m or ⊥.

Correctness of public-key encryption requires that for every message m and every



Chapter 2: Preliminaries 16

security parameter λ: Pr
[
(pk, sk) $← KGen(1λ) : Dec(sk, Enc(pk, m)) = m

]
= 1.

Security is usually defined in terms of ciphertext indistinguishability. The most
basic variant of ciphertext indistinguishability is known as indistinguishability of
ciphertexts under chosen-plaintext attacks. This notion is equivalent to the original
definition of semantic security [GM82], which is the computational analogue of
perfect secrecy (i.e., information-theoretic security) [Sha49]. The main idea is that
an attacker with access to the ciphertext should not get a considerable advantage
over someone without access to it when identifying the related plaintext.

Definition 4: IND-CPA
A PKE scheme Π = (Gen, Enc, Dec) has indistinguishable ciphertexts under
chosen-plaintext attacks (IND-CPA), if the advantage of any p.p.t algorithm
A = (A1,A2) defined by

AdvIND-CPA
Π,A (k) := 2· Pr

[
ExpIND-CPA

Π,A (k)⇒ true
]
− 1 is negligible,

where ExpIND-CPA
Π,A (k) is the experiment shown below.

ExpIND-CPA
Π,A (k)

(pk, sk) $← KGen(1k)
(m0, m1, st) $← A1(pk)
b $← {0, 1}; c $← Enc(pk, mb)
b′ $← A2(pk, c, st)
return b = b′

The above definition rules out the “possibly randomised” option for the
encryption algorithm when defining a PKE scheme. To be secure under a
minimal notion such as IND-CPA, the scheme must have a randomised encryption
algorithm.

Stronger notions allow the adversary to query a decryption oracle for arbitrary
ciphertexts. We have two cases, non-adaptive and adaptive. The former case allows
the adversary to send queries only before receiving the challenger’s ciphertext. The
latter allows it to send queries before and after (as long as it does not query the
challenger’s ciphertext). Below we present the two formalizations.

Definition 5: IND-CCA1
A PKE scheme Π = (Gen, Enc, Dec) has indistinguishable ciphertexts under
non-adaptive chosen-ciphertext attacks (IND-CCA1) if the advantage of any
p.p.t algorithm A = (A1,A2) defined by

AdvIND-CCA1
Π,A (k) := 2· Pr

[
ExpIND-CCA1

Π,A (k)⇒ true
]
− 1 is negligible,

where ExpIND-CCA1
Π,A (k) is the experiment shown below.
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ExpIND-CCA1
Π,A (k)

(pk, sk) $← KGen(1k)
(m0, m1, st) $← ADec(sk,·)

1 (pk)
b $← {0, 1}; c $← Enc(pk, mb)
b′ $← A2(pk, c, st)
return b = b′

Definition 6: IND-CCA2
A PKE scheme Π = (Gen, Enc, Dec) has indistinguishable ciphertexts under
adaptive chosen-ciphertext attacks (IND-CCA2), if the advantage of any
p.p.t algorithm A = (A1,A2) defined by

AdvIND-CCA2
Π,A (k) := 2· Pr

[
ExpIND-CCA2

Π,A (k)⇒ true
]
− 1 is negligible,

where ExpIND-CCA2
Π,A (k) is the experiment shown below.

ExpIND-CCA2
Π,A (k)

(pk, sk) $← KGen(1k)
(m0, m1, st) $← ADec(sk,·)

1 (pk)
b $← {0, 1}; c $← Enc(pk, mb)
b′ $← ADec(sk,·)

2 (pk, c, st)
return b = b′

One implication of giving access to a decryption oracle is that ciphertexts
outputted by an IND-CCA2 secure scheme are non-malleable [BDPR98]. If this was
the case, the adversary could call the decryption oracle on c′ to obtain a message
m′ (related to m0 or m1) and trivially win the experiment.

Prabhakaran and Rosulek proposed a relaxation of the IND-CCA2 notion called
indistinguishability of ciphertexts under replayable chosen-ciphertext attacks (IND-
RCCA). Their idea was to capture encryption schemes that are IND-CCA2 secure
“except that they allow anyone to generate new ciphertexts that decrypt to the
same value as a given ciphertext” [PR07].

Definition 7: IND-RCCA [PR07]
A PKE scheme Π = (KGen, Enc, Dec) has indistinguishable ciphertexts under
replayable chosen-ciphertext attacks (IND-RCCA), if the advantage of any
p.p.t algorithm A = (A1,A2) defined by

AdvIND-RCCA
Π,A (k) := 2· Pr

[
ExpIND-RCCA

Π,A (k)⇒ true
]
− 1 is negligible,

where ExpIND-RCCA
Π,A (k) is the experiment shown below.
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Experiment ExpIND-RCCA
Π,A (k) Oracle GDec(sk, c)

(pk, sk) $← KGen(1k) m← Dec(sk, c)
(m0, m1, st) $← ADec(sk,·)

1 (pk) if m ∈ {m0, m1}
b $← {0, 1}; c $← Enc(pk, mb) then return replay
b′ $← AGDec(sk,·)

2 (pk, c, st) else return m
return b = b′

In the experiment ExpIND-RCCA
Π,A (k), the adversary can only access a guarded

decryption oracle (GDec) once the challenge ciphertext has been received. When
given any ciphertext that decrypts either to m0 or m1, this oracle returns a special
message replay (meaning the ciphertext is a rerandomised ciphertext of one of
the challenge messages).

Bellare et al. [BBDP01] studied another security requirement for public-key
encryption schemes named key-privacy. As the authors explain, it asks whether or
not an attacker in possession of a ciphertext is able to tell which specific key, out
of a set of known public keys, is the one under which the ciphertext was created.
Furthermore, the authors show that the notion of key-privacy is orthogonal to
that of data-privacy (captured by the indistinguishability of ciphertexts). The
following definitions from [BBDP01] formalize the notions of indistinguishability of
keys under chosen-plaintext attack and under chosen-ciphertext attack.

Definition 8: IK-CPA
A PKE scheme Π = (Gen, Enc, Dec) has indistinguishable keys under chosen-
plaintext attacks (IK-CPA), if the advantage of any p.p.t algorithm A =
(A1,A2) defined by

AdvIND-CCA2
Π,A (k) := 2· Pr

[
ExpIK-CPA

Π,A (k)⇒ true
]
− 1 is negligible,

where ExpIK-CPA
Π,A (k) is the experiment shown below.

ExpIK-CPA
Π,A (k)

(pk0, sk0)
$← KGen(1k);(pk1, sk1)

$← KGen(1k)
(m, st) $← A1(pk0, pk1)
b $← {0, 1}; c $← Enc(pkb, m)
b′ $← A2(pk0, pk1, c, st)
return b = b′

Definition 9: IK-CCA
A public-key encryption scheme Π = (Gen, Enc, Dec) has indistinguishable
keys under chosen-ciphertext attacks (IK-CCA), if the advantage of any p.p.t
algorithm A = (A1,A2) defined by

AdvIND-CCA2
Π,A (k) := 2· Pr

[
ExpIK-CCA

Π,A (k)⇒ true
]
− 1 is negligible,
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where ExpIK-CCA
Π,A (k) is the experiment shown below.

ExpIK-CCA
Π,A (k)

(pk0, sk0)
$← KGen(1k); (pk1, sk1)

$← KGen(1k)
(m, st) $← ADec(sk0,·),Dec(sk1,·)

1 (pk0, pk1)
b $← {0, 1}; c $← Enc(pkb, m)
b′ $← ADec(sk0,·),Dec(sk1,·)

2 (pk0, pk1, c, st)
return b = b′

We now present ElGamal’s encryption scheme [ElG84], which is IND-CPA secure.
Consider a group G with generator P . The key generation algorithm picks a $← Z∗

p

and sets sk = a and pk = aP . Then, to encrypt a message m, the encryption
algorithm picks r $← Z∗

p and computes (rP, m + rpk). Finally, the decryption
algorithm takes a ciphertext (C0, C1) and computes C0 − skC1.

ElGamal is also IK-CPA (although it may not generally be the case).
Furthermore, ElGamal’s ciphertexts can be decrypted with knowledge of the
randomness used to generate the ciphertexts. For example, given a ciphertext
(C0, C1) = (rP, m + rpk), knowing r reveals m as it suffices to compute C1 − rpk
to obtain m. The following definition from [BL16] formalizes this idea.

Definition 10: Random Coin Decryptable PKE (RCD-PKE)
A probabilistic PKE scheme is Random Coin Decryptable if there exists
a polynomial-time algorithm CDec such that for any public key pk ∈ K,
any m ∈ M, and any random coins r, the following equation holds:
CDec(pk, Enc(pk, m; r), r) = m.

2.4.5 Digital Signatures

Definition 11: Digital signature scheme
A digital signature scheme is a tuple (KGen, Sign, Verify) of algorithms where:
KGen(1λ) is a p.p.t algorithm that, given a security parameter λ, outputs a

key pair (sk, pk).
Sign(sk, m) is a p.p.t algorithm that, given a secret key sk and a message m,

outputs a signature σ on the message m.
Verify(m, σ, pk) is a deterministic algorithm that takes as input a public key

pk, a message m and a signature σ. If σ is a valid signature on m it
outputs 1 and 0 otherwise.

Correctness of digital signatures requires that for every message m and every
security parameter λ: Pr

[
(pk, sk) $← KGen(1λ) : Verify(m, Sign(sk, m), pk) = 1

]
= 1.

Security is usually defined in terms of existential unforgeability. The latter concept
captures the three fundamental properties: authentication, integrity and non-
repudiation. It specifies that it would suffice for an adversary to come up with
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a single message-signature pair that verifies (for a message that has never been
signed by the legitimate signer) to dismiss the scheme’s security.

Below we give a definition for the most common variant which is Existential
UnForgeability under adaptive Chosen-Message Attacks (EUF-CMA) [GMR88].

Definition 12: EUF-CMA
A digital signature scheme (KGen, Sign, Verify) is existentially unforgeable
under adaptively chosen-message attacks if, for all p.p.t adversaries A with
access to a signing oracle Sign, the following probability is negligible,

Pr
[

(sk, pk) $← KGen(pp)
(m∗, σ∗) $← ASign(sk,·)(pk)

: m∗ /∈ Q ∧ Verify(m∗, σ∗, pk) = 1
]

,

where Q is the set of queries that A has issued to the signing oracle.

2.4.6 Zero-Knowledge Proofs
For interactive machines P (the prover) and V (the verifier), we denote as in
[Pas04] that ⟨P(w),V(z)⟩(x) is the random variable representing V ’s output when
interacting with P on common input x, when the random input to each machine is
uniformly and independently chosen; with w and z being auxiliary inputs. Similarly,
as in [FHS19], we denote formal languages defined by some binary polynomial-time
(witness) relation R ⊆ {0, 1}∗ × {0, 1}∗ as LR = {x | ∃w : (x, w) ∈ R} ⊆ {0, 1}∗.
For such types of relations, membership of x ∈ LR can be decided in polynomial-
time (in |x|) when given a witness w of length polynomial in |x| certifying
(x, w) ∈ R. In other words, languages of the form LR belong to the complexity
class NP .

With the above in mind, we introduce now the definition for interactive proof
systems following the formalisms from [Pas04] and [GT20].

Definition 13: Interactive Proof System
Let ϵc, ϵs: N → [0, 1) such that both are computable in polynomial-time in
|λ| and ϵc(|λ|)+ ϵs(|λ|) < 1−1/poly(|λ|). (P ,V) is called an interactive proof
system for the language LR with completeness and soundness errors ϵc and
ϵs, respectively, if V is p.p.t and the following conditions hold:

• Completeness: For every x ∈ LR there exists a (witness) string w such
that for every auxiliary input z ∈ {0, 1}∗:

Pr[⟨P(w),V(z)⟩(x) = 1] = 1− ϵc(|x|)
• Soundness: For every x /∈ LR, every interactive machine P∗, and every

w, z ∈ {0, 1}∗:
Pr[⟨P∗(w),V(z)⟩(x) = 1] ≤ ϵs(|x|)

If ϵc = 0, we say the system has perfect completeness. If the soundness condition
is required to hold only with respect to a computationally bounded prover P∗,
(P ,V) is called an interactive argument system.

In 1985, Goldwasser, Micali and Rackoff introduced the notion of zero-knowledge
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proofs in their seminal work “The Knowledge Complexity of Interactive Proof-
Systems” [GMR85].

Zero-knowledge proofs are defined as those proofs that convey no additional
knowledge other than the correctness of the proposition in question.

— Goldwasser, Micali & Rackoff
The key observation elaborated by the authors was to equate the idea of “no

additional knowledge” with that of specifying a way in which a (dishonest) verifier
could interact with a party (who is not a real prover) in the same way as it would
interact with an (honest) prover. Such a party is captured by an algorithm called
the simulator. By “same way”, we mean that from the verifier’s point of view,
a transcript produced by the simulator looks indistinguishable from the one that
would result from a real interaction with the prover. Furthermore, the notion
considered here is a black-box one in the sense that the simulator has black-box
access to such a verifier. It is also important to stress that the simulator’s goal
is to generate a complete transcript but without access to the witness. Hence,
the simulator is often given extra power, such as the ability to run in expected
polynomial time rather than strict polynomial time or access to some auxiliary
input compared to the prover.

The main conclusion from the above is the fact that if one succeeds in defining a
simulator for an interactive proof system, the indistinguishability of two transcripts
implies that whatever a malicious verifier could have learnt interacting with a real
prover is no different to what it could have learnt without interacting with one.
Since the latter interaction does not involve the witness at all, the interactive proof
system is zero-knowledge. In the following, we formalize this notion.

Definition 14: Zero-Knowledge
An interactive proof system (P ,V) is zero-knowledge if for every p.p.t
interactive machine V∗ there exists a probabilistic expected polynomial-time
algorithm S (called simulator) such that the following two ensembles are
computationally indistinguishable (when the distinguishing gap is a function
in |x|): {⟨P(w),V∗(z)⟩(x)}z∈{0,1}∗,x∈LR for an arbitrary w s.t. (x, w) ∈ R and
{S(x, z)}z∈{0,1}∗,x∈LR . That is, for every probabilistic algorithm D running
in time polynomial in the length of its first input, all (x, w) ∈ R and all
auxiliary inputs z, z′ ∈ {0, 1}∗ it holds that:
|Pr[D(x, z′, ⟨P(w),V∗(z)⟩(x)) = 1]− Pr[D(x, z′,S(x, z)) = 1]| < 1/poly(|x|)

Let us now recap on what the three properties of interactive proof systems
intuitively mean. First, completeness states that things work as expected (i.e.,
the proof system works for valid statements). Soundness protects honest verifiers
against malicious provers (i.e., the proof system does not work for invalid
statements). Finally, zero-knowledge protects honest provers against malicious
verifiers (i.e., the proof system is good at keeping secrets).

Sometimes, we use the term “perfect zero-knowledge” to refer to proof systems
where the two ensembles are identically distributed. We will also refer to a weaker
variant called Honest Verifier Zero-Knowledge (HVZK). Only a single verifier
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V = V∗ that always follows the protocol is considered in this variant.
We have already introduced the definitions for interactive proof systems and

zero-knowledge proof systems but without taking much time to discuss interaction.
Efficiency and adequacy of a proof system to model a particular problem
depends on the interactions between the prover and the verifier. Interaction is
measured in terms of communication rounds (number of messages exchanged)
and communication bandwidth (size of messages exchanged). In the following,
we introduce a particular type of zero-knowledge proof system that is called a
sigma protocol.

Definition 15: Sigma protocol
An interactive proof system (P ,V) is said to be a sigma protocol for a relation
R when it uses the following pattern: P sends a commitment C, V sends a
challenge b, P sends a response r, after which V accepts or rejects the proof,
and the following requirement holds:

• Special soundness: There exists a polynomial-time algorithm E
that given any x and any pair of accepting transcripts (t, t′) =
((C, b, r), (C, b′, r′)) for x such that b ̸= b′:

Pr[w ← E(x, t, t′) : (x, w) ∈ R] is overwhelming.

Sigma protocols usually use the notion of Special Honest Verifier Zero-Knowledge
(SHVZK). This notion is a particular case of HVZK for which, given a valid
statement x and fixed challenge b, the simulator needs to produce an accepting
transcript (C, b, r) that has the same distribution as a real one.

The following lemmas about sigma protocols are used in Chapter 3.

Lemma 4 (Lemma 6.2.6 from [HL10]). The properties of sigma protocols are
invariant under parallel repetition. That is, the ℓ-times parallel repetition of a
sigma protocol for R with challenge length t yields a new sigma protocol for R
with challenge length ℓ · t.

Lemma 5 (Lemma 6.2.7 from [HL10]). If there exists a sigma protocol Π for R
with challenge length t, then there exists a sigma protocol Π′ for R with challenge
length t′, for any t′ > t.

So far, we have only considered zero-knowledge proofs with the idea that not even
a malicious verifier could learn anything else besides the validity of a statement.
While this is quite a strong notion already, one can go a step further and wonder
about the relation between the prover and the witness. For some zero-knowledge
proofs, it is possible to conclude that the prover must know the actual witness
for the statement in question. This is a stronger soundness notion, often called
knowledge soundness, because it not only gives assurance to the verifier about the
validity of the statement but also about the relation between the prover and the
witness (i.e., the prover knows it). This latter notion is formalised by defining a
machine called the extractor that, given access to a (potentially malicious) prover
P∗, is able to compute the witness w. Similarly to the simulator, the extractor is
usually given some extra power like the ability to rewind the prover. Zero-knowldge
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proofs with this property are called Zero Knowledge Proof of Knowledge (ZKPoK).
The following theorem relates sigma protocols with proofs of knowledge.

Theorem 6 (Theorem 6.3.2 from [HL10]). Let Π be a sigma protocol for a relation
R with challenge length t. Then Π is a proof of knowledge with knowledge error
(i.e., the probability that the extractor fails) 2−t.

In [Lin01], Lindell extends the definition of special soundness to proofs of
knowledge that are not sigma protocols. We now recall it using the formalism
introduced in [BCC+16], where t is a transcript of the protocol execution and s
represents the state of P∗, including its random tape.

Definition 16: Statistical Witness-Extended Emulation [BCC+16]
An interactive proof system (P ,V) has statistical witness-extended emulation
if, for all deterministic polynomial-time P∗, there exists an expected
polynomial-time emulator E such that for all interactive adversaries A:

Pr

 (x, s)← A(1λ)
t← ⟨P∗(x, s),V(x)⟩ :
1← A(t)

 ≈ Pr


(x, s)← A(1λ)
(t, w)← E ⟨P∗(x,s),V(x)⟩(x) :
1← A(t) and if t is accepting
then (x, w) ∈ R


where the oracle called by E permits rewinding to a specific point and
resuming with fresh randomness for the verifier from this point onwards.

2.4.7 NIZK and Malleable Proof Systems
Non-Interactive Zero-Knowledge proofs (or NIZKs for short) are proof systems for
which a single message from the prover to the verifier is exchanged. Upon receiving
a message from the prover, the verifier either accepts or rejects the proof. In the
following, we present the first type of NIZKs, used in Chapter 3 and 6. It is a
generic and heuristic method to transform a sigma protocol into a NIZK, assuming
the existence of a hash function that behaves like a random oracle. We follow the
formalization from [BPW12], always using the strong variant of the transform.

Definition 17: Fiat-Shamir Transform [FS87]
Let Σ = (ProveΣ, VerifyΣ) be a sigma protocol and H a cryptographic
hash function. The strong Fiat-Shamir transform of Σ is the proof system
sFSH(Σ) = (Prove, Verify) defined as follows:
Prove(w, x) runs ProveΣ(w, x) to obtain a commitment C. Computes b ←

H(x, C) and completes the run of ProveΣ(w, x) with b as input to get
a response r. It outputs the pair (b, r).

Verify(x, b, r) computes C from (x, b, r) and outputs VerifyΣ(x, C, b, r).

Remark 1. While sigma protocols are only HVZK, using the Fiat-Shamir transform
results in a NIZK that has full zero-knowledge in the ROM.
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The second type of NIZKs presented in this section requires a common reference
string (crs) instead of a hash function. Below we introduce the corresponding
syntax and security properties for this type of NIZKs considering fully adaptive
NIZK arguments (i.e., the crs does not depend on the language distribution or
language parameters).

A fully adaptive NIZK Π for a family of language distribution {Dpp}pp consists
of four probabilistic algorithms:
PGen(1λ): is a p.p.t algorithm that, given a security parameter λ, outputs public

parameters pp and a common reference string crs. For simplicity, public
parameters will be assumed to be implicitly included in the crs.

PTGen(1λ): is like PGen but it also returns a trapdoor τ (if any).
Prove(crs, ρ, x, w): is a p.p.t algorithm that, given crs, a language description

ρ ∈ Dpp and a statement x with witness w, outputs a proof π for x ∈ Lρ.
Verify(crs, ρ, x, π): is a deterministic algorithm that, given crs, a language

description ρ ∈ Dpp, a statement x and a proof π, accepts or rejects the
proof.

PSim(crs, τ, ρ, x): is a p.p.t algorithm that, given crs, τ , a language description
ρ ∈ Dpp and a statement x, outputs a simulated proof for the statement
x ∈ Lρ.

The following properties need to hold for NIZK arguments with respect to a
family of language distributions Dpp.
Perfect Completeness:

Pr
[

Verify(crs, ρ, x, π) = 1
∣∣∣∣∣ (pp, crs) $← PGen(1λ); ρ ∈ Supp(Dpp);

(x, w) ∈ Rρ; π $← Prove(crs, ρ, x, w)

]
= 1

Computational Soundness: For every efficient adversary A,

Pr
[

Verify(crs, ρ, x, π) = 1
∧ x /∈ Lρ

∣∣∣∣∣ (pp, crs) $← PGen(1λ);
ρ ∈ Supp(Dpp); (π, x) $← A(crs, ρ)

]
≈ 0

where the probability is taken over PGen.
Perfect Zero-Knowledge: For all λ, all (pp, crs, τ) ∈ Supp(PTGen(1λ)), all ρ ∈

Supp(Dpp) and all (x, w) ∈ Rρ, the distributions Prove(crs, ρ, x, w) and
PSim(crs, τ, ρ, x) are identical.

We conclude the present section by introducing the notions of malleable proof
systems given in [CKLM12] and [KSD19], respectively.

Let RL be the witness relation associated to a language L, then a controlled
malleable proof system is accompanied by a family of efficiently computable n-ary
transformations T = (Tx, Tw) such that for any n-tuple {(x1, w1), . . . , (xn, wn)}
∈ Rn

L it holds that (Tx(x1, . . . , xn),Tw(w1, . . . , wn)) ∈ RL. Intuitively, such a
proof system allows when given valid proofs {Ωi}i∈[n] for statements {xi}i∈[n] with
associated witnesses {wi}i∈[n] to publicly compute a valid proof Ω for word x =
Tx(x1, . . . , xn) corresponding to witness w := Tw(w1, . . . , wn) using an additional
algorithm ZKEval which is defined as follows:
ZKEval(crs, T , (xi, Ωi)i∈[n]): takes as input a common reference string crs, a



2

25 Section 2.4: Cryptographic Primitives

transformation T ∈ T , words x1, . . . , xn and their corresponding proofs
Ω1, . . . , Ωn, and outputs a new word x′ := Tx(x1, . . . , xn) and proof Ω′.

Proofs computed by ZKEval should be indistinguishable from freshly computed
proofs for the resulting word x′ and corresponding witness w′. The following
definition captures this notion.
Derivation Privacy: A NIZK proof system Π, malleable with respect to a set of

transformations T defined on some relation R is derivation private if, for all
p.p.t adversaries A, the following probability is negligible,

Pr



crs $← PGen(1λ), b $← {0, 1}
(st, ((xi, wi), Ωi)i∈[q], T ) $← A(crs),
if (T /∈ T ∨ (∃ i ∈ [q] : (Verify(crs, xi, Ωi) = 0) ∨ (xi, wi) /∈ R)
return ⊥,
else if b = 0 : Ω← Prove(crs, Tx((xi)i∈[q]), Tw((wi)i∈[q])),
else if b = 1 : Ω← ZKEval(crs, T, (xi, πi)i∈[q]),
b′ $← A(Ω, st)

: b = b′
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I know what I know, and I don’t know anything else.
— Yehuda Lindell

Given two ciphertexts generated with a PKE scheme, the problem of plaintext
equality consists in determining whether the ciphertexts encrypt the same message.
Similarly, the problem of plaintext inequality consists in deciding whether they
encrypt a different message. First, this chapter proposes several definitions to
characterize randomisation in PKE. Then, based on those definitions, we aim to
build protocols for plaintext equality and inequality. Therefore, we dwell on what it
means to randomise plaintexts, ciphertexts, keys, and combinations thereof. Unlike
prior approaches, our aim is not to focus on the particular properties of any concrete
scheme. Consequently, we obtain generic definitions and protocols that can be
instantiated with different PKE schemes.

This chapter relies on joint work with Olivier Blazy, Xavier Bultel and Pascal
Lafourcade. The presented material is based on [BBLPK21a].

3.1 Introduction
There are scenarios in which deciding equality can easily be done. For instance, if
both ciphertexts were generated using the same key and the encryption scheme is
deterministic or if access to a trusted third party, who knows the private key, is
provided. However, practical scenarios where a prover needs to convince a verifier
of the equality or inequality of plaintexts require stronger guarantees (i.e., the
verifier must learn no additional information than the yes or no answer).

Well-known examples include the use of such proofs in voting protocols
[RS06, Rya08, DJN10], reputation systems [HBBS13, DM14] and cloud-based
applications [Rei18]. Additionally, protocols with broadcasting phases where one of
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the parties needs to broadcast encrypted messages under different keys to several
parties can also benefit from these proofs. A less common example involves a
client who needs to regularly store encrypted information in a backup server (or in
a distributed database such as blockchain) while being able to convince any third
party of minimal claims about it. In addition, non-interactive variants are also
very useful when online interaction between the parties is undesirable or public
verifiability is preferred.

Sometimes equality or inequality proofs are used as subroutines and must be
integrated with other software. Therefore, flexible alternatives (e.g., without
relying on specific constructions requiring particular configurations or hardware)
are essential to overcome possible conflicts when a use case changes. This is where
generic protocols come in handy. As they can be instantiated with multiple schemes,
integrating them into different settings is easier.

We focus on two-party protocols, where two ciphertexts and auxiliary inputs
are given. The prover tries to convince a verifier about the ciphertexts’ plaintext
equality or inequality. The prover and the verifier share a common input consisting
of a set of public keys and ciphertexts generated with those keys. The prover also
knows the corresponding set of secret keys or the randomness used to encrypt
the plaintexts. As previously mentioned, our aim is to design generic plaintext
equality and inequality protocols in this setting.

3.2 Contributions
Using randomisation properties of PKE schemes, we build generic zero-knowledge
protocols from standard techniques.

Our first contribution introduces different notions related to the concept of
malleability in PKE. In particular, we make a clear distinction between how a
ciphertext can be randomised (e.g. the ciphertext alone (Rand), the plaintext
message (MsgRand), or the corresponding key (KeyRand)). As a result, we
characterize PKE schemes in terms of generic randomisable encryption properties,
which we use to build our protocols.

Our second contribution is the construction of two interactive zero-knowledge
protocols, PEQ and PINEQ, for plaintext equality and inequality. These protocols
are secure against malicious verifiers. However, for each of them, we first present a
weaker variant (HPEQ and HPINEQ, respectively), which is only secure against
honest verifiers. The protocol PEQ requires the PKE scheme to allow the
randomisation of both, the ciphertext and the corresponding plaintext message.
In contrast, the protocol PINEQ only requires the former one.

Our third contribution is plaintext equality protocols based on proofs of
knowledge of the secret key (protocols MATCHPEQ and SIGPEQ) or of the
randomness used for the encryption (protocol RSPEQ). Either case admits non-
interactive versions applying the strong Fiat-Shamir transform (Definition 17 on
page 23), but both require schemes with less common properties. For example,
the schemes need to be key-randomisable or random coin decryptable (RCD,
Definition 10 on page 19).

In Table 3.1, we list some well-known PKE schemes and their relationship
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Perfect ZK ZKPoK
Scheme Security RCD Rand MsgRand KeyRand PEQ PINEQ MATCHPEQ SIGPEQ RSPEQ
[ElG86] IND-CPA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[Pai99] IND-CPA ✓ ✓ ✓ ✓ ✓ ✓ ✓
[GM82] IND-CPA ✓ ✓ ✓ ✓ ✓
[Dam92] IND-CCA1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[CS98] IND-CCA1 ✓ ✓ ✓ ✓ ✓ ✓
[PR07] RCCA ✓ ✓ ✓

Table 3.1: PKE schemes and their properties.

with our definitions and protocols. We stress that although fully homomorphic
schemes such as those based on lattices could also be used to instantiate our
protocols, partial homomorphic properties presented in the scheme can be used
to implement the different algorithms as well. Nonetheless, as shown with the
scheme from [PR07], being partially homomorphic is not necessary.

3.3 Related Work
Jakobsson et al. [JJ00] introduced the concept of distributed plaintext equality test,
which allows n > 1 parties to determine whether two ElGamal ciphertexts encrypt
the same or different message without learning it, but it requires knowledge of
the secret key and assumes at least one of the parties is honest. Very recently,
McMurtry et al. [MPT20] showed that several follow-up works based on the
plaintext equality test from [JJ00] are flawed (because they use it as if no trust
assumptions where needed), and showed how to fix it.

Choi et al. [CEJ+07] proposed zero-knowledge equality/inequality proofs for
boolean ElGamal ciphertexts with knowledge of the secret key. Their work requires
the randomness used to produce the two ciphertexts. Parkes et al. [PRST06]
proposed zero-knowledge equality/inequality proofs for Paillier ciphertexts given
access to the randomness used to produce the ciphertexts or access to the plaintexts.

In [BCV15], Blazy et al. introduced a generic approach to prove a non-
membership concerning some language in non-interactive zero-knowledge. For
example, they showed how to prove the plaintext inequality of two ElGamal
ciphertexts given that the prover knows the plaintext and the randomness used
to produce one of the ciphertexts. More recently, Blazy et al. [BDSS16] introduced
a generic technique for non-interactive zero-knowledge plaintext equality/inequality
proofs in which the prover is given two ciphertexts and trapdoor information. In
such a scenario, none of the parties has access to the secret key nor the randomness
used to produce the ciphertexts. While being generic, those constructions [BCV15,
BDSS16] require a specific kind of zero-knowledge proofs. More precisely, they need
to build a zero-knowledge proof showing that a zero-knowledge proof was computed
honestly. While this design works elegantly with pairing-based cryptography (as
Groth-Sahai proofs [GS08] allows to prove in zero-knowledge a pairing-product
equation while also being verifiable with a pairing product equation), this often
fails (or requires ad-hoc constructions that are far from being efficient) in other
settings. For example, when considering Schnorr [Sch91] proofs, the random oracle
prevents any kind of chaining. Therefore, another design is required to allow such
functionality.



Chapter 3: Generic Plaintext Equality and Inequality Proofs 30

Extensions for PKE schemes such that given a plaintext, a ciphertext and a
public key, it is universally possible to check whether the ciphertext encrypts the
plaintext under the key also exist. Such an extension has been proposed by Canard
et al. [CFGL12] under the name of Plaintext Checkable Encryption.

There are also different works proposing schemes to support plaintext equality
tests from user-specified authorization. For instance, in [Tan12], two users who
have their keys can issue tokens to a proxy to authorize it to perform the
plaintext equality test for their ciphertexts. Yang et al. [YTHW10] constructed a
probabilistic scheme that allows anyone provided with two ciphertexts to check if
they encrypt the same message, considering that the ciphertexts may not have been
generated with the same key. They do this achieving a weak form of IND-CCA2.

Previous work rests on specific constructions, which do not allow the scheme to
be separated from the protocol’s requirements. Our approach is different because
we first seek to define protocols independently of the scheme and then present the
necessary conditions for a scheme to be compatible with them. As a result and
unlike prior work, we present several protocols that can be integrated with existing
pieces of software just as if they were templates allowing one to switch from one
scheme to another more easily.

3.4 Generic Randomisable Encryption
This section proposes several definitions to characterize the kinds of randomisations
that PKE schemes may support.

To begin with, we present a definition of re-randomisability [PR07], which
has also been introduced under different names or variants ([CKN03, HS00,
GJJS04, FFHR19]). However, unlike previous work, we include the notion
of derandomisability and omit the distinction with universal re-randomisability
from [PR07], which we consider implicit unless otherwise said.

Informally, a scheme that is randomisable and derandomisable supports the
generation of fresh ciphertexts and the “rollback” process. Furthermore, we will say
that a scheme achieves perfect randomisability when no adversary can distinguish
between fresh encryptions of the original message and ciphertext randomisations.

Definition 18: Randomisable PKE scheme (Rand-PKE) [PR07]
A PKE scheme Π = (KGen, Enc, Dec) is randomisable if there exists a
polynomial-time algorithm Rand such that:

1. Rand takes c ∈ C, r ∈ R and returns c′ ∈ C.
2. ∀ (pk, sk) $← KGen(1λ), r ∈ R and c ∈ C:

Pr [Dec(sk, Rand(c, r)) = Dec(sk, c)] = 1
Moreover, we say that Π is derandomisable if, for any c ∈ C and r ∈ R, there
exists an efficiently computable r∗ such that:

Pr [c = Rand(Rand(c, r), r∗)] = 1
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Definition 19: Computational and perfect randomisability [PR07]
A Rand-PKE scheme is computationally randomisable if, for any λ, (pk, sk)←
KGen(1λ), m ∈ M, r ∈ R, c = Enc(pk, m; r) and any polynomial-time
distinguisher D, there exists a negligible function ϵ(·) such that:∣∣∣∣∣∣∣Pr

 r′ $←R
c′ ← Enc(pk, m; r′) :
b← D(pk, c, c′)

b = 1

− Pr

 r′ $←R
c′ ← Rand(c, r′) :
b← D(pk, c, c′)

b = 1


∣∣∣∣∣∣∣ ≤ ϵ(λ)

We say that the scheme is perfectly randomisable when ϵ(λ) = 0.

We now introduce the following definitions that specify how the random coins
used to produce fresh encryptions and randomisations can relate together. We will
say that a PKE scheme is strongly randomisable when it also supports efficient
algorithms to compute such relationships.

Definition 20: Strong Randomisable PKE scheme
A PKE scheme Π = (KGen, Enc, Dec) is strongly randomisable if it is a Rand-
PKE and there exists a polynomial-time algorithm RandR such that:

1. RandR takes r and r′ ∈ R and returns r′′ ∈ R.
2. ∀ (pk, sk) $← KGen(1λ), m ∈ M and r′′ ← RandR(r, r′), the following

equation holds:
Rand(Enc(pk, m; r), r′) = Enc(pk, m; r′′)

Moreover, we say that Π is random-extractable if there exists a a polynomial-
time algorithm RandExt such that for any (r, r′, r′′) ∈ R3:

Pr [r = RandExt(r′, r′′) : r′′ ← RandR(r, r′)] = 1

Definition 21: Computational and perfect strong randomisability
A Rand-PKE scheme is computationally strongly randomisable if, for any λ,
(pk, sk)← KGen(1λ), m ∈ M, r ∈ R, c = Enc(pk, m; r) and any polynomial-
time distinguisher D, there exists a negligible function ϵ(·) such that:∣∣∣∣∣∣∣∣∣Pr

 r′ $←R
c′ ← Enc(pk, m; r′)
b← D(pk, r, c, r′, c′)

: b = 1

− Pr


r′′ $←R
r′ ← RandR(r, r′′)
c′ ← Rand(c, r′′)
b← D(pk, r, c, r′, c′)

: b = 1


∣∣∣∣∣∣∣∣∣ ≤ ϵ(λ)

We say that the scheme is perfectly strongly randomisable when ϵ(λ) = 0.

We now define the notion of message-randomisability considering three different
algorithms. The first one computes the plaintext’s randomisation, the second
computes it on the ciphertext, and the third one computes the randomness given
two messages. RM denotes the set of random coins for message randomisations.

Definition 22: Message-randomisable PKE scheme (MsgRand-PKE)
A PKE scheme Π = (KGen, Enc, Dec) is message-randomisable if there exists
a set RM and two polynomial-time algorithms MsgRandM and MsgRandC
such that:



Chapter 3: Generic Plaintext Equality and Inequality Proofs 32

1. MsgRandM takes m ∈ M, r ∈ RM and returns m′ ∈ M. Moreover,
the function fr : M ⇒ M defined by fr(m) = MsgRandM(m, r), is
bijective.

2. MsgRandC takes c ∈ C, r ∈ RM and returns c′ ∈ C.
3. ∀ (pk, sk) $← KGen(1λ), m ∈M, r′ ∈ R, r ∈ RM and c = Enc(pk, m; r′):

Pr [Dec(sk, MsgRandC(c, r)) = MsgRandM(m, r)] = 1
Moreover, we say that Π is message-derandomisable if, for any m ∈ M and
r ∈ RM, there exists a unique efficiently computable r∗ such that:

Pr [m = MsgRandM(MsgRandM(m, r), r∗)] = 1
Finally, we say that Π is message-random-extractable if there exists a p.p.t
algorithm MsgRandExt such that for any m ∈M and r ∈ RM:

Pr [r = MsgRandExt(m, MsgRandM(m, r))] = 1

Note that we require MsgRandM to be bijective. This property is implicity
required for the message-derandomisability. Indeed, if a randomised message can
be obtained using different messages but the same randomness, then it could also
be derandomised in several ways, which would contradict our definition.

Definition 23: Computational and perfect message-randomisability
A MsgRand-PKE scheme is computationally message-randomisable if, for any
λ, (pk, sk) ← KGen(1λ), m ∈ M, r ∈ R, c = Enc(pk, m; r) and any
polynomial-time distinguisher D, there exists a negligible function ϵ(·) such
that:∣∣∣∣∣∣∣Pr

 m′ $←M
c′ ← Enc(pk, m′; r)
b← D(pk, c, c′)

: b = 1

− Pr

 rM
$←RM

c′ ← MsgRandC(c, rM)
b← D(pk, c, c′)

: b = 1


∣∣∣∣∣∣∣ ≤ ϵ(λ)

We say that the scheme is perfectly message-randomisable when ϵ(λ) = 0.

PKE schemes whose sets of random coins and messages are cyclic groups
(with identity elements id1 and id2, respectively) and that are homomorphic (i.e.,
Enc(pk, m; r) ∗ Enc(pk, m′; r′) = Enc(pk, m ∗ m′; r ∗ r′)), are randomisable and
message-randomisable. For example, to randomise a ciphertext Enc(pk, m; r) with
r′ one can compute: Enc(pk, m; r)∗Enc(pk, id1; r′) = Enc(pk, m; r∗r′). Similarly, to
randomise the plaintext with m′: Enc(pk, m; r)∗Enc(pk, m′; id2) = Enc(pk, m∗m′; r).

The last notion to be defined is key-randomisability. We do so considering three
algorithms as well. The first one randomises the public key, the second randomises
the secret key, and the third one randomises a ciphertext given a randomised public
key. For simplicity, we denote the set of random coins for key randomisations asRK
although public and secret keys may not necessairly be defined over the same space.

Definition 24: Key-randomisable PKE scheme (KeyRand-PKE)
A PKE scheme (KGen, Enc, Dec) is key-randomisable if there exists a set RK
and three polynomial-time algorithms such that:

1. KeyRandPk takes a public key pk, rK ∈ RK and returns pk′.
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2. KeyRandSk takes a secret key sk, rK ∈ RK and returns sk′.
3. KeyRandC takes c ∈ C, r ∈ RK and returns c′ ∈ C.
4. ∀ (pk, sk) $← KGen(1λ), m ∈M, r ∈ R, rK ∈ RK and c = Enc(pk, m; r):

Pr
[

Dec(sk, c) = Dec(KeyRandSk(sk, rK), KeyRandC(c, rK))
∧ Dec(KeyRandSk(sk, rK), Enc(KeyRandPk(pk, rK), m; r)) = m

]
= 1

Moreover, we say that Π is key-derandomisable if for any secret key sk and
rK ∈ RK, there exists an efficiently computable r∗

K such that:
Pr [sk = KeyRandSk(KeyRandSk(sk, rK), r∗

K)] = 1.

Definition 25: Computational and perfect key-randomisability
A KeyRand-PKE scheme is computationally key-randomisable if, for any λ,
(pk, sk) $← KGen(1λ), m ∈ M, r ∈ R, c = Enc(pk, m; r) and any polynomial-
time distinguisher D, there exists a negligible function ϵ(·) such that:∣∣∣∣∣∣∣∣∣∣

Pr

 (pk′, sk′) $← KGen(1λ)
c′ ← Enc(pk′, m; r)
b← D(sk, pk, c′, sk′, pk′)

: b = 1

− Pr


rK

$←RK
pk′ = KeyRandPk(pk, rK)
sk′ = KeyRandPk(sk, rK)
c′ = KeyRandC(c, rK)
b← D(sk, pk, c′, sk′, pk′)

: b = 1


∣∣∣∣∣∣∣∣∣∣
≤ ϵ(λ)

We say that the scheme is perfectly key-randomisable when ϵ(λ) = 0.

3.5 Interactive Protocols
This section presents protocols for proving plaintext equality and inequality where
the common input consists of a public key and two ciphertexts generated with it. As
private input, the prover has the corresponding private key. For plaintext inequality
protocols we require the scheme to be randomisable, whereas, for plaintext equality,
we also require it to be message-randomisable. In both cases, we first introduce an
HVZK variant, which we then modify to achieve zero-knowledge in the presence
of malicious verifiers.

3.5.1 Plaintext Inequality
Let us first introduce our protocol HPINEQ (Figure 3.1). It starts with the verifier
choosing r $←R and b $← {0, 1}. Then it computes c′

b ← Rand(cb, r) and sends c′
b to

the prover. At this stage, the prover receives a ciphertext that cannot link without
decryption to c0 or c1. Since the verifier is honest, the prover either decrypts c′

b

to m0 or m1 and can determine b and send it back to the verifier. The verifier
accepts if and only if it receives b as expected.

The idea of this protocol can easily be explained to a large audience by replacing
the ciphertexts with closed boxes using a padlock. Consider two identical closed
boxes that contain a white card and a black card, respectively. The prover has a
key that allows him to open both boxes and wants to prove to the verifier that
the boxes contain different objects without revealing anything else. The verifier
secretly chooses one of the two boxes and challenges the prover to guess which
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Prover(sk, pk, c0, c1) Verifier(pk, c0, c1)
if (pk, c0, c1) ̸∈ K × C2 return ⊥
r $←R; b $← {0, 1}
c′

b ← Rand(cb, r)
c′

b←−−−
if Dec(sk, c′

b) = Dec(sk, c0)
then z ← 0 else z ← 1

z−−−→
return z = b

Figure 3.1: One execution of protocol HPINEQ (repeated λ times).

box he has chosen. The prover secretly opens the box and deduces which one
it is by the card color. Upon telling the verifier which was the box and if the
verifier agrees, they repeat the protocol λ times. If the two boxes contain the same
card, the prover has no information about the recieved box and will fail to answer
correctly with probability 1 − 1/2λ.
Theorem 7. Let Π be a PKE scheme, which is computationally randomisable
(Definition 19 on page 30). If Π is used in HPINEQ, then HPINEQ is complete,
computationally sound and perfect HVZK.

Proof. Completeness. When interacting with an honest verifier, the prover can
compute m′ ← Dec(sk, c′

b), check whether it is equal to the message encrypted by
c0 or c1 and send the value z so that the verifier always accepts.
Soundness. Let us define the following algorithm, which will be used to generate
instances of the protocol HPINEQ:
GenInstance(1λ,R,M)
(r0, r1) $←R2; m $←M
(sk, pk) $← KGen(1λ)
c0 ← Enc(pk, m; r0)
c1 ← Enc(pk, m; r1)
return (sk, pk, c0, c1)

For a tuple (sk, pk, c0, c1) returned by GenInstance, the prover and the verifier
recieve common input x = (pk, c0, c1). The prover also receives auxiliary input
w = sk. We recall that ∀ x ̸∈ K × C2, the verifier aborts the protocol.

It follows that ∀ x s.t. x ̸∈ LR and x ̸∈ K × C2 : Pr[⟨P∗(w),V(z)⟩(x) = 1] = 0
for any witness w and any bit-string z. Furthermore, for all instances x such that
x ̸∈ LR and x ∈ K × C2: x ∈ {(pk, c0, c1)|(sk, pk, c0, c1)← GenInstance(1λ,R,M)}.
This means that the soundness of the protocol HPINEQ can be proven by showing
that for any witness w, any bit-string z and any instance x = (pk, c0, c1) generated
from the output of GenInstance, Pr[⟨P∗(w),V(z)⟩(x) = 1] is negligible.

Let us now define an experiment ExpSound
A that takes a tuple (sk, pk, c0, c1)

generated by GenInstance as input, where an adversary A plays one round of
the protocol HPINEQ as a (dishonest) prover against a challenger that plays the
role of an honest verifier. We define A as a pair of p.p.t algorithms (A1,A2)
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Game G0 Game G1 Game G2
st← A1(sk, pk, c0, c1) st← A1(sk, pk, c0, c1) st← A1(sk, pk, c0, c1)
r $←R; b $← {0, 1} r $←R; b $← {0, 1} r $←R; b $← {0, 1}
c′

b ← Rand(cb, r) m← Dec(sk, c0) m← Dec(sk, c0)
z ← A2(st, c′

b) c′
0 ← Enc(pk, m; r) c′

0 ← Enc(pk, m; r)
return z = b c′

1 ← Rand(c1, r) m← Dec(sk, c1)
z ← A2(st, c′

b) c′
1 ← Enc(pk, m; r)

return z = b z ← A2(st, c′
b)

return z = b

Figure 3.2: Sequence of games for HPINEQ.

where A1(sk, pk, c0, c1) instantiates the dishonest prover and returns a state st, and
A2(st, c′) corresponds to the interaction between the verifier and the prover (i.e.,
it takes a challenge c′ as input and returns a response z). The experiment runs as
follows:
ExpSound

A (1λ, (sk, pk, c0, c1))
st← A1(sk, pk, c0, c1)
r $←R; b $← {0, 1}
c′

b ← Rand(cb, r)
z ← A2(st, c′

b)
return z = b

Next, we prove that for any adversaryA, the probability of winning this experiment
is negligibly close to 1/2 for any tuple (sk, pk, c0, c1). Observe that for all w
such that x ̸∈ LR and x ∈ K × C2, it holds that x ∈ {(pk, c0, c1) |(sk, pk, c0, c1)
← GenInstance(1λ,R,M)}. Since the protocol can be repeated λ times, it follows
that for all instances x such that x ̸∈ LR and x ∈ K×C2, Pr[⟨P∗(w),V(z)⟩(x) = 1]
is negligibly close to 1/2λ, which means that the soundness probability is also
negligible (when run λ times).

We define a sequence of games (Figure 3.2) which are played between an
adversary A and the challenger.
Game 0: The first game G0 is ExpSound

A (1λ, (sk, pk, c0, c1)) for a fixed tuple
(sk, pk, c0, c1). Considering the adversary’s view, game G0 represents a real
execution of the protocol HPINEQ. We say that “A wins G0” when the output
is 1.
Game 1: G1 is defined as G0 except that we replace the instruction c′

0 ← Rand(c0, r)
by m← Dec(sk, c0) and c′

0 ← Enc(pk, m; r).
We claim and prove by reduction that:

|Pr[A wins G0]− Pr[A wins G1]| ≤ ϵrand(λ),
where ϵrand(λ) is the randomisability advantage of Π. Let c′ be a ciphertext
generated by one of these two methods:

1. r′ $←R; c′ ← Enc(pk, m; r′)
2. r′ $←R; c′ ← Rand(c0, r′) (where m = Dec(sk, c0))

We build the distinguisherD(pk, c0, c′) as follows: D simulates the protocol HPINEQ
for the fixed statement x = (pk, c0, c1), except that if b = 0, it sets c′

0 ← c′. If the
proof is accepted then D returns 1, else it returns 0.
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• If c′ ← Rand(c0, r′), D perfectly simulates G0, so:
Pr[A wins G0] = Pr

[
r′ $←R; c′ ← Rand(c, r′); b← D(pk, c0, c′); : b = 1

]
• If c′ ← Enc(pk, m; r′), D perfectly simulates G1, so:

Pr[A wins G1] = Pr
[

r′ $←R; c′ ← Enc(pk, m; r′); b← D(pk, c0, c′); : b = 1
]

which concludes the proof of the claim.
Game 2: G2 is defined as G1 except that we replace the instruction c′

1 ← Rand(c1, r)
by m← Dec(sk, c1) and c′

1 ← Enc(pk, m; r).
We claim that |Pr[A wins G1]− Pr[A wins G2]| ≤ ϵrand(λ), which we prove as in

the previous game. Finally, since m = Dec(sk, c0) = Dec(sk, c1) and c′
b is always

computed from Enc(pk, m) in G2, we deduce that c′
b does not depend on b, which

implies that A receives no information that depends on b. Therefore, the best
strategy of A in G2 is to guess b at random, so:

Pr[A wins G2] = 1/2
Based on the indistinguishability of transitions from the given game sequence, we
conclude that if we repeat the protocols λ times, the probability that A breaks the
soundness is negligible and majored by:

Pr[A wins G0]λ ≤ (2 · ϵrand(λ) + 1/2)λ

Zero-Knowledge. We define the simulator S(x) where x = (pk, c0, c1). The
simulator S picks b $← {0, 1} and computes r $← R and c′

b ← Rand(pk, cb, r).
Finally, it returns (c′

b, b). The simulator acts as in the real protocol, so it perfectly
simulates the proof.

Prover(sk, pk, c0, c1) Verifier(pk, c0, c1)
if (pk, c0, c1) ̸∈ K × C2 return ⊥
r $←R; b $← {0, 1}; c′

b ← Rand(cb, r)
c′

b←−−−
z ← ¬(Dec(sk, c0) = Dec(sk, c′

b))
(comm, op)← Commit(z)

comm−−−→
r,b←−−−

if c′
b ̸= Rand(cb, r) then op← ⊥

op−−−→
z′ ← Open(comm, op)
return z′ = b

Figure 3.3: One execution of protocol PINEQ (repeated λ times).

Protocol PINEQ (Figure 3.3), is an amendment of HPINEQ that uses a
commitment scheme. Without it, a malicious verifier could send a ciphertext
that is not a randomisation of c0 or c1 and check whether it encrypts the same
value. The commitment scheme protects the prover from such verifiers. To this
end, the verifier first randomises the ciphertext and then sends it to the prover,
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which computes z and commits to it. Then, the verifier reveals the randomness
used at the first stage and the prover opens the commitment if and only if these
values are consistent with the ciphertext obtained from the verifier.
Theorem 8. Let Π be a PKE scheme, which is derandomisable (Definition 18 on
page 30) and perfectly strong randomisable (Definition 21 on page 31). Let Γ be a
commitment scheme, which is computationally binding and perfectly hiding. If Π
and Γ are used in the protocol PINEQ, then PINEQ is complete, computationally
sound and perfect zero-knowledge.

Proof. Completeness. Since Π is randomisable, the prover can decrypt c′
b (or c′

1−b)
and compare the plaintext with the decryptions of c0 and c1 to determine z. Hence,
P commits to the right value, and V always accepts the proof.
Soundness. Let us define the following algorithm:

GenInstance(1λ,R,M)
(r, r0, r1) $←R3; m $←M
(sk, pk) $← KGen(1λ)
c← Enc(pk, m; r); c0 ← Rand(c, r0); c1 ← Rand(c, r1)
return (sk, c, r0, r1, pk, c0, c1)

We recall that ∀ x ̸∈ K × C2, the verifier aborts the protocol. It follows that ∀ x
such that x ̸∈ LR and x ̸∈ K × C2 : Pr[⟨B(w),V(z)⟩(x) = 1] = 0 for any witness
w and any bit-string z. Since the scheme is perfectly strongly randomisable, the
ciphertexts produced by the encryption algorithm follow the same distribution
as those produced by the randomisation algorithm. Therefore, ∀ x such that
x ̸∈ LR and x ∈ K × C2, we have x ∈ {(pk, c0, c1)|(sk, c, r0, r1, pk, c0, c1) ←
GenInstance(1λ,R,M)}. This means that the soundness of the protocol PINEQ
can be proven by showing that for any witness w, any auxiliary input z, and
any instance x = (pk, c0, c1) generated by GenInstance, Pr[⟨B(x),V(z)⟩(x) = 1] is
negligible.

Let us define an experiment ExpSound
A , which takes as input a tuple (sk, c, r0,

r1, pk, c0, c1) generated by GenInstance. In the experiment, the adversaryA executes
the protocol PINEQ as a (dishonest) prover against a challenger that plays the role
of an honest verifier. We define A as a triplet of p.p.t algorithms (A1,A2,A3) where
A1(w, x) initiates the dishonest prover and returns st1; A2(st1, c′

b) corresponds to
the first interaction of the protocol (i.e., it takes a challenge c′

b as input and returns
a state st2 and the response comm); and A3(st2, r, b) corresponds to the second
interaction (i.e., it takes a challenge r and b as input and returns a response op).
The experiment runs as follows:

ExpSound
A (1λ, (sk, c, r0, r1, pk, c0, c1))

st1 ← A1(sk, (pk, c0, c1))
b $← {0, 1}, r $←R; c′

b ← Rand(cb, r)
(comm, st2)← A2(st1, c′

b)
op← A3(st2, r, b)
return Open(comm, op) = b
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Game G0 Game G1
st1 ← A1(sk, (pk, c0, c1)) st1 ← A1(sk, (pk, c0, c1))
b $← {0, 1}; r $←R b $← {0, 1};r′ $←R; r ← RandR(rb, r′)
c′

b ← Rand(cb, r) c′
b ← Rand(c,r′ )

(comm, st2)← A2(st1, c′
b) (comm, st2)← A2(st1, c′

b)
op← A3(st2, r, b) op← A3(st2, r, b)
return Open(comm, op) = b return Open(comm, op) = b

Figure 3.4: Sequence of games for PINEQ.

We prove that for any adversary A, the probability of winning this experiment
is negligibly close to 1/2 for any tuple (sk, c, r0, r1, pk, c0, c1). ∀ x s.t. x ̸∈
LR and x ∈ K × C2, we have that x ∈ {(pk, c0, c1)|(sk, pk, r0, r1, c0, c1) ←
GenInstance(1λ,R,M)}. Moreover, since the protocol is repeated λ times, one
can deduce that for all instances x such that x ̸∈ LR and x ∈ K×C2, it holds that
Pr[⟨B(w),V(z)⟩(x) = 1] is negligibly close to 1/2λ. This means that the soundness
probability is negligible (when executed λ times).

In Figure 3.4, we define a sequence of games between an adversary A and a
challenger for a fixed tuple (sk, c, r0, r1, pk, c0, c1).
Game 0: The first game G0 is ExpSound

A (1λ, (sk, c, r0, r1, pk, c0, c1)). Considering the
adversary’s view, game G0 is a real execution of PINEQ. We say that “A wins G0”
when the output is 1.
Game 1: G1 proceeds as G0 except that we replace the instructions r $← R and
c′

b ← Rand(cb, r) by r′ $← R, c′
b ← Rand(c, r′) and r ← RandR(rb, r′). We note

that since the encryption scheme is strongly randomisable, derandomisable, and
cb ← Rand(c, rb) : c = Rand(cb, rb) and c′

b = Rand(cb, RandR(rb, r′)) = Rand(cb, r).
Moreover, an element r produced by the sequence of instructions r′ $← R; r ←
RandR(rb, r′) follows the same distribution as r $←R. Therefore:

Pr[A wins G0] = Pr[A wins G1]

Next, we claim and prove by reduction that
∣∣∣Pr[A wins G1]− 1

2

∣∣∣ = ϵbinding(λ)/2,
where ϵbinding(λ) is the adversary’s advantage in the binding experiment of the
commitment scheme (Definition 2 on page 14). In game G1, the challenger can
generate a random coin r for both b = 1 and b = 0 on the same challenge
c′ = c′

0 = c′
1 because it builds c′

b computing r′ $← R, c′ ← Rand(c, r′), and r
computing r ← RandR(rb, r′). To break the soundness of the protocol, A must be
able to succeed in both cases (b = 1 and b = 0) with non negligible probability at
each round. If this is not the case, the advantage of A is bounded by a value that
is negligibly close to 1/2λ. We show that if such an adversary exists, we can build
an algorithm that breaks the binding property of the commitment scheme. If the
adversary is able to succeed for both cases (b = 1 and b = 0), then it is able to
open its commitment comm for two different messages z = 0 and z = 1, which is
equivalent to breaking the binding property.

We build an adversary B that has an advantage ϵbinding(λ) in the binding
experiment as follows: B receives the commitment scheme’s public parameters
pp and simulates the game G1 for b = 0 to A using pp. More formally, B runs as
follows:



3

39 Section 3.5: Interactive Protocols

B(pp, sk, (pk, c0, c1))
st1 ← A1(sk, (pk, c0, c1))
r′ $←R; r̂0 ← RandR(r0, r′); r̂1 ← RandR(r1, r′)
c′ ← Rand(c, r′)
(comm, st2)← A2(st1, c′)
op0 ← A3(st2, r̂0, b)
op1 ← A3(st2, r̂1, b)
if Open(pp, comm, op0) = 0 then win0 ← 1
if Open(pp, comm, op1) = 1 then win1 ← 1
if win0 = 1 ∧ win1 = 1 return (comm, op0, op1)

Note that if Open(pp, comm, op0) = 0 ̸= 1 = Open(pp, comm, op1), B wins the
experiment. Therefore, we have that:

Pr[A wins G1] = Pr[b = 0] · Pr[win0 = 1] + Pr[b = 1] · Pr[win1 = 1]

= 1
2

Pr[win0 = 1] + 1
2

Pr[win1 = 1]

Let us now set three events E0, E1 and E2 as follows:
• E0 = “Open(pp, comm, op0) = ⊥ or Open(pp, comm, op1) = ⊥”.
• E1 = “Open(pp, comm, op0) ̸= Open(pp, comm, op1) and Open(pp, comm, op0)
̸= ⊥ and Open(pp, comm, op1) ̸= ⊥”. Note that Pr[E1] = ϵbinding(λ).

• E2 = “Open(pp, comm, op0) = Open(pp, comm, op1) and Open(pp, comm, op0)
̸= ⊥ and Open(pp, comm, op1) ̸= ⊥”.

We have that:

Pr[E0] + Pr[E1] + Pr[E2] = 1
⇔ Pr[E2] = 1− Pr[E0]− Pr[E1]
⇒ Pr[E2] ≤ 1− ϵbinding(λ)

Moreover,

Pr[win1 = 1] =
2∑

i=0
Pr[Ei] · Pr[win1 = 1|Ei]

≤ Pr[E1] · Pr[win1 = 1|E1] + Pr[E2] · Pr[win1 = 1|E2]
≤ ϵbinding(λ) · Pr[win1 = 1|E1] + (1− ϵbinding(λ)) · Pr[win1 = 1|E2]

In the case E2, if A wins the case b = 0, it loses the case b = 1. We
have Pr[win1 = 1|E2] = 1 − Pr[win0 = 1]. On the other hand, in the case E1,
Pr[win1 = 1|E1] = Pr[win0 = 1], which implies that:

Pr[win1 = 1] ≤ ϵbinding(λ) · Pr[win0 = 1] + (1− ϵbinding(λ)) · (1− Pr[win0 = 1])
≤ 1− Pr[win0 = 1] + ϵbinding(λ) · (2 · Pr[win0 = 1]− 1)
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This in turns implies that:

Pr[win1 = 1] + Pr[win0 = 1] ≤ 1 + ϵbinding(λ) · (2 · Pr[win0 = 1]− 1)

⇔ 1
2
· Pr[win1 = 1] + 1

2
· Pr[win0 = 1] ≤ 1

2
+ ϵbinding(λ) ·

(
Pr[win0 = 1]− 1

2

)
⇔
∣∣∣∣Pr[A wins G1]−

1
2

∣∣∣∣ ≤ ϵbinding(λ)
2

Finally, if the protocol is repeated λ times, the soundness probability becomes:

Pr[A wins G0]λ = Pr[A wins G1]λ ≤
(1+ϵbinding(λ)

2

)λ

Since the commitment scheme has the binding property by hypothesis, ϵbinding(λ)
is negligible and so is Pr[A wins G0]λ, which concludes the proof of the soundness.
Zero-Knowledge. Let V∗ be a dishonest verifier. We define a Simulator SV∗(x)
where x = (pk, c0, c1) that perfectly simulates V∗. The simulator S generates c′

b

and r as the dishonest verifier V∗.
• If c′

b = Rand(cz, rz) where z $← {0, 1}, then the simulator runs (comm, op)←
Commit(z) and returns the transcript (c′

b, comm, (r, z), op).
• If c′

b ̸= Rand(cz, rz) where z $← {0, 1}, then the simulator picks comm in
the uniform distribution on the commitment set and returns the transcript
(c′

b, comm, (r, z),⊥).
The simulator follows the same distribution as the real protocol. If the verifier sends
a wrong r, then it simulates the prover’s messages using a random commitment
comm and the ⊥ symbol. Indeed, since the commitment’s open key remains
unknown, the prover commitment is like a random commitment picked in the
uniform distribution according to the perfect hiding property.

3.5.2 Plaintext Equality
As before, we begin explaining our protocol HPEQ (Figure 3.5). First, the verifier
chooses r $←R, rM

$←RM and b $← {0, 1}. Then it computes c′
b ← Rand(cb, r) and

c′′
b ← MsgRandC(c′

b, rM) to send c′′
b to the prover. At this stage, the prover receives

a ciphertext that cannot be linked to c0 nor to c1. The prover decrypts c′′
b obtaining

Prover(sk, pk, c0, c1) Verifier(pk, c0, c1)
if (pk, c0, c1) ̸∈ K × C2 return ⊥
r $←R;rM

$←RM; b $← {0, 1}
c′

b ← Rand(cb, r)
c′′

b ← MsgRandC(c′
b, rM)

c′′
b←−−−

m′ ← Dec(sk, c′′
b ); m← Dec(sk, c0)

z ← MsgRandExt(m′, m)
z−−−→

return z = rM

Figure 3.5: One execution of protocol HPEQ (repeated λ times).
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a message m′, which corresponds to a message-randomisation of either the message
decrypted by c0 or by c1. The prover computes z ← MsgRandExt(m′, m) and sends
it to the verifier. The verifier accepts if and only if z = rM. Since both ciphertexts,
c0 and c1, belong to Enc(pk, m), the prover can always compute z correctly. If
this is not the case, then a cheating prover can only correctly guess the bit b with
probability at most 1/2.
Theorem 9. Let Π be a PKE scheme, which is computationally randomisable
(Definition 19 on page 30), computationally message-randomisable and message-
random-extractable (Definition 22 on page 31). If Π is the scheme used in HPEQ,
then HPEQ is complete, computationally sound and perfect HVZK.

Proof. Completeness. When interacting with an honest verifier, the prover
computes m′ ← Dec(sk, c′′

b ). Then, given that c0, c1 ∈ Enc(pk, m) and that
the scheme is message-random-extractable, the prover can always compute z ←
MsgRandExt(m′, m), with z = rM so that the verifier always accepts.
Soundness. Let us define the following algorithm:
GenInstance(1λ,R,M)
(r0, r1) $←R2, m0

$←M
m1

$←M\{m0}
(sk, pk) $← KGen(1λ)
c0 ← Enc(pk, m0; r0)
c1 ← Enc(pk, m1; r1)
return (sk, pk, c0, c1)

We recall that for all x ̸∈ K × C2, the verifier aborts the protocol. Furthermore,
for all instances x such that x ̸∈ LR and x ̸∈ K × C2, Pr[⟨B(w),V(z)⟩(x) = 1] = 0
for any witness w and any bit-string z. On the other hand, for all instances x s.t.
x ̸∈ LR and x ∈ K × C2, x ∈ {(pk, c0, c1)|(sk, pk, c0, c1) ← GenInstance(1λ,M)}.
This means that the soundness of the protocol HPEQ can be proven by showing
that for any witness w, any bit-string z and any instance x = (pk, c0, c1) generated
by GenInstance, Pr[⟨B(w),V(z)⟩(x) = 1] is negligible.

In the following, we define an experiment that takes as input a tuple (sk, pk, c0,
c1) generated by GenInstance. In such experiment, the adversary A executes the
protocol HPEQ as a (dishonest) prover with a challenger that plays the role
of an honest verifier. The A is defined as a pair of p.p.t algorithms (A1,A2)
where A1(w, x) initiates the dishonest prover and returns a state st; and A2(st, c′)
corresponds to the interaction between the verifier and the prover (it takes a
challenge c′ as input and returns a response z). The experiment is presented below.
ExpSound

A (1λ, (sk, pk, c0, c1))
st← A1(sk, (pk, c0, c1))
r $←R; rM

$←RM; b $← {0, 1}
c′

b ← Rand(cb, r)
c′′

b ← MsgRandC(c′
b, rM)

z ← A(st, c′′
b )

return z = rM
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In what follows, we prove that for any adversary A, the probability of winning
this experiment is negligibly close to 1/2 for any tuple (sk, pk, c0, c1). Furthermore,
when the protocol is repeated λ times, for all instances x such that x ̸∈ LR and
x ∈ K × C2, Pr[⟨B(w),V(z)⟩(x) = 1] is negligibly close to 1/2λ, meaning the
soundness probability is negligible.

In Figure 3.6 we present a sequence of games played between the adversary A
and the challenger.
Game 0: The first game G0 is ExpSound

A (1λ, (sk, pk, c0, c1)) for a fixed (sk, pk, c0, c1).
Considering the adversary’s view, G0 represents a real execution of one round of
the protocol HPEQ. We say that “A wins G0” when the output is 1.

Game G0 Game G1 Game G2
st← A1(sk, pk, c0, c1) st← A1(sk, pk, c0, c1) st← A1(sk, pk, c0, c1)
r $←R; rM

$←RM r $←R; rM
$←RM r $←R; rM

$←RM

b $← {0, 1} b $← {0, 1} b $← {0, 1}
c′

b ← Rand(cb, r) m0 ← Dec(sk, c0) m0 ← Dec(sk, c0)
c′′

b ← MsgRandC(c′
b, rM) c′

0 ← Enc(pk, m0; r) c′
0 ← Enc(pk, m0; r)

z ← A2(st, c′′
b ) c′

1 ← Rand(c1, r) m1 ← Dec(sk, c1)
return z = rM c′′

b ← MsgRandC(c′
b, rM) c′

1 ← Enc(pk, m1; r)
z ← A2(st, c′′

b ) c′′
b ← MsgRandC(c′

b, rM)
return z = rM z ← A2(st, c′′

b )
return z = rM

Game G3 Game G4
st← A1(sk, pk, c0, c1) st← A1(sk, pk, c0, c1)
r $←R; rM

$←RM; b $← {0, 1} r $←R; rM
$←RM; b $← {0, 1}

m0 ← Dec(sk, c0) m0 ← Dec(sk, c0)
c′

0 ← Enc(pk, m0; r) c′
0 ← Enc(pk, m0; r)

m1 ← Dec(sk, c1) m1 ← Dec(sk, c1)
c′

1 ← Enc(pk, m1; r) c′
1 ← Enc(pk, m1; r)

m′
0

$←M; c′′
0 ← Enc(pk, m′

0; r) m′
0

$←M; c′′
0 ← Enc(pk, m′

0; r)
c′′

1 ← MsgRandC(c′
1, rM) m′

1
$←M; c′′

1 ← Enc(pk, m′
1; r)

z ← A2(st, c′′
b ) z ← A2(st, c′′

b )
if (b = 0) then return z = MsgRandExt(mb, m′

b)
return z = MsgRandExt(m0, m′

0)
else return z = rM

Figure 3.6: Sequence of games for HPEQ.

Game 1: G1 is defined as G0 except that we replace the instruction c′
0 ← Rand(c0, r)

by m0 ← Dec(sk, c0) and c′
0 ← Enc(pk, m0; r).

We claim and prove by reduction that |Pr[A wins G0]− Pr[A wins G1]| ≤
ϵrand(λ), where ϵrand(λ) is the randomisability advantage of the encryption scheme.
Let c′ be a ciphertext generated by one of these two methods (where m0 ←
Dec(sk, c0)):

1. r′ $←R; c′ ← Enc(pk, m0; r′)
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2. r′ $←R; c′ ← Rand(c0, r′)
We build the distinguisher D(pk, c0, c′) as follows: D simulates the protocol HPEQ,
except that if b = 0, it sets c′

0 =← c′. If the proof is accepted then D returns 1,
else it returns 0.

• If c′ ← Rand(c0, r′), D perfectly simulates G0, so:

Pr[A wins G0] = Pr
[

r′ $←R; c′ ← Rand(c0, r′); b← D(pk, c0, c′); : b = 1
]

• If c′ ← Enc(pk, m0; r′), D perfectly simulates G1, so:

Pr[A wins G1] = Pr
[

r′ $←R; c′ ← Enc(pk, m0; r′); b← D(pk, c0, c′); : b = 1
]

which concludes the proof of the claim.
Game 2: G2 is defined as G1 except that we replace the instruction c′

1 ← Rand(c1, r)
by m1 ← Dec(sk, c1) and c′

1 ← Enc(pk, m1; r). We claim and prove as before that

|Pr[A wins G1]− Pr[A wins G2]| ≤ ϵrand(λ)

Game 3: G3 is defined as G2 except that we replace the instruction c′′
0

$←
MsgRand(c′

0, rM) by m′
0

$← M and c′′
0 ← Enc(pk, m′

0; r). We claim and prove by
reduction that

|Pr[A wins G2]− Pr[A wins G3]| ≤ ϵmsgRand(λ)

where ϵmsgRand(λ) is the message-randomisability advantage of the encryption
scheme.

Let c′′ be a ciphertext generated by one of these two methods:
1. m′

0
$←M; c′′ ← Enc(pk, m′

0; r′
0)

2. rM
$←RM; c′′ ← MsgRandC(c′

0, rM)
We build a distinguisher D(pk, c′

0, c′′) as follows: D simulates the protocol HPEQ,
except that if b = 0, then it sets c′′

0 ← c′′. If the proof is accepted then D returns
1, else it returns 0.

• If c′′ ← MsgRandC(c′
0, rM), D perfectly simulates G2, so:

Pr[A wins G2] = Pr

 rM
$←RM;

c′′ ← MsgRandC(c′
0, rM);

b← D(pk, c′
0, c′′);

: b = 1


• If c′′ ← Enc(pk, m′

0; r′
0), D perfectly simulates G3, so:

Pr[A wins G3] = Pr

 m′
0

$←M;
c′′ ← Enc(pk, m′

0; r′
0);

b← D(pk, c′
0, c′′);

: b = 1


which concludes the proof of the claim.
Game 4: G4 is defined as G3 except that we replace the instruction c′′

1
$←

MsgRand(c′
1, rM) by m′

1
$←M and c′′

1 ← Enc(pk, m′
0; r). As before, it follows that

|Pr[A wins G3]− Pr[A wins G4]| ≤ ϵmsgRand(λ)
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Finally, in G4, m′
0 and m′

1 are randomly picked and independent of b. Therefore,
the adversary receives no information that depends on b from c′′

b . Since m0 and m1
are different, it follows that the best strategy A has is to guess b and compute z as
z ← MsgRandExt(mb, Dec(sk, c′′

b )). We conclude that Pr[A wins G4] = 1/2.
Based on the indistinguishability of transitions from the given game sequence,

we conclude that if we repeat the protocols λ times, the probability that A breaks
the soundness is negligible and majored by:

Pr[A wins G0]λ ≤
(
2 · (ϵrand(λ) + ϵmsgRand(λ)) + 1

2

)λ
.

Zero-Knowledge. We define the simulator S(x) where x = (pk, c0, c1). The
simulator S picks b $← {0, 1}, r $←R, rM

$←RM, and computes c′
b ← Rand(pk, cb, r)

and c′′
b ← MsgRandC(c′

b, rM). Finally, it returns (c′′
b , b). The simulator acts as in

the real protocol so it perfectly simulates the proof.

Prover(sk, pk, c0, c1) Verifier(pk, c0, c1)
if (pk, c0, c1) ̸∈ K × C2 return ⊥
r $←R; rM

$←RM; b $← {0, 1}
c′

b ← Rand(cb, r)
c′′

b ← MsgRandC(c′
b, rM)

c′′
b←−−−

m′ ← Dec(sk, c′′
b ); m← Dec(sk, c0)

z ← MsgRandExt(m′, m)
(comm, op)← Commit(z)

comm−−−→
(r, rM, b)←−−−−

if MsgRandC(Rand(cb, r), rM) ̸= c′′
b

then op← ⊥
op−−−→

z′ ← Open(comm, op)
return z′ = rM

Figure 3.7: One execution of protocol PEQ (repeated λ times).

Figure 3.7 presents a variant that has perfect (full) zero-knowledge thanks to
the use of a commitment scheme. Without one, a malicious verifier could send a
ciphertext c∗ for which the corresponding message m∗ is known. Once z is received
from the prover, the verifier will gain information about the relation between m, m∗

and z to compute m. In brief, the prover first commits to the value z, relying on the
hiding property of the commitment scheme. Then, it checks whether the verifier
has correctly randomised the messages or not to open the commitment.
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Theorem 10. Let Π be a PKE scheme, which is perfectly strong randomisable
and derandomisable, perfectly message-randomisable and message-derandomisable
and message-random-extractable. Let Γ be the commitment scheme, which is
computationally binding and perfectly hiding. If Π and Γ are used in the protocol
PEQ, then PEQ is complete, computationally sound and perfect zero-knowledge.

Proof. Completeness. If Dec(sk, c0) = Dec(sk, c1), a message-randomisation of both
ciphertexts will decrypt to the same message m′. Hence, regardless of which
ciphertext the prover receives from the verifier, if it is a message-randomisation
of either c0 or c1 and the scheme is message-random-extractable, the prover can
correctly compute z ← MsgRandExt(m′, m) with z = rM. It follows that the prover
always opens a commitment for rM so that the verifier accepts.
Soundness. Once again, we define the following algorithm:

GenInstance(1λ,R,RM,M)
(r, r0, r1) $←R3; r0

M
$←RM

r1
M

$←RM\{r0
M}; m $←M

(sk, pk)← KGen(1λ)
c← Enc(pk, m; r)
c′

0 ← MsgRandC(c, r0
M); c′

1 ← MsgRandC(c, r1
M)

c0 ← Rand(c′
0, r0); c1 ← Rand (c′

1, r1)
return (sk, c, r0, r1, pk, c0, c1)

Note that since c′
0 and c′

1 are message-randomisations of c with two different coins
rM,0 ̸= rM,1, it holds that Dec(sk, c′

0) ̸= Dec(sk, c′
1) for any (sk, c, r0, r1, pk, c0, c1)

returned by GenInstance. We recall that for all x ̸∈ K × C2, the verifier aborts the
protocol. For all instances x such that x ̸∈ LR and x ̸∈ K×C2, Pr[⟨B(w),V(z)⟩(x) =
1] = 0 for any witness w and any bit-string z.

Since the encryption scheme is perfectly randomisable, message-randomisable,
derandomisable and message-derandomisable, the ciphertexts produced by the
encryption algorithms on random messages follow the same distribution as the
ones produced by the randomisation and messages randomisation algorithms.
Therefore, for all instances x such that x ̸∈ LR and x ∈ K × C2: x ∈
{(pk, c0, c1)|(sk, c, r0, r1, pk, c0, c1)← GenInstance(1λ,R,RM,M)}. This means that
the soundness of the protocol PEQ can be proven by showing that for any witness
w, any bit-string z and any instance x = (pk, c0, c1) generated from the output of
GenInstance, Pr[⟨B(w),V(z)⟩ (x) = 1] is negligible.

In the following, we define an experiment that takes on input a tuple (sk, c, r0,
r1, pk, c0, c1) generated by GenInstance. In such an experiment, the adversary A
executes the protocol PEQ as a (dishonest) prover with a challenger that plays the
role of an honest verifier. We define A as a triplet of p.p.t algorithms (A1,A2,A3)
where A1(w, x) initiates the prover and returns a state st1; A2(st1, c′′

b ) corresponds
to the first interaction between the verifier and the prover (it takes a challenge c′′

b as
input, returning a state st2 and response comm); and A3(st2, (r, rM, b)) corresponds
to the second interaction between the verifier and the prover (it takes a challenge
(r, rM, b) as input and returns a response op). The experiment is defined as follows:
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ExpSound
A (1λ, (sk, c, r0, r1, pk, c0, c1))

st1 ← A1(sk, (pk, c0, c1))
b $← {0, 1}; r $←R; rM

$←RM
c′

b ← Rand(cb, r); c′′
b ← MsgRandC(c′

b, rM)
(comm, st2)← A2(st1, c′′

b )
op← A3(st2, (r, rM, b))
return Open(comm, op) = rM

Now we prove that for any adversary A, the probability of winning this
experiment is negligibly close to 1/2 for any tuple (sk, c, r0, r1, pk, c0, c1). First
we observe that for all instances x such that x ̸∈ LR and x ∈ K × C2, x ∈
{(pk, c0, c1)|(sk, c, r0, r1, pk, c0, c1) ← GenInstance(1λ,R,RM,M)}. Then, if the
protocol is repeated λ times, for all instances x such that x ̸∈ LR and x ∈ K × C2,
Pr[⟨B(w),V(z)⟩(x) = 1] is negligibly close to 1/2λ, which means that the soundness
probability is negligible. We define a sequence of games (Figure 3.8) played between
the adversary A and the challenger.
Game 0: G0 is ExpSound

A (1λ, (sk, c, r0, r1, pk, c0, c1)) for a fixed (sk, c, r0, r1, pk, c0, c1).
Considering the adversary’s view, G0 represents a real execution of the protocol
PEQ. We say that “A wins G0” when the output is 1.

Game G0 Game G1
st1 ← A1(sk, (pk, c0, c1)) st1 ← A1(sk, (pk, c0, c1))
b $← {0, 1} b $← {0, 1}
r $←R r′ $←R
c′

b ← Rand(cb, r) c′
b ← Rand(c, r′); r ← RandR(rb, r′)

rM
$←RM r′

M
$←RM

c′′
b ← MsgRandC(c′

b, rM) c′′
b ← MsgRandC(c′

b, r′
M)

rM ← MsgRandExt(Dec(sk, cb), Dec(sk, c′′
b ))

(comm, st2)← A2(st1, c′′
b ) (comm, st2)← A2(st1, c′′

b )
op← A3(st2, (r, rM, b)) op← A3(st2, (r, rM, b))
if (Open(comm, op) = rM) return 1 if (Open(comm, op) = rM) return 1
else return 0 else return 0

Figure 3.8: Sequence of games for PEQ.

Game 1: G1 proceeds as G0 except that we replace some of the instructions as
described below.

First, we replace r $← R and c′
b ← Rand(cb, r) by r′ $← R, c′

b ← Rand(c, r′)
and r ← RandR(rb, r′). We note that since the encryption scheme is strongly
randomisable, derandomisable, and cb = Rand(c, rb): c = Rand(cb, rb) and c′

b =
Rand(cb, RandR(rb, r′)) = Rand(cb, r). On the other hand, since the encryption
scheme is perfectly strongly randomisable, an element r produced by the sequence
of instructions r′ $←R; r ← RandR(rb, r′) follows the same distribution as r $←R.

Subsequently, we replace the instructions rM
$← RM and c′′

b ←
MsgRandC(c′

b, rM) by r′
M

$← RM, c′′
b ← MsgRandC(c′

b, r′
M) and rM ←

MsgRandExt(Dec(sk, cb), Dec(sk, c′′
b )). We note that since the encryption scheme
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is message-randomisable and message-random-extractable, the message encrypted
in c′′

b is indistinguishable from a message chosen at random inM. Furthermore, c′′
b

is computed as c′′
b ← MsgRandC(Rand(cb, r), rM) for both, G0 and G1. We deduce

that Pr[A wins G0] = Pr[A wins G1].
Next, we claim and prove by reduction that

∣∣∣Pr[A wins G1]− 1
2

∣∣∣ = ϵbinding(λ)/2,
where ϵbinding(λ) is the adversary’s advantage in the binding experiment of the
commitment scheme (Definition 2 on page 14).

We use the following strategy. In G1, the challenger can generate a random coin
r for both b = 1 and b = 0 for the same challenge c′′ = c′′

0 = c′′
1 because it builds

c′′ by computing r′ $← R, c′ ← Rand(c, r′), r′
M

$← RM, c′′ ← MsgRandC(c′, r′
M),

r ← RandR(rb, r′) and rM ← MsgRandExt(Dec(sk, cb), Dec(sk, c′′
b )). Therefore, to

break the protocol’s soundness, the adversary must succeed for both cases b = 1
and b = 0 with non negligible probability at each round. If this is not the case, the
adversary’s advantage is bounded by a value that is negligibly close to 1/2λ.

We show that if such an adversary exists, we can build an algorithm that breaks
the commitment scheme’s binding property. More in detail, if the adversary is able
to succeed the proof for both cases b = 1 and b = 0, then he is able to open its
commitment comm for two different messages z = 0 and z = 1, which is equivalent
to breaking the binding property. Let us define an adversary B, which has an
advantage ϵbinding(λ) on the binding experiment as follows.
B(pp, sk, (pk, c0, c1))
st1 ← A1(sk, (pk, c0, c1))
r′ $←R; r̂0 ← RandR(r0, r′); r̂1 ← RandR(r1, r′)
c′ ← Rand(c, r′); r′

M
$←RM; c′′ ← MsgRandC(c′, r′

M)
r̂0

M ← MsgRandExt(Dec(sk, c0), Dec(sk, c′′))
r̂1

M ← MsgRandExt(Dec(sk, c1), Dec(sk, c′′))
(comm, st2)← A2(st1, c′′)
op0 ← A3(st2, (r̂0, r̂0

M, b)); op1 ← A3(st2, (r̂1, r̂1
M), b)

if Open(pp, comm, op0) = 0 then win0 ← 1
if Open(pp, comm, op1) = 1 then win1 ← 1
if win0 = 1 ∧ win1 = 1 return (comm, op0, op1)

Note that if win0 = 1 and win1 = 1, B wins the binding experiment since
Open(pp, comm, op0) = 0 ̸= 1 = Open(pp, comm, op1).

Using the same argument as in the soundness proof of PINEQ, we can prove that:

Pr[A wins G0]λ = Pr[A wins G1]λ ≤
(1+ϵbinding(λ)

2

)λ

Since the commitment scheme has the binding property by hypothesis, ϵbinding(λ)
is negligible, so Pr[A wins G0]λ, which concludes the proof of the soundness.
Zero-Knowledge. Let V∗ be a dishonest verifier. To prove that the protocol is
zero-knowledge, we define a Simulator SV∗(x) where x = (pk, c0, c1) that perfectly
simulates the interaction with V∗. The simulator SV∗ generates c′′

b , rb and rb
M as

the dishonest verifier V∗.
• If c′′

b = MsgRandCRand((cb, rb), rb
M) where b $← {0, 1}, then the

simulator runs (comm, op) ← Commit(rb
M) and returns the transcript

(c′
b, comm, (rb, rb

M, b), op).
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• If c′′
b ̸= MsgRandCRand((cb, rb), rb

M) where b $← {0, 1}, then the simulator
picks comm in the uniform distribution on the commitment set and returns
the transcript (c′

b, comm, (rb, rb
M, b),⊥).

The simulator follows the same distribution as the real protocol. When the verifier
sends a wrong pair (r, rM), it simulates the prover messages using a random
commitment comm and the ⊥ symbol. Indeed, since the commitment’s open key
remains unknown, the prover commitment is like a random commitment picked in
the uniform distribution according to the perfect hiding property.

Remark 2. In Theorems 8 and 10, zero-knowledge can be computational if the
randomisation conditions are computational instead of perfect or if the commitment
scheme being used has only computational hiding.

3.6 Non-Interactive Protocols for Plaintext Equality
We switch our attention to protocols that are ZKPoK for plaintext equality. In
section 3.6.1 we focus on ZKPoK of the secret key, whereas in section 3.6.2, we focus
on ZKPoK of the randomness used to generate the ciphertexts. The application is
not the same because if the prover knows the secret key, the use case to consider
is when the prover acts as a receiver of those ciphertexts. On the other hand, if
the prover knows the randomness used to generate the ciphertexts, the use case to
consider is when the prover acts as a sender.

Since sigma protocols are invariant under parallel repetition (Lemma 4 on
page 22), one can apply the strong Fiat-Shamir transformation (Definition 17 on
page 23) to obtain a NIZK secure in the ROM. In other words, the prover should
generate λ commitments (r1, ..., rλ), calculate c ∈ {0, 1}λ as c ← H(r1||r2...rλ||x)
for a statement x, and finally, compute the responses zi for all ri using the i-th bit
of c. This way, the soundness error of 1/2 is amplified to 1/2λ.

3.6.1 Protocols Based on the Secret Key
Protocols in this section additionally require the scheme to be key-randomisable.
We present a protocol called MATCHPEQ (Figure 3.9), which relies on a ZKP to
prove that the decryption of a given ciphertext matches a given message. Such
proofs are known for numerous encryption schemes (e.g., [Dam92, ElG84, GM82,
Pai99]). Then, we introduce an auxiliary protocol called MATCH (Figure 3.10),
which meets the requirement of MATCHPEQ (its a proof system for the above
mentioned). We also present here a third protocol called SIGPEQ (Figure 3.11),
which merges the two previous ones. It requires a randomisable, message-
randomisable and key-randomisable scheme. However, it does not require any
other protocol as a subroutine, which makes it more efficient than MATCHPEQ
instantiated with MATCH. An interesting additional property of MATCHPEQ and
SIGPEQ is that both can also be used to prove plaintext equality of two ciphertexts
encrypted under different keys.

In protocol MATCHPEQ, the prover sends two message-randomisations to the
verifier, who then challenges it on these ciphertexts. If both ciphertexts encrypt
message-randomisations of the same message, then the prover can either prove
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Prover((sk0, sk1), (pk0, pk1), c0, c1) Verifier((pk0, pk1), c0, c1)
rM

$←RM; (r0, r1) $←R2

m← Dec(sk0, c0)
c′

0 ← MsgRandC(c0, rM)
c′

1 ← MsgRandC(c1, rM)
c′′

0 ← Rand(c′
0, r0)

c′′
1 ← Rand(c′

1, r1)
m′′ ← MsgRandM(m, rM)

(c′′
0 , c′′

1 )−−−−−→
b $← {0, 1}

b←−−−−−
........................................................ if (b = 0) ..............................................

m′′
−−−−−→

The prover runs a protocol twice (e.g., MATCH) to prove the verifier that:
Dec(sk0, c′′

0) = m′′ and Dec(sk1, c′′
1) = m′′

The verifier accepts iff both proofs are valid.
........................................................ else ..............................................

(rM, r0, r1)−−−−−−→
c̃′

0 ← MsgRandC(c0, rM)
c̃′

1 ← MsgRandC(c1, rM)
c̃′′

0 ← Rand(c̃′
0, r0)

c̃′′
1 ← Rand(c̃′

1, r1)
return (c̃′′

0 = c′′
0) ∧ (c̃′′

1 = c′′
1)

Figure 3.9: One execution of protocol MATCHPEQ (repeated λ times).

that it correctly did the message-randomisations or that both ciphertexts encrypt
the same message.
Theorem 11. Let Π be the PKE scheme used in MATCHPEQ. If Π is perfectly
randomisable and derandomisable, perfectly message-randomisable and message-
derandomisable, and if the proof in step three is instantiated by a sigma protocol
that is correct, special sound, and perfectly zero-knowledge, then MATCHPEQ is
complete, has statistical witness-extended emulation, and perfect zero-knowledge.

Proof. Completeness. Note that if c0 and c1 are both encryptions of the same
message m, then c′′

0 and c′′
1 are both encryptions of m′′. This is because m′′ is a

message-randomisation of m and the same rM is used to compute c′′
0, c′′

1 and m′′. It
follows that if the verifier’s challenge is b = 0, the verifier accepts both proofs and
outputs accept. Similarly, if the challenge is b = 1, the verifier will obtain the same
ciphertexts (it uses the same randomness) and so it outputs accept. We conclude
that the verifier always accepts the proof.
Statistical witness-extended emulation. As this proof system is not a sigma
protocol, because the verifier sends several challenges to the prover, it cannot be
special sound. Hence, we prove the more general notion of statistical witness-
extended emulation instead of special soundness. To prove the statistical witness-
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extended emulation, we use the forking lemma given in [BCC+16]: let T be an
accepted transcript tree for our protocol, and a statement y, i.e., a tree where
each node is labelled by a message transmitted during the protocol, each node
labelled by a prover message has 2 children labelled by two different challenges,
and any path from the root to any leaf is an accepted transcript. The forking
lemma given in [BCC+16] ensures that if there exists an extractor E such that
Pr[w ← E(x, T ) : (w, x) ∈ R] is overwhelming, then our protocol is statistical
witness-extended emulation. This can be viewed as a generalisation of proofs for
special soundness: each time the verifier sends a challenge, we fork the protocol for
two possible challenges.

We parse T as ((c′′
0, c′′

1), (0, m′′, T ′), (1, (rM, r0, r1))) where T ′ is a subtree
that contains transcript trees of the two proofs ZK {sk0 : Dec(sk0, c′′

0) = m′′} and
ZK {sk1 : Dec(sk1, c′′

1) = m′′}. Note that we can extract two accepted transcripts for
these two proofs from T ′ such that the two transcripts have the same commitment
and two different challenges.

Since our protocol is instantiated with a special sound sigma protocol, there
exists an extractor E ′ that takes theses transcripts as input and returns sk0 and
sk1 such that Dec(sk0, c′′

0) = m′′ = Dec(sk1, c′′
1). Our simulator E runs E ′ with

the appropriate transcripts, receives sk0 and sk1, and returns sk0, sk1. We set
c′

0 ← MsgRandC(c0, rM) and c′
1 ← MsgRandC(c1, rM). Since each path of the

tree corresponds to an accepted transcript, we have that c′′
0 = Rand(c′

0, r0) and
c′′

1 = Rand(c′
1, r1). In the following, we prove that Dec(sk0, c0) = Dec(sk1, c1). first,

from message-randomisability, we have, for i ∈ {1, 2}: c′
i = MsgRandC(ci, rM) ⇒

Dec(ski, c′
i) = MsgRandM(Dec(ski, ci), rM). Moreover, using randomisability of the

encryption scheme, we have: c′′
i = Rand(c′

i, ri) ⇒ Dec(ski, c′
i) = Dec(ski, c′′

i ). We
deduce that Dec(ski, c′′

i ) = MsgRandM(Dec(ski, ci), rM). Finally, since Dec(sk0, c′′
0) =

Dec(sk1, c′′
1), we have that: MsgRandM(Dec(sk0, c0), rM) = MsgRandM(Dec(sk1, c1),

rM) ⇒ MsgRandM(MsgRandM(Dec(sk0, c0), rM), r∗
M) = MsgRandM(MsgRandM(

Dec(sk1, c1), rM), r∗
M) ⇒ Dec(sk0, c0) = Dec(sk1, c1). Which concludes the proof

of the statistical witness-extended emulation.
Zero-knowledge. We define the simulator S(x) where x = (pk0, pk1, c0, c1, m). Since
the two proofs used in the case b = 0 are zero-knowledge by hypothesis, there exist
two simulators S1 and S2 that perfectly simulate the transcripts of these two proof
systems. The simulator S picks b $← {0, 1}, then:

• If b = 0, the simulator picks m′′ $← M and (r′′
0 , r′′

1) $← R2, generates c′′
0 ←

Enc(pk, m′′; r′′
0) and c′′

1 ← Enc(pk, m′′; r′′
1), then it generates two transcripts

t1 and t2 for ZK {sk0 : Dec(sk0, c′′
0) = m′′} and ZK {sk1 : Dec(sk1, c′′

1) = m′′}
using the simulator S1(pk1, c′′

0, m′′) and S2(pk1, c′′
0, m′′).

• If b = 1, the simulator picks rM
$← RM and (r0, r1) $← R2, then it computes

c′
0 ← MsgRandC(c0, rM), c′

1 ← MsgRandC(c1, rM), c′′
0 ← Rand(c′

0, r0) and
c′′

1 ← Rand(c′
1, r1).

Note that in the case b = 1 the simulator follows the same steps as in
the real protocol, so the protocol is perfectly simulated. To prove that the
simulator follows the same distribution as the real protocol {⟨P(w),V∗(z)⟩(x)},
we define a hybrid distribution H that runs the real protocol, except that it
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replaces the instructions c′′
0 ← Rand(c′

0, r0) and c′′
1 ← Rand(c′

1, r1) by c′′
0 ←

Enc(pk, m′′; r0) and c′′
1 ← Enc(pk, m′′; r1) respectively. First, we have that the real

protocol is indistinguishable from the distribution H according to the definition
of randomisability. On the other hand, the distribution H is indistinguishable
from the distribution of the simulator S(x). To show that, we argue that the only
difference between the two distributions is that m′′ is chosen at random in the
simulator, and is generated by key-randomisation algorithms on m using a random
coin rM in H. Hence, the two distributions are indistinguishable according to the
message-randomisation definition. Finally, we deduce that the real protocol and the
simulator produce indistinguishable distributions, which concludes the proof.

For MATCH, we consider a setting in which the verifier has access to pk, c, m
and challenges the prover on c being an encryption of m under pk. This protocol’s
intuition is that if the scheme is randomisable and key-randomisable, the prover
can generate a new ciphertext for the same massage but under different keys. The
verifier is then allowed to check that 1) the prover can generate a new ciphertext c′′

which decrypts to the same message and 2) by decrypting c′′ to m, conclude that
the original ciphertext c is also an encryption of m.
Theorem 12. Let Π be the PKE scheme used in MATCH. If Π is perfectly
randomisable perfectly key-randomisable and key-derandomisable (Definition 24
on page 32), then MATCH is complete, special sound, and perfect zero-knowledge.

Prover(sk, pk, c, m) Verifier(pk, c, m)
r $←R; rK

$←RK
pk′ ← KeyRandPk(pk, rK)
sk′ ← KeyRandSk(sk, rK)
c′ ← KeyRandC(c, rK)
c′′ ← Rand(c′, r)

(pk′, c′′)−−−−→
b $← {0, 1}

b←−−−
if (b = 0) then z ← sk′

else z ← (r, rK)
z−−−→

if b = 1 then
p̃k

′
← KeyRandPk(pk, rK)

c̃′ ← KeyRandC(c, rK)
c̃′′ ← Rand(c̃′, r)
return (c̃′′ = c′′) ∧ (p̃k

′
= pk′)

else return (m = Dec(sk′, c′′))

Figure 3.10: One execution of protocol MATCH (repeated λ times).
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Proof. Completeness. Since c ∈ Enc(pk, m), when the prover randomises c into c′′

after randomising the keys, it holds that c′′ ∈ Enc(pk, m). It follows that when the
verifier’s challenge is b = 1, the verifier always accepts the proof. Similarly, when
the verifier’s challenge is b = 0, upon receiving the randomness used by the prover,
the verifier can check that indeed c̃′′ = c′′ and that p̃k

′
= pk′, so it always accepts

the proof as well.
Special Soundness. Let the two following transcripts t0 =((pk′, c′′), 0, (r, rK))
and t1 =((pk′, c′′), 1, sk′)) be for the statement y = (pk, c, m). We assume
that t0 and t1 are transcripts of accepted proofs, i.e., pk′ = KeyRandPk(pk, rK),
c′ = KeyRandC(c, rK), c′′ = Rand(c′, r) and m = Dec(sk′, c′′). We define the
knowledge extractor as follows: E(y, t, t′) returns sk = KeyRandSk(sk′, r∗

K). We
first note that this algorithm is polynomial-time since computing r∗

K from r and
running KeyRandSk are polynomial-time operations. In the following, we prove
that m = Dec(sk, c). First, we have: c′′ = Rand(c′, r) ⇒ Dec(sk′, c′) = Dec(sk′, c′′).
On the other hand, we have sk = KeyRandSk(sk′, r∗

K), so sk′ = KeyRandSk(sk, rK),
we deduce: pk′ = KeyRandPk(pk, rK) ∧ c′ = KeyRandC(c, rK) ⇒ Dec(sk′, c′) =
Dec(sk, c). Finally, we have: m = Dec(sk′, c′′) = Dec(sk′, c′) = Dec(sk, c), which
concludes the special soundness proof.
Zero-knowledge. We define the simulator S(x) where x = (pk, c, m). The simulator
S picks b $← {0, 1}, then:

• If b = 0, the simulator picks r $← R, generates (pk′, sk′) $← KGen(1k) and
runs c′′ ← Enc(pk′, m; r), then it returns the transcript t = ((pk′, c′′), 0, sk′)).

• If b = 1, the simulator picks rK
$← RK and r $← R, generates pk′ ←

KeyRandPk(pk, rK); sk′ ← KeyRandPk(sk, rK); c′ ← KeyRandC(c, rK); and
c′′ ← Rand(c′, r), then it returns t = ((pk′, c′′), 1, (r, rK)).

Note that in the case b = 1, the simulator follows the same steps as in the real
protocol, so the protocol is perfectly simulated. To prove that the simulator follows
the same distribution as the real protocol {⟨P(w),V∗(z)⟩(x)} when b = 0, we
define a hybrid distribution H that runs the real protocol, except that it replaces
the instruction c′′ = Rand(c′, r) by c′′ = Enc(pk′, m). First, we have that the real
protocol is indistinguishable from the distribution H according to the definition
of randomisability. On the other hand, the distribution H is indistinguishable
from the distribution of the simulator S(x). To show that, we argue that the only
difference between the two distributions is that (sk′, pk′) are generated from the
key generation algorithm in the simulator, and by key-randomisation algorithms
on (sk, pk) in H. Hence, the two distributions are indistinguishable according to
the key-randomisation definition. Finally, we deduce that the real protocol and the
simulator produce indistinguishable distributions.

To conclude this section, we present the protocol SIGPEQ, a sigma protocol
for plaintext equality of two ciphertexts built upon the previous ones. In this
protocol, the prover performs a message-randomisation on the ciphertexts and a
key-randomisation to obtain new ciphertexts. These ciphertexts decrypt to the
same message m′ but under a different key. Once the prover sends the public keys
and the new ciphertexts to the verifier, the verifier challenges the prover. The
intuition behind the challenge is that if the two ciphertexts obtained by the verifier
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are message-randomisations of the same message, then the prover should be able to
provide either the corresponding secret key to confirm it or the randomness used to
verify the procedure. This protocol is more efficient because it requires exactly λ
rounds while MATCHPEQ requires λ rounds times the number of rounds of MATCH.

Prover(sk0, sk1, pk0, pk1, c0, c1) Verifier(pk0, pk1, c0, c1)
(r1

K, r2
K) $←R2

K
rM

$←RM; (r0, r1) $←R2

c′
0 ← Rand(c0, r0)

c′
1 ← Rand(c1, r1)

pk′
0 ← KeyRandPk(pk0, r1

K)
sk′

0 ← KeyRandSk(sk0, r1
K)

pk′
1 ← KeyRandPk(pk1, r2

K)
sk′

1 ← KeyRandSk(sk1, r2
K)

c′′
0 ← KeyRandC(c′

0, r1
K)

c′′
1 ← KeyRandC(c′

1, r2
K)

c′′′
0 ← MsgRandC(c′′

0, rM)
c′′′

1 ← MsgRandC(c′′
1, rM)

C ← (pk′
0, pk′

1, c′′′
0 , c′′′

1 )
C−−−−−→

b $← {0, 1}
b←−−−−−

if (b = 0) z ← (sk′
0, sk′

1)
else z ← (r0, r1, r1

K, r2
K, rM)

z−−−−−→
if b = 1

c̃′
0 ← Rand(c0, r0)

c̃′
1 ← Rand(c1, r1)

p̃k
′
0 ← KeyRandPk(pk0, r1

K)
p̃k

′
1 ← KeyRandPk(pk1, r2

K)
c̃′′

0 ← KeyRandC(c̃′
0, r1

K)
c̃′′

1 ← KeyRandC(c̃′
1, r2

K)
c̃′′′

0 ← MsgRandC(c̃′′
0, rM)

c̃′′′
1 ← MsgRandC(c̃′′

1, rM)
return ((c̃′′′

0 = c′′′
0 ) ∧ (c̃′′′

1 = c′′′
1 )

∧ (p̃k
′
0 = pk′

0) ∧ (p̃k
′
1 = pk′

1))
return Dec(sk′

0, c′′′
0 ) = Dec(sk′

1, c′′′
1 )

Figure 3.11: One execution of protocol SIGPEQ (repeated λ times).

Theorem 13. Let Π be the PKE scheme used in SIGPEQ. If Π is perfectly
randomisable, perfectly message-randomisable and perfectly key-randomisable,
then SIGPEQ is complete, special sound, and perfect zero-knowledge.
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Proof. Completeness. Since the scheme is perfectly randomisable, perfectly
message-randomisable and key-randomisable the ciphertexts c′′′

0 and c′′′
1 will both

decrypt using the key sk0 (resp. sk1) to the same message m′, which is a
randomisation of m with rM. We conclude that all the verifier needs to do is
check the procedures following the same steps, and so it always accepts the proof.
Special soundness. Let the two following transcripts t0 =((pk′, c′′′

0 , c′′′
1 ), 0,

(r0, r1, r1
K, r2

K, rM)) and t1 = ((pk′, c′′′
0 , c′′′

1 ), 1, (sk′
0, sk′

1)) for the statement y =
(pk0, pk1, c0, c1). We assume that t0 and t1 are transcripts of accepted proofs, i.e.,
computing:

• c̃′
0 ← Rand(c0, r0) and c̃′

1 ← Rand(c1, r1),
• p̃k

′
0 ← KeyRandPk(pk0, r1

K) and p̃k
′
1 ← KeyRandPk(pk1, r2

K) ,
• c̃′′

0 ← KeyRandC(c̃′
0, r1

K) and c̃′′
1 ← KeyRandC(c̃′

1, r2
K) ,

• c̃′′′
0 ← MsgRandC(c̃′′

0, rM) and c̃′′
1 ← MsgRandC(c̃′′

1, rM)
we have:

• (c̃′′′
0 = c′′′

0 ) and (c̃′′′
1 = c′′′

1 ),
• (p̃k

′
0 = pk′

0) and (p̃k
′
1 = pk′

1), and
• Dec(sk′

0, c′′′
0 ) = Dec(sk′

1, c′′′
1 )

We define the knowledge extractor as follows: E(y, t, t′) returns (sk∗
0, sk∗

1) such
that sk∗

0 = KeyRandSk(sk′
0, r1∗

K ) and sk∗
1 = KeyRandSk(sk′

1, r2∗
K ). We first note

that this algorithm is polynomial-time since computing r1∗
K and r2∗

K from r1
K and

r2
K, and running KeyRandSk are polynomial-time operations. In the following, we

prove that Dec(sk∗
0, c0) = Dec(sk∗

1, c1). We set m′′′ = Dec(sk∗
0, c′′′

0 ), then we have
m′′′ = Dec(sk∗

1, c′′′
1 ). We set m′′

0 = Dec(sk∗
0, c̃′′

0) and m′′
1 = Dec(sk∗

1, c̃′′
1). For all

i ∈ {0, 1}, we have:

c̃′′′
i = MsgRandC(c̃′′

i , rM)⇒ m′′′ = Dec(sk′
i, c′′′

i ) = MsgRandM(m′′
i , rM)

We deduce that MsgRandM(m′′
0, rM) = MsgRandM(m′′

1, rM), and since
MsgRandM(·, rM) is bijective, we have that m′′

0 = m′′
1. We set m′′ = m′′

0. Moreover,
since sk∗

i = KeyRandSk(sk′
i, ri∗

K ) we have sk′
i = KeyRandSk(sk∗

i , ri
K), so:

c̃′′
i = KeyRandC(c̃′

i, ri
K)⇒ m′′ = Dec(sk′

i, c̃′′
i ) = Dec(sk∗

i , c̃′
i)

We deduce that Dec(sk∗
0, c̃′

i) = Dec(sk∗
1, c̃′

1). Finally, we have:

c̃′
i = Rand(ci, ri)⇒ m′′ = Dec(sk∗

i , c̃′
i) = Dec(sk∗

i , ci)

We deduce that Dec(sk∗
0, c1) = Dec(sk∗

1, c1), which conclude the proof of the special
soundness.
Zero-knowledge. We define the simulator S(x) where x = (pk0, pk1, c0, c1, m). The
simulator S picks b $← {0, 1}, then:

• If b = 0, the simulator picks m′′ $← M, generates (r0, r1) $← R the
keys (pk′

0, sk′
0)

$← KGen(1k) and (pk′
1, sk′

1)
$← KGen(1k), and computes

c′′′
0 ← Enc(pk′

0, m′, r0) and c′′′
1 ← Enc(pk′

1, m′, r1).
It then returns ((pk′

0, pk′
1, c′′′

0 , c′′′
1 ), 0, (sk′

0, sk′
1)).

• If b = 1, the simulator picks (r1
K, r1

K) $← R2
K , rM

$← RM , (r0, r1) $← R2 and
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generates c′
0 ← Rand(c0, r0), c′

1 ← Rand(c1, r1), pk′
0 ← KeyRandPk(pk0, r1

K),
pk′

1 ← KeyRandPk(pk1, r2
K), c′′

0 ← KeyRandC(c′
0, r1

K), c′′
1 ← KeyRandC(c′

1, r2
K),

c′′′
0 ← MsgRandC(c′′

0, rM), and c′′′
1 ← MsgRandC(c′′

1, rM).
It then returns ((pk′

0, pk′
1, c′′′

0 , c′′′
1 ), 1, (r0, r1, r1

K, r2
K, rM)).

Note that in the case b = 1, the simulator follows the same steps as in the real
protocol, so it is perfectly simulated. To prove that the simulator follows the same
distribution as the real protocol {⟨P(w),V∗(z)⟩(x)} , we define the following hybrid
distributions:

• H1 that runs the real protocol, except that it replaces the instructions:
c′

0 ← Rand(c0, r0) and c′
1 ← Rand(c1, r1) by: c′

0 ← Enc(pk, m; r0) and
c′

1 ← Enc(pk, m; r1). The distribution of H1 is indistinguishable from the
distribution induced by the real protocol. To show that, we argue that the
only difference between the two distributions is that:

– in the real protocol, c′
0 and c′

1 are randomised.
– in H1 c′

0 and c′
1 are fresh ciphertexts of the same message m as c0 and

c1 in H1.
Therefore, the two distributions are indistinguishable according to the
(perfect) randomisability definition.

• H2 that runs the same protocol as H1, except that it replaces the
instructions: pk′

0 ← KeyRandPk(pk0, r1
K), sk′

0 ← KeyRandPk(sk0, r1
K), pk′

1 ←
KeyRandPk(pk1, r2

K), sk′
1 ← KeyRandPk(sk1, r2

K), c′′
0 ← KeyRandC(c′

0, r1
K) and

c′′
1 ← KeyRandC(c′

1, r2
K) by (pk′

0, sk′
0)

$← KGen(1k), (pk′
1, sk′

1)
$← KGen(1k),

c′′
0 ← Enc(pk′, m; r0), and c′′

1 ← Enc(pk′, m; r1). The distribution of H2 is
indistinguishable from the distribution of H2 . To show that, we argue that
the only difference between the two distributions is that:

– in H1 pk′
0, pk′

1, sk′
0, sk′

1, c′′
0 and c′′

1 are obtained by randomisation of the
key using the same coin rK in H1.

– in H2 (i) (pk′
0, sk′

1) and (pk′
0, sk′

1) are fresh keys and (ii) c′′
0 and c′′

1 are
obtained using the same message m and the same coins (r0, r1) as c′

0
and c′

1 but using the fresh public keys pk′
0 and pk′

1.
Therefore, the two distributions are indistinguishable according to the
(perfect) key-randomisation definition.

• H3 that runs the same protocol asH2, except that it replaces the instructions:
c′′′

0 ← MsgRandC(c′′
0, rM) and c′′′

1 ← MsgRandC(c′′
1, rM) by: m′ $← M, c′′′

0 ←
Enc(pk′, m′; r0), and c′′′

1 ← Enc(pk′, m′; r1). Note that H3 and S(x) induce
the same distribution. Moreover, the distribution of H3 is indistinguishable
from the distribution of H2. To show that, we argue that the only difference
between the two distributions is that:

– in H2 m′, c′′′
0 and c′′′

1 are obtained randomising the message in m, c′′
0

and c′′
1 using the same coin rM.

– in H3 m′ is a fresh message encrypted in c′′′
0 and c′′′

1 using the same
public-key pk′ and the same random coins (r0, r1) as in c′′

0 and c′′
1.

Therefore, the two distributions are indistinguishable according to the
(perfect) message-randomisation definition.
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Prover(r0, r1, pk0, pk1, c0, c1) Verifier(pk0, pk1, c0, c1)
rM

$←RM; (r′
0, r′

1)
$←R2

r′′
0 ← RandR(r0, r′

0)
r′′

1 ← RandR(r1, r′
1)

c′
0 ← Rand(c0, r′

0)
c′

1 ← Rand(c1, r′
1)

c′′
0 ← MsgRandC(c′

0, rM)
c′′

1 ← MsgRandC(c′
1, rM)

(c′′
0 , c′′

1 )−−−−−→
b $← {0, 1}

b←−−−−−
if (b = 0) z ← (r′′

0 , r′′
1)

else z ← (r′
0, r′

1, rM)
z−−−−−→

if b = 0 return
CDec(pk0, c′′

0, r′′
0) = CDec(pk1, c′′

1, r′′
1)

else
c̃′

0 ← Rand(c0, r′
0)

c̃′
1 ← Rand(c1, r′

1)
c̃′′

0 ← MsgRandC(c̃′
0, rM)

c̃′′
1 ← MsgRandC(c̃′

1, rM)
return (c̃′′

0 = c′′
0) ∧ (c̃′′

1 = c′′
1)

Figure 3.12: One execution of protocol RSPEQ (repeated λ times).

3.6.2 Protocols Based on the Encryption Randomness
Based on the previous ideas, we now present the protocol RSPEQ (Figure 3.12).
It requires a random coin decryptable, strong randomisable and message-
randomisable scheme. Similarly to SIGPEQ, the verifier challenges the prover to
either provide the randomisers or to allow it to check the procedure.
Theorem 14. Let Π be the PKE scheme used in RSPEQ. If Π is perfectly strong
randomisable, random-extractable, perfectly message-randomisable and random
coin decryptable (Definition 10 on page 19), then RSPEQ is complete, special sound,
and perfect zero-knowledge.

Proof. Completeness. Since the scheme is perfectly strong randomisable, perfectly
message-randomisable and random coin decryptable, the ciphertexts c′′

0 and c′′
1 will

both decrypt using the key r′′
0 (resp. r′′

1) to the same message m′, which is a
randomisation of m with rM. We conclude that all the verifier needs to do is to
check the procedure following the same steps, and so it always accepts the proof.
Special Soundness. Let t0 = ((c′′

0, c′′
1), 0, (r′′

0 , r′′
1)) and t1 = ((c′′

0, c′′
1), 1, (r′

0, r′
1, rM))

be two transcripts of accepted proofs for the statement y = (pk0, pk1, c0, c1). We
define the knowledge extractor E(y, t, t′) as follows: it parses t0 and t1 and returns
r∗

0 ← RandExt(r′
0, r′′

0) and r∗
1 ← RandExt(r′

1, r′′
1). Since the scheme is random-

extractable and a RCD-PKE, we have that CDec(pk0, c0, r∗
0) = CDec(pk1, c1, r∗

1)
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which concludes the proof of special soundness.
Zero-knowledge. We define the simulator S(x) where x = (pk0, pk1, c0, c1). The
simulator S picks b $← {0, 1}, then:

• If b = 0, the simulator picks m′ $← M, (r0, r1) $← R, computes c′′
0 ←

Enc(pk0, m′, r0) and c′′
1 ← Enc(pk1, m′, r1). It then returns ((c′′

0, c′′
1), 0, (r0, r1)).

• If b = 1, the simulator picks rM
$← RM , (r′

0, r′
1)

$← R2, and generates
c′

0 ← Rand(c0, r′
0), c′

1 ← Rand(c1, r′
1), c′′

0 ← MsgRandC(c′
0, rM), and c′′

1 ←
MsgRandC(c′

1, rM). It then returns ((c′′
0, c′′

1), 1, (r′
0, r′

1, rM)).
Note that in the case b = 1, the simulator follows the same steps as in the real
protocol, so the protocol is perfectly simulated. To prove that the simulator
follows the same distribution as the real protocol {⟨P(w),V∗(z)⟩(x)}, we define
the following hybrid distribution:

• H1 that runs the real protocol, except that it replaces the instructions: r′′
0 ←

RandR(r0, r′
0), r′′

1 ← RandR(r1, r′
1), c′

0 ← Rand(c0, r′
0) and c′

1 ← Rand(c1, r′
1)

by: c′
0 ← Enc(pk0, m; r′′

0), c′
1 ← Enc(pk1, m; r′′

1). We argue that H1 is
indistinguishable from the distribution induced by the real protocol. The
only difference between both distributions is that in the real protocol, c′

0
and c′

1 are randomised with r′′
0 and r′′

1 computed by RandR, whereas in H1,
c′

0 and c′
1 are fresh ciphertexts of the same message m. Such difference is

indistinguishable according to the perfectly strong randomisable definition.
• H2 that runs the same protocol as H1, except that it replaces the instruction:

c′′
0 ← MsgRandC(c′

0, rM) and c′′
1 ← MsgRandC(c′

1, rM) by: m′ $← M, c′′
0 ←

Enc(pk0, m′; r′′
0), and c′′

1 ← Enc(pk1, m′; r′′
1). Note that H2 and S(x) induce

the same distribution. Moreover, the distribution of H2 is indistinguishable
from the distribution of H1. To show that, we argue that the only difference
between the two distributions is that:

– in H1 m′, c′′
0 and c′′

1 are obtained by randomising the message m in c′′
0

and c′′
1 using the same rM.

– in H2 m′ is a fresh message encrypted in c′′
0 and c′′

1 using the random
coins (r′′

0 , r′′
1).

It follows that the two distributions are indistinguishable according to the
(perfect) message-randomisation definition.

3.7 Implementation and Evaluation
We implemented the protocols HPEQ, PEQ, HPINEQ, PINEQ, RSPEQ and
SIGPEQ in Rust using the dalek library and ElGamal (see [BBLPK21a]). The
implementation was done for academic purposes and simulating the interaction
between a prover and a verifier. More in detail, we show in Table 3.2 the average
running times using a Macbook Air (Chip M2 & 16GB RAM) with no extra
optimizations and considering a security parameter λ = 128. We stress that the
times shown consist of 128 repetitions for each protocol run so to achieve the desired
soundness error. This information was gathered using the external crate bencher.

We now compare the efficiency of our protocols with the best (as far as we know)
custom protocols for ElGamal that achieve the same security properties. Our
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Protocol HPEQ PEQ HPINEQ PINEQ RSPEQ SIGPEQ
Avg. time 11.50 29.73 10.68 28.90 25.47 47.81
Deviation 0.02 0.42 0.02 0.03 0.54 1.74

Table 3.2: Running times in ms for different protocols using ElGamal.

Equality proofs Inequality proofs
[CP93] PEQ RSPEQ [CS03] PINEQ

Prover 2 6 4 6 6
Verifier 2 4 4 4 4
Rounds 3 4 3 3 4

Table 3.3: Number of exp. and rounds for plaintext equality/inequality proofs.

generic protocols PEQ, RSPEQ, and PINEQ are perfect zero-knowledge and do not
rely on the ROM. Note that more efficient protocols exist under weaker hypothesis.
For example, HVZK proofs can be done using Schnorr-like protocols [Sch90], non-
interactive protocols can be done in the ROM replacing the challenge by the hash
of the commitment, and non-interactive but computationally zero-knowlege proofs
can be done using the Groth-Sahai construction from pairings [GS08].

Proving the equality of two ElGamal plaintexts (M1, M2) given two ciphertexts
c0 = Enc(pk, M1; r0) = (r0P, M1+r0pk) and c0 = Enc(pk, M2; r1) = (r1P, M2+r1pk)
is equivalent to proving that (αP, (r0 − r1)P, α(r0 − r1)P ) is a Diffie-Hellman tuple,
which can be efficiently done with the Chaum-Pedersen protocol [CP93] (using
either the secret key or the randomness as the witness). Similarly, proving the
inequality of the two plaintexts is equivalent to prove that (αP, (r0 − r1)P, M1 +
α(r0 − r1)P −M2) is not a Diffie-Hellman tuple, which can be efficiently done with
the Camenisch-Shoup protocol [CS03]. These protocols must be repeated λ times
for a security parameter λ, like ours. Table 3.3 gives the number of exponentiations
(the dominant operation in all the considered protocols) and rounds for a single
run of each protocol. This comparison suggests that our generic protocols’ cost is
reasonable for perfect zero-knowledge protocols in the standard model.

3.8 Conclusions and Future Work
We characterised malleability in terms of randomisability, message-randomisability
and key-randomisability for PKE. We defined and presented interactive and non-
interactive ZKP based on those notions for plaintext equality and inequality. As
a result, we obtained generic protocols that can be instantiated with different
PKE schemes. Furthermore, we provided examples of PKE schemes with different
properties and secure under different security models. Future work could explore
the design of non-interactive protocols for plaintext inequality. Proposing protocols
that do not require k rounds from a generic encryption scheme would contribute
to the topic. Finally, a related idea that could enable more use cases in some
settings would be to construct a generic “plaintext inequality test” to prove that a
ciphertext’s plaintext is smaller or greater than another plaintext.
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...la science est l’œuvre de l’esprit humain, qui est plutôt destiné à étudier qu’à
connaître, à chercher qu’à trouver la vérité.

— Évariste Galois

Structure-Preserving Signatures (SPS) [AFG+10] are digital signatures in which
all messages, signatures, and public keys are elements in the source groups of
a bilinear group. Moreover, the signature verification algorithm tests group
membership and evaluates Pairing Product Equations (PPE). As described
in [AFG+10, AGOT14, AFG+16], SPS can easily support signatures on vectors
of group elements and present interesting randomisation properties. Alongside
Groth-Sahai proofs [GS08], they provide a rich framework and have served to
build efficient and modular constructions of cryptographic protocols since their
introduction. Originally proposed by Hanser and Slamanig [HS14], Structure-
Preserving Signatures on Equivalence Classes introduce a novel type of SPS. In
chapters 5 and 6, these signatures are used to build anonymous credentials schemes.
However, unlike Chapter 6, Chapter 5 takes a more theoretical approach, focusing
on efficient constructions without relying on the GGM. In this regard, the main
contribution of this chapter, based on joint work with Aisling Connolly and Pascal
Lafourcade [CLPK21], is the proposal of new SPS-EQ constructions under standard
assumptions, which are later used in Chapter 5.

4.1 Introduction
In [HS14], Hanser and Slamanig observed that if one considers a prime-order group
G and defines the projective vector space (G∗)ℓ, there is a partition into equivalence
classes given by the following relation R: m ∈ (G∗)ℓ ∼R m∗ ∈ (G∗)ℓ ⇐⇒
∃ µ ∈ Z∗

p : m∗ = µm. Suppose the discrete logarithm problem is hard in G,
and one restricts the vector components to be non-zero. Given two vectors m
and m∗, it is difficult to distinguish whether they were randomly sampled or if
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they belong to the same equivalence class. Unless µ is known, the only way to
check class membership is to pick a constant value and repeatedly apply the group
operation with one of the vectors to check if the other one can be obtained. On
the contrary, if the discrete logarithm of the components is known for both vectors,
one can check the distance (component-pairwise) between them and conclude that
they belong to the same equivalence class if it does not change (it is invariant in
the class). Hence, Hanser and Slamanig defined SPS-EQ as SPS that produces
signatures on an equivalence class instead of messages alone. Given a message and
its corresponding signature, SPS-EQ provides a controlled form of malleability in
which one can publicly (without requiring access to the secret key) adapt a signature
to change the representative (message). The main challenge is guaranteeing that
two message-signature pairs from the same equivalence class cannot be linked. The
equivalence relation provides indistinguishability on the message space if the DDH
assumption holds. If additionally, updated signatures are distributed like fresh
signatures, message-signature pairs falling into the same class are unlinkable. For
unlinkability to hold, signatures should also be randomised when adapting them
to a new class representative. As described in [FHS19], given a representative and
its corresponding signature, a random representative of the same class with an
adapted signature are indistinguishable from a random message-signature pair.

SPS-EQ have been used to build several cryptographic protocols such as
blind signatures [FHS15, FHKS16], ring and group signatures [BHKS18, DS18,
BHSB19], sanitizable signatures [BLL+19], access control encryption [FGKO17],
and point collection systems [BEK+20]. In particular, they have been used to
build anonymous credentials [HS14, DHS15a, FHS19] and delegatable anonymous
credentials. In the latter case, under the name of mercurial signatures [CL19, CL21],
which are an extension of equivalence classes to the key space.

State-of-the-art constructions focused on building schemes under weaker
assumptions and with tight security. The first attempts were made from Fuchsbauer
et al. [FHKS16], and Fuchsbauer and Gay [FG18]. Subsequently, Khalili et al.
[KSD19] proposed a new SPS-EQ, obtaining the first construction under standard
assumptions and with a tight security reduction.

4.2 Contributions
First, we build a new SPS-EQ scheme whose security is proven under standard
assumptions. Our departure point is a recent scheme by Khalili et al. [KSD19],
which we modify to obtain a more efficient construction. The signature from
[KSD19] relies on the SXDH assumption (Section 2.3.3 on page 11) and requires
a CRS. Our construction also relies on a generalisation of the KerMDH, which
is regarded as a standard assumption as well. As presented in the next section,
our signature size is roughly 24% shorter while the Sign and ChgRep algorithms
require 65% and 45% less exponentiations when compared to the construction
from [KSD19], respectively. These improvements are of utmost importance from
the practical point of view. For example, in the context of anonyous credentials,
the algorithm ChgRep is used every time users present their credential.

Our other contribution pertrains mercurial signatures. Previous constructions
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Scheme |σ| |pk| Sign Verify ChgRep Assumption
[GHKP18] 8|G1|+ 6|G2| 2|G1|+ (9 + ℓ)|G2| 28E 9P N/A SXDH
[KSD19] 8|G1|+ 9|G2| (2 + ℓ)|G2| 29E 11P 19P+38E SXDH
Section 4.5 9|G1|+ 4|G2| (2 + ℓ)|G2| 10E 11P 19P+21E extKerMDH,

SXDH

Table 4.1: Signatures comparison including pairings (P) and exponentiations (E).

([CL19] and [CL21]) where proven secure in the GGM. In Section 4.5.3, we extend
our previous construction to obtain the first mercurial signature scheme whose
security is proven in the standard model, also assuming a CRS. Our extension only
requires two extra multiplications in Zp, making it practically efficient as well.

4.3 Related Work
The construction of [FG18] is based on the family of matrix Diffie-Hellman
assumptions [EHK+13]. They first modify an affine message authentication code
(MAC) from [BKP14] to obtain a linear structure-preserving MAC, which is made
publicly verifiable using a known technique in the context of SPS [KPW15]. This
allows using a tag to randomise both the signature and message. Hence, the signing
algorithm produces a signature along with a tag that can be used to randomise
it. The resulting scheme is secure under a weaker notion of unforgeability called
existential unforgeability under chosen open message attack (EUF-CoMA).

In [KSD19], the authors observe that using a structure-preserving MAC such as
the one from [FG18] has an inherent problem in the security game. As messages
and Matrix Decision Diffie-Hellman challenges belong to the same source group
of the bilinear group, one cannot do better than EUF-CoMA security following
this approach. Consequently, they proposed using an OR-Proof based on that
in [GHKP18] to construct tightly secure structure-preserving MACs based on the
key encapsulation mechanism of Gay et al. [GHK17]. This allowed the authors
to circumvent the previous issue and obtain the first EUF-CMA secure SPS-EQ
scheme with a tight security reduction under standard assumptions. In Table 4.1,
we compare the recent signature constructions from [GHKP18] and [KSD19] with
our construction from Section 4.5 to illustrate the efficiency gains.

4.4 Formal Definitions
In this section, we recall the syntax and security properties for SPS-EQ following
the formalizations from [FHS19] and [KSD19]. First, we consider equivalence
classes on the message space. Subsequently, we introduce definitions for SPS-EQ
that act on both the message and key space.

Definition 26: Structure-Preserving Signature on Equivalence Classes
A Structure-Preserving Signature on Equivalence Classes (SPS-EQ) consists
of the following algorithms:
PGen(1λ) is a p.p.t algorithm that, given a security parameter λ, outputs

public parameters pp.
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PTGen(1λ) is like PGen but it also returns a trapdoor τ (if any).
KGen(pp, ℓ) is a p.p.t algorithm that, given pp and a vector length ℓ > 1,

outputs a key pair (sk, pk).
Sign(pp, sk, m) is a p.p.t algorithm that, given pp, a representative m ∈

(G∗
i )ℓ for class [m]R, a secret key sk, outputs a signature σ′ = (σ, τ)

(potentially including a tag τ) on the message m.
ChgRep(pp, m, (σ, τ), µ, pk) is a p.p.t algorithm that takes as input pp, a

representative message m ∈ (G∗
i )ℓ, a signature σ (and potentially a tag

τ), a scalar µ, and a public key pk. It computes an updated signature
σ′ on new representative m∗ = µm and outputs (m∗, σ′).

Verify(pp, m, (σ, τ), pk) is a deterministic algorithm that takes as input pp,
a representative message m, a signature σ (potentially including a tag
τ), and public key pk. If σ is a valid signature on m it outputs 1 and
0 otherwise.

Correctness of SPS-EQ schemes requires that for every message m, security
parameter λ, vector length ℓ, and µ ∈ Z∗

p:

Pr

 pp $← PGen(1λ)
(sk, pk) $← KGen(pp, ℓ)

:
Verify(pp, m, Sign(pp, sk, m), pk) ∧
Verify(pp, ChgRep(pp, m, Sign(pp, sk, m),
µ, pk), pk)

 = 1

Two security properties are required for SPS-EQ schemes: unforgeability and
perfect adaption. The former is based on the usual EUF-CMA notion (Definition 12
on page 20). The latter requires ChgRep to output signatures identically distributed
to new signatures on the respective representative. As previously mentioned,
indistinguishability of the message space for equivalence classes and perfect
adaption provides unlinkability between message-signature pairs in the same class.
Definition 27 (given below) explicitly allows forgeries on the same equivalence class,
which is the only allowed form of forgery (i.e., controlled malleability).

Definition 27: EUF-CMA
An SPS-EQ scheme over (G∗

i )ℓ is existentially unforgeable under adaptively
chosen-message attacks, if for all ℓ > 1 and p.p.t adversaries A with access
to a signing oracle Sign, the following probability is negligible,

Pr

 pp $← PGen(1λ),
(sk, pk) $← KGen(pp, ℓ),
([m∗]i, σ∗) $← ASign(pp,sk,·)(pk)

: [m∗]R ̸= [m]R ∀ [m]i ∈ Q ∧
Verify(pp, [m∗]i, σ∗, pk) = 1

 ,

where Q is the set of queries that A has issued to the signing oracle Sign.
Note that in the tag-based case this oracle returns a pair (σ, τ).

For perfect adaption we present a first definition in the CRS model (i.e., honest
parameters model) based on Definition 10 from [KSD19]. When this notion is
defined considering adversaries who could maliciously generate keys, one obtains
the strongest possible notion for perfect adaption. Unlike [KSD19], we opt to
explicitly state that perfect adaption is defined with respect to the message space.
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Definition 28: Perfect adaption of signatures (1)
An SPS-EQ over (G∗

i )ℓ perfectly adapts signatures (under malicious keys
in the honest parameters model) with respect to the message space if
for all tuples (pp, pk, [m]i, σ, µ) where pp $← PGen(1λ), [m]i ∈ (G∗

i )ℓ,
µ ∈ Z∗

p, and Verify(pp, [m]i, σ, pk) = 1, we have that the output of
ChgRep(pp, [m]i, (σ, τ), µ, pk) is ([µm]i, σ∗), with σ∗ being a uniformly
random element in the space of signatures, conditioned on Verify(pp, [µm]i,
σ∗, pk) = 1.

We now introduce the notion of mercurial signatures from [CL19] as an extension
to SPS-EQ. We include the algorithms ConvertPK, ConvertSK and ConvertSig as
defined for mercurial signatures. ConvertSig is analogous to the ChgRep algorithm
but restricted to acting on the equivalence class defined by the key space. ConvertPK
and ConvertSK abstract the computation of new representative keys.

Definition 29: Mercurial signature
A Mercurial signature is a SPS-EQ that includes the following algorithms:
ConvertPK(pp, pk, ρ) is a p.p.t algorithm that, given pp, a key converter ρ,

and pk, outputs a new representative public key pk′ ∈ [pk]R.
ConvertSK(pp, sk, ρ) is a p.p.t algorithm that, given pp, a key converter ρ,

and sk, outputs a new representative secret key sk′ ∈ [sk]R.
ConvertSig(pp, m, (σ, τ), ρ, pk) is a p.p.t algorithm that takes as input pp,

m, σ (potentially including a tag τ), a key converter ρ, and pk. It
computes an updated signature σ′ on m under a new representative
public key pk′ ∈ [pk]R and outputs (m, σ′).

A second definition for perfect adaption (introduced as origin-hiding in [CL19])
considers it with respect to the key space. For this reason, the algorithm ConvertSig
is used instead of ChgRep.

Definition 30: Perfect adaption of signatures (2)
An SPS-EQ over (G∗

i )ℓ perfectly adapts signatures (under malicious keys
in the honest parameters model) with respect to the key space Spk if
for all tuples (pp,[pk]j,[m]i,(σ, τ),ρ) where pp $← PGen(1λ), [pk]j ∈ Spk,
[m]i ∈ (G∗

i )ℓ, Verify(pp, [m]i, (σ, τ), [pk]j) = 1 and ρ ∈ Z∗
p, we have that

the output of ConvertSig(pp, [m]i, (σ, τ), ρ, [pk]j) is σ∗, with σ∗ being a
random element in the space of signatures, conditioned on Verify(pp, [m]i,
σ∗, ConvertPK(pp, [pk]j, ρ)) = 1.

A third definition considers the joint executions of the algorithms ChgRep and
ConvertSig. Therefore, we define a more general notion for perfect adaption where
ChgRep takes µ and ρ as input, acting on both equivalence classes.
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Definition 31: Perfect adaption of signatures (3)
An SPS-EQ over (G∗

i )ℓ perfectly adapts signatures (under malicious
keys in the honest parameters model) if for all tuples (pp, [pk]j, [m]i,
(σ, τ), µ, ρ) where pp $← PGen(1λ), [pk]j ∈ Spk, [m]i ∈ (G∗

i )ℓ,
Verify(pp, [m]i, (σ, τ), [pk]j) = 1 and µ, ρ ∈ Z∗

p, we have that
the output of ChgRep(pp, [m]i, (σ, τ), µ, ρ, [pk]j) is ([µm]i, σ∗), with σ∗

being a random element in the space of signatures, conditioned on
Verify(pp, [µm]i, σ∗, ConvertPK(pp, [pk]j, ρ))=1.

The mercurial signature construction presented in section 4.5.3 satisfies a weaker
form of perfect adaption with respect to the key space. Instead of having perfect
adaption under malicious keys in the honest parameters model, it has perfect
adaption under honestly generated keys in the honest parameters model. For
completeness, we provide below a fourth definition of perfect adaption, which only
considers honestly generated keys.

Definition 32: Perfect adaption of signatures (4)
An SPS-EQ over (G∗

i )ℓ perfectly adapts signatures (under honest
keys in the honest parameters model) if for all tuples (pp, [pk]j, [m]i,
(σ, τ), µ, ρ) where pp $← PGen(1λ), [pk]j ∈ KGen(pp, ℓ), [m]i ∈
(G∗

i )ℓ, Verify(pp, [m]i, (σ, τ), [pk]j)=1 and µ, ρ ∈ Z∗
p, we have that

the output of ChgRep(pp, [m]i, (σ, τ), µ, ρ, [pk]j) is ([µm]i, σ∗), with σ∗

being a random element in the space of signatures, conditioned on
Verify(pp, [µm]i, σ∗, ConvertPK(pp, [pk]j, ρ))=1.

4.5 SPS-EQ from Standard Assumptions
We present an SPS-EQ scheme where the OR-based proof in [KSD19] is replaced
by the one in [CH20] while adapting the related building blocks.

The starting point for the SPS-EQ construction in [KSD19] was the tightly secure
SPS from [GHKP18], which builds on a structure-preserving MAC (based on the
works from [GHK17] and [Hof17]) and a NIZK OR-Proof from [Ràf15]. To couple
with equivalence classes, the authors proposed a way to adapt the OR-Proof so
that it could be randomised and malleable. Unfortunately, as the CRS used in
the OR-Proof from [Ràf15] was incompatible with the required randomisation
properties, the authors were forced to build a quasi-adaptive NIZK (QA-NIZK)
on top to overcome the limitation. In a QA-NIZK, the CRS is allowed to depend
on the language. Contrary to that approach, in a fully adaptive NIZK the CRS is
independent of the language (i.e., the same proof system can be used for different
languages). In the following, we explain how to circumvent the previous issue,
obtaining a more efficient construction based on a fully adaptive NIZK.
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PGen(1λ):
BG $← BGGen(1λ); z $← Zp

crs← (BG, [z]2); return crs

PTGen(1λ):
BG $← BGGen(1λ); z $← Zp

crs← (BG, [z]2); return (crs, z)

PPro(crs, [x1]1, w1, [x2]1, w2):
// [xj]1 = Aiwj with A ∈M2k×k

sj
$← Zk

p; z1−i
$← Z∗

p; δ $← Z∗
p

[zi]2 ← δ[z]2 − [z1−i]2
[dj

i ]2 ← [zi]2wj + [sj]2
[aj

i ]1 ← [Ai]sj

dj
1−i

$← Zk
p

[aj
1−i]1 ← A1−idj

1−i − z1−ixj

return ([aj
i ]1, [dj

i ]2, [zi]2, δP1)j∈{1,2}
i∈{0,1}

PSim(crs, z, [x1]1, [x2]1):
z0

$← Zp; δ $← Z∗
p; z1 ← δz − z0

for all i ∈ {0, 1}, j ∈ {1, 2} do
dj

i
$← Zk

p

[aj
i ]1 ← Aidj

i − zixj

return ([aj
i ]1, [dj

i ]2, [zi]2, δP1)j∈{1,2}
i∈{0,1}

PRVer(crs, [x]1, π):
([ai]1, [di]2, [zi]2, Z1)i∈{0,1} ← π

check e(Z1, [z]2)=e([1]1, [z0]2 + [z1]2)
for all i ∈ {0, 1} check

e([Ai]1, [di]2)=e([x]1, [zi]2)+e([ai]1, [1]2)
return 1

PVer(crs, [x1]1, [x2]1, Ω):
([aj

i ]1,[d
j
i ]2,[zi]2,Z1)j∈{1,2}

i∈{0,1} ← Ω
check e(Z1, [z]2) = e([1]1, [z0]2 + [z1]2)
for all i ∈ {0, 1}, j ∈ {1, 2} check

e([Ai]1, [dj
i ]2)=e([xj]1, [zi]2)+e([aj

i ]1, [1]2)
return 1

ZKEval(crs, [x1]1, [x2]1, Ω):
([aj

i ]1,[d
j
i ]2,[zi]2,Z1)j∈{1,2}

i∈{0,1} ← Ω
check PVer(crs, [x1]1, [x2]1, Ω)
α, β $← Z∗

p; Z ′
1 ← αZ1

for all i ∈ {0, 1}
[z′

i]2 ← α[zi]2
[a′

i]1 ← α[a1
i ]1 + αβ[a2

i ]1
[d′

i]2 ← α[d1
i ]2 + αβ[d2

i ]2
return ([a′

i]1, [d′
i]2, [z′

i]2, Z ′
1)

Figure 4.1: Malleable NIZK argument for language L∨
A0,A1

4.5.1 Malleable NIZK Argument
Unlike the one from [KSD19], which is a one-time homomorphic QA-NIZK based
on the OR-Proof from [Ràf15] and the QA-NIZK from [KW15], our malleable
NIZK argument is based solely on the fully adaptive OR-Proof from [CH20]. This
allows us to circumvent the randomisation problem in the OR-Proof from [Ràf15],
avoiding the need to build a QA-NIZK atop.

As a result, we reduce the number of exponentiations required in the proving and
ZKEval algorithms, which leads to a more efficient signature scheme. This comes at
the cost of relying on the L1-1-extKerMDH assumption (Section 2.3.3 on page 11).
We argue that the change is justified as the extKerMDH is a natural extension of
the KerMDH assumption, and in this case, the assumption is also falsifiable.

Intuition. We look for a NIZK proof which can be randomisable and malleable so
that randomised proofs look like fresh proofs while the malleability allows updating
the proof statements. The goal is to obtain derivation privacy, which is crucial to
perform the change of representative in the signature scheme.
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The fully adaptive NIZK argument from [CH20] is based on a challenge z =
z0 + z1, where z is in the CRS, and z0 and z1 are elements of the proof and chosen
such that the equation holds. To randomise a proof, we need to randomise z0 and
z1. Therefore, instead of checking the original equation with z, we will check for
linear combinations of the equation z = z0 + z1. To do so, we modify the original
proof to compute a random α such that αz − z0 = z1 (for a fresh z0), adding an
extra element Z1 = αP1 to the proof. Consequently, the verification algorithm
will now check an extra pairing.

As observed in [KSD19], the malleability of the OR-NIZK proof can be achieved
using a tag and a second NIZK for that tag with shared randomness. We follow
the same approach, also providing a second verification algorithm (PRVer) to verify
a single OR-proof, as used in the SPS-EQ construction. The resulting malleable
NIZK argument for the OR-language defined below (for fixed A0 and A1) is given
in Figure 4.1. As in [KSD19], PPro outputs two proofs with shared randomness.

L∨
A0,A1 = {[x]1 ∈ G2k

1 |∃ w ∈ Zk
p : [x]1 = [A0]1w ∨ [x]1 = [A1]1w}

Theorem 15. The construction from Figure 4.1 is a fully adaptive NIZK argument
for L∨

A0,A1 if the falsifiable L1-1-extKerMDH assumption holds in G2.

Proof. We must show completeness, perfect zero-knowledge, computational
soundness and derivation privacy. We do it in the same way as done for the
original protocols from [CH20] (Theorem 19) and [KSD19] (Theorem 1).
Perfect Completeness. Let [x]1 = [A0]1w be a valid statement for L∨

A0,A1 with
witness w1 (if the statement holds with respect to A1, the proof is analogous),
and let π=(([ai]1, [di]2, [zi]2)i∈{0,1}, Z1) be a valid proof for [x]1 ∈ L∨

A0,A1 . In the
following, we show that PRVer(crs, [x]1, π) = 1. First, we have:

e([A0]1, [d0]2) = e([x]1, [z0]2) + e([a0]1, [1]2)
⇐⇒

[A0d0]T = [xz0 + a0]T
([a0]1 = [A0]1s1) ⇐⇒

[A0d0]T = [xz0 + A0s1]T
([d0]1 = z0w + s1) ⇐⇒

[A0(z0w + s1)]T = [xz0 + A0s1]T
(x = A0w) ⇐⇒

[A0(z0w + s1)]T = [A0(z0w + s1)]T

Similarly, we have:

e([A1]1, [d1]2) = e([x]1, [z1]2) + e([a1]1, [1]2)
⇐⇒

[A1d1]T = [xz1 + a1]T
([a1]1 = A1d1 − xz1) ⇐⇒
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[A1d1]2 = [xz1 + A1d1 − xz1]T

Finally, we have that e(Z1, [z]2) = [αz]T = e([1]1, [αz]2) = e([1]1, [z0]2 + [z1]2).
Perfect Zero-Knowledge. We have to show that the distributions PSim and PPro
are identical. As in [CH20] (Theorem 19), the simulator can generate an identically
distributed proof when given the trapdoor while hiding the value α used to
randomise the challenges with Z1 as done by the real prover.
Computational Soundness. Again, the only difference from [CH20] (Theorem 19)
is that we now use a linear relation to check the challenge, which is equivalent to
verifying the original equation z = z0 + z1. Therefore, soundness can be proven
following the proof from [CH20] almost in verbatim.
Derivation Privacy. Let [x1]1 = [A0]1w1 and [x2]1 = [A0]1w2 be valid statements
for L∨

A0,A1 (the proof is analogous if the statements hold with respect to A1 instead).
Let π1=(([ai]11, [di]12, [zi]2)i∈{0,1}, Z1) and π2 = (([ai]21, [di]22, [zi]2)i∈{0,1}, Z1) be
valid proofs for [x1]1, [x2]1 ∈ L∨

A0,A1 . Let π̂ = (([âi]1, [d̂i]2, [ẑi]2)i∈{0,1}, Ẑ1) =
(α[a0]11 +αβ[a0]21, α[a1]11 +αβ[a1]21, α[d0]12 +αβ[d0]22, α[d1]12 +αβ[d1]22, α[z0]2, α[z1]2,
αZ1) be the output from ZKEval(crs, [x1]1, w1, [x2]1, w2), where the corresponding
witness is ŵ = w1 + βw2. ZKEval outputs a proof with new independent
randomness α and β, which has identical distribution with respect to PProv when
computing a single proof. Thus, we achieve perfect derivation privacy.

4.5.2 Construction

Our construction is shown in Figure 4.2. As previously mentioned, it relies on
a tag to randomise and adapt the signature. More in detail, as explained in
[KSD19], the departure point for the signature construction is an observation
(core lemma from [GHKP18]) that for all [t]1 ← [A0]1r, with r $← Zp, fixed
matrices [A0]1, [A1]1 $← D1, and a NIZK proof for [t]1 ∈ span(A0) ∪ span(A1), the
values K⊤

0 [t]1 and (K⊤+v⊤)[t]1 are indistinguishable under the MDDH assumption
(Section 2.3.3) when K0

$← Z2
p is a key and v $← Z2

p. Furthermore, for all [t]1 ←
[A0]1r1 and [w]1 ← [A0]1r2 with r1, r2

$← Zp, and a NIZK proof for [t]1, [w]1 ∈
span(A0) ∪ span(A1), the tuples (K⊤

0 [t]1, K⊤
0 [w]1) and ((K⊤

0 + v⊤)[t]1, K⊤
0 [w]1)

are also indistinguishable.
With the above in mind, a signature σ on a message [m]1 ∈ (G∗

1)ℓ will have
the form σ = K⊤

0 [t]1 + K⊤[m]1, with a tag τ = K⊤
0 [w]1. The secret key sk will

be (K0, K) for K0
$← Z2

p and K $← Zℓ
p. Using the malleable NIZK argument

from Section 4.5.1, two OR-Proofs sharing the same randomness are computed
for [t]1 and [w]1, allowing anyone who knows the tag to randomise and adapt the
signature to a new representative.

The security of our construction relies on a (new) core lemma. Next, we prove
the lemma, unforgeability and perfect adaption with respect to the message space.
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SPS-EQ.PGen(1λ):
BG $← BGGen(1λ)
A, A0, A1

$← D1

crs $← PGen(1λ; BG)
pp← (BG, [A]2, [A0]1, [A1]1, crs)
return pp

SPS-EQ.PTGen(1λ):
BG $← BGGen(1λ)
A, A0, A1

$← D1

(crs, τ) $← PTGen(1λ; BG)
pp← (BG, [A]2, [A0]1, [A1]1, crs)
return (pp, τ)

SPS-EQ.KGen(pp, ℓ):
K0

$← Z2×2
p ; K $← Zℓ×2

p

[B]2 ← [K0]2[A]2
[C]2 ← [K]2[A]2
sk← (K0, K); pk← ([B]2, [C]2)
return (sk, pk)

SPS-EQ.Sign(pp, sk, [m]1):
r1, r2

$← Zp

[t]1 ← [A0]1r1; [w]1 ← [A0]1r2

Ω← PPro(crs, [t]1, r1, [w]1, r2)
(Ω1, Ω2, [z0]2, [z1]2, Z1)← Ω
u1 ← K⊤

0 [t]1 + K⊤[m]1
u2 ← K⊤

0 [w]1
σ ← ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)
τ ← ([u2]1, [w]1, Ω2)
return (σ, τ)

SPS-EQ.Verify(pp, [m]1, (σ, τ), pk):
([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)← σ

check
PRVer(crs, [t]1, Ω1, [z0]2, [z1]2, Z1)
e([u1]⊤1 , [A]2) = e([t]⊤1 , [B]2) + e([m]⊤1 , [C]2)

if τ ̸=⊥ check
([u2]1, [w]1, Ω2)← τ

PRVer(crs, [w]1, Ω2, [z0]2, [z1]2, Z1)
e([u2]⊤1 , [A]2) = e([w]⊤1 , [B]2)

return 1

SPS-EQ.ChgRep(pp, [m]1, σ, τ, µ, pk):
([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)← σ

([u2]1, [w]1, Ω2)← τ

Ω← (Ω1, Ω2, [z0]2, [z1]2, Z1)
check

PVer(crs, [t]1, [w]1, Ω)
e([u2]⊤1 , [A]2) ̸= e([w]⊤1 , [B]2)
e([u1]⊤1 , [A]2) ̸= e([t]⊤1 , [B]2) + e([m]⊤1 , [C]2)

α, β $← Z∗
p

[u′
1]1 ← µ[u1]1 + β[u2]1

[t′]1 ← µ[t]1 + β[w]1 = [A0]1(µr1 + βr2)
for all i ∈ {0, 1}

[z′
i]2 ← α[zi]2

[a′
i]2 ← αµ[a1

i ]2 + αβ[a2
i ]2

[d′
i]1 ← αµ[d1

i ]1 + αβ[d2
i ]1

Ω′ ← (([a′
i]1, [d′

i]2, [z′
i]2)i∈{0,1}, αZ1)

σ′ ← ([u′
1]1, [t′]1, Ω′)

return (µ[m]1, σ′)

Figure 4.2: Our SPS-EQ scheme.
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Lemma 16 (Core Lemma). If the D1-MDDH (DDH) assumption holds in G1 and
the tuple of algorithms Π = (PGen, PPro, PSim, PRVer) is a non-interactive zero-
knowledge argument for L∨

A0,A1 , then going from experiment Expcore
0 to Expcore

1
(Figure 4.3) can (up to negligible terms) only increase the winning chance of an
adversary. More precisely, for every adversary A, there exist adversaries B, B1 and
B2 s.t

Advcore
0 (A)−Advcore

1 (A) ≤ ∆core
A , where

∆core
A = (2 + 2⌈log Q⌉Advzk

Π (B) + (8⌈log Q⌉+ 4)AdvMDDH
D1,Gs

(B1)

2⌈log Q⌉Advsnd
Π (B2) + ⌈log Q⌉∆D1 + (8⌈log Q⌉+ 4)

p− 1
+ (⌈log Q⌉)Q

p

and the term ∆D1 is statistically small.

Expcore
0 (λ), β ∈ {0, 1}:

ctr← 0
BG $← BGGen(1λ)
A0, A1

$← D1

(crs, τ) $← PGen(1λ; BG)
pp← (BG, [A0]1, [A1]1, crs)
k0, k1

$← Z2
p

tag← ATAGO()(pp)
return VERO(tag)

TAGO():
ctr← ctr + 1; r1, r2

$← Zp

[t]1 ← [A0]1r1, [w]1 ← [A0]1r2

Ω← PPro(crs, [t]1, r1, [w]1, r2)
[u′]1 ← (k0 + β · F(ctr))⊤[t]1
[u′′]1 ← (k0 + β · k1)⊤[w]1
tag← ([t]1, [w]1, Ω, [u′]1, [u′′]1)
return tag

VERO(tag):
([t]1, Ω1, [z0]2, [z1]2, Z1, [u′]1)← tag
if PRVer(crs, [t]1, (Ω1, [z0]2, [z1]2, Z1)) ∧
∃ ctr′ ≤ ctr : [u′]1 = (k0 + β · F(ctr′))⊤[t]1
return 1 else return 0

Figure 4.3: Core lemma for our SPS-EQ scheme.

Proof. The proof of this lemma is very similar (in parts verbatim) to the one given
in [KSD19], which in turn extends the original core lemma from [GHKP18]. The
main difference is that we use the standard definition for zero-knowledge in our
NIZK argument system instead of the composable one. However, as pointed out
in [AJO+19], the standard notion of zero-knowledge suffices in this context. For
completeness, we present the full proof below.
Game 0: We define Game 0 = Expcore

0 and thus by definition:
Adv0 = Advcore

0 (A)
Game 1: In this game, we replace PPro with PSim in Game 0 to compute the proof.
An adversary B for Game 1 is such that T (B) ≈ T (A) + Q · poly(λ) and
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Adv0 −Adv1 ≤ Advzk
Π (B), where

Advzk
Π (B) is the advantage of B to break the zero-knowledge property from Π.

Game 2: In this game we pick [t]1, [w]1 $← G2
1 instead of computing them as in the

previous game. We can switch [t]1 and [w]1 to random over G2
1 by applying the D1-

MDDH assumption. More precisely, let A be an adversary distinguishing between
Game 1 and Game 2 and let B1 be an adversary given two Q-fold D1-MDDH
challenges (BG, [A0]1, [q1]1, ..., [qQ]1) and (BG, [A0]1, [q′

1]1, ..., [q′
Q]1) as input. Now

B1 sets up the game for A similar to Game 1, but instead choosing A0
$← D1,

it uses its challenge matrix [A0]1 as part of the public parameters pp. Further, to
answer tag queries B1 sets [ti]1 ← [qi]1, and [wi]1 ← [qi]1 and computes the rest
accordingly. This is possible as the proof Ω is simulated from Game 1 on. In case
B1 was given a real D1-MDDH challenge, it simulates Game 1 and otherwise Game
2. Thus, by Lemma 3, we have an adversary B1 with T (B1) ≈ T (A) + Q · poly(λ)
and

Adv1 −Adv2 ≤ 2AdvMDDH
D1,Gs

(B1) + 2
p−1

Game 3.0: Let us denote a sequence of games with 3.i, where Fi is the random
function F on i-bit prefixes, and the i-bit prefix of ctr is ctr|i. In this game, we
compute [u′]1 = (k0 +Fi(ctr|i)[t]1, and [u′′]1 = (k0 +k′

0)[w]1 (where k′
0 = F0(ctr|0)).

In the verification algorithm also, we verify [u′]1 = (k0 +Fi(ctr|i′)[t]1 for ctr′ ≤ ctr,
and [u′′]1 = (k0 + k′

0)[w]1. As for all ctr ∈ N we have F0(ctr|0) = F0(ϵ) and k0 is
identically distributed to k0 + F0(ϵ) for k0

$← Zp, we have

Adv3.0 = Adv2

Game 3.i→Game 3.(i+1) We proceed via a series of hybrid games Hi.j for
i ∈ [0,log(Q)− 1] and j ∈ [1, 8], marking the adversary’s advantage on each game
with Adv′.
Game 3.i→Hi.1: In this game, we compute [t]1 = [Actri+1 ]1r1.i and [w]1 =
[Actri+1 ]1r2.i, instead of picking them randomly. Here, ctri+1 is the i + 1’st bit
of the binary representation of ctr. More precisely, we introduce an intermediary
game Hi.0, where we choose [ti]1 and [wi]1 as

[ti]1 =

[Actri+1 ]r1.i for r1.i
$← Zp if ctri+1 = 0

[ui]1 for ui
$← Z2

p otherwise

[wi]1 =

[Actri+1 ]r2.i for r2.i
$← Zp if ctri+1 = 0

[u′
i]1 for u′

i
$← Z2

p otherwise

Let A be an adversary distinguishing between Game 3.i and Hi.0 and let B1 be
an adversary given two Q-fold D1-MDDH challenges (BG, [A0]1, [q1]1, ..., [qQ]1) and
(BG, [A0]1, [q′

1]1, ..., [q′
Q]1). Then B1 sets up the game for A similar to Game 3.i,

where it embeds [A0]1 into the public parameters pp. Further, whenever obtaining
a simulation query ctr with ctri+1 = 0, B1 sets [ti]1 ← [qi]1 and [wi]1 ← [q′

i]1 and



4

71 Section 4.5: SPS-EQ from Standard Assumptions

otherwise follows Game 3.i. Similarly, we can reduce the transition from game Hi.0
to Hi.1 to the MDDH assumption. We have

|Adv3.i −Adv′
i.1| ≤ 4AdvMDDH

D1,Gs
(B1) + 4

p−1

Hi.1→Hi.2: In this step, we reverse the transition from Game 0 to Game 1 and
thus replace PSim with PPro from game Hi.1 on. We choose all [t]1, [w]1 in tag
queries from L∨

A0,A1 with corresponding witness and can thus honestly generate
proofs. Therefore,

|Adv′
i.2 −Adv′

i.1| ≤ Advzk
Π (B2)

Hi.2→Hi.3: From game Hi.3 on, we introduce an additionally check in the
verification oracle. Namely, VERO checks that [t]1, [w]1 ∈ span([A0]1) ∨
span([A1]1). We can employ the soundness of Π to obtain

|Adv′
i.3 −Adv′

i.2| ≤ Advsnd
Π (B2)

Hi.3→Hi.4: Let A⊥
0 ∈ orth(A0) and A⊥

1 ∈ orth(A1). We introduce an intermediary
game Hi.3.1 , where we replace the random function Fi : {0, 1}i → Z2

p by
F′

i : {0, 1}i → Z2
p, F′

i(v) := (A⊥
0 |A⊥

1 )(Γi(v) Υi(v))⊤

where v ← {0, 1}i is an i-bit string and Γi, Υi : {0, 1}i → Zp are two independent
random functions. With probability 1−∆D1 the matrix (A⊥

0 |A⊥
1 ) has full rank. In

this case, going from game Hi.3 to game Hi.3.1 consists merely in a change of basis,
thus, these two games are perfectly indistinguishable. We obtain

|Adv′
i.3.1 −Adv′

i.3| ≤ ∆D1

We now define Fi+1 : {0, 1}i+1 → Z2
p s.t,

Fi+1(v) :=

(A⊥
0 |A⊥

1 )(Γ′
i(v|i) Υi(v|i))⊤ if v|i+1 = 0

(A⊥
0 |A⊥

1 )(Γi(v|i) Υ′
i(v|i))⊤ otherwise

where Γ′
i, Υ′

i : {0, 1}i → Zp are fresh independent random functions. Now Fi+1
constitutes a random function {0, 1}i+1 → Z2

p. Replacing F′
i+1(ctr|i) by Fi+1(ctr|i+1)

does not show up in any of the tag queries, as we have
Fi+1(ctr|i+1)⊤[t]1 = Fi+1(ctr|i+1)⊤[Actri+1 ]1r1 = ... = F′

i(ctr|i)⊤[Actri+1 ]1r1

In the verification oracle, we check [t]1, [w]1 ∈ span([A0]1) ∨ span([A1]1). Let us
define d[t] = 0 if t ∈ span(A0) and d[t] = 1 if t ∈ span(A1), and replace Fi(ctr|i) by
Fi+1(ctr|i|d[t]). Thus, by similar reasoning as for tag queries, the change does not
show up in the final verification query either. We obtain

|Adv′
i.4 −Adv′

i.3| ≤ ∆D1

Hi.4→Hi.5: From game Hi.5 on, we extend the set S in the verification oracle from
Si.4 := Fi+1(ctr′

|i|d[t]) : ctr′ ≤ ctr to Si.5 := Fi+1(ctr′
|i|b) : ctr′ ≤ ctr, b ∈ {0, 1}. That

is, we regard a verification query ([t]1, [w]1, Ω, [u′]1, [u′′]1) as valid, if there exists a
ctr′ ≤ ctr such that [u′]1 = (k0 +Fi+1(ctr′

|i|b)⊤[t]1 for b ∈ {0, 1} arbitrary, instead of
requiring b = d[t] . As changing the verification oracle does not change the view of
the adversary before providing its output and as we have Si.4 ⊆ Si.5, the transition
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from game Hi.4 to game Hi.5 can only increase the chance of the adversary. We
thus have

Adv′
i.4 ≤ Adv′

i.5

Hi.5→Hi.6: The difference between game Hi.5 and game Hi.6 is that in the latter,
we only regard a verification query ([t]1, [w]1, Ω, [u′]1, [u′′]1) as valid, if there exists
a ctr′ ≤ ctr such that [u′]1 = (k0 + Fi+1(ctr′

|i|ctr′
|i+1)⊤[t]1 (instead of allowing the

last bit to be arbitrary). As the only way an adversary can learn the image of Fi+1
on a value is via tag queries and Fi+1 is a random function, a union bound over
the elements in Qtag yields

|Adv′
i.5 −Adv′

i.6| ≤ Q
p

Hi.6→Hi.7: The oracle VERO does not perform the additional check [t]1, [w]1 ∈
span([A0]1 ∨ span([A1]1) anymore from game Hi.7 on. This is justified by the
soundness of Π. As in transition Hi.2 → Hi.3, we obtain

|Adv′
i.6 ≤ Adv′

i.7| ≤ Advsnd
Π (B2)

Hi.7→Hi.8: This transition is similar to transition Game 0 to Game 1. For an
adversary B2 we obtain

Adv′
i.7 −Adv′

i.8 ≤ Advzk
Π (B2)

Hi.8→Game 3.(i+1): We switch [t]1, [w]1 generated by TAGO to uniformly random
over G2

1, using the MDDH assumption first on [A0]1, then on [A1]1. Similarly than
for the transition Game 3.i → Hi.1, we obtain

|Adv3.(i+1) −Adv′
i.8| ≤ 4AdvMDDH

D1,Gs
(B2) + 4

p−1

Game 3.(log(Q))→Expcore
1,A : It is left to reverse the changes introduced in the

transitions from Game 0 to Game 2 to end up at the experiment Expcore
1,A . In

order to do so we introduce an intermediary Game 4, where we set [t]1 ← [A0]1r1
and [w]1 ← [A0]1r2 for r1, r2

$← Zp. This corresponds to reversing transition Game
1 to Game 2. By the same reasoning for every adversary A we thus obtain

|Adv3.(log Q) −Adv4| ≤ 2AdvMDDH
D1,Gs

(B1) + 2
p−1

As [t]1, [w]1 are now chosen from span([A0]1) again, we have
Adv4 −Advcore

1 ≤ Advzk
Π (B2)

Theorem 17. If the KerMDH and MDDH assumptions hold (Section 2.3.3 on
page 11), the SPS-EQ in Figure 4.2 is EUF-CMA (Definition 27 on page 62).

Proof. We prove the claim using a sequence of Games, and we denote the advantage
of the adversary in the j-th game as Advj.
Game 0: This game is the original game, and we have:

Adv0 = AdvEUF−CMA
SPS−EQ (A)

Game 1: In this game, in Verify, we replace the first pairing verification with the
following equation:
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[u∗
1]1 = K⊤

0 [t∗]1 + K⊤[m∗]1
For any signature σ = ([u∗

1]1, [t∗]1, Ω∗
1, [z∗

0 ]2, [z∗
1 ]2, Z∗

1) that passes the original
verification but not verification of Game 1, the value [u∗

1]1 −K⊤
0 [t∗]1 −K⊤[m∗]1

is a non-zero vector in the kernel of A. Thus, if A outputs such a signature,
we can construct an adversary B that breaks the D1-KerMDH assumption in
G2. First, the adversary B receives (BG, [A]2, [A0]1, [A1]1, [z]2), samples all other
parameters and simulates Game 1 for A. When B receives the forgery from A as
σ = ([u∗

1]1, [t∗]1, Ω∗
1, [z∗

0 ]2, [z∗
1 ]2, Z∗

1) for [m∗]1, he passes the following values to its
own challenger: [u∗

1]1 −K⊤
0 [t∗]1 −K⊤[m∗]1. We have:
|Adv1 −Adv0| ≤ AdvKerMDH

D1,G2 (A)
Game 2: In this game, we set K0 = K0 + k0(a⊥)⊤ (in the key generation we
can pick k0 ∈ Z2

p and K0 ∈ Z2×2
p and set K0; we have a⊥A = 0). We compute

[u1]1 = K⊤
0 [t]1 + K⊤[m]1 + a⊥(k0)⊤[t]1 and [u2]1 = K⊤

0 [w]1 + a⊥(k0)⊤[w]1. There
is no difference to the previous game since both are distributed identically. So, we
have:

Adv2 = Adv1

Game 3: In this game, we add the part of F(ctr) for ctr = ctr + 1, where F is a
random function, and obtain [u1]1 = K⊤

0 [t]1 + K⊤[m]1 + a⊥(k0 + F(ctr))⊤[t] − 1
and [u2]1 = K⊤0[w]1 + a⊥(k0 + k′)⊤[w]1. In the verification we have:

1← PRVer(crs, [t]1, (Ω1, [z0]2, [z1]2, π)) and
∃ ctr′ ≤ ctr : [u1]1 = K⊤

0 [t]1 + a⊥(k0 + F(ctr′))⊤ + K⊤[m]1
Let A be an adversary that distinguishes between Game 3 and Game 2. We
can construct an adversary B1 that breaks the core lemma. B1 receives pp =
(BG, [A0]1, crs) from Expcore

β,B1 . B1 picks A $← Dk, a⊥ ∈ orth(A), K0
$← Z2×2

p ,
K $← Z2×ℓ

p , and sends public key pk = ([A]2, [K0A]2, [KA]2) to A. B1 uses the
oracle TAG() to construct the signing algorithm. This oracle takes no input and
returns tag = (([t]1, [w]1, (Ω1, Ω2, [z0]2, [z1]2, Z1), [u′]1, [u′′]1). Then B1 computes
[u1]1 = K0[t]1 + a⊥[u′]1 + K⊤[m]1, [u2]1 = K⊤

0 [w]1 + a⊥[u′′]1, and sends the
signature σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and tag τ = ([u2]1, [w]1, Ω2) to A.
When the adversary A sends the forgery ([m∗]1, σ∗)=([u∗

1]1,[t∗]1,Ω∗
1,[z∗

0 ]2,[z∗
1 ]2,Z∗

1),
B returns 0 if [u1]1 = 0; otherwise it checks whether there exists [u′∗]1 such that
[u∗

1]1 −K⊤
0 [t∗]1 −K⊤[m∗]1= a⊥[u′∗]1. If it does not hold, then it returns 0 to A,

otherwise B1 computes [u′∗]1, and calls the verification oracle VERO() on the tag
tag∗ = ([u′∗]1, [t∗]1, Ω∗

1, [z∗
0 ]2, [z∗

1 ]2, Z∗
1) and returns the answer to A. Using the core

lemma, we have:
Adv2 −Adv3 ≤ Advcore

BG (B1)
Game 4: In this game, we pick r1, r2 from Z∗

p instead of Zp. The difference of
advantage between Game 3 and Game 4 is bounded by the statistical distance
between the two distributions of r1, r2. So, under Q adversarial queries, we have:

Adv4 −Adv3 ≤ Q
p

Game 5: In this game, we pick c̃tr $← [1, Q], and we add a condition ctr′ = c̃tr to
verification. Actually, now we have this conditions:
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1← PRVer(crs, [t]1, (Ω1, [z0]2, [z1]2, Z1)) and
∃ctr′ ≤ ctr : [u1]1 = K⊤

0 [t]1 + a⊥(k0 + F(ctr′))⊤ + K⊤[m]1

Since the view of the adversary is independent of ctr, we have

Adv5 = Adv4
Q

Game 6: In this game, we can replace K by K + v(a⊥)⊤ for v $← Zℓ
p. Also, we

replace {F(i) : i ∈ [1, Q], i ̸= ctr} by {F(i) + wi : i ∈ [1, Q], i ̸= c̃tr}, for wi
$← Z2k

p

and i ̸= ctr. So, in each i-th query, where i ̸= ctr, we compute

[u1]1 = K⊤
0 [t]1 + (K⊤ + a⊥v⊤)[mi]1 + a⊥(k0 + F(i) + wi)⊤[t]1

Also, for c̃tr-th query for the message [mc̃tr]1, we compute

[u1]1 = K⊤
0 [t]1 + (K⊤ + a⊥v⊤)[mc̃tr]1 + a⊥(k0 + F(c̃tr) + wi)⊤[t]1

So, A must compute the following:

[u∗
1]1 = K⊤

0 [t∗]1 + (K⊤ + a⊥v⊤)[m∗]1 + a⊥(k0 + F(c̃tr) + wi)⊤[t∗]1

Since m∗ ̸= [mc̃tr]R (in different classes) by definition of the security game, we can
argue v⊤m∗ and v⊤mc̃tr are two independent values, uniformly random over G1.
So, A only can guess it with probability of 1

p
. So, we have

AdvEUF−CMA
SPS−EQ (A) ≤ AdvKerMDH

BG (B) + Advcore
BG (B1) + 2Q

p

Theorem 18. The SPS-EQ in Figure 4.2 perfectly adapts signatures with respect
to the message space (Definition 28 on page 63).

To prove Theorem 18, we follow almost verbatim the original proof from [KSD19].

Proof. For all [m]1 and pk = ([K0A]2, [KA]2), a signature σ=([u1]1, [t]1, Ω1
,[z0]2, [z1]2, Z1) generated according to the CRS ([A]2, [A0]1, [A1]1, [z]2) satisfying
the verification algorithm must be of the form: σ=(K⊤

0 [A0]1r1+K⊤[m]1, [A0]1r1,
[A0]s1, [A1]d1

1 − z1[A0]1r1, [z0]2r1+[s1]2, [d1
1]2, [z0]2, [z1]2, Z1). A signature

output by ChgRep has the form σ=(K⊤
0 [A0]1(µr1 + βr2)+K⊤[µm]1, [A0]1(µr1 +

βr2), [A0]α(µs1 + βs2), [A1]α(µd1
1 + βd2

1) − z1[A0]1α(µr1 + βr2), α([z0]2(µr1 +
βr2)+µ[s1]2+β[s2]2), α(µ[d1

1]2 + β[d2
1]2), α[z0]2, α[z1]2, αZ1), for new independent

randomness α, β and µ so is a random element in the space of all signatures.
Furthermore, the signature output by ChgRep is distributed identically to a fresh
signature on message [µm]1 output by Sign.
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4.5.3 How to Obtain a Mercurial Signature
In the following, we present the required changes to the previous construction
to obtain a mercurial signature. It suffices to define the algorithms ConvertPK,
ConvertSK and ChgRep as shown in Figure 4.4. All of the algorithms have been
listed for ease of exposition, and the changes are highlighted in grey.

Regarding the security properties, we also need to consider perfect adaption with
respect to the key space. Unfortunately, as observed by Colin Putman after the
publication of [CLPK22], the proposed extension suffers the same issue as previous
constructions [CL19, CL21], in which only a weak form of perfect adaption is
supported. Instead of having perfect adaption under malicious keys in the honest
parameters model, we have perfect adaption under honestly generated keys in the
honest parameters model. We thank Colin Putman for the previous observation
and dedicate the following lines to explain why perfect adaption only holds with
respect to honestly generated keys.

Without loss of generality, according to the matrix distributions, any given CRS

will be of the form: [A]2 =
(

[a]2
[1]2

)
, [A0]1 =

(
[a0]1
[1]1

)
, [A1]1 =

(
[a1]1
[1]1

)
. Therefore,

given

sk =


(

b1,1 b1,2
b2,1 b2,2

)
,


c1,1 c1,2
... ...

cℓ,1 cℓ,2


 and pk =


(

[ab1,1 + b1,2]2
[ab2,1 + b2,2]2

)
,


[ac1,1 + c1,2]2

...
[acℓ,1 + cℓ,2]2




a randomisation of pk, pk′ = ρpk will have the form:

pk′ =


(

[ρab1,1 + ρb1,2]2
[ρab2,1 + ρb2,2]2)

)
,


([ρac1,1 + ρc1,2]2)

...
([ρacℓ,1 + ρcℓ,2]2)




With the above in mind, we observe that if the secret key is maliciously generated,
for example, c1,2 = γc1,1 and c2,2 = γc2,1 for a randomly chosen γ, then the owner
of the secret key will be able to identify randomisations of the corresponding public
key. To do so, it would suffice to multiply the first row of pk′ by γ and verify that
it’s equal to the second row. This can be done without knowing ρ or a. Hence, the
construction can only provide perfect adaption under honestly generated keys (i.e.,
assuming all elements from the secret key are randomly chosen).

Theorem 19. The mercurial signature construction from Figure 4.4 has perfect
adaption of signatures under honestly generated keys in the honest parameters
model (Definition 32 on page 64).

Proof. For all [m]1 and pk = ([K0A]2, [KA]2), a signature σ = ([u1]1, [t]1, Ω1,
[z0]2, [z1]2, Z1) generated according to the CRS ([A]2, [A0]1, [A1]1, [z]2) satisfying
the verification algorithm must be of the form: σ = (K⊤

0 [A0]1r1+K⊤[m]1, [A0]1r1,
[A0]s1, [A1]d1

1 − z1[A0]1r1, [z0]2r1+[s1]2, [d1
1]2, [z0]2, [z1]2, Z1). A signature output

by ChgRep has the form σ = (ρK⊤
0 [A0]1(µr1 + βr2)+ρK⊤[µm]1, [A0]1(µr1 +

βr2), [A0]α(µs1 + βs2), [A1]α(µd1
1 + βd2

1) − z1[A0]1α(µr1 + βr2), α([z0]2(µr1 +
βr2)+µ[s1]2+β[s2]2), α(µ[d1

1]2 + β[d2
1]2), α[z0]2, α[z1]2, αZ1), for new independent

randomness α, β, µ and ρ so is a random element in the space of all signatures.
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SPS-EQ.PGen(1λ):
BG $← BGGen(1λ); A, A0, A1

$← D1

crs $← PGen(1λ; BG)
pp← (BG, [A]2, [A0]1, [A1]1, crs)
return pp

SPS-EQ.PTGen(1λ):
BG $← BGGen(1λ); A, A0, A1

$← D1

(crs, τ) $← PTGen(1λ; BG)
pp← (BG, [A]2, [A0]1, [A1]1, crs)
return (pp, τ)

SPS-EQ.KGen(pp, 1λ):
K0

$← Z2×2
p ; K $← Zℓ×2

p

[B]2 ← [K0]2[A]2
[C]2 ← [K]2[A]2
sk← (K0, K)
pk← ([B]2, [C]2)
return (sk, pk)

SPS-EQ.Sign(pp, sk, [m]1):
r1, r2

$← Zp

[t]1 ← [A0]1r1; [w]1 ← [A0]1r2

Ω← PPro(crs, [t]1, r1, [w]1, r2)
(Ω1, Ω2, [z0]2, [z1]2, Z1)← Ω
u1 ← K⊤

0 [t]1 + K⊤[m]1
u2 ← K⊤

0 [w]1
σ ← ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)
τ ← ([u2]1, [w]1, Ω2)
return (σ, τ)

SPS-EQ.ConvertSK(sk, ρ):
(K0, K)← sk; return (ρK0, ρK)

SPS-EQ.Verify(pp, [m]1, (σ, τ), pk):
([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)← σ

check
PRVer(crs, [t]1, Ω1, [z0]2, [z1]2, Z1)
e([u1]⊤1 , [A]2) = e([t]⊤1 , [B]2) + e([m]⊤1 , [C]2)

if τ ̸=⊥ check
([u2]1, [w]1, Ω2)← τ

PRVer(crs, [w]1, Ω2, [z0]2, [z1]2, Z1)
e([u2]⊤1 , [A2]) = e([w]⊤1 , [B]2)

return 1

SPS-EQ.ChgRep(pp, [m]1, σ, τ, µ,ρ ,pk):
([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)← σ

([u2]1, [w]1, Ω2)← τ

Ω← (Ω1, Ω2, [z0]2, [z1]2, Z1)
check

PVer(crs, [t]1, [w]1, Ω)
e([u2]⊤1 , [A]2) ̸= e([w]⊤1 , [B]2)
e([u1]⊤1 , [A]2) ̸= e([t]⊤1 , [B]2) + e([m]⊤1 , [C]2)

α, β $← Z∗
p

[u′
1]1 ← ρ(µ[u1]1 + β[u2]1)

[t′]1 ← µ[t]1 + β[w]1 = [A0]1(µr1 + βr2)
for all i ∈ {0, 1}

[z′
i]2 ← α[zi]2

[a′
i]2 ← αµ[a1

i ]2 + αβ[a2
i ]2

[d′
i]1 ← αµ[d1

i ]1 + αβ[d2
i ]1

Ω′ ← (([a′
i]1, [d′

i]2, [z′
i]2)i∈{0,1}, αZ1)

σ′ ← ([u′
1]1, [t′]1, Ω′)

return (µ[m]1, σ′)

SPS-EQ.ConvertPK(pk, ρ):
([B]2, [C]2)← pk
return (ρ[B]2, ρ[C]2)

Figure 4.4: A mercurial signature construction from standard assumptions.

Furthermore, the signature output by ChgRep is distributed identically to a fresh
signature on message [µm]1 output by Sign(pp, ConvertSK(sk, ρ), [µm]1).

Unforgeability for mercurial signatures gives the adversary freedom to produce
forgeries under a different public key, as long as it belongs to the same equivalence
class as the original public key. In this regard, unforgeability of our construction
follows almost verbatim from Theorem 17.
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Remark 3. Since our construction requires the use of a tag, to implement the
delegatable credentials from [CL19] with our construction, users would be required
to store the tags and to randomise them when delegating to another user (i.e.,
tags need to be randomised and passed along for each delegation level with the
corresponding signature). Therefore, users should verify the tag’s correctness when
obtaining a signature, although that’s not required for verification during credential
presentations.

4.6 Conclusions and Future Work
In this chapter, we recalled the concept of Structure-Preserving Signatures on
Equivalence Classes, the main building block for subsequent chapters. Furthermore,
we proposed a new SPS-EQ scheme based on the construction from [KSD19],
where we adapt the SPS-EQ scheme by alleviating the need to build a QA-NIZK
incorporating results from the recent NIZK framework of [CH20]. We also showed
how to extend our construction to obtain the first mercurial signature in the
standard model. However, our construction requires a CRS and suffers the same
limitation as the previously known ones: only a weak form of anonymity is achieved
with respect to the key space. For this reason, obtaining a construction in the
standard model without a CRS or a stronger notion for perfect adaption with
respect to the key space is an open problem.
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Arguing that you don’t care about privacy because you have nothing to hide is no
different than saying you don’t care about free speech because you have nothing to
say.

— Edward Snowden

Recent regulations, such as the General Data Protection Regulation (GDPR)
[PoEU16], state that collected and processed data should not be held or further
used for other purposes than the ones for which it was originally intended to be used.
In the digital world, after some information has been exchanged between a user and
a service provider, it becomes difficult to guarantee the user that service providers
behave according to regulations like GDPR. Therefore, designing protocols to
manage at a fine-grained level the information that users can be requested to
provide in order to access a given service is of utmost importance. This chapter
proposes such protocols in the form of anonymous credentials. It relies on joint
work with Aisling Connolly and Pascal Lafourcade, and it is based on [CLPK21].

5.1 Introduction
Considering access to online services, designing protocols to manage the
information users can be requested to present is of utmost importance to protect
the user. A first step in the literature developed the concept of attribute-based
credentials (ABC) to model how users could show a credential containing a set of
attributes to access different services.

Subsequently, the development of anonymous attribute-based credentials made
it possible to protect the holders’ identity when showing a credential. Users
could present a credential disclosing no information other than that revealed
by the attributes they choose to show (anonymity) while also ensuring that the
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provided information is authentic (unforgeability). Proposed alternatives consider
a third property unlinkability which ensures that multiple showings of the same
credential cannot be linked. Credential systems that support an arbitrary number
of unlinkable showings are said to be multi-show. In contrast, those that only allow
a single use of an issued credential in an unlinkable fashion are called one-show.

Initial progress was made with respect to one-show constructions. Here, blind
signatures are issued on commitments to attributes so that users can later show
the signature and disclose some of the attributes while proving knowledge of those
left unrevealed. Examples include [Bra00, BL13, PZ13], and [FHKS16].

In the multi-show setting, pioneering constructions (based on Camenisch and
Lysyanskaya’s (CL) signatures [CL03, CL04]) such as the one underlying the
Idemix credential system [Zur13] rely on randomising the signature to then prove
in zero-knowledge the correspondence between the set of attributes (disclosed
and undisclosed), and the signature. A major drawback of such an approach is
that the zero-knowledge proof used during showings is of variable-length and may
require multiple sub-proofs. On the other hand, more recent constructions (e.g.,
[CL11, CDHK15, San20, HP20, TG20, DHS15a, FHS19]) apply other techniques
based on different lines of work to adapt the signature and the message without
using ZKPoK, providing constant-size showings.

The concept of ABC has been recently extended to consider multi-authority
credentials (e.g., [HP20, SAB+19]), where users obtain a single credential for a set
of attributes not necessarily issued by a single authority. This work considers the
classical setting (each credential is issued by a single authority).

5.2 Contributions
We take the ABC framework from Fuchsbauer, Hanser and Slamanig [FHS19] as
our starting point and propose a number of improvements, which we discuss next.

First, we extend the set-commitment scheme from [FHS19] to build a more
expressive credential system. Our extension receives the name of Set-Commitment
scheme supporting Disjoint Sets (SCDS), allowing a credential holder to prove
that a given set of attributes is not encoded in the credential. We also present
another extension that allows a user to outsource some of the computational
cost to a verifier when presenting a credential. This second extension is a Proof
of Exponentiation (PoE) compatible with our SCDS. Additionally, we develop a
notion called issuer-hiding. This notion allows users to hide the information that
relates them to an issuing organisation when presenting a credential. Finally, based
on the contributions from the previous chapter, we present an ABC construction
whose security is proven under standard assumptions (assuming a CRS).

5.3 Related Work
Constructions in the classical setting differ regarding their expressiveness, efficiency,
security model, how they handle revocation, and whether or not they provide non-
interactive features. Unfortunately, achieving all these properties simultaneously
has been challenging and tends to rely on complex or non-standard assumptions.
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Scheme [CL04] [CL11] [CL13] [CDHK15] & [FHS19] [TG20] [San20] [HP20] Our work
Issuing n-attr. credential

Comm. O(n) O(n) O(n) O(1) O(n) O(1) O(n) O(1)
User O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)
Issuer O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)

Showing k-of-n attributes (selective disclosure)
|ek| O(n) O(n) O(n) O(n) O(n) O(n2) O(n) O(n)

Comm. O(n) O(1) O(k) O(1) O(1) O(1) O(1) O(1)
User O(n) O(n) O(k) O(n− k) O(n− k) O(n− k) O(1) O(max{n− k, k})

Verifier O(n) O(n) O(k) O(k) O(k) O(k) O(n) O(1)

Table 5.1: Asymptotic complexities of ABC systems where n is the number of attributes
in the credential and k is the number of disclosed ones during a showing.

When considering state-of-the-art credential systems, there are five lines of work
with respect to the underlying signature scheme that is used to build them:

• CL signatures [CL04]: Idemix [Zur13] and [TG20].
• Aggregatable signatures: [CL11] and [HP20].
• Sanitizable signatures: [CL13].
• Redactable signatures: [CDHK15] and [San20].
• Structure-Preserving Signatures on Equivalence Classes (SPS-EQ): [FHS19].
The previous approaches present some limitations, as explained below.

Concrete efficiency. Most alternatives provide similar efficiency at the
asymptotic level. We recall in Table 5.1 the asymptotic complexities for issuing and
showing protocols, considering recent credential systems from each of the previous
lines of work, including our work. For showing protocols, we consider the selective
disclosure of attributes (i.e., the ability to show multiple attributes while hiding
others during a showing). While [HP20] is the only one with O(1) complexity for
the user during a showing, this comes at the cost of a more expensive verifier. Our
work achieves O(1) complexity for the verifier but keeping better asymptotics for
the user. A detailed comparison on the concrete efficiency of ABC’s (including an
implementation benchmark) was provided in [TG20]. Since the recent works from
[San20] and [HP20] where not available at that time, we provide in Section 5.7 an
updated comparison for the most efficient constructions from Table 5.1.

Proof settings. Most of the previous work relies on security proofs in the GGM.
In Table 5.2, we classify the ABC from Table 5.1 in terms of their assumed security
models. Some can be instantiated with or without the ROM and a CRS. Ideally,
one would like to have practically efficient (e.g., not only on the asymptotic level)
and expressive constructions in the standard model without requiring a CRS or
the ROM. This chapter provides an alternative to [TG20], building on [FHS19]
without relying on the GGM.

Issuer-hiding. Showing protocols of previous constructions (including [TG20]),
verify signatures with a key that belongs to the authority that issued the credential.
This restricts the use of ABC in scenarios where one would like to verify a valid
credential without linking it to a particular authority. Our issuer-hiding proposal
overcomes this limitation, which was not considered in previous works.
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Scheme [CL04] [CL11] [CL13] [CDHK15] [FHS19] [TG20] [San20] [HP20] Our work
Standard model 3 7 3 7 7 3 7 7 3

Without CRS 3 3 3 7 3 3 3 7 7

Without RO 3 7 7 3 3 3 3 7 3

Table 5.2: Classification of ABC schemes, indicating whether security proofs are in the
standard model, if a CRS is required and if the ROM is used.

5.4 Accumulators and Set-Commitments
In [DHS15b], Derler, Hanser and Slamanig revisited the notion of cryptographic
accumulators and proposed a unified formal model which included the notions
of undeniability and indistinguishability for accumulators, complementing the
classical ones of correctness and collision-freeness. Moreover, they showed how to
construct a commitment scheme using an indistinguishable accumulator in a black-
box manner. The relation stems from the fact that the indistinguishability and
collision-freeness notions for accumulators resemble those of hiding and binding
for commitments.

In another work [HS14], Hanser and Slamanig built an ABC with constant-size
credentials and constant-size showings (for selective disclosure of attributes) based
on a polynomial commitment scheme with factor openings. They departed from
the work of Kate et al. on constant-size polynomial commitments [KZG10] with the
following observations; (1) If a credential is seen as a set of attributes mapped to
the roots of a monic polynomial, then one can generate a polynomial commitment
of constant-size to represent the credential using the approach from [KZG10]. (2)
Instead of evaluating the polynomial at certain points, what is important to prove
possession of an attribute is to open factors of the polynomial instead. (3) If one can
open multiple factors in constant-size, a showing involving a selective disclosure of
attributes can also be done in constant-size.
As a result, they proposed an indistinguishable bilinear accumulator ([Ngu05]) with
batch membership proofs (i.e., factor opening), which was subsequently re-stated
as a set-commitment scheme in a follow-up work [FHS19].

A drawback of the ABC from [FHS19] is that the achieved level of expressiveness
is limited. For example, it only allows show proofs for the conjunction of attributes
in arbitrary subsets of attributes encoded in the credential (selective disclosure).
Furthermore, verification involves a number of exponentiations that are linear in
the size of the subset to be verified. This is undesirable if verification must be fast.

Thakur [Tha19] proposed a series of protocols for batch membership and non-
membership proofs for bilinear accumulators using proofs of exponentiation (an
idea previously introduced for accumulators in groups of unknown order by Boneh
et al. [BBF19] and by Wesolowski [Wes19]) to shift the computational cost from
the verifier to the prover. The main idea is to replace some of the exponentiations
by a single polynomial division, using a non-interactive proof obtained via the
Fiat-Shamir transform.

Batch proofs in the bilinear accumulator setting can be traced back to
Papamanthou et al. [PTT11] and Ghosh et al. [GOP+16]. The latter presents
the same underlying ideas of the (non)membership proofs provided by Thakur, and
a Zero-Knowledge Dynamic Universal Accumulator, which strengthens the notion
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of indistinguishability using the randomisation ideas from [DHS15b] (see Figure
3 and algorithms 6 and 7 from [GOP+16], respectively). Moreover, Ghosh et
al. proved that the notion of indistinguishability from [DHS15b] is equivalent
to a stronger notion which they call zero-knowledge for accumulators, if and only
if the accumulator is static. On the other hand, if the accumulator is dynamic,
they prove that their notion of zero-knowledge is strictly stronger than the one
of indistinguishability in the vein of [DHS15b]. In this sense, we point out that
the vector commitment scheme from [Tha19] can also be hiding if the accumulator
being used is adapted following the construction from [GOP+16].

More recently, a new set-commitment scheme, including set intersection and set
difference operations, was proposed in [TG20]. It provides more expressiveness
than the one from [FHS19] but under a weaker hiding notion.

In the following, we present a new set-commitment scheme that is more expressive
than the one in [FHS19] and almost as expressive as [TG20], but supporting a more
efficient verification and using a stronger hiding notion.

5.4.1 A Set-Commitment Scheme Supporting Disjoint Sets
We extend the set-commitment scheme in [FHS19] to support non-membership
proofs for disjoint sets while also including an optional proof of exponentiation,
where most of the exponentiations are outsourced to the prover rather than
being performed by the verifier. To do so, we borrow the previously mentioned
ideas in [DHS15b], [GOP+16] and [Tha19] (indistinguishable accumulators, non-
membership batch proofs, and proofs of exponentiations, respectively), adapting
them to the Type-3 setting. Our set-commitment scheme supporting disjoint sets
is described next.

SCDS Syntax A set-commitment scheme supporting disjoint sets (SCDS) consists
of the following p.p.t algorithms:
Setup(1λ, 1q) is a probabilistic algorithm which takes as input a security parameter

λ and an upper bound q for the cardinality of committed sets, both in unary
form. It outputs public parameters pp (including an evaluation key ek), and
discards the trapdoor key s used to generate them. Z∗

p \ {s} defines the
domain of set elements for sets of maximum cardinality q.

TSetup(1λ, 1q) is equivalent to Setup but also returns the trapdoor key s.
Commit(pp,X ) is a probabilistic algorithm which takes as input pp and a set X

with 1 ≤ |X | ≤ q. It outputs a commitment C on set X and opening
information O.

Open(pp, C,X , O) is a deterministic algorithm which takes as input pp, a
commitment C, a set X , and opening information O. It outputs 1 if and
only if O is a valid opening of C on X .

OpenSS(pp, C,X , O,S) is a deterministic algorithm which takes as input pp, a
commitment C, a set X , opening information O, and a non-empty set S. If
S is a subset of X committed to in C, OpenSS outputs a witness wss that
attests to it. Otherwise, outputs ⊥.
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OpenDS(pp, C,X , O,D) is a deterministic algorithm which takes as input pp, a
commitment C, a set X , opening information O, and a non-empty set D. If
D is disjoint from X committed to in C, OpenDS outputs a witness wds that
attests to it. Otherwise, outputs ⊥.

VerifySS(pp, C,S, wss) is a deterministic algorithm which takes as input pp, a
commitment C, a non-empty set S, and a witness wss. If wss is a valid witness
for S a subset of the set committed to in C, it outputs 1 and otherwise ⊥.

VerifyDS(pp, C,D, wds) takes as input pp, a commitment C, a non-empty set D,
and a witness wss. If wds is a valid witness for D being disjoint from the set
committed to in C, it outputs 1 and otherwise ⊥.

PoE(pp,X , α) takes as input pp, a non-empty set X , and a randomly-chosen value
α. It computes a proof of exponentiation for the characteristic polynomial of
X and outputs a proof πQ and a witness Q.

A SCDS scheme is secure if it satisfies the properties of correctness, binding,
hiding, and soundness. These notions are defined next, modified to suit the scheme,
but following the usual convention for set-commitment schemes.

Correctness of SCDS schemes requires that for all q > 0, all λ > 0, all
pp ∈ [Setup(1λ, 1q)], all non-empty S ⊆ X and all non-empty D : D ∩ X = ∅:

1. Pr
[

(C, O) $← Commit(pp,X ) : Open(pp, C,X , O) = 1
]

= 1

2. Pr
[

(C, O) $← Commit(pp,X );
wss← OpenSS(pp, C,X , O,S) : VerifySS(pp, C,S, wss) = 1

]
= 1

3. Pr
[

(C, O) $← Commit(pp,X );
wds← OpenDS(pp, C,X , O,D) : VerifyDS(pp, C,D, wds) = 1

]
= 1

Definition 33: Binding
An SCDS scheme is binding if for all q > 0 and all p.p.t adversaries A, the
following probability is negligible,

Pr
[

pp $← Setup(1λ, 1q),
(C,X , O,X ′, O′) $← A(pp)

: Open(pp, C,X , O) = 1 ∧
Open(pp, C,X ′, O′) = 1 ∧ X ̸= X ′

]

Similar to [FHS19], we also strengthen the standard notion of hiding by allowing
the adversary to have oracle access to some algorithms in the scheme, following the
definition for indistinguishable accumulators from [DHS15b].

Definition 34: Hiding
An SCDS scheme is hiding if for all q > 0 and all p.p.t adversaries A with
access to OSS, an opening oracle which allows queries for sets X ′ ⊆ X0 ∩ X1,
and to ODS, for sets X ′ s.t. X ′∩{X0∪X1} = ∅, there is a negligible function
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ϵ(·) such that:

Pr


b $← {0, 1}; pp $← Setup(1λ, 1q);
(X0,X1, st) $← A(pp);
(C, O) $← Commit(pp,Xb);
b∗ $← AOSS(pp,C,Xb,O,·),ODS(pp,C,Xb,O,·)(st, C)

: b∗ = b

− 1
2
≤ ϵ(λ)

where X0 and X1 are two distinct sets s.t. 1 ≤ |Xb| ≤ q.
If the above holds for ϵ = 0, the scheme is said to be perfectly hiding.

While the binding notion says it should be infeasible to produce two distinct
valid openings for the same commitment, the following notion states that it should
be infeasible to produce valid witnesses for invalid sets.

Definition 35: Soundness
An SCDS scheme is sound if for all q > 0 and all p.p.t adversaries A, the
following probabilities are negligible,

1. Pr
[

pp $← Setup(1λ, 1q);
(C,X , O,S, wss) $← A(pp)

: S ⊈ X ∧ OpenSS(pp, C,X , O) = 1
∧ VerifySS(pp, C,S, wss) = 1

]

2. Pr
[

pp $← Setup(1λ, 1q);
(C,X , O,D, wds) $← A(pp)

: D ∩ X ̸= ∅ ∧ OpenDS(pp, C,X , O)
= 1 ∧ VerifyDS(pp, C,D, wds) = 1

]

Our construction is presented in Figure 5.1. As in [FHS19], we use a special
opening for the case in which the committed set contains the trapdoor to achieve
perfect correctness and perfect hiding. To prove that a set is disjoint with respect to
the committed set, the EEA is computed to obtain the Bézout coefficients q1 and q2.
This way, equality is checked by randomising q1 and q2, using a single PPE. Finally,
the PoE computes a polynomial division, producing the corresponding proof.
Theorem 20. The SCDS construction from Figure 5.1 is correct and perfectly hiding.
Furthermore, if the q-co-DL and q-co-GSDH assumptions hold (Section 2.3.3 on
page 11), it is computationally binding and sound, respectively.

Proof. The proof strategy follows closely that of [FHS19], which we adapt to
consider disjoint sets.

Correctness. The first two cases are the same as in the original proof from
[FHS19] (Theorem 3). For the third one, let (pp, s, C,X , O,D) be a tuple
representing a valid instance. OpenDS(pp, C,X , O,D) returns wss = ⊥ if s ∈ X
and wss = (w0, w1) = ((r−1q′

1(s))P2, q′
2(s)P1) otherwise. If s ∈ X , VerifyDS returns

1 as wss = ⊥. If s /∈ X , VerifyDS returns 1 if e(C, w0)+e(w1, ChD(s)P2) = e(P1, P2).
As expected,

e(C, w0) + e(w1, ChD(s)P2) = e(rChX (s)P1, (r−1q′
1(s))P2) + e(q′

2(s)P1, ChD(s)P2)
= e(P1, P2)ChX (s)q′

1(s)+q′
2(s)ChD(s)

= e(P1, P2)ChX (s)q1(s)+ChD(s)q2(s)

= e(P1, P2)
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SCDS.Setup(1λ, 1q):
BG $← BGGen(1λ); s $← Z∗

p

pp← (BG, (siP1, siP2)i∈[q])
return pp

SCDS.TSetup(1λ, 1q):
BG $← BGGen(1λ); s $← Z∗

p

pp← (BG, (siP1, siP2)i∈[q])
return (pp, s)

SCDS.PoE(pp,X , α):
Q← ChX (s)P2; Let h(X) and β s.t.
ChX (X)=(X + α) · h(X) + β
πQ ← h(s)P2
return (πQ, Q)

SCDS.Commit(pp,X ):
if |X | > q return ⊥; r $← Z∗

p

if ∃ s′ ∈ X : s′P1 = sP1
C ← rP1; O ← (1, (r, s′))

else C ← r · ChX (s)P1; O ← (0, r)
return (C, O)

SCDS.Open(pp, C,X , O):
if O = (1, (r, s′)) ∧ s′P1 = sP1

if C = rP1 return 1 else 0
if O = (0, r)

if C = r · ChX (s)P1 return 1 else 0

SCDS.OpenSS(pp, C,X , O,S):
if SCDS.Open(C,X , O) = 0 ∨
S ⊈ X ∨ S = ∅ return ⊥

if O = (1, (r, s′))
if s′ /∈ S return ChS(s′)−1C

if O = (0, r) return r · ChX \S(s)P1
else return ⊥

SCDS.VerifySS(pp, C,S, wss, [PoE]):
if (S = ∅ ∧ wss = ⊥) return 1
if ∃ s′ ∈ S : s′P1 = sP1

if wss = ⊥ return 1 else 0
if PoE = ⊥

return e(wss, ChS(s)P2) = e(C, P2)
else

(α, πQ, Q)← PoE
β ← ChS(X)(mod (X + α))
return e(sP1+αP1, πQ)+e(βP1, P2)
= e(P1, Q) ∧ e(wss, Q) = e(C, P2)

SCDS.OpenDS(pp, C,X , O,D):
if (t = 0 ∨ |D ∩ X | > 0) return ⊥
if O = (1, (r, s′))

if s′ ∈ D return ⊥ else
γ $← Z∗

p; (w0, w1)← (γP2,
1−γ·r

ChD(s)P1)
if O = (0, r)

γ $← Z∗
p; Let q1(X) and q2(X) s.t.

ChX (X) · q1(X) + ChD(X) · q2(X) = 1
q′

1(s)← q1(s) + γ · ChD(s)
q′

2(s)← q2(s)− γ · ChX (s)
(w0, w1)← ((r−1 · q′

1(s))P2, q′
2(s)P1)

return (w0, w1)

SCDS.VerifyDS(pp, C,D, wds, [PoE]):
if (D = ∅ ∧ wds = ⊥) return 1
if ∃ s′ ∈ D : s′P1 = sP1

if wds = ⊥ return 1 else 0
(w0, w1)← wds
if PoE = ⊥ return

e(C, w0)+e(w1, ChD(s)P2)=e(P1, P2)
else

(α, πQ, Q)← PoE
β ← ChD(X)(mod (X + α))
return e(sP1+αP1, πQ)+e(βP1,P2)
=e(P1, Q) ∧ e(C, w0)+e(w1, Q)=e(P1, P2)

Figure 5.1: Our SCDS construction
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Binding. We refer the reader to [FHS19] (Theorem 4) since it’s the same proof (the
modifications introduced in our construction did not change the algorithms Setup
and Open).

Hiding. Following the approach from [FHS19], we consider the view of an
unbounded adversary A in the hiding experiment and assume w.l.o.g that every
query S to the OSS oracle satisfies S ⊂ Zp and ∅ ̸= S ⊆ (X0 ∩ X1). Similarly,
every query D to the ODS oracle satisfies D ⊂ Zp and ∅ ̸= D ∩ {X0 ∪ X1} = ∅. To
prove perfect hiding, the results from the adversary queries should be independent
of b. In the following, we will prove that this is the case for the queries made to
the oracle ODS. We omit to prove here the case for queries made to OSS as the
corresponding proof can be found almost verbatim in [FHS19] (Theorem 6).
(1) A chooses X0,X1 with s ∈ X0 ∩ X1: Note that for all queries Dj, we have s /∈

Dj, and for both b ∈ {0, 1}, Cb = rbP1 is uniformly random in G∗
1 for

some rb ∈ Z∗
p . Furthermore, jth query Dj to ODS is answered with

wdsj,b = (γP2,
1−γ·rb

ChDj
(s)P1, πQ, Q) for a uniformly random γ ∈ Z∗

p, so it does
not depend on the bit b. Thus it is information-theoretically hidden.

(2) A chooses X0,X1 s.t. s is contained in one of the sets; say s ∈ X0: As in the
previous case, for all queries Dj, we have s /∈ Dj. If b = 0 then A receives
a uniformly random C0 = r0P1 in G∗

1 for some r0 ∈ Z∗
p, and when it

queries Dj to the ODS oracle, it receives wdsj,0 = (γP2,
1−γ·r0
ChDj

(s)P1, πQ, Q) for a
uniformly random γ ∈ Z∗

p. If b = 1 then A receives C1 = ChX1(s) · r1P1
for a random r1 ∈ Z∗

p and the jth query Dj to ODS is answered with
wdsj,1 = (q′

1(s). 1
r1

P2, q′
2(s)P1, πQ, Q). In this case, q′

1(s) = q1(s) + γ · ChX1(s),
and q′

2(s) = q2(s) + γ ·ChDj
(s) for a random γ ∈ Z∗

p so both witnessess wdsj,0
and wdsj,1 are indistinguishable and do not depend on the bit b. Therefore,
b is information-theoretically hidden from A.

(3) A chooses X0,X1 with s /∈ X0 ∪ X1: For both b ∈ {0, 1}: Cb = ChXb
(s)rbP1

for a random rb ∈ Z∗
p. If s /∈ D′

j the jth query is answered with
wdsj,b = (q′

1(s) 1
rb

P2, q′
2(s)P1, πQ, Q). If s ∈ D′

j: the jth query is answered
with wdsj,b = (q′

1(s) 1
rb

P2, q′
2(s)P1, πQ, Q). Observe that in both cases the first

witness component q′
1(s). 1

rb
P2 perfectly hides b because q′

1(s) = q1(s) + γ ·
ChXb

(s) is uniformly random for γ $← Z∗
p. Similarly, the second component

q′
2(s) = q2(s) + γ · ChDj

(s) is also uniformly random. We conclude that b is
information theoretically hidden from A.

Soundness. We prove both equations in the soundness definition by reduction to
the q-co-GSDH assumption. To do so, we consider an adversary B, which on input
an instance I = (BG, s), sets pp← BG and runs A(pp) in the soundness game.
(1) We assume thatA is able to output (C,O,X ,S,wss) s.t. X ⊈ S, Open(pp,C,X ,O)
= 1 and VerifySS(pp, C, S,wss) = 1.

Following the approach from [FHS19], we prove here the second inequality in
the soundness definition considering an adversary B which on input an instance
I = (BG, s), sets pp ← BG and runs A(pp) in the soundness game. We omit
to prove here the first inequality as the corresponding proof can be found almost
verbatim in [FHS19] (Theorem 5).
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(2) We now assume A is able to output (C, O,X ,D, wds) s.t. X ∩ D ̸= ∅,
Open(pp, C,X , O) = 1 and VerifyDS(pp, C,D, wds) = 1.
(2.1) s /∈ {X ∪ D}: In this case, observe that ∃ c ∈ Z∗

p s.t s ̸= c ∈ X ∩ D. Hence,
the adversary can compute polynomials q1(s) and q2(s) s.t ChX (s) = (c + X)q1(s)
and ChD(s) = (c + X)q2(s). Since VerifyDS(pp, C,D, wds) = 1, we have that:

e(P1, P2) = e(C, w0) · e(w1, ChD(s)P2)
= e(ChX (s) · rP1, w0) · e(w1, ChD(s)P2)
= e((c + s)q1(s) · rP1, w0) · e(w1, (c + s)q2(s)P2)
= e(q1(s) · rP1, w0) · e(w1, q2(s)P2)(c+s)

Hence we have e(q1(s) · rP1, w0) · e(w1, q2(s)P2) = e(P1, P2)
1

(c+s) .
A is able to efficiently compute q1(s) and q2(s), and so the left side of the last
equation can also be efficiently computed by A. It follows that B can output the
pair (c, e(q1(s) · rP1, w0) · e(w1, q2(s)P2)) to break the q-co-GSDH assumption.
(2.2) s ∈ {X ∩ D}: We have that C = γP1 for a random γ ∈ Z∗

p and that s is a
root of ChD(s). Therefore, the verification equation can be written as follows:

e(P1, P2) = e(C, w0) · e(w1, ChD(s)P2)
= e(C, w0) · e(w1, [Id]2)
= e(C · w1, w0)

Since B can efficiently compute the right side of the previous equation, A can also
output a solution (c, e(C · w1, w0)

1
c+s ) to the q-co-GSDH problem.

(2.3) s ∈ X ∧ s /∈ D: As before, C = γP1 for a random γ ∈ Z∗
p, but we also have

that ∃ c ∈ Z∗
p s.t s ̸= c ∈ X ∩ D, and we can write ChD(s)=(c + X)q1(s). The

verification equation can then be re-stated as:

e(P1, P2) = e(C, w0) · e(w1, ChD(s)P2)
= e(γP1, w0) · e(w1, (c + s)q1(s)P2)
= e(w1 · γP1, w0 · q2(s)P2)(c+s)

Hence, we have e(P1, P2)
1

(c+s) = e(w1 ·γP1, w0 ·q2(s)P2), where the right side can be
efficiently computed by A. Therefore, B can output a solution (c, e(w1 · γP1, w0 ·
q2(s)P2)) to the q-co-GSDH problem.
(2.4) s /∈ X ∧ s ∈ D: In this case we have that C = ChD(s) · rP1 with
ChD(s) = (c + X)q1(s), for some s ̸= c ∈ {X ∩ D}. Again, c and q1 can be
efficiently computed and the verification equation can then re-stated as:

e(P1, P2) = e(ChX (s) · rP1, w0) · e(w1, ChD(s)P2)
= e((c + s)q1(s) · rP1, w0) · e(w1, P 0

2 )
= e(q1(s) · rP1 · w1, w0)(c+s)
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Hence, we have e(P1, P2)
1

(c+s) = e(q1(s) · rP1 · w1, w0), where the right side can be
efficiently computed by A. Therefore, B can output a solution (c, e(q1(s) · rP1 ·w1,
w0)) to the q-co-GSDH problem.

Security of the Proof of Exponentiation. We now discuss the integration and
security of the PoE, considering it as an optional functionality, with our SCDS
construction. We do this since it differs from the security analysis of the PoE given
in [Tha19], which does not consider its use in the same context.

First, we observe that the protocols and propositions from [Tha19] consider a
general pairing e and a general polynomial f(X) ∈ Fp[X]. However, the protocol
PoE used in this work relies on other restrictions; therefore, its security is not based
on the same propositions. In our case, the pairing function e being used is of Type-
III and α is chosen by the verifier, meaning that β is also determined by α. Below
we argue the security of our PoE protocol considering the use of the PoE in the
VerifySS algorithm of our scheme (a similar reasoning also applies to VerifyDS).

The adversary A is given α (chosen by the verifier at random) and has to produce
witnesses w1, w2 and w3 for a set S, with ChS(X) = (X + α)qS(X) + β and s.t
the following holds:

(e((s + α)P1, w1) + e(βP1, P2) = e(P1, w2)) ∧ (e(w3, w2) = e(C, P2))

Hence, the w2 used to verify the first pairing equation is also used to verify
the second pairing equation, adding a restriction on the witness required in the
corresponding proposition from [Tha19] (in which the knowledge of exponent
assumption [BP04] is required).

We can assume w.l.o.g that w2 is of the form ChD(s)P2 for some set D ⊆ X ,
where X is the accumulated set by C. Otherwise, even if the first pairing equation
is verified, the second will fail if the q-co-GSDH assumption holds.

With the above in mind, we study the existence of ChD(X) that verifies the first
pairing equation, given that (X + α) and β are fixed for the adversary.

We have three cases: (1) S ⊆ D, (2) D ⊂ S and (3) D ∩ S = ∅.
(1) If S ⊆ D and the adversary succeeds in producing the witnesses that pass both

verifications, a proof for D ⊆ X would also work as a proof for S ⊆ X (the
adversary is doing extra computations that are not necessary, and such case
is not considered as an attack).

(2) D ⊂ S: We assume that α and α + 1 do not belong to S. We have that:

ChS(X) = (X + α)qChS (X) + β (5.1)
ChD(X) = (X + α)qChD(X) + β (5.2)

We deduce that β = ChD(X)− (X + α)qChD(X) then we obtain

ChS(X) = (X + α)qChS (X) + ChD(X)− (X + α)qChD(X)
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Moreover, we have ChS(X) = ChD(X)Q(X) and so we get that

ChD(X)(Q(X)− 1) = (X + α)(qChS (X)− qChD(X))

Since α /∈ ChD(X), the terms (X +α) and (qChS (X)−qChD(X)) have to divide
Q(X)− 1 and ChD(X) respectively. Therefore, we have:

(qChS (X)− qChD(X)) = ChD(X)B
Q(X)− 1 = (X + α)B

From the first equation we get that deg(qChS (X) − qChD(X)) ≤
deg(qChS (X)) = deg(ChS(X))− 1 (which follows from (1)). This means that
deg(ChD(X)) ≤ deg(ChS(X))− 1. Looking at the second equation, we recall
that ChS(X) = ChD(X)Q(X). Since ChS(X) and ChD(X) are irreducible
polynomials we can deduce that B = 1. Hence Q(X) = (X + (α + 1)) and
(X + (α + 1)) is a factor of ChS(X), which contradicts the assumption that
α + 1 /∈ S. We conclude that no such set D exists.

(3) D ∩ S = ∅: In this case the adversary needs to produce a subset D ⊆ X for
which the following holds: ChD(X) = (X + α)qChD(X) + β. In such case,
looking at the first pairing equation we have that:

e((s + α)P1, w1) + e(βP1, P2) = e(P1, ChD(s)P2)
e(P1, (s + α)w1) = e(P1, (ChD(s)− β)P2)

which means that (s + α)w1 = (ChD(s) − β)P2. We show that if such a w1
exists then we can build and adversary that breaks the q-co-SDH assumption.
Therefore, we assume that f(X) = ChD(X) − β does not divide (X + α).
Since f(X) and (X + α) are relatively prime we can compute polynomials
h1(X), h2(X) such that

f(X)h1(X) + (X + α)h2(X) = 1

Set w∗
1 := h1(s)w1 +h2(s)P2. Then (s+α)w∗

1 = P2 and we have a pair (α, w∗
1)

which breaks the q-co-SDH in G2.

Expressiveness of our Set-commitment Scheme. Before concluding this section,
we elaborate on the expressiveness gained by adding a set-commitment supporting
proofs of disjoint sets (i.e., NAND showings).

First of all, scenarios considering access control policies can benefit of NAND
showings as they allow users, for instance, to prove that they do not belong to a
particular business unit within a company. Another example includes applications
providing discounts to tourists of a particular region. Suppose an airline is offering
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discounts on flight tickets for regional flights inside Spain but only for citizens
from outside the Schengen area. A user could use a NAND showing to prove that
her country of origin does not belong to the Schengen area without disclosing the
country. Similarly, users can prove that they are not residents of a particular
country (e.g., considering Spain, computing a NAND proof for the attribute
{“residence, Spain”}). None of the previous statements could easily be done with
the ABC from [FHS19] unless their negation was harcoded in the credential.

The following example from [TG20] (Section 6.2) illustrates how NAND showings
can also be used to perform interval proofs. Suppose that a users want to prove
that they are at least 18 year old. Assuming the current date is 2 January 2020 and
the user’s birthday is on 1 January 2002, we can have two redundant attributes
{“byear = 2002”}, {“bmth = Jan2002”} for {“bday = 01Jan2002”} in the user’s
credential so that the verifier can ask for a NAND showing on the attribute set

D={{“byear = 2020”}, . . . , {“byear = 2003”}, {“bmth = Feb2002”}, . . . ,
{“bmth = Dec2002”}, {“bday = 02Jan2002”}, . . . , {“bday = 31Jan2002”}}

Considering the work in [FHS19], such a proof could only be done encoding
predefined statements like {“adult, >18”}, making things more complex to handle.

5.5 Extending the ABC framework of [FHS19]
To build an ABC scheme, [FHS19] relies on a set-commitment scheme and a SPS-
EQ. A set-commitment represents a set of attributes, while a SPS-EQ signs a
vector of group elements (among which the set-commitment is included). This way,
a credential is formed by the message-signature part and auxiliary information to
use it during showings. To present a credential, users randomise the message and
signature pair to obtain a different representative for the same equivalence class.
Subsequently, the opening witness for the set-commitment scheme is randomised
consistently and presented alongside the credential. Finally, verifiers individually
check the signature and witness for the set of attributes in question to accept or
reject a user credential.

In terms of security, [FHS19] introduces a game-based security model for ABCs in
the vein of Bellare, Shi and Zhang’s model for group signatures [BSZ05]. Moreover,
their model considers replay attacks and provides a strong form of anonymity
against organisations that may maliciously generate keys. For a scheme to be secure
in their model, the authors require it to be correct, unforgeable and anonymous.
Correctness follows the usual notions. Unforgeability safeguards the verifier against
potentially malicious users that may try to present a credential for attributes not
issued by the corresponding authority. Finally, anonymity safeguards the user
against potentially malicious organisations and verifiers that may collude to learn
more information than the one intended to be presented by a user.

The purpose of this section is to present a new ABC extending that from [FHS19]
to consider NAND showing proofs, the use of a CRS, and issuer-hiding features.
On the one hand, a NAND showing proof allows users to demonstrate that a given
set of attributes is not present in their credentials. On the other hand, using a CRS
allows us to instantiate the framework with our mercurial signature scheme from
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Chapter 4, obtaining a construction under standard assumptions with issuer-hiding
features. The core differences in this extended ABC model follow naturally from
(1) the addition of disjoint sets in the SCDS scheme in section 5.4.1, and (2) the
removal of the key verification algorithm (as we work with a CRS).

5.5.1 ABC Syntax
An ABC scheme consists of the following p.p.t algorithms:
Setup(1λ, 1q) takes a security parameter λ, an upper bound q for the size of

attribute sets, and outputs public parameters pp discarding any trapdoor.
TSetup(1λ, 1q) is like Setup but it also returns a trapdoor τ (if any).
OrgKeyGen(pp) takes pp as input and outputs an organisation key pair (osk, opk).
UserKeyGen(pp) takes pp as input and outputs a user key pair (usk, upk).
Obtain(pp, usk, opk,X ) and Issue(pp, upk, osk,X ) are run by a user and the

organisation respectively, who interact during execution. Obtain takes as
input pp, the user’s secret key usk, an organisations public key opk, and an
attribute set X of size |X | < q. Issue takes as input pp, a user public key upk,
the organisation’s secret key osk, and an attribute set X of size |X | < q. At
the end of this protocol, Obtain outputs a credential cred on X for the user
or ⊥ if the execution failed.

Show(pp, opk,X ,S,D, cred) and Verify(pp, opk,S,D) are run by a user and a
verifier respectively, who interact during execution. Show takes as input
pp, an organisation public key opk, a credential cred for the attribute set
X , potentially non-empty sets S ⊆ X , D ⊈ X representing attributes sets
being a subset (S) or disjoint (D) to the attribute set (X ) committed in the
credential. Verify takes as input pp, an organisation public key opk, the sets
S and D. At the end, Verify outputs 1 or 0 indicating whether or not the
credential showing was accepted.

5.5.2 Security Properties
The following notions are based on the security model from [FHS19] (Section
5.1), which we adapt to consider the use of a crs (pp) and NAND showing proofs.
Informally, an ABC scheme is secure if it has the following properties:
Correctness. A showing of a credential with respect to a non-empty sets S and

D of attributes always verify if the credential was issued honestly on some
attribute set X with S ⊂ X and D ⊈ X .

Unforgeablility. Given at least one non-empty set S ⊂ X or D ⊈ X , a user in
possession of a credential for the attribute set X cannot perform a valid
showing for D ⊂ X nor for S ⊈ X . Moreover, no coalition of malicious users
can combine their credentials and prove possession of a set of attributes which
no single member has. This holds even after seeing showings of arbitrary
credentials by honest users (thus, covering replay attacks).

Anonymity. During a showing, no verifier and no (malicious) organisation (even
if they collude) is able to identify the user or learn anything about the user,
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except that she owns a valid credential for the shown attributes. Furthermore,
different showings of the same credential are unlinkable.

In addition, we will also consider an issuer-hiding notion as introduced in
[CLPK22] (under the name of signer-hiding). Informally speaking, it allows users
to hide the identity of their issuer within a set of issuers. The following global
variables and oracles are listed to introduce the corresponding formal definitions.

Global variables. At the beginning of each experiment, either the experiment
computes an organisation key pair (osk, opk) or the adversary outputs opk. In the
anonymity game there is a bit b, which the adversary must guess.

In order to keep track of all honest and corrupt users, we introduce the sets
HU, and CU, respectively. We use the lists UPK, USK, CRED, ATTR and OWNR to track
user public and secret keys, issued credentials and corresponding attributes and to
which user they were issued. Furthermore, we use the sets JLoR and ILoR to store
which issuance indices and corresponding users have been set during the first call
to the left-or-right oracle in the anonymity game.

Oracles. Considering an adversary A the oracles are as follows:
OHU(i) takes as input a user identity i. If i ∈ HU ∪ CU, it returns ⊥. Otherwise, it

creates a new honest user i by running (USK[i], UPK[i]) $← UKGen(opk), adding
i to the honest user list HU and returning UPK[i].

OCU(i, upk) takes as input a user identity i and (optionally) a user public key upk;
if user i does not exist, a new corrupt user with public key upk is registered,
while if i is honest, its secret key and all credentials are leaked. In particular,
if i ∈ CU or if i ∈ ILoR (that is, i is a challenge user in the anonymity game)
then the oracle returns ⊥. If i ∈ HU, then the oracle removes i from HU
and adds it to CU; it returns USK[i] and CRED[j] for all j with OWNR[j] = i.
Otherwise (i.e., i /∈ HU ∪ CU), it adds i to CU and sets UPK[i]← upk.

OObtIss(i,X ) takes as input a user identity i and a set of attributes X . If i /∈ HU,
it returns ⊥. Otherwise, it issues a credential to i by running

(cred,⊤) $← Obtain(pp, USK[i], opk,X ), Issue(pp, UPK[i], osk,X ).

If cred = ⊥, it returns ⊥. Else, it appends (i, cred,X ) to (OWNR, CRED, ATTR)
and returns ⊤.

OObtain(i,X ) lets the adversary A, who impersonates a malicious organisation,
issue a credential to an honest user. It takes as input a user identity i and a
set of attributes X . If i /∈ HU, it returns ⊥. Otherwise, it runs

(cred, ·) $← Obtain(pp, USK[i], opk,X ), ·),

where the Issue part is executed by A. If cred = ⊥, it returns ⊥. Else, it
appends (i, cred,X ) to (OWNR, CRED, ATTR) and returns ⊤.

OIssue(i,X ) lets the adversary A, who impersonates a malicious user, obtain a
credential from an honest organisation. It takes as input a user identity i
and a set of attributes X . If i /∈ CU, it returns ⊥. Otherwise, it runs
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(·, I) $← (·, Issue(pp, UPK[i], osk,X )),

where the Obtain part is executed by A. If I = ⊥, it returns ⊥. Else, it
appends (i,⊥,X ) to (OWNR, CRED, ATTR) and returns ⊤.

OShow(j,S,D) lets the adversary A play a dishonest verifier during a showing by
an honest user. It takes as input an index of an issuance j and attributes
sets S and D. Let i $← OWNR[j]. If i /∈ HU, it returns ⊥. Otherwise, it runs

(S, ·) $← Show(pp, opk, ATTR[j],S,D, CRED[j]), ·)

where the Verify part is executed by A.
OLoR(j0, j1,S,D) is the challenge oracle in the anonymity game where A must

distinguish (multiple) showings of two credentials CRED[j0] and CRED[j1]. The
oracle takes two issuance indices j0 and j1 and attribute sets S and D.
If JLoR ̸= ∅ and JLoR ̸= {j0, j1}, it returns ⊥. Let i0

$← OWNR[j0] and
i1

$← OWNR[j1]. If JLoR ̸= ∅ then it sets JLoR
$← {j0, j1} and ILoR

$← {i0, i1}.
If i0, i1 ̸= HU ∨ S ⊈ ATTR[j0] ∩ ATTR[j1] ∨ D ∩ {ATTR[j0] ∪ ATTR[j1]} ̸= ∅, it
returns ⊥. Else, it runs

(S, ·) $← (Show(opk, ATTR[jb],S,D, CRED[jb]), ·),

(with b set by the experiment) where the Verify part is executed by A.

Correctness of ABC schemes requires that for all λ > 0, all t > 0, all X with
0 < |X | ≤ t and all ∅ ̸= S ⊂ X and ∅ ̸= D ⊈ X with 0 < |D| ≤ t:

Pr



pp $← Setup(1λ, 1q);
(osk, opk) $← OKGen(pp);
(usk, upk) $← UKGen(pp);
(cred,⊤) $← (Obtain(pp, usk, opk,X ),
Issue(pp, upk, osk,X ))

: (⊤, 1) $← (Show(pp, opk,X ,S,
D, cred), Verify(pp, opk,S,D))

 = 1

Definition 36: Unforgeability
An ABC scheme is unforgeable, if for all λ > 0, all q > 0 and p.p.t adversaries
A having oracle access to O := {OHU, OCU, OObtIss, OIssue, OShow} the following
probability is negligible.

Pr


pp $← Setup(1λ, 1q);
(osk, opk) $← OKGen(pp);
(S,D, st) $← AO(pp, opk);
(·, b∗) $← (A(st), Verify(pp, opk,S,D))

:
b∗ = 1 ∧
∀ j : OWNR[j] ∈ CU =⇒
S /∈ ATTR[j] ∨ D ∩ ATTR[j] ̸= ∅



Definition 37: Anonymity
An ABC scheme is anonymous, if for all λ > 0, all q > 0 and all p.p.t
adversaries A having oracle access to O := {OHU, OCU, OObtain,OIssue, OShow,
OLoR} the following probability is negligible.
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Pr
[

pp $← Setup(1λ, 1q); b $← {0, 1}; (opk, st) $← A(pp);
b∗ $← AO(st)

: b∗ = b

]
− 1

2

Definition 38: Issuer-Hiding
An ABC scheme supports issuer-hiding if for all λ > 0, all q > 0, all n > 0,
all t > 0, all X with 0 < |X | ≤ t, all ∅ ̸= S ⊂ X and ∅ ̸= D ⊈ X with
0 < |D| ≤ t, and p.p.t adversaries A, the following holds.

Pr



pp $← Setup(1λ, 1q);
∀ i ∈ [n] : (oski, opki)

$← OKGen(pp);
(usk, upk) $← UKGen(pp); j $← [n];
(cred,⊤) $← (Obtain(usk, opkj,X ), Issue(upk, oskj,X ));
j∗ $← AOShow(pp,S,D, (opki)i∈[n])

: j∗ = j

 ≤
1
n

5.6 ABC From Standard Assumptions
As previously explained, our ABC scheme is based on the one from [FHS19]. The
main changes are the following:

1. Instead of instantiating the ABC with the signature from [FHS19] (secure in
the GGM), we use our mercurial signature construction from Chapter 4.

2. As we use a signature scheme that relies on a CRS, we move the parameters
of the set-commitment scheme from the organisation’s key pair to the
public parameters pp that include the previous CRS. Furthermore, we
instantiate the ZKPoK’s using Pedersen commitments and the construction
from [Dam00], as suggested in [FHS19] (Remark 1).

3. Our showing protocol can be instantiated with two sets, S and D, one to
compute AND proofs (selective disclosure) and one to compute NAND proofs.

4. We integrate the proof of exponentiation into the showing protocol.
5. We build a NIZK argument that, alongside our signature scheme, allows us

to achieve the issuer-hiding property.

Intuition. We begin explaining the difference to [FHS19] with respect to malicious
organisations as it clarifies the changes introduced in the issuing protocol. We
recall that in this context, the term malicious organisations refer to organisations
whose key-pairs are generated in a way that trapdoor information is included. Such
trapdoor information could later be used by an organisation to break anonymity,
provided that extra information (a transcript of a given showing protocol containing
a credential issued by the organisation) is available. The ABC scheme from [FHS19]
defines a ZKPoK in the issuing protocol (ΠRO) for which the organisation needs
to prove knowledge of the corresponding secret key to avoid the previous scenario.
Since the keys in our SPS-EQ (Figure 4.4 from Chapter 4) need to be generated
using the CRS (which includes the matrix A), we do not need to request a
ZKPoK from the organisation in the issuing protocol as the signature’s verification
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Setup(1λ, 1q):
(BG, scdspp) $← SCDS.Setup(1λ, q)
(spspp) $← SPS-EQ.PGen(1λ; BG)
r $← Z∗

p; ck← (P1, rP1)
return (BG, scdspp, spspp, ck)

OKGen(pp):
return SPS-EQ.KGen(BG, spspp, 3)

TSetup(1λ, 1q):
(BG, scdspp, scdsτ ) $← SCDS.TSetup(1λ, q)
(spspp, spsτ ) $← SPS-EQ.PTGen(1λ; BG)
r $← Z∗

p; ck← (P1, rP1)
return (BG, scdspp, spspp, ck, scdsτ , spsτ , r)

UKGen(pp):
usk $← Z∗

p; upk← uskP1; return (usk, upk)

Figure 5.2: BABC: Setup and key generation algorithms.

algorithm a pairing involving the matrix A and the organisation’s public key
opk = (B, C) is used to check the signature. Hence, a signature that verifies rules
out that 1) someone impersonated the issuer signing with a different secret key, and
2) that the public key was maliciously generated. Regarding the showing protocol,
the only changes are the addition of NAND and exponentiation proofs. For the
latter, we require the verifier to randomly pick the challenge and send it to the user.

Obtain(pp, usk, opk,X ) Issue(pp, upk, osk,X )
r1, r2

$← Z∗
p; a← r1P1

c← Commit(a, r2)
c−−−→

e $← Z∗
p

e←−−−
z ← r1 + e · usk
(C, O)← SCDS.Commit(X ; usk)
r3

$← Z∗
p; R← r3C C, R,

z,a,r2−−−→
if (zP1 ̸= a + e · upk ∨

c ̸= Commit(a, r2)) return ⊥
if (e(C, P2) ̸= e(upk, ChX (s)P2)
∧ ∀ x ∈ X : xP1 ̸= ek0

1) return ⊥
(σ, τ)← SPS-EQ.Sign((C, R, P1), osk)

(σ,τ)←−−−
check SPS-EQ.Verify((C, R, P1), (σ, τ), opk)
return cred = (C, (σ, τ), r3, O)

Figure 5.3: BABC: Obtain and issue algorithms.

For ease of exposition, we first present a construction whose Show and Verify
algorithms only consider selective disclosures of attributes, including the proof of
exponentiation (PoE). For this construction, which we call BABC (as it is our
basic ABC), we highlight the changes with respect to the original ABC scheme
from [FHS19]. Setup and key generation algorithms are given in Figure 5.2, Obtain
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Show(pp, usk, opk,S, cred) Verify(pp, opk,S)
(C, (σ, τ), r, O)← cred; µ, ρ $← Z∗

p

if O = (1, (o1, o2)) then O′ = (1, (µ · o1, o2))
else O′ = µ ·O
σ′ $← SPS-EQ.ChgRep((C, rC, P1), σ, τ, µ, ρ, opk)
(C1, C2, C3)← µ · (C, rC, P1)
cred′ ← (C1, C2, C3, σ′)
wss← SCDS.OpenSS(µC,S, O′)
r1, r2, r3, r4

$← Z∗
p; a1 ← r1C1; a2 ← r3P1

c1 ← Commit(a1, r2)
c2 ← Commit(a2, r4)
Σ1 = (cred′, wss, c1, c2)

Σ1−−−→
(cred′, wss, c1, c2)← Σ1

e, ẽ $← Z∗
p

e,ẽ←−−−
π1 ← SCDS.PoE(S, ẽ) (C1, C2, C3, σ)← cred′

z1 ← r1 + e · (r · µ); z2 ← r3 + e · µ
Σ2 = ((zi, ai)i∈{1,2}, π1, r2, r4)

Σ2−−−→
((zi, ai)i∈{1,2}, π1, r2, r4)← Σ2
check

z1C1 = a1 + eC2
z2P1 = a2 + eC3
c1 = Commit(a1, r2)
c2 = Commit(a2, r4)
SPS-EQ.Verify(cred′, opk)
SCDS.VerifySS(C1,S, wss; π1, ẽ)

Figure 5.4: BABC: Show and verify.

and Issue in Figure 5.3, and Show and Verify in Figure 5.4.
Subsequently, we present a second scheme, which is exactly as BABC but with

Show and Verify algorithms supporting NAND proofs. For this reason, we call
it NABC. In Figure 5.5, we give the Show and Verify algorithms for NABC,
highlighting the differences with BABC. We observe that if a NAND proof is used,
it increases bandwidth by 4 elements (two from G1 and two from G2), as the PoE
can reuse the same challenge.

5.6.1 Issuer-Hiding Strategies
In the following, we present the issuer-hiding strategy introduced in [CLPK22].
In addition, independent and concurrent work by Bobolz et al. [BEK+21] also
addressed the problem of hiding the identity of a credential issuer/signer (coining
the term issuer-hiding). There, the authors propose a slightly different setting
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Show(pp, usk, opk,S,D, cred) Verify(pp,S,D)
(C, (σ, τ), r, O)← cred; µ, ρ $← Z∗

p

if O = (1, (o1, o2)) then O′ = (1, (µ · o1, o2))
else O′ = µ ·O
σ′ $← SPS-EQ.ChgRep((C, rC, P1), σ, τ, µ, ρ, opk)
(C1, C2, C3)← µ · (C, rC, P1)
cred′ ← (C1, C2, C3, σ′)
wss← SCDS.OpenSS(µC,S, O′)
wds← SCDS.OpenDS(µC,D, O′)
r1, r2, r3, r4

$← Z∗
p; a1 ← r1C1; a2 ← r3P1

c1 ← Commit(a1, r2)
c2 ← Commit(a2, r4)
Σ1 = (cred′, wss, wds, c1, c2)

Σ1−−−→
(cred′, wss, wds, c1, c2)← Σ1

e, ẽ $← Z∗
p

e,ẽ←−−−
π1 ← SCDS.PoE(S, ẽ) (C1, C2, C3, σ)← cred′

π2 ← SCDS.PoE(D, ẽ)
z1 ← r1 + e · (r · µ); z2 ← r3 + e · µ
Σ2 = ((zi, ai, πi)i∈{1,2}, r2, r4)

Σ2−−−→
((zi, ai, πi)i∈{1,2}, r2, r4)← Σ2
check

z1C1 = a1 + eC2
z2P1 = a2 + eC3
c1 = Commit(a1, r2)
c2 = Commit(a2, r4)
SPS-EQ.Verify(cred′, opk′)
SCDS.VerifySS(C1,S, wss; π1, ẽ)
SCDS.VerifyDS(C1,S, wds; π2, ẽ)

Figure 5.5: NABC: Show and verify.

than the one from [CLPK22] to avoid using an OR-like proof as done in this work.
In brief, the authors consider access policies of the form {σi, pki}i∈[n], where σi is
a signature on a given authority’s public key pki produced by the verifier. As a
result, users can prove the correspondence between a public key (defined in the
policy) and the credential verification under that public key in zero knowledge,
using a NIZK independent of the number of public keys defined in the policy.
Finally, we note that our work is compatible with their formalization, deferring
that discussion to Chapter 6.

When using the mercurial signature construction from Chapter 4, users can
consistently randomise the signature on their credential and the issuer’s public
key. Therefore, a fully adaptive NIZK argument can be used to prove that a
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randomised issuer key belongs to the equivalence class of one of the keys contained
in a list of issuers’ keys. This way, the randomised issuer key can be used to
verify the credential while hiding the issuer’s identity (like in a ring signature).
More in detail, as in the construction form Chapter 4, we have k = 1 and ℓ = 3,
the public keys consist of two vectors [B]2 ∈ (G∗

2)2 and [C]2 ∈ (G∗
2)3, where the

secret keys have the form sk = (K0, K) with K0
$← (Z∗

p)2×2 and K $← (Z∗
p)3×2.

With this in mind, we can naturally define equivalence relations on the key spaces
Ssk = {(Z∗

p)2×2 × (Z∗
p)3×2} and Spk = {(G∗

2)2 × (G∗
2)3} as follows:

Rsk = {(sk, s̃k) ∈ Ssk × Ssk | ∃ ρ ∈ Z∗
p s.t s̃k = ρ · sk}

Rpk = {(pk, p̃k) ∈ Spk × Spk | ∃ ρ ∈ Z∗
p s.t p̃k = ρ · pk}

If we have a list of public keys (B1, C1), ..., (Bn, Cn) and define the equivalence
class of each public key as before ((B′

i, C′
i) = (Bi, Ci) · ρ), we can efficiently prove

that a given public key (B′
i, C′

i) belongs to the equivalence class of one of the
public keys (B1, C1), ..., (Bn, Cn) for some (Bi, Ci). The idea is to use a generalised
version of the OR-Proof from [CH20] and build a generalised NIZK OR-Proof for
the AND statements of the two components. The new language is defined as
follows (in the credential construction we use ℓ = 3):

L∨(Bi∧Ci)i∈[n]
= {(B′

i, C′
i) ∈ G2×ℓ

2 | ∃ ρ ∈ Z∗
p : ∨ (B′

i = Bi · ρ ∧C′
i = Ci · ρ)i∈[n]}

The resulting NIZK argument is given in Figure 5.6. Next, we explain how the
previous NIZK argument can be used to hide the identity of an issuer.

First, we need to consider a scenario in which n-authorities can issue credentials
to different sets of users. As we are in the classical setting, we also assume that
every user gets a credential from one of the n-authorities and that the organisation
keys are certified and publicly available.

The verifier must check the signature using the corresponding public key when
showing a credential. The idea is to use the NIZK argument so a user can randomise
the public key and present this randomised key to the verifier. It will then check
the NIZK to verify that the public key is valid (i.e., it belongs to the equivalence
class of one of the n-authorities). Therefore, signatures need to be adapted by users
so that they can be verified with the randomised public key.

Theorem 21. The proof system given in Figure 5.6 is a fully adaptive NIZK
argument for the language L∨(Bi∧Ci)i∈[n]

.

Proof. The proof follows from Theorem 19 in [CH20]. The only difference is that
we rely on the AND composition for sigma protocols to compile the sigma protocol
from [CH20] using the same challenge for both proofs.

Integration. As the NIZK argument is fully adaptive, users can choose the size
of the anonymity set (i.e., the set of public keys in the OR-Proof). We find this
approach simpler than using delegatable credentials to achieve a similar result.
Users do not need to interact with the organisations to compute the NIZK proof
nor to adapt the signature. Moreover, there is no need to use pseudonyms for each
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SH.PGen(1λ):
BG $← BGGen(1λ); z $← Zp

crs← (BG, [z]1); τ ← z

return (crs, τ)

SH.PPro(crs, (Bi, Ci)i∈[n], (B′
i, C′

i), ρ):
// B′

i = Bi · ρ ∧C′
i = Ci · ρ

s1, s2, z1, ..., zn−1
$← Zp

[zn]1 ← [z]1 −
∑j=n−1

j=1 [zj]1
[a1

i ]2 ← s1Bi; [a2
i ]2 ← s2Ci

[d1
i ]1 ← ρ[zi]1+[s1]1; [d2

i ]1 ← ρ[zi]1+[s2]1
for all j ̸= i ∈ [n] do

d1
j , d2

j
$← Zp

[a1
j ]2 ← d1

jBj-zjB′
i

[a2
j ]2 ← d2

jCj-zjC′
i

return (([ak
n]2, [dk

n]1)k∈[2]
n∈[n], ([zj]1)j∈[n−1])

SH.PSim(crs, τ, (Bi, Ci)i∈[n], (B′
i, C′

i)):
z1, ..., zn−1

$← Zp

[zn]1 ← [τ ]1 −
∑j=n−1

j=1 [zj]1
for all i ∈ [n] do

d1
i , d2

i
$← Zp

[a1
i ]2 ← d1

i Bi-ziB′
i

[a2
i ]2 ← d2

i Ci-ziC′
i

return (([ak
n]2, [dk

n]1)k∈[2]
n∈[n], ([zj]1)j∈[n−1])

SH.PVer(crs, (Bi, Ci)i∈[n], (B′
i, C′

i), π):
(([ak

n]2, [dk
n]1)k∈[2]

n∈[n], ([zj]1)j∈[n−1])← π

[zn]1 = [z]1 −
∑j=n−1

j=1 [zj]1
for all i ∈ [n] check

e([d1
i ]1, Bi)=e([zi]1, B′

i)+e([1]1, [a1
i ]2)

e([d2
i ]1, Ci)=e([zi]1, C′

i)+e([1]1, [a2
i ]2)

return 1

Figure 5.6: Fully adaptive NIZK argument for L∨
(Bi∧Ci)i∈[n]

Setup(1λ, 1q): TSetup(1λ, 1q):
(BG, scdspp) $← SCDS.Setup(1λ, q) (BG, scdspp, scdsτ ) $← SCDS.TSetup(1λ, q)
(spspp) $← SPS-EQ.PGen(1λ; BG) (spspp, spsτ ) $← SPS-EQ.PTGen(1λ; BG)
(shpp, shτ )← SH.PGen(1λ; BG) (shpp, shτ )← SH.PGen(1λ; BG)
r $← Z∗

p; ck← (P1, rP1) r $← Z∗
p; ck← (P1, rP1)

return (BG, scdspp, spspp, shpp, ck) return (BG, scdspp, spspp, ck, scdsτ , spsτ , shτ , r)

Figure 5.7: LABC: Setup.

key. We essentially compute public key’s pseudonyms “on the fly” guaranteeing
that the signature adaption is done with respect to a valid public key. In other
words, our NIZK argument is a proof of correct randomisation, where the same
randomiser is used to adapt the signature and generate a pseudonymous public key.

Efficiency analysis. As the proof size is 9n − 1 for an anonymity set of n-
authorities, communication bandwidth will no longer be constant. Nevertheless,
given the previously mentioned advantages we believe this is a fair trade-off for
the added functionality. Furthermore, the computational cost is also substantially
more efficient than similar variants (see, for instance, Table 2 from [CH20]).

In figures 5.7 (Setup) and 5.8 (Show and Verify), we present our last ABC
construction, called LABC, based on the previous issuer-hiding approach. For the
setup, we need to include the public parameters of the proof system. As before, we
highlight the differences with the NABC construction. Key generation algorithms,
Obtain and Issue remain unchanged with respect to the BABC construction.
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Show(pp, usk, (opki)i∈[n], opk,S,D, cred) Verify(pp, (opki)i∈[n],S,D)
(C, (σ, τ), r, O)← cred; µ, ρ $← Z∗

p

if O = (1, (o1, o2)) then O′ = (1, (µ · o1, o2))
else O′ = µ ·O
σ′ $← SPS-EQ.ChgRep((C, rC, P1), σ, τ, µ, ρ, opk)
(C1, C2, C3)← µ · (C, rC, P1)
cred′ ← (C1, C2, C3, σ′)
opk′ ← ConvertPK(opk, ρ)
Π← SH.PPro((opki)i∈[n], opk′, ρ)
wss← SCDS.OpenSS(µC,S, O′)
wds← SCDS.OpenDS(µC,D, O′)
r1, r2, r3, r4

$← Z∗
p; a1 ← r1C1; a2 ← r3P1

c1 ← Commit(a1, r2)
c2 ← Commit(a2, r4)
Σ1 = (cred′, wss, wds, c1, c2,opk′, Π)

Σ1−−−→
(cred′, wss, wds, c1, c2,opk′, Π)← Σ1

e, ẽ $← Z∗
p

e,ẽ←−−−
π1 ← SCDS.PoE(S, ẽ) (C1, C2, C3, σ)← cred′

π2 ← SCDS.PoE(D, ẽ)
z1 ← r1 + e · (r · µ); z2 ← r3 + e · µ
Σ2 = ((zi, ai, πi)i∈{1,2}, r2, r4)

Σ2−−−→
((zi, ai, πi)i∈{1,2}, r2, r4)← Σ2
check

z1C1 = a1 + eC2
z2P1 = a2 + eC3
c1 = Commit(a1, r2)
c2 = Commit(a2, r4)
SH.PVer((opki)i∈[n], opk′, Π1)
SPS-EQ.Verify(cred′, opk′)
SCDS.VerifySS(C1,S, wss; π1, ẽ)
SCDS.VerifyDS(C1,S, wds; π2, ẽ)

Figure 5.8: LABC: Show and verify.

5.6.2 Revocation Strategies
The natural approach to revocation would be to follow that described in [DHS15a],
where they use the fact that randomisation of a credential is compatible with the
randomisation of the accumulator and its corresponding witness. This approach
requires the revocation authority to compute and maintain the witness list. As it
uses the accumulator from [ATSM09], the cost of non-membership proofs is linear
in the size of the accumulator (i.e., revoked users), and this should be done at least
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once by the manager for every user. If the dynamic variant is used (as discussed
in [DHS15a]), then users could be given their non-membership witness once and
subsequently update it with a single constant size operation.

Another alternative to manage revocation would be to leverage NAND proofs
with the following idea. When a credential is issued, users include a pseudonym
given by the authority in their credential. Then, given a public list of revoked
users, they compute a NAND proof for the list concerning their credential to prove
they are not revoked. However, this requires the revocation list to be kept below
the size limit of the set-commitment scheme.

5.6.3 Security Proofs
We omit the proof of correctness, as it follows from inspection. Again, for ease of
exposition, we discuss unforgeability and anonymity of the NABC construction. In
the proof of unforgeability, we distinguish whether the adversary wins the game
by forging a signature, breaking the opening soundness of the commitment scheme
or computing a discrete logarithm. The proof of unforgeability follows almost
verbatim the strategy in [FHS19], with modifications to take care of disjoint sets.
Theorem 22. If the q-co-DL assumption holds (Section 2.3.3 on page 11), the
ZKPoK’s have perfect ZK, SCDS is sound, and SPS-EQ is EUF-CMA (Definition 27
on page 62), then NABC is unforgeable (Definition 36 on page 94).

Proof. We first introduce the following syntactic changes to the experiment, which
allows us to distinguish forgeries: (1) We include the value R in the credential
cred output by Obtain. (2) When the adversary makes a valid call to OIssue
the experiment receives the values C, R and produces a signature σ; instead of
appending ⊥ to the list CRED, the oracle now appends ((C, R), σ,⊥,⊥). Note the
adversary’s view in the experiment remains unchanged.

Assume that an efficient adversary A wins the unforgeability game with non-
negligible probability and let ((C∗

1 , C∗
2 , C∗

3), σ∗) be the message-signature pair it
uses and wss∗ be the witness for an attribute set S∗ ⊈ ATTR[j], or wds∗ be the
witness for an attribute set D∗ ⊆ ATTR[j] for all j with OWNR[j] ∈ CU. We distinguish
the following cases:
Type 1: [(C∗

1 , C∗
2 , C∗

3)]R ̸= [(C, R, P )]R for ((C, R), σ, ∗, ∗) = CRED[j] for all
issuance indices j (i.e., OWNR[j] ∈ HU ∪ CU). The pair ((C∗

1 , C∗
2 , C∗

3), σ∗) is
a signature forgery and using A we construct and adversary B that breaks
the EUF-CMA security of the SPS-EQ scheme.

Type 2: [(C∗
1 , C∗

2 , C∗
3)]R = [(C, R, P )]R for ((C, R), σ, ∗, ∗) = CRED[j] for some

index j with OWNR[j] ∈ CU. SinceA wins if (1) S ⊈ ATTR[j] or (2) D ⊆ ATTR[j],
it must have broken the soundness of the set-commitment scheme SCDS.

Type 3: [(C∗
1 , C∗

2 , C∗
3)]R = [(C, R, P )]R for ((C, R), σ, r, O) = CRED[j] for some

index j with OWNR[j] ∈ HU. Then we use A to break q-co-DL.
Type 1. In this case B interacts with a challenger C in the EUF-CMA game of
SPS-EQ and simulates the ABC-unforgeability game for A. The challenger C runs
(osk, opk) $← OKGen(crs) and gives opk to B. Then B selects a $← Zp, defines scdspp
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and sets (osk, opk)← (a, pk). Then B runs A(opk) and simulates the environment
and the oracles. All oracles are executed as in the real game, except the following
which use the signing oracle instead of the signing key osk.
OObtIss(i,X ): B computes (C, O) ← SCDS.Commit(ek,X ; usk), picks r $← Z∗

p and
then queries its oracle Sign(sk, ·) on (C, r · C, P ) to obtain σ. B appends
(i, ((C, r · C), σ, r, O),X ) to (OWNR, CRED, ATTR).

OIssue(i,S): Instead of signing (C, R, P ), B obtains the signature σ from C’s signing
oracle. If successful, B appends (i, ((C, R), σ,⊥,⊥),X ) to (OWNR, CRED, ATTR)
and returns ⊤.

When A outputs (S∗,D∗, st), then B runs A(st) and interacts with A as the
verifier in the showing protocol. If A produces a valid showing using a credential
((C∗

1 , C∗
2 , C∗

3), σ∗), then B rewinds A to the step after sending the commitments and
restarts A with a new challenge e′ ̸= e. Then B performs a Schnorr-like knowledge
extraction to obtain µ. If there is a credential ⊥ ̸= ((C ′, R′), σ′, ∗, ∗) ∈ CRED such
that (C ′, R′, P ) = µ−1 · (C∗

1 , C∗
2 , C∗

3) then B aborts (as the forgery is not of type 1).
Otherwise, B has never queried a signature for class [(C∗

1 , C∗
2 , C∗

3)]R and outputs
((C∗

1 , C∗
2 , C∗

3), σ∗) as a forgery. B, thus, breaks the EUF-CMA security of SPS-EQ.

Type 2. Adversary B interacts with the challenger C in the soundness game for
SCDS for some q ≥ 0. First, C generates set-commitment parameters scdspp ←
(BG, (siP1, siP2)i∈[q]) with BG = BGGen(1λ) and sends scdspp to B. B generates
a key pair (osk, opk) $← OKGen(crs) and runs A(opk), simulating the oracles. All
oracles are as in the real game, except OObtain in which OIssue is simulated as:
OIssue(i,S) : B runs A twice to extract usk and sets USK[i]← usk.
When A outputs (S∗,D∗, st), B runs A(st) and interacts with A as the verifier in
the showing protocol. Assume A produces a valid showing using ((C∗

1 , C∗
2 , C∗

3), σ∗)
and a witness wss∗ for the attribute set S∗, or a valid witness wds∗ for the attribute
set D∗ such that S∗ ⊈ ATTR[j] or D∗ ⊆ ATTR[j] for all j with OWNR[j] ∈ CU. Then
B rewinds A to the step after sending the commitments and restarts A with a
new challenge e′

1 ̸= e1. B can then perform a knowledge extraction to obtain µ
such that C∗

3 = µP . Let (C ′, R′, P ) = µ−1 · (C∗
1 , C∗

2 , C∗
3): if there is no credential

⊥ = ((C ′, R′), ∗, ∗, ∗) ∈ CRED then B aborts as the forgery was of type 1. Otherwise,
let j∗ be such that ((C ′, R′), ∗, ∗, ∗) = CRED[j∗]. If OWNR[j∗] ∈ HU then B aborts
as the forgery is of Type 3. Else we have OWNR[j∗] ∈ CU and S∗ ⊈ ATTR[j∗] or
D∗ ⊆ ATTR[j∗]. If for some a′ ∈ ATTR[j∗] : a′P = aP then B sets O∗ ← (1, a′).
Else, B sets O∗ ← (0, µ · USK[OWNR[j∗]]). B outputs (C∗

1 , ATTR[j∗], O∗,S∗, wss∗)
which satisfies S∗ ⊈ ATTR[j∗] ̸= ⊥ and VerifySS(pp, C∗

1 ,S∗, wss∗) = 1 or B
outputs (C∗

1 , ATTR[j∗], O∗,D∗, wds∗) which satisfies D∗ ⊆ ATTR[j∗] ̸= ⊥ and
VerifyDS(pp, C∗

1 ,D∗, wds∗) = 1.
B’s output thus breaks the subset- or disjoint-set soundness of SCDS.

Type 3. In this case, we assume A can produce a forgery by computing a discrete
log. We proceed via a sequence of games which are indistinguishable under q-co-DL.
We denote an adversary succeeding to win Game i by Si.
Game 0: The original game, which only outputs 1 if the forgery is of Type 3. Game
1: As Game 0, except for the following oracles:
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OObtIss(i,S): As in Game 0, except that the experiment aborts if the set-
commitment trapdoor is contained in S.

OIssue(i,S): As in Game 0, except that the experiment aborts if the set-
commitment trapdoor is contained in S.

Game 0 → Game 1: If A queries either set S,D with s ∈ S or d ∈ D to
one of the two oracles, then this breaks the q-co-DL assumption for q = s and
BG = BGGen(1λ). Denoting the advantage of solving the q-co-DL by ϵqDL(λ), we
have

|Pr[S0]− Pr[S1]| ≤ ϵqDL(λ).

Game 2: As Game 1, with the difference that the oracle OShow is run as follows
OShow(j,S): As in Game 0, but the freshness is simulated by leveraging the fact

that the environment has access to the TSetup algorithm. The proof of
knowledge can be run as normal, but given access to τ the elements of the
Pedersen commitment can be changed.

Game 1 → Game 2: By the perfect zero-knowledge property we have

Pr[S1] = Pr[S2].

Game 3: As Game 2, except that the oracle OHU is run as follows:
OHU: As in Game 1, but when executing UKGen(opk), the experiment draws

usk $← Zp instead of usk $← Z∗
p and aborts if usk = 0.

Game 2 → Game 3: Denoting by qu the number of queries to OHU, we have

|Pr[S2]− Pr[S3]| ≤
qu

p
.

Game 4: As Game 3, except that when A eventually delivers a valid showing, the
experiment rewinds A to the point before the commitments are sent, issues a new
challenge and extracts a witness (r, σ). If the extractor fails, we abort.
Game 3 → Game 4: The success probability in Game 4 is the same as in Game 3,
unless the extraction fails, i.e., using knowledge soundness, we have

|Pr[S3]− Pr[S4]| ≤ ϵks(λ).

Game 5: As Game 4, except that we pick and index k $← [qo], where qo is the
number of queries to OObtIss. Intuitively, this is the environment guessing that the
adversary will use the kth issued credential in its Type 3 forgery.

The extracted witness is such that w = (r, µ) ∈ (Z∗
p)2, and C∗

2 = rC∗
1

and C3 = µP . If the credential ((C ′, R′), σ′, r′, O′) ← CRED[k] is such that
(C ′, R′, P ′) ̸= µ−1 · (C∗

1 , C∗
2 , C∗

3) then the experiment aborts. We further abort
if the adversary wants to corrupt the owner of the kth credential and adapt OCU as
follows:
OCU(i): As in Game 0, except that the experiment aborts when i = OWNR[k].

Game 4 → Game 5: When the forgery is of Type 3 then there exists some j s.t.
for CRED[j] = ((C ′, R′), σ′, r′, O′) we have (C ′, R′, P ) = µ−1 · (C∗

1 , C∗
2 , C∗

3); moreover,
OWNR[j] ∈ HU. With probability 1

qo
, we have k = j, in which case the experiment

does not abort, i.e., we have
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Pr[S5] ≥
1
qo

Pr[S4]

We will now show that Pr[S5] ≤ ϵDL(λ), where ϵDL(λ) is the advantage of solving
the DLP. B plays the role of the challenger for A in Game 5 and obtains a G1-DLP
instance (BG, xP ). B generates a key pair (osk, opk) $← OKGen(crs). Then, B runs
A(opk) and simulates the oracles as in Game 5, except for OObtIss, whose simulation
is as follows:
OObtIss(i,S): Let this be the jth query. B first computes C ← USK[i]·ChX (a)·xP (=

x·C), O = (O, USK[i]) and appends cred = ((C, R)σ,⊥, O) to CRED. Otherwise,
B proceeds as in Game 5.

Note that since Game 2, the third component r of the credential is not required
to simulate OShow queries. When A outputs (S∗,D∗, st), then B runs A(st) and
interacts with A as the verifier in the showing protocol. If A wins Game 5 using
(C∗

1 , C∗
2 , C∗

3) and conducting the proof of knowledge on the freshness, then B can
rewind A and extract a witness w = (r′, µ) ∈ (Z∗

p)3 such that C∗
2 = r′C∗

1 and
C∗

3 = µP . Further, we have that ((C ′, R′), σ′,⊥, O′) = CRED[k]. In the end, B
outputs r′ as a solution to the DLP in G1. We thus have

Pr[S5] ≤ ϵDL(λ)

Collecting the success probabilities, we have Pr[S0] ≤ qo · ϵDL(λ) + ϵks(λ) + qu

p
+

ϵqDL(λ) where q = t and qo and qu and the number of queries to OObtIss and OHU
respectively.

Theorem 23. If the DDH assumption holds, the ZKPoK’s have perfect ZK, and
the SPS-EQ perfectly adapts signatures (Definition 28 on page 63); then, NABC is
anonymous (Definition 37 on page 94).

Proof. The following proof is an adaptation (most of it verbatim) of the one given
in [FHS19]. The only difference is that since we use a CRS and manage a slightly
different definition for perfect adaption, we need to adjust the previous proof for
this new setting. For ease of exposition, we only consider selective disclosures
showings in the proof, but the adaptation for NAND showings follows directly. As
in [FHS19], the proof proceeds by defining a sequence of indistinguishable games
in the last of which the answers of OLoR are independent of the bit b.

We assume that the adversary A will call OLoR for some (j0, j1,S) with both
OWNR[j0], OWNR[j1] ∈ HU. This is w.l.o.g. as otherwise the bit b is perfectly hidden
from A. Henceforth, we denote the event that the adversary wins Game i by Si.
Game 0: The original anonymity game (Definition 37).

Game 1: As Game 0, except we replace Setup with TSetup.

Game 0 → Game 1: The adversary’s view does not change so we have
Pr[S0] = Pr[S1].
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Game 2: As Game 1, except that the experiment runs OLoR as follows:
OLoR(j0, j1,S): As in Game 1, but the ZKPoK for (C∗

1 , C∗
2 , C∗

3) is simulated.
Game 1 → Game 2: By perfect zero-knowledge of Π2, we have

Pr[S1] = Pr[S2].

Game 3: As Game 2, except for the following changes. Let qu be (an upper bound
on) the number of queries made to OHU. At the beginning of Game 2 picks k $← [qu]
(it guesses that the user that owns the jbth credential is registered at the kth call
to OHU) and runs OHU, OCU and OLoR as follows:
OHU(i): As in Game 2, except if this is the kth call to OHU then it additionally

defines i∗ ← i.
OCU(i, upk): If i ∈ CU or i ∈ ILoR, it returns ⊥ (as in the previous games). If i = i∗

then the experiment stops and outputs a random bit b′ $← {0, 1}. Otherwise,
if i ∈ HU it returns user i’s usk and credentials and moves i from HU to CU;
and if i /∈ HU ∪ CU, it adds i to CU and sets UPK[i]← upk.

OLoR(j0, j1,S): As in Game 2, except that if i∗ ̸= OWNR[jb], the experiment stops
outputting b′ $← {0, 1}.

Game 2 → Game 3: By assumption, OLoR is called at least once with some input
(j0, j1,S) with OWNR[j0], OWNR[j1] ∈ HU. If i∗ = OWNR[jb] then OLoR does not abort
and neither does OCU (it cannot have been called on OWNR[jb] before that call to
OLoR (otherwise OWNR[jb] /∈ HU); if called afterwards, it returns ⊥, since i∗ ∈ ILoR).
Since i∗ = OWNR[jb] with probability 1

qu
, the probability that the experiment does

not abort is at least 1
qu

, and thus

Pr[S3] ≥ (1− 1
qu

)1
2 + 1

qu
· Pr[S2].

Game 4: Same as Game 3.

Game 3 → Game 4: Let (BG, xP1, yP1, zP1) be a DDH instance for BG =
BGGen(1λ). After initialising the environment, the simulation initialises a list
L← ∅. The oracles are simulated as in Game 3, except for the subsequent oracles,
which are simulated as follows:
OHU(i): As in Game 3, but if this is the kth call then, besides setting i∗ ← i, it

sets USK[i]⊥ and UPK[i]← xP1 (which implicitly sets usk← x)
OObtain(i,X ): As in Game 3, except for the computation of the following values

if i = i∗. Let this be the jth call to this oracle. If s /∈ X , it computes C as
C ← ChX (s) · xP1 and sets L[j] ← ⊥. If s ∈ X it picks ρ $← Z∗

p, computes
C as C ← ρ · xP1, sets L[j] ← ρ and simulates the ZKPoK for upk (by the
perfect ZK property of the simulation is perfect). (In both cases C is thus
distributed as in the original game.)

OShow(i,S): As in Game 3, with the difference that if OWNR[j] = i∗ and s /∈ S it
computes the witness wss ← µChX \S(s) · xP1. (wss is thus distributed as in
the original game.)

OLoR(j0, j1,S): As in Game 3, with the following difference. Using self-reducibility
of DDH, it picks s, t $← Zp and computes Y ′ ← t · yP1 + sP1 = y′P1 with
y′ ← ty + s, and Z ′ ← t · zP1 + s · xP1 = (t(z − xy) + xy′)P1.(If z ̸= xy then
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Y ′ and Z ′ are independently random; otherwise Z ′ = y′X.) It performs the
showing using the following values (implicitly setting µ← y′):

- If s /∈ ATTR[jb]: C1 ← ChX (s)Z ′ and wss← ChS(s)−1C1
- If s ∈ ATTR[jb] and s /∈ S: C1 ← ρZ ′ with ρ ← L[jb] and wss ←

ChS(s)−1C1;
- If s ∈ S: c1 ← ρZ ′ with ρ← L[jb] and wss← ⊥;

Apart from an error event happening with negligible probability, we have simulated
Game 3 if the DDH instance was “real” and Game 4 otherwise. If xP1 = 0G1 , or
if during the simulation of OLoR it occurs that Y ′ = 0G1 or Z ′ = 0G1 , then the
distribution of values is not as in one of the two games. Otherwise, we have
implicitly set usk ← x and µ ← y′ (for a fresh value y′ at every call of OLoR). In
case of a DDH instance, we have (depending on the case) C1 ← uskµChX (s) · P1
(or C1 = ρ · xµ · P1 = µ · C). Letting ϵDDH(λ) denote the advantage of solving the
DDH problem and ql the number of queries to the OLoR, we have

|Pr[S3]− Pr[S4]| ≤ ϵDDH(λ) + (1 + 2ql)1
p
.

Game 5: Same as Game 4.

Game 4 → Game 5: Let (BG, xP1, yP1, zP1) be a DDH instance for BG =
BGGen(1λ). After initialising the environment, the simulation initialises a list
L← ∅. The oracles are simulated as in Game 4, except for the subsequent oracles,
which are simulated as follows:
OObtain(i,X ): As in Game 4, except for the computation of the following values if

i = i∗.Let this be the jth call to this oracle. It first picks u $← Zp and sets
X ′ ← xP1 +u ·P1 and L[j]← u. If s /∈ X , it computes C ← ChX (s) ·USK[i]P1
and R ← ChX (s) · USK[i]X ′. If s ∈ X , it picks ρ $← Z∗

p and computes
C ← ρP1 and R ← ρX ′. In both cases it sets r ← ⊥ (r is implicitly set to
r ← x′ := x + u and C and R = rC are distributed as in the original game;
unless X ′ = 0G1). Note that, since the ZKPoK in OShow is simulated, r is not
used anywhere in the game.

OLoR(j0, j1,S): As in Game 4, with the difference that it fetches u← L[jb], picks
s, t $← Zp and recomputes Y ′ ← t · yP1 + sP1 = y′P1 with y′ ← ty + s,and
Z ′ ← t · zP1 + s · xP1 + ut · yP1 + us · P1 = (t(z − xy) + x′y′)P1. It performs
the showing as in the previous simulation (using the new Y ′, Z ′ and µ← y′).

Apart from an error event happening with negligible probability, we have simulated
Game 4 if the DDH instance was valid and Game 5 otherwise. If X ′ = 0G1 during
the simulation of OObtain, or if during the simulation of OLoR it occurs that Y ′ = 0G1

or Z ′ = 0G1 then the distribution of values is not as in one of the two games.
Otherwise, we have implicitly set r ← x′ (for a fresh value x′ at every call of
OObtain). Letting ϵDDH(λ) denote the advantage of solving the DDH problem, and
qo and ql be the number of queries to OObtain and OLoR, respectively, we get

|Pr[S4]− Pr[S5]| ≤ ϵDDH(λ) + (qo + 2ql)1
p
.

In Game 5, by definition of perfect adaption the oracle OLoR returns a signature
that is a random element in the space of signatures conditioned to verify with the
shown credential (each generated with fresh independent randomness µ← y′, when



Chapter 5: Anonymous Credentials 108

calling the oracle OLoR), and with respect to a simulated proof. Hence, the bit b is
information-theoretically hidden from A, and we have Pr[S5] = 1

2 . Therefore, we
have that:

Pr[S4] ≤ Pr[S5] + ϵDDH(λ) + (qo + 2ql)
1
p

= 1
2

+ ϵDDH(λ) + (qo + 2ql)
1
p

,

Pr[S3] ≤ Pr[S4] + ϵDDH(λ) + (1 + 2ql)
1
p
≤ 1

2
+ 2 · ϵDDH(λ) + (1 + qo + 4ql)

1
p

,

Pr[S2] ≤
1
2

+ qu · Pr[S3]−
1
2
· qu ≤

1
2

+ qu · (2 · ϵDDH(λ) + (1 + qo + 4ql)
1
p

),

where Pr[S2] = Pr[S1] = Pr[S0]; qu, qo and ql are the number of queries to
OHU,OObtain and OLoR, respectively. Assuming security of the ZKPoKs and DDH,
the adversary’s advantage is thus negligible.

Theorem 24. If the underlying signature scheme is a SPS-EQ which perfectly
adapts signatures (Definition 32 on page 64), LABC supports issuer-hiding
(Definition 38 on page 95).

Proof. Let us first observe that the adversary can guess the bit j∗ with probability
1/n. By definition of perfect adaption, for all tuples (pp, [opk]j, [m]i, (σ, τ), µ, ρ)
s.t (σ, τ) $← Sign(pp, oskj, [m]i), we have that [µ ·m]i and [ρ · opk]j are identically
distributed in the message and key spaces, where ([µ ·m]i, σ∗) ← ChgRep([m]i,
(σ, τ), µ, ρ, [opk]j) and [ρ · opk]j ← ConvertPK(opkj, ρ). Furthermore, we also
have that σ∗ is a random element in the space of signatures conditioned on
Verify([µ ·m]i, σ∗, [ρ · opk]j) = 1. Therefore, an adversary with access to [µ ·m]i,
σ∗ and [ρ · opk]j can only guess the bit j∗ with probability at most 1/n.

5.7 Evaluation
We compare the efficiency of state-of-the-art ABC and ours (Section 5.6) in
Table 5.3. For ease of exposition, we list the work in [FHS19] next to ours and
consider an instantiation of it in the CRS model, using the same ZKPoK’s as the
ones used in Section 5.6.

When looking at a whole, the work in [San20] presents very good results while
also allowing showings to prove relationships between attributes and to consider
malicious keys. Nevertheless, security of the related construction is proven in the
GGM model and, thus, falls short in that aspect. The same applies to the works
from [HP20] and [FHS19].

Although we only considered the classical setting (credentials are issued by
a single authority), it is worth mentioning that [HP20] does consider multi-
authorities. As the authors point out, they base their construction on aggregatable
signatures to allow multi-authorities and obtain the most efficient showing
for the users. Their security model follows the game-based approach from
[FHS19], but because of the multi-authority setting, they also consider malicious
credential issuers with adaptive corruptions and collusions with malicious users.
Unfortunately, this is done assuming that the keys are honestly generated.
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[TG20] uses a set-commitment scheme which, alongside an SDH-based signature,
leads to a credential system that supports a variety of show proofs for complex
statements among which AND and NAND are included. For this reason, we also
compare our work with the one from [TG20], considering NAND showings. In terms
of security models, the authors provide a formalization for impersonation attacks
and prove their scheme secure against impersonation under active and concurrent
attacks. The security of their ABC scheme is proven in the standard model and
providing a tight reduction.

Considering the different trade-offs, our ABC provides very similar performance
when compared to [FHS19] and it is not too distant from the most efficient ones
either. Unlike the rest, it can be adapted to different scenarios in case that reducing
the verification cost is not needed. It can also be efficiently adapted to provide
revocation features. Furthermore, as for many practical applications, the ability
to perform AND and NAND showings suffices; we also achieve a good level of
expressiveness. Finally, the issuer-hiding feature makes it suitable for scenarios in
which the rest of the alternatives struggle.

5.8 Conclusions and Future Work
In this chapter, we provided improved constructions for different primitives in order
to obtain an efficient and versatile credential system whose security is proven in the
standard model. Our results explore multiple paths to extend the ABC framework
of [FHS19] to cover more applications and scenarios where it can be used.

To improve the expressiveness of the set-commitment scheme in [FHS19], we
allow openings on sets of attributes disjoint from those possessed by a user. We
also enhance efficiency by employing the trick of allowing the prover to compute a
proof of exponentiation, leaving the verifier only to compute a polynomial division.

We develop an issuer-hiding notion to allow a credential-bearing user to hide
their issuing organisation upon presentation of the credential. As we increasingly
see cases of (algorithmic) bias against users, notions such as this are of growing
importance. Moreover, we also discussed directions to integrate revocation features.

Considering future work, we worked in the classical setting, where each credential
is issued by a single authority. Therefore, it would be interesting to follow the
related work on aggregatable signatures to see if we could lift SPS-EQ to the
multi-authority setting. Furthermore, while our set-commitment scheme is more
expressive than [FHS19], it is still less expressive than [TG20]. Hence, it would also
be interesting to see if the set-commitment scheme introduced there would yield
greater expressiveness to the ABC presented here. Likewise, to verify if the stronger
security notions presented here could enhance the construction from [TG20].
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Computers and networks have gotten 12 million times faster, people still complain
cryptographic pairings are too slow. Including the Facebook like button on your page
adds more latency than a pairing.

— Ian Miers

This chapter relies on joint work with Aisling Connolly, Jérôme Deschamps and
Pascal Lafourcade. The presented material is based on [CDLPK22].

6.1 Introduction
When first introduced, the core use of blockchains was to facilitate permissionless
participation; anyone could join and participate in any manner. On the other
hand, the prospect of a distributed ledger is also of great use within, for example,
a consortium, where several authorised organisations wish to share information
among the group, but not necessarily to the public as a whole. This need gave rise
to permissioned blockchains whereby authorities are established to define a set of
participants. When a single authority controls all of the blockchain, we refer to
it as private permissioned. When a federation of authorities (consortium), each in
control of a subset of the allowed participants, shares it, we use the term public
permissioned (or simply federated). While private permissioned blockchains are
mostly used as intra-enterprise solutions (or when offered as a service), federated
blockchains are preferred for inter-enterprise solutions.

The use of federated blockchains addresses the need to run a common
business logic within a closed environment. For example, one can consider
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pharmaceutical companies that would like to trade sensitive information about
product developments and agree on supplies or prices in a consortium with partial
trust. Protecting privacy while being compliant with regulations and Know Your
Customer practices is a recurrent problem in such scenarios. Agreeing with other
entities to run a shared business logic should not imply that everything needs be
public within the consortium. Privacy still needs to be provided without affecting
existing regulations, e.g., when considering bilateral agreements.

The most developed permissioned platform is Hyperledger Fabric (or simply
Fabric). By default, it provides no privacy features as everything (users and
transactions) within a given federation is public. However, motivated by the
need to protect business interests and to meet regulatory requirements, some
privacy features were integrated, notably, the Identity Mixer [Zur13, CV02] (or
Idemix for short). This anonymous attribute-based credential scheme gave the
first glimpse of privacy for users within a consortium. However, the current Idemix
integration with Fabric is still quite limited in efficiency, functionality, and privacy
levels. Recently, a prototype that extends Idemix [BDCET21], including revocation,
auditing capabilities, and more privacy-preserving features, has emerged. This
extension is based on delegatable credentials but still has inherent limitations. For
example, it puts all trust on a root certificate authority and requires the generation
of many zero-knowledge proofs to sign a transaction.

Recent results introduced newer models to build ABC’s, providing a host of extra
functionalities and more efficient constructions. The main goal of this work is to
leverage such results, to position them in the blockchain scenario and provide an
alternative to Idemix (and its extension) in a bid to overcome existing privacy and
functional limitations while also improving efficiency.

6.2 Contributions
We explore alternative mechanisms to build a practical ABC. First, we extend
recent works based on SPS-EQ [FHS19, CLPK22] to support auditability features
while also integrating the revocation ideas from [DHS15a]. Such extension relies
on the ROM (already present in the blockchain setting) to generate non-interactive
showing proofs. We also present and discuss two alternatives to the use of
delegatable credentials to hide the identity of credential issuers. To do so, we build
upon the issuer-hiding strategies presented in the previous chapter. Compared to
the ABC construction from Chapter 5, the modifications are as follows:

1. We adapt the model to non-interactive showings.
2. We keep the SCDS scheme as it is but replace the signature scheme with the

one given in [CL19] to improve efficiency at the cost of working in the GGM.
3. We define a revocation authority as in [DHS15a], and an auditing authority

in the model (not considered in the previous works).
4. We build a malleable NIZK argument that can be pre-computed to obtain a

more efficient issuer-hiding feature.
As a result, we build Protego and Protego Duo, two new ABC’s for permissioned

blockchains that differ on the issuer-hiding approach. Both support revocation
and auditing features, which are essential to enable a wider variety of use cases
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for permissioned blockchains. We discuss how to integrate our work with Fabric,
compare it with Idemix and its recent extensions, and provide a prototype
implementation showing that Protego and Protego Duo are more than two times
faster than the most recent Idemix extension. Furthermore, a showing proof in
Protego Duo is constant-size (8.3 kB), surpassing [BDCET21] in which the proof
size grows linearly with the number of attributes and delegation levels.

6.3 Related Work
We describe the related work following two main streams; the results addressing
privacy concerns in Fabric and parallel research developments.

Privacy concerns in Fabric. The most closely related work appears with
the introduction of Idemix [Zur13] and its extension to include revocation
and auditability [BDCET21]. Adding auditability is crucial for permissioned
blockchains as they are often used in heavily regulated industries. Privacy-
preserving auditing for distributed ledgers was introduced in [NVV18] under
the guise of zkLedger. This general solution offered great functionality in that
it provided confidentiality of transactions, and privacy of the users within the
transaction. However, it assumed low transaction volume between few participants
and, as such, is quite limited in scalability. Fabric-friendly auditable token
payments were introduced in [ACC+20] and were based on threshold blind
signatures. The core idea to achieve auditability was to encrypt the user’s public
key under the public key of an auditor. The same approach is used in [BDCET21],
which we also use in this work. Although the auditing ideas are similar, the
construction pertains solely to transaction privacy and offers no identity privacy
for a user. Following the approach of gaining auditability of transactions, auditable
smart contracts were captured by FabZK [KDJL+19], which is based on Pedersen
commitments and zero-knowledge proofs. To achieve auditability, the structure
of the ledger is modified, and as such, existing permissioned blockchain platforms
would need to undergo significant changes to achieve auditability.

In Fabric, the validity of a transaction is established by obtaining endorsements
from peers in the network. One of the limitations in Idemix and its extension is the
lack of privacy or anonymity for endorsing peers. As a possible solution, [MR19]
proposes an endorsement policy based on ring signatures, which do not reveal the
endorsement set. Another approach to obtaining privacy-preserving endorsements
was described in [ADCNS19], leveraging Idemix credentials to gain endorser privacy
and, as such, inheriting the limitations (notably leaking the endorser’s organisation)
that come with Idemix.

Attribute-based credentials. As seen in the previous chapter, early anonymous
credential schemes were built from blind signatures, whereby a user obtained a
blind signature from an issuer on the user’s commitment to its attributes. When
the user later authenticates, they provide the signature, the shown attributes, and
a proof of knowledge of all unshown attributes. These schemes are limited as they
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can only be shown once. Subsequent work like the one underlying Idemix [CL04]
allowed for an arbitrary number of unlinkable showings. A user obtains a signature
on a commitment on attributes, randomises the signature, and proves in zero-
knowledge that the randomised signature corresponds to the shown and unshown
attributes. The results presented in Chapter 5 showed how to circumvent multiple
inefficiencies and drawbacks from previous constructions using set-commitment
schemes and SPS-EQ. The work presented in this chapter builds on top of the
contributions from Chapter 5 but relies on the GGM as we switch our attention to
the most efficient alternatives. Therefore, we use the mercurial signature scheme
from [CL19] instead of the one given in Chapter 4.

6.4 Privacy Notions in Hyperledger Fabric
Hyperledger Fabric is a permissioned blockchain framework focused on modularity
and performance. Fabric’s approach to modularity rests on decoupling services so
to ease the configuration of blockchain networks within federated consortia. The
Membership Service Provider (MSP) is responsible for the participant’s enrollment,
administration and management of related certificates (e.g., issuance, distribution
and validation). The concept of MSP resembles that of a Certificate Authority
(CA). An Ordering Service orchestrates the consensus mechanism. As of version
2.4, Fabric only supports the RAFT [OO14] consensus protocol, which is crash fault
tolerant. A Chaincode Service provides the required interfaces and functionalities
to execute smart-contracts (called chaincode in Fabric). A P2P Gossip Service is
responsible for disseminating blocks output by the ordering service to other peers.
Additionally, Fabric also supports different policy configurations for the execution
or modification of chaincodes.

Instead of performing an order-execute flow to process transactions (like
Ethereum), Fabric has an execute-order-validate flow. In the former approach,
transactions are first ordered to produce a block, and once the block is accepted,
every node in the network will execute the transactions sequentially. In contrast,
transactions in Fabric are executed speculatively.

First, a transaction proposal is created, and a subset of peers (endorsers)
execute them (potentially in parallel) attesting to the result (i.e., determining
the corresponding write set given the read set). Every endorser executes each
transaction proposal according to their version of the ledger.

Subsequently, provided that a transaction proposal obtains sufficient
endorsements (as required by the endorsement policy, later explained), it is sent
to the ordering service. At this point, the ordering service groups different
transactions (without re-executing them) and forms a new block, delivering it
to the peers.

As every transaction execution was done speculatively (without knowing whether
or not such execution would be valid concerning the latest ledger state), they need
to be validated after they were confirmed in a block by the ordering service. Every
peer does this locally and sequentially upon receiving a new block. Again, without
re-executing the transactions.

Every peer consistently applies the read/write sets for each transaction to their
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latest ledger state during the validation stage, updating it accordingly. For this
reason, it could be the case that more than one transaction contained in a block
becomes invalid after the validation phase (e.g., due to an outdated read set
following a change by a previous transaction in the block).

6.4.1 Overview of Hyperledger Fabric’s Transaction Flow
Proposal. To execute a chaincode, one has to form a transaction proposal
that specifies the function and arguments to be called. For every chaincode,
an endorsement policy mandates which organisations execute and validate the
transaction output. An example of endorsement policy can be “Admin.Org1 AND
Member.Org2”, meaning that the chaincode execution will be considered valid
iff it was executed by a peer from Org1 with an Admin role and a peer from
Org2. A proposal tx has the following fields: tx = <clientID, chaincodeID, txPayload,
timestamp, clientSig>, where txPayload contains the chaincode’s source code,
metadata, and the corresponding endorsement policy id and parameters.

Execution. Clients are responsible for obtaining the endorsements for every
proposal before submitting it to the ordering service. During this phase, a set of
endorsers receive a proposal and simulate its execution against their local copy of
the ledger. The result of this simulation is a read/write set for the proposal signed
by the endorsing peer. Endorsers can also check access control policies against the
client during this stage to verify that they are authorised to perform the proposed
operation. An endorsement response has the following fields (where tid is a hash
of tx): <EndorserID, tid, chaincodeID, txPayload, readset, writeset, EndorserSig>.

Assembly. The submitting client collects the endorsers’ responses, generates a
transaction containing the proposal and the endorsements, and broadcasts it to
the ordering service. During this phase, clients should check that the different
endorsements are consistent concerning the read/write sets. They only need to
obtain the required replies to verify that the endorsement policy is satisfied.

Consensus. Nodes from the ordering service receive transactions from the
previous step, produce a new block and broadcast it to the network.

Validation. Peers receive new blocks, validate the transactions sequentially and
commit them to the ledger. Those failing to verify the endorsement policy or with
inconsistent read/write sets are marked as invalid but still committed.

6.4.2 Privacy Concerns
By default, Fabric does not provide any privacy-preserving feature; reading the
blockchain anyone can learn:

• Who triggered a chaincode function using which arguments (proposals are
signed by the clients).
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• Who vouched for its execution (endorsers also sign their responses) concerning
reading and writing sets.

• Why a given transaction was marked as invalid (either because of invalid
read/write sets or because the endorsement policy check failed).

Furthermore, checking access control and endorsement policies links different
organisations, users and their attributes to concrete actions on the system.

Such limitations severely restrict the use of Fabric. From the user’s perspective,
this is quite clear and impacts the enforcement of different regulations, such
as the GDPR. For organisations, the case is similar. Consider a consortium
of pharmaceutical organisations that run a common business logic to exchange
information on medical research. If the entity behind a request is known, other
organisations can infer (based on the request) which drug the entity in question
is trying to develop. Moreover, regardless if the endorsement policy is public or
not, if the endorsers are known, information about who executes what can disclose
business relations between pharmaceuticals.

6.4.3 Idemix, its Limitations, and Extensions
Several proposals addressed the limitations above, but only Idemix has been
integrated into Fabric. Idemix allows an MSP to issue attribute-based credentials
to enable a user to sign a transaction anonymously. In brief, users generate a zero-
knowledge proof attesting that the MSP issued them a credential on its attributes
to sign a transaction. Fabric’s support for Idemix was added in v1.3, providing the
first solution to tackle the problem of participant privacy. Unfortunately, as for
v2.4, the Idemix implementation still suffers severe limitations:

1. It supports a fixed set of only four attributes.
2. It does not support revocation features.
3. Credentials leak the MSP ID, meaning that anonymity is local to users within

an organisation. For this reason, current deployments can only use a single
MSP for the whole network, introducing a single point of failure.

4. It does not support the issuance of Idemix credentials for the endorsing peers,
meaning that the identity of endorsers is always leaked.

As Fabric is the most developed and maintained open-source permissioned
blockchain platform, there is an urgent need to overcome these limitations. The
most promising effort to extend the functionality of Idemix appeared in [BDCET21].
They aimed to extend the original credential system to support delegatable
credentials while integrating revocation and auditability features (solving three of
the four limitations). Below we outline the main ideas introduced in [BDCET21].

Delegatable Credentials. In a bid to overcome the issue of Idemix credentials
leaking the MSP ID, and thus the affiliation of the user, a trusted root authority
provides credentials to intermediate authorities. This way, users can obtain
credentials from intermediate authorities. To sign a transaction, the user must
generate a zero-knowledge proof attesting that (1) the signer owns the credential;
(2) the signature is valid; (3) all adjacent delegation levels are legitimate; and (4)
that the top-level public key belongs to the root authority.
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Revocation and Auditability. To generate efficient proofs of non-revocation, the
system timeline is divided into epochs. Issued credentials are only valid for a
given epoch and must be reissued as the timeline advances. For each epoch, a
user requests a revocation handle that binds their public key to the epoch. When
presenting a credential, the user also provides a proof of non-revocation. Users
verifiably encrypt their public key under an authorised auditor’s public key to
enable transaction auditing.

6.4.4 Where Hyperledger Fabric’s Privacy Stands
Although there have been improvements to the Idemix system over the years, some
functionalities remain limited. For example, (1) there is still no notion of privacy
for endorsers. (2) Delegatable credentials require proving knowledge of a list of
keys. (3) The root authority is still a single point of failure. (4) Selective disclosure
of attributes requires computation linear in the size of all the attributes encoded
in the credential. (5) Many zero-knowledge proofs need to be generated for each
transaction. (6) Many pairings need to be computed for verification. A number
of these shortcomings arise because the underlying credential scheme is based on
delegatable credentials.

6.5 Protego
We argue that changing some of the underlying building blocks is necessary to
build an ABC scheme that overcomes the inherent limitations of Idemix and its
extension. For this reason, we take the framework from Chapter 5, including the
revocation extension originally proposed in [DHS15a], as our starting point. Below,
we walk through the different building blocks and build an argument for how and
why these components yield greater functionality and efficiency for a credential
system in the permissioned blockchain setting.

SCDS. Using commitment schemes that allow to commit to sets of attributes
enables constant-size openings of subsets (selective disclosure) of the committed
sets. These schemes support commitment randomisation without the need to rely
on zero-knowledge proofs of correct randomisation, as the corresponding witness
for openings can be adapted accordingly with respect to the randomisation of the
committed set. The set-commitment scheme presented in Chapter 5 is particularly
useful in the permissioned blockchain setting, e.g., to model access control policies.
Furthermore, in the case of Fabric, the use of proof of exponentiations to outsource
some of the computational cost from the verifier to the prover is an interesting
feature considering endorsements. It makes the endorser’s verification faster when
validating a transaction proposal.

Mercurial Signatures. The introduction of SPS-EQ in [FHS19] allowed to adapt
a signature on a representative message to a signature on a different representative
(in a given equivalence class) without knowledge of the secret key. If the
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adapted signature is indistinguishable from a fresh signature on a random message,
the scheme satisfies the notion of perfect adaption. This, together with the
randomisability of the set-commitment scheme, allows to consistently and efficiently
update the signature of a credential, bypassing the need to generate and keep
account of pseudonyms and NIZK proofs that are required in all previous works
based on Idemix. Our approach here is to use mercurial signatures to also
randomise the correspondng public keys while consistently adapting the signatures.

ABC model. We can rely on the ROM and apply the Fiat-Shamir transform to
the ABC construction from Chapter 5 (the showing protocol is a three move public
coin one). However, in the previous ABC, interaction is required in the showing
protocol to provide freshness (i.e., to avoid replay attacks). We require the user to
send the transaction proposal during the first move to overcome this issue. Thus,
applying the Fiat-Shamir transform to the first move bounds the credential showing
to that particular transaction so that it cannot be replayed.

In the following, we present our ABC scheme Protego introducing the syntax
first. Subsequently, we elaborate on the revocation, auditing and issuer-hiding
approaches. Finally, we discuss our construction and the integration with Fabric.

6.5.1 Syntax
ABC Syntax. An ABC consists of the following p.p.t algorithms:
Setup(1λ, aux) takes a security parameter λ and some optional auxiliary

information aux (which may fix a universe of attributes, attribute values
and other parameters) and outputs public parameters pp, discarding any
trapdoor.

TSetup(1λ, aux) is like Setup but it also returns a trapdoor τ (if any).
OKGen(pp) takes pp and outputs an organisation key pair (osk, opk).
UKGen(pp) takes pp and outputs a user key pair (usk, upk).
AAKGen(pp) takes pp and outputs an auditor key pair (ask, apk).
RAKGen(pp) takes pp and outputs a revocation key pair (rsk, rpk).
Obtain(pp, usk, opk, apk,X , nym) and Issue(pp,upk,osk,apk,X ,nym) are run by a user

and the organisation respectively, who interact during execution. Obtain
takes pp, the user’s secret key usk, an organisation’s public key opk, an
auditor’s public key apk, an attribute set X of size |X | < q, and a pseudonym
nym used for revocation. Issue takes pp, a public key upk, a secret key osk, an
auditor’s public key apk, an attribute set X of size |X | < q, and a pseudonym
nym. At the end of this protocol, Obtain outputs a credential cred on X for
the user or ⊥ if the execution failed.

Show(pp, opk, upk, usk, cred,X ,S,D, aux) takes pp, a public key opk, a key pair
(usk, upk), a credential cred for the attribute set X , potentially non-empty
sets S ⊆ X , D ̸⊆ X representing attributes sets being a subset (S) or disjoint
(D) to the attribute set (X ) committed in the credential, and auxiliary
information aux. It outputs a proof π.
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Verify(pp, opk,X ,S,D, π, aux) takes pp, the (potentially empty) sets S and D, a
proof π and auxiliary information aux. It outputs 1 or 0 indicating whether
the credential showing proof π was accepted or not.

RSetup(pp, (rsk, rpk), NYM, RNYM) takes pp, a revocation key pair (rsk, rpk) and
two disjoint lists NYM and RNYM (holding valid and revoked pseudonyms).
It outputs auxiliary information auxrev for the revocation authority and
revocation information R = (RV ,RS). RV is needed for verifying the
revocation status and RS is a list holding the revocation information per
nym.

Revoke(pp, (rsk, rpk), auxrev,R, b) takes pp, (rsk, rpk), auxrev, R and a bit b indicating
revoked/unrevoked. It outputs information R′ and aux′

rev.
AuditEnc(upk, apk) takes upk and apk. It outputs an encryption Enc of upk under

apk and auxiliary information α.
AuditDec(Enc, ask) takes Enc and ask. It outputs a decryption of Enc using ask.
AuditPrv(Enc, α, usk, apk) takes Enc, α, usk, and apk. It generates a proof for Enc

being the encryption of upk under apk and outputs a proof π.
AuditVerify(apk, π) takes apk and a proof π for the correct encryption of a user’s

public key under apk and outputs 1 if and only if the proof verifies.

6.5.2 Security Properties
In the following, we adapt the ABC security models from Chapter 5 and [DHS15a]
to consider non-interactive showings as well as auditability. We denote by Tx
the universe of transactions tx represented as bitstrings. Since transactions are
passed to the verification algorithm we do not consider replay attacks as in the
previous models. In other words, given that a showing corresponds to a specific
transaction, we do not consider replay attacks for the same transaction as such
attacks are trivially detected.

We consider a single revocation, issuing and auditing authority. Extension to the
multi-issuing and multi-auditing authorities is straightforward as the corresponding
keys can be generated independently. For revocation authorities, one needs to take
into account the existence of multiple revocation accumulators and thus adapt
the scheme accordingly. Like the issuer-hiding property, auditability is considered
independently as it can be seen as an extension to the underlying scheme.

Before presenting the oracles and formal definitions, we introduce the following
auxiliary lists, sets and global variables. For example, N represents the set
of all pseudonyms nym while the sets NYM and RNYM represent the subsets
of unrevoked and revoked pseudonyms respectively. Therefore, we have that
NYM ∩ RNYM = ∅ ∧ NYM ∪ RNYM = N. NYM, HU and CU are lists that keep
track of which nym is assigned to which user. The global variables RI and NYMLoR
(initially set to ⊥) store the revocation information (RS,RV ) and the pseudonyms
used in OLoR respectively. The oracles are defined as follows:
OHU(i) takes as input a user identity i. If i ∈ HU ∪ CU, it returns ⊥. Otherwise, it

creates a new honest user i by running (USK[i], UPK[i]) $← UKGen(opk), adding
i to the honest user list HU and returning UPK[i].
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OCU(i, upk) takes as input a user identity i and (optionally) a user public key upk;
if user i does not exist, a new corrupt user with public key upk is registered,
while if i is honest, its secret key and all credentials are leaked. In particular,
if i ∈ CU, i ∈ ILoR (that is, i is a challenge user in the anonymity game) or
if NYMLoR ∩ N[i] ̸= ∅ then the oracle returns ⊥. If i ∈ HU then the oracle
removes i from HU and adds it to CU; it returns USK[i] and CRED[j] for all
j with OWNR[j] = i. Otherwise (i.e., i /∈ HU ∪ CU), it adds i to CU and sets
UPK[i]← upk.

ORN(rsk, rpk, REV) takes as input the revocation secret key rsk, the revocation
public key rpk and a list REV of pseudonyms to be revoked. If REV∩RNYM ̸=
∅ or REV ̸⊆ N return ⊥. Otherwise, set RNYM ← RNYM ∪ REV and
RI← Revoke(pp, (rsk, rpk), RNYM, RI, 1).

OObtIss(i,X ) takes as input a user identity i, a pseudonym nym and a set of
attributes X . If i /∈ HU or ∃ j : NYM[j] = nym, it returns ⊥. Otherwise,
it issues a credential to i by running

(cred,⊤) $← Obtain(pp, USK[i], opk, apk,X , nym),
Issue(pp, UPK[i], osk, apk,X , nym).

If cred = ⊥, it returns ⊥. Else, it appends (i, cred,X , nym) to
(OWNR, CRED, ATTR, NYM) and returns ⊤.

OObtain(i,X ) lets the adversary A, who impersonates a malicious organisation,
issue a credential to an honest user. It takes as input a user identity i, a
pseudonym nym and a set of attributes X . If i /∈ HU, it returns ⊥. Otherwise,
it runs (cred, ·) $← Obtain(pp, USK[i], opk, apk,X , nym), ·), where the Issue part
is executed by A. If cred = ⊥, it returns ⊥. Else, it appends (i, cred,X , nym)
to (OWNR, CRED, ATTR, NYM) and returns ⊤.

OIssue(i,X ) lets the adversary A, who impersonates a malicious user, obtain a
credential from an honest organisation. It takes as input a user identity i, a
pseudonym nym and a set of attributes X . If i /∈ CU, it returns ⊥. Otherwise,
it runs (·, I) $← (·, Issue(pp, UPK[i], osk, apk,X , nym)), where the Obtain part
is executed by A. If I = ⊥, it returns ⊥. Else, it appends (i,⊥,X , nym) to
(OWNR, CRED, ATTR, NYM) and returns ⊤.

OShow(j,S,D) lets the adversary A play a dishonest verifier during a showing by
an honest user. It takes as input an index of an issuance j and attributes
sets S and D. Let i $← OWNR[j]. If i /∈ HU, it returns ⊥. Otherwise, it runs

(S, ·) $← Show(pp, USK[i], UPK[i], opk, ATTR[j],
S,D, CRED[j], RI, apk, tx), ·)

where the Verify part is executed by A.
OLoR(j0, j1,S,D) is the challenge oracle in the anonymity game where A must

distinguish (multiple) showings of two credentials CRED[j0] and CRED[j1]. The
oracle takes two issuance indices j0 and j1 and attribute sets S and D.
If JLoR ̸= ∅ and JLoR ̸= {j0, j1}, it returns ⊥. Let i0

$← OWNR[j0] and
i1

$← OWNR[j1]. If JLoR ̸= ∅ then it sets JLoR
$← {j0, j1} and ILoR

$← {i0, i1}.
If i0, i1 ̸= HU ∨ N[i0] = ⊥ ∨ N[i1] = ⊥ ∨ N[i0] ∈ RNYM ∨ N[i1] ∈ RNYM ∨
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S ̸⊆ ATTR[j0] ∩ ATTR[j1] ∨ D ∩ {ATTR[j0] ∪ ATTR[j1]} ̸= ∅, it returns ⊥. Else,
it adds N[ib] to NYMLoR and runs

(S, ·) $← (Show(pp, USK[jb], UPK[jb], opk, ATTR[jb],
S,D, CRED[jb], RI, apk, tx), ·)

(with b set by the experiment) where the Verify part is executed by A.

Intuitively, correctness requires that a credential showing with respect to a non-
empty sets S and D of attributes always verifies if it was issued honestly on some
attribute set X with S ⊂ X and D ∩ X ̸= ∅.

Correctness. An ABC system is correct if ∀ λ > 0, ∀ q, q′ > 0, ∀ X : 0 < |X | ≤ q,
∀ ∅ ̸= S ⊂ X , ∀ ∅ ̸= D ̸⊆ X : 0 < |D| ≤ q, ∀ NYM, RNYM ⊆ N : 0 < |N| ≤
q′ ∧ NYM ∩ RNYM = ∅, ∀ nym ∈ NYM, ∀ nym′ ∈ RNYM it holds that:

pp $← Setup(1λ, (1q, 1q′)); (rsk, rpk) $← RAKGen(pp); (ask, apk) $← AAKGen(pp);
(R, auxrev) ← RSetup(pp, rpk, NYM, RNYM); (osk, opk) $← OKGen(pp); (usk, upk)

$← UKGen(pp); (cred,⊤) $← (Obtain(pp, usk, opk, apk,X , nym), Issue(pp, upk, osk,
apk, X , nym)); (RS,RV ) ← Revoke(pp,R, auxrev, nym′, 1); Ω ← Show(pp, usk, upk,
opk, cred,S,D,R, apk, tx); 1 ← Verify(pp,S,D, opk,RV , rpk, apk, tx, Ω)

Unforgeability and anonymity are defined as in the previous constructions based
on SPS-EQ, but considering the revocation and auditing authorities.

Definition 39: Unforgeability
An ABC scheme is unforgeable, if ∀ λ, q, q′ > 0 and p.p.t adversariesA having
oracle access to O := {OHU, OCU, ORN, OObtIss, OIssue, OShow} the following
probability is negligible.

Pr



pp $← Setup(1λ, (1q, 1q′)); (rsk, rpk) $← RAKGen(pp);
(ask, apk) $← AAKGen(pp); (osk, opk) $← OKGen(pp);
(S,D, st) $← AO(pp, opk, rpk, apk);
(·, b∗) $← (A(st), Verify(pp,S,D, opk, rpk, apk, RI, tx, Ω)) :
b∗ = 1 ∧ ∀ j : OWNR[j] ∈ CU =⇒
(N[j] = ⊥ ∨ (N[j] ̸= ⊥ ∧ (S ̸⊆ ATTR[j] ∨
D ∩ ATTR[j] ̸= ∅ ∨ N[j] ∈ RNYM))



Definition 40: Anonymity
An ABC scheme is anonymous, if ∀ λ, q, q′ > 0 and all p.p.t adversaries
A having oracle access to O := {OHU, OCU, ORN, OObtain, OShow, OLoR} the
following probability is negligible.

Pr
[

pp $← Setup(1λ, (1q, 1q′)); (ask, apk) $← AAKGen(pp);
b $← {0, 1}; (opk, rpk, st) $← A(pp); b∗ $← AO(st)

: b∗ = b

]
− 1

2

Finally, auditability requires that the auditor can recover the user’s public key
from an accepted showing proof.
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Definition 41: Auditability
An ABC scheme is auditable, if ∀ λ, q, q′ > 0, tx, nym ∈ NYM,R,RV and all
p.p.t adversaries A having oracle access to OIssue, the following probability is
negligible.

Pr



pp $← Setup(1λ, (1q, 1q′)); (rsk, rpk) $← RAKGen(pp);
(ask, apk) $← AAKGen(pp); (osk, opk) $← OKGen(pp);
(usk, upk) $← UKGen(pp);
(S,D, enc, Ω, st) $← AO(pp, opk, rpk, apk, usk, upk, nym);
(·, b∗) $← (A(st), Verify(pp,S,D, opk,RV , rpk, apk, RI, tx, Ω)) :
b∗ = 1 ∧ upk ̸= AuditDec(enc, ask)



6.5.3 Construction
We present our construction concerning the main building blocks.

Revocation. The revocation system from [DHS15a] defines a revocation authority
responsible for managing an allow and a deny list of revocation handlers. The
authority publishes an accumulator RevAcc representing the deny list, and
maintains a public list of non-membership witnesses for unrevoked users. During
the issuing protocol, users are given a revocation handle that is encoded in
the credential. To prove that they are not revoked during a showing, the user
consistently randomises its credential with the accumulator and the corresponding
non-membership witness. Then, the verifier checks that the (randomised) witness
is valid for the revocation handle (encoded in the user credential), and with respect
to the (randomised) accumulator. To work, the user must compute a ZKPoK on
the correct randomisation of the non-membership witness and the accumulator. As
explained in [DHS15a], the revocation handle encoded in the user’s credential is
of the form usk2(b + nym)P1, where usk2 is an additional user secret key required
for anonymity and nym is the pseudonym used for revocation. For this reason,
users are required to manage augmented keys of the form upk = (upk1, upk2),
usk = (usk1, usk2). Furthermore, for technical reasons, another component, usk2Q,
where Q is a random element in G1 with unknown discrete logarithm, must be
included in the credential.

Auditability. A credential in [FHS19, CLPK22] and [DHS15a] contains a tuple
(C, rC, P1) where C is the set commitment on the user attributes, r is a random
value used for technical purposes and P1 is used to compute a ZKPoK of the
randomiser µ in (µC, µrC, µP1) during a showing. We borrow the idea of using
a verifiable variant of ElGamal from [BDCET21] to prove the well-formedness of
a ciphertext (encrypting the user’s public key) with respect to the auditor’s key.
Therefore, we add the user’s public key upk1 and the auditor’s public key apk
as the credentials’ sixth and seventh components. Thus, we now have revocable
credentials of the form (C, rC, P1, usk2(b+nym)P1, usk2Q, upk1, apk), which can be
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randomised to obtain a tuple (µC, µrC, µP1, µusk2(b + nym)P1, µusk2Q, µusk1P1,
µapk). We exploit this fact to allow the user to generate an audit proof that can be
publicly verified without leaking information about the user’s public key. This way,
verifiers can check a proof using the sixth and seventh components in the credential
to be sure that (1) the user encrypted a public key for which it has the corresponding
secret key, and (2) using the correct one. Since the issuing authority signs the
credential, the randomisation needs to be consistent. Modifications required to
implement our auditability approach are as follows:

1. The user randomises its credential as usual to obtain a new one of the form
(C ′

1, C ′
2, C ′

3, C ′
4, C ′

5, C ′
6, C ′

7)=(µC1, µC2, µP1, µC4, µC5, µupk1, µapk). Since
only the user knows the randomiser µ, its public key remains hidden.

2. The user picks α ∈ Zp and encrypts its own public key using ElGamal
encryption with auditor’s public key apk and randomness α to obtain a
ciphertext enc = (enc1, enc2) = (upk1 + αapk, αP1).

3. The user runs the algorithm AuditPrv (Figure 6.2) with input
(enc, α, usk1, apk) to obtain c, z1 and z2.

4. Then, the user picks β ← Zp, computes t1 = βP2, t2 = βµP2, t3 = αβP2
and sends (enc, c, z1, z2, t1, t2, t3) to the verifier alongside the randomised
credential from step 1.

5. The verifier checks the well-formedness of the ElGamal encryption pair
running the algorithm AuditVerify (Figure 6.2) with input (c, enc, z1, z2). If
the check succeeds, it checks the following pairing equations to verify that
the encrypted public key is the one in the credential:
e(enc2, t2)=e(C ′

3, t3) ∧ e(enc2, t1)=e(P1, t3) ∧ e(enc1, t2)=e(C ′
6, t1)+e(C ′

7, t3)
Observe that the verifier knows µP1 = C ′

3, µusk1P1 = C ′
6, µaskP1 = C ′

7,
(usk1 + αask)P1 = enc1, αP1 = enc2, βP2 = t1, βµP2 = t2 and αβP2 = t3.
With β the user is able to randomise the other values so that the pairing equation
can be checked to verify the relation between the ElGamal ciphertext and the
randomised public key in C ′

6, without leaking information about the user’s public
key. Furthermore, the first two pairing equations verify the well-formedness of t1, t2
and t3 with respect to the user’s credential and the ciphertext. Hence, the verifier
will not be able to recover the user’s public key nor the user cheat.

Our solution only adds two elements to the credential while requiring the user
to send two more elements in G1, three in Zp and three in G2, for a total of eight.
Furthermore, computational cost remains low as it just involves the computation
of seven pairings, the ElGamal encryption and two Schnorr proofs [Sch90].

Issuer-hiding. In permissioned blockchains where there are multiple organisations
that issue credentials, the issuer-hiding strategy discussed in Chapter 5 can be used.
This would allow users holding valid signatures to pick any subset of issuer’s public
keys to generate a proof. In this regard, we adapt the proof system from Chapter 5
to the signature used and make it malleable so that users can compute the proof
once and then adapt it during showings with little computational cost.

In Figure 6.1, we build a fully adaptive malleable NIZK argument following the
construction from Chapter 5. The main idea is that given two proofs, π1 and π2,
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SH.PGen(1λ):
BG $← BGGen(1λ); z $← Zp

return (BG, [z]1)

SH.PSim(crs, τ, (vi)i∈[n], [x1]2, [x2]2):
δ, z1, ..., zn−1

$← Z∗
p

zn ← δτ −∑i=n−1
i=1 zj

for all i ∈ [n] do
di

$← Zp; [ai]2 ← di · vi − zi · x
return (([an]2, [dn]1, [zn]1)n∈[n], δP2)

SH.ZKEval(crs, [x1]2, [x2]2, π; α, β):
// [x′]2 = (αw1 + βw2)[vi]2
(([aj

n]2, [dj
n]1, [zn]1)j∈[2]

n∈[n], Z2)← π

δ $← Z∗
p; Z ′

2 ← δZ2
for all i ∈ [n] do

[z′
i]1 ← δ[zi]1;

[d′
i]2 ← δα[d1

i ]2 + δβ[d2
i ]2;

[a′
i]2 ← δα[a1

i ]2 + δβ[a2
i ]2;

return (([a′
n]2, [d′

n]1, [z′
n]1)n∈[n], Z ′

2)

SH.PTGen(1λ):
BG $← BGGen(1λ); z $← Zp; τ ← z
return (BG, [z]1, τ)

SH.PPro(crs, ([vi]2)i∈[n], ([xj]2, wj)j∈[2]):
// [x1]2 = w1[vi]2, [x2]2 = w2[vi]2
δ, r1, r2, z1, ..., zn−1

$← Z∗
p

[zn]1 ← δ[z]1 −
∑i=n−1

i=1 [zi]1
([aj

i ]2, [dj
i ]1)← (rj[vi]2, wj[zi]1+[rj]1)

for all k ̸= i ∈ [n], j ∈ [2] do
dj

k
$← Zp; [aj

k]2 ← dj
k[vk]2 − zk[xj]2

return (([aj
n]2, [dj

n]1, [zn]1)j∈[2]
n∈[n], δP2)

SH.PVer(crs, ([vi]2)i∈[n], [x]2, π):
(([an]2, [dn]1, [zn]1)n∈[n], Z2)← π
check e([z]1, Z2) = e(∑i=n

i=1 [zi]1, [1]2)
for all i ∈ [n] do
check e([di]1, [vi]2)=e([zi]1, [x]2)+e([1]1, [ai]2)
return 1

Figure 6.1: Our fully adaptive malleable NIZK argument

for statements x1 = w1vi and x2 = w2vi; one can compute a valid proof π for the
statement x = (αw1 + βw2)vi with fresh α and β. The derivation privacy property
of the proof system ensures that π looks like a freshly computed proof.

Theorem 25. The proof system given in Figure 6.1 is a fully adaptive malleable
NIZK argument for the language L∨(vi)i∈[n]

, defined as:

L∨(vi)i∈[n]
= {(vi) ∈ Gℓ

2| ∃ w ∈ Z∗
p : ∨ (v′

i = wvi)i∈[n]}

The proof of Theorem 25 follows from the one given in Theorem 15, but
considering a 1-out-of-n OR-Proof as in Theorem 21.

Now we elaborate on a second strategy based on the approach from [BEK+21].
We recall that an issuer-policy in [BEK+21] is a set {(σi, opki)i∈[n]} of signatures
on issuers public keys generated by some verification secret key vsk. To hide the
identity of an issuer j, a user consistently randomises the pair (σj, opkj) to obtain
a randomised public key opk′

j. It then adapts the signature σ on its credential the
same way and presents opk′

j to the verifier. If the verifier accepts the signature
σj on opk′

j (using vpk), it proceeds to verify σ using opk′
j. Issuer-policies can be

specified by the entity that created the smart contract and defined within using
the entity’s verification key pair. Unlike the first approach, where users choose the
issuer’s anonymity set, here, it is determined by the policy maker.

We observe that the mercurial signature used in this chapter only provides a
weak form of issuer-hiding. Given a signature that has been adapted to verify
under a randomised public key pk′ in the equivalence class of pk, the owner of
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pk can recognize it. Thus, issuers can know which transactions belong to users
from their organisations (but not to which particular user) and which ones don’t
by reading the non-interactive showing proof (it contains the issuer’s randomised
public key). However, we argue that in the permissioned blockchain setting this
provides a fair trade-off as a minimum traceability level is usually required.

Compared to the ABC construction from Chapter 5, we make use of a
cryptographic hash function H to apply the (strong) Fiat-Shamir transform while
adding the previously discussed auditability and revocation features. Therefore we
Setup(1λ, aux):
(q, q′)← aux; pick H : {0, 1}∗ → Z∗

p; Q $← G1; (revpp, revτ ) $← RevAcc.Setup(1λ, q′)
(BG, scdspp, scdsτ ) $← SCDS.Setup(1λ, q); (spspp, spsτ ) $← SPS-EQ.PGen(1λ; BG)
return (H, BG, revpp, Q, scdspp, spspp)

TSetup(1λ, aux):
(q, q′)← aux; pick H : {0, 1}∗ → Z∗

p; Q $← G1; (revpp, revτ ) $← RevAcc.Setup(1λ, q′)
(BG, scdspp, scdsτ ) $← SCDS.Setup(1λ, q); (spspp, spsτ ) $← SPS-EQ.PGen(1λ; BG)
τ = (revτ , scdsτ , spsτ ); return (H, BG, revpp, Q, scdspp, spspp, τ)

RevAcc.Setup(1λ, 1q): BG $← BGGen(1λ); b $← Z∗
p; return (BG, (biP1, biP2)i∈[q])

AAKGen(pp): ask $← Z∗
p ; apk← askP1; return (ask, apk)

RAKGen(pp): rsk $← Z∗
p ; rpk← rskP2; return (rpk, rsk)

OKGen(pp): return SPS-EQ.KGen(BG, spspp, 7)

UKGen(pp): usk1, usk2
$← Z∗

p ; (upk1, upk2)← (usk1P1, usk2P1)
return ((usk1, usk2), (upk1, upk2))

Figure 6.2: Protego: setup and key generation algorithms.

AuditEnc(upk, apk): α← Zp; enc← (upk + αapk, αP1); return (enc, α)

AuditDec(enc, ask): (enc1, enc2)← enc; return (enc1 − ask · enc2)

AuditPrv(enc, α, usk, apk):
r1, r2 ← Zp; com1 ← r1P1 + r2apk; com2 ← r2P1; c← H(com1, com2, enc)
z1 ← r1 + c · usk; z2 ← r2 + c · α; return (c, z1, z2)

AuditVerify(apk, c, enc, z1, z2):
com1 ← z1P1 + z2apk− cenc1; com2 ← z2P1 − cenc2; c′ ← H(com1, com2, enc)
return c′ = c

Figure 6.3: Protego: Auditing algorithms.
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RSetup(pp, (rsk, rpk), NYM, RNYM):
(Πrev, auxrev)← RevAcc.Commit(revpp, RNYM)
foreach nym ∈ NYM do WIT[nym]← RevAcc.NonMemWit(pp, Πrev, auxrev, nym)
return ((Πrev, WIT), auxrev)

RevAcc.Commit(pp,X ; rsk):
check |X | ≤ q ∧ ̸ ∃ b′ ∈ X : b′P1 = bP1; Πrev ← rsk−1 · ChX (s)P1; auxrev ← X
return (Πrev, auxrev)

Revoke(pp,R, auxrev, nym, b):
(Πrev, WIT)← R; RNYM← auxrev
if b = 1

NYM← NYM \ {nym}; RNYM← RNYM ∪ {nym}
(Π′

rev, aux′
rev)← RevAcc.Add(pp, Πrev, RNYM, nym)

else
NYM← NYM ∪ {nym}; RNYM← RNYM \ {nym}
(Π′

rev, aux′
rev)← RevAcc.Del(pp, Πrev, RNYM, nym)

foreach nym′ ∈ NYM do WIT[nym′]← RevAcc.NonMemWit(pp, Π′
rev, aux′

rev, nym′)
return ((Π′

rev, WIT), aux′
rev)

RevAcc.Add(pp, rsk, Πrev, auxrev, nym):
X ← auxrev; X ← X ∪ {nym}; return RevAcc.Commit(pp,X ; rsk)

RevAcc.Del(pp, rsk, Πrevauxrev, nym):
X ← auxrev; X ← X \ {nym}; return RevAcc.Commit(pp,X ; rsk)

RevAcc.NonMemWit(pp, Πrev, auxrev, nym):
X ← auxrev; check nym /∈ X ; Let q(X) and d ∈ Z∗

p s.t. ChX (X) = q(X)(X + nym) + d
return (q(b)P2, d)

RevAcc.VerifyWit(pp, Πrev, nym, wssrev):
(wss1

rev, wss2
rev)← wssrev; return e(Πrev, rpk) = e((b + nym)P1, wss1

rev)e(wss2
revP1, P2)

Figure 6.4: Protego: Revocation algorithms.

implement the ZKPoK’s as Schnorr proofs (instead of following Remark 1 from
[FHS19]).

In Figure 6.2, we present the setup and key generation algorithms. The setup
algorithm also takes a bound q′ on the maximum number of revoked pseudonyms
for the revocation accumulator. Revocation and auditing algorithms are given
in figures 6.4 and 6.4, respectively. The revocation authority is responsible for
running the Revoke algorithm and updating the accumulator. Obtain and Issue
have constant-size communication and are given in Figure 6.5.

We present Protego and Protego Duo for Show and Verify, depending on the issuer
hiding approach. Protego is given in Figure 6.6 and produces a variable-length
proof as it relies on the (malleable) NIZK proof. Protego Duo produces a constant-
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Obtain(pp, usk, opk, apk,X , nym) Issue(pp, upk, osk, apk,X , nym)
r1, r2, r3

$← Z∗
p; a1 ← r1P1; a2 ← r2P1

a3 ← r3Q; C4 ← usk2(b + nym)P1
C5 ← usk2Q; e← H(upk1, upk2, C5, a1, a2, a3)
z1 ← r1 + e · usk1
z2 ← r2 + e · usk2; z3 ← r3 + e · usk2
(C1, O)← SCDS.Commit(scdspp,X ; usk1)
r4

$← Z∗
p; C2 ← r4 · C1

Σ← (C1, C2, C4, C5, (ai, zi)i∈[3])
Σ−−−→ e← H(upk1, upk2, C5, a1, a2, a3)

check
z1P1 = a1 + e · upk1
z2P1 = a2 + e · upk2
z3Q = a3 + e · C5
e(C1, P2) ̸= e(upk1, ChX (s)P2)
∀ x ∈ X : xP1 ̸= ek0

1
check e(C4, P2) = e(upk2, (b + nym)P2)

SPS-EQ.Verify(spspp, σ←−−− σ ← SPS-EQ.Sign(spspp,
(C1, C2, P1, C4, C5, upk1, apk), σ, opk) (C1, C2, P1, C4, C5, upk1, apk), osk)

return cred← (C1, C4, C5, σ, r4, nym, O)

Figure 6.5: Protego: Obtain and issue algorithms.

size proof and is depicted in Figure 6.7. The differences are highlighted in grey.
After the credential is updated, the user randomises the revocation accumulator,
witnesses and generates the Schnorr proofs. Following the auditing proof, the Fiat-
Shamir transform is applied, the ZKPoK’s and PoE’s are computed, returning the
showing proof. Finally, Verify takes proof (depending on the case), computes the
challenge and verifies each statement.

6.5.4 Security Proofs
As in Chapter 5, the security of Protego and Protego Duo relies on the security
properties of the different building blocks. Furthermore, the proofs are analogous
and very similar to those discussed in the previous chapter. For this reason, when
presenting the security proofs for Protego, we only discuss the differences and
required changes. We omit the proof of correctness, as it follows from inspection.
Subsequently, we discuss unforgeability, anonymity and issuer-hiding.
Theorem 26. If the q-co-DL assumption holds (Section 2.3.3 on page 11), the
ZKPoK’s have perfect ZK, SCDS is sound, SPS-EQ is EUF-CMA (Definition 27
on page 62) and RevAcc is collision-free (as in Definition 16 from [DHS15a]), then
Protego is unforgeable (Definition 39 on page 121).

Proof. The proof follows from the one given in Chapter 5 (Theorem 22 on page 102)
and the unforgeability proof from [DHS15a] (Theorem 3), which considers the
revocation part. The required changes are as follows. We assume there is
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Show(pp, usk, upk, opkj, cred,S,D,(opki)i∈[n], (opki
j, wi

j)i∈[2], Ω ,R, apk, tx)
(C1, C4, C5, σ, r, nym, O)← cred; (Πrev, WIT)← R; β, µ, ρ, γ, τ, (ri)i∈[5]

$← Z∗
p

if O = (1, (o1, o2)) then O′ = (1, (µ · o1, o2)) else O′ = µ ·O
opk′

j ← ConvertPK(opkj, ρw1
j + γw2

j ); Ω′ ← SH.ZKEval(opk1
j , opk2

j , Ω; ρ, γ)
σ′ $← SPS-EQ.ChgRep(spspp, (C1, rC1, P1, C4, C5, upk1, apk), σ, µ, ρw1

j + γw2
j , opkj)

cred′ ← ((Ci)i∈[7] = µ · (C1, rC1, P1, C4, C5, upk1, apk), σ′)
wss← SCDS.OpenSS(scdspp, C1,S, O′); wds← SCDS.OpenDS(scdspp, C1,D, O′)
wssrev ← WIT[nym]; wss′

rev ← (τwss1
rev, usk2µτwss2

revP1)
a1 ← r1C1; a2 ← r2P1; a3 ← r3Πrev; a4 ← r4Q; a5 ← r5P1; Π′

rev ← (usk2µτ)Πrev
(enc, α)← AuditEnc(apk, upk1); t1 = βP2; t2 = βµP2; t3 = αβP2
Π← AuditPrv(enc, α, usk, apk)
e← H(S,D, apk, tx, enc, Π, opk′

j,(opki)i∈[n], Ω′ ,(ai)i∈[5], (ti)i∈[3], cred′, wss, wds, tx,
C2, C3, Π′

rev, C5, wss′
rev)

z1 ← r1 + e · r; z2 ← r2 + e · µ; z3 ← r3 + e · (usk2µτ); z4 ← r4 + e · (usk2µ)
z5 ← r5 + e · (usk2µτwss2

rev)
π1 ← SCDS.PoE(scdspp,S, e); π2 ← SCDS.PoE(scdspp,D, e)
return (enc, (ti)i∈[3], opk′,(opki)i∈[n], Ω′ ,cred′, wss, wds, wss′

rev, Π′
rev, Π, π1, π2, (ai, zi)i∈[5])

Verify(pp,S,D, Πrev, rpk, apk,tx, Ω)
(enc, (ti)i∈[3], opk′,(opki)i∈[n], Ω′ ,cred′, wss, wds, wss′

rev, Π′
rev, Π, π1, π2, (ai, zi)i∈[5])← Ω

(C1, C2, C3, C4, C5, C6, C7, σ)← cred′

e← H(S,D, apk, tx, enc, Π, opk′,(opki)i∈[n], Ω′ ,(ai)i∈[5], (ti)i∈[3], cred′, wss, wds, tx,
C2, C3, Π′

rev, C5, wss′
rev)

check
z1C1 = a1 + eC2; z2P1 = a2 + eC3; z3Πrev = a3 + eΠ′

rev; z4Q = a4 + eC5
z5P1 = a5 + ewss′

rev; RevAcc.VerifyWit(Π′
rev, C4, wss′

rev); AuditVerify(enc, Π2)
e(enc1, t2) = e(C6, t1) + e(C7, t3); e(enc2, t2) = e(C3, t3); e(enc2, t1) = e(P1, t3)
SCDS.VerifySS(C1,S, wss; π1, e); SCDS.VerifyDS(C1,D, wds; π2, e)
SH.PVer((opki)i∈[n], opk′, Ω′) ; SPS-EQ.Verify(cred′, opk′)

Figure 6.6: Protego: Show and verify algorithms.

an efficient adversary A winning the unforgeability game with non-negligible
probability. We use A considering the following types of attacks:
Type 1. Adversary A conducts a valid showing so that nym∗ = ⊥. Then we

construct an adversary B that uses A to break the EUF-CMA security.
Type 2. Adversary A manages to conduct a showing accepted by the verifier

using the credential of user i∗ under nym∗ with respect to S∗ such that
S∗ ̸⊆ ATTR[nym] or with respect to D∗ such that D∗ ⊆ ATTR[nym] holds.
Then we construct an adversary B that uses A to break the soundness of the
set-commitment scheme SCDS.

Type 3. Adversary A manages to conduct a showing accepted by the verifier
reusing a showing based on the credential of a user i∗ under nym∗ with i∗ ∈ HU,
whose secret uski∗ and credentials it does not know.

Type 4. Adversary A manages to conduct a showing accepted by the verifier using
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Show(pp, usk, upk, opkj, cred,S,D,opkj, σj ,R, apk, tx)
(C1, C4, C5, σ, r, nym, O)← cred; (Πrev, WIT)← R; β, µ, ρ, γ, τ, (ri)i∈[5]

$← Z∗
p

if O = (1, (o1, o2)) then O′ = (1, (µ · o1, o2)) else O′ = µ ·O
opk′

j ← ConvertPK(opkj, ρ); σ′
j

$← SPS-EQ.ChgRep(spspp, opkj, σj, ρ)
σ′ $← SPS-EQ.ChgRep(spspp, (C1, rC1, P1, C4, C5, upk1, apk), σ, µ, ρ, opkj)
cred′ ← ((Ci)i∈[7] = µ · (C1, rC1, P1, C4, C5, upk1, apk), σ′)
wss← SCDS.OpenSS(scdspp, C1,S, O′); wds← SCDS.OpenDS(scdspp, C1,D, O′)
wssrev ← WIT[nym]; wss′

rev ← (τwss1
rev, usk2µτwss2

revP1)
a1 ← r1C1; a2 ← r2P1; a3 ← r3Πrev; a4 ← r4Q; a5 ← r5P1; Π′

rev ← (usk2µτ)Πrev
(enc, α)← AuditEnc(apk, upk1); t1 = βP2; t2 = βµP2; t3 = αβP2
Π← AuditPrv(enc, α, usk, apk)
e← H(S,D, apk, tx, enc, Π, opk′

j,σ′
j ,(ai)i∈[5], (ti)i∈[3], cred′, wss, wds, tx,

C2, C3, Π′
rev, C5, wss′

rev)
z1 ← r1 + e · r; z2 ← r2 + e · µ; z3 ← r3 + e · (usk2µτ); z4 ← r4 + e · (usk2µ)
z5 ← r5 + e · (usk2µτwss2

rev)
π1 ← SCDS.PoE(scdspp,S, e); π2 ← SCDS.PoE(scdspp,D, e)
return (enc, (ti)i∈[3], opk′

j,σ′
j ,cred′, wss, wds, wss′

rev, Π′
rev, Π, π1, π2, (ai, zi)i∈[5])

Verify(pp,S,D, Πrev, rpk, apk,vpk ,tx, Ω)
(enc, (ti)i∈[3], opk′,σ′ ,cred′, wss, wds, wss′

rev, Π′
rev, Π, π1, π2, (ai, zi)i∈[5])← Ω

(C1, C2, C3, C4, C5, C6, C7, σ)← cred′

e← H(S,D, apk, tx, enc, Π, opk′,σ′ ,(ai)i∈[5], (ti)i∈[3], cred′, wss, wds, tx,
C2, C3, Π′

rev, C5, wss′
rev)

check
z1C1 = a1 + eC2; z2P1 = a2 + eC3; z3Πrev = a3 + eΠ′

rev; z4Q = a4 + eC5
z5P1 = a5 + ewss′

rev; RevAcc.VerifyWit(Π′
rev, C4, wss′

rev); AuditVerify(enc, Π2)
e(enc1, t2) = e(C6, t1) + e(C7, t3); e(enc2, t2) = e(C3, t3); e(enc2, t1) = e(P1, t3)
SCDS.VerifySS(C1,S, wss; π1, e); SCDS.VerifyDS(C1,D, wds; π2, e)
SPS-EQ.Verify(opk′, vpk) ; SPS-EQ.Verify(cred′, opk′)

Figure 6.7: Protego Duo: Show and verify algorithms.

some credential corresponding to a revoked pseudonym nym∗ ∈ RNYM. Then,
we construct an adversary B that uses A to break the binding property of
the revocation accumulator RevAcc.

Types 1 and 2 follow the proofs of Theorem 22 as the underlying primitives
remain unchanged. For Type 3, we leverage the fact that reusing a showing
would only allow the adversary to generate a valid showing for the same original
transaction tx (that is timestamped), and hence, we do not consider it as an
attack. Observe that any modification done to the original tx will lead to a different
challenge; thus, the rest of the proofs (showing, revocation and auditing) will not
verify. Finally, Type 4 follows from [DHS15a] (Theorem 3).
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Theorem 27. If the DDH assumption holds, the SPS-EQ perfectly adapts signatures
(Definition 28 on page 63), and H is assumed to be a random oracle, then Protego
is anonymous (Definition 40 on page 121).

Proof. The proof follows Theorem 23 and [DHS15a] (Theorem 4). However, we
must also to take into account the ROM and the addition of the auditing features.
The extra credential components for the auditing are randomised during every
credential showing like the rest of the components. Similarly, the user generates a
new encryption of the auditor’s public key with a fresh α while a fresh β is used
to randomise the values ti. Since ElGamal encryption is IND-CPA secure and key-
private [BBDP01], the ciphertexts produced by the user are indistinguishable and
do not leak information about the user’s public key nor the auditor’s.

Theorem 28. If the algorithms AuditPrv and AuditVerify are a NIZK proof system
and the SPS-EQ is EUF-CMA (Definition 27 on page 62) then Protego is auditable
(Definition 41 on page 122).

Proof. If the verification returns true, we have that ∃ (enc∗
1, enc∗

2) = ((δ∗ +
α∗ask)P1, α∗P1) for some δ∗ and α∗ chosen by the adversary. Moreover, because of
the unforgeability of the signature scheme, the verification implies that C3 = µ∗P1,
C6 = µ∗usk1P1 and C7 = µ∗askP1 for some µ∗ chosen by the adversary. As a result,
we can re-write the pairing equations for the audit proof as:

e(α∗P1, t∗
2) = e(µ∗P1, t∗

3)
e(α∗P1, t∗

1) = e(P1, t∗
3)

e((δ∗ + α∗ask)P1, t∗
2) = e(µ∗usk1P1, t∗

1) + e(µ∗askP1, t∗
3)

where t∗
1, t∗

2 and t∗
3 are also chosen by the adversary. We show that δ∗ = usk1, which

implies that upk1 = AuditDec(enc, ask). Looking at the first two equations in the
target group, we have that α∗t∗

2 = µ∗t∗
3 and α∗t∗

1 = t∗
3, concluding that t∗

2 = µ∗t∗
1.

Replacing t∗
2 and t∗

3 in third one and simplyfing we obtain:

(δ∗ + α∗ask)µ∗t∗
1 = µ∗usk1t

∗
1 + µaskα∗t∗

1

µ∗δ∗t∗
1 + µ∗α∗askt∗

1 = µ∗usk1t
∗
1 + µ∗α∗askt∗

1

deducing that δ∗ = usk1.

Theorem 29. If the underlying SPS-EQ perfectly adapts signatures (Definition 31),
then Protego is issuer-hiding (Definition 38 on page 95).

Proof. Analogous to the one given in Chapter 5 (Theorem 24 on page 108)
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Integration with Fabric. A multi-party computation ceremony can be run for
the CRS generation of the Setup algorithm, ensuring that no organisation knows
the trapdoors of the different components. As we are in the permissioned setting it
is plausible to assume that at least one of the organisations is honest. By allowing
users and endorsers to obtain credentials, both can produce showing proofs. Users
can generate showing proofs to prove that they satisfy the access policy for
the execution of a particular transaction proposal. Furthermore, by computing
the PoE’s, the verification time for endorsers improves substantially. Similarly,
endorsers can prove that they satisfy a given endorsement policy attaching a
showing proof to their endorsements. Even if the endorsement policies are defined
in a privacy-preserving way as suggested in [ADCNS19], endorsers can still compute
selective AND and NAND clauses for the respective pseudonyms defined by the
policy using their credentials. Endorsers should also use the read and write sets to
from the transaction proposals to generate showing proofs.

6.6 Implementation and Evaluation
We implemented a prototype version of Protego and Protego Duo in Rust using the
bls12-381 curve1 and the BLAKE3 hash function2. This choice is based on their
performance, wide adoption and available open-sourced implementations in Rust.
The source code and related documentation are provided in [CDLPK22]. Our
signature implementation is based on the one from [Bur20] but using the bls12-
381 curve instead of Barreto-Naehrig curves [BN06]. As a result, we obtain times
up to 67% faster when compared to [Bur20]. To run the benchmarks a Macbook
Air (Chip M2 & 16GB RAM) was used with no extra optimizations, using the
nightly compiler and the Criterion library. For all values, the standard deviation
was at most 1 millisecond.

Issue and Obtain take roughly 20 ms each when issuing a credential for 10
attributes. Both scale linearly on the number of attributes. To evaluate showing
and verification, we considered the PoE in the showing protocol. Therefore,
verification running time remains (almost) constant3 regardless the number of
shown attributes, credential size, and issuer-hiding approach. If the PoE is disabled,
showing running time would be smaller while verification would increase linearly
with the number of shown attributes.

Revocation Signature Issuer-hiding NIZK
n = 10 n = 100 ℓ = 7 (for Protego) n = 5

Scheme Prove Verify Prove Verify Sign Verify ChgRep Prove Verify ZKEval
[BDCET21] 28 64 28 64 23 59 N/A N/A N/A N/A
Protego 7.7 4.2 77.4 4.2 3.4 11 8.8 103 118 59

Table 6.1: Running time for the different algorithms in milliseconds.

1https://electriccoin.co/blog/new-snark-curve
2https://github.com/BLAKE3-team/BLAKE3
3Asymptotic complexity is O(1) (considering exponentiations and pairings) but some

multiplications depending on the shown attributes are required, hence the difference.

https://electriccoin.co/blog/new-snark-curve
https://github.com/BLAKE3-team/BLAKE3
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An auditing proof in Protego takes roughly 1 and 1.5 ms for proof generation
and verification, surpassing the values from [BDCET21]. In Table 6.1 we report the
revocation and signing algorithms, including our issuer-hiding NIZK with n = 5.
For Protego, we consider a signature for vectors of length seven (the size of a
credential). In our case, the revocation witnesses are computed by the authority
(in linear time) and then randomized by the users (in constant time). For this
reason we consider the generation of a single witness for a revocation lists of 10
and a hundred elements (although in practice one would expect it to be closer to
10). For [BDCET21], we consider the total time to generate and verify a signature
in a user level L = 2 (involving two delegations), with revocation times in G2.

Comparison with the Idemix extension from [BDCET21]. The computational
cost for the prover and verifier grows linearly with the number of attributes in
the credential and delegation levels for [BDCET21]. In Protego Duo, the prover
computational cost is O(n− k) for showings involving k-attributes out of n, which
in practice is much better. Verification cost in Protego and Protego Duo is almost
constant (or O(k) if the PoE is disabled).

2 4 6 80s

0.1s

0.2s

0.3s

0.4s [BDCET21]
Protego
Protego Duo

Figure 6.8: Showing times in seconds considering 2, 4, 6 and 8 attributes.

2 4 6 80s

0.1s

0.2s

0.3s

0.4s [BDCET21]
Protego
Protego Duo

Figure 6.9: Verification times in seconds considering 2, 4, 6 and 8 attributes.

The two works are compared in figures 6.8 and 6.9, using the same hardware and
considering credential showings and verification times, respectively. Exact times
for the values presented in both figures are also given in Table 6.2. For [BDCET21],
we consider a delegation level L = 2 , which corresponds to a user level given that
the root authority is at L = 0 and organizations start at L = 1. Regarding the
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k = 2 k = 4 k = 6 k = 8 k = 10
Scheme Show Verify Show Verify Show Verify Show Verify Show Verify

[BDCET21] 141 106 220 170 309 266 388 356 - -
Protego 86 142 89 140 92 141 93 145 96 145
Protego Duo 29 35 32 35 34 36 37 36 39 38

Table 6.2: Protocols’ comparison showing the running times in milliseconds.

attributes, [BDCET21] we could only retrieve information considering proofs for
credential possesion below ten attributes (assuming a minimal overhead when all
attributes are shown as authors suggest). Therefore, we report credential possesions
for [BDCET21] considering up to 8 attributes, and selective disclosures of k-out-of-
10 attributes in ours. For Protego, we consider five authorities for the NIZK proof,
which would suffice for practical scenarios like a consortium of pharmaceuticals.

6.7 Conclusions and Future Work
We have seen the development of two “breeds” of credential schemes, one based
on the line of work following blind signatures and delegatable credentials and the
other on SPS-EQ. We presented here the first SPS-EQ credential scheme modified
to work with permissioned blockchains. The versatility of Protego alongside the
efficiency gains (at least twice as fast as the most recent Idemix extension), enables
a broader scope of applications in such a setting. Depending on the context, the
PoE’s can be computed or not, the credential issuer can be hidden or not, and one
can select only subsets or disjoint sets to generate the proofs. Similarly, auditability
and revocation features can be considered as optional, showing its flexibility.

As future directions to explore, we consider the following points:
1. Adding confidentiality of transactions to a Protego-like credential scheme.
2. Adding more power to the users (i.e., how to define precise notions of user-

invoked regulatory measures).
3. Extend our results to the multi-authority setting, where users can get

attributes from multiple authorities instead of a single one.
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Conclusion

Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.

— Dante Alighieri

This thesis studied malleability in the context of PKE and digital signatures.
For PKE, we characterised malleability in terms of generic definitions for

randomisable encryption. We presented interactive and non-interactive zero-
knowledge protocols for plaintext equality and inequality based on those definitions.
While previous work relied on specific constructions that did not allow the scheme to
be separated from the protocols requirements, our constructions are more versatile.
They can be easily integrated with other building blocks. This makes it easier to
adapt or extend use cases implementing privacy-enhancing technologies.

Regarding digital signatures, we proposed new constructions in the standard
model and applications in the context of anonymous credentials, one of the most
prominent privacy-enhancing technology. In particular, the problem of identity
management in usable real-world applications has had a bumpy history. Its
foundations remain weak as we progress into a more federated and decentralised
world. Cryptographic primitives used to build early credential systems falter when
ported to industrial applications. The increasing need for fine-grained access
control, coupled with the greater awareness and demand for user-privacy, leaves
many challenges to be addressed. For this reason, we pushed towards more
expressive and efficient constructions. As a result, we extended previous credential
systems and proposed new ones tailored to the enterprise blockchain setting. These
contributions enable more use cases, which could not easily be implemented with
the technology that was previously available.

To show the feasibility of our results, we provided prototype implementations
for the cryptographic primitives and protocols presented in chapters 3 and 6. Our
evaluations confirm the practicality of our contributions and set the path for future
industrialisation of the presented credential schemes.

Open issues and future work. Considering zero-knowledge protocols for
plaintext equality and inequality, we have seen how they are used in online voting
schemes, reputation systems and cloud-based applications. In this sense, we stress
that having generic protocols for inequality tests could also enable more use cases.
Likewise, the design of generic non-interactive protocols for plaintext inequality
can help in the same direction.

We provided a SPS-EQ from standard assumptions in Chapter 4, which we
later extended to obtain the first mercurial signature in the same setting. In this
regard, we recall that our signature construction requires a CRS and that it only
achieves a weak form of anonymity with respect to the key space. Although we
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do not consider the use of a CRS a major drawback, it would be desirable to
achieve a construction secure in the standard model alone. Similarly, we leave the
construction of mercurial signatures from standard assumptions and achieving a
stronger notion of perfect adaption, as an interesting open problem.

We have seen how SPS-EQ provides a host of functionalities for designing other
primitives with many efficiencies and interoperability gains. Unfortunately, they
do not provide post-quantum security guarantees. Therefore, studying alternative
constructions that could offer post-quantum security is an open issue and promising
future work. While these lines were being written, the National Institute of
Standards and Technology (NIST) announced the first group of winners from its
six-year competition on post-quantum cryptographic algorithms to be standardised.
Furthermore, another call for digital signature algorithms with short signatures and
fast verification was also announced. This situation reflects how active this research
field is and the importance of developing signatures considering different trade-offs.
The ideas developed in this thesis shed light in that direction even if the presented
constructions do not offer post-quantum security.

While the work on anonymous credentials validated many of the underlying
building blocks for the first time, providing an implementation, there is still
much room for improvement. Regarding security, the extensions presented in
Chapter 5 and 6 were studied independently. Analyzing security using the universal
composability framework [Can01] is left as interesting future work. In terms of
functionalities, incorporating other building blocks like aggregatable signatures or
defining equivalence classes in a different way are also interesting directions to
explore. In this regard, extending the contributions from Chapter 6 to the multi-
authority setting is also an interesting future work.
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MOTS CLÉS

Cryptographie à clé publique, signatures numériques, Preuve à divulgation nulle de connaissance, sécurité
prouvable, informations d'identification anonymes.

RÉSUMÉ

Cette thèse étudie la malléabilité dans le contexte du chiffrement à clé publique et des signatures numériques, en
présentant les avancées et les applications des technologies améliorant la confidentialité.
La première partie aborde le problème de l'égalité générique des textes en clair et les preuves d'inégalité. Étant donné
deux textes chiffrés générés par un schéma de chiffrement à clé publique, le problème de l'égalité des textes chiffrés
consiste à déterminer si les textes chiffrés contiennent la même valeur. Parallèlement, le problème de l'inégalité du texte
clair consiste à déterminer s'ils contiennent une valeur différente. Les travaux précédents se sont concentrés sur la
construction de nouveaux schémas ou sur l'extension de schémas existants afin d'inclure le support de l'égalité/inégalité
du texte en clair. Nous proposons des preuves génériques et simples à connaissance zéro pour les deux problèmes,
qui peuvent être instanciées avec divers schémas de chiffrement. Pour ce faire, nous formalisons les notions liées à
la malléabilité dans le contexte du chiffrement à clé publique et proposons un cadre de définition pour le chiffrement
générique aléatoire, que nous utilisons pour construire nos protocoles.
La partie suivante est consacrée aux signatures préservant la structure sur les classes d'équivalences, le principal élément
constitutif des parties suivantes. Initialement, nous proposons des constructions nouvelles et plus efficaces sous des
hypothèses standard. Ensuite, nous construisons un schéma d'accréditation établi sur les attributs sous des hypothèses
standard, qui étend les travaux précédents de plusieurs façons. Nous améliorons notamment l'expressivité, les compromis
d'efficacité et proposons une notion de dissimulation de l'émetteur qui permet aux détenteurs de lettres de créance de
cacher l'identité de l'émetteur pendant les utilisations.
La dernière partie est consacrée à la présentation de Protego, un nouveau schéma d'accréditation pour les blockchains
à autorisation. Il s'appuie sur les contributions précédentes et bien qu'il soit discuté dans le contexte des blockchains à
autorisation, il peut également être utilisé dans d'autres contextes. Pour démontrer l'aspect pratique de Protego, nous
fournissons un prototype et des benchmarks montrant que Protego est plus de deux fois plus rapide que les approches
de l'état de l'art basées sur Idemix, le schéma d'accréditation le plus largement utilisé pour les blockchains à autorisation.

ABSTRACT

This thesis studies malleability in the context of public-key encryption and digital signatures, presenting advances and
applications to privacy-enhancing technologies.
The first part addresses the problem of Generic Plaintext Equality and Inequality Proofs. Given two ciphertexts generated
with a public-key encryption scheme, the problem of plaintext equality consists in determining whether the ciphertexts
hold the same value. Similarly, the problem of plaintext inequality consists in deciding whether they hold different
values. Previous work has focused on building new schemes or extending existing ones to include support for plaintext
equality/inequality. We propose generic and simple zero-knowledge proofs for both problems, which can be instantiated
with various encryption schemes. We do so by formalizing notions related to malleability in the context of public-key
encryption and proposing a definitional framework for Generic Randomisable Encryption, which we use to build our
protocols.
The next part turns to Structure-Preserving Signatures on Equivalence Classes, the main building block of subsequent
parts. First, we propose new and more efficient constructions under standard assumptions. Then, we build an anonymous
attribute-based credential (ABC) scheme under standard assumptions, which extends previous work in several ways. We
improve expressiveness, provide efficiency trade-offs and propose an issuer-hiding notion that allows credential holders
to hide the issuer's identity during showings.
The last part is devoted to presenting Protego, a new ABC scheme for permissioned blockchains. It builds upon the
previous contributions, and although it is discussed in the context of permissioned blockchains, it can also be used in
other settings. To show the practicality of Protego, we provide a prototype implementation and benchmarks showing that
Protego is more than twice faster than state-of-the-art approaches based on Idemix, the most widely used ABC scheme
for permissioned blockchains.

KEYWORDS

Public-key Cryptography, Digital Signatures, Zero-Knowledge Proofs, Provable Security, Anonymous
Credentials.
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