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Abstract: Cramer-Shoup was the first practical adaptive CCA-secure public key encryption scheme. We propose a faster
version of this encryption scheme, called Fast Cramer-Shoup. We show empirically and theoretically that
our scheme is faster than three versions proposed by Cramer-Shoup in 1998. We observe an average gain of
60% for the decryption algorithm. We prove the IND-CCA2 security of our scheme. The proof only relies on
intractability assumptions like DDH.

1 Introduction

Provable security is an important issue in mod-
ern cryptography. It allows us to formally prove the
security of the encryption schemes by reduction to
difficult problems such as discrete logarithm prob-
lem (DL), Computational Decisional Diffie-Hellman
problem (CDH), Decision Diffie-Hellman problem
(DDH) (Boneh, 1998; Joux and Guyen, 2006) or the
quadratic residuosity problem. For instance, the DDH
problem is used to prove the IND-CPA security of the
ElGamal encryption scheme (Elgamal, 1985). In or-
der to have security against adaptive chosen ciphertext
attacks (IND-CCA2), a notion introduced in 1991 by
Dolev et al. (Dolev et al., 1991), Cramer and Shoup
proposed in 1998 an encryption scheme (Cramer and
Shoup, 1998a) that has a verification mechanism in
the decryption algorithm to avoid malleability of the
ciphertext and also uses one hash function.

Fujisaki and Okamoto in (Fujisaki and Okamoto,
1999) proposed a generic conversion from any IND-
CPA cryptosystem into an IND-CCA2 one, in the
random oracle model (ROM) (Bellare and Rogaway,
1993). However the design of an IND-CCA2 encryp-
tion scheme is not easy, as the story of Optimal Asym-
metric Encryption Padding (OAEP) (Bellare and Rog-
away, 1994; Pointcheval, 2011) can show. After a first
try by Bellare and Rogaway (Bellare and Rogaway,
1994) in 1995, V. Shoup found a problem in (Shoup,
2001), that was fixed in (Phan and Pointcheval, 2004;
Pointcheval, 2011). Finally to conclude the story of
OAEP, an computer verified proof has been made
in (Barthe et al., 2011).

Our goal is to design a faster version of Cramer-
Shoup scheme. For this, we use the approach pro-
posed in (Sow and Sow, 2011) to improve the decryp-
tion algorithm of ElGamal (Elgamal, 1985).

Contributions: Our main aim is to improve the ef-
ficiency of the Cramer-Shoup public key scheme. Our
contributions are as follows:
1. We design a public key cryptosystem, called Fast

Cramer-Shoup, based on the Generalized ElGa-
mal encryption scheme (Sow and Sow, 2011). We
follow the spirit of Cramer-Shoup versions intro-
duced by Cramer-Shoup in (Cramer and Shoup,
1998b; Cramer and Shoup, 1998a), but we modify
the key generation and the decryption algorithm in
order to be faster.

2. We implement all these schemes with
GMP (Granlund and the GMP development
team, 2020) to demonstrate that Fast Cramer-
Shoup is the fastest one. Our experiments
show that we have a gain of 60% for decryp-
tion algorithm compared to the most efficient
version proposed by Cramer Shoup. This has
an important impact because Cramer-Shoup is
used in the standard ACE-KEM of ISO/IEC
18033-2:2006 (International Organization for
Standardization, 2006).

3. We prove its security against the adaptive chosen
ciphertext attack (IND-CCA2) under the (DDH)
assumption.

Related works: Shoup and Gennaro (Shoup and
Gennaro, 1998) give two ElGamal-like practical
threshold cryptosystems that are secure against adap-
tive chosen ciphertext attack in the random oracle
model. They use H(hr)⊕m to encrypt the message
m, unfortunately the trick of Sow et al. (Sow and Sow,
2011) cannot be applied in this case.

In (Cramer and Shoup, 2002), the authors pro-
posed a construction by considering an algebraic
primitive called universal hash proof systems. They
showed that this framework yields not only the origi-



nal DDH-based Cramer-Shoup’s scheme but also en-
cryption schemes based on quadratic residuosity and
on Paillier’s assumption (Paillier, 1999).

In 2011, a modified variant of ElGamal’s encryp-
tion scheme was presented (Sow and Sow, 2011),
and it is called Generalized ElGamal’s encryption
scheme. This version is faster than ElGamal because
the decryption key size is smaller. More precisely,
the encryption algorithm has the same efficiency than
ElGamal’s encryption mechanism, the key genera-
tion algorithm is slower but the decryption process is
faster. This is not a problem since the key genera-
tion is done only once. We adapt this idea to improve
Cramer and Shoup’s encryption scheme.

Outline: In Section 2, we present three versions of
Cramer-Shoup’s encryption scheme. In Section 3,
we propose our public key cryptosystem, called Fast
Cramer-Shoup. In Section 4, we present the result
of our empirically performance comparison and our
complexity analysis for the key generation, encryp-
tion and decryption algorithms for all versions of
Cramer-Shoup.

2 Cramer-Shoup’s Encryption
Schemes

We recall the original Cramer and Shoup’s encryp-
tion scheme presented in the eprint version (Cramer
and Shoup, 1998b), then the standard Cramer-
Shoup’s version published in CRYPTO’98 (Cramer
and Shoup, 1998a) and finally the efficient Cramer-
Shoup’s version also proposed in (Cramer and Shoup,
1998b).

All these schemes are composed of a key genera-
tion algorithm, an encryption and a decryption algo-
rithm. The decryption algorithm consists of two al-
gorithms one for recovering from the ciphertext the
plaintext and one to check the non-malleability of the
ciphertext in order to ensure IND-CCA2 security.

2.1 Original Cramer-Shoup’s
Encryption

This scheme, that we call Original Cramer-Shoup,
was published on March 4th, 1998 on IACR
eprint (Cramer and Shoup, 1998b), only few days
after the deadline of CRYPTO’98, on February 16,
1998 and works as follows.

Original Key Generation Algorithm:
1. Select a group G of prime order q.

2. Choose eight random elements: g1,g2 ∈ G and
x1,x2,y1,y2,z1,z2 ∈ Zq.

3. Compute in G: c = gx1
1 gx2

2 , d = gy1
1 gy2

2 ,h = gz1
1 gz2

2 .
4. Choose H that hashes messages to elements of Zq.
5. Return pk = (g1,g2,c,d,h,H) and sk =

(x1,x2,y1,y2,z1,z2).

Original Encryption Algorithm:
1. Choose a random element r ∈ Zq.
2. Compute u1 = gr

1,u2 = gr
2,e = hrm,α =

H(u1,u2,e) and v = crdrα.
3. Return the following ciphertext: (u1,u2,e,v).

Original Decryption Algorithm:
1. Compute α = H(u1,u2,e).
2. Verify if ux1+y1α

1 ux2+y2α

2 = v.
3. Output m = eu−z1

1 u−z2
2 if the condition holds, oth-

erwise output ”reject”.

2.2 Standard Cramer-Shoup’s
Encryption

We call the version published at CRYPTO’98 the
Standard Cramer-Shoup version. The main differ-
ence is that they use only one z instead of z1 and z2.

Standard Key Generation Algorithm:
1. Select a group G of prime order q.
2. Choose randomly g1,g2 ∈ G; x1,x2,y1,y2,z ∈ Zq.
3. Compute in G: c = gx1

1 gx2
2 , d = gy1

1 gy2
2 and h = gz

1.
4. Choose H that hashes messages to elements of Zq.
5. Return (pk,sk) where pk = (g1,g2,c,d,h,H) and

sk = (x1,x2,y1,y2,z).

Standard Decryption Algorithm:
1. Compute α = H(u1,u2,e).
2. Verify if ux1+y1α

1 ux2+y2α

2 = v.
3. Output m = eu−z

1 if 2 holds, otherwise reject.

2.3 Efficient Cramer-Shoup Encryption

In (Cramer and Shoup, 1998b), authors propose a
“somewhat more efficient variant of the scheme”.
Since encryption algorithms are identical, we just
present key generation and decryption algorithms.

Efficient Key Generation Algorithm:
1. Select a group G of prime order q.
2. Choose randomly g1 ∈G and w,x,y,z∈Zq,w 6= 0.
3. Compute g2 = gw

1 ,c = gx
1,d = gy

1 and h = gz
1 in G.

4. Choose H that hashes messages to elements of Zq.
5. Return pk = (g1,g2,c,d,h,H) and sk = (w,x,y,z).



Efficient Decryption Algorithm:
1. Compute α = H(u1,u2,e).
2. Verify if uw

1 = u2 and ux+yα

1 = v.
3. Output m = eu−z

1 if 2 holds, otherwise reject.

3 Fast Cramer-Shoup’s Encryption
Scheme

We present our Fast Cramer-Shoup’s scheme then
we prove that it is IND-CCA2 secure under DDH as-
sumption and particular hash function. Let us recall
some notions and definitions.

3.1 Notations and definitions

Some notions and definitions like the set of non-
negative integers Z≥0, a security parameter λ, a group
description Γ, a computational group scheme G , a
probability distribution of group descriptions Sλ, hash
functions (HF), target collision resistant (TCR) as-
sumption for hash function (HF), some random vari-
ables as Coins used in the following are defined
in (Cramer and Shoup, 2003) (see also (Naor and
Yung, 1989)). In (Cramer and Shoup, 2003),the orig-
inal Cramer-Shoup cryptosystem is called CS1.
• A computational group scheme G specifies a se-

quence (Sλ)λ∈Z≥0 of group distributions. For ev-
ery value of a security parameter λ ∈ Z≥0, Sλ is a
probability distribution of group descriptions.

• A group description Γ specifies a finite abelian
group Ĝ, along with a prime-order subgroup G,
a generator g2 of G, and the order q of G. We use
multiplicative notation for the group operation in
Ĝ, and we denote the identity element of Ĝ by 1G.

• We denote Γ[Ĝ,G,g2,q] so that Γ specifies Ĝ, G,
g2, and q as above.

3.2 Description of Fast Cramer-Shoup’s
Scheme

Our Fast Cramer-Shoup’s encryption scheme contains
a key generation algorithm, an encryption and a de-
cryption algorithm. It relies on the fact that we can
select adapted random in order to have a faster de-
cryption algorithm.

Fast Key Generation Algorithm:
G1 : On input 1λ for λ∈Z≥0, select a group Ĝ, along

with a prime-order subgroup G and choose a gen-
erator g2 ∈ G of order q. So, Γ[Ĝ,G,g2,q]

R←
S(1λ);

G2 : Pick random elements x,y,k, t ∈ Zq with
log2(t) =

log2(q)
2 , and compute w′,z∈Zq such that

kq = tw′+ z and then compute w≡ w′.
G3 : Compute g1 = gw

2 ,c = gwx
2 ,d = gwy

2 and h = gz
2.

G4 : Choose a hash function H R←HF.
G5 : Return (pk,sk), where pk = (Γ,H,g1,c,d,h)

and sk = (Γ,H, t,x,y,z).

Remark 3.1. The size of t is half the size of q. Thus
the size of z is smaller or equal to the size of t, i.e.,
log2(z)≤ log2(t).

Fast Encryption Algorithm: Encrypt a message m
with pk = (Γ,H,g1,c,d,h).
E1 : Choose a random element r ∈ Zq and compute,
E2 : u1 = gr

1;
E3 : u2 = gr

2;
E4 : u3 = hr;
E5 : e = u3m;
E6 : α = H(u1,u2,e);
E7 : v = crdrα and output the ciphertext ψ =

(u1,u2,e,v).;

Fast Decryption Algorithm: Decrypt a ciphertext
(u1,u2,e,v) with sk = (Γ,H, t,x,y,z).
D1 : Parse ψ← (u1,u2,e,v) ∈ G4; output reject if ψ

is not of this form.
D2′ : Test if u1 and u2 belong to G; output reject and

halt if this is not the case.
D3 : Compute α = H(u1,u2,e).
D4′ : Test if ut

1uz
2 = 1 and v= ux+yα

1 ; otherwise output
reject and halt.

D5′ : Compute β = ut
1.

D6 : Output m = βe.

Correctness:
Verification: We have βuz

2 = ut
1uz

2 = (gr
1)

tgrz
2 =

(gwr
2 )tgrz

2 = gr(tw+z)
2 = grkq

2 = 1 since the order
of g2 is q and ux+yα

1 = (gr
1)

x+yα = (gwr
2 )x+yα =

(gwx
2 )r(gwy

2 )rα = crdrα = v.

Decryption: The decryption message is βe = ut
1e =

gwrt
2 gzr

2 m= gr(tw+z)
2 m= grkq

2 m=m, since the order
of g2 is q.

3.3 Security Proof of Fast
Cramer-Shoup Scheme

The proof of Theorem 3.2 is similar to that of the Effi-
cient CS denoted CS1b in (Cramer and Shoup, 2003).
All the games (G0, · · ·,G5) are described in (Cramer
and Shoup, 2003). We will not repeat them in this
paper.



As CS1’s proof in (Cramer and Shoup, 2003), to
prove that Fast Cramer-Shoup (FCS) is secure against
adaptive chosen ciphertext attack if the DDH assump-
tion holds for G and the TCR assumption holds for
HF, we need some notions.
• Suppose PKE is a public-key encryption scheme

that uses a group scheme in the following natural
way: on input 1λ, the key generation algorithm
runs the sampling algorithm of the group scheme
on input 1λ, yielding a group description Γ.

• For a given probabilistic, polynomial-time oracle
query machine A ,λ ∈ Z≥0, and group description
Γ, let us define AdvCCAPKE,A(λ|Γ) to be A’s ad-
vantage in an adaptive chosen ciphertext attack
where the key generation algorithm uses the given
value of Γ, instead of running the sampling algo-
rithm of the group scheme.

• For all probabilistic, polynomial-time oracle
query machines A , for all λ ∈ Z≥0, let QA(λ)
be an upper bound on the number of decryption
oracle queries made by A on input 1λ. We as-
sume that QA(λ) is a strict bound in the sense that
it holds regardless of the probabilistic choices of
A , and regardless of the responses to its oracle
queries from its environment.

Theorem 3.2. The Fast Cramer-Shoup is secure
against adaptive chosen ciphertext attack if:
1. the DDH assumption holds for G;
2. and the target collision resistance (TCR) assump-

tion holds for HF.
In particular, for all probabilistic, polynomial-time
oracle query machines A , for all λ ∈ Z≥0, and all
Γ[Ĝ,G,g2,q] ∈ [Sλ], we have∣∣AdvCCAFCS,A(λ|Γ)−AdvCCACS1,A(λ|Γ)

∣∣≤QA(λ)/q.
(1)

Description of games: Suppose that pk =
(Γ,H,g1,c,d,h) and sk = (Γ,H, t,x,y,z). Let
w = logg2

g1, and define x,y,z ∈ Zq as follows:
x = x1 + x2w, y = y1 + y2w and z = z1 + z2w. We
have x = loggw

2
c, y = loggw

2
d, and z = logg2

h.
As a notation convention, whenever a particular

ciphertext is under consideration in some context, the
following values are also implicitly defined in that
context:
• u1,u2,u3,e,v ∈ G where ψ = (u1,u2,e,v) and

u3 = uz
2;

• the random r ∈ Zq, where r = loggw
1

u1.
For the target ciphertext ψ∗, we also denote by

u∗1,u
∗
2,u
∗
3,e
∗,v∗ ∈ G and r∗ ∈ Zq the corresponding

values. The probability space defining the attack
game is then determined by the following, mutually
independent, random variables:

• the coin tosses Coins of A ;
• the values H,w,x1,x2,y1,y2,z1,z2 generated by

the key generation algorithm;
• the values σ∈ {0,1} and r∗ ∈Zq generated by the

encryption oracle.
Let us rewrite the games:

G0 : original attack game, let σ̂ ∈ {0,1} be the
output of A and T0 the event σ = σ̂, so
AdvCCAFCS,A(λ|Γ) = |Pr[T0]−1/2|

G1 : We now modify game G0 to obtain game G1.
These two games are identical, except that instead
of using the encryption algorithm as given to com-
pute the target ciphertext ψ∗, we use a modified
encryption algorithm, in which steps E4 and E7
are replaced by E4′ :u3 = uz

2 and E7′ :v = ux+yα

1 .
The change we have made is purely conceptual.
The values of u∗3 and v∗ are exactly the same in
game G1 as they were in G0 so Pr[T1] = Pr[T0]

G2 : We modify the encryption oracle, replacing step
E3 by E3′ : r̂ R← Zq \{r};u2← gr̂

2
Lemma 3.3. There exists a probabilistic algo-
rithm A1, whose running time is essentially the
same as that of A , such that

|Pr[T2]−Pr[T1]| ≤ AdvDDHG ,A1(λ|Γ)+3/q.
(2)

G3 : We modify the decryption algorithm, replacing
steps D4 and D5 with D4′ : Test if u1 = uw

2 and
v = ux+yα

1 ; output reject and halt if this is not the
case. D5′ :u3 = uz

2. Note that the decryption or-
acle now make use of w, but does not make use
of x1,x2,y1,y2,z1,z2, except indirectly through the
values x,y,z. Now, let R3 be the event that in game
G3, some ciphertext ψ is submitted to the decryp-
tion oracle that is rejected in step D4′ but that
would have passed the test in step D4. Note that
if a ciphertext passes the test in D4′, it would also
have passed the test in D4. It is clear that games
G2 and G3 proceed identically until the event R3
occurs. In particular, the events T2 ∧ ¬R3 and
T3 ∧¬R3 are identical. So by difference lemma
|Pr[T3]− Pr[T2]| ≤ Pr[R3], and so it suffices to
bound Pr[R3]. We introduce auxiliary games G4
and G5 below to do this.

G4 : We replace step E5 by E5′ : r R← Zq;e ← gγ

so Pr[T4] = 1/2, since in game G4, the variable
σ is never used. Define the event R4 to be the
event in game G4 analogous to the event R3 in
game G3; that is, R4 is the event that in game G4,
some ciphertext ψ is submitted to the decryption
oracle that is rejected in step D4′ but that would
have passed the test in step D4. We show that
this modification has no effect; more precisely:
Pr[T4] = Pr[T3], and pr[r4] = pr[r3]



G5. We modify the decryption oracle with a spe-
cial rejection rule: if the adversary submits a ci-
phertext ψ for decryption at a point in time af-
ter the encryption oracle has been invoked, such
that (u1,u2,e) 6= (u∗1,u

∗
2,e
∗) but α = α∗, then the

decryption oracle immediately outputs reject and
halts (before executing step D4′). to analyze this
game, we define two events. first, we define the
event C5 to be the event that the decryption oracle
in game G5 rejects a ciphertext using the special
rejection rule. We define the event R5 to be the
event in game G5 that some ciphertext ψ is sub-
mitted to the decryption oracle that is rejected in
step D4′ but that would have passed the test in step
D4. note that such a ciphertext is not rejected by
the special rejection rule, since that rule is applied
before step D4′ is executed. Now, it is clear that
games G4 and G5 proceed identically until event
C5 occurs. in particular, the events R4 ∧¬C5 and
R5 ∧¬C5 are identical. so by difference lemma,
we have |Pr[R5]−Pr[R4]| ≤ Pr[C5]. Now, if event
C5 occurs with non-negligible probability, we im-
mediately get an algorithm that contradicts the tar-
get collision resistance assumption;
Lemma 3.4. There exists a probabilistic algo-
rithm A2, whose running time is essentially the
same as that of A , such that:

Pr[C5]≤ AdvTCRHF,A2(λ|Γ)+1/q. (3)

Finally, we show that event R5 occurs with negli-
gible probability, based on purely information the-
oretic considerations:
Lemma 3.5. We have

Pr[R5]≤ QA(λ)/q. (4)

Theorem 3.2. To prove this theorem, let us fix A , λ,
and Γ[Ĝ,G,g2,q]. Consider the attack game G0 as
defined above (or see §6.2 in (Cramer and Shoup,
2003)). This is the game that attacker A plays against
the scheme FCS for the given values of λ and Γ. We
adopt all the notations conventions established at the
beginning of §6.2 in (Cramer and Shoup, 2003). We
now modify game G0 to obtain a new game GFCS.

GameFCS. In this game, we modify the decryp-
tion oracle so that in place of steps D4 and D5 in
CS1, we execute steps D4′ and D5′ as in the scheme
FCS. (Note that in the FCS encryption algorithm the
random parameter generated is r instead of u in CS1
scheme. So the parameter u∗ in CS1 corresponds
to r∗ here). We emphasize that in game GFCS, we
have x = x1 + x2w,y = y1 + y2w, and z = z1 + z2w,
where w,x1,x2,y1,y2,z1, and z2 are generated by the
key generation algorithm of CS1.

Let TFCS be the event that σ = σ′ in game GFCS.
We remind the reader that games G0 and GFCS all
operate on the same underlying probability space: all
of the variables

Coins,H,w,x1,x2,y1,y2,z1,z2,σ,r∗

that ultimately determine the events T0, and TFCS
have the same values in games G0 and GFCS; all that
changes is the functional behavior of the decryption
oracle. It is straightforward to verify that

AdvCCAFCS,A(λ|Γ) = |Pr[TFCS]−1/2|
Let us define the event RFCS to be the event that

some ciphertext is rejected in game GFCS in step D4′
that would have passed the test in D4 in CS1 scheme
in (Cramer and Shoup, 2003). It is clear that games
G0 and GFCS all proceed identically until event RFCS
occurs. In particular, we have the events T0∧¬RFCS,
and TFCS ∧ ¬RFCS are identical. So by difference
lemma, we have |Pr[T0]−Pr[TFCS]| ≤ Pr[RFCS]. So
it suffices to show that

Pr[RFCS]≤ QA(λ)/q. (5)

To do this, for 1 ≤ i ≤ QA(λ), let R(i)
FCS be the event

that there is an ith ciphertext submitted to the decryp-
tion oracle in game GFCS, and that this ciphertext is
rejected in step D4′, but would have passed the test in
step D4 in CS1 scheme in (Cramer and Shoup, 2003).

The bound 5 will follow immediately from the fol-
lowing lemma.

Lemma 3.6. For all 1 ≤ i ≤ QA(λ), we have
Pr[R(i)

FCS]≤ 1/q.

Proof. The proof of this lemma is almost identical
to that of Lemma 10 in (Cramer and Shoup, 2003).
Note that in game GFCS, the encryption oracle uses
the ”real” encryption algorithm, and so itself does not
leak any additional information about (x1,x2,y1,y2).
This is in contrast to game G5, where the encryption
oracle does leak additional information.

Fix 1≤ i≤ QA(λ). Consider the quantities:

X := (Coins,H,w,z,σ,r∗) and X ′ := (x,y).

The values of X and X ′ completely determine the ad-
versary’s entire behavior in game G5, and hence de-
termine if there is an ith decryption oracle query, and
if so, the value of the corresponding ciphertext. Let
us call X and X ′ relevant if for these values of X and
X ′, there is an ith decryption oracle query, and the cor-
responding ciphertext passes steps D1 and D2 in CS1
scheme in (Cramer and Shoup, 2003).

It will suffice to prove that conditioned on any
fixed, relevant values of X and X ′, the probability that
R(i)

FCS occurs is bounded by 1/q.



The remainder of the argument is exactly as in
Lemma 10 in (Cramer and Shoup, 2003), except using
X , X ′, and the notion of relevant as defined here.

4 Performances Evaluation

We study the complexity and the performance of
Fast Cramer-Shoup encryption scheme with the fol-
lowing variants of Cramer-Shoup encryption scheme:
Original CS protocol described in Section 2.1 and
represented by blue squares in all the figures, Stan-
dard CS protocol presented in Section 2.2 and repre-
sented by red asterisk points in all the curves, Efficient
CS protocol given in Section 2.3 represented by green
triangles in all the plots, Fast Cramer-Shoup protocol
is introduced in Section 3 and represented by black
circles in all the figures.

We study the number of operations performed in
each algorithm: key generation, encryption and de-
cryption. We present complexity results in Table 1
to Table 4. This complexity study is confirmed by
an experimental comparison where all the presented
algorithms have been implemented with the library
GMP (Granlund and the GMP development team,
2020).

The tests are performed with security parameters
of size 512, 1024, 2048 and 4096 bits. The average
execution time of all schemes is carried out under the
same conditions in terms of generation of the values
and sizes of the security parameters. Indeed, given
the size of a security parameter, we perform 1000 tri-
als with new parameters: a prime number and some
random plaintexts that are generated for each trial.
We use those parameters for the performance evalu-
ation of the four protocols. Then, we measure the ex-
ecution time during one execution of each algorithm.
Finally, we compute the mean value for each algo-
rithm1. The key generation algorithms are compared
in Figure 1, the encryption algorithms are compared
in Figure 2 and decryption algorithms are compared
in Figure 3. Note that the study of the decryption al-
gorithm is more detailed, as we have divided it into
two phases. The first step is the verification phase
(that checks integrity of the received message) and the
second is the actual decryption (where the plaintext
is retrieved). The decryption comparison holds three
charts, one for the verification (Figure 4), another for
the decryption itself (Figure 5) and a third one for the

1We do not present the corresponding standard devia-
tions since they are very low.
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Figure 1: Average execution time for key generation algo-
rithms depending of the security parameter size.

Key Generation
Number of Original Standard Efficient Fast
Generator 2 2 111 111
Random 6 5 444 444
Multiplication 3 2 000 3
Exponentiation 6 5 444 444

Table 1: Comparison of Original, Standard, Efficient and
Fast Cramer-Shoup (minimum in bold).

full decryption algorithm (verification and decryption
phases, see Figure 3).

We also analyze these performance evaluations
between the four algorithms (key generation, encryp-
tion and decryption) in terms of their theoretical com-
plexity.

4.1 Key Generation Algorithms

By studying the complexity of the key generation al-
gorithm of Table 1, we notice that protocol Fast CS
and Efficient CS are the fastest in terms of number of
operations. The difference lies in the multiplication
where Fast CS has three of them while Efficient CS
has none. One would expect a longer execution time
for Fast CS. Nonetheless, we observe in Figure 1 that
their execution time is similar.

It can be explained by the fact that the Fast CS
key generation algorithm computes an Euclidean di-
vision leading to kq = wt + z where k is generated in
Zq. Hence its size is the same as q but t is generated in
Z∗√q and its size is half of q. Since z is the remainder
of the euclidean division, its order size is the same as
2 t. Thus the cost for computing h = gz is half of the
cost for computing h = gz where z has an order size
equal to the size of q. This gain seems to be compen-
sated with the three additional multiplications leading
to similar execution for the overall key generation al-
gorithm between Fast CS and Efficient CS protocols.

2We recall that the rest of the euclidean division is al-
ways less than the quotient, i.e., 0≤ z < w



Public Key Parameters
Number of Original Standard Efficient Fast
Elements 555 555 555 555

Secret Key Parameters
Elements 6 5 444 444

Table 2: Comparison of Original, Standard, Efficient and
Fast Cramer-Shoup for key parameters.

To conclude for key generation, the two fastest
algorithms are Efficient CS and Fast CS, while the
two slowest are Original CS and Standard CS. As
the complexity analysis shows Original CS to be
naturally slower than Standard CS since it has one
more exponentiation, one more multiplication and
one more random numbers than Original CS. More-
over, the number of secret parameters are also in
favour of Efficient CS and Fast CS as depicted in Ta-
ble 2. We manage to reduce this number to four el-
ements while Original CS and Standard CS have six
and five respectively.

4.2 Encryption Algorithms

In Table 3, we compare for each step Original, Stan-
dard, Efficient and Fast protocols. We can see that all
schemes have the same number of exponents, multi-
plication and generation of random number in the en-
cryption algorithm. Thus the average execution time
is expected to be the same.

Encryption
Number of Original Standard Efficient Fast
Random 111 111 111 111
Multiplication 333 333 333 333
Exponentiation 555 555 555 555

Table 3: Comparison of Original, Standard, Efficient and
Fast Cramer-Shoup for encryption.

The curves of Figure 2 give the average execution
time of encryption algorithms. As seen in the com-
plexity analysis, we observe empirically that timings
are equal for all protocols since the number of com-
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Figure 2: Average execution time for encryption algo-
rithms.

putations are equals. In all protocols, the ciphertexts
are mainly computed with parameters of the same or-
der size. Thus the average execution time is the same
in all cases.

4.3 Decryption Algorithms

The curves of Figure 3 represent the average execu-
tion time of decryption algorithms. We observe that
the fastest one is Fast Cramer-Shoup then we find
the Efficient CS and naturally Standard CS follows by
Original CS. The fact that Fast Cramer-Shoup is faster
that Efficient CS is not obvious when we are looking
at the number of total computations. To explain this
we need to have a more fine analysis of these two de-
cryption algorithms.
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Figure 3: Average execution time for decryption algo-
rithms.

There are two components in this algorithm, the
verification phase and the actual decryption. The ver-
ification is used for checking the integrity of the mes-
sage if the outputs are valid (meaning that the mes-
sage has not been modified by an unexpected party)
and the decryption computation is executed leading
to retrieve the plaintext. In Figure 3, we observe that
Fast Cramer-Shoup has a faster execution time. We
give further details to study and understand such im-
provement. We give two charts, one for verification
phase in Figure 4 and one for the actual decryption in
Figure 5.
Verification phase. We observe in Figure 4 that the
average execution time of the Original CS and Stan-
dard CS protocols is the same. This is expected since
the verification step is the same in both cases. The
Fast CS and Efficient CS protocols have the same av-
erage execution time. In both cases the second ver-
ification is the same: ux+αy

1 = v. The difference is
then on the first verification. The Efficient CS proto-
col uses one modular exponent, uw

1 = u2; while ours
uses two modular exponents, βuz

2 = uw
1 uz

2 = 1. De-
spite the result given in Table 4, we need to perform



Verification
Number of Original Standard Efficient Fast
Sum 2 2 111 111
Multiplication 3 3 111 2
Exponentiation 222 222 222 3

Decryption
Number of Original Standard Efficient Fast
Inverse 2 1 1 000
Multiplication 2 111 111 111
Exponentiation 2 1 1 000

Table 4: Comparison for decryption algorithms.

a more precise analysis. Indeed, there is actually no
difference between those two computations in terms
of execution time since elements w and z of Fast CS
have their size equal to half the size of w in the Ef-
ficient CS. Hence, the overall execution time for the
verification of our protocol Fast CS is the same as Ef-
ficient CS protocol.
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Figure 4: Average execution time for verification phases.
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Figure 5: Average execution time for decryption phases.

The Decryption phase. It is clear that Fast CS pro-
tocol is faster than Original for decryption since the
number of exponents is reduced. We can also say
from Table 4 that Fast CS is faster than Standard CS
and Efficient CS at decryption.

We observe in Figure 5 that Standard CS and Ef-
ficient CS have the same execution time. This result
is expected since they both use the same computation
with the same elements size, i.e., eu−z

1 = m. The latter
computation uses one exponentiation and one inver-

sion to end with a multiplication.
The Fast Cramer-Shoup decryption algorithm re-

quires to recover m as follows βe = m where β has
been computed in the verification phase. Thus, the
decryption consists of only one multiplication. The
gain comes from the fact that we have one inverse
less to compute, and also one exponentiation less to
compute. The gain of the overall execution time of
decryption phase for our protocol is more than 60%.
Note that the curve related to Fast Cramer-Shoup is
not zero but since this curve is composed of only one
multiplication, the comparison with a modular expo-
nent, an inversion and a multiplication, is in favor of
the stand alone multiplication.

5 Conclusion

We propose an IND-CCA2 Public Key cryptosys-
tem called Fast Cramer-Shoup. It is an improvement
of Cramer-Shoup encryption scheme that is faster. We
prove the IND-CCA2 security of this new scheme.
We also implement in GMP (Granlund and the GMP
development team, 2020) our scheme to compare it
to Cramer-Shoup schemes. In the future, we aim
at applying our technique to other schemes that are
based on Cramer-Shoup like for instance (Kurosawa
and Trieu Phong, 2014; Abdalla et al., 2015).

REFERENCES

Abdalla, M., Benhamouda, F., and Pointcheval, D.
(2015). Public-key encryption indistinguishable un-
der plaintext-checkable attacks. In Katz, J., editor,
Public-Key Cryptography – PKC 2015, pages 332–
352, Berlin, Heidelberg. Springer Berlin Heidelberg.
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