Secure Grouping and Aggregation with MapReduce

Radu Ciucanu Matthieu Giraud **Pascal Lafourcade** Lihua Ye

28 July 2018 SECRYPT, Porto

Example of Grouping and Aggregation

Name	Department	Salary	
Alice	Computer Science	1900	
Bob	Mathematics	1750	
Mallory	Computer Science	1800	
Oscar	Physics	2000	
Carol	Mathematics	1600	

Example of Grouping and Aggregation

Name	Department	Salary	
Alice	Computer Science	1900	
Bob	Mathematics	1750	
Mallory	Computer Science	1800	
Oscar	Physics	2000	
Carol	Mathematics	1600	

Department	COUNT	SUM	AVG	MAX	MIN
Computer Science	2	3700	1850	1900	1800
Mathematics	2	3350	1675	1750	1600
Physics	1	2000	2000	2000	2000

MapReduce

Grouping and Sum with MapReduce

Input: (key, values)
sum =
$$\sum_{\pi_{Dept}(t) \in values} \pi_{Salary}(t)$$

 $\mathcal{R} \rightarrow \mathcal{P} : (\pi_{Dept}(t), sum).$

Department	301
Computer Science	3700
Mathematics	3350
Physics	2000

Security Model

Security properties

- Secrecy of and f()
- User queries f() but cannot learn

Contributions

Secure Private Approach

- Cloud nodes do not learn
- Cloud nodes do not learn f()
- User does not learn

Outline

Cryptography Pseudo-Random Permutation Partial Homomorphic Encryption Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

Pseudo-Random Permutation

Notation: Data owner picks a key k and uses $f_k(m)$

Fully Homomorphic Encryption (Gentry 2009)

Perform ANY computations on encrypted data

$$\forall f, \forall x_i, f(\mathcal{E}_k(x_1), \ldots, \mathcal{E}_k(x_n)) = \mathcal{E}_k(f(x_1, \ldots, x_n))$$

Not yet efficient enough

Partial Homomorphic Encryption

Paillier's Cryptosystem (1999)

- Public Key encryption
- Probabilistic encryption

$$\mathcal{E}_{pk}(x \cdot y) = (\mathcal{E}_{pk}(x))^y$$

Oder Preserving Encryption

Agrawal et al. Cryptosystem (2004)

Let
$$c_1 = \mathcal{E}_k(m_1)$$
 and $c_2 = \mathcal{E}_k(m_2)$

if $m_1 < m_2$ then $c_1 < c_2$

Symmetric encryption

Outline

Cryptography Pseudo-Random Permutation Partial Homomorphic Encryption Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

COUNT, SUM and AVG

Preprocessing on data

- All data are encrypted with Paillier with pk_U
- ► All data *d* have $f_k(d)$

Name	Dept	Salary	
A	CS	1900	1
В	Math	1750	
M	CS	1800	
0	Phy	2000	1
С	Math	1600	

Name	Dept	Salary
$f_k(A), \mathcal{E}_{pk_{ij}}(A)$	$f_k(CS), \mathcal{E}_{pk_U}(CS)$	$f_k(1900), \mathcal{E}_{pk_U}(1900)$
$f_k(B), \mathcal{E}_{pk_U}(B)$	$f_k(Math), \mathcal{E}_{pk_U}(Math)$	$f_k(1750), \mathcal{E}_{pk_U}(1750)$
$f_k(M), \mathcal{E}_{pk_U}(M)$	$f_k(CS), \mathcal{E}_{pk_U}(CS)$	$f_k(1800), \mathcal{E}_{pk_U}(1800)$
$f_k(O), \mathcal{E}_{pk_U}(O)$	$f_k(Phy), \mathcal{E}_{pk_U}(Phy)$	$f_k(2000), \mathcal{E}_{pk_U}(2000)$
$f_k(C), \mathcal{E}_{pk_{U}}(C)$	$f_k(Math), \mathcal{E}_{pk_{ij}}(Math)$	$f_k(1600)$, $\mathcal{E}_{pk_{U}}(1600)$

Secure Private COUNT

Name	Dept	Salary
$f_k(A), \mathcal{E}_{pk_U}(A)$	$f_k(CS), \mathcal{E}_{pk_U}(CS)$	$f_k(1900), \mathcal{E}_{pk_U}(1900)$
$f_k(B), \mathcal{E}_{pk_U}(B)$	$f_k(Math), \mathcal{E}_{pk_U}(Math)$	$f_k(1750), \mathcal{E}_{pk_U}(1750)$
$f_k(M), \mathcal{E}_{pk_U}(M)$	$f_k(CS), \mathcal{E}_{pk_U}(CS)$	$f_k(1800), \mathcal{E}_{pk_U}(1800)$
$f_k(O), \mathcal{E}_{pk_U}(O)$	$f_k(Phy), \mathcal{E}_{pk_U}(Phy)$	$f_k(2000), \mathcal{E}_{pk_U}(2000)$
$f_k(C), \mathcal{E}_{pk_U}(C)$	$f_k(Math), \mathcal{E}_{pku}(Math)$	$f_k(1600)$, $\mathcal{E}_{pk_U}(1600)$

 $\begin{array}{l} (f_k(CS), (\mathcal{E}_{pk_U}(CS), \mathcal{E}_{pk_U}(1))) \\ (f_k(CS), (\mathcal{E}_{pk_U}(CS) \mathcal{E}_{pk_U}(1))) \\ (f_k(Math), (\mathcal{E}_{pk_U}(Math), \mathcal{E}_{pk_U}(1))) \\ (f_k(Math), (\mathcal{E}_{pk_U}(Math), \mathcal{E}_{pk_U}(1))) \\ (f_k(Phy), (\mathcal{E}_{pk_U}(Phy), \mathcal{E}_{pk_U}(1))) \end{array}$

 $(\mathcal{E}_{pk_U}(CS), \mathcal{E}_{pk_U}(2))$ $(\mathcal{E}_{pk_U}(Math), \mathcal{E}_{pk_U}(2))$ $(\mathcal{E}_{pk_U}(Phy), \mathcal{E}_{pk_U}(1))$

 $\gamma_{A,COUNT(*)}(D)$

Map:

$$\mathcal{M} \to \mathcal{R}: \left\{ \left(\pi_{\mathcal{A}} f_{k}(t), \left(\pi_{\mathcal{A}} \mathcal{E}_{pk_{U}}(t), \mathcal{E}_{pk_{U}}(1) \right) \right) \right\}_{t \in D}$$

Reduce:

$$\begin{array}{l} \text{count} = \mathcal{E}_{pk_U}(\sum_{\pi_A f_k(t) \in \textit{values}} 1) = \prod_{\pi_A f_k(t) \in \textit{values}} \mathcal{E}_{pk_U}(1) \\ \mathcal{R} \to \mathcal{P} : (\pi_A \mathcal{E}_{pk_U}(t), \text{count}). \end{array}$$

Secure Private SUM

Name	Dept	Salary
$f_k(A), \mathcal{E}_{pk_U}(A)$	$f_k(CS), \mathcal{E}_{pk_U}(CS)$	$f_k(1900), \mathcal{E}_{pk_U}(1900)$
$f_k(B), \mathcal{E}_{pk_U}(B)$	$f_k(Math), \mathcal{E}_{pk_U}(Math)$	$f_k(1750), \mathcal{E}_{pk_U}(1750)$
$f_k(M), \mathcal{E}_{pk_U}(M)$	$f_k(CS), \mathcal{E}_{pk_U}(CS)$	$f_k(1800), \mathcal{E}_{pk_U}(1800)$
$f_k(O), \mathcal{E}_{pk_U}(O)$	$f_k(Phy), \mathcal{E}_{pk_U}(Phy)$	$f_k(2000), \mathcal{E}_{pk_U}(2000)$
$f_k(C), \mathcal{E}_{pk_U}(C)$	$f_k(Math), \mathcal{E}_{pk_U}(Math)$	$f_k(1600)$, $\mathcal{E}_{pk_U}(1600)$

 $\begin{array}{l} (f_k(CS), (\mathcal{E}_{pk_U}(CS), \mathcal{E}_{pk_U}(1900))) \\ (f_k(CS), (\mathcal{E}_{pk_U}(CS), \mathcal{E}_{pk_U}(1800))) \\ (f_k(Math), (\mathcal{E}_{pk_U}(Math), \mathcal{E}_{pk_U}(1750))) \\ (f_k(Math), (\mathcal{E}_{pk_U}(Math), \mathcal{E}_{pk_U}(1600))) \\ (f_k(Ph\gamma), (\mathcal{E}_{pk_U}(Ph\gamma), \mathcal{E}_{pk_U}(2000))) \end{array}$

 $(\mathcal{E}_{pk_U}(CS), \mathcal{E}_{pk_U}(3700))$ $(\mathcal{E}_{pk_U}(Math), \mathcal{E}_{pk_U}(3350))$ $(\mathcal{E}_{pk_U}(Phy), \mathcal{E}_{pk_U}(2000))$

$\gamma_{A,SUM(B)}(D)$

Map:

$$\mathcal{M} \to \mathcal{R}: \left\{ \left(\pi_{\mathcal{A}} f_k(t), \left(\pi_{\mathcal{A}} \mathcal{E}_{pk_U}(t), \pi_{\mathcal{B}} \mathcal{E}_{pk_U}(t) \right) \right\}_{t \in D} \right\}$$

Reduce:

sum =
$$\mathcal{E}_{pk_U}(\sum_{\pi_A f_k(t) \in values} \pi_B(t)) = \prod_{\pi_A f_k(t) \in values} \pi_B \mathcal{E}_{pk_U}(t)$$

 $\mathcal{R} \to \mathcal{P} : (\pi_A \mathcal{E}_{pk_U}(t), sum).$

Secure Private AVG

 $\gamma_{A,AVG(B)}(D)$

Map:

 $\mathcal{M} \to \mathcal{R}$: $\left\{ (\pi_A f_k(t), (\pi_A \mathcal{E}_{pk_U}(t), \pi_B \mathcal{E}_{pk_U}(t), \mathcal{E}_{pk_U}(1))) \right\}_{t \in D}$ Reduce:

 $\begin{array}{l} \operatorname{count} = \mathcal{E}_{pk_U}(\sum_{\pi_A f_k(t) \in \text{values}} 1) = \prod_{\pi_A f_k(t) \in \text{values}} \mathcal{E}_{pk_U}(1) \\ \operatorname{sum} = \mathcal{E}_{pk_U}(\sum_{\pi_A f_k(t) \in \text{values}} \pi_B(t)) = \prod_{\pi_A f_k(t) \in \text{values}} \pi_B \mathcal{E}_{pk_U}(t) \\ \mathcal{R} \to \mathcal{P} : (\pi_A \mathcal{E}_{pk_U}(t), (\operatorname{sum, count})). \end{array}$

Outline

Cryptography Pseudo-Random Permutation Partial Homomorphic Encryption Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

Preprocessing on data

- All data are encrypted with OPE with a shared key K_{DU}
- And encrypted with the public key of the node pk_C
- ► All data *d* have $f_k(d)$

Secure Private MIN

Name	Dept	Salary
$f_k(A), E_{k_{DU}}(A)$	$f_k(CS), E_{k_{DU}}(CS)$	$f_k(1900), E_{k_{DU}}(1900)$
$f_k(B), E_{k_{DU}}(B)$	$f_k(Math), E_{k_{DU}}(Math)$	$f_k(1750), E_{k_{DU}}(1750)$
$f_k(M), E_{k_{DU}}(M)$	$f_k(CS), E_{k_{DU}}(CS)$	$f_k(1800), E_{k_{DU}}(1800)$
$f_k(O), E_{k_{DU}}(O)$	$f_k(Phy), E_{k_{DU}}(Phy)$	$f_k(2000), E_{k_{DU}}(2000)$
$f_k(C), E_{k_{DU}}(C)$	$f_k(Math), E_{k_{DU}}(Math)$	$f_k(1600)$, $E_{k_{DU}}(1600)$

 $\begin{array}{l} (f_k(CS), (E_{k_{DU}}(CS), E_{k_{DU}}(1900))) \\ (f_k(CS), (E_{k_{DU}}(CS) E_{k_{DU}}(1800))) \\ (f_k(Math), (E_{k_{DU}}(Math), E_{k_{DU}}(1750))) \\ (f_k(Math), (E_{k_{DU}}(Math), E_{k_{DU}}(1600)) \\ (f_k(Ph\gamma), (E_{k_{DU}}(Ph\gamma), E_{k_{DU}}(200))) \end{array}$

 $(E_{k_{DU}}(CS), E_{k_{DU}}(1800))$ $(E_{k_{DU}}(Math), E_{K_{DU}}(1600))$ $(E_{k_{DU}}(Phy), E_{k_{DU}}(2000))$

 $\gamma_{A,MIN(B)}(D)$

Map:

 $\mathcal{M} \to \mathcal{R}$: $\left\{ \left(\pi_{\mathcal{A}} f_k(t), \left(\pi_{\mathcal{A}} \mathcal{E}_{\mathcal{P}k_U}(t), \pi_{\mathcal{B}}(t) \right) \right) \right\}_{t \in D}$ Reduce:

$$\begin{split} \mathsf{M} &= \min_{\pi_{A} f_{k}(t) \in \textit{values}} \mathcal{D}_{sk_{D}} \pi_{B}(t) \\ \mathcal{R} &\to \mathcal{P} : (\pi_{A} \mathcal{E}_{pk_{U}}(t), \mathsf{M}). \end{split}$$

Outline

Cryptography Pseudo-Random Permutation Partial Homomorphic Encryption Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

Security

Theorem

The SP-SUM, SP-COUNT, SP-AVG, SP-MIN, and SP-MAX protocols securely compute the grouping and aggregation in the ROM in the presence of honest-but-curious adversary even if cloud nodes collude.

Combiners and Improvements

COUNT SUM AVG

Map can perform some aggregations

MAX & MIN

We can split it into 2 rounds to counter possible frequency attacks against OPE

Performances of COUNT, SUM & AVG

Performances of MIN

LABORATOIRE D'INFORMATIQUE, DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES Number of tuples/k

Outline

Cryptography Pseudo-Random Permutation Partial Homomorphic Encryption Oder Preserving Encryption

Secure-Private MapReduce for COUNT, SUM and AVG

Secure-Private MapReduce for MIN and MAX

Security and Performances

Conclusion

Conclusion

- Secure-Private MapReduce: COUNT, SUM, AVG, & MAX MIN
- Using Paillier and OPE
- Honest-but-curious adversay

Next step

Combinaisons of COUNT, SUM, AVG, MAX & MIN

Questions?

pascal.lafourcade@uca.fr

