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Abstract
PQ-WireGuard is a post-quantum variant of WireGuard
Virtual Private Network (VPN), where Diffie-Hellman-based
key exchange is replaced by post-quantum Key Encapsulation
Mechanisms-based key exchange. In this paper, we first con-
duct a thorough formal analysis of PQ-WireGuard’s original
design, in which we point out and fix a number of weaknesses.
This leads us to an improved construction PQ-WireGuard⋆.
Secondly, we propose and formally analyze a new proto-
col, based on both WireGuard and PQ-WireGuard⋆, named
Hybrid-WireGuard, compliant with current best practices
for post-quantum transition about hybridization techniques.
For our analysis, we use the SAPIC+ framework that enables
the generation of three state-of-the-art protocol models for
the verification tools PROVERIF, DEEPSEC and TAMARIN
from a single specification, leveraging the strengths of each
tool. We formally prove that Hybrid-WireGuard is secure.
Eventually, we propose a generic, efficient and usable Rust
implementation of our new protocol.

1 Introduction

WireGuard is a Virtual Private Network (VPN) based on the
Noise framework [69], introduced in 2017 [36] and integrated
in the Linux kernel (version 5.6) [1]. In its protocol, peers ini-
tially exchange messages that constitute a handshake. A sym-
metric key is obtained from these messages, which they use
to encrypt all subsequent exchanged messages. The protocol
uses a key exchange component, which combines long-term
and ephemeral Diffie-Hellman values. Different formal analy-
ses of WireGuard have been proposed, in both the symbolic
and the computational model, with or without computer-aided
proof assistants [38, 39, 59, 62]. Even though the analyses
point out some weaknesses, they confirm the robust design of
the protocol, as most of the claimed properties are met.

With the recent developments on the construction of
quantum computers, many protocols, including VPNs, are
transitioning to the usage of post-quantum cryptography

(e.g., [11,33,44,74]) because Diffie-Hellman key exchange is
broken by Shor’s quantum factoring algorithm [71], and needs
to be replaced. The transition is particularly urgent because
of store-now-decrypt-later attacks, where adversaries store
current data encrypted with classic primitives, and decrypt
them later when efficient quantum computers emerge. In 2016,
NIST launched a post-quantum standardization competition
for new primitives intended to replace currently quantum-
broken primitives. For Diffie-Hellman key exchange, post-
quantum key encapsulation mechanisms (KEMs) are proposed.
At the end of the third round of the competition in 2022 [8],
a single post-quantum KEM was selected for standardization,
namely ML-KEM [65].

The security of WireGuard against quantum computing is
also studied. In its original construction [36], a pre-shared
symmetric key is used during the handshake as a means of
protection against quantum computers, instead of using post-
quantum primitives which are explicitly declared impracti-
cal in the protocol [37]. In 2021, a post-quantum version of
WireGuard, named PQ-WireGuard, was proposed [51]. It ba-
sically replaces the Diffie-Hellman shared secrets with secrets
generated using post-quantum KEMs. A computational proof
as well as a symbolic proof are provided in [51] to ensure the
security of the protocol.

Since post-quantum constructions are still new and their
cryptanalysis is not fully mature, some of them could be bro-
ken in the near future, hence genericity (i.e., being able to
replace one scheme by another in an effective way) is advised.
Furthermore, during a transitional phase, hybridization is
recommended: the goal is to rely on both classic and post-
quantum schemes simultaneously, ensuring that the final con-
struction remains secure for as long as either the classic or
the post-quantum scheme remains secure.

1.1 Our Contributions

We design, formally analyze and implement a new protocol
which efficiently hybridizes WireGuard. More specifically,
our contributions are:



Formal security analysis of PQ-WireGuard. We propose a
new and more comprehensive model of PQ-WireGuard than
the one presented in [51] and a more powerful attacker. We
point out a mistake in the latter symbolic proof which has an
impact on Unknown-Key-Share (UKS) attacks’ analysis and
we identify attack scenarios that are missed. Furthermore, PQ-
WireGuard inherits the lack of anonymity from WireGuard. In
addition, we point out that PQ-WireGuard uses a non-standard
definition of the KEM encapsulation procedure, which impacts
the protocol’s implementation and analysis. We therefore
propose a new version of the protocol, based on the common
KEM’s definition, which we refer to as PQ-WireGuard⋆. We
formally prove that this version ensures anonymity, resists
Unknown-Key-Share attacks and preserves the remaining
properties (agreement and secrecy).
Hybrid-WireGuard. We propose a new protocol, called
Hybrid-WireGuard, constructed by skillfully combining our
improved construction PQ-WireGuard⋆, and WireGuard. We
model this protocol and formally prove that all the security
properties are achieved. Moreover, our analysis shows that
if an attack scenario against a security property of Hybrid-
WireGuard exists, then it is a combination of an attack on
PQ-WireGuard⋆ and an attack on WireGuard.
Adaptive analysis. We base our formal analysis on [59]. We
point out, however, that the evaluation strategy used in [59],
is not practical to analyze Hybrid-WireGuard because of a far
more larger set of required evaluations. We therefore propose
an adaptive evaluation strategy which greatly reduces the
number of necessary evaluations needed to assess security
properties, while preserving soundness.
Instantiation and implementation. We instantiate Hybrid-
WireGuard with Classic McEliece [18] and ML-KEM [65]
algorithms and propose a generic and efficient implementation
in Rust. We provide benchmarks for Hybrid-WireGuard and
PQ-WireGuard⋆ compared to WireGuard and PQ-WireGuard,
showing the practical usability of our constructions.

1.2 Paper organization

In Section 2, we present related work, for WireGuard and PQ-
WireGuard-based constructions and tools, protocol analysis
with SAPIC+, and hybridization. Then, in Section 3, we de-
tail WireGuard and PQ-WireGuard handshakes. Next, in Sec-
tion 4, we describe our methodology for the formal verifi-
cation of WireGuard, PQ-WireGuard, PQ-WireGuard⋆ and
Hybrid-WireGuard, and present the analyzed security proper-
ties. Based on this description, we exhibit the results of our
symbolic analysis for WireGuard and PQ-WireGuard in Sec-
tion 5. Our results on PQ-WireGuard lead us to an improved
version of the protocol, which we call PQ-WireGuard⋆, de-
scribed and symbolically assessed in the same section. After,
we introduce our protocol Hybrid-WireGuard in Section 6.
We also exhibit the results of our symbolic analysis of the pro-
tocol, showing that its security is ensured as long as at least

the security of the classic primitives or the security of the
post-quantum primitives is ensured. Finally, we present our
implementation and instantiation of cryptographic primitives
in Section 7, and we conclude in Section 8.

2 Related Work

Constructions and tools based on WireGuard and
PQ-WireGuard. In [10], a tweak is proposed to provide Wire-
Guard with post-quantum security. It consists in transmitting
the hash of the identity public key instead of the public key
itself, hence protecting it from a quantum computer. The goal
is to protect against store-now-decrypt-later attacks. However,
this tweak relies on the strong assumption that peers’ public
keys are unknown to the attacker (a similar assumption is
made in WireGuard [36]). NordLynx [67], a variant of Wire-
Guard, proposes a post-quantum solution: after the successful
handshake, a KEM key exchange is performed using ML-KEM,
within the already mounted WireGuard tunnel. This solution
provides post-quantum security for the final session keys,
mitigating attacks from adversaries who can only observe the
exchanged messages (i.e., passive adversaries). Meanwhile,
the handshake remains vulnerable against adversaries who
can break the DH keys, and intercept and modify messages
(i.e., active adversaries).
Rosenpass [76] is an implementation of PQ-WireGuard [51],
which aims to provide peers with a post-quantum shared se-
cret. It is supposed to be used side-by-side with WireGuard
to provide hybrid security. In other words, the VPN tunnel
is mounted with WireGuard, and the latter is provided with
a pre-shared key generated using Rosenpass. Rosenpass is
then executed every two minutes to refresh the pre-shared key
of the peers. This hybridization technique is different from
our proposal (i.e., combining cryptographic building blocks).
In fact, many protocols use pre-shared keys to achieve post-
quantum security (e.g., [43, 50]); this pre-shared key can be
generated using any uncompromised secure channel. In ad-
dition, RosenPass itself uses pre-shared keys, which leads
to another layer of complexity handled by the infrastructure.
Indeed, if the latter can handle secure symmetric (i.e., post-
quantum) pre-shared keys, these keys can be provided directly
to WireGuard, without using Rosenpass. Eventually, Rosen-
pass leads to a 4-message handshake: in this work, we propose
a 2-message one to ensure hybrid security.
Protocol analysis with SAPIC+. SAPIC+ [29] unifies the
use of PROVERIF, TAMARIN and DEEPSEC. It was recently
used to analyze EDHOC protocol [53] and WireGuard [59].
Protocols are modeled in the applied Π-calculus [7] in a
single SAPIC+ file which enables the generation of three
state-of-the-art protocol models for TAMARIN, PROVERIF
and DEEPSEC. In both PROVERIF and TAMARIN, security
analysis regarding trace and equivalence properties for an un-
bounded number of sessions is supported, whereas DEEPSEC
supports only equivalence-based properties while bounding



the number of sessions. The equivalence property analyzed
by DEEPSEC [31], namely trace equivalence, is weaker
than the observational equivalence property supported by
TAMARIN [15] and PROVERIF [28]. In [12, 13, 48], the au-
thors state that observational equivalence may be too strong
for privacy properties and show how trace equivalence may
be the most suitable property for the matter. However, in [49],
the authors exhibit a linkability attack on the e-Passport pro-
tocol using the labeled bisimilarity property (labeled bisim-
ilarity and observational equivalence are equivalent [7]), al-
though the protocol is proven to be unlinkable in [48] using
trace equivalence. TAMARIN supports natively associative
and commutative symbols such as Diffie-Hellman exponen-
tiation while PROVERIF does not. Furthermore, PROVERIF
is sound but not complete [23] which means that it may find
false attacks, whereas TAMARIN is both sound and complete
in the trace mode [14]. SAPIC+ allows to exploit the strengths
of each tool, which justifies our choice for this framework.
Hybridization. As discussed earlier, emerging post-quantum
KEMs and signatures are not mature enough to be confidently
used on their own in security products. Hence, hybridization
is currently advised during a transitional period [6, 42, 66],
where post-quantum schemes are simultaneously used with
classic ones. Hybridization is not trivial as combining clas-
sic and post-quantum primitives must be done without intro-
ducing further security flaws. Also, the final construction’s
security must be ensured as long as at least the security of
the classic or the security of the post-quantum primitive is
ensured. The European Telecommunications Standards Insti-
tute (ETSI), for example, discusses techniques for hybrid key
exchange and provides computational proofs [41]. Many pro-
tocols and implementations already include hybrid solutions.
OpenSSH, for instance, recently implemented in version 9.9
a hybrid key exchange using X25519 and ML-KEM [54]. In
addition, numerous works provide performance analysis on
hybrid variants of the TLS handshake (e.g., [33, 68, 72, 74]),
see [9] for a comprehensive analysis of the different solutions.
In [70], the authors introduce KEMTLS, a variant of TLS us-
ing KEMs instead of signatures for authentication, formally
verified in [26] with TAMARIN. In the secure messaging do-
main, the Signal messaging protocol introduces a hybrid key
agreement protocol [57]. Apple’s IMessage also introduces
PQ3 [11], a secure hybrid messaging protocol. A computa-
tional proof [73] and a symbolic proof of the latter protocol us-
ing TAMARIN [61] are also available. For VPNs, a hybrid key
exchange [75] is proposed for the IKEv2 protocol [40], later
implemented by StrongSwan 6.0 [4], using the liboqs post-
quantum library [74]. Our construction of Hybrid-WireGuard
follows this line of research.

3 WireGuard and PQ-WireGuard

We describe WireGuard [36] and PQ-WireGuard [51] hand-
shakes. We start by recalling the cryptographic building

blocks used by both constructions.
Notations. In all descriptions, Y ← f(X) denotes the use of
function f, with input bitstring X and output bitstring Y , X || Y
the concatenation of X and Y , X $← {0,1}n a uniformly ran-
dom generation of a n-bit string and ⊥ a false proposition.

3.1 Cryptographic Building Blocks

DH key exchange. WireGuard uses Diffie-Hellman (DH) key
exchange, based on a cyclic group G of generator g. We
use DH.gen() to generate the DH key pair (s, S) where s
is generated uniformly at random and S= gs. We also use a
DH computation, that takes as input the private key of one DH
key pair, and the public key of another, i.e., either (s1,S2) or
(S1,s2), to generate the DH shared secret.
Key encapsulation mechanisms (KEM). A KEM is equipped
with three operations: KEM.gen() generates the key pair
(s, S). KEM.encaps(S) is the probabilistic encapsulation pro-
cedure, which takes as input a KEM public key S, and outputs
a secret key k and a ciphertext ct. We also use the definition
of KEM.encaps introduced in [51] to make the procedure de-
terministic, by adding an interface to provide random coins R
as additional input to the procedure, i.e., KEM.encaps(S,R).
Finally, KEM.decaps(s,ct) is the deterministic decapsulation
procedure, which takes as input a KEM private key s, and a
ciphertext ct, and outputs a secret key k.
Remark: DH key exchange establishes a shared secret with-
out any interaction, if both parties know each other’s keys,
typically with static long-term DH keys. Importantly, such
non-interactive key exchange is not possible using KEMs. In-
deed, one peer A holds the keys and the other peer B must
encapsulate using A’s public key and send the resulting ci-
phertext: the shared secret is derived from some ephemeral
randomness generated by B.
Authenticated encryption with associated data. An AEAD
is a symmetric authenticated encryption algorithm. The en-
cryption procedure AEAD.Enc(k,N,H,M) takes as input a
key k, a nonce N, a header H, and a message M, and outputs a
ciphertext C. The decryption procedure AEAD.Dec(k,N,H,C)
takes as input a key k, a nonce N, a header H and a ci-
phertext C, and outputs a message M or ⊥. We denote by
SE an unauthenticated symmetric encryption scheme.
SE.Enc(k,N,M) takes as input a key k, a nonce N, and a
plaintext M, and outputs a ciphertext C, while SE.Dec(k,N,C)
takes as input a key k, a nonce N, and a ciphertext C, and out-
puts a plaintext M.
Additional functions. WireGuard uses a hash function
HASH, a message authentication code MAC and a key
derivation function KDF (with key material k and some input
I). In the context of WireGuard, KDFn is indexed by an integer
n, and the former outputs n keys of the same size. We denote
the ℓ-th output by KDFn(k, I)[ℓ].



Table 1: Notations for DH keys and shared secrets, KEM keys,
encapsulation outputs and encapsulation random inputs. Key
pairs are denoted as (private key, public key). ∗c denotes a
classic key, ∗pq a post-quantum key. The random inputs are
specific to PQ-WireGuard [51].

DH keys Static Ephemeral

Initiator (sci ,S
c
i ) (eci ,E

c
i )

Responder (scr ,S
c
r ) (ecr ,E

c
r )

Responder
DH shared secrets

Static Ephemeral

Initiator
Static dhsisr dhsier

Ephemeral dheisr dheier

KEM keys Static Ephemeral

Initiator (spqi ,Spqi ) (epqi ,Epq
i )

Responder (spqr ,Spqr ) -

KEM.encaps outputs Secret key Ciphertext

Spqr shk1 ct1

Epq
i shk2 ct2

Spqi shk3 ct3

KEM.encaps randoms Static Ephemeral

Initiator σi ri

Responder σr rr, re

3.2 Handshakes

To ease comparison between constructions, all algorithms
and key derivations are presented side-by-side in Table 6
and Table 7, with notations from Table 1.
WireGuard handshake. We describe in Table 6 the con-
struction of the WireGuard handshake messages, similarly
to [36, 39, 59]. The handshake consists of two messages:
InitHello sent by Initiator, followed by RespHello sent by Re-
sponder. Both Initiator and Responder hold long-term DH
keys (sci ,S

c
i ) and (scr ,S

c
r ) respectively. WireGuard assumes

that both peers have exchanged their public keys before any
handshake, in a secure authenticated way. Table 7 describes
the chain of key derivation done by both peers to agree on the
final session keys: tki used to encrypt traffic sent by Initiator,
and tkr used to encrypt traffic sent by Responder.
Both Initiator and Responder generate ephemeral DH keys
(eci ,E

c
i ) and (ecr ,E

c
r ) respectively during the handshake. Then,

four DH shared secrets are used in the key derivation, that
correspond to the four combinations of static and ephemeral
DH keys of both peers: dhsisr , dhsier , dheisr and dheier .

PQ-WireGuard handshake. Since the DH key exchange is
not post-quantum secure, it needs to be replaced by post-
quantum KEMs. In [51], the authors replace the DH shared
secrets by ones generated using KEMs such that the same
security properties are ensured. In this case, both Initiator
and Responder hold static keys (spqi ,Spqi ) and (spqr ,Spqr ), that
correspond to a post-quantum KEM. We describe the hand-
shake and the key derivation, as proposed in [51], in Table 6
and Table 7 respectively. The differences from WireGuard are
highlighted in the tables.
DH shared secrets that involve at least one ephemeral key are
easily replaced by KEMs. The one corresponding to dhsier
is generated by Responder using Spqi (shk3 on line 4 for Re-
spHello). The one corresponding to dheisr is generated by
Initiator using Spqr (shk1 on line 4 for InitHello). The one
corresponding to dheier is generated by Responder using Ini-
tiator’s ephemeral key Epq

i (shk2 on line 3 for RespHello).
Meanwhile, shared secret dhsisr , generated using the static
keys of the peers, cannot be replaced by a secret generated
using a KEM key exchange, because the latter requires at
least one interaction. Instead, the authors of [51] replace this
shared key by some tweaks to the protocol, making sure that
the desired security properties remain satisfied. Observe that
dhsisr binds both identities of the peers to the key derivation.
It also ensures that the first sent message InitHello is already
authenticated, helping to mitigate Denial-of-Service (DoS)
attacks. To replace this secret, the authors impose using a pre-
shared key psk (optional in WireGuard). They discuss that
one may rely on the assumption that public keys are actually
not public and hence unknown to attackers, similarly to other
works making this assumption [10, 36], making the use of the
value psk← HASH(Spqi ⊕Spqr ) enough for security.
In addition, shared secret dhsisr does not rely on any
ephemeral randomness, adding a layer of protection against
potential random state corruption. For this reason, the authors
redefine the KEM.encaps procedure to make it deterministic.
The random coins are instead provided as input, so that the
shared secrets are derived from a trusted source of random-
ness. To generate the secret corresponding to dheisr , Initiator
combines with KDF1 an ephemeral random ri with a static
one σi and provides the output as input to KEM.encaps. Re-
sponder does the same during RespHello’s construction to
generate the secret corresponding to dhsier . Finally, the secret
corresponding to dheier , involves only ephemeral coins.
We give more details about the security properties achieved by
PQ-WireGuard in Section 4. Finally, for their computational
proof in [51], the authors choose IND-CCA [17] security for
the KEM corresponding to the static keys, and IND-CPA [17]
security for the KEM corresponding to the ephemeral keys.

4 Formal Analysis and Claimed Properties

We describe our approach for the analysis of WireGuard,
PQ-WireGuard, PQ-WireGuard⋆ and Hybrid-WireGuard with



SAPIC+ and the protocol verifiers PROVERIF, TAMARIN and
DEEPSEC. We also describe claimed security properties for
the protocols.

4.1 Formal Analysis

We do not go into the full details of the symbolic approach
(see [22, 24, 32] for a detailed presentation of this approach).
Threat model. The Dolev-Yao attacker model [35], is typi-
cally the assumed adversary in symbolic models. The Dolev-
Yao attacker has full control over the network through which
messages are exchanged. Attacker capabilities include eaves-
dropping, removing, duplicating, replaying, substituting and
delaying of all messages sent by protocol participants and also
include insertion of messages of her choice in public channels.
Consideration of attacker capabilities has a strong impact on
the analysis. In [59], for instance, considering an attacker’s
access to the DH precomputation allows the authors to find
attack scenarios, that were not visible in previous analyses of
WireGuard. Likewise, following the steps of [59], we consider
atomic capabilities of the attacker, that is, the attacker may
have access to the protocol’s atomic terms. As a consequence,
when analyzing a protocol, one needs to consider the set of
cryptographic keys (or more generally all secrets involved, as
one could consider randomness generation) that are involved
in a full execution of the protocol.
Cryptographic primitives. In the symbolic model, messages
are represented as terms which can be either atomic (to repre-
sent fresh values such as keys or random coins) or constructed
by applying function symbols. For instance, the terms pk(sk),
aenc(m,pk(sk)) and adec(c,sk) can represent a public key
function, an asymmetric encryption and an asymmetric de-
cryption, respectively. To model the behavior of cryptographic
primitives, function symbols may be ruled by a set of equa-
tions i.e., an equational theory. For example, the equation
adec(aenc(m,pk(sk)),sk) = m states that decrypting an en-
crypted message m using the proper key pairs sk and pk(sk),
results in the same message m. Thus, cryptography is assumed
to be perfect in the symbolic model, and one can decrypt only
in possession of the secret key sk. It is noteworthy to mention
that the sole equalities between the terms are those explicitly
specified by the equational theory. If no equation is added
for pk(sk), then it behaves as a perfect one-way function. The
latter equation is the standard equation used to model public
key encryption in the symbolic model. In this work, we use
this equational theory to model KEMs as in [20, 51].
Trace and equivalence. As presented in Table 3, there are
two main classes of security properties in the symbolic ap-
proach, namely trace properties and equivalence properties.
Trace properties are defined with regard to the executions of
the protocol. A trace property is considered to be satisfied
when, in all possible traces or executions of the protocol, the
property holds. Several security properties can be expressed
as trace properties, such as secrecy (as reachability property,

that is, whether the attacker can reach or not some secret
terms) and authentication (as correspondence assertions, that
is, whenever a specific event is reached in the protocol, another
event should be previously executed). Most of the existing
symbolic tools support the specification of trace properties.
Equivalence properties are defined between two scenarios
that the attacker should not be able to tell apart. Privacy prop-
erties can be expressed as equivalence properties, such as
anonymity, unlinkability and strong secrecy. In [38, 51], the
authors analyze and formalize anonymity as a trace property.
We note that proving that a property holds with equivalences
provides a stronger guarantee than when it is proven as a
trace property. There are two major equivalence properties
supported by the existing tools: trace equivalence and obser-
vational equivalence. In addition to the trace properties, we
use both notions of equivalence to analyze privacy.
Security properties analysis. While researchers in symbolic
protocol verification have largely converged on common defi-
nitions and formalizations of security properties, no such
agreement exists about how the results of the analysis should
be presented nor described. The most commonly employed
approach is to ascertain whether a protocol meets a security
property under predetermined assumptions regarding the at-
tacker’s capabilities, as demonstrated by the overwhelming
majority of analyses, e.g., [19,55,76]. A more comprehensive
analysis entails conducting a deeper verification to determine
what an attacker can do to compromise the security property
or what is the most potent threat model that the protocol can
still withstand. In this work, we follow the steps of [47, 59]
to express security properties as concise logical formulas in
Conjunctive Normal Forms (CNF) that define the minimal key
compromise conditions required to breach a security property.
For instance, if the CNF for the secrecy of the session key is
psk∧ (scr ∨ eci ), it means that the session key is secret unless
psk and scr , or psk and eci are compromised.
Evaluation strategy. Expressing security properties as com-
pact formulas involving minimal compromise scenarios re-
quires an evaluation strategy to ensure efficiency and com-
pleteness of the evaluation: in [59], the set of required evalua-
tions for each secrecy and agreement property (215 cases) is
reduced to a subset of 4860 evaluations by eliminating trivial
cases. Nevertheless, even with this reduction, the analysis
requires a server with a 1.5 GHz CPU of 256 cores, and 512
Go of RAM. With this architecture, agreement and key se-
crecy are each evaluated in around 15 minutes, to which one
needs to add around 90 minutes for each property, for the
computation of the minimal formulas (see [58] for details). In
this work, our target is protocols with a potentially larger set
of compromise cases, as hybridization involves classic and
post-quantum keys. For instance, PQ-WireGuard from [51]
requires up to 220 compromise cases, and a composition of
WireGuard and PQ WireGuard would require 235 compromise
cases. The evaluation strategy proposed in [59] does not scale
to such values. Hence, we propose an adaptive strategy that



drastically reduces the number of necessary steps to obtain
results more efficiently, while preserving soundness.

Table 2: Optimization of WireGuard analysis.

Step [58, 59] Our work

PROVERIF queries generation ≈ 15m ≈ 5s

PROVERIF queries evaluation ≈ 2h30m ≈ 2m45s

CNF computation ≈ 1h30m ≈ 2s

TAMARIN lemma generation Manual Automatic

Table 2 shows the impact of our new evaluation strategy
on symbolic verification performance, compared to previous
works [58,59]. In our new strategy, we do not consider, for all
trace properties, all potential key combinations, for an adver-
sary with read or write access to cryptographic keys, nor do we
generate all possible queries beforehand, as in [59]. Instead,
we first consider the n keys for read access. For each query
considering a possible set of t ≤ n keys, if it evaluates to true,
then we eliminate all supersets of this set from the evaluation,
since we know that the corresponding queries will also evalu-
ate to true. This trick eliminates

(n−t
1

)
+ . . .+

(n−t
n−t

)
= 2n−t−1

cases from the evaluation. The corresponding algorithm is
described in Algorithm 1.

Algorithm 1 Evaluation strategy for read access keys.

Input: keys for read access k1, . . . ,kn
1: for t = 1 . . .n do
2: St ←

{
{ki1 , . . . ,kit} | 1≤ i1, . . . , it ≤ n

}
3: for t = 1 . . .n do
4: for each E ∈ St do
5: if query conditioned on E is true then
6: for j = t +1 . . .n do
7: S j←{S | S ∈ S j and E ̸⊂ S}

Next, when all necessary queries for read access are evaluated,
we evaluate ones for write access. We also propose an adap-
tive approach: each disjunction of CNFs computed from read
access leads to a single query to evaluate. For instance, there
are 3 evaluations for all agreement properties for WireGuard
(c.f., Table 4). This adaptive analysis requires less than 30
queries to evaluate, instead of 4860 as in [59]. Furthermore,
computation of CNF is now straightforward.
We also optimize precision: in PROVERIF, a query may be
evaluated as cannot be proved, which can be resolved with
instruction set preciseActions = true. potentially at the cost
of a longer evaluation [25]. In [59], such instruction is set
at property level and hence is applicable for all queries of a
given property. Here, we are more fine-grained as we only
increase precision for a dedicated small set of queries, which

also optimizes evaluation.
Eventually, for Hybrid-WireGuard, analysis is also adaptive:
CNFs computed from read access, from WireGuard and PQ-
WireGuard⋆, are directly used to assess security properties for
an adversary with read access to keys. Then, as before, we
evaluate queries for an adversary with write access to keys.

4.2 Claimed Security Properties

The evaluated security properties are presented in Table 3: ✗
(resp. ✓) denotes that the property is not analyzed (resp. is
analyzed). We give an informal definition for each mentioned
security property, formal queries are detailed in Appendix B.
Resistance against Maximal EXposure (MEX) attacks.
These attacks involve revealing static and/or ephemeral keys
and/or used randomness to the adversary [45,46,56]. We con-
sider these attacks for all properties: our methodology ensures
that all combinations are analyzed, between the “minimal
case” (no reveal) and the “maximal case” (all static keys,
ephemeral keys and used randomness are revealed).
Resistance against Unknown-Key-Share attacks. UKS at-
tacks enable an attacker to coerce honest peers into exchang-
ing keys with parties other than the ones they believe they
are communicating with, without being aware of this ex-
change [21, 27]. This property is analyzed for Initiator and
Responder (unilateral case) and for both peers (bilateral case),
as a trace property. We formalize this property as in [51].
Session uniqueness. This property is analyzed for both Initia-
tor and Responder as a trace property. It states that a session
key computed on each side is unique thanks to the use of
ephemeral keys. We formalize this property as in [51].
Anonymity. This property is analyzed for both Initiator and
Responder. It ensures that a user is able to participate in
the protocol without an attacker being able to reveal their
identity. It is defined as an equivalence property between two
systems involving two distinct identities that the attacker is
unable to distinguish. As stated in previous sections, we also
analyze anonymity for both equivalence properties (i.e., trace
equivalence and observational equivalence). We formalize
this property as in [59] for observational equivalence, and we
adapt the formal definition from [30] for trace equivalence.
Message agreement. This property corresponds to full agree-
ment, as defined in [63]: if a peer A receives a message, ap-
parently from another peer B, then B has previously been
running the protocol with A, and both peers agreed on sent,
received and atomic data used in the protocol. We formalize
this property as in [59].
Resistance against Key Compromise Impersonation (KCI).
These attacks occur when an attacker gains access to the static
secret material of a peer, and is able to impersonate their
corresponding peer during a run of the protocol. We do not
model this property explicitly as in [51], instead it is directly
deduced from our message agreement properties.



Key (strong/mutual) secrecy. Secrecy is considered for the
session keys computed on both sides after a complete hand-
shake. In the classic case, these keys involve the four possible
DH computations. In the post-quantum case, the session keys
involve the three possible KEM computations. Finally, in the
hybrid case, the keys involve all the DH and KEM computa-
tions. In [51], the authors consider the session keys secret
when they are “indistinguishable from a random string” to the
attacker. At the same time, in their symbolic analysis, they
only consider a weaker definition of secrecy, expressed as
a reachability property and proven as a trace property, i.e.,
the attacker cannot recover the entire secret. This property is
weaker because to prove or analyze the indistinguishability
of a term from a freshly generated random coin, one needs
to define secrecy as an equivalence property. We examine
both definitions: we employ the term Key secrecy to refer
to the trace property, and Key strong secrecy to refer to the
equivalence property, as presented in Table 3. Secrecy as a
trace property is considered for each peer, i.e., the keys com-
puted on Initiator and Responder sides (since they may not
agree on the same keys) and in addition (as done in [51]), we
consider Key mutual secrecy, which combines key secrecy
and agreement. We model key secrecy as in [59], key mutual
secrecy as in [51] and key indistinguishability’s definition
from [19] which we refer to as key strong secrecy.
Key (mutual) forward secrecy. This property is also con-
sidered for the session keys computed on both sides after a
complete handshake. It is also considered for each peer on
both sides, and mutually like the mutual secrecy described
above. We analyze this property as a trace property, where
all static keys are revealed to the attacker at a later phase,
i.e., after protocol sessions have been executed. The attacker
should not be able to learn the keys of previous sessions. We
also consider Key mutual forward secrecy, which combines
forward key secrecy and agreement. We model key forward
secrecy as in [59] and key mutual forward secrecy as in [51].

Note that in Table 3, some security properties are not
analyzed for Rosenpass [76], as authors claim that they are
directly inherited from PQ-WireGuard. In addition, they pro-
pose a tweak to PQ-WireGuard to ensure security against state
disruption attacks. Such attacks enable an attacker who con-
trols Initiator’s local time to inhibit future handshakes [2, 3]
(WireGuard and PQ-WireGuard use a timestamp in the first
message). However, they do not provide a symbolic proof of
the claimed security against these attacks. In addition, these at-
tacks can be mitigated with simple engineering solutions [36].
In our work, we do not model Rosenpass, but only WireGuard
and PQ-WireGuard (along with our new constructions).

5 Analysis of WireGuard and PQ-WireGuard

We describe our formal analysis of WireGuard [36] and PQ-
WireGuard [51] in the symbolic model using SAPIC+. This
leads us to our new construction PQ-WireGuard⋆, that en-

Table 3: Security properties, analyzed as trace (t) or equiva-
lence (e) properties. [38] and [59] model Wireguard, [51]
PQ-WireGuard, [76] Rosenpass, and we model WireGuard,
PQ-WireGuard, PQ-WireGuard⋆ (Section 5.2) and Hybrid-
WireGuard (Section 6). FS denotes Forward Secrecy.

Property [38] [59] [51] [76]
Our
work

MEX resistance ✗ ✓t,e ✓t ✗ ✓t,e

UKS resistance ✗ ✗ ✓t ✗ ✓t

Session uniquen. ✓t ✗ ✓t ✗ ✓t

Anonymity ✓t ✓e ✓t ✓e ✓e

Message agreem. ✓t ✓t ✓t ✓t ✓t

KCI resistance ✓t ✗ ✓t ✗ ✓t

Key secrecy ✓t ✓t ✓t ✓t ✓t

Key strong secr. ✗ ✗ ✗ ✗ ✓e

Key mutual secr. ✗ ✗ ✓t ✗ ✓t

Key FS ✓t ✓t ✓t ✓t ✓t

Key mutual FS ✗ ✗ ✗ ✗ ✓t

Tools

PROVERIF ✗ ✓ ✗ ✓ ✓

TAMARIN ✓ ✓ ✓ ✗ ✓

DEEPSEC ✗ ✗ ✗ ✗ ✓

hances PQ-WireGuard. For each security property, we derive
the corresponding CNF using PROVERIF. We recall that a
CNF captures all minimal key compromises scenarios re-
quired to break a property. For WireGuard’s trace properties,
we verify the CNFs with TAMARIN due to its more com-
plete Diffie-Hellman model. For PQ-WireGuard, we omit
TAMARIN as no exponentiation is involved. For equivalence
properties, we confirm PROVERIF’s attack scenarios with
DEEPSEC instead of manual trace analysis, since DEEPSEC
is complete while PROVERIF is not. To ease comparison, our
results are presented side-by-side in Table 4. Our evaluations
are available in our companion artifacts [60].

5.1 WireGuard

Our model of WireGuard extends the previous SAPIC+ model
of [59] in several ways. First, we consider that a participant
of the protocol can play both roles during the execution. In
other words, a peer can act as Initiator and/or Responder, as
stated in the original specification of WireGuard. We ana-
lyze new properties: security against UKS attacks, resistance



against KCI, session uniqueness, mutual secrecy, strong se-
crecy and mutual FS. For analyzing UKS attacks resistance,
an attacker can actively participate in the protocol using their
own identity, instead of only trying to compromise honest par-
ticipants. Our results, depicted in Table 4, confirm the analysis
from [59] for the same security properties. For newly verified
properties, we exhibit new results on WireGuard, that confirm
the robustness of the protocol. In particular, we prove that
UKS attacks are infeasible thanks to the contributive nature
of the products included in the key derivation.

5.2 PQ-WireGuard

Like WireGuard’s model, we permit role switching between
peers. This enables us to detect UKS attack scenarios that
would be missed using the model from [59], as it does not
account for role switching.
Unknown-Key-Share attacks. As in [51], we consider uni-
lateral and bilateral UKS attacks. We identify a bug in the
PQ-WireGuard symbolic model from [51] due to a discre-
pancy between the protocol description in the paper [51] and
its TAMARIN model [52]. Specifically, in Algorithm 2 (line
12) of [51], ct2 is the ciphertext resulting from the encap-
sulation of Initiator’s ephemeral key epki. This ciphertext
is included in the key derivation chain in Table II in [51]
(which corresponds to step 6 of Table 7). We verify the com-
putational proof in the paper and confirm that it aligns with
the protocol specifications, yet, the symbolic model does not.
In line 221 of the TAMARIN code given in [52], sct2 =
aenc{ka}pkI represents the ciphertext resulting from the
encapsulation of Initiator’s static public key pkI, which is
included in the derivation chain in subsequent lines. In con-
trast, ect = aenc{k}pekI, the ciphertext from encapsulat-
ing Initiator’s ephemeral key pekI is never included in the
key derivation chain. While this might appear to be a minor
modeling error, its impact is significant: it transforms the
lemma UKS_on_responder_resistance that was verified
under the flawed model into a falsified lemma, as it enables
UKS attack scenarios. In fact, the reason the attack disappears
when the ciphertext (resulting from encapsulating Initiator’s
static key) is included in the session key derivation chain,
is that the ciphertext (modeled as a standard public key en-
cryption) remains bound to the static key. By incorporating it
into the derivation chain, the session key itself also becomes
bound to Initiator’s static key. Thus, an honest Responder
cannot be tricked into establishing a session key with an Ini-
tiator possessing a different key. The CNF for the UUKS on
Initiator’s side is psk∧ (σi∨ spqi )∧ (spqi ∨ rr)∧ (e

pq
i ∨ re), and

for Responder’s side is psk∧ (σi∨ spqr )∧ (σr∨ ri)∧ (epqi ∨ re).
Consequently, if either all static and pre-shared keys are com-
promised, or if the randomness source is compromised, the
protocol maintains UUKS resistance. However, the protocol
is vulnerable to UUKS attacks when an adversary compro-
mises both the static keys and randomness of the same peer -

a corruption pattern excluded in [51]. However, the CNF for
the BUKS property is epqi ∨ re, that is, BUKS resistance does
not hold under the MEX scenario involving compromised
randomness, contrary to the resistance requirement claimed
by the protocol authors. The attack proceeds as follows: Alice,
acting as an honest Initiator with a static public key Spqi and
sharing a default psk= HASH(Spqi ⊕Spqr ) with dishonest Eve
with Spqr as static public key, generates an ephemeral key
(epqi ,Epq

i ), encapsulates the public key of Eve to obtain the
shared secret shk1, and sends an InitHello message. Eve re-
ceives Alice’s message, decapsulates the received ciphertext
with her secret key to obtain shk1, re-encapsulates shk1 us-
ing Alice’s public key, and initiates a new session with Alice
(consistent with WireGuard/PQ-WireGuard’s dual-role de-
sign) by sending an InitHello message with the same psk, Epq

i ,
and the shared secret shk1. When Alice receives Eve’s new
message, she processes it as a Responder by decapsulating
using her static secret key to obtain the shared secret shk1, and
encapsulates on Eve’s sent ephemeral public key Epq

i (also
her own ephemeral key) to obtain the shared secret shk2, then
transmits a RespHello response. Eve, possessing either the
compromised randomness or the secret key epqi , completes
the attack by decapsulating with her own key to obtain shk3
and re-encapsulating it with Alice’s public key. This results
in Alice erroneously establishing a session key with herself
while believing it is with Eve. To address this vulnerability
in PQ-WireGuard, we modify the key derivation process to
incorporate the concatenation of Initiator’s and Responder’s
public static keys respectively, i.e., HASH(Spqi || Spqr ). This
fix establishes an explicit binding between the session keys
and the protocol participants, and also encodes the Initiator-
Responder distinction in the derived key material to prevent
the role confusion exploited in the BUKS attack.

Initiator and Responder Anonymity. Likewise to Wire-
Guard, our analysis shows that anonymity is not guaranteed
neither for Initiator nor for Responder. In [59], two fixes are
proposed to ensure anonymity: one based on the pre-shared
key psk, and another based on DH shared secret dhsisr . To
reach anonymity in PQ-WireGuard, we consider the fix based
on the pre-shared key, as the one based on dhsisr is not appli-
cable in the post-quantum case. The fix consists in computing
the MAC value m1 in InitHello and RespHello, using the pre-
shared key as MAC key, instead of the static KEM key of the
other party. This fix requires the adaptation of Responder’s
InitHello message consumption, as upon receiving InitHello,
Responder cannot directly know which pre-shared key to use
from its database for the verification of m1. Hence, we change
the order of Responder’s operations upon receipt of InitHello:
Responder has to perform KEM.Decaps and AEAD.Dec opera-
tions before m1 verification because decryption of the static
field is required to identify Initiator and retrieve the corre-
sponding pre-shared key. Note that the original order is inher-
ited from WireGuard design. As explained in [36], m1 check
should protect Responder against DoS attacks: if m1 verifi-



cation fails, Responder is prevented from computing costly
DH and AEAD.Dec computations. We note however that this
protection is based on a false assumption, that Initiator’s and
Responder’s static keys (used as MAC keys in WireGuard) are
secret. Without this assumption, DoS attacks against Respon-
der are realistic: knowledge of the static public keys implies
the ability to compute an arbitrary InitHello message with a
correct m1 field, implying DH and AEAD.Dec computations.
Meanwhile, on Initiator’s side, no modification is required
for RespHello message reception: Initiator has knowledge of
which pre-shared key to use and check message authentica-
tion code m1 from RespHello message, using the received
sidi field. For completeness, InitHello message consumption
for all protocols is detailed in Appendix A.
Probabilistic encapsulation and well-known KEMs. In PQ-
WireGuard, a deterministic KEM encapsulation is used to
ensure security against MEX attacks (c.f., Section 3). In ad-
dition, the authors construct an IND-CPA KEM called Dagger
based on SABER [16], a known KEM, to have messages small
enough to avoid IP fragmentation. We stress that relying on
such unconventional constructions can have security risks
since it restricts the choices of libraries that can be used, forc-
ing a developer to re-implement the KEM. In addition, con-
trolling the source of randomness when using cryptographic
primitives is unadvised, because of the associated risks when
instantiating the random coins. In our improved construction,
we propose to make standard choices for the KEMs.
First, we use the standard probabilistic encapsulation in-
stead of the modified deterministic procedure. Nevertheless,
our symbolic analysis shows that security against MEX at-
tacks is still ensured, thanks to the use of the pre-shared
key psk at an early stage during the key derivation (Step
4 in Table 7), under the assumption that psk is an actual
secret pre-shared key. Note that psk is already used at this
stage in PQ-WireGuard, but is not used to prove security
against MEX attacks. This adaptation, composed with the
previous adaptation to ensure resistance against UKS attacks,
leads to modify PQ-WireGuard key derivation to include
(HASH(Spqi || Spqr ) || psk).
Second, we rely on standard KEM implementations, poten-
tially at the cost of larger messages. This choice allows de-
velopers to use well-known cryptographic libraries, imple-
menting standard KEMs with fixed parameters. Since existing
KEMs usually aim to achieve IND-CCA security, we use IND-
CCA KEMs for both static and ephemeral keys.
PQ-WireGuard⋆. We integrate all the previously proposed
fixes into a modified version of PQ-WireGuard which we re-
fer to as PQ-WireGuard⋆, described in Table 6 and Table 7.
We formally analyze PQ-WireGuard⋆ with the same tools
and strategy used for PQ-WireGuard. Our analysis results
in Table 4 show that UKS attacks are now infeasible. As for
anonymity, our construction of PQ-WireGuard⋆ also embeds
modifications to enhance the property. In PQ-WireGuard, this
property is never ensured, even when no key nor randomness

is revealed to the attacker. However, with PQ-WireGuard⋆ con-
struction, anonymity is guaranteed; note that for this property,
CNFs for Initiator and Responder are asymmetric, because
of the asymmetry of keys owned by the peers (Responder
does not have an ephemeral KEM key pair). We also observe
that the other security properties remain unchanged. The only
difference is that PQ-WireGuard⋆ relies on common KEM
definition, so it does not use terms σi and σr. Hence, obtained
CNFs for agreement properties for PQ-WireGuard⋆ do not
contain these terms, as in the case of PQ-WireGuard.

6 Hybrid-WireGuard: Protocol and Analysis

Protocol definition. We introduce a new handshake, de-
scribed in Table 6 and Table 7, that hybridizes WireGuard:
Hybrid-WireGuard combines DH secrets from the Wire-
Guard handshake, with post-quantum KEM secrets from PQ-
WireGuard⋆. The goal is to ensure security of the protocol as
long as at least the security of the classic primitives or the se-
curity of the post-quantum primitives is ensured. To reach this
goal, we propose a construction inspired from existing works
(e.g., [44, 54, 75]). In this case, Initiator and Responder hold
static long-term DH and KEM key pairs

(
(sci ,S

c
i ),(s

pq
i ,Spqi )

)
and

(
(scr ,S

c
r ),(s

pq
r ,Spqr )

)
respectively. We also derive four DH

secrets as in WireGuard, and three KEM shared secrets as in
PQ-WireGuard⋆.
During key derivation, both the DH secrets and the KEM se-
crets from WireGuard and PQ-WireGuard⋆ respectively, are
concatenated and used in Hybrid-WireGuard (terms C3, C4,
C7, C8 and term κ3 in Table 7). In addition, we include the
necessary modifications to ensure resistance against UKS
attacks: we use the concatenation of the DH product from
WireGuard, and the hash of the KEM public keys from PQ-
WireGuard⋆, both used in the corresponding protocols to reach
this resistance (terms C4 and κ4 in Table 7).
During the handshake, the static field results from an AEAD
encryption of Initiator’s DH static public key in WireGuard,
and the hash of Initiator’s KEM static public key in PQ-
WireGuard⋆ (as considering the public key would increase
InitHello message size above the MTU limit [51]). In Hybrid-
WireGuard, the static field is an encryption of the hash of
Initiator’s concatenated DH and KEM public keys.
For anonymity, another tweak is needed in the case of Hybrid-
WireGuard to ensure that compromise of the property requires
compromise of both DH and KEM static keys. During the
PQ-WireGuard⋆ handshake, if an attacker compromises the
ephemeral randomness used during the encapsulation against
Spqr in InitHello, then they can intercept ct1 to lookup the cor-
rect static KEM key and reveal the identity of Responder. Sim-
ilarly, if an attacker compromises the ephemeral randomness
used during the encapsulation against Spqi in RespHello, then
they can intercept ct3 to lookup the correct static KEM key
and reveal the identity of Initiator. This vulnerability is inher-
ited by Hybrid-WireGuard when sending the same ciphertexts



Table 4: Symbolic analysis Results. ✓ denotes a property unconditonally ensured, ✗ a property never ensured. Key notations are
from Table 1 (blue: WireGuard, orange PQ-WireGuard⋆). For WireGuard, we use and complete results from [59] as it allows to
consider the fix for anonymity proposed in [59]. FS denotes Forward Secrecy.

Property WireGuard [59] PQ-WireGuard PQ-WireGuard⋆ Hybrid-WireGuard

UKS attacks resistance (PROVERIF)

Unilateral UKS
(Init.)

✓ psk∧ (σr∨ spqi )∧ (rr∨
spqi )∧ (epqi ∨ re)

✓ ✓

Unilateral UKS
(Resp.)

✓ psk∧ (σi∨ spqr )∧ (ri∨
spqr )∧ (epqi ∨ re)

✓ ✓

Bilateral UKS ✓ epqi ∨ re ✓ ✓

Anonymity (DEEPSEC, PROVERIF)

Init. psk∨ scr ∨ eci ✗ psk∨ spqi ∨ spqr ∨
rr∨ ri

psk
∨

(scr ∨ eci )
∧

(spqr ∨ ri)
∨

(sci ∨ ecr )
∧

(spqi ∨ rr)

Resp. psk∨ scr ∨ eci ✗ psk∨ spqr ∨ ri (psk∨ scr ∨ eci )
∧

(psk∨ spqr ∨ ri)

Session uniqueness (PROVERIF, TAMARIN)

Init./Resp. ✓ ✓ ✓ ✓

Key (forward) secrecy, message agreement (PROVERIF, TAMARIN), key strong secrecy (PROVERIF, DEEPSEC)

Agreem. InitHello psk∧(dhsisr ∨sci ∨scr ) psk psk psk∧ (dhsisr ∨ sci ∨ scr )

Secrecy (Init.)
Agreem. RespHello
Key strong secrecy

psk∧ (scr ∨ eci )∧
(dhsisr ∨ sci ∨ scr )

psk∧ (spqr ∨ ri)∧
(spqr ∨σi)

psk∧ (spqr ∨ ri) psk∧ (scr ∨ eci )∧ (dhsisr ∨ sci ∨
scr )

∧
(spqr ∨ ri)

Secrecy (Resp.)
Agreem. Confirm

psk∧ (sci ∨ ecr )∧
(dhsisr ∨ sci ∨ scr )

psk∧ (spqi ∨ rr)∧
(spqi ∨σr)

psk∧ (spqi ∨ rr) psk∧ (sci ∨ ecr )∧ (dhsisr ∨ sci ∨
scr )

∧
(spqi ∨ rr)

Secrecy (mutual)
FS (Init. / Resp. /
mutual)

psk∧ (sci ∨ ecr )∧
(scr ∨ eci )∧ (eci ∨ ecr )∧

(dhsisr ∨ sci ∨ scr )

psk∧ (spqi ∨ rr)∧
(spqi ∨σr)∧ (spqr ∨ ri)∧
(spqr ∨σi)∧ (epqi ∨ re)

psk∧ (spqi ∨ rr)∧
(spqr ∨ ri)∧ (e

pq
i ∨

re)

psk∧ (sci ∨ ecr )∧ (scr ∨ eci )∧
(eci ∨ ecr )∧ (dhsisr ∨ sci ∨ scr )

∧
(spqi ∨rr)∧(spqr ∨ri)∧(e

pq
i ∨re)

ct1 and ct3 respectively in InitHello and RespHello. To make
up for this issue, we encrypt ct1 and ct3 with a symmetric
encryption scheme, using as key the output of KDF1 applied
to the DH secret dheisr in the case of InitHello, and dhsier in the
case of RespHello. Hence, instead of exchanging ct1 and ct3,
Initiator sends ct1enc created on line 7 for InitHello in Table 6
and ct3

enc created on line 6 for RespHello. The goal of this
tweak is that even in the case of ephemeral randomness com-
promise, the attacker would still need to lookup all possible
DH and KEM keys at the same time. Consequently, compro-
mising only the DH static key or only the KEM key, along with
ephemeral randomness compromise, is not enough to break
anonymity. Note that ephemeral randomness compromise
does not have the same effect in the case of PQ-WireGuard,
since the secret is a result of the deterministic encapsula-
tion, using random coins generated from the combination of
ephemeral and long-term secret randomness.

Symbolic Analysis Results. For our assessment of Hybrid-
WireGuard’s security properties, we directly used obtained
CNFs for WireGuard and PQ-WireGuard⋆ and added the
necessary evaluations to ensure soundness. The results of our
symbolic analysis for Hybrid-WireGuard are presented side-
by-side with other protocols in Table 4. We put forward that a
necessary and sufficient condition to break a given property in
our proposed Hybrid-WireGuard construction is to break the
same property for WireGuard and for PQ-WireGuard⋆, with
exactly the same set of keys involved. This is illustrated for
instance for key secrecy from Initiator’s view in Table 4, for
WireGuard, PQ-WireGuard⋆ and Hybrid-WireGuard. The ob-
tained CNF for Hybrid-WireGuard is equal to the conjunction
of the obtained CNFs for WireGuard and PQ-WireGuard⋆,
which is exactly our target. More generally, an attack scenario
against a security property of Hybrid-WireGuard is a com-
bination of an attack on PQ-WireGuard⋆ and an attack on



Table 5: Instantiation of cryptographic primitives.

Protocol DH KEM

WG [36] X25519 -

PQ-WG [51] - Classic McEliece L3,
Dagger L3

PQ-WG⋆ - Classic McEliece L3,
ML-KEM L1Hybrid-WG X25519

Symmetric (for all protocols)

AEAD ChaCha20Poly1305

HASH Blake2s

MAC keyed−Blake2s

KDF HKDF with HMAC−Blake2s

SE ChaCha20 (only for Hybrid-WG)

WireGuard. The only exception is for anonymity, due to our
solution: as shown in Table 6, line 7 for InitHello (resp. line 6
for RespHello), we encrypt ct1 (resp. ct3) with dheisr (resp.
dhsier ) to ensure that breaking the property requires breaking
DH and KEM keys.

7 Implementation

We provide an implementation in Rust of our new PQ-
WireGuard⋆ and Hybrid-WireGuard protocols, based on the
original WireGuard Rust implementation [5]. Our implemen-
tations are available in our companion artifacts [60].

7.1 Instantiation of Cryptographic Primitives
In Table 5, we summarize the cryptographic instantia-
tion in WireGuard [36], PQ-WireGuard [51] and our PQ-
WireGuard⋆ and Hybrid-WireGuard constructions. In Table 8,
we give InitHello and RespHello sizes with respect to the cho-
sen primitives. Note that in all protocols, the symmetric primi-
tives are the same as in WireGuard, since quantum computing
does not represent a considerable threat against them. The
only exception is the symmetric encryption scheme exclu-
sively used in Hybrid-WireGuard (for anonymity, c.f., Sec-
tion 6), which corresponds to the unauthenticated version
of the AEAD scheme. Meanwhile, the DH key exchange in
WireGuard is replaced by two post-quantum KEMs in PQ-
WireGuard, one for the static keys, and one for the ephemeral
keys (c.f., Section 3). The authors of [51] choose KEMs such
that InitHello and RespHello IPv6 packets do not exceed the
maximum transmission unit (MTU) of 1280 bytes [34] to
avoid fragmentation. Indeed, WireGuard relies on UDP and

does not handle fragmentation. The authors additionally take
other constraints into account. For instance, they restrict the
choices to conservative primitives (in terms of security), that
have advanced in the NIST competition and had the potential
to be standardized ( [51] was published before the final results
of the competition), and those that provide L3 security. For the
static long-term keys, a KEM with small ciphertext is needed,
since the public keys are not exchanged during the handshake.
In this case, the authors choose Classic McEliece [18], which
has one of the smallest ciphertexts sizes among post-quantum
KEM constructions. Meanwhile, its public key is very large
(524160 bytes for L3 security). For the ephemeral KEM, the
corresponding public key is sent in InitHello message, and
the ciphertext is sent in RespHello message. Hence, both
parameters must be small. The authors provide a tweaked
construction of SABER [16], which they call Dagger. The
latter is only IND-CPA secure, unlike SABER which is IND-
CCA secure, but benefits from public key and ciphertext sizes
smaller than those of SABER, and enough to fit in the hand-
shake messages with L3 security. Table 8 exhibits the sizes
of the messages with the chosen KEMs compared to the origi-
nal WireGuard handshake. In our benchmarks, we update the
Classic McEliece ciphertext size to match the current updated
specifications [18]. In this case, it is equal to 156 bytes for L3
security, whereas in [51], it was equal to 188 bytes. Note that
Classic McEliece is the only KEM suitable for the static keys,
for the messages to fit into the IPv6 MTU, while taking into
consideration the ephemeral KEM exchange.
For PQ-WireGuard⋆, as discussed in Section 5.2, we only
rely on well-known KEM implementations. We choose
Classic McEliece for the static keys, and ML-KEM, a stan-
dardized KEM, for the ephemeral keys. Meanwhile, we can
only use ML-KEM with its parameters for L1 security and
Classic McEliece for L3 security, without surpassing the IPv6
MTU (c.f., Table 8). In the hybrid case, this L1 security
matches the security level of the used Diffie-Hellman curve
Curve25519, providing 128 bits of security.

7.2 Genericity and Performance

Genericity. We use liboqs [74] for the implementation of post-
quantum KEMs, which is a known post-quantum library im-
plemented in C. It is part of the Open-Quantum Safe project,
grouping several research institutes and companies. In Rust,
we use the latest interface to the C implementation, i.e., oqs
crate version 0.10.0. Note that the usage of liboqs can be eas-
ily replaced by another post-quantum library, and the chosen
post-quantum KEMs can be replaced in the implementation.
This provides our implementation with genericity, especially
in the case of recent post-quantum constructions. In other
words, if a KEM is broken, we can quickly replace it in the
implementation with another one, as long as the parameters
sizes respect the constraints of WireGuard usage.



Table 6: Handshakes. type : 1 for InitHello, 2 for RespHello (4-byte values); lbl1, lbl2, lbl3: public constants; cookie : 0, except
after receiving CookieReply message [36]. Colored instructions are blue for WireGuard [36], green for PQ-WireGuard [51]
orange for PQ-WireGuard⋆ and purple for Hybrid-WireGuard. KEM.encaps in PQ-WireGuard is a deterministic procedure, while
KEM.encaps in PQ-WireGuard⋆ and Hybrid-WireGuard is the standard probabilistic procedure (c.f., Section 3.1). Key notations
are summarized in Table 1.

W
G

[3
6]

InitHello construction
input: sci ,Sci ,Scr

1: sidi
$←{0,1}32

2: (eci ,E
c
i )← DH.gen()

3: static← AEAD.Enc(κ3, 0, H3, S
c
i )

4: time← AEAD.Enc(κ4, 0, H4, now())
5: inner← type || sidi || Ec

i || static || time
6: m1←MAC(HASH(lbl3 || Scr ), inner)
7: m2←MAC(cookie, inner || m1)
8: InitHello← inner || m1 || m2

RespHello construction
input: scr ,Scr ,Sci

1: sidr
$←{0,1}32

2: (ecr ,E
c
r )← DH.gen()

3: empty← AEAD.Enc(κ9, 0, H9, ∅)

4: inner← type || sidr || sidi || Ec
r || empty

5: m1←MAC(HASH(lbl3 || Sci ), inner)
6: m2←MAC(cookie, inner || m1)
7: RespHello← inner || m1 || m2

PQ
-W

G
[5

1]

input: σi,s
pq
i ,Spqi ,Spqr

1: sidi
$←{0,1}32

2: ri
$←{0,1}256

3: (epqi ,Epq
i )← KEM.gen()

4: (ct1,shk1)← KEM.Encaps(Spqr , KDF1(σi, ri))
5: static← AEAD.Enc(κ3, 0, H3, HASH(Spqi ))
6: time← AEAD.Enc(κ4, 0, H4, now())
7: inner← type || sidi || Epq

i || ct1 || static || time
8: m1←MAC(HASH(lbl3 || Spqr ), inner)
9: m2←MAC(cookie, inner || m1)

10: InitHello← inner || m1 || m2

input: σr,s
pq
r ,Spqr ,Spqi

1: sidr
$←{0,1}32

2: re, rr
$←{0,1}256×{0,1}256

3: (ct2,shk2)← KEM.Encaps(Epq
i , re)

4: (ct3,shk3)← KEM.Encaps(Spqi , KDF1(σr, rr))
5: empty← AEAD.Enc(κ9, 0, H9, ∅)

6: inner← type || sidr || sidi || ct2 || ct3 || empty
7: m1←MAC(HASH(lbl3 || Spqi ), inner)
8: m2←MAC(cookie, inner || m1)
9: RespHello← inner || m1 || m2

PQ
-W

G
⋆

(S
ec

tio
n

5.
2)

input: spqi ,Spqi ,Spqr

1: sidi
$←{0,1}32

2: (epqi ,Epq
i )← KEM.gen()

3: (ct1,shk1)← KEM.Encaps(Spqr ) // ri
$←{0,1}256

4: static← AEAD.Enc(κ3, 0, H3, HASH(Spqi ))
5: time← AEAD.Enc(κ4, 0, H4, now())
6: inner← type || sidi || Epq

i || ct1 || static || time
7: m1←MAC(HASH(lbl3 || psk), inner)
8: m2←MAC(cookie, inner || m1)
9: InitHello← inner || m1 || m2

input: spqr ,Spqr ,Spqi

1: sidr
$←{0,1}32

2: (ct2,shk2)← KEM.Encaps(Epq
i ) // re

$←{0,1}256

3: (ct3,shk3)← KEM.Encaps(Spqi ) // rr
$←{0,1}256

4: empty← AEAD.Enc(κ9, 0, H9, ∅)

5: inner← type || sidr || sidi || ct2 || ct3 || empty
6: m1←MAC(HASH(lbl3 || psk), inner)
7: m2←MAC(cookie, inner || m1)
8: RespHello← inner || m1 || m2

H
yb

ri
d-

W
G

(S
ec

tio
n

6)

input: sci ,Sci ,Scr ,s
pq
i ,Spqi ,Spqr

1: sidi
$←{0,1}32

2: (eci ,E
c
i )← DH.gen()

3: (epqi ,Epq
i )← KEM.gen()

4: (ct1,shk1)← KEM.Encaps(Spqr ) // ri
$←{0,1}256

5: static← AEAD.Enc(κ3, 0, H3, HASH(Sci || S
pq
i ))

6: time← AEAD.Enc(κ4, 0, H4, now())
7: ct1

enc← SE.Enc(KDF1(∅, dheisr), 0, ct1)
8: inner← type || sidi || Ec

i || E
pq
i || ct1enc || static || time

9: m1←MAC(HASH(lbl3 || psk), inner)
10: m2←MAC(cookie, inner || m1)
11: InitHello← inner || m1 || m2

input: scr ,Scr ,Sci ,spqr ,Spqr ,Spqi

1: sidr
$←{0,1}32

2: (ecr ,E
c
r )← DH.gen()

3: (ct2,shk2)← KEM.Encaps(Epq
i ) // re

$←{0,1}256

4: (ct3,shk3)← KEM.Encaps(Spqi ) // rr
$←{0,1}256

5: empty← AEAD.Enc(κ9, 0, H9, ∅)

6: ct3
enc← SE.Enc(KDF1(∅, dhsier), 0, ct3)

7: inner← type || sidr || sidi || Ec
r || ct2 || ct3enc || empty

8: m1←MAC(HASH(lbl3 || psk), inner)
9: m2←MAC(cookie, inner || m1)

10: RespHello← inner || m1 || m2



Table 7: Key derivations. Steps 1,9 are common to all constructions. Session keys are computed as (tki, tkr) = KDF2(C9,∅).
Colored instructions are specific to WireGuard [36] (blue), to PQ-WireGuard [51] (green) and to PQ-WireGuard⋆ (orange). Other
notations are from Table 1. Ck and Hk are chaining and hash values, κk are symmetric keys.

k Ck κk Hk

1 HASH(lbl1) - HASH(C1 || lbl2)

W
G

[3
6]

2 KDF1(C1, E
c
i ) - HASH(H1 || Scr )

3 KDF2(C2, dheisr)[1] KDF2(C2, dheisr)[2] HASH(H2 || Ec
i )

4 KDF2(C3, dhsisr)[1] KDF2(C3, dhsisr)[2] HASH(H3 || InitHello.static)

5 - - HASH(H4 || InitHello.time)

6 KDF1(C4, E
c
r ) - HASH(H5 || Ec

r )

7 KDF1(C6, dheier) - -

8 KDF1(C7, dhsier) - -

PQ
-W

G
[5

1]

2 KDF1(C1, E
pq
i ) - HASH(H1 || Spqr )

3 KDF2(C2, shk1)[1] KDF2(C2, shk1)[2] HASH(H2 || Epq
i )

4 KDF2(C3, psk)[1] KDF2(C3, psk)[2] HASH(H3 || InitHello.static)

5 - - HASH(H4 || InitHello.time)

6 KDF1(C4, ct2) - HASH(H5 || ct2)
7 KDF1(C6, shk2) - -

8 KDF1(C7, shk3) - -

PQ
-W

G
⋆

(S
ec

tio
n

5.
2)

2 KDF1(C1, E
pq
i ) - HASH(H1 || HASH(Spqr ))

3 KDF2(C2, shk1)[1] KDF2(C2, shk1)[2] HASH(H2 || Epq
i )

4
KDF2(C3, HASH(Spqi || Spqr ) || KDF2(C3, HASH(Spqi || Spqr ) ||

HASH(H3 || InitHello.static)
psk)[1] psk)[2]

5 - - HASH(H4 || InitHello.time)

6 KDF1(C4, ct2) - HASH(H5 || ct2)
7 KDF1(C6, shk2) - -

8 KDF1(C7, shk3) - -

H
yb

ri
d-

W
G

(S
ec

tio
n

6)

2 KDF1(C1, E
c
i || E

pq
i ) - HASH(H1 || HASH(Scr || Spqr ))

3 KDF2(C2, dheisr || shk1)[1] KDF2(C2, dheisr || shk1)[2] HASH(H2 || Ec
i || E

pq
i )

4
KDF2(C3, dhsisr || KDF2(C3, dhsisr || HASH(H3 || InitHello.static)

HASH(Spqi || Spqr ) || psk)[1] HASH(Spqi || Spqr ) || psk)[2]
5 - - HASH(H4 || InitHello.time)

6 KDF1(C4, E
c
r || ct2) - HASH(H5 || Ec

r || ct2)
7 KDF1(C6, dheier || shk2) - -

8 KDF1(C7, dhsier || shk3) - -

9 KDF3(C8, psk)[1] KDF3(C8, psk)[3] HASH(H6 || KDF3(C8, psk)[2])



Table 8: Message sizes, with IPv6 and UDP headers.

Protocol InitHello RespHello

WG [36] 196 140

PQ-WG [51] 1248 1160

PQ-WG⋆ 1124 1032

Hybrid-WG 1156 1064

Using ML-KEM L3 instead of L1

PQ-WG⋆ 1508 1352

Hybrid-WG 1540 1384

IPv6 MTU 1280

Table 9: Handshakes local performance. Initiator time: con-
struction of InitHello; Responder time: processing of InitHello
and construction of RespHello; execution time is averaged
over several hundred executions; timings between parentheses
are the standard deviations.

Handshake performance (ms)

Protocol Initiator Responder

WG [36] 0.49 (0.12) 1.11 (0.27)

PQ-WG⋆ 0.44 (0.09) 0.84 (0.16)

Hybrid-WG 0.87 (0.18) 1.84 (0.38)

Performance. We measure the efficiency of PQ-
WireGuard⋆ and Hybrid-WireGuard handshakes, compared
to the original WireGuard handshake. We focus on the
construction of InitHello message by Initiator, and the
processing of InitHello and construction of RespHello by
Responder. We run the experiments on an Intel(R) Core(TM)
i7-10510 CPU @1.80GHz. In Table 9, we show the average
measured execution time for Initiator and Responder, along
with the standard deviation. We observe from the execution
time that the PQ-WireGuard⋆ handshake is slightly faster than
the original WireGuard handshake. This result shows that
the liboqs implementation of the chosen primitives is very
efficient. As for Hybrid-WireGuard, since most computation
steps from WireGuard and PQ-WireGuard⋆ are done in
Hybrid-WireGuard, one cannot hope for Hybrid-WireGuard
to be more efficient than the other two protocols. Instead, the
best case would be that Hybrid-WireGuard’s execution time
be a sum of WireGuard’s and PQ-WireGuard⋆’s execution
times. We see through Table 9 that Hybrid-WireGuard
Initiator and Responder execution times are slightly more
efficient than this sum. In fact, the Hybrid-WireGuard

handshake corresponds almost to a concatenation of both
classic and post-quantum computations, except for some
common steps which are not repeated, which explains
the obtained results. Finally, recall that Rosenpass [76]
aims to provide hybrid security by executing WireGuard,
provided with pre-shared keys output from PQ-WireGuard
(c.f., Section 2). Rosenpass executes PQ-WireGuard every
two minutes to refresh the pre-shared key, and the resulting
hybrid handshake of 4 messages leads to more complexity
and latency. Our 2-message construction is more efficient.

8 Conclusion and Future Work

Using automatic verification tools (PROVERIF, DEEPSEC,
TAMARIN), we analyze the security of PQ-WireGuard, show-
ing that the latter can be improved to reach anonymity and
resilience against UKS attacks. We therefore propose an
improved version, PQ-WireGuard⋆, for which these proper-
ties are ensured, without degrading other properties already
reached by PQ-WireGuard (agreement, key secrecy, mutual se-
crecy, forward secrecy, session uniqueness). From WireGuard
and PQ-WireGuard⋆, we construct Hybrid-WireGuard, that
offers the best of the two worlds (classic and post-quantum),
formally proving its security. We reach our hybridization tar-
get, because we show that an attack scenario against a security
property of Hybrid-WireGuard is indeed a combination of
an attack on PQ-WireGuard⋆ and an attack on WireGuard.
Eventually, we bridge the gap between theoretical design and
practice, with a generic implementation of our constructions
in Rust. Our benchmarks show the comparable efficiency of
our constructions and ensure their usability.

Our work also shows the limitations of using post-quantum
primitives in WireGuard, specifically related to the sizes of
the exchanged messages. As WireGuard does not handle frag-
mentation, the packets’ sizes must not exceed the IPv6 MTU
limit (1280 bytes). Note that this problem is inherent to the
post-quantum transition of any protocol that does not han-
dle fragmentation. Hence we have two choices. First is to
allow additional messages in the handshake. Clearly, this
would render WireGuard non-competitive compared to other
VPNs: one main advantage of WireGuard is precisely this
2-message handshake. Second, as in [51], is to keep this de-
sign. Here, we become limited for KEM algorithms, which is
why Classic McEliece is the only KEM suitable for the static
keys (even if we only aim for L1 security). For ephemeral
keys, [51] tweaks an existing KEM construction for L3 secu-
rity, while we argue that this is not a desired practice, so we
restrict our design to trusted constructions and implementa-
tions. This limits us to use ML-KEM, with L1 security. We
think that future research should analyze if L3 or L5 levels
are reachable for 2-message handshakes.
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models. Although the attack scenario described in Section 5.2
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tential impact of our findings on security and privacy, and we
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Open Science

We emphasize that, in this work, we are strongly committed
to the principle of open science. All our methodology, models,
symbolic analysis, SAPIC+ files used to generate protocols
models in PROVERIF, TAMARIN and DEEPSEC, scripts to
run verifiers, scripts to compute CNFs and Rust implementa-
tions are meticulously documented and openly shared through
companion artifacts [60]. By doing so, we hope to contribute
valuable insights to the community and aim to enhance the
reproducibility and replicability of scientific findings.

Our companion artifacts [60] are composed of two folders.
The first folder artifacts_evaluation concerns the symbolic
analysis of WireGuard, WireGuard with fix for anonymity
based on psk [59], PQ-WireGuard, PQ-WireGuard⋆ and
Hybrid-WireGuard, as described in Section 4, Section 5
and Section 6. The second folder artifacts_implementation
concerns our Rust implementation of WireGuard, PQ-
WireGuard⋆ and Hybrid-WireGuard, as described in Section 7.
Each folder contains a README.md file that explains how to
install all the dependencies (SAPIC+, PROVERIF, TAMARIN,
DEEPSEC used for symbolic verification, Python package
sympy used for the CNF computations on the one hand, and
Rust on the other hand). Our target is to ensure reproducibility
of our results on a fresh Ubuntu Server 24.04.2 LTS [64].
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A InitHello Message Consumption

Table 10 describes Responder’s InitHello message con-
sumption modification to ensure Initiator anonymity (Sec-
tion 5.2). For PQ-WireGuard⋆, m1 check happens af-
ter one KEM.Decaps and one AEAD.Dec computations
and for Hybrid-WireGuard, it happens after one DH, one
KEM.Decaps and one AEAD.Dec computations. Responder
anonymity does not require changes of RespHello consump-
tion as Initiator already knows Responder’s identity.

B Security properties formalization

Our trace properties are formalized as correspondence prop-
erties between events. Events are annotations that do not
change the model, but are inserted at precise locations to al-
low reasoning about protocol execution. Table 11 describes all
the queries used to formalize trace properties. These queries
are given for PQ-WireGuard⋆ protocol. The queries for Wire-
Guard, PQ-WireGuard and Hybrid-WireGuard are the same
with their dedicated set of keys. The event ISend is placed
in the Initiator process just before the InitHello sending; the
event RRec is placed in the Responder process after receiving
and accepting the InitHello message from the Initiator; the
event RKeys is placed in the Responder process just before
RespHello sending; the event IKeys is in the Initiator process
after receiving and accepting the RespHello message from
the Responder; the event IConfirm is placed in the Initiator

process just before the Confirm message sending; the event
RConfirm is in the Responder process after receiving and
accepting the Confirm message.

Table 10: Responder’s InitHello consumption by Responder.

WireGuard [36], anonymity not ensured
input: InitHello, scr , S

c
r

1: parse InitHello as inner || m1 || m2
2: check m1 == MAC(HASH(lbl3 || Scr ), inner)
3: parse inner as type || sidi || Ec

i || static || time
4: compute dheisr // used to compute κ3
5: Sci ← AEAD.Dec(κ3, 0, static)
6: lookup Initiator public keys and psk using Sci
7: AEAD.Dec(κ4, 0, time)

PQ-WireGuard [51], anonymity not ensured
input: InitHello, spqr , Spqr

1: parse InitHello as inner || m1 || m2
2: check m1 == MAC(HASH(lbl3 || Spqr ), inner)
3: parse inner as type || sidi || Epq

i || ct1 || static || time
4: shk1← KEM.Decaps(spqr ,ct1)
5: h← AEAD.Dec(κ3, 0, static) // h = HASH(Spqi )
6: lookup Initiator public keys and psk using h
7: AEAD.Dec(κ4, 0, time)

PQ-WireGuard⋆, anonymity ensured
input: InitHello, spqr , Spqr

1: parse InitHello as inner || m1 || m2
2: parse inner as type || sidi || Epq

i || ct1 || static || time
3: shk1← KEM.Decaps(spqr ,ct1)
4: h← AEAD.Dec(κ3, 0, static) // h = HASH(Spqi )
5: lookup Initiator public keys and psk using h
6: check m1 == MAC(HASH(lbl3 || psk), inner)
7: AEAD.Dec(κ4, 0, time)

Hybrid-WireGuard, anonymity ensured
input: InitHello, scr , S

c
r , s

pq
r , Spqr

1: parse InitHello as inner || m1 || m2
2: parse inner as type || sidi || Ec

i || E
pq
i || ct1enc || static

|| time
3: compute dheisr // used to compute κ3
4: ct1← SE.Dec(KDF1(∅,dheisr),0,ct1

enc)
5: shk1← KEM.Decaps(spqr ,ct1)
6: h← AEAD.Dec(κ3, 0, static) // h = HASH(Sci || S

pq
i )

7: lookup Initiator public keys and psk using h
8: check m1 == MAC(HASH(lbl3 || psk), inner)
9: AEAD.Dec(κ4, 0, time)

https://rosenpass.eu/whitepaper.pdf
https://rosenpass.eu/whitepaper.pdf


Table 11: Queries used to model trace properties, for PQ-WireGuard⋆. Key notations are from Table 1. Note that HASH
is denoted H in this table. To obtain queries for WireGuard, PQ-WireGuard, Hybrid-WireGuard, keys shall be adapted: for
WireGuard, keys are psk,Sci ,S

c
r ,S

c
r
′,Ec

i ,E
c
i
′, for Hybrid-WireGuard, keys are Sci ,S

c
r ,S

c
r
′,Ec

i ,E
c
i
′,Spqi ,Spqr ,Spqr

′,Epq
i ,Epq

i
′ and finally,

for PQ-WireGuard, H(ri),H(rr) shall be replaced by H(σi, ri),H(σr, rr) for Agreement and Secrecy properties.

UKS ∀ Spqi ,Spqr ,Spqi
′
,Spqr

′,Epq
i ,Epq

i ,psk,psk,ck,ki,kr,ke;

Initiator
(
event(RConfirm(ck,Spqi ,Spqr ,Epq

i ,psk,ki,kr,ke))
)
∧

unilateral
(
event(IConfirm(ck,Spqi ,Spqr

′,Epq
i
′
,psk,ki,kr,ke))

)
⇒ Spqr = Spqr

′.

Responder
(
event(RConfirm(ck,Spqi ,Spqr ,Epq

i ,psk,ki,kr,ke))
)
∧

unilateral
(
event(IConfirm(ck,Spqi

′
,Spqr ,Epq

i ,psk,ki,kr,ke))
)
⇒ Spqi = Spqi

′.

Bilateral
(
event(RConfirm(ck,Spqi

′
,Spqr ,Epq

i ,psk,ki,kr,ke))
)
∧(

event(IConfirm(ck,Spqi ,Spqr
′,Epq

i ,psk,ki,kr,ke))
)
⇒ (Spqi = Spqi

′
)∧ (Spqr = Spqr

′).

Uniqueness ∀ Spqi ,Spqr ,Epq
i ,Epq

i
′
,psk,ck,ki,ki′,kr,kr′,ke,ke′;

Initiator
(
event(IConfirm(ck,Spqi ,Spqr ,Epq

i ,psk,ck,ki,kr,ke))
)
∧(

event(IConfirm(ck,Spqi ,Spqr ,Epq
i
′
,psk,ck,ki′,kr,ke))

)
⇒ (Epq

i = Epq
i
′
)∧ (ki = ki

′).

Responder
(
event(RConfirm(ck,Spqi ,Spqr ,Epq

i ,psk,ck,ki,kr,ke))
)
∧(

event(RConfirm(ck,Spqi ,Spqr ,Epq
i
′
,psk,ck,ki,kr′,ke′))

)
⇒ (Epq

i = Epq
i
′
)∧ (kr = kr

′)∧ (ke = ke
′).

Agreement ∀ Spqi ,Spqr ,Epq
i ,psk,ck, ri, rr, re;

InitHello
(
event(RRec(ck,Spqi ,Spqr ,Epq

i ,psk,H(ri),H(rr),H(re)))
)
⇒

(
event(ISend(ck,Spqi ,Spqr ,Epq

i ,psk,H(ri)))
)
.

RespHello
(
event(IKeys(ck,Spqi ,Spqr ,Epq

i ,psk,H(ri),H(rr),H(re)))
)

⇒
(
event(RKeys(ck,Spqi ,Spqr ,Epq

i ,psk,H(ri),H(rr),H(re)))
)
.

Confirm
(
event(RConfirm(ck,Spqi ,Spqr ,Epq

i ,psk,H(ri),H(rr),H(re)))
)

⇒
(
event(IConfirm(ck,Spqi ,Spqr ,Epq

i ,psk,H(ri),H(rr),H(re)))
)
.

Secrecy ∀ Spqi ,Spqr ,Epq
i ,psk,ck, ri, rr, re;

Init.’s view
(
event(IConfirm(ck,Spqi ,Spqr ,Epq

i ,psk,ck,H(ri),H(rr),H(re)))
)
∧attacker(ck).

Resp.’s view
(
event(RConfirm(ck,Spqi ,Spqr ,Epq

i ,psk,ck,H(ri),H(rr),H(re)))
)
∧attacker(ck).

Mutual
(
event(RConfirm(ck,Spqi ,Spqr ,Epq

i ,psk,ck,H(ri),H(rr),H(re)))
)
∧(

event(IConfirm(ck,Spqi ,Spqr ,Epq
i ,psk,ck,H(ri),H(rr),H(re)))

)
∧attacker(ck).
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