
Secure Cumulative Reward Maximization in
Linear Stochastic Bandits

Radu Ciucanu1, Anatole Delabrouille2, Pascal Lafourcade3, and Marta Soare4

1 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Orléans, France,
radu.ciucanu@insa-cvl.fr

2 Univ. Bordeaux, LIMOS/LIFO, Clermont-Ferrand, France,
anatole.delabrouille@etu.u-bordeaux.fr

3 Univ. Clermont Auvergne, LIMOS CNRS UMR 6158, Clermont-Ferrand, France,
pascal.lafourcade@uca.fr

4 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France,
marta.soare@univ-orleans.fr

Abstract. The linear stochastic multi-armed bandit is a sequential learn-
ing setting, where, at each round, a learner chooses an arm and receives
a stochastic reward based on an unknown linear function of the chosen
arm. The goal is to collect as much reward as possible. Linear ban-
dits have popular applications such as online recommendation based on
user preferences, where obtaining a high reward means recommending an
item with high expected rating. We address the security concerns that
occur when outsourcing the data and the cumulative reward maximiza-
tion algorithm to an honest-but-curious cloud. We propose LinUCB-DS,
a distributed and secure protocol that achieves the same cumulative re-
ward as the standard LinUCB algorithm, without disclosing to the cloud
the linear function used to draw arm rewards. We formally prove the
complexity and security properties of LinUCB-DS. We also show that
LinUCB-DS can be easily adapted to secure the SpectralUCB algorithm,
which improves LinUCB for a class of linear bandits. We show the fea-
sibility of our protocols via a proof-of-concept experimental study using
the MovieLens movie recommendation dataset.

1 Introduction

The stochastic multi-armed bandit game is a sequential learning framework,
which consists of a repeated interaction between a learner and the environment.
The learner is given a set of choices (arms) with unknown associated rewards
and a limited number of allowed interactions with the environment (budget).
With the goal of maximizing the sum of the observed rewards, the learner se-
quentially chooses an arm at each time step and the environment responds with
a stochastic reward corresponding to the chosen arm. In the linear stochastic
bandit setting, the input set of arms is a fixed subset of Rd, revealed to the
learner at the beginning of the game. When pulling an arm, the learner observes
a noisy reward whose expected value is the inner product between the chosen

Data Client

Data OwnerBudget

Cumulative Reward

Data

Fig. 1. Outsourcing Data and Computations.

arm and an unknown parameter characterizing the underlying linear function
(common to all arms).

Stochastic linear bandits can be used to model online recommendation: the
arms are the objects that might be recommended and a reward is the user’s
response to a recommendation e.g., the click through rate or the score associ-
ated to the recommendation. The recommender wants to maximize the sum of
rewards, thus the recommender needs to predict which object is more likely to
be of interest for a certain user. Also, while discovering such object, the recom-
mender must not disappoint the user with too much bad recommendations. The
unknown parameter of the reward function is the user preference, more precisely
the weights that the user gives to each of the d features in assessing an item.

In this paper, we consider a scenario inspired from the machine learning as a
service cloud computing model, where the machine learning data and algorithms
are outsourced to the cloud, which yields inherent data security concerns [5]. We
depict this scenario in Fig. 1 and we illustrate it next with an example. Let
the data owner be a large company owning multiple surveys on many types of
items and users. Then, let the data client be a small recommendation company
that is willing to pay a budget to acquire a part of a survey i.e., to find out the
cumulative reward obtainable for a subset of types of items and users. This is
a classical scenario, where small companies benefit of large scale data without
having to perform the survey themselves, and where large companies monetize
their data. The accuracy of the result returned to the data client is correlated
to the invested budget.

The machine learning as a service cloud computing model is useful when
neither the data owner nor the data client want to perform the computations.
They rather choose to entrust the computation to a third-party, for example to a
public cloud such as Google Cloud Platform, Amazon Web Services, or Microsoft
Azure. However, cloud providers do not usually address the fundamental problem
of protecting data security. The outsourced data can be communicated over some
network and processed on some machines where malicious cloud admins could
learn and leak sensitive user data. The data owner wishes to remain the only one
that has the complete knowledge of her data, and only the data client should be
able to gain knowledge of the cumulative reward for which she paid.

We address the data security issues that occur when outsourcing the linear
bandit data and cumulative reward maximization algorithm to a public cloud.
We propose LinUCB-DS, a secure and distributed protocol based on the standard
LinUCB algorithm [1], which yields the same cumulative reward as LinUCB
while satisfying desirable security properties that we formally prove. The key

ingredients of LinUCB-DS are (i) Paillier cryptographic scheme that is additive
homomorphic i.e., it allows to compute the encrypted value of the sum of two
numbers, given only their ciphertexts, without revealing the numbers in plain,
and (ii) secure multi-party computation i.e., the computation is split among two
cloud participants, which can jointly compute the algorithm output, without
revealing their partial input to each other.

Related Work. Algorithms based on computing upper confidence bounds (UCB)
on arm values are commonly used for cumulative reward maximization strate-
gies. The classical UCB algorithm [3] for multi-armed bandits has been applied
to linear bandits in various works (for instance [1,2,12]) and is referred to as
LinUCB, OFUL (Optimism in the Face of Uncertainty for Linear bandits), or
LinRel (Linear Reinforcement Learning). Following [11, Chapter 19], we use
LinUCB as a generic name for UCB applied to stochastic linear bandits and we
specifically rely on the algorithm in [1], in the case where the set of arms is fixed.

There is a recent line of research on adding privacy-preserving guarantees
to UCB-like algorithms, mostly using differential privacy techniques [7,13,16]
including for linear bandits [15]. The use of differential privacy has a low impact
on execution time compared to non-secured algorithms, but outputs different
cumulative rewards. This is a consequence of the noise added to the input or
the output of differentially-private algorithms. This difference propagates in the
regret analysis, which suffers an additive or multiplicative factor compared to
the regret of standard non-secured algorithms.

In contrast, our approach based on cryptographic schemes and secure multi-
party computation implies heavier computations, but outputs exactly the same
cumulative reward as standard non-secured algorithms. Hence, both approaches
(differential privacy vs cryptography) have advantages and disadvantages. Secure
bandit algorithms using cryptographic techniques have been already proposed
for a different problem: best arm identification in multi-armed bandits [6].

To the best of our knowledge, our work is the first one that adds security
guarantees to linear bandit algorithms using cryptographic techniques.

Summary of Contributions and Paper Organization. In Sect. 2 we introduce
LinUCB algorithm and some cryptographic tools. Sect. 3 is the main contribu-
tion of the paper: we formalize the expected security properties, and we propose
LinUCB-DS, a secure and distributed protocol based on LinUCB. We show its
correctness and we analyze its theoretical complexity by characterizing the num-
ber of cryptographic operations. In Sect. 4, we show the security properties of
LinUCB-DS. In Sect. 5, we present our experimental study based on the Movie-
Lens dataset, which confirms the feasibility of LinUCB-DS. In Sect. 6, we show
how our protocol can be easily adapted to secure SpectralUCB [17] that is an-
other algorithm that relies on UCB in the linear setting.

2 Preliminaries

We introduce LinUCB algorithm, Paillier encryption, and IND-CPA security.

Input: Budget N and K arms x1, x2, . . . , xK in Rd
Constants: Regularizer γ > 0; confidence parameter δ > 0; noise parameter R > 0;
S > 0 such that ||θ||2 ≤ S; L > 0 such that ∀ i ∈ JKK, ||xi||2 ≤ L
Unknown environment: Expected arm values; the learner has access only to the
output of reward function pull(xi)
Output: Sum of observed rewards for all arms

/ Initialization: Pull an arm and initialize variables /
Let r = pull(xi) / Random reward (scalar) for a randomly selected arm xi /
Let s = r / Sum of rewards of all arms (scalar) /
Let A = γId + xix

>
i / (d× d) matrix /

Let b = rxi / (d× 1) vector /

/ Exploration-Exploitation: At each round, pull an arm and update variables /
For 1 ≤ t < N

Let θ̂ = A−1b / Compute the regularized least-squares estimate of θ /

Let ω = R

√
d · log(1+tL2/γ

δ
) + γ

1
2 · S / Exploration parameter /

/ Compute the UCB arm score Bi (scalar) for each arm based on current θ̂. First
term for exploitation, second term for exploration /

For 1 ≤ i ≤ K
Let Bi = 〈xi, θ̂〉+ω||xi||A−1 /With probability ≥1−δ, Bi is anUCB of 〈xi, θ〉/

Let xm = arg maxi∈JKK Bi / Randomly choose among arms maximizing Bi /
Let r = pull(xm) / Pull arm xm and update the corresponding variables /
Let s = s+ r
Let A = A+ xmx

>
m

Let b = b+ rxm
Return s / Return sum of observed rewards for all arms /

Fig. 2. LinUCB Algorithm [1].

LinUCB. In cumulative reward maximization algorithms, the learner faces the
so-called exploration-exploitation dilemma: at each round, she has to decide
whether to explore arms with more uncertain associated values, or to exploit the
information already acquired by selecting the arm with the seemingly largest
value. UCB-like algorithms guide the exploration-exploitation trade-off by up-
dating, after each new observed reward, a score for each arm, given by the
upper-confidence bound of the estimated arm value. In LinUCB, the arm scores
are based on a regularized least-squares estimate of the unknown parameter of
the linear reward function. At the next round, the arm with the largest updated
score is pulled. Following [1], we present the LinUCB algorithm in Fig. 2.

We rely on the following notations:

• JzK is the set {1, 2, . . . , z}.
• K is the number of arms.

• N is the client’s budget = the number of allowed arm pulls = the number of
observed rewards.

• d is the space dimension = the size of each arm vector = the number of features
of the unknown parameter θ.

• xi (for i ∈ JKK) is an arm = a (d × 1) vector; we assume that all arms are
pairwise distinct.
• ||v||2 is the 2-norm of a Rd vector v.

• ||v||A =
√
v>Av is the weighted 2-norm of a Rd vector v, where A is a (d× d)

positive definite matrix.
• θ is a (d × 1) vector (unknown to the learner) that is the parameter of the
linear reward function.
• 〈xi, θ〉 (for i ∈ JKK) is a scalar (unknown to the learner) defining the expected
reward value of arm xi, computed as the dot product of vectors xi and θ.
• pull(xi) is a function that returns a noisy reward 〈xi, θ〉 + η, where the noise
η is an R-sub-Gaussian random variable, where R ≥ 0 is a fixed constant.
• v(j) is the jth element of a vector v and M(j) is the jth row of a matrix M .

Paillier Asymmetric Encryption. Paillier [14] is an asymmetric partial homo-
morphic encryption scheme defined by a triple of polynomial-time algorithms
(G, E ,D) and a security parameter λ. By 1λ we denote the unary representation
of λ, which is a standard notation in cryptography.
– G(1λ) generates two prime numbers p and q according to λ, sets n = p · q

and Λ = lcm(p − 1, q − 1) (i.e., the least common multiple), generates the
group (Z∗n2 , ·), randomly picks g ∈ Z∗n2 such that M = (L(gΛ mod n2))−1

mod n exists, with L(x) = (x − 1)/n. It sets sk = (Λ,M), pk = (n, g), it
returns (sk, pk).

– E(m) randomly picks r ∈ Z∗n, computes c = gm · rn mod n2 using pk, and
outputs c.

– D(c) computes m = L(cΛ mod n2) ·M mod n using sk, and outputs m.
Paillier’s cryptosystem is additive homomorphic. Let m1 and m2 be two plain-
texts in Zn. The product of the two associated ciphertexts with the public key
pk = (n, g), denoted c1 = E(m1) = gm1 · rn1 mod n2 and c2 = E(m2) = gm2 · rn2
mod n2, is the encryption of the sum of m1 and m2. Indeed, we have: E(m1) ·
E(m2) = c1 · c2 mod n2 = (gm1 · rn1) · (gm2 · rn2) mod n2 = (gm1+m2 · (r1 · r2)n)
mod n2 = E(m1 +m2).

It is also possible to compute the encryption of the product of a ciphertext
and a plaintext: E(m1)m2 = cm2

1 mod n2 = (gm1 · rn)m2 mod n2 = gm1·m2 ·
rn·m2 mod n2 = gm1·m2 · (r′)n mod n2 = E(m1 ·m2).

Encryption and decryption with the public and private key of entity E are
noted EE(.) and DE(.) respectively.

IND-CPA (INDistinguishability under Chosen-Plaintext Attack).
Let Π = (KeyGen, Encrypt, Decrypt) be a cryptographic scheme. The proba-

bilistic polynomial-time (PPT) adversary A tries to break the security of Π. The
IND-CPA game, denoted by EXP(A), works as follows: the adversary A chooses
two messages (m0,m1) and receives a challenge c = Encrypt(LRb(m0,m1)) from
the challenger who selects a bit b ∈ {0, 1} uniformly at random, and where
LRb(m0,m1) is equal to m0 if b = 0, and m1 otherwise. The adversary, knowing
m0,m1 and c, is allowed to perform any number of polynomial computations or
encryptions of any messages, using the encryption oracle, in order to output a

guess b′ of the encrypted message in c chosen by the challenger. Intuitively, Π
is IND-CPA if there is no PPT adversary that can guess b with a probability
significantly better than 1

2 . By α = Pr[b′ ← EXP(A); b = b′], we denote the
probability that A correctly outputs her guessed bit b′ when the bit chosen by
the challenger in the experiment is b. A scheme is IND-CPA secure if α − 1

2 is
negligible function in λ, where a function ϕ is negligible in λ, denoted negl(λ), if
for every positive polynomial p(·) and sufficiently large λ, ϕ(λ) < 1/p(λ). Paillier
is IND-CPA secure under the decisional composite residuosity assumption [14].

3 LinUCB-DS

We propose LinUCB-DS, a secure and distributed algorithm based on LinUCB
cf. Fig. 2 in the setting from Fig. 1. We first list the desired security proper-
ties and the security hypothesis. We next outline the challenges of our problem
setting and the ideas behind our solution. Then, we present the participants of
LinUCB-DS and their pseudo-code. We end this section by arguing the correct-
ness of LinUCB-DS and analyzing its cryptographic overhead.

Security Properties. We expect the following properties, which should hold until
the end of the protocol:
1. No cloud node knows θ.
2. No cloud node knows the cumulative reward, nor any individual reward.
3. An external observer having captured all messages exchanged over the net-

work does not know θ, the rewards, nor which arms have been pulled.

Security Hypothesis. We assume that the cloud is honest-but-curious i.e., it ex-
ecutes tasks dutifully, but tries to extract as much information as possible from
the data that it sees. Our model follows a classical formulation [9] (Ch. 7.5, where
honest-but-curious is denoted semi-honest), in particular (i) each cloud node is
trusted: it correctly does the required computations, it does not sniff the net-
work and it does not collude with other nodes, and (ii) an external observer has
access to all messages exchanged over the network. The aforementioned security
model is of practical interest in a real-world cloud environment. In particular,
to satisfy all our theoretical security properties while achieving the no-collusion
hypothesis, it suffices to host each cloud node of our protocol by a different cloud
provider. This should be feasible as our protocol requires only two cloud nodes.

Challenges. Our problem could be theoretically solved by using a fully homo-
morphic encryption scheme [8], which allows to compute any function directly
in the encrypted domain. However, it remains an open question how to make
such a scheme work fast and be accurate in practice when working with real
numbers. Indeed, by using state-of-the-art fully homomorphic systems (e.g., Mi-
crosoft SEAL5 or HElib6), it is not currently possible to obtain exactly the same
output as the standard, non-encrypted version when securing LinUCB.

5 https://github.com/Microsoft/SEAL
6 http://homenc.github.io/HElib/

https://github.com/Microsoft/SEAL
http://homenc.github.io/HElib/

Paillier additive-homomorphic encryption and secure multi-party computa-
tion (where some party does computations on reals in clear) allow us to develop
a protocol satisfying the expected security properties while being feasible in
practice. Indeed, if the data owner outsources E(θ(1)), . . . , E(θ(d)), the cloud
can generate an encrypted reward of arm xi as E(θ(1))xi(1) · · · E(θ(d))xi(d)E(η).
Then, variables s, b, and Bi can be also updated in the encrypted domain. Since
the Bi are encrypted, the cloud cannot compare them and we need to find a
secure way to decrypt and compare the Bi. The idea (already known in the lit-
erature e.g., in the context of private outsourced sort [4]) is that the data owner
does not use the data client’s public key to outsource θ, but instead uses the key
of a second cloud node whose only task is to compare the Bi. At the end, the
cloud nodes perform a key switching without revealing s to the cloud.

Participants of LinUCB-DS (2 of them in the cloud).
• DO (data owner) outsources data to the cloud.
• DC (data client) sends the budget to the cloud. At the end, she receives the
result of the algorithm.
• P is the principal node of the cloud, which receives the arms, budget, and
encrypted θ. This node pulls the arms and updates the variables.
• Comp is a cloud node whose Paillier public key is used to outsource θ. Comp
is the only node that can decrypt and compare the Bi.

Next, we present the three phases of LinUCB-DS: Initialization, Exploration-
Exploitation, and Key Switching. The numbers of the steps refer to those from
Fig. 3 and 4. We rely on the following additional notation:
• z∗ is EE(z), where E is clear from the context.

• EDPpk(v
∗, w) =

∏d
j=1(v(j)∗)w(j) is the Encrypted Dot Product of v∗ (vector

of size d of data encrypted with pk) and w (vector of size d of data in clear).
• pull∗(xi) = EDPComp(θ

∗, xi)EComp(η) is the encrypted reward drawn for an arm
xi using the encrypted unknown parameter θ∗ and a scalar noise η cf. Sect. 2.
This computation is the encrypted version of the scalar product defined by the
pull(.) function and the homomorphic addition of η.

Initialization.
• Step (1): DC sends to P the budget N . Furthermore, DO sends to P the
arms x1, . . . , xK , the encrypted unknown parameter θ∗ = (θ(1)∗, . . . , θ(d)∗) =
(EComp(θ(1)), . . . , EComp(θ(d))), as well as all algorithm constants cf. Fig. 2.

• Step (2): P randomly chooses an arm xi, generates an encrypted reward r∗ =
pull∗(xi), and initializes variables:

s∗ = r∗.
A = γId + xix

>
i .

b∗ = (b∗(1), . . . , b∗(d)) = ((r∗)xi(1), . . . , (r∗)xi(d)).

Exploration-Exploitation. At each round, an interaction between P and Comp
occurs to decide the next arm to pull. More precisely, for 1 ≤ t < N , we repeat:
• Step (3):

DC P

Comp

DO
(1) N

(1) x1, . . . , xK , θ
∗,

LinUCB constants

(3) σ(listB∗)(4) arg maxσ(i)∈JKK Bσ(i)

(a) Initialization and Exploration-Exploitation Phases.

DC P Comp

(5) EComp(s+ rand)

(6) EDC(s+ rand)

(7) EDC(s)

(b) Key Switching Phase.

Fig. 3. Messages exchanged between LinUCB-DS participants. Steps 3 and 4 are done
N−1 times. The dashed rectangle is the cloud. Details on each step are given in Sect. 3.

(i) P computes θ̂∗ as the product between matrix A−1 and vector b∗:

θ̂∗ = (θ̂(1)∗, . . . , θ̂(d)∗) = (EDPComp(b
∗, A−1(1)), . . . ,EDPComp(b

∗, A−1(d))).
(ii) P computes listB∗ that is the list of B∗1 , . . . , B

∗
K such that, for each arm xi,

B∗i = EDPComp(θ̂
∗, xi)EComp(ω||xi||A−1), where ω is the exploration param-

eter cf. Fig. 2. Then, P generates a random permutation σ : JKK→ JKK and
sends σ(listB∗) to Comp.

• Step (4):

(i) Comp decrypts each element of the permuted list of encrypted Bi values.
Then, Comp sends arg maxσ(i)∈JKKBσ(i) to P.

(ii) P retrieves xm that is an arm maximizing Bi. Then, P computes r∗ =
pull∗(xm) and updates the variables:
s∗ = s∗r∗.
A = A+ xmx

>
m.

b∗ = (b∗(1), . . . , b∗(d)) = (b∗(1)(r∗)xm(1), . . . , b∗(d)(r∗)xm(d)).

Key Switching. The sum of rewards is re-encrypted using the DC’s public key.
• Step (5): P chooses a random number rand and sends to Comp the following
EComp(rand)s∗ = EComp(rand + s).
• Step (6): Comp decrypts EComp(rand +s), encrypts the result using DC’s public
key, and sends it back to P. Note that Comp sees in clear rand + s but cannot
infer s because it does not know rand .
• Step (7): P sends EDC(s) = EDC(rand + s)EDC(−rand) to DC, which decrypts
EDC(s) and learns s.

/ Initialization: Pull an arm and initialize variables /
Receive N from DC / Step 1 /
Receive x1, . . . , xK , θ∗, and algorithm constants from DO
Randomly choose i ∈ JKK / Step 2 /
Let r∗ = pull∗(xi)
Let s∗ = r∗

Let A = γId + xix
>
i

Let b∗ = ((r∗)xi(1), . . . , (r∗)xi(d))

/ Exploration-Exploitation: At each round, pull an arm and update variables /
For 1 ≤ t < N

Let θ̂∗ = (EDPComp(b
∗, A−1(1)), . . . ,EDPComp(b

∗, A−1(d))) / Step 3 /
For 1 ≤ i ≤ K

Let B∗i = listB∗(i) = EDPComp(θ̂
∗, xi)EComp(ω||xi||A−1)

Randomly choose permutation σ : JKK→ JKK
Send σ(listB∗) to Comp
Receive σ(m) from Comp / Step 4 /
Let m = σ−1(σ(m))
Let r∗ = pull∗(xm)
Let s∗ = s∗r∗

Let A = A+ xmx
>
m

Let b∗ = (b∗(1)(r∗)xm(1), . . . , b∗(d)(r∗)xm(d))

/ Key Switching /
Randomly choose rand ∈ R / Step 5 /
Send EComp(rand)s∗ to Comp
Receive EDC(rand + s) from Comp / Step 6 /
Send EDC(s) = EDC(rand + s)EDC(−rand) to DC / Step 7 /

(a) Pseudo-code of P.

/ Exploration-Exploitation /
For 1 ≤ t < N / Step 4 /

Receive σ(listB∗) from P
For 1 ≤ i ≤ K / Decrypt all elements of the permuted list of Bi values /

Let Bσ(i) = DComp(σ(listB∗)(i))
Send arg maxσ(i)∈JKK Bσ(i) to P

/ Key Switching /
Receive EComp(rand)s∗ from P / Step 5 /
Let rand + s = DComp(EComp(rand)s∗) / Step 6 /
Send EDC(rand + s) to P

(b) Pseudo-code of Comp.

Fig. 4. Pseudo-code of cloud nodes.

Phase Encryptions Decryptions Additions Multiplications

Initialization d+ 1 d 2d
Exploration -
Exploitation

N − 1 (N−1)K (N−1)(d2+Kd+2d) (N−1)(d2+Kd+2d)

Key Switching 1 2 2

Fig. 5. Number of Paillier Cryptographic Operations.

This concludes the presentation of the steps of LinUCB-DS. Before ending
this section, we analyze the correctness and complexity of LinUCB-DS.

Correctness. LinUCB-DS outputs exactly the same cumulative reward as Lin-
UCB and it computes the same reward for the same arm at each round. The
reason is that the Paillier scheme does not change the value of any element,
hence throughout the exact computations on encrypted numbers we conserve
the correctness. In fact, Paillier scheme operates in N, but the values of the arms
and θ are defined in R. Furthermore, θ̂ and the Bi are computed using matrix
inverse, square root and division (all these operations are done in plain, but the
results are added or multiplied to ciphered values). Consequently, we need to
use Paillier with real numbers, or the other way around, use real numbers as
integers. Transforming a value in order to use it with an encryption scheme is
called encoding. The encoding7 we perform on a decimal number is simply to
multiply it by a power of 16 to make it an integer. When we decrypt it, we divide
the result by the same power of 16. This implies storing that power alongside the
ciphertext, in plain. In order not to leak any information on the ciphertexts, we
can use the same power for every encryption. Moreover, we can reduce the choice
of the random permutation σ that P generates at each step to the randomness
in the arg max function of standard LinUCB when several Bi are equal. Thus,
the task distribution does not change the choice of the next arm to pull. We also
confirmed experimentally that there is no difference between the arm-selection
strategy and the outputs of LinUCB vs LinUCB-DS.

Complexity. In Fig. 5, we show the number of Paillier encryptions, decryptions,
and operations on encrypted numbers. We have O(N + d) encryptions, O(NK)
decryptions, O(N(d2 +Kd)) additions and O(N(d2 +Kd)) multiplications.

4 Security Analysis

In this section, we take a close look at what each participant knows and does
not know, and we formally show the security properties of LinUCB-DS.
• DC knows, at the end of LinUCB-DS, the cumulative reward for which she

paid. DC does not take part in the cumulative reward maximization algorithm.

7 https://python-paillier.readthedocs.io/en/stable/_modules/phe/encoding.

html

https://python-paillier.readthedocs.io/en/stable/_modules/phe/encoding.html
https://python-paillier.readthedocs.io/en/stable/_modules/phe/encoding.html

• P knows which arm is pulled at each round, this is why it can update A in
plain. Since P sees θ and the rewards encrypted, it cannot see in plain the value
of any among s, b, θ̂, Bi, hence it cannot learn θ nor the sum of rewards.
• Comp decrypts all Bi, but sees these values in a permuted order hence

it cannot associate an arm xi with its value Bi. Since Comp does not know θ,
then every arm could have possibly produced every Bi with some θ, hence Comp
cannot compute the exploration term of a Bi, hopping to retrieve the rewards
generated by some arm.
• An external network observer has access to the exchanged data shown in

Fig. 3. It sees in plain N and the arms, and at each round σ(listB∗) as well as
σ(m) the index of the maximal element in the list. As σ is changed every round,
it cannot deduce the arm that is really pulled. Moreover, it cannot retrieve s or
θ because σ(listB∗) and s are encrypted.

In the rest of this section, we formally state the security properties of P, of
an external observer, and of Comp. We formally prove all these properties in
Appendix A. Recall that we have presented the security hypothesis in Sect. 3.
In particular, we assume that the cloud nodes Comp and P do not collude. For a
participant E, we denote by dataE the data to which E has access. By Apb(d) we
denote the answer of a Probabilistic Polynomial-Time (PPT) adversary A that
knows data d and tries to solve problem pb. We recall that by JKK we denote
the set {1, 2, . . . ,K}. By negl(λ) we denote any negligible function in λ.

Security of P. The data to which P has access is θ∗, then at each round t: the
arm pulled, r∗, b∗, θ̂∗, the matrix A, and s∗. At the end, P also knows EDC(s).

Theorem 1. An honest-but-curious P cannot infer any coordinate θ(i) of the
secret θ with probability better than random. More precisely, for all PPT adver-
sary A, |P

[
(i, θ(i)′)← Aθ(dataP); θ(i)′ = θ(i)

]
− 1
|θ(i)| | ≤ negl(λ), with θ(i)′ the

guess of A of θ(i), and |θ(i)| the cardinality of the set of possible values of a
coordinate.

Theorem 2. An honest-but-curious P cannot infer any reward generated during
the protocol with better probability than random. More precisely, for any PPT
adversary A, |P [(t, r′)← Ar(dataP); r′ = r]− 1

|r| | = negl(λ), with (t, r′) the guess

of A of the reward generated at round t, and |r| the cardinality of the set of
possible rewards for the arm chosen at round t.

Theorem 3. An honest-but-curious P cannot infer cumulative reward s.

Security of an External Observer. An external observer has access to the fol-
lowing data: at the beginning θ∗, the arms and the budget N ; at each round,
σ(listB∗) and the argmax of the list; at the end, EComp(rand+s), EDC(rand+s),
and then EDC(s).

Theorem 4. An external observer having access to the set M of all the mes-
sages exchanged during the protocol cannot infer the value of any coordinate of θ
with better probability than random. More precisely, for any PPT adversary A,

|P
[
(i, θ(i)′)← Aθ(M); θ(i)′ = θ(i)

]
− 1
|θ(i)| | ≤ negl(λ), with θ(i)′ the guess of A

of θ(i), and |θ(i)| the cardinality of the set of possible values of a coordinate.

Theorem 5. An external observer having access to the set M of all messages
exchanged during the protocol cannot infer the value of the sum of rewards
with better probability than random. More precisely, for any PPT adversary A,
|P [s′ ← As(M); s′ = s] − 1

|s| | ≤ negl(λ), with s′ the guess of A of the sum of

rewards, and |s| the cardinality of the set of possible sums at the end of the
protocol.

Lemma 1. Consider a list l = [l1, . . . , ln], a random permutation σ and the
permuted list σ(l) = [lσ(1), . . . , lσ(n)]. Knowing σ(l), a PPT adversary A cannot
guess one element of l with probability better than random. More specifically,

P
[
(i, g(i))← Aσ−1

(σ(l)) ∈ {i, σ−1(i)}i∈JKK

]
= 1

K + negl(λ), where g(i) is A’s

guess for the preimage of the element in position i.

Theorem 6. An external observer having access to the set M of all messages
exchanged during the protocol cannot infer the arm pulled at any round. More
precisely for any PPT adversary A, P [(t, x′t)← Ax(M);x′t = xt] = 1

K +negl(λ),
with x′t being A’s guess of the arm pulled at round t.

Security of Comp. Comp can decrypt the elements received from P, hence the
data to which it has access is: at each round, a permuted list σ(listB) of all Bi,
and at the end the value rand+ s.

Theorem 7. An honest-but-curious Comp cannot associate an element of σ(listB)
to the arm to which it belongs. More precisely, for any PPT adversary A,

P
[
(i, B′i)← Aσ

−1

(dataComp);B
′
i = Bi

]
= 1

K + negl(λ).

Theorem 8. An honest-but-curious Comp cannot infer cumulative reward s.

5 Experiments

We present a proof-of-concept experimental study that confirms the theoretical
analysis, and shows the scalability and feasibility of LinUCB-DS. For repro-
ducibility reasons, we make our code available on a public Git repository8.

Experimental Setup. We implemented LinUCB-DS in Python 3 and did our
experiments on a laptop with CPU Intel Core i5-8350U @ 1.70GHz and 16GB
RAM, running Ubuntu 18.04.5. For Paillier we used the phe library9.

8 https://github.com/anatole33/LinUCB-secure
9 https://python-paillier.readthedocs.io/en/develop/

https://github.com/anatole33/LinUCB-secure
https://python-paillier.readthedocs.io/en/develop/

MovieLens Dataset. All our experiments are done on real data using the 100K
MovieLens dataset [10]. This dataset is a collection of 100K movie ratings on a
scale of 1 to 5, given by 943 users of the MovieLens website on 1682 movies. The
collection of ratings is represented by a matrix F (943 × 1682), whose element
(i, j) is the rating of user i on movie j if the rating exists, otherwise the element
is 0. Since the user-movie matrix F is very sparse, we factored it using low-
rank matrix factorization. To this purpose, we used the Google Colab matrix
factorization code10 and we obtained: a user embedding matrix U (943×d), where
row i is the embedding for user i, and a movie embedding matrix M (1682× d),
where row j is the embedding for movie j. The embeddings are learned such that
the product UM> is a good approximation of the ratings matrix F . Note that the
(i, j) entry of UM> is the dot product of the embeddings of user i and movie j,
computed such that it should be close to the (i, j) entry of F . Then, for every user
i in matrix U , we were able to use linear bandit algorithms to recommend movies
j from matrix M . In the presentation of the experimental results, the reported
d values correspond to choices of d in the aforementioned matrix factorization
approach, whereas the reported K arms correspond to choosing the first K
movies in the dataset. We set algorithm constants as in a standard related work
setting [17]: γ = 0.01, δ = 0.001, R = 0.01, and S = log t.

Before discussing our experimental results, we would like to stress that for
each run of LinUCB-DS we use exactly the same arm-selection strategy and
obtain the same cumulative reward as LinUCB. The focus of our experiments is
on the study of the feasibility and scalability of LinUCB-DS.

Experimental Results. As outlined in the theoretical complexity analysis at the
end of Sect. 3, LinUCB-DS has an inherent overhead due to the use of crypto-
graphic operations w.r.t. standard LinUCB. Our first implementation naturally
showed this overhead. For example, for d = 3, K = 15, N = 1000, and Paillier
keys of 1024 bits, LinUCB-DS takes 115 seconds, whereas LinUCB takes less
than a second. Seen this overhead, we zoomed on the time taken by the different
steps of LinUCB-DS to understand how we can optimize our implementation. We
observed that three steps of LinUCB-DS take the lion’s share of the computation
time. We refer to these steps using the numbers listed in Sect. 3:

• Step (3).i (done by P): compute θ̂∗ as the product of a matrix of dimension
(d × d) and a vector of size (d × 1). This involves d2 multiplications and d2

additions on cyphertexts.

• Step (3).ii (done by P): compute B∗i in the encrypted domain as the scalar
product of two vectors of size d, which is done K times as there is a B∗i -value
for each arm.

• Step (4).i (done by Comp): decrypt the list of B∗i , which takes K decryp-
tions. The time of a decryption is higher than the time of an addition or a
multiplication.

10 https://github.com/google/eng-edu/blob/master/ml/

recommendation-systems/recommendation-systems.ipynb

https://github.com/google/eng-edu/blob/master/ml/recommendation-systems/recommendation-systems.ipynb
https://github.com/google/eng-edu/blob/master/ml/recommendation-systems/recommendation-systems.ipynb

1 2 3 4 5 6
Number of cores

0

100

200

300

400

500

T
im

e
 (

se
co

n
d
s)

Step (4).i

Step (3).ii

Step(3).i

(a) K = 50, d = 5, and N = 200.

1 2 3 4 5 6
Number of cores

0

50

100

150

200

250

300

350

400

T
im

e
 (

se
co

n
d
s)

Step (4).i

Step (3).ii

Step(3).i

(b) K = 6, d = 18, and N = 200.

10 20 30
Number of arms

0

50

100

150

200

250

T
im

e
 (

se
co

n
d
s)

Number of cores

1

2

3

4

5

6

(c) K varies, d = K
10

, and N = 200.

Fig. 6. Computation time of LinUCB-DS split on the three costliest steps, with differ-
ent parameters, when increasing the number of cores (6(a) and 6(b)), and the scalability
of LinUCB-DS when increasing K and d (6(c)).

Each of the aforementioned three steps is done N − 1 times. Fortunately,
these steps are parallelizable. For instance, (3).ii and (4).i can be equivalently
computed by splitting the list and parallelizing the computations. In (3).i, a

coordinate of θ̂∗ is obtained as the scalar product of a row of matrix A−1 and
the vector b∗. We can divide the matrix and compute the coordinates of θ̂∗ in
parallel. We used the multiprocessing11 library to implement a parallel version
of LinUCB-DS that takes advantage of these ideas for parallelizing our code.

In Fig. 6(a) and 6(b), we present the speedup of parallelization on LinUCB-DS
computation time, while zooming on the three aforementioned costliest steps (the
other steps take negligible time), using two distinct input configurations. We used
Paillier keys of 2048 bits. We believe that these figures are sufficient to show that
our implementation correctly follows the theoretical expectations. Indeed, the
computation of θ̂∗ depends only on d, the decryption of the list of B∗i only on K,

11 https://docs.python.org/3/library/multiprocessing.html

https://docs.python.org/3/library/multiprocessing.html

and the construction of the list of B∗i on both. Moreover, the computation time
decreases when increasing the number of cores, which is a desirable feature as
our implementation is able to take advantage of modern multi-core architectures
in order to reduce the practical overhead due to cryptographic primitives.

In Fig. 6(c), we stress test the scalability of LinUCB-DS, in a scenario where
K is 10 times larger than d. Indeed, in stochastic linear bandits the goal is
to exploit the linear structure and reduce the number of needed estimations,
from the estimation of K arm values to the estimation of the d features of the
common unknown parameter θ. The observed computation time confirms our
theoretical analysis. Moreover, we showed that the parallelization leads to a
significant reduction in the computation time of LinUCB-DS.

6 Adaptability of LinUCB-DS

We show that LinUCB-DS can be easily adapted to secure SpectralUCB [17],
an algorithm that models with linear bandits the problem of cumulative reward
maximization on a graph. The arms are the graph nodes and the reward of an
arm is a smooth function on the graph. A smooth graph function returns similar
values for close nodes. When the graph models a social network, such a setting
is useful for recommendation systems, since we expect that people close on the
graph have similar tastes and probably like the same recommended items.

To give the right input to SpectralUCB, some preprocessing is necessary. A
matrix of similarities (edge weights) of the graph is used to construct a graph
Laplacian L that is a (K ×K) matrix. Then, SpectralUCB computes the eigen-
decomposition of L as QΛLQ>, with Q a (K × K) orthogonal matrix whose
columns are the eigenvectors and ΛL is a diagonal matrix whose elements are
the corresponding eigenvalues. An arm is a row of Q, and the expected reward
value of arm qi is given by 〈qi, θ〉, with θ the parameter of the smooth function,
a (K × 1) vector. Note that this implies that in SpectralUCB the dimension of
the vectors is equal to the number of arms (K = d).

As for LinUCB, when pulling an arm qi, in SpectralUCB, one observes a noisy
reward 〈qi, θ〉 + η, where θ is the unknown parameter and the noise η is an R-
sub-Gaussian random variable. To compute an estimation of θ, at each round t,
SpectralUCB uses the arms previously pulled, joined in a matrix AS of dimension
(K×(t−1)) and the rewards previously observed in a vector bS of dimension ((t−
1) × 1). Then, SpectralUCB computes the estimate of the unknown parameter

as θ̂S = (AS + ΛL + γId)
−1bS , where ΛL is an additional spectral penalty for

the regularized least-squares estimate. As in LinUCB, to decide the next arm
to be pulled, SpectralUCB relies on updated UCB on the arm-values and picks
the arm with the largest UCB. Differently from LinUCB, the exploration term
in SpectralUCB uses the effective dimension d′ that depends on the eigenvalues
and is small when eigenvalues grow rapidly above t, which is the case when
d = K >> t. Specifically, the exploration parameter of SpectralUCB is given by
ωS = 2R

√
d′ log(1 + t/γ) + 2 log(1/δ)+C, where C is an upper-bound on ||θ||ΛL .

The UCB for an arm qi is given in SpectralUCB by Bi,S = 〈qi, θ̂S〉+ωS ||qi||A−1
S

.

10 20 30
N = K = d

0

50

100

150

200

250

300

T
im

e
 (

se
co

n
d
s)

LinUCB-DS 1 core

SpectralUCB-DS 1 core

LinUCB-DS 6 cores

SpectralUCB-DS 6 cores

Fig. 7. Time of LinUCB-DS vs SpectralUCB-DS.

Given the similarities between LinUCB and SpectralUCB, we observed that
it is not difficult to adapt the ideas behind LinUCB-DS to secure SpectralUCB.
Encrypting θ results in generating encrypted rewards, and constructing vector bs
with encrypted values. Then, θ̂S and all Bi,S are also encrypted. The messages
exchanged during the protocol are identical as for LinUCB-DS (cf. Fig. 3), in
particular Comp chooses the next arm to pull. By SpectralUCB-DS we denote
the secure and distributed version of SpectralUCB.

In SpectralUCB, the dimension of the vectors is equal to the number of arms:
K = d and for our proof-of-concept experiment (reported in Fig. 7), we fixed
K = N = d. Following the setting in [17], we used a similarity graph over movies
from the MovieLens dataset: the graph contains an edge between movies i and
j if the movie j is among the 10 nearest neighbors of the movie i in the latent
space M. As in [17], the weight on all edges is 1 and parameters’ values are: γ =
0.01, δ = 0.001, R = 0.01, C = log t. As expected, SpectralUCB-DS is slightly
faster than LinUCB-DS because it manipulates a θ̂ computed with a matrix of
size depending on t, and t ≤ K. We have also zoomed on the time taken by each
step of SpectralUCB-DS to observe that the three costliest steps are the same
as for LinUCB-DS, and we have also observed that the parallelization technique
described for LinUCB-DS has a similar positive impact on SpectralUCB-DS.

7 Conclusions

We tackled the problem of secure cumulative reward maximization in linear
stochastic bandits. This problem has applications in recommendation systems
and Web-targeted advertisements, where sensitive user data and preferences
are used for personalized recommendations. We considered a machine learn-
ing as a service scenario, where data and computations are outsourced to some
honest-but-curious cloud, which yields inherent security concerns. We proposed
LinUCB-DS, a distributed and secure protocol that outputs exactly the same
cumulative reward as standard LinUCB, while enjoying desirable security prop-

erties. Towards this goal, we relied on Paillier encryption scheme and secure
multi-party computation. We characterized the overhead of cryptography from
both theoretical and empirical points of view. Our experiments on the Movie-
Lens movie recommendation dataset showed the scalability and feasibility of
LinUCB-DS. Moreover, we showed that LinUCB-DS can be easily adapted to
secure other UCB-like linear bandit algorithms. This happens because the se-
curity properties of our protocol hold true irrespective of the arm-selection
strategy, which differs from an algorithm to another. To show this, we adapted
LinUCB-DS to secure SpectralUCB.

Providing security guarantees for machine learning algorithms is a growing
research topic. The use of distribution of tasks and cryptography is still an under-
explored research direction for this task. We plan to rely on such techniques to
develop further security protocols for other types of bandit algorithms and for
different machine learning settings.

A Appendix: Security Proofs for Sect. 4

Proof of Theorem 1. Assume a PPT adversary A who, given dataP has a proba-
bility of 1

|θ(i)| + x+ negl(λ) of guessing one coordinate of θ. In the worst case, it

makes a guess on each coordinate with the same probability 1
d . We also assume

that if dataP is different from the data P has really collected during the protocol
(for instance if a value has been changed to another unrelated to the protocol),
then A has not any advantage. We show that using A, an adversary B obtains
an advantage non-negligible in a Paillier IND-CPA game.

B chooses two values m0 and m1 and gives them to a challenger who returns
m∗b = EComp(mb), with b = 0 or 1 with probability 1

2 . Then B constructs an
execution of the secure protocol, with θ and arms of his choice. In particular,
it sets θ1 = m1. At the end, it calls A on dataP except that it replaces θ′1 by
m∗b . Let us call it data ′P. If Aθ(data′P) returns (1,m1), then B answers 1 to the
challenger, otherwise it answers at random 0 or 1 with probability 1

2 .

The probability of success of B in every situation is:

– In A’s guess, if i 6= 1 (with probability 1 − 1
d), then B answers at random

and his probability of success is 1
2 .

– If i = 1 (with probability 1
d):

• If b = 0 (with probability 1
2) then data ′P is not valid and A has not any

advantage.
∗ It answers (1,m1) with probability 1

|θ1| , where B answers 1 to the

IND-CPA game and is wrong.
∗ It gives an other value for θ′1 with probability 1− 1

|θ1| , then B answers

at random and has a probability of success of 1
2 .

• If b = 1 (with probability 1
2) then A benefits of its advantage.

∗ By hypothesis, A returns (1,m1) with probability 1
|θ1| +x+ negl(λ).

Then B trusts him and is right.

∗ By hypothesis, A returns another value for θ′1 with probability 1 −
(1
|θ1| + x+ negl(λ)). B answers randomly and is correct with proba-

bility 1
2 .

Summing it up, the probability of success of B in his IND-CPA game is:
P (B) = (1 − 1

d) 1
2 + 1

d
1
2 (1 − 1

|θ1|)
1
2 + 1

d
1
2 (1
|θ1| + x + negl(λ)) + 1

d
1
2 (1 − 1

|θ1| − x −
negl(λ)) 1

2
1
2 −

1
2d + 1

4d −
1

4d|θ1| + 1
2d|θ1| + 1

2dx + 1
4d −

1
4d|θ1| −

1
4dx + negl(λ) =

1
2 + 1

4dx + negl(λ). It gives him a non-negligible advantage in a classical IND-
CPA game on Paillier scheme, which contradicts the fact that Paillier is IND-
CPA secure. Then our assumption was wrong and an adversary who has an
advantage in retrieving a coordinate of θ with dataP cannot exist.

Proof of Theorem 2. The same proof as above can be applied, with B changing
one of the rewards with m∗1 after the execution of the protocol. It yields to B an
advantage of 1

2 + 1
4N x+ negl(λ) to an IND-CPA game (with N the budget and

the number of pulls) which is impossible if Paillier is IND-CPA secure.

Proof of Theorem 3. Let A be a PPT adversary trying to retrieve the cumulative
sum of rewards and B an adversary trying to retrieve any of the N rewards gen-
erated. As(data) has a non-negligible advantage⇔ Br(data) has a non-negligible
advantage.
⇐ A can call B and obtains the correct value of one reward with probabil-

ity non-negligible. It gives him a lower bound on the sum of all rewards, and
consequently reduces the possibilities of s. It now has a better probability than
random to guess s.
⇒ B calls A and obtains the correct value of s with a non-negligible probabil-

ity. It is an upper bound on the value of one reward, and reduces the possibilities
of all rt.

The bounds do not reduce significantly the space of possibilities if N is big
but N can very well be small, even 1. In any case, the advantage one benefits
from the other is non-negligible.

This ensures that P cannot retrieve s, because it would give him an advantage
in retrieving one of the rewards, and it has been proven impossible.

Proof of Theorem 4. Same proof as for Theorem 1 applies.

Proof of Theorem 5. Assume a PPT adversaryA who, givenM, has a probability
of guessing the correct s with probability 1

|s|+x+negl(λ). Then we show how an

adversary B can use A to gain a non-negligible advantage in a Paillier IND-CPA
game. Again, we assume that if M is changed with a value unrelated to the
protocol, then A does not conserve its advantage. B simulates the execution of
the protocol with θ and arms of his choice. It knows the value of s at the end.
He then chooses s as m1 for the IND-CPA challenge, and a value out of the set
of possible s for m0. It gives m0 and m1 to the challenger who returns EDC(mb)
with b = 0 or 1 with probability 1

2 . B takes the setM of all messages exchanged
by the nodes for the protocol, and replaces EDC(s) with EDC(mb). It calls As(M′)

and observes the output. If it is s, it answers 1 to the decisional challenge. Else,
it answers at random 0 or 1 with probability 1

2 .
– b = 0 (with probability 1

2)
• A returns s with probability 1

|s| and B is wrong.

• A returns something else with probability 1− 1
|s| , B answers at random

and is right with probability 1
2 .

– b = 1 (with probability 1
2)

• A returns s with probability 1
|s| + x + negl(λ), and B answers 1 and is

right.
• A returns something else with probability 1 − (1

|s| + x + negl(λ)), B
answers at random and is right with probability 1

2 .
In total, B answers correctly the challenge with probability P (B) = 1

2 (1 −
1
|s|)

1
2 + 1

2 (1
|s| +x+negl(λ))+ 1

2 (1− 1
|s| −x−negl(λ)) 1

2 = 1
4 −

1
4|s| +

1
2|s| +

1
2x+ 1

4 −
1

4|s| −
1
4x+ negl(λ) = 1

2 + 1
4x+ negl(λ). He has gain a non-negligible advantage

in the Paillier IND-CPA game, which is impossible. Thus, such an adversary A
cannot exist.

Proof of Lemma 1. This is immediate, as all images/preimages are equally likely
if σ is uniformly selected.

Proof of Theorem 6. Assume an adversary Ax(M) who has a probability 1
K +

x+negl(λ) of guessing the correct arm pulled at round t. It also knows the index
of the maximal element in the permuted list of Bi that P and Comp exchange at
round t. That index is the permuted index of the arm who is really pulled, xt.
It means that A can make a guess on an element of the permutation σt and is
right with the same probability as it is right at guessing the arm pulled at round
t, and it benefits of the same non-negligible advantage. But A does not know σ
and should only have a probability of 1

K of guessing an element of σ according
to Lemma 1. This is a contradiction, so A cannot exist.

Proof of Theorem 7. Assume a PPT adversary A who, given dataComp is able to
retrieve the value Bi of arm i with probability 1

K + x + negl(λ). After making
his guess B′i, he can look in σ(listB) the position of B′i and make a guess on
the value of σ(i). It benefits of the same non-negligible advantage in guessing an
element of the permutation σ on which it has no information. This contradicts
Lemma 1, thus such an adversary cannot exist.

Proof of Theorem 8. For a fixed s, if the random number rand is uniformly
chosen, then rand + s can take all possible values with the same probability.
Hence when Comp sees rand + s, it gains no information on s.

References

1. Abbasi-Yadkori, Y., Pál, D., Szepesvári, C.: Improved Algorithms for Linear
Stochastic Bandits. In: NIPS. pp. 2312–2320 (2011)

2. Auer, P.: Using Confidence Bounds for Exploitation-Exploration Trade-offs. JMLR
3, 397–422 (2002)

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-Time Analysis of the Multiarmed
Bandit Problem. Machine Learning 47(2-3), 235–256 (2002)

4. Baldimtsi, F., Ohrimenko, O.: Sorting and Searching Behind the Curtain. In: Fi-
nancial Cryptography. pp. 127–146 (2015)

5. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast Homomorphic Evaluation
of Deep Discretized Neural Networks. In: CRYPTO. pp. 483–512 (2018)

6. Ciucanu, R., Lafourcade, P., Lombard-Platet, M., Soare, M.: Secure Best Arm
Identification in Multi-Armed Bandits. In: ISPEC. pp. 152–171 (2019)

7. Gajane, P., Urvoy, T., Kaufmann, E.: Corrupt Bandits for Preserving Local Pri-
vacy. In: ALT. pp. 387–412 (2018)

8. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: STOC. pp.
169–178 (2009)

9. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press (2004)

10. Harper, F.M., Konstan, J.A.: The MovieLens Datasets: History and Context. ACM
TiiS 5(4), 19:1–19:19 (2016)

11. Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press
(2020), https://tor-lattimore.com/downloads/book/book.pdf

12. Li, L., Chu, W., Langford, J., Schapire, R.E.: A Contextual-bandit Approach to
Personalized News Article Recommendation. In: WWW. pp. 661–670 (2010)

13. Mishra, N., Thakurta, A.: (Nearly) Optimal Differentially Private Stochastic Multi-
Arm Bandits. In: UAI. pp. 592–601 (2015)

14. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: EUROCRYPT. pp. 223–238 (1999)

15. Shariff, R., Sheffet, O.: Differentially Private Contextual Linear Bandits. In:
NeurIPS. pp. 4301–4311 (2018)

16. Tossou, A.C.Y., Dimitrakakis, C.: Algorithms for Differentially Private Multi-
Armed Bandits. In: AAAI. pp. 2087–2093 (2016)

17. Valko, M., Munos, R., Kveton, B., Kocák, T.: Spectral Bandits for Smooth Graph
Functions. In: ICML. pp. 46–54 (2014)

https://tor-lattimore.com/downloads/book/book.pdf

	Secure Cumulative Reward Maximization in Linear Stochastic Bandits

