
1/27

Secure Grouping and Aggregation
with MapReduce

Radu Ciucanu Matthieu Giraud
Pascal Lafourcade Lihua Ye

28 July 2018
SECRYPT, Porto

2/27

Example of Grouping and Aggregation

Name Department Salary
Alice Computer Science 1900
Bob Mathematics 1750

Mallory Computer Science 1800
Oscar Physics 2000
Carol Mathematics 1600

Department COUNT SUM AVG MAX MIN
Computer Science 2 3700 1850 1900 1800

Mathematics 2 3350 1675 1750 1600
Physics 1 2000 2000 2000 2000

2/27

Example of Grouping and Aggregation

Name Department Salary
Alice Computer Science 1900
Bob Mathematics 1750

Mallory Computer Science 1800
Oscar Physics 2000
Carol Mathematics 1600

Department COUNT SUM AVG MAX MIN
Computer Science 2 3700 1850 1900 1800

Mathematics 2 3350 1675 1750 1600
Physics 1 2000 2000 2000 2000

3/27

MapReduce

I Partitioning input data
I Scheduling program execution

on machines
I Performing the shuffle
I Handling machine failures

Programmer gives:

I Input files
I Map and Reduce

Input 1

Map 1
|

Input 2

Map 2
|

Input 3

Map 3
|

Reduce 1 Reduce 2

Output 1 Output 2

Shuffle

4/27

Grouping and Sum with MapReduce

M R P

UserData owner

D

Name Department Salary
Alice Computer Science 1900
Bob Mathematics 1750

Mallory Computer Science 1800
Oscar Physics 2000
Carol Mathematics 1600

γDept ,SUM(Salary)(D)

Map:
M→R:

{
(πDept(t),πSalary (t))

}
t∈D

Reduce:
Input: (key , values)
sum =

∑
πDept (t)∈values πSalary (t)

R → P : (πDept(t), sum).

Department Salary
Computer Science 1900

Mathematics 1750
Computer Science 1800

Physics 2000
Mathematics 1600

Department SUM
Computer Science 3700

Mathematics 3350
Physics 2000

5/27

Security Model

Cloud is honest-but-curious

Data Owner
f

Cloud

f ()

User

Security properties

I Secrecy of and f()
I User queries f() but cannot learn

6/27

Contributions

Secure MapReduce Algorithms:

I COUNT
I SUM
I AVG
I MAX
I MIN

Secure Private Approach

I Cloud nodes do not learn
I Cloud nodes do not learn f()
I User does not learn

7/27

Outline

Cryptography
Pseudo-Random Permutation
Partial Homomorphic Encryption
Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

8/27

Pseudo-Random Permutation

Idea:

f : {0,1}n × {0,1}n0 → {0,1}n1

I Deterministic
I Result indistinguishable from a random
I Not inversible

Notation: Data owner picks a key k and uses fk (m)

9/27

Fully Homomorphic Encryption (Gentry 2009)

Idea:

Perform ANY computations on encrypted data

∀f ,∀xi , f (Ek (x1), . . . , Ek (xn)) = Ek (f (x1, . . . , xn))

I Not yet efficient enough

10/27

Partial Homomorphic Encryption

Paillier’s Cryptosystem (1999)

I Public Key encryption
I Probabilistic encryption
I Epk (x + y) = Epk (x) · Epk (y)

Epk (x · y) = (Epk (x))y

11/27

Oder Preserving Encryption

Agrawal et al. Cryptosystem (2004)

Let c1 = Ek (m1) and c2 = Ek (m2)

if m1 < m2 then c1 < c2

I Symmetric encryption

12/27

Outline

Cryptography
Pseudo-Random Permutation
Partial Homomorphic Encryption
Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

13/27

COUNT, SUM and AVG

Preprocessing on data

I All data are encrypted with Paillier with pkU

I All data d have fk (d)

Name Dept Salary

A CS 1900
B Math 1750
M CS 1800
O Phy 2000
C Math 1600

⇒

Name Dept Salary

fk (A),EpkU
(A) fk (CS), EpkU

(CS) fk (1900), EpkU
(1900)

fk (B),EpkU
(B) fk (Math), EpkU

(Math) fk (1750), EpkU
(1750)

fk (M),EpkU
(M) fk (CS), EpkU

(CS) fk (1800), EpkU
(1800)

fk (O),EpkU
(O) fk (Phy), EpkU

(Phy) fk (2000), EpkU
(2000)

fk (C),EpkU
(C) fk (Math), EpkU

(Math) fk (1600) , EpkU
(1600)

14/27

Secure Private COUNT

Name Dept Salary
fk (A),EpkU (A) fk (CS), EpkU (CS) fk (1900), EpkU (1900)
fk (B),EpkU (B) fk (Math), EpkU (Math) fk (1750), EpkU (1750)
fk (M),EpkU (M) fk (CS), EpkU (CS) fk (1800), EpkU (1800)
fk (O),EpkU (O) fk (Phy), EpkU (Phy) fk (2000), EpkU (2000)
fk (C),EpkU (C) fk (Math), EpkU (Math) fk (1600) , EpkU (1600)

(fk (CS), (EpkU (CS), EpkU (1)))
(fk (CS), (EpkU (CS) EpkU (1)))
(fk (Math), (EpkU (Math), EpkU (1)))
(fk (Math), (EpkU (Math), EpkU (1)))
(fk (Phy), (EpkU (Phy), EpkU (1)))

(EpkU (CS), EpkU (2))

(EpkU (Math), EpkU (2))

(EpkU (Phy), EpkU (1))

γA,COUNT(∗)(D)

Map:
M→R:

{
(πAfk (t), (πAEpkU (t), EpkU (1)))

}
t∈D

Reduce:
count = EpkU (

∑
πAfk (t)∈values 1) =

∏
πAfk (t)∈values EpkU (1)

R → P : (πAEpkU (t), count).

15/27

Secure Private SUM

Name Dept Salary
fk (A),EpkU (A) fk (CS), EpkU (CS) fk (1900), EpkU (1900)
fk (B),EpkU (B) fk (Math), EpkU (Math) fk (1750), EpkU (1750)
fk (M),EpkU (M) fk (CS), EpkU (CS) fk (1800), EpkU (1800)
fk (O),EpkU (O) fk (Phy), EpkU (Phy) fk (2000), EpkU (2000)
fk (C),EpkU (C) fk (Math), EpkU (Math) fk (1600) , EpkU (1600)

(fk (CS), (EpkU (CS), EpkU (1900)))
(fk (CS), (EpkU (CS) EpkU (1800)))
(fk (Math), (EpkU (Math), EpkU (1750)))
(fk (Math), (EpkU (Math), EpkU (1600)))
(fk (Phy), (EpkU (Phy), EpkU (2000)))

(EpkU (CS), EpkU (3700))

(EpkU (Math), EpkU (3350))

(EpkU (Phy), EpkU (2000))

γA,SUM(B)(D)

Map:
M→R:

{
(πAfk (t), (πAEpkU (t),πBEpkU (t)))

}
t∈D

Reduce:
sum = EpkU (

∑
πAfk (t)∈values πB(t)) =

∏
πAfk (t)∈values πBEpkU (t)

R → P : (πAEpkU (t), sum).

16/27

Secure Private AVG

γA,AVG(B)(D)

Map:
M→R:

{
(πAfk (t), (πAEpkU (t),πBEpkU (t), EpkU (1)))

}
t∈D

Reduce:
count = EpkU (

∑
πAfk (t)∈values 1) =

∏
πAfk (t)∈values EpkU (1)

sum = EpkU (
∑

πAfk (t)∈values πB(t)) =
∏

πAfk (t)∈values πBEpkU (t)
R → P : (πAEpkU (t), (sum, count)).

17/27

Outline

Cryptography
Pseudo-Random Permutation
Partial Homomorphic Encryption
Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

18/27

MIN & MAX

Preprocessing on data

I All data are encrypted with OPE with a shared key KDU

I And encrypted with the public key of the node pkC

I All data d have fk (d)

19/27

Secure Private MIN

Name Dept Salary
fk (A),EkDU (A) fk (CS), EkDU (CS) fk (1900), EkDU (1900)
fk (B),EkDU (B) fk (Math), EkDU (Math) fk (1750), EkDU (1750)
fk (M),EkDU (M) fk (CS), EkDU (CS) fk (1800), EkDU (1800)
fk (O),EkDU (O) fk (Phy), EkDU (Phy) fk (2000), EkDU (2000)
fk (C),EkDU (C) fk (Math), EkDU (Math) fk (1600) , EkDU (1600)

(fk (CS), (EkDU (CS), EkDU (1900)))
(fk (CS), (EkDU (CS) EkDU (1800)))
(fk (Math), (EkDU (Math), EkDU (1750)))
(fk (Math), (EkDU (Math), EkDU (1600)))
(fk (Phy), (EkDU (Phy), EkDU (2000)))

(EkDU (CS), EkDU (1800))

(EkDU (Math), EKDU (1600))

(EkDU (Phy), EkDU (2000))

γA,MIN(B)(D)

Map:
M→R:

{
(πAfk (t), (πAEpkU (t),πB(t)))

}
t∈D

Reduce:
M = minπAfk (t)∈valuesDskDπB(t)
R → P : (πAEpkU (t),M).

20/27

Outline

Cryptography
Pseudo-Random Permutation
Partial Homomorphic Encryption
Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

21/27

Security

Theorem

The SP-SUM, SP-COUNT, SP-AVG, SP-MIN, and SP-MAX
protocols securely compute the grouping and aggregation
in the ROM in the presence of honest-but-curious adversary
even if cloud nodes collude.

22/27

Combiners and Improvements

COUNT SUM AVG

I Map can perform some aggregations

MAX & MIN

We can split it into 2 rounds to counter possible frequency
attacks against OPE

23/27

Performances of COUNT, SUM & AVG

Seconds

50

110

170

230

290

350

410

470

530

590

650

1,000 1,840 2,680 3,520 4,360 5,200
Number of tuples/k

Avg without combiner
Avg with combiner
Sum without combiner
Sum with combiner
Count without combiner
Count with combiner

24/27

Performances of MIN
Seconds

0

137.918

275.836

413.754

551.672

689.590

511 1,888 3,265 4,642

Number of tuples/k

Nosecure 1Round

Nosecure 2Round

Secure 1Round

Secure 2Round

25/27

Outline

Cryptography
Pseudo-Random Permutation
Partial Homomorphic Encryption
Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

26/27

Conclusion

I Secure-Private MapReduce:
COUNT, SUM, AVG, & MAX MIN

I Using Paillier and OPE
I Honest-but-curious adversay

Next step

I Combinaisons of COUNT, SUM, AVG, MAX & MIN

27/27

Questions?

pascal.lafourcade@uca.fr

	Cryptography
	Pseudo-Random Permutation
	Partial Homomorphic Encryption
	Oder Preserving Encryption

	Secure-Private MapReduce for COUNT, SUM and AVG
	Secure-Private MapReduce for MIN and MAX
	Security and Performances
	Conclusion

