Unlinkable and Strongly Accountable Sanitizable Signatures from Verifiable Ring Signatures

Xavier Bultel

Pascal Lafourcade

CANS'17

Signature

Signature

secrete key: sk

public key: pk

Schnorr's signature (1989)

- Key Generation: $pk = g^{sk}$
- Sign(*m*, *sk*): $\sigma = (g^r, z)$ where $z = r + sk \cdot H(g^r || m)$
- Verif(pk, m, σ): check $g^z = g^r \cdot pk^{H(g^r||m)}$

Sanitizable Signature, Atenise et al 2005

signer

sanitizer

Unforgeability

No unauthorized user can generate a valid signature

Immutability

Sanitizer cannot modify unauthorized parts of a signature

Privacy

All original sanitized information is unrecoverable

Transparency

Nobody can say if a signature is sanitized or not

Accountability

Signer can prove if a signature is sanitized or not

Unlinkability, Bruzuska et al 2010

Impossible to link a sanitized signature to the original one

Contributions

New properties for VRS:

- Unforgeablity
- Anonymity
- Accountablitity
- Non-seizability

New property for USS:

- Strong Accountablitity
- EVeR: Efficient Verifiable Ring signature
- GUSS: Generic Unlinkable Sanitizable Signature GUSS achieves strong accountability EVeR + Schnorr = efficient GUSS

Comparison with Fleishhacker et al [PKC'16]

	SiGen	SaGen	Sig	San	Ver	SiProof	SiJudge	Total			
PKC'16	7	1	15	14	17	23	6	83			
GUSS	2	1	8	7	10	3	4	35			
In number of exponentiations											

	pk	spk	sk	ssk	σ	π	Total
PKC'16	7	1	14	1	14	4	41
GUSS	2	1	2	1	12	5	23

In number of group elements

Outline

New properties for VRS

New property for USS

EVeR

GUSS

Conclusion

Outline

New properties for VRS

New property for USS

EVeR

GUSS

Conclusion

Unforgeability

Only users of the group can generate a valid signature

Anonymity

Cannot distinguish who is the signer among the group

Accountability

User cannot sign *m* and prove that he did not sign it

Non-seizability: (not pretend to be another)

 User cannot forge a signature with a proof that the signature has been produced by someone else

Non-seizability: (not pretend to be another)

 User cannot forge a signature with a proof that the signature has been produced by someone else

User cannot forge σ s.t. others cannot prove that they do not forge it

Outline

New properties for VRS

New property for USS

EVeR

GUSS

Conclusion

Accountability like in PKC'16

Signer can prove the origin of a signature

Accountability like in PKC'16

Signer can prove the origin of a signature

1. Signer cannot forge a false signature for a sanitizer

Accountability like in PKC'16

Signer can prove the origin of a signature

1. Signer cannot forge a false signature for a sanitizer

2. Sanitizer cannot forge a false signature for a signer

Strong Accountability

Signer or sanitizer can prove the origin of a signature

1. Signer cannot forge a false signature for a sanitizer

2. Sanitizer cannot forge a false signature for a signer

Outline

New properties for VRS

New property for USS

EVeR

GUSS

Conclusion

Efficient Verifiable Ring Signature: EVeR

Idea:

- Signature \blacktriangleright anonymous commitment *c* of *sk* and *m*
 - ZKP of the link between sk, c and one of several pks

Proof: ZKP that *c* was produced with *sk* associatd to *pk*

NIZKP Logarithm Equality (LogEq)

Prove $log_{g_j}(y_j) = log_{h_j}(z_j)$ among several y_i and z_i , $1 \le i \le n$

NIZKP Logarithm Equality (LogEq)

Prove $log_{g_j}(y_j) = log_{h_j}(z_j)$ among several y_i and z_i , $1 \le i \le n$

$$= LEprove_n(\{h_i, z_i, g_i, y_i\}_{1 \le i \le n}, x)$$

► LEverif_n({ (h_i, z_i, g_i, y_i) }_{1≤i≤n}, π): return true iff $\exists j, x = log_{g_i}(y_j) = log_{h_i}(z_j)$

EVeR

V.Gen(\mathbb{G}, p, q, H): pk = q^{sk} and return(pk, sk) V.Sig(L, m, sk): h = H(m||r) and $z = h^{sk}$ $P \leftarrow \mathsf{LEprove}_{|I|}(\{(h, z, g, \mathsf{pk}_I)\}_{\mathsf{pk}_I \in L}, \mathsf{sk}\})$ return (r, z, P)V.Ver(L, m, σ): h = H(m||r) and return $b \leftarrow \text{LEverif}_{|L|}(\{(h, z, g, \mathsf{pk}_l)\}_{\mathsf{pk}_l \in L}, P)$ V.Proof(L, m, σ , pk, sk): h = H(m||r) and $\bar{P} \leftarrow \text{LEprove}_1(\{(h, h^{\text{sk}}, q, pk)\}, \text{sk})$ return $\pi = (h^{sk}, \bar{P})$ V.Judge(L, m, σ , pk, π): h = H(m||r) $b \leftarrow \mathsf{LEverif}_1(\{(h, h^{\mathsf{sk}}, g, \mathsf{pk})\}, \pi)$ If b = 1 and $z = h^{sk}$ then return 1 else 0

Result

Theorem EVeR *is* unforgeable, anonymous, accountable *and* non-seizable *under the DDH assumption in the ROM.*

Outline

New properties for VRS

New property for USS

EVeR

GUSS

Conclusion

Verification and Judge for signer and sanitizer are straightforward

Result

Theorem

For any deterministic and unforgeable DS scheme D and any unforgeable, anonymous, accountable and non-seizable VRS scheme V, GUSS instantiated with (D, V) is **immutable, transparent, strongly accountable** and **unlinkable**.

Outline

New properties for VRS

New property for USS

EVeR

GUSS

Conclusion

Results

New properties for VRS:

- Unforgeablity
- Anonymity
- Accountablitity
- Non-seizability

New property for USS:

- Strong Accountablitity
- EVeR: Efficient Verifiable Ring signature
- GUSS: Generic Unlinkable Sanitizable Signature GUSS achieves strong accountability EVeR + Schnorr = efficient GUSS

Thank you for your attention!

Questions

Images designed by Freepik from www.flaticon.com

NIZKP LogEq

Prove $x = log_{a_i}(y_i) = log_{h_i}(z_i)$ among several y_i and z_i in L *LEprove*_n($\{h_i, z_i, q_i, y_i\}_{1 \le i \le n}, x$): $R_i = g_i^{r_j}$ and $S_i = h_i^{r_j}$ $\forall i \neq j : R_i = \frac{g_i^{\gamma_i}}{v_i^{c_i}} \text{ and } S_i = \frac{h_i^{\gamma_i}}{z_i^{c_i}}$ $c_j = \frac{H(R_1||S_1||\ldots||R_n||S_n)}{\prod_{i=1:i\neq j}^n c_i}$ $\gamma_i = \mathbf{r}_i + \mathbf{c}_i \cdot \mathbf{X}$ Return $\pi = \{(R_i, S_i, c_i, \gamma_i)\}_{1 \le i \le n}$ *LEverif_n*({ (h_i, z_i, q_i, y_i) }_{1 < i < n}, π): Return $H(R_1 || S_1 || ... || R_n || S_n) = \prod_{i=1}^n c_i$ and $\forall i \in [1, n]$ such that $g_i^{\gamma_i} = R_i \cdot y_i^{c_i} (= g_i^{\gamma_j = r_j + c_j \cdot x})$ and $h_i^{\gamma_i} = S_i \cdot z_i^{c_i} = (= h_i^{\gamma_j = r_j + c_j \cdot x})$

Generic Unlinkable Sanitizable Signature

D = (D.Init, D.Gen, D.Sig, D.Ver) a deterministic signature V = (V.Init, V.Gen, V.Sig, V.Ver, V.Proof, V.Judge) a VRS Sig(m, sk, spk, ADM): sk = (sk_d, sk_v), $M \leftarrow FIX_{ADM}(m)$ $\sigma_1 \leftarrow \text{D.Sig}(\text{sk}_d, (M || \text{ADM} || \text{pk} || \text{spk}))$ and $\sigma_2 \leftarrow \mathsf{V.Sig}(\{\mathsf{pk}_{\mathsf{v}},\mathsf{spk}\},\mathsf{sk}_{\mathsf{v}},(\sigma_1||m)))$ Return $\sigma = (\sigma_1, \sigma_2, ADM)$ $San(m, MOD, \sigma, pk, ssk)$: $pk = (pk_d, pk_v)$ $\sigma'_2 \leftarrow V.Sig(\{pk_{\nu}, spk\}, ssk, (\sigma_1 || MOD(m)))$ Return $\sigma' = (\sigma_1, \sigma'_2, ADM)$ Ver (m, σ, pk, spk) : $\sigma = (\sigma_1, \sigma_2, ADM), M \leftarrow FIX_{ADM}(m)$. $b_1 \leftarrow \text{D.Ver}(\text{pk}_d, (M || \text{ADM} || \text{pk} || \text{spk}), \sigma_1)$ $b_2 \leftarrow V.Ver(\{pk_d, spk\}, (\sigma_1 || m), \sigma_2)\}$ Return $b = (b_1 \wedge b_2)$

Generic Unlinkable Sanitizable Signature SiProof(sk, m, σ , spk): $\sigma = (\sigma_1, \sigma_2, ADM)$, sk = (sk_d, sk_v) $\pi_{si} \leftarrow V.Proof(\{pk_{\nu}, spk\}, (m||\sigma_1), \sigma_2, pk_{\nu}, sk_{\nu})$ Return π_{ei} SaProof(ssk, m, σ, pk): $\sigma = (\sigma_1, \sigma_2, ADM)$ $\pi_{sa} \leftarrow V.Proof(\{pk_{\nu}, spk\}, (m||\sigma_1), \sigma_2, spk, ssk\})$ Return π_{sa} SiJudge($m, \sigma, pk, spk, \pi_{si}$): $\sigma = (\sigma_1, \sigma_2, ADM),$ $pk = (pk_d, pk_v)$ $b \leftarrow V.Judge(\{pk_{\nu}, spk\}, (m||\sigma_1), \sigma_2, pk_{\nu}, \pi_{si})\}$ Return b SaJudge($m, \sigma, pk, spk, \pi_{sa}$): $\sigma = (\sigma_1, \sigma_2, ADM)$, $pk = (pk_d, pk_v)$ $b \leftarrow V.Judge(\{pk_{u}, spk\}, (m||\sigma_1), \sigma_2, spk, \pi_{sa}\})$ Return (1 - b)