
Digital Signatures

Jonathan Katz

Digital Signatures

Springer New York Dordrecht Heidelberg London

© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the

New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.

software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,

University of Maryland
A.V. Williams Bldg.
College Park, MD 20742

Jonathan Katz

USA

Department of Computer Science

jkatz@cs.umd.edu

ISBN 978-0-387-27711-0 e-ISBN 978-0-387-27712-7

Use in connection with any form of information storage and retrieval, electronic adaptation, computer

DOI 10.1007/978-0-387-27712-7

Library of Congress Control Number: 2010927931

To Jill, Abigail, and Rena

Preface

As a beginning graduate student, I recall being frustrated by a general lack of acces-
sible sources from which I could learn about (theoretical) cryptography. I remember
wondering: why aren’t there more books presenting the basics of cryptography at an
introductory level? Jumping ahead almost a decade later, as a faculty member my
graduate students now ask me: what is the best resource for learning about (various
topics in) cryptography? This monograph is intended to serve as an answer to these
questions — at least with regard to digital signature schemes.1

Given the above motivation, this book has been written with a beginning graduate
student in mind: a student who is potentially interested in doing research in the field
of cryptography, and who has taken an introductory course on the subject, but is
not sure where to turn next. Though intended primarily for that audience, I hope
that advanced graduate students and researchers will find the book useful as well. In
addition to covering various constructions of digital signature schemes in a unified
framework, this text also serves as a compendium of various “folklore” results that
are, perhaps, not as well known as they should be. This book could also serve as
a textbook for a graduate seminar on advanced cryptography; in such a class, I
expect the entire book could be covered at a leisurely pace in one semester with
perhaps some time left over for excursions into related topics. I hope it will also
prove helpful to graduate students and researchers in other fields, such as computer
security or mathematics, who want to obtain a more thorough appreciation of digital
signatures and known results in this area.

The only real prerequisite for this book is a previous course (at the undergraduate
or graduate level) covering the basic foundations of modern cryptography. Specif-
ically, I assume the reader has taken a course whose coverage and treatment of
cryptography is similar to that of the textbook Introduction to Modern Cryptogra-
phy [72] that I have co-authored with Yehuda Lindell. Comfortability with formal
definitions and proofs is expected, and it is assumed the reader is already familiar
with, e.g., the RSA and discrete logarithm problems, and the notion of one-way

1 Fortunately, the past few years have seen the publication of some excellent books providing an
introduction to the field as a whole, as well as books covering other specific topics in cryptography.

vii

viii Preface

functions. While I have made an effort to introduce all the necessary background
material as needed, the reader will find things much more easy going if they have
encountered this background material previously.

The current book is divided into three sections:

• Part I — Setting the Stage. This part includes relevant background material, an
overview of digital signatures, and definitions of security for signature schemes.
Even readers with a firm background in cryptography should skim this part of the
book since the definitions given here include “non-standard” ones such as secu-
rity against known-/random-message attacks, and “strong” security for signature
schemes.

• Part II — Digital Signature Schemes without Random Oracles. Parts II and III
of the book cover constructions of digital signature schemes. Part II focuses on
schemes that can be proven secure without resorting to the “random oracle”
model. (A brief introduction to the random oracle model is provided in Chap-
ter 6.) This part begins with the important theoretical result showing that signa-
tures can be constructed from any one-way function (though a complete proof is
given only for the case of one-way permutations). Next, constructions based on
the RSA and strong RSA assumptions are presented. Finally, some more recent
constructions of signature schemes from bilinear maps are shown.
To my knowledge, Part II describes essentially all known classes of signature
schemes that do not rely on the random oracle model.

• Part III — Digital Signature Schemes in the Random Oracle Model. The signa-
ture schemes considered in Part II are, generally speaking, considered too inef-
ficient for practical use. Instead, more efficient schemes with proofs of security
in the random oracle model are used. Following a brief introduction to the ran-
dom oracle model (along with a discussion of its pros and cons), we discuss
the two main approaches used in constructing signatures in this setting: building
signatures from identification schemes, and designing signatures using trapdoor
permutations (or variants thereof) and the “hash-and-sign” approach.

Unfortunately omitted in this work is any discussion of signature schemes based
on specific, “non number-theoretic” assumptions including those based on knap-
sacks, lattices, coding theory, or polynomial equations. I have also decided to focus
only on “standard” signature schemes and not to cover any of the multitude of vari-
ants (e.g., undeniable, ring, group, homomorphic, . . . signature schemes) that are out
there. From a basic theoretical perspective, however, this book is fairly comprehen-
sive and will, I hope, serve as a useful primer for the more specialized literature.

Comments and Errata

I am always happy to receive feedback and constructive criticism enabling me to
improve this book. I am also always grateful (though less happy) to hear about any

Preface ix

errors or omissions. Please email any comments to jkatz@cs.umd.edu with
“Digital Signatures Book” in the subject line.

Acknowledgments

It gives me great pleasure to acknowledge the unwavering support of my wife, Jill,
during the time I wrote this book. I would also like to thank Yehuda Lindell and Bob
Stern for allowing me to adapt some of the text from [72] for inclusion here. Finally,
I would like to thank Susan Lagerstrom-Fife for her patience and encouragement
(prodding?) during the course of this project.

Portions of this book were written during my sabbatical year at IBM. I am grate-
ful to Tal Rabin and all the members of the crypto research group at IBM for being
such wonderful hosts.

My work on this book was supported in part by the National Science Foundation
under grants #0447075, #0627306, and #0716651. Any opinions, findings, conclu-
sions, or recommendations expressed in this book are my own, and do not necessar-
ily reflect the views of the National Science Foundation.

College Park, MD Jonathan Katz
March 2010

Contents

Part I Setting the Stage

1 Digital Signatures: Background and Definitions 3
1.1 Digital Signature Schemes: A Quick Introduction 3

1.1.1 Properties of Digital Signatures . 4
1.2 Computational Security . 6

1.2.1 Computational Notions of Security . 7
1.2.2 Notation . 8

1.3 Defining Signature Schemes . 9
1.4 Motivating the Definitions of Security . 11
1.5 Formal Definitions of Security . 14

1.5.1 Security against Random-Message Attacks 14
1.5.2 Security against Known-Message Attacks 15
1.5.3 Security against Adaptive Chosen-Message Attacks 16

1.6 Relations Between the Notions . 18
1.7 Achieving CMA-Security from Weaker Primitives 19

1.7.1 CMA-Security from RMA-security . 19
1.7.2 CMA-Security from KMA-Security . 23

1.8 From Unforgeability to Strong Unforgeability 27
1.9 Extending the Message Length . 30
1.10 Further Reading . 32

2 Cryptographic Hardness Assumptions . 35
2.1 “Generic” Cryptographic Assumptions . 35

2.1.1 One-Way Functions and Permutations 36
2.1.2 Trapdoor Permutations . 39
2.1.3 Clawfree (Trapdoor) Permutations . 41

2.2 Specific Assumptions . 43
2.2.1 Hardness of Factoring . 44
2.2.2 The RSA Assumption . 50
2.2.3 The Discrete Logarithm Assumption . 52

xi

xii Contents

2.3 Hash Functions . 53
2.3.1 Definitions . 53
2.3.2 The Merkle-Damgård Transform . 54
2.3.3 Constructing Collision-Resistant Hash Functions 56
2.3.4 Constructing Universal One-Way Hash Functions 58

2.4 Applications of Hash Functions to Signature Schemes 61
2.4.1 Increasing the Message Length . 61
2.4.2 Reducing the Public-Key Length . 64

2.5 Further Reading . 66

Part II Digital Signature Schemes without Random Oracles

3 Constructions Based on General Assumptions . 69
3.1 Lamport’s One-Time Signature Scheme . 70
3.2 Signatures from One-Time Signatures . 74

3.2.1 “Chain-Based” Signatures . 75
3.2.2 “Tree-Based” Signatures . 77
3.2.3 A Stateless Solution . 82

3.3 Signatures from One-Way Functions . 83
3.3.1 Putting the Pieces Together . 83
3.3.2 Thoughts on the Construction . 83

3.4 Further Reading . 84

4 Signature Schemes Based on the (Strong) RSA Assumption 87
4.1 Introduction . 87

4.1.1 Technical Preliminaries . 87
4.1.2 Outline of the Chapter . 90

4.2 Signature Schemes Based on the RSA Assumption 90
4.2.1 The Dwork-Naor Scheme . 91
4.2.2 The Cramer-Damgård Scheme . 97
4.2.3 The Hohenberger-Waters Scheme . 106

4.3 Schemes Based on the Strong RSA Assumption 108
4.3.1 The Strong RSA Assumption . 109
4.3.2 Security Against Known-Message Attacks 109
4.3.3 The Cramer-Shoup Scheme . 112
4.3.4 The Fischlin Scheme . 114
4.3.5 The Gennaro-Halevi-Rabin Scheme . 117

4.4 Further Reading . 118

5 Constructions Based on Bilinear Maps . 121
5.1 Introduction . 121

5.1.1 Technical Preliminaries . 121
5.1.2 Outline of the Chapter . 122

5.2 The Boneh-Boyen Scheme . 123
5.3 The Waters Scheme . 127
5.4 Further Reading . 131

Contents xiii

Part III Digital Signature Schemes in the Random Oracle Model

6 The Random Oracle Model . 135
6.1 Security Proofs in the Random Oracle Model 137
6.2 Is the Random Oracle Methodology Sound? . 138

6.2.1 Negative Results . 140
6.3 The Random Oracle Model in Practice . 141
6.4 Further Reading . 142

7 Full-Domain Hash (and Related) Signature Schemes 143
7.1 The Full-Domain Hash (FDH) Signature Scheme 143

7.1.1 An Instantiation Using Bilinear Maps 145
7.2 An Improved Security Reduction for FDH . 147
7.3 Probabilistic FDH . 149
7.4 A Simpler Variant with a Tight Reduction . 151
7.5 Further Reading . 152

8 Signature Schemes from Identification Schemes 155
8.1 Identification Schemes . 156
8.2 From Identification Schemes to Signatures . 159

8.2.1 The Fiat-Shamir Transform . 159
8.2.2 Two Useful Criteria . 163
8.2.3 One-Time Signature Schemes without Random Oracles 169

8.3 Some Secure Identification Schemes . 171
8.3.1 The Fiat-Shamir Scheme . 172
8.3.2 The Guillou-Quisquater Scheme . 176
8.3.3 The Micali/Ong-Schnorr Scheme . 178
8.3.4 The Schnorr Scheme . 180

8.4 Further Reading . 182

References . 185

Index . 191

Part I
Setting the Stage

Chapter 1
Digital Signatures: Background and Definitions

1.1 Digital Signature Schemes: A Quick Introduction

Loosely speaking, a digital signature scheme offers a cryptographic analogue of
handwritten signatures that, in fact, provides much stronger security guarantees.
Digital signatures serve as a powerful tool and are now accepted as legally binding
in many countries; they can be used for certifying contracts or notarizing docu-
ments, for authentication of individuals or corporations, and as components of more
complex protocols. Digital signatures also enable the secure distribution and trans-
mission of public keys and thus, in a very real sense, serve as the foundation for all
of public-key cryptography.

ifiers. (Our discussion here will be relatively informal; we defer formal definitions
until later.) The signer begins by running some key-generation algorithm to produce
a pair of keys (pk,sk), where pk will be called the signer’s public key — for reasons

times also referred to as its secret key). The signer then publicizes its public key,
and we will assume that any potential verifier is in possession of (or can obtain) an

the exact details of how a signer disseminates its public key; for concreteness, one

this directory is administered in such a way that it is infeasible for someone to reg-
ister a public key in someone else’s name. We stress, however, that in general there

must know not only the set of valid public keys, but also which of these public keys
belongs to the signer whose signature he is interested in verifying.

Once a signer has established a public key pk as discussed above, digital sig-
nature schemes allow the signer to “certify” (or “sign”) a message in such a way
that any other party who knows pk can verify that the message originated from the
signer and has not been modified in any way. In more detail, for any message m (that
we view simply as a bit-string) the signer can apply a signing algorithm to m using

3

will be many signers, each with their own public key, and so any potential verifier

authentic copy of the public key pk associated with the signer. We will not focus on

can imagine that there is a public directory linking signers to their public keys, and

© Springer Science+Business Media, LLC 2010

A digital signature scheme is typically used by a signer and a set of potential ver-

J. Katz, Digital Signatures, DOI 10.1007/978-0-387-27712-7_1,

that will become obvious in a moment — and sk is the signer’s private key (some-

4 1 Digital Signatures: Background and Definitions

its private key sk; this results in a signature σ that can be verified by anyone who
knows pk using the corresponding verification algorithm.

It will be useful at this point to consider a prototypical usage of a digital signature
scheme: Consider a software company that wants to issue software patches/updates
in an authenticated manner; that is, when the company needs to release a software
patch it should be possible for any of its clients to recognize that the patch is authen-
tic, and a malicious third party should never be able to fool a client into accepting
a patch that was not actually released by the company. To do this, the company
can generate a public key pk along with a private key sk, and then distribute pk
in some reliable manner to its clients (perhaps bundling the public key along with
the initial distribution of the software). When releasing a patch m, the company can
then compute a digital signature σ on m using its private key sk, and post (m,σ) on
its webpage. Each client can verify the authenticity of m before downloading it by
checking that σ is a legitimate signature on m with respect to the public key pk.

A malicious party might try to issue a fake patch by spoofing the company’s
webpage and posting (m′,σ ′), where m′ represents a patch that was never released
by the company. This m′ might be a modified version of some previous patch m,
or it might be completely new and unrelated to previous patches. If the signature
scheme is “secure” (in a sense we will define more carefully soon), then when the
client attempts to verify σ ′ it will find that this is an invalid signature on m′ with
respect to pk, and will therefore reject the signature. Note that in this application it
is crucial that the client reject even if the forged patch m′ is modified only slightly
from a genuine patch m.

The above is not just a theoretical application of digital signatures, but one that
is used extensively today. (E.g., Microsoft uses exactly this approach when issuing
updates to its Windows operating system.)

The assumption that parties are able to obtain a legitimate copy of the signer’s
public key implies that the signer is able to transmit at least one message (namely,
pk itself) in a reliable and authenticated manner. Given this, one may wonder why
signature schemes are needed at all! The point is that reliable distribution of pk is
a difficult task, but using a signature scheme means that this need only be carried
out once, after which an unlimited number of messages can subsequently be sent
reliably. Furthermore, signature schemes themselves are used to ensure the reliable
distribution of other public keys as part of a public-key infrastructure (PKI).

1.1.1 Properties of Digital Signatures

We have just seen that digital signatures provide a means of authenticating messages
sent over a public channel. Signature schemes provide stronger properties as well,
and we elucidate these properties via a comparison with message authentication
codes, the symmetric-key analogue of digital signatures.

An instance of a message authentication code is defined by a secret key s shared
between a (single) sender and a (single) receiver. The sender can certify a message

1.1 Digital Signature Schemes: A Quick Introduction 5

m by applying a message authentication algorithm to m using the shared key s; this
results in a “tag” t. The receiver, given m and t, can verify authenticity of m using
a corresponding verification procedure along with the same key s. As with digital
signatures, the security guarantee provided by a message authentication code is that
no malicious third party, who does not know s, can forge a valid-looking tag t ′ on
any message m′ not explicitly authenticated by the sender. (We refer the reader to
[72] for a much more in-depth discussion of message authentication codes.)

Thus, both message authentication codes and digital signature schemes can be
used to ensure the integrity (or authenticity) of transmitted messages. One clear
difference, however, is with respect to the initial key establishment phase. Digital
signatures fall under the category of public-key cryptography, where a party (i.e.,
the signer in this case) need only distribute some key over a public, but authenti-
cated, channel. With message authentication codes, on the other hand, the sender
must share a key over a secret and authenticated channel. Signature schemes also
have a decided advantage when a sender wants to issue the same message to multiple
recipients. When using a digital signature scheme, this would be done by distribut-
ing a single public key and computing a single signature that can be verified by
any potential recipient; in contrast, with a message authentication code the sender
would have to establish a separate secret key with each possible receiver, and would
have to compute a separate tag (with respect to the appropriate shared key) for each
recipient as well.

A qualitative advantage that digital signatures have as compared to message au-
thentication codes is that signatures are publicly verifiable. This means that if a
receiver verifies the signature on a given message as being legitimate, then it is as-
sured that all other parties who receive this signed message will also verify it as
legitimate. This feature is not achieved by message authentication codes where a
signer shares a separate key with each receiver: in such a setting a malicious sender
might compute a correct tag with respect to receiver A’s shared key but an incor-
rect tag with respect to a different user B’s shared key. In this case, A knows that
he received an authentic message from the sender but has no guarantee that other
recipients will agree.

Public verifiability implies that signatures are transferable: a signature σ on a
message m by a particular signer S can be shown to a third party, who can then
verify herself that σ is a legitimate signature on m with respect to S’s public key
(here, we assume this third party also knows S’s public key). By making a copy of
the signature, this third party can then show the signature to another party and con-
vince them that S authenticated m, and so on. Transferability and public verifiability
are essential for the application of digital signatures to certificates and public-key
infrastructures.

Digital signature schemes also provide the very important property of non-
repudiation. That is — assuming a signer S widely publicizes his public key in
the first place — once S signs a message he cannot later deny having done so. This
aspect of digital signatures is crucial for situations where a recipient needs to prove
to a third party (say, a judge) that a signer did indeed “certify” a particular message
(e.g., a contract): assuming S’s public key is known to the judge, or is otherwise

6 1 Digital Signatures: Background and Definitions

publicly available, a valid signature on a message is enough to convince the judge
that S indeed signed this message. Message authentication codes simply cannot pro-
vide this functionality. To see this, say users S and R share a key sSR, and S sends a
message m to R along with a (valid) MAC tag t computed using sSR. Since the judge
does not know sSR (indeed, this key is kept secret by S and R), there is no way for the
judge to determine whether t is a valid tag or not. If R were to reveal the key sSR to
the judge, there would still be no way for the judge to know whether this is the “ac-
tual” key that S and R shared, or whether it is some “fake” key manufactured, after
the fact, by R. Even if were to assume that the judge is given the actual key sSR, and
can somehow be convinced of this fact, this still would not provide non-repudiation
because there is no way for R to prove that it was S who generated t — the very fact
that message authentication codes are symmetric (so that anything S can do, R can
also do) implies that R could have generated t on its own, and so there is no way for
the judge to distinguish between the actions of the two parties.

Because they are non-repudiable and publicly verifiable, digital signatures are
used frequently to sign contracts, notarize documents, etc. over the Internet, and
have been given legal validity in many countries.

Of course, a drawback of digital signatures as compared to message authentica-
tion codes is that the latter are roughly 2–3 orders of magnitude more efficient than
the former. For this reason, in situations where public verifiability, transferability,
and/or non-repudiation are not needed, and the sender will communicate primarily
with a single recipient (with whom it is able to share a secret key), message au-
thentication codes are preferred. We remark that there may also be settings where
non-repudiation and transferability are specifically not desired: say, when a signer
S wants a particular recipient to be assured that S certified a message, but does not
want this recipient to be able to prove this fact to other parties. (This is sometimes
referred to as the property of deniability.) In such a case, a message authentication
code (or some more complicated cryptographic primitive) would have to be used.

1.2 Computational Security

One further difference between message authentication codes and digital signature
schemes is that there exist message authentication codes that are unconditionally
secure when a bounded number of messages are authenticated. Security of digital
signature schemes, on the other hand, is inherently computational (even if we bound
the number of messages being signed). Specifically, no signature scheme can be
secure against an all-powerful adversary (an “all-powerful adversary” is one with
unlimited computational power or, equivalently, unlimited time). Indeed, consider
an adversary that, given a signer’s public key pk and a message m, tries all possible
values of σ until it finds one for which Vrfypk(m,σ) = 1. (The adversary knows
pk, and can therefore compute Vrfypk(·, ·) on inputs of his choice.) Now, at least
one σ satisfying Vrfypk(m,σ) = 1 exists, since it must be possible for the legitimate

1.2 Computational Security 7

signer to generate a valid signature on m. But then the adversary as described will
eventually find such a σ and succeed in forging a signature.

A second observation is that no signature scheme can be perfectly secure even
against a very “weak” adversary. Illustration of this point is even simpler than
before: consider an adversary who simply chooses σ at random. Clearly, there is a
non-zero probability that the value thus chosen will satisfy Vrfypk(m,σ) = 1 (again,
using the fact that at least one such σ satisfying this condition exists). This adversary
does not even require knowledge of the signer’s public key.

Does the above suggest that secure signature schemes are impossible to con-
struct? Not at all. Thankfully, hope is not lost if one is willing to relax the security
requirements and consider a computational notion of security rather than a perfect
one. That is, instead of requiring (as above) that it be impossible for any adversary
to forge a signature, we instead demand that it be impossible except with “small”
probability for any efficient (i.e., computationally-bounded) adversary to forge a sig-
nature; note in particular that this rules out the two attacks sketched above. In this
book, we formalize these notions in the standard way (see [72] for further discus-
sion), and for completeness we briefly review the details now.

1.2.1 Computational Notions of Security

In moving to the computational setting, we introduce a security parameter k ∈ N
that is used to parameterize both the adversary as well as the signature scheme itself;
this security parameter can be viewed as quantifying the level of security obtained
by a particular instance of the scheme (though this is not quite formally true). In a
bit more detail, we view the signer as selecting a security parameter k when gen-
erating keys for the scheme; the security parameter will be passed as input to the
key-generation algorithm and the length of the public and private keys will depend
on k. Following the standard convention in theoretical cryptography, we equate “ef-
ficient adversaries” with algorithms running in probabilistic polynomial time (where
the running time is measured as a function of k). Since the adversary will be limited
to running in polynomial time it is only fair to require that all algorithms executed
by the honest parties (e.g., signing, verification) should run in polynomial time as
well. We abbreviate “probabilistic, polynomial time” as PPT.

An event occurs with “small probability” if the probability that the event occurs
is negligible in k, where this is defined formally as follows:

Definition 1.1. A function ε : N→ [0,1] is negligible if for all c ≥ 0 there exists
kc ≥ 0 such that ε(k) < 1/kc for all k > kc.

Rephrased, then, a signature scheme satisfying a computational notion of security
will have the property that every probabilistic polynomial-time adversary succeeds
in forging a signature (with respect to this scheme) with only negligible probabil-
ity. In other words, fix some adversary A running in polynomial time and let εA(k)
denote the probability that A forges a valid signature with respect to some signature

8 1 Digital Signatures: Background and Definitions

scheme. (We will specify this experiment more carefully when we introduce formal
security definitions.) Then the scheme is secure if εA(k) is negligible in k, implying
that as the signer increases the value of k, the “success” probability of the adversary
A decreases rapidly. It should be stressed that this says nothing about the “absolute”
security of the scheme for particular values of k; all guarantees are given only with
respect to the asymptotic performance of the scheme. In some sense, then, a larger
value of k results in a “more secure” scheme in practice; formally, though, a scheme
is either secure or insecure without reference to any particular value of k.

This is best illustrated with an example.

Example 1.1. Imagine a secure signature scheme where the private key is a uni-
formly random string of length k, and consider the naive adversary A who performs
a brute-force search for the private key for k5 steps. (We assume the adversary can
identify a private key that matches a given public key.) The probability that A finds
the correct private key is k5/2k. For k = 30 the adversary runs for 2.4 ·107 steps and
finds the private key with probability ≈ 1/50; this would probably not be consid-
ered an acceptable level of security in practice (although the scheme itself — viewed
asymptotically — is still “secure”). By “dialing up” the security parameter to k = 60
we already obtain a reasonable security guarantee: even if A runs for 7.7 ·108 steps,
it finds the private key only with probability 6.7 ·10−10.

The example above illustrates the importance of a concrete security analysis —
that is, an analysis that quantifies the maximum success probability of any adver-
sary running for a specific amount of time, and attacking a scheme using a specific
value of the security parameter — in addition to the asymptotic one used in formal
definitions of security. As noted already, a scheme proven secure using an asymp-
totic security analysis guarantees only that the probability that any polynomial-time
adversary “breaks” the scheme becomes negligibly small as the security parameter
is increased; it does not say what value of the security parameter to use in practice
to ensure a particular level of security against an adversary running in a particular
amount of time. This issue will be revisited in Chapter 7, where the concrete security
analysis of some practical schemes will be considered.

1.2.2 Notation

In understanding the security of signature schemes, we will be interested in ana-
lyzing probabilistic experiments; we introduce some notation (following [61]) that
will provide useful shorthand for doing so. Let A be a probabilistic Turing machine.
Then A(x;r) denotes the output1 of A when A is run on input x and (sufficiently-
long) random tape r. In case A takes multiple inputs x1, . . . ,xn (that, of course, can
always be encoded as a single input), then A(x1, . . . ,xn;r) denotes the output of A
when run on these inputs and random tape r.

1 All A considered here will halt on all inputs and random tapes, so the value A(x;r) is always
well-defined.

1.3 Defining Signature Schemes 9

In writing a multi-stage experiment, the notation y := A(x;r) simply means that
variable y is assigned the value A(x;r). If S is a finite set, then y ← S denotes as-
signing to y an element uniformly chosen from S. The notation y1,y2 ← S is taken
to mean that y1 and y2 are assigned elements uniformly and independently chosen
from S. Generalizing this notation, y ← A(x) refers to the experiment in which a
random tape r (of the appropriate length) is selected uniformly at random, and then
y is assigned the value A(x;r); thus, if A uses a random tape of length (at most) ` on
inputs of length |x|, the notation “y← A(x)” is shorthand for:

r ←{0,1}`;y := A(x;r).

When A is deterministic y := A(x) is equivalent to y← A(x), though we will use the
former notation when we wish to emphasize that A is deterministic.

The probability of a particular event E following execution of some experiment
expt is written as Pr[expt : E]. Everything to the left of the colon represents the
experiment itself (whose components are executed in order, from left to right), and
the event of interest is written to the right of the colon. An event may be expressed
as a predicate, where the event is said to occur if the predicate is true. As usual, ∧
is the “logical and” operation, ∨ represents “logical or”, {0,1}k denotes the set of
binary strings of length k, and if E is an event then E denotes the complement of E
(i.e., the event that E does not occur).

1.3 Defining Signature Schemes

Precise definitions are crucial if we are to understand the security guaranteed by
any particular construction, and are essential before we can even hope to have rig-
orous proofs of security for the schemes we will develop. For completeness, we
begin with a purely functional definition describing the basic functionality that any
signature scheme should achieve; this is followed by a number of different security
definitions detailing various levels of resilience a signature scheme might provide.
In the remainder of the chapter, we focus on techniques for amplifying the security
of a given signature scheme; i.e., we show how to take a scheme that achieves a
relatively weak notion of security and adapt it so as to obtain a new scheme that
realizes a stronger notion of security. Such techniques have proven to be very useful
in the design and development of secure signature schemes, and we will see many
examples of these techniques in the constructions described in later chapters.

Definition 1.2. A signature scheme consists of three probabilistic, polynomial-
time algorithms (Gen, Sign, Vrfy) along with an associated message space M =
{Mk} such that:

• The randomized key-generation algorithm Gen takes as input the security pa-
rameter k (in unary). It outputs a pair of keys (pk,sk) where pk is called the
public key or the verification key, and sk is called the private key, the secret

10 1 Digital Signatures: Background and Definitions

key, or the signing key. We assume the security parameter k is implicit in both
pk and sk.

• For security parameter k, the (possibly randomized) signing algorithm Sign
takes as input a secret key sk and a message m ∈Mk. It outputs a signature σ . We
write this as σ ← Signsk(m). We assume that if m 6∈Mk, the signature algorithm
outputs a distinguished symbol ⊥ .

• For security parameter k, the deterministic verification algorithm Vrfy takes as
input a public key pk, a message m ∈ Mk, and a (purported) signature σ . It out-
puts a single bit b, with b = 1 signifying “accept” and b = 0 signifying “reject.”
We write this as b := Vrfypk(m,σ). We assume that if m 6∈ Mk, the verification
algorithm rejects.

When a given public key is understood from the context, we say a message/signature
pair (m,σ) is valid if Vrfypk(m,σ) = 1. We require that for all k, all (pk,sk) output
by Gen(1k), all m ∈ Mk, and all σ output by Signsk(m), the message/signature pair
(m,σ) is valid.

It should be clear that the above definition exactly formalizes the intuitive notion
described earlier. Specifically, a signature scheme is used in the following way. One
party S, who acts as the signer, runs Gen(1n) to obtain keys (pk,sk). When S wants
to transmit a message m, it computes the signature σ ← Signsk(m) and sends (m,σ).
Upon receipt of (m,σ), a receiver who knows pk can verify the authenticity of m

by checking whether Vrfypk(m,σ) ?= 1. This establishes both that S sent m, and also
that m was not modified in transit. It is worth emphasizing, however, that successful
verification does not prove anything about when m was sent, and thus so-called
replay attacks are possible. We return to this point later.

Relaxations of the Definition

We briefly discuss some relaxations of Definition 1.2.
The correctness requirement in the definition can be relaxed to allow for a negli-

gible probability of error. We ignore this issue for the most part in our presentation,
though we caution the reader that some of the schemes we present do indeed have
negligible error probability.

Another variation of the above definition allows the possibility of randomized
verification algorithms, allowing a negligible probability of error when a correctly-
generated signature is verified. Few schemes in the literature use randomized verifi-
cation, and we will not see any examples in this book.

Instead of requiring that the message space be fixed a priori (for each value of k),
it is sometimes convenient to allow the set of legal messages to depend on the pub-
lic key generated by Gen. When, on occasion, this will be the case for schemes
described in this book, it will be evident from the context and so we will not ex-
plicitly mention it. Note that for any practical application the message space should
consist of all bit-strings (perhaps of some bounded length).

1.4 Motivating the Definitions of Security 11

It is possible for the signing algorithm to be stateful (rather than stateless as de-
fined above): formally, in this case some state s would be initialized to NULL by
Gen, and the signing algorithm would take as input the current state s in addition to
the message and the secret key, and would output an updated value s′ for the state
in addition to the signature. (We stress that the state is not needed in order to verify
the signature. Also, the adversary is assumed unable to view the state of the signer
unless otherwise specified.) For the most part, it is viewed as undesirable in prac-
tice for a signature scheme to be stateful; the security of some signature schemes,
however, crucially depends on the ability of the signing algorithm to maintain such
state. (We will see one such example in Chapter 3.) Unless otherwise specified, we
always assume stateless signature schemes.

1.4 Motivating the Definitions of Security

The basic security guarantee offered by a signature scheme is, roughly speaking,
that no efficient adversary should be able to “forge” a valid message/signature pair
with respect to a public key pk generated by an honest user, even after the adversary
“interacts” with this user and thereby obtains legitimate signatures on multiple mes-
sages, generated using the private key sk associated with pk. As outlined previously,
we will equate “efficient” with the notion of (probabilistic) polynomial time, and
will allow the adversary to possibly succeed in outputting a valid forgery with some
negligibly-small probability (recall that both the adversary’s running time and its
probability of forging a signature are measured as a function of the security param-
eter k). To formally specify the desired notion of security, then, it remains to define
two things more precisely: first, what it means to “forge” a valid message/signature
pair; second, what exactly “interacting” with the legitimate user entails. These two
components may be specified independently, leading to numerous possible defini-
tions; we explore some of these possibilities here.

Let us first, still somewhat informally, discuss some plausible interpretations of
what it means to “forge” a valid message/signature pair. One immediate observa-
tion is that if the legitimate signer himself generates the signatures σ1, . . . ,σ` on
the messages m1, . . . ,m`, respectively, then the adversary cannot be prevented from
replaying a valid message/signature pair (mi,σi). Clearly, then, such “replay” at-
tacks should not count as forgeries and we will not try to prevent attacks of this sort
in our definitions.2 Given this, a natural approach is to say that an adversary suc-
ceeds in constructing a forgery if it generates a valid message/signature pair (m,σ)
such that m is not one the messages previously signed by the legitimate signer (i.e.,
m 6∈ {m1, . . . ,m`}); we will refer to this a forgery of this type as an existential forgery
and call a scheme in which such forgeries are infeasible existentially unforgeable.

2 When using a signature scheme as a component of some larger protocol, however, it is certainly
important to recognize that such replay attacks can occur and — if needed — protect against such
attacks by ensuring that all messages requiring a signature are distinct (by using timestamps or
nonces, for example).

12 1 Digital Signatures: Background and Definitions

We stress that it is not required that m be “meaningful” in any way; indeed, the no-
tion of what is “meaningful” is application-dependent and it therefore does not make
much sense to incorporate any semantics (or, equivalently, any notion of “meaning-
fulness”) in a definition of security for signature schemes. This has an added benefit:
any signature scheme that is existentially unforgeable can be used in any applica-
tion that requires access to the functionality provided by signatures, without having
to worry about whether the semantics of the application are compatible with any
semantics assumed by the signature scheme itself.

A stronger notion termed strong existential unforgeability has recently been in-
troduced, and is required for some applications of digital signature schemes. Here,
the adversary is said to produce a forgery even if it outputs a new (valid) signature on
a previously signed message (this is in addition to the notion of existential unforge-
ability defined above); formally, a forgery occurs whenever the adversary outputs a
valid message/signature pair (m,σ) 6∈ {(m1,σ1), . . . ,(m`,σ`)} (where, as before, σi
represents a signature on mi that was obtained from the legitimate signer). Notice
that this gives a strict generalization of existential unforgeability.

Having discussed the notion of forgery, we turn next to consideration of the pos-
sible ways in which an adversary might interact with the legitimate signer. We fo-
cus specifically on two features of this interaction: (1) how many signatures the
legitimate signer generates, and (2) what sort of control the adversary has over the
messages that are signed. With regard to the first question, we will distinguish only
between the case where a single signature is generated and the case in which an
unbounded number of signatures might be generated. Signature schemes intended
for the setting when only a single signature is produced are called one-time signa-
tures. Besides the historical reasons for considering this, relatively weak, definition
(in particular, the first provably-secure signature scheme was a one-time signature
scheme), one-time signatures also serve as useful building blocks of standard signa-
ture schemes (as we will see later). One-time signature schemes are also useful in
their own right for certain applications.

The second question (namely, the amount of control the adversary has over the
messages that are signed) is more interesting. Here, we describe informally three dif-
ferent scenarios we will consider, and provide some justification as to why each rep-
resents a natural class of adversarial behavior in certain settings. We stress, though,
that our ultimate goal is to achieve security in the final (strongest) scenario; schemes
secure within the context of the other two models, however, will serve as useful
“stepping stones” toward this goal (see especially Sections 1.7.1 and 1.7.2).

Random-message attack: The first scenario we will consider may be viewed as
modeling the case wherein the adversary has no control whatsoever over the mes-
sages that are signed. As an example, one can imagine here that the adversary
merely observes signatures that are produced on messages provided by other
(honest) parties. We formalize this by considering an adversary who is given
signatures on a sequence of random messages. Although this may seem a poor
approximation to the motivating scenario we have just discussed, a little thought
shows that no other reasonable option is available without introducing some (a
priori unjustified) assumption regarding the distribution of messages that are

1.4 Motivating the Definitions of Security 13

signed. Furthermore, there are scenarios in which the messages that are signed
are, indeed, random and this then provides an exact model of an adversary’s at-
tack; a good example is when a user is authenticated by computing a signature
on a random challenge sent by a verifier.

Known-message attack: The adversary is now assumed to have some limited
control over what messages are signed, or there may be some definite pattern in
the types of messages likely to be signed (and so a random-message attack is no
longer the most appropriate model). We will formalize this attack scenario by
granting the adversary control over the messages that are signed, subject to the
restriction that the adversary must specify these messages in advance and, in par-
ticular, independently of the signer’s public key as well as any of the subsequent
signatures the adversary observes. One can view this as modeling a “worst-case”
choice of messages to be signed, as long as these messages are not directly under
the adversary’s control (and so cannot be changed once the public key is fixed).

(Adaptive) chosen-message attack: This model is the strongest possible, in that
it grants the adversary complete control over what messages are signed. Specif-
ically, the adversary can not only choose these messages after it sees the public
key, but can also select messages based on previous signatures (on previously
chosen messages) that the adversary observes; hence the term “adaptive.” (We
will often omit this term, however, since we do not consider any non-adaptive
variant of chosen-message attacks.)
One might object that a realistic adversary would never have complete control
over what is signed, since surely the legitimate signer will refuse to sign certain
messages (e.g., “I am a crook”). As discussed earlier in the context of forgery,
however, it makes little sense to impose any semantics on the message space
in a definition of security. Furthermore, there may well be cases (e.g., a signer
acting as a notary) when an adversary might have a significant amount of control
over what is signed. Finally, a major advantage of such a strong attack model —
as in the case of our strong definition of what constitutes a forgery — is that a
scheme proven secure against such a strong attack will certainly be secure for
any desired application (without having to consider whether the needs of the
application “match” the guarantees provided by the security definition).

With the above in mind, we will introduce a number of formal definitions in the
following section corresponding to various combinations of a notion of forgery and
an attack model. Specifically, we will define the notions of (1) existential unforge-
ability for one-time signature schemes; (2) existential unforgeability under random-
message attack; (3) existential unforgeability under known-message attack; and
(4) (strong) existential unforgeability under adaptive chosen-message attack. We
introduce the first definition, as we have mentioned, for its historical significance as
well as for its usefulness in constructing schemes satisfying stronger definitions of
security, as we will see in a later chapter. Similarly, the second and third definitions
will be used in Sections 1.7.1 and 1.7.2 to construct schemes satisfying the fourth
(strongest) notion. The last definition we consider is the strongest possible (at least

14 1 Digital Signatures: Background and Definitions

with regard to the possibilities discussed above), and has become the de facto notion
of security that any “good” signature scheme should satisfy. One may argue that this
definition is “overkill” with respect to what is needed in practice, although we have
argued the contrary above. Even if this were true, however, the definition is surely
sufficient for any application of signature schemes in practice, and thus there is a
substantial benefit to constructing schemes satisfying this strong notion of security.

1.5 Formal Definitions of Security

We state our definitions in a slightly different order than that discussed in the previ-
ous paragraph.

1.5.1 Security against Random-Message Attacks

We begin by defining security against random-message attacks. Here, recall, the ad-
versary is given no control over what messages are signed; instead, these messages
are chosen randomly from the message space. For completeness, we define both
existential unforgeability and strong existential unforgeability.

Definition 1.3. Signature scheme (Gen,Sign,Vrfy) is existentially unforgeable un-
der a random-message attack if for all polynomials `(·) and all probabilistic,
polynomial-time adversaries A, the success probability of A in the following ex-
periment is negligible (as a function of k):

1. A sequence of ` = `(k) messages m1, . . . ,m` are chosen uniformly at random
from the message space Mk.

2. The key-generation algorithm Gen(1k) is run to obtain a pair of keys (pk,sk).

3. Signatures σ1 ← Signsk(m1), . . . ,σ` ← Signsk(m`) are computed.

4. A is given pk and {(mi,σi)}`
i=1, and outputs (m,σ).

5. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) m 6∈ {m1, . . . ,m`}.

The scheme is strongly unforgeable under a random-message attack if for all
polynomials `(·) and all probabilistic, polynomial-time adversaries A, the success
probability of A is negligible (as a function of k) in an experiment defined as above
except for the last condition, now changed to:

5′. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) (m,σ) 6∈ {(m1,σ1), . . . ,(m`,σ`)}.

As a technical point, if the message space depends on the public key then the
order of the above experiments is changed so that the public and secret keys are
generated first, and then the messages are chosen at random from the message space
thus defined. (The remainder of the experiment is unchanged.)

1.5 Formal Definitions of Security 15

Just to get comfortable with the notation, note that we can express the definition
above in the following compact way. Signature scheme (Gen,Sign,Vrfy) is existen-
tially unforgeable under a random-message attack if for all polynomials `(·) and all
probabilistic, polynomial-time adversaries A it is the case that εA(k) is negligible,
where:

εA(k) def= Pr

{mi}`

i=1 ←Mk; (pk,sk)← Gen(1k);
∀i ∈ [`] : σi ← Signsk(mi);

(m,σ)← A
(

pk,{(mi,σi)}`
i=1

) :
Vrfypk(m,σ) = 1

∧

m 6∈ {m1, . . . ,m`}

 .

We will continue to write out experiments in full when we present definitions, but
will switch to the more compact notation when writing proofs of security.

It is sometimes also useful to consider a very weak adversary who is allowed to
obtain a signature on only a single message.

Definition 1.4. Signature scheme (Gen,Sign,Vrfy) is existentially unforgeable un-
der a one-time random-message attack if for all probabilistic, polynomial-time
adversaries A, the success probability of A in the following experiment is negligible
(as a function of k):

1. A message m1 is chosen uniformly at random from the message space Mk.

2. The key-generation algorithm Gen(1k) is run to obtain a pair of keys (pk,sk).

3. Signature σ1 ← Signsk(m1) is computed.

4. A is given pk and (m1,σ1), and outputs (m,σ).

5. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) m 6= m1.

The scheme is strongly unforgeable under a one-time random-message at-
tack if for all probabilistic, polynomial-time adversaries A, the success probability
of A is negligible (as a function of k) in an experiment defined as above except for
the last condition, now changed to:

5′. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) (m,σ) 6= (m1,σ1).

One can, by extension, also consider `-time attacks for any polynomial `. Note,
however, the distinction between the resulting notion of security and Definition 1.3:
in the former case, ` is fixed a priori and the signature scheme is allowed to depend
on `, whereas in the case of Definition 1.3 the scheme is fixed and then security is
required to hold for any (polynomial) `.

1.5.2 Security against Known-Message Attacks

We now define security against known-message attacks. Here, recall, the adversary
is able to choose what messages are signed, but it must make this choice in advance
of seeing the public key. Again, for completeness, we include a definition of strong
unforgeability also.

16 1 Digital Signatures: Background and Definitions

Definition 1.5. Signature scheme (Gen,Sign,Vrfy) is existentially unforgeable un-
der a known-message attack if for all polynomials `(·) and all probabilistic,
polynomial-time adversaries A, the success probability of A in the following ex-
periment is negligible (as a function of k):

1. A(1k) outputs a sequence of ` = `(k) messages m1, . . . ,m` ∈Mk.

2. The key-generation algorithm Gen(1k) is run to obtain a pair of keys (pk,sk).

3. Signatures σ1 ← Signsk(m1), . . . ,σ` ← Signsk(m`) are computed.

4. A is given pk and {σi}`
i=1, and outputs (m,σ).

5. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) m 6∈ {m1, . . . ,m`}.

(We assume that A is a stateful algorithm, and in particular is allowed to maintain
state between steps 1 and 4.)

The scheme is strongly unforgeable under a known-message attack if for all
polynomials `(·) and all probabilistic, polynomial-time adversaries A, the success
probability of A is negligible (as a function of k) in an experiment defined as above
except for the last condition, now changed to:

5′. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) (m,σ) 6∈ {(m1,σ1), . . . ,(m`,σ`)}.

A subtle point arises, again, in case the message space depends on the public
key; in that case, it becomes difficult (or impossible) to formally define a notion of
security against known-message attacks. In almost any “natural” signature scheme,
however — and certainly any scheme used in practice — there is some set M′

k of
messages that is always contained in the message space, regardless of the public
key. (For example, M′

k might consist of all bit-strings of some given length, such that
these strings can be embedded in the message space regardless of the public key.)
We can then restrict the adversary to outputting messages in M′

k. Another possibility
occurs when the public key can be split naturally into two components, only the
first of which determines the message space; in this case, the experiment can be
modified so the adversary is given only the first component of the public key before
being asked to generate the messages to be signed. In the rest of the book, we will
implicitly make assumptions of this sort when dealing with security against known-
message attacks.

We can, of course, also define existential unforgeability (and strong unforgeabil-
ity) under a one-time known-message attack. Since a definition is exactly analogous
to Definition 1.4, we do not give such a definition here.

1.5.3 Security against Adaptive Chosen-Message Attacks

We now define the strongest attack model, in which the adversary can adaptively
choose messages to be signed, depending both on the public key as well as on any
previous signatures it has obtained. To capture this formally, we will provide the
adversary oracle access to a so-called signing oracle Signsk(·). This oracle should

1.5 Formal Definitions of Security 17

be thought of as a “black box” that computes signatures under the fixed secret key
sk: the adversary can submit any input m to this oracle, and will receive in return the
signature σ ← Signsk(m). An important point is that the signing key sk used by the
oracle is exactly the one generated along with the public key pk in the experiment;
that is, the adversary is obtaining signatures that are valid with respect to public key
it is “attacking.” It is to be stressed that the signing oracle is not meant to represent
any physical device to which the adversary has access in the real world. Rather, this
oracle is simply a convenient means to model the adversary’s interaction with the
signer, under the assumption that the adversary can convince the signer to sign any
messages of the adversary’s choice (as justified in Section 1.4).

Definition 1.6. Signature scheme (Gen,Sign,Vrfy) is existentially unforgeable un-
der a chosen-message attack if for all probabilistic, polynomial-time adversaries
A, the success probability of A in the following experiment is negligible (as a func-
tion of k):

1. The key-generation algorithm Gen(1k) is run to obtain a pair of keys (pk,sk).

2. A is given pk and allowed to interact with a signing oracle Signsk(·), requesting
signatures on as many messages as it likes. (We denote this by ASignsk(·)(pk).) Let
M denote the set of messages queried to the signing oracle by A.

3. Eventually, A outputs (m,σ).

4. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) m 6∈M.

The scheme is strongly unforgeable under a chosen-message attack if for all
probabilistic, polynomial-time adversaries A, the success probability of A in the
following experiment is negligible (as a function of k):

1. The key-generation algorithm Gen(1k) is run to obtain a pair of keys (pk,sk).

2. A is given pk and allowed to interact with a signing oracle Signsk(·), requesting
signatures on as many messages as it likes. Let Q = {(mi,σi)} where mi denotes
the ith query made by A to the signing oracle, and σi is the ith response.

3. Eventually, A outputs (m,σ).

4. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) (m,σ) 6∈ Q.

(In both definitions, we assume that A is a stateful algorithm.)

The attack considered in the above definition is often called an adaptive chosen-
message attack in the literature, but since we do not consider any “non-adaptive”
variant we often drop the extra qualifier.

Since we will refer to it often, we also define the corresponding notion of security
for one-time attacks.

Definition 1.7. Signature scheme (Gen,Sign,Vrfy) is existentially unforgeable un-
der a one-time chosen-message attack if for all probabilistic, polynomial-time ad-
versaries A, the success probability of A in the following experiment is negligible
(as a function of k):

18 1 Digital Signatures: Background and Definitions

1. The key-generation algorithm Gen(1k) is run to obtain a pair of keys (pk,sk).

2. A is given pk and allowed to request a signature on a single message m1. In return
it is given σ1 ← Signsk(m1).

3. A outputs (m,σ).

4. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) m 6= m1.

The scheme is strongly unforgeable under a one-time chosen-message attack
if for all probabilistic, polynomial-time adversaries A, the success probability of A
in the following experiment is negligible (as a function of k):

1. The key-generation algorithm Gen(1k) is run to obtain a pair of keys (pk,sk).

2. A is given pk and allowed to request a signature on a single message m1. In return
it is given σ1 ← Signsk(m1).

3. A outputs (m,σ).

4. A succeeds if (1) Vrfypk(m,σ) = 1 and (2) (m,σ) 6= (m1,σ1).

(As usual, both definitions assume that A is a stateful algorithm.)

1.5.3.1 Terminology

By default, when we talk about “security” of a digital signature scheme we mean ex-
istential unforgeability (with respect to the appropriate attack model); we often also
write “unforgeability” in place of “existential unforgeability”. For brevity, we occa-
sionally refer to security against random-message attacks, known-message attacks,
and chosen-message attacks as RMA-security, KMA-security, and CMA-security,
respectively.

By way of terminology, we say that an adversary A “forges a signature on a new
message” or “outputs a forgery” whenever A outputs a message/signature pair (m,σ)
such that Vrfypk(m,σ) = 1 and A was not previously given any signature on m. We
say that A “outputs a strong forgery” whenever A outputs a message/signature pair
(m,σ) such that Vrfypk(m,σ) = 1 and A was not previously given the signature σ
on the message m. Note that whenever A outputs a forgery then it also outputs a
strong forgery.

1.6 Relations Between the Notions

The definitions in the previous section lead to a strict hierarchy of security guaran-
tees (assuming that there exist secure signature schemes to begin with). That is:

• There exist signature schemes that are existentially unforgeable under a one-time
chosen-message attack that are not existentially unforgeable under a chosen-
message attack (indeed, it is not hard to see that the scheme we show in Sec-

1.7 Achieving CMA-Security from Weaker Primitives 19

tion 3.1 has exactly this property), and similarly for random-message attacks and
known-message attacks.

• There exist signature schemes that are existentially unforgeable under a random-
message attack but that are not existentially unforgeable under a known-message
attack. Similarly, there are signature schemes that are existentially unforgeable
under a known-message attack but that are not existentially unforgeable under a
chosen-message attack. In both cases, constructing a convoluted scheme proving
these assertions is relatively straightforward but we are unaware of any “natural”
schemes with these properties. (We stress, however, that a number of natural
schemes can be proven secure with respect to a weaker notion of security while
no proof is known that they satisfy a stronger notion of security.)

• There exist signature schemes that are existentially unforgeable under a chosen-
message attack, but that are not strongly unforgeable (even if the adversary ob-
tains a signature on only a single random message).

The above observations motivate the importance of choosing a scheme satisfying
the appropriate definition of security for the application at hand; one cannot simply
“assume” that a scheme satisfying a weak definition automatically satisfies stronger
definitions as well. On the other hand, if a particular application requires a signature
scheme only satisfying a weaker notion of security, then one can hope to improve
efficiency by using a scheme satisfying exactly that notion (and nothing stronger).

1.7 Achieving CMA-Security from Weaker Primitives

As discussed at the end of the previous section, the weaker notions of security
we have defined — security against random-message attacks and security against
known-message attacks — may provide meaningful guarantees in certain restricted
settings. More interesting, perhaps, is their usefulness is constructing schemes satis-
fying our strongest definition: security against chosen-message attacks. In this sec-
tion, we explore this possibility and show how schemes secure with respect to a
weaker notion can be converted to schemes secure within the strongest attack model.
The constructions we show are not only interesting from a theoretical point of view
but have practical significance as well: numerous schemes rely on the ideas used
in the following constructions, and the conversions themselves are relatively effi-
cient (decreasing the efficiency of the original, weaker scheme by roughly a factor
of two).

1.7.1 CMA-Security from RMA-security

We begin by showing how to construct a CMA-secure scheme based on any RMA-
secure one. The basic idea is to ‘split’ each message m being signed into two random
pieces mL,mR subject to the constraint that mL ⊕mR = m. Then mL and mR are

20 1 Digital Signatures: Background and Definitions

signed using two independent instances of the RMA-secure scheme. (To prevent an
adversary from mixing-and-matching pieces from two different signed messages, a
random nonce is chosen and signed along with each piece.) The details follow.

Construction 1.1: CMA-security from RMA-security

Let Π = (Gen,Sign,Vrfy) be a signature scheme for message of length k + q(k).
Construct the signature scheme Π ∗ = (Gen∗,Sign∗,Vrfy∗) for messages of length
q = q(k) as follows:

Key generation: Algorithm Gen∗(1k) is defined as follows:

• Run two (independent) invocations of Gen(1k) to obtain the keys (pkL,skL),
(pkR,skR). (We use “L” and “R” to stand for “left” and “right”.)

• The public key is pk∗ = (pkL, pkR) and the secret key is sk∗ = (skL,skR).

Signature generation: Algorithm Sign∗sk∗(m) is defined as follows:

• Parse sk∗ as skL,skR.
• Choose r ←{0,1}k and mL ←{0,1}q. Set mR := m⊕mL.
• Compute σL ← SignskL

(r‖mL) and σR ← SignskR
(r‖mR), where “‖” denotes con-

catenation.
• Output the signature σ∗ = (r,mL,mR,σL,σR).

Signature verification: Algorithm Vrfy∗pk(m,σ∗) is defined as follows: Parse σ∗ as

(r,mL,mR,σL,σR) and pk as (pkL, pkR). Then, output 1 iff m ?= mL⊕mR and both

VrfypkL
(r‖mL, σL) ?= 1

and
VrfypkR

(r‖mR, σR) ?= 1.

It is easy to see that the scheme above is correct. (It is not strictly necessary to in-
clude mR in the signature output by Sign∗, but it makes the description of the scheme
a bit more transparent.) The following theorem shows that the above construction
achieves the desired level of security:

Theorem 1.1. If Π = (Gen,Sign,Vrfy) is existentially unforgeable (resp., strongly
unforgeable) under a random-message attack, then Π ∗ = (Gen∗, Sign∗, Vrfy∗) given
by Construction 1.1 is existentially unforgeable (resp., strongly unforgeable) under
an adaptive chosen-message attack.

Proof. We focus on the case of strong unforgeability, but the claim regarding ex-
istential unforgeability follows by examination of the proof. The intuition is sim-

1.7 Achieving CMA-Security from Weaker Primitives 21

ple: in scheme Π ∗, the “messages” signed by the underlying signature scheme Π
(namely, r‖mL and r‖mR) are always individually uniform, regardless of the adver-
sary’s choice of m. Of course, the joint distribution of r‖mL and r‖mR depends on m,
but it is their individual distributions we are interested in since r‖mL and r‖mR are
each signed using a different secret key. This suggests that security of Π against
a random-message attack is sufficient to prove security of Π ∗ against a chosen-
message attack. The only hitch is that if a nonce value r is ever used twice, then sig-
nature forgery becomes trivial. For example, if an adversary obtains the signature
(r,mL,mR,σL,σR) on message m and signature (r,m′

L,m′
R,σ ′

L,σ ′
R) on message m′,

then this means that σL is a valid signature on r‖mL with respect to pkL, and σ ′R is a
valid signature on r‖m′

R with respect to pkR. Thus, the adversary can output

(r,mL,m′
R,σL,σ ′R),

a valid signature on the message mL⊕m′
R (and this message is likely not equal to

either of m or m′). Fortunately, it is not hard to show that the probability of using
any nonce twice is small.

Turning to the formal proof, let A∗ be a PPT adversary attacking Π ∗ and denote
by (m,σ∗)← ExptA∗,Π∗(1k) the experiment

(pk∗,sk∗)← Gen∗(1k);(m,σ∗)← (A∗)Sign∗sk(·)(pk∗).

Let Forge be the event that Vrfy∗pk∗(m,σ∗) = 1 and (m,σ∗) 6∈ Q, where Q is as in
Definition 1.6. Define

SuccA∗,Π∗(k) def= Pr
[
(m,σ∗)← ExptA∗,Π∗(1k) : Forge

]
,

and note that this is exactly the success probability of A∗ as defined in Definition 1.6.
Thus, our goal is to show that SuccA∗,Π∗(k) is negligible.

Let ` = `(k) denote the maximum number of queries made by A∗ to its sign-
ing oracle on security parameter k, and assume without loss of generality that A∗
always makes exactly this many queries; note that ` must be polynomial since A∗
runs in polynomial time. In a given execution of ExptA∗,Π∗(1k), let mi denote the ith
message submitted by A∗ to its signing oracle, and let σ∗

i = (ri,mL,i,mR,i,σL,i,σR,i)
denote the ith signature received. Denote by σ∗ = (r∗,m∗

L,m∗
R,σ∗L ,σ∗R) the compo-

nents of the signature output by A∗.
Now define the following events:

• Let Repeat denote the event that two signatures obtained by A∗ from its signing
oracle use the same value for the nonce r, that is, that ri = r j for some i 6= j.

• Let QL = {(ri‖mL,i, σL,i)} denote the set of “left” message/signature pairs. Let
ForgeL denote the event that VrfypkL

(r∗‖m∗
L,σ∗

L) = 1 and (r∗‖m∗
L, σ∗L) 6∈ QL.

• Similarly, let QR = {(ri‖mR,i, σR,i)} be the set of “right” message/signature pairs,
and let ForgeR be the event that VrfypkR

(r∗‖m∗
R,σ∗R) = 1 and (r∗‖m∗

R, σ∗
R) 6∈ QR.

We claim that whenever Forge occurs, at least one of Repeat, ForgeL, or ForgeR
occurs. To see this, assume Forge occurs and Repeat does not occur. Since Forge

22 1 Digital Signatures: Background and Definitions

occurs, we know that VrfypkL
(r∗‖m∗

L,σ∗L) = 1 and VrfypkR
(r∗‖m∗

R,σ∗R) = 1. Since
Repeat does not occur, we know that r∗ = ri for at most one value of i. There are
two cases to consider:

Case 1: r∗ is not equal to ri for any value of i. In this case, we clearly have r∗‖m∗
L 6=

ri‖mL,i for all i and so, in particular, (r∗‖m∗
L, σ∗L) 6∈ QL. This means that ForgeL

occurs. (By a symmetric argument, ForgeR occurs in this case as well.)

Case 2: r∗ = ri for some (unique) i. If both (m∗
L,σ∗

L) = (mL,i,σL,i) and (m∗
R,σ∗R) =

(mR,i,σR,i), then we have m = mi and σ∗ = σ∗i in contradiction to the fact that
(m,σ∗) 6∈Q (since Forge occurred). Thus, it must be the case that either (m∗

L,σ∗L) 6=
(mL,i,σL,i) (in which case ForgeL occurs) or (m∗

R,σ∗R) 6= (mR,i,σR,i) (in which case
ForgeR occurs).

We conclude that

Pr[ExptA∗,Π∗(1k) : Forge]≤ (1.1)

Pr[ExptA∗,Π∗(1k) : ForgeL]+Pr[ExptA∗,Π∗(1k) : ForgeR]

+Pr[ExptA∗,Π∗(1k) : Repeat].

We show that each of the terms on the right-hand side is negligible, thus completing
the proof of the theorem. We deal with the term that is easiest to analyze first.

Claim. Pr[ExptA∗,Π∗(1k) : Repeat] is negligible.

Proof. The claim follows easily from a “birthday problem” calculation. (See [72,
Appendix A.4] for further information.) Specifically, We have ` nonces r1, . . . ,r`

chosen uniformly from the set {0,1}k of size 2k. The probability that two of these
values are equal is at most `2/2k+1, which is negligible in k.

Claim. Pr[ExptA∗,Π∗(1k) : ForgeL] is negligible.

Proof. To prove this claim, we reduce to the strong unforgeability of Π . Consider
the following PPT adversary A, using A∗ as a subroutine and attacking Π in a
random-message attack:

Algorithm A:
The algorithm is given a public key pk, generated using Gen(1k),
along with ` signatures σ1, . . . ,σ` on the random messages
m′

1, . . . ,m
′
` ∈ {0,1}k+q.

• Set pkL := pk.
• Run Gen(1k) to obtain keys (pkR,skR).
• Set pk∗ := (pkL, pkR) and run A∗(pk∗).
• When A∗ requests a signature on the ith message mi, do:

1. Let ri be the first k bits of m′
i, and let mL,i be the last q

bits of m′
i.

2. Set σL,i := σi.

1.7 Achieving CMA-Security from Weaker Primitives 23

3. Set mR,i := mi⊕mL,i.
4. Compute σR,i ← SignskR

(ri‖mR).
5. Return the signature (ri,mL,i,mR,i,σL,i,σR,i) to A∗.

• When A∗ outputs (m, σ∗ = (r∗,m∗
L,m∗

R,σ∗L ,σ∗R)), then out-
put (r∗‖m∗

L, σ∗L).

Observe first that A provides a perfect simulation for A∗; that is, the view of A∗
when run by A (and when pk is generated by Gen(1k)) is identically distributed to
the view of A∗ in ExptA∗,Π∗(1k). It is easy to see that the public key pk∗ is identically
distributed in both experiments. As for the answers to the signing queries of A∗, note
that these, too, are distributed identically in both cases; here, we rely on the fact that
the m′

i are chosen uniformly (and independently) at random.
To conclude the proof, we merely observe that A outputs a strong forgery when-

ever ForgeL occurs. So, the success probability of A attacking Π in the sense of
Definition 1.3 (i.e., with respect to a random-message attack) is exactly equal to
Pr[ExptA∗,Π∗(1k) : ForgeL]. Since Π is assumed to be strongly unforgeable under a
random-message attack, this must be negligible.

An exactly analogous argument shows that Pr[ExptA∗,Π∗(1k) : ForgeR] is negli-
gible. Since each term on the right-hand side of Equation (1.1) is negligible, we
conclude that the success probability of A∗ in attacking Π ∗ under a chosen-message
attack is negligible. This completes the proof of the theorem.

1.7.2 CMA-Security from KMA-Security

In this section we show how to construct a signature scheme that is secure against
chosen-message attacks from any scheme secure under a known-message attack.
Note that since any KMA-secure scheme is also RMA-secure, we could also just as
well use the construction from the previous section. Nevertheless, the construction
described here offers an alternate approach that is sometimes more efficient when
applied to particular schemes.

The key idea here is to use a level of indirection. Let Π be a KMA-secure scheme,
and let Π ′ be a KMA-secure one-time signature scheme. We construct a CMA-
secure scheme Π ∗ as follows: the public key pk is generated using Π . To sign a
message m, the signer generates a fresh public key pk′ using Π ′; signs pk′ with
respect to pk; and signs m with respect to pk′. Note that this “indirection” removes
any dependence between any “message” and the public key with respect to which it
is signed: m is independent of pk′, and pk′ is independent of pk. Details follow.
We stress that a fresh key pair (pk′,sk′) is generated each time a new message is
signed. It is easy to see that the above scheme is correct. We now prove that it
realizes the desired level of security.

24 1 Digital Signatures: Background and Definitions

Construction 1.2: CMA-security from KMA-security

Let Π ′ = (Gen′,Sign′,Vrfy′) be a signature scheme in which the public keys have
length q = q(k), and let Π = (Gen,Sign,Vrfy) be a signature scheme in which the
message space Mk includes all bit-strings of length q(k). Construct the signature
scheme Π ∗ = (Gen∗,Sign∗,Vrfy∗), whose message space is exactly the message
space of Π ′, as follows:

Key generation: Gen∗(1k) simply runs Gen(1k) to generate keys (pk,sk). These are
the public and secret keys, respectively.

Signature generation: Algorithm Sign∗sk(m) is defined as follows:

1. Run Gen′(1k) to generate keys (pk′,sk′).
2. Sign pk′ using sk: i.e., compute σ ← Signsk(pk′).
3. Sign m using sk′; i.e., compute σ ′← Sign′sk′(m).
4. Output the signature σ∗ = (pk′,σ ,σ ′).

Signature verification: Algorithm Vrfy∗pk(m,σ∗) is defined as follows: Parse σ∗ as
(pk′,σ ,σ ′). Then output 1 if and only if σ is a valid signature on pk′ (with respect
to pk) and σ ′ is a valid signature on m (with respect to pk′); i.e., output 1 if and only
if both

Vrfypk(pk′,σ) ?= 1

and
Vrfy′pk′(m,σ ′) ?= 1.

Theorem 1.2. If Π = (Gen,Sign,Vrfy) is existentially unforgeable (resp., strongly
unforgeable) under a known-message attack and Π ′ = (Gen′,Sign′,Vrfy′) is un-
forgeable (resp., strongly unforgeable) under a one-time known-message attack,
then Π ∗ = (Gen∗,Sign∗,Vrfy∗) is existentially unforgeable (resp., strongly unforge-
able) under an adaptive chosen-message attack.

Proof. We prove the theorem for the case of existential unforgeability, but a proof
for the case of strong unforgeability can be derived by making suitable modifica-
tions. The intuition here is again rather straightforward. Assume the adversary ob-
tains a sequence of signatures (pk′1,σ1,σ ′1), . . . on messages m1, . . . chosen adap-
tively by the adversary. A key observation is that if an adversary forges a signature
(pk′,σ ,σ ′) on a new message m, then it must be the case that either pk′ = pk′i for
some i, or not. (We assume here for simplicity pk′i 6= pk′j for all i 6= j; as we will see,
this assumption is not needed in the formal proof.) If pk′ = pk′i, then the adversary
has effectively forged a signature σ ′ on new message m with respect to scheme Π ′
and the public key pk′i; otherwise, the adversary has effectively forged a signature
σ on the new “message” pk′ with respect to scheme Π and public key pk. Further-

1.7 Achieving CMA-Security from Weaker Primitives 25

more, we may note that all “messages” being signed are chosen independently of
the corresponding public key: in particular, the keys {pk′i} that are signed using PK
are chosen by the signer (who generates them independently of each other as well
as independently of the key PK), and each message mi — although chosen by the
adversary — is chosen before the adversary knows the value of the key pk′i that will
be used to sign mi. For this reason, security of Π ,Π ′ under a known message at-
tack is sufficient.3 Moreover, it suffices for Π ′ to be unforgeable under a one-time
known-message attack since every key pk′i is used to sign only a single message mi.

We now proceed with the formal proof. Given a PPT adversary A∗ attacking the
signature scheme Π ∗, denote by (m, pk′,σ ,σ ′)← ExptA∗,Π∗(1k) the experiment:

(pk,sk)← Gen∗(1k);(m, pk′,σ ,σ ′)← (A∗)Sign∗sk(·)(pk).

Let mi denote the ith message submitted by A∗ to its signing oracle, and let
{(pk′i,σi,σ ′i)} denote the ith signature received in return. Let Forge be the event
that Vrfy∗pk(m, pk′,σ ,σ ′) = 1 and m 6∈ {mi}, and define

Succ∗A∗,Π∗(k) def= Pr
[
(m, pk′,σ ,σ ′)← ExptA∗,Π∗(1k) : Forge

]
;

this is exactly the success probability of A∗ in attacking scheme Π ∗ in the sense of
Definition 1.6. Our goal is to show that Succ∗A∗,Π∗(k) is negligible.

We will now condition on whether or not A∗ re-uses one of the keys pk′i in his
attempted forgery. That is, let Reuse be the event that pk′ = pk′i for some i, and then
define

SuccResue
A∗,Π∗(k) def= Pr

[
(m, pk′,σ ,σ ′)← ExptA∗,Π∗(1k) : Forge∧Reuse

]

SuccReuse
A∗,Π∗(k) def= Pr

[
(m, pk′,σ ,σ ′)← ExptA∗,Π∗(1k) : Forge∧Reuse

]
.

Of course, we have:

Succ∗A∗,Π∗(k) = SuccResue
A∗,Π∗(k)+SuccResue

A∗,Π∗(k).

We show that each of the terms on the right-hand side is negligible. We assume
without loss of generality in what follows that A∗ always requests signatures on
exactly ` = `(k) messages for some polynomial `.

Claim. SuccResue
A∗,Π∗(k) is negligible.

Proof. We construct a PPT adversary A, using A∗ as a subroutine, that attacks Π in a
known-message attack and succeeds with probability exactly SuccResue

A∗,Π∗(k). Security
of Π thus yields the claim. The algorithm A is defined as follows:

3 Observe further that if the public keys {pk′i} output by Gen′ are random strings, then it is enough
for Π to be unforgeable under a random message attack.

26 1 Digital Signatures: Background and Definitions

Algorithm A:

• Run Gen′(1k) a total of ` times to obtain keys {(pk′i,sk′i)}`
i=1.

• Output pk′1, . . . , pk′`. Receive in return a public key pk along
with the signatures {σi}`

i=1. (Note: each σi is a valid signa-
ture on pk′i with respect to pk.)

• Run A∗(pk). When A∗ requests a signature on the ith mes-
sage mi, do:
1. Compute σ ′i ← Sign′sk′i

(mi).
2. Return the signature (pk′i,σi,σ ′i) to A∗.

• When A∗ outputs (m, σ∗ = (pk′,σ ,σ ′)), output (pk′,σ).

It is immediate that the view of A∗ in the above experiment is identical to its
view in ExptA∗,Π∗(1k); hence, the event Forge∧Reuse occurs in the above execution

of A with probability exactly SuccResue
A∗,Π∗(k). Since Reuse does not occur, we have

pk′ 6∈ {pk′i}; since Forge occurs, it must be the case that σ is a valid signature on
pk′ (with respect to the public key pk). Hence, we conclude that A outputs a forgery
on a new message with probability SuccA∗,Π∗(k). The assumed security of Π under
a known-message attack implies that this is negligible.

Claim. SuccResue
A∗,Π∗(k) is negligible.

Proof. We now construct a PPT adversary A′ attacking Π ′ in a one-time known-
message attack and having success probability at least SuccResue

A∗,Π∗(k)/`. Since ` is
polynomial and Π ′ is, by assumption, existentially unforgeable under a one-time
known-message attack, the claim follows.

Algorithm A′:

• Compute (pk,sk) ← Gen(1k) and choose a random index
i∗←{1, . . . , `}.

• Run A∗(pk), answering its ith signature query for a message
mi as follows:
Case 1: i 6= i∗.
1. Run Gen′(1k) to generate keys (pk′i,sk′i).
2. Compute σi ← Signsk(pk′i) and σ ′i ← Signsk′i(mi).
3. Return the signature (pk′i,σi,σ ′i) to A∗.
Case 2: i = i∗.
1. Output mi∗ and receive a public key pk′i∗ and a signa-

ture σ ′i∗ .
2. Compute σi∗ ← Signsk(pk′i∗).
3. Return the signature (pk′i∗ ,σi∗ ,σ ′i∗) to A∗.

• When A∗ outputs (m, σ∗ = (pk′,σ ,σ ′)), if pk′ = pk′i∗ then
output (m,σ ′) (else output nothing).

1.8 From Unforgeability to Strong Unforgeability 27

That is, A′ chooses a random index i∗ and answers all signature queries of A∗ nor-
mally except for the i∗th query; A′ can do this since it knows the “master” secret
key sk corresponding to pk. For the i∗th query for a signature, on the message mi∗ ,
the adversary A′ outputs mi∗ to its own “oracle” and receives in return a randomly
generated public key pk′i∗ (generated using Gen′(1k)) along with a signature σ ′i∗
on mi∗ . It then computes the signature σi∗ on pk′i∗ on its own (using sk) and returns
(pk′iI ,σi∗ ,σ ′i∗) to A∗.

It is fairly easy to see that the view of A∗ in the above experiment is identical to
its view in ExptA∗,Π∗(1k), and therefore the probability that Forge∧Reuse occurs in
the above experiment is exactly SuccResue

A∗,Π∗(k). When Reuse occurs, there is at least
one index i for which pk′ = pk′i; since the distribution of i∗ is uniform given the
view of A∗, we have that pk′ = pk′i∗ with probability at least 1/`. Given that Forge
occurs it must be the case that m 6= mi∗ and Vrfy′pk′i∗

(m,σ ′) = 1, and so A′ outputs a

valid forgery in this case. In summary, A′ outputs a valid forgery with probability at
least SuccResue

A∗,Π∗(k)/`. The claim follows.

The preceding two claims complete the proof.

Better efficiency using pre-computation. Besides being useful for constructing
a CMA-secure scheme from a KMA-secure one, Construction 1.2 can also be
used to improve the efficiency of signature generation using pre-computation that
does not depend on the message being signed. (Signature schemes where pre-
computation can be applied to improve efficiency are sometimes called “on-line/off-
line” schemes.) Specifically, steps 1 and 2 of signature generation are independent
of the message being signed; hence they can be carried out in advance and the re-
sults cached. When the message m to be signed is known, all that is needed is to
compute a signature on m using the underlying one-time signature scheme. As we
will see in Section 8.2.3, one-time signature schemes with very efficient signing can
be constructed based on a variety of number-theoretic assumptions.

1.8 From Unforgeability to Strong Unforgeability

In the preceding two sections we amplified the security of a signature scheme in
terms of the attack the scheme was able to withstand. Here we amplify the notion
of unforgeability, showing how to convert a scheme that is unforgeable (under a
chosen-message attack) to one that is strongly unforgeable. We use as a building
block a signature scheme that is strongly unforgeable under a one-time chosen-
message attack; we will see later on in the book that such schemes are relatively
easy to construct.

Theorem 1.3. If Π = (Gen,Sign,Vrfy) is existentially unforgeable under an adap-
tive chosen-message attack and Π ′ = (Gen′,Sign′,Vrfy′) is strongly unforgeable un-

28 1 Digital Signatures: Background and Definitions

Construction 1.3: Strong unforgeability from unforgeability

Let Π = (Gen,Sign,Vrfy) and Π ′ = (Gen′,Sign′,Vrfy′) be signature schemes; for
simplicity, assume they can each be used to sign messages of unbounded length (cf.
the construction in the following section). Consider the following construction of
signature scheme Π ∗ = (Gen∗,Sign∗,Vrfy∗):

Key generation: Gen∗(1k) simply runs Gen(1k) to generate keys (pk,sk). These are
the public and secret keys, respectively.

Signature generation: Algorithm Sign∗sk(m) is defined as follows:

• Run Gen′(1k) to generate keys (pk′,sk′).
• Sign pk′‖m using sk: i.e., compute σ ← Signsk(pk′‖m).
• Sign σ using sk′; i.e., compute σ ′← Sign′sk′(σ).
• Output the signature σ∗ = (pk′,σ ,σ ′).

Signature verification: Algorithm Vrfy∗pk(m,σ∗) is defined as follows: Parse σ∗
as (pk′,σ ,σ ′). Then output 1 if and only if σ is a valid signature on pk′‖m (with
respect to pk) and σ ′ is a valid signature on σ (with respect to pk′); i.e., output 1 if
and only if

Vrfypk(pk′‖m,σ) ?= 1 and Vrfy′pk′(σ ,σ ′) ?= 1.

der a one-time chosen-message attack, then Π ∗ = (Gen∗,Sign∗,Vrfy∗) is strongly
unforgeable under an adaptive chosen-message attack.

Proof. Intuition for strong unforgeability is straightforward. Consider a sequence
of signatures (pk′1,σ1,σ ′1), . . . ,(pk′`,σ`,σ ′`) obtained on messages m1, . . . ,m`, re-
spectively. With overwhelming probability, each of the {pk′i} are distinct. Let
(m,(pk′,σ ,σ ′)) be a strong forgery output by an adversary. We may distinguish
several cases:

Case 1: pk′ 6 in{pk′i}. This clearly results in a forgery with respect to scheme Π .

Case 2: pk′ = pk′i for some unique i. Note we must have m = mi or else we have a
forgery with respect to Π . There are then two sub-cases:

• σ 6= σi. This gives a forgery with respect to scheme Π ′ (and public key pk′i).
• σ = σi. This implies σ ′ 6= σ ′i (else there is no strong forgery with respect to Π ∗),

but then this gives a strong forgery with respect to Π ′ (and public key pk′i).

For a formal proof, let A∗ be a PPT adversary attacking Π ∗, and denote by
(m, pk′,σ ,σ ′)← ExptA∗,Π∗(1k) the experiment:

(pk,sk)← Gen∗(1k);(m, pk′,σ ,σ ′)← (A∗)Sign∗sk(·)(pk).

1.8 From Unforgeability to Strong Unforgeability 29

Let mi denote the ith message submitted by A∗ to its signing oracle, and let
{(pk′i,σi,σ ′i)} denote the ith signature received in return. Let Forge be the event
that Vrfy∗pk(m, pk′,σ ,σ ′) = 1 and (m,σ∗ = (pk′,σ ,σ ′)) 6∈ Q, where Q is as in Def-
inition 1.6. Define

Succ∗A∗,Π∗(k) def= Pr
[
(m, pk′,σ ,σ ′)← ExptA∗,Π∗(1k) : Forge

]
;

as usual, this is exactly the success probability of A∗ in attacking scheme Π ∗ in the
sense of strong unforgeability as defined in Definition 1.6. Our goal is to show that
Succ∗A∗,Π∗(k) is negligible.

As in the proof of Theorem 1.2, we will condition on whether or not A∗ re-uses
one of the keys pk′i in his attempted forgery. Here, however, we define this event
slightly differently: Reuse is now the event that (m, pk′) = (mi, pk′i) for some i.
Define

SuccReuse
A∗,Π∗(k) def= Pr

[
(m, pk′,σ ,σ ′)← ExptA∗,Π∗(1k) : Forge∧Reuse

]

SuccReuse
A∗,Π∗(k) def= Pr

[
(m, pk′,σ ,σ ′)← ExptA∗,Π∗(1k) : Forge∧Reuse

]
.

Of course,

Succ∗A∗,Π∗(k) = SuccResue
A∗,Π∗(k)+SuccResue

A∗,Π∗(k).

We show that each of the terms on the right-hand side is negligible, thus proving the
theorem.

Claim. SuccReuse
A∗,Π∗(k) is negligible.

The proof of this claim is almost identical to the proof of the first claim in the proof
of Theorem 1.2, and is therefore omitted.

Claim. SuccReuse
A∗,Π∗(k) is negligible.

Proof. The proof of this claim is very similar to the proof of the second claim in the
proof of Theorem 1.2; because we deal with strong unforgeability here, we provide
the details.

Assume without loss of generality that A∗ always makes exactly ` = `(k) sig-
nature queries. We construct a PPT adversary A′ attacking Π ′ in a one-time chosen-
message attack and having success probability (in the sense of strong unforgeability)
at least SuccResue

A∗,Π∗(k)/`. Since ` is polynomial and Π ′ is, by assumption, existen-
tially unforgeable under a one-time known-message attack, the claim follows.

Algorithm A′:
The algorithm is given a public key PK′ (generated using
Gen′(1k)) and is given access to a signing oracle SignSK′(·)
that it will query once.

• Compute (pk,sk) ← Gen(1k) and choose a random index
i∗←{1, . . . , `}. Set pk′i∗ := PK′.

30 1 Digital Signatures: Background and Definitions

• Run A∗(pk), answering its ith signature query for a message
mi as follows:
Case 1: i 6= i∗.
1. Run Gen′(1k) to generate keys (pk′i,sk′i).
2. Compute σi ← Signsk(pk′i‖mi) and σ ′i ← Signsk′i(σi).
3. Return the signature (pk′i,σi,σ ′i) to A∗.
Case 2: i = i∗.
1. Compute σi∗ ← Signsk(pk′i∗‖mi∗).
2. Query σi∗ to the signing oracle and receive in return a

signature σ ′i∗ .
3. Return the signature (pk′i∗ ,σi∗ ,σ ′i∗) to A∗.

• When A∗ outputs (m, σ∗ = (pk′,σ ,σ ′)), if pk′ = pk′i∗ then
output (m,σ ′) (else output nothing).

As in the proof of the previous theorem, the view of A∗ in the above experiment
is identical to its view in ExptA∗,Π∗(1k), and therefore the probability that Forge∧
Reuse occurs in the above experiment is exactly SuccResue

A∗,Π∗(k). When Reuse occurs,
there is at least one index i for which (m, pk′) = (mi, pk′i); since the distribution of i∗
is uniform given the view of A∗, we have that (m, pk′) = (mi∗ , pk′i∗) with probability
at least 1/`. Assume this to be the case in what follows.

Since Forge occurs we know that Vrfy′pk′i∗
(σ ,σ ′) = 1. Furthermore, we must have

(m, pk′,σ ,σ ′) 6= (mi∗ , pk′i∗ ,σi∗ ,σ ′i∗). (Recall that here, Forge means that A∗ output
a strong forgery.) Since we are assuming (m, pk′) = (mi∗ , pk′i∗), this implies that
(σ ,σ ′) 6= (σi∗ ,σ ′i∗). But this means that A′ outputs a strong forgery.

In summary, A′ outputs a strong forgery with probability at least SuccResue
A∗,Π∗(k)/`.

The claim, and thus the theorem, follows.

1.9 Extending the Message Length

We conclude this chapter by demonstrating how a signature scheme for k-bit mes-
sages can be extended to give a signature scheme for messages of arbitrary and
variable length. (Technically we handle only messages shorter than 2k/4 bits, but
since this bound is exponential it is not a serious restriction.) While we will see
other means of accomplishing the same goal in the next chapter, the advantage of
the present transformation is that it does not require any additional primitives.

Theorem 1.4. If Π is existentially unforgeable (resp., strongly unforgeable) un-
der an adaptive chosen-message attack, then Π ∗ is existentially unforgeable (resp.,
strongly unforgeable) under an adaptive chosen-message attack.

Proof. We show that (except with negligible probability) a forgery with respect to
Π ∗ implies a forgery with respect to Π . Turning this into a formal proof is left as an

1.9 Extending the Message Length 31

Construction 1.4: From “short” messages to arbitrary length messages

Let Π = (Gen,Sign,Vrfy) be a signature scheme for k-bit messages. Construct sig-
nature scheme Π ∗ = (Gen∗,Sign∗,Vrfy∗) for messages of length less than 2k/4 as
follows:

Key generation: Gen∗(1k) simply runs Gen(1k) to generate keys (pk,sk). These are
the public and secret keys, respectively.

Signature generation: Algorithm Sign∗sk(m) is defined as follows:

• Let L < 2k/4 be the length of m, and parse m into ` blocks m1, . . . ,m`, each of
length k/4. (The final block is padded with 0s if necessary, though any such
padding is not counted when determining the length L.)

• Choose a random identifier r ←{0,1}k/4.
• For i = 1, . . . , `, compute σi ← Signsk(r‖L‖i‖mi), where L and i are uniquely

encoded as strings of length k/4.
• Output the signature σ := 〈r,σ1, . . . ,σ`〉.

Signature verification: Algorithm Vrfy∗pk(m,σ) is defined as follows:

• Let L < 2k/4 be the length of m, and parse m into ` blocks m1, . . . ,m`, each of
length k/4 (padding with 0s if necessary, though again not counting this padding
when determining the length).

• Parse σ as (r,σ1, . . . ,σ`′).
• Output 1 if and only if `′ = ` and Vrfypk(r‖L‖i‖mi, σi) = 1 for 1≤ i≤ `.

exercise. We deal with the case of existential unforgeability, but the case of strong
unforgeability is essentially the same.

Let pk be the public key of the signer. Assume a total of q = q(k) messages
have been signed, and let r(i) be the identifier chosen by the signer when signing
the ith message. Observe that the {r(i)}q

i=1 are all distinct, except with negligible
probability. For the remainder of the proof we assume this to be the case, and show
that (under this assumption) a forgery with respect to Π ∗ implies a forgery with
respect to Π .

Consider some forgery (m,σ) with respect to Π ∗. Let L < 2k/4 be the length
of m, and parse m into ` blocks m1, . . . ,m`, each of length k/4 (padding with 0s as
usual). Parse σ as (r,σ1, . . . ,σ`). There are two cases:

Case 1: r 6∈ {r(i)}q
i=1. Since (m,σ) is a valid forgery, we have in particular

Vrfypk(r‖L‖1‖m1, σ1) = 1,

yet no (k-bit) message with prefix r was ever signed (with respect to Π). So
(r‖L‖1‖m1, σ1) is a forgery with respect to Π .

32 1 Digital Signatures: Background and Definitions

Case 2: r = r(i) for some unique i. (Uniqueness follows from out assumption that
all the {r(i)} are distinct.) Let m(i) denote the ith message that was signed and let L(i)

denote its length. If L 6= L(i) then (r‖L‖1‖m1,σ1) is clearly a forgery with respect
to Π , so assume L = L(i). Parse m(i) as m(i)

1 , . . . ,m(i)
` , and let j be the first index

where m(i)
j 6= m j (there must be some such index, since m(i) 6= m but their lengths

are the same). Then (r‖L‖ j‖m j,σ j) is a forgery with respect to Π . (All other blocks
signed using Π differ in either the first or third components; the one previously
signed block r‖L‖ j‖m(i)

j differs from r‖L‖ j‖m j.) This completes the proof.

A similar proof applies also to the case of KMA-security:

Theorem 1.5. If Π is existentially unforgeable (resp., strongly unforgeable) under
a known-message attack, then Π ∗ is existentially unforgeable (resp., strongly un-
forgeable) under a known-message attack.

1.10 Further Reading

The idea of rigorously defining a computational notion of security, and of proving
security of a construction by reducing its security to a more basic assumption, is due
to the pioneering work of Goldwasser and Micali [59] in the context of public-key
encryption. For a good overview of the concept of “provable security” as well as a
discussion about concrete vs. asymptotic security, see [72].

The basic idea of digital signature schemes was first suggested in the highly
influential article by Diffie and Hellman [40] that initiated the study of public-
key cryptography. In their work, Diffie and Hellman proposed both the concept
as well as a generic instantiation; although their approach for constructing signa-
ture schemes turned out to be insecure (something that was not altogether obvi-
ous until definitions of security for signature schemes were formalized), their ideas
served as the impetus for future work. Along with introducing the RSA cryptosys-
tem (see Chapter 2), Rivest, Shamir, and Adleman [99] suggested its use for con-
structing a basic signature scheme. Other notable early work on digital signatures
includes [97, 80, 110, 78, 44, 79].

One-time signatures were first considered by Lamport [76], and known-message
attacks were studied by Goldwasser, Micali, and Yao [62] (albeit without completely
formal definitions in either case). These papers also contain secure constructions
meeting the proposed definitions. The definition of existential unforgeability under
an adaptive chosen-message attack, which has become the “default” notion of se-
curity for digital signatures, was introduced in the seminal paper of Goldwasser,
Micali, and Rivest [61]; their paper also contains a nice discussion about various
possible definitions of security for signature schemes, including some that are not
discussed here. Goldwasser, Micali, and Rivest also provide a construction satisfy-
ing their strongest definition. (Interestingly, the authors of [61] seem not to have

1.10 Further Reading 33

recognized at the time that the construction of Section 1.7.2 could have been used to
convert the KMA-secure scheme from [62] into a CMA-secure scheme.) The notion
of strong unforgeability was popularized by the work of [7] (where an analogous
notion was defined in the symmetric-key setting) and that of [2]. Further discussion
about notions of security for digital signature schemes (including some additional
notions not described here) can be found in the textbook by Goldreich [57].

Even, Goldreich, and Micali [45] proved Theorem 1.2 using essentially the same
construction shown here, and the underlying ideas have been implicit in many con-
structions of digital signature schemes since then. Even, Goldreich, and Micali were
also the first to observe that Construction 1.2 improves the efficiency of signing us-
ing pre-computation, as discussed at the end of Section 1.7.2. Essentially the same
construction used to prove Theorem 1.1 was proposed and proven secure by Cramer
and Pedersen [35, 32], and later re-investigated by [86] in the context of some spe-
cific signature schemes. (Even, et al. [45] also show a construction of a CMA-secure
signature scheme from an RMA-secure scheme, but their construction is less effi-
cient than the one given in this chapter.) The construction in Section 1.8 is due to
Bellare and Shoup [12]. Other proofs of a similar result appear in [68, 106].

Chapter 2
Cryptographic Hardness Assumptions

As noted in the previous chapter, it is impossible to construct a digital signature
scheme that is secure against an all-powerful adversary. Instead, the best we can
hope for is to construct schemes that are secure against computationally bounded
adversaries (that, for our purposes, means adversaries running in probabilistic poly-
nomial time). Even for this “limited” class of adversaries, however, we do not cur-
rently have any constructions that can proven, unconditionally, to be secure. In fact,
it is not too difficult to see that the existence of a secure signature scheme would
imply1 P 6= NP, a breakthrough in complexity theory. (While there is general belief
that P 6= NP is true, we seem very far away from being able to prove this.) Actually,
as we will see below, the existence of a secure signature scheme implies the exis-
tence of one-way functions, something not known to follow from P 6= NP and thus
an even stronger result. (Informally, the issue is that P 6= NP only guarantees the ex-
istence of problems that are hard in the worst case. But a secure signature scheme is
required to be “hard to break” on the average — in particular, for “average” public
keys generated by signers.)

Given this state of affairs, all existing constructions of signature schemes are
proven secure relative to some assumption regarding the hardness of solving some
(cryptographic) problem. We introduce some longstanding and widely used assump-
tions in this chapter; other, more recent cryptographic assumptions are introduced
as needed throughout the rest of the book.

2.1 “Generic” Cryptographic Assumptions

We begin by discussing “generic” cryptographic assumptions before turning to var-
ious concrete, number-theoretic constructions conjectured to satisfy these assump-

1 See any book on complexity theory for definitions of these classes, which are not essential to the
rest of the book.

© Springer Science+Business Media, LLC 2010
J. Katz, Digital Signatures, DOI 10.1007/978-0-387-27712-7_2, 35

36 2 Cryptographic Hardness Assumptions

tions. While any scheme used in practice must be based on some concrete “hard”
problem, there are several advantages of studying generic assumptions:

• A signature scheme based on generic assumptions is not tied to any particu-
lar “hard” problem, and therefore offers greater flexibility to the implementor.
As but one illustration of this flexibility, note that a signature scheme based on
a specific assumption must be scrapped if the assumption is found to be false,
whereas a signature scheme based on generic assumptions (that was instantiated
with the particular assumption found to be false) can simply be instantiated using
a different concrete problem.

• Constructions based on generic assumptions are often simpler to analyze and
understand, since abstracting away the “unnecessary” details has the effect of
highlighting those details that are important.

• Generic constructions are interesting from a theoretical point of view insofar as
they indicate what is feasible, and what are the minimal assumptions that are
necessary. These are often useful steps toward developing practical schemes.

On the other hand, tailoring a signature scheme to a specific assumption can often
lead to a much more efficient scheme than simply “plugging in” that same assump-
tion to a generic template. Indeed, constructions based on specific assumptions are
generally orders of magnitude more efficient than schemes based on generic as-
sumptions, regardless of how the latter are instantiated.

2.1.1 One-Way Functions and Permutations

The most basic building block in cryptography — in fact, as we will see, the mini-
mal assumption needed for constructing secure signature schemes — is a one-way
function. Informally, a one-way function f is a function that is “easy” to compute
but “hard” to invert on the average, in a way made precise below. We give two def-
initions of a one-way function: the first is easier to work with, while the second is
easier to instantiate using known number-theoretic primitives (and can also yield
more efficient constructions). Fortunately, the two definitions are equivalent in the
sense that one exists if and only if the other does. We also define two notions of
one-way permutations, though equivalence in this case is not known to hold.

Definition 2.1. A function f : {0,1}∗→{0,1}∗ is a one-way function if:

1. (Easy to compute:) There is a deterministic, polynomial-time algorithm Eval f
such that for all k and all x∈ {0,1}k we have Eval f (x) = f (x). (From now on, we
do not explicitly mention Eval f and only refer to f itself, keeping in mind that f
can be computed in polynomial time.)

2. (Hard to invert:) The following is negligible for all PPT algorithms A:

Pr
[
x←{0,1}k;y := f (x);x′← A(1k,y) : f (x′) = y

]
.

Note that it is not required that x = x′ in the above.

2.1 “Generic” Cryptographic Assumptions 37

A one-way function f is a one-way permutation if f is bijective and length-
preserving (i.e., | f (x)|= |x| for all x).

It is not difficult to show that the existence of a one-way function implies P 6= NP.
On the other hand, we do not currently know whether P 6= NP necessarily implies
the existence of one-way functions.

While the above definition is convenient when one-way functions or permuta-
tions are used to construct other objects, it does not provide a natural model for the
concrete examples of one-way functions/permutations that we currently know. In-
stead, it is often simpler to work with families of one-way functions/permutations,
defined next.

Definition 2.2. A tuple Π = (Gen,Samp, f) of PPT algorithms is a function family
if the following hold:

1. Gen, the parameter-generation algorithm, is a probabilistic algorithm that
takes as input a security parameter 1k and outputs parameters I with |I| ≥ k.
Each value of I output by Gen defines sets DI and RI that constitute the domain
and range, respectively, of the function fI defined below.

2. Samp, the sampling algorithm, is a probabilistic algorithm that takes as input
parameters I and outputs an element of DI (except possibly with negligible prob-
ability).

3. f , the evaluation algorithm, is a deterministic algorithm that takes as input pa-
rameters I and an element x ∈ DI , and outputs an element y ∈ RI . We write this
as y := fI(x). (That is, the function fI is defined by the behavior of f on parame-
ters I.)

Π is a permutation family if the following additionally hold:

1. For all I output by Gen, the distribution defined by the output of Samp(I) is
(statistically close to) the uniform distribution on DI .

2. For all I output by Gen it holds that DI = RI and the function fI is a bijection.

If Π is a permutation family and there exists a polynomial p such that DI =
{0,1}p(k) for all I output by Gen(1k), then we say that Π is a permutation family
over bit-strings. In this case we will assume the trivial sampling algorithm (that
simply outputs its random coins).

Definition 2.3. A function/permutation family Π = (Gen,Samp,Eval) is one-way
if for all PPT algorithms A, the following is negligible (in k):

Pr[I ← Gen(1k);x← Samp(I);y := fI(x);x′← A(I,y) : fI(x′) = y].

Any one-way permutation family satisfying some mild additional conditions
can be transformed into a one-way permutation family over bit-strings, and we
now sketch this transformation. Let Π be a one-way permutation family with
DI ⊆{0,1}p(k) (for some polynomial p) for all I output by Gen(1k). We additionally
require that:

38 2 Cryptographic Hardness Assumptions

• Given I, the set DI is efficiently recognizable. (I.e., there is a polynomial-time
algorithm A that takes as input I and a string x ∈ {0,1}p(k) and correctly decides
whether I ∈ DI .)

• For all I, the set DI is dense in {0,1}p(k). That is, |DI |/2p(k) = 1/poly(k).

Construct a permutation family Π ′ = (Gen′,Samp′, f ′) as follows: Gen′ is identical
to Gen. The sampling algorithm Samp′ is the trivial one that outputs a random string
of length p(k) (we assume that k can be determined from I). Finally, define function
f ′I : {0,1}p(k) →{0,1}p(k) as:

f ′I (x) =
{

fI(x) x ∈ DI
x otherwise .

Note that Π ′ is not necessarily one-way, since f ′I is trivial to invert on any point
y 6∈ DI . Nevertheless, it is hard to invert f ′I on a noticeable fraction of its range.
This hardness can be “amplified” by running many copes of Π ′ in parallel. That is,
define Π ′′ = (Gen′′,Samp′′, f ′′) as follows: Gen′′ is the same as Gen. The sampling
algorithm Samp′ outputs a random string of length `(k) · p(k) for an appropriate
polynomial `. Finally,

f ′′I (x1‖· · ·‖x`(k))
def= f ′I (x1)‖· · ·‖ f ′I (x`(k)).

Intuitively, it is clear that inversion is difficult as long as any of the xi are in DI , and
this is true for some xi with all but negligible probability (for ` chosen appropri-
ately). A formal proof that Π ′′ is a one-way permutation family over bit-strings is
not much more difficult.

We have defined both one-way functions (cf. Definition 2.1) and one-way func-
tion families (cf. Definition 2.3). We now show that these definitions are equivalent.

Lemma 2.1. A one-way function f (in the sense of Definition 2.1) exists iff a one-
way function family (in the sense of Definition 2.3) exists.

Proof (sketch). It is immediate that a one-way function f implies the existence of
a one-way function family: simply let Gen be the trivial algorithm that on input
1k outputs I = 1k; take Samp to be the algorithm that on input I = 1k outputs a
uniformly distributed string x ∈ {0,1}k; and define fI(x) = f (x).

The other direction is also conceptually simple, just more technical. Let Π =
(Gen,Samp, f) be a one-way function family such that the running time of Gen is

bounded by p1 and the running time of Samp is bounded by p2, and let p def= p1 + p2;
note that p is a polynomial and furthermore that the combined length of the random
tapes used by Gen and Samp for security parameter k is bounded by p(k). Define f
as follows: on input r ∈ {0,1}k find the largest integer k̄ such that p(k̄)≤ k. Parse r
as r1|r2 with |r1|= p1(k̄) and |r2| ≥ p2(k̄). Set I := Gen(1k̄;r1) and x := Samp(I;r2)
(note that we fix the random tapes of Gen and Samp, so this step is deterministic),
and compute y := fI(x). The output of f is the pair (I,y). The proof that f is a
one-way function is tedious, but straightforward.

2.1 “Generic” Cryptographic Assumptions 39

The above shows that one-way functions are equivalent to one-way function fam-
ilies. In contrast, while the existence of one-way permutations is easily seen to
imply the existence of one-way permutation families, the converse is not known.
Moreover, the specific number-theoretic assumptions discussed below yield one-
way permutation families (indeed, one-way permutation families over bit-strings)
much more naturally than they do one-way permutations. We will therefore work
exclusively with the notion of one-way permutation families over bit-strings.

This is a good place to record the following observation.

Theorem 2.1. The existence of a signature scheme that is existentially unforgeable
under a one-time random-message attack implies the existence of a one-way func-
tion.

Proof (sketch). In fact even security against a no-message attack suffices to prove
the claim. Let Π = (Gen,Sign,Vrfy) be a signature scheme that is existentially un-
forgeable under a no-message attack, where an adversary is given only the public
key pk and succeeds if it outputs (m,σ) with Vrfypk(m,σ)= 1. Let p(k) be a polyno-
mial bounding the length of the random tape used by Gen on security parameter 1k.
Define a one-way function f as follows: on input r ∈ {0,1}k, compute the largest
integer k̄ such that p(k̄)≤ k. Then run Gen(1k̄;r) to obtain (pk,sk), and output pk.

Observe that any PPT algorithm A inverting f can be used to forge signatures in
Π as follows: given pk, run A to obtain a string r. If f (r) = pk, then this means that
running Gen(1k̄;r) yields a pair (pk,sk′). It is then trivial to output a forgery on any
message m by computing the signature σ ← Signsk′(m). (Note that sk′ need not be
equal to the “real” secret key sk used by the signer; i.e., there may be multiple valid
secret keys associated with the single public key pk. But correctness of Π implies
that this does not matter, since valid signatures with respect to pk can be produced
using any secret key associated with pk.)

2.1.2 Trapdoor Permutations

A stronger notion than that of one-way functions is obtained by introducing an
“asymmetry” of sorts whereby one party can efficiently accomplish some task that
is infeasible for anyone else. This leads to the idea of trapdoor permutations that
may be viewed, informally, as one-way permutations that can be efficiently inverted
given some additional “trapdoor” information. (One can also consider trapdoor func-
tions but these turn out to be much less useful.) A definition follows.

Definition 2.4. A tuple Π = (Gen,Samp, f , f−1) of PPT algorithms is a trapdoor
permutation family if the following hold:

• Gen, the parameter-generation algorithm, is a probabilistic algorithm that
takes as input a security parameter 1k and outputs parameters I (with |I| ≥ k)
along with an associated trapdoor td.

40 2 Cryptographic Hardness Assumptions

Each value of I output by Gen defines a set DI that constitutes the domain and
range of a permutation fI defined below.

• Samp, the sampling algorithm, is a probabilistic algorithm that takes as input
parameters I and outputs an element x ∈ DI whose distribution is statistically
close to the uniform distribution over DI . We will sometimes leave Samp implicit
and just write2 x← DI .

• f , the evaluation algorithm, is a deterministic algorithm that takes as input pa-
rameters I and an element x ∈ DI , and outputs an element y ∈ DI . We write this
as y := fI(x).

• f−1, the inversion algorithm, is a deterministic algorithm that takes as input
parameters I, a trapdoor td, and an element y ∈DI . It outputs an element x ∈ DI .
We leave I implicit, and write this as x := f−1

td (y).
• For all k, all (I, td) output by Gen(1k), and all x ∈ DI we have f−1

td (fI(x)) = x,
and hence f−1

td (·) and fI(·) are both permutations over DI , and inverses of each
other.

• The following is negligible for all PPT algorithms A:

Pr
[
(I, td)← Gen(1k);y← DI ;x← A(I,y) : fI(x) = y

]
.

For brevity, and since it will not cause confusion, we simply refer to a “trapdoor
permutation” rather than a “trapdoor permutation family”.

Because fI is a permutation, choosing x uniformly from DI and then setting y :=
fI(x) results in a value y that is uniformly distributed in DI . We note also that it
is possible for fI to be defined over some set that (strictly) contains DI , but the
function is only guaranteed to be a bijection when its inputs are taken from DI . The
final condition of the definition, however, requires that it be “hard” to find any x
mapping to y (i.e., even an x 6∈ DI).

Occasionally, when we do not care about the particular index I or trapdoor td,
we will write (f , f−1) ← Gen(1k) and write f (·) in place of fI(·) and f−1(·) in
place of f−1

td . Of course, it is important to keep in mind that I is required in order to
evaluate f , and that f−1 can only be evaluated efficiently with knowledge of td.

Trapdoor permutations, in the sense defined above, do not suffice for most of the
applications we will see in this book. Instead, we need the following strengthening:

Definition 2.5. A trapdoor permutation family Π = (Gen,Samp, f , f−1) is called
doubly enhanced3 if the following conditions hold:

1. The following is negligible for all PPT algorithms A:

Pr
[
(I, td)← Gen(1k);r ←{0,1}∗;y := Samp(I;r);x← A(I,y,r) : fI(x) = y

]
.

2 Technically, x ← DI refers to selecting x uniformly from DI . Since the distribution produced by
Samp is statistically close to uniform, the difference is unimportant.
3 We use this terminology to distinguish our definition from that of enhanced trapdoor permuta-
tions, which satisfy only the first condition.

2.1 “Generic” Cryptographic Assumptions 41

That is, it should be difficult to find a pre-image of y even when given the random
coins used to sample y.

2. Let p(k) denote the length of the random tape used by Samp on security param-
eter 1k. There exists a PPT algorithm Samp′ that takes as input I and outputs a
tuple (x,y,r) with x ∈ DI and r ∈ {0,1}p(k) and such that:

• fI(x) = y and y = Samp(I;r);
• The distribution on r is statistically close to uniform.

We can also define a trapdoor permutation over bit-strings in the natural way (cf.
Definition 2.2). It is not hard to see that any trapdoor permutation over bit-strings
is also a doubly enhanced trapdoor permutation: the first condition of Definition 2.5
holds by virtue of the fact that Samp is trivial (since y = Samp(I;y)), and the second
condition holds by letting Samp′ be the algorithm that chooses x uniformly, sets
y := fI(x), and sets r := y. All the concrete examples of trapdoor permutations that
we will see in this book can be suitably “massaged” to be trapdoor permutations
over bit-strings.

2.1.3 Clawfree (Trapdoor) Permutations

A pair of clawfree permutations is, informally, a pair of efficiently computable per-
mutations f0, f1 defined over the same domain for which it is hard to find a claw:
namely, a pair x0,x1 with f0(x0) = f1(x1). A pair of clawfree trapdoor permutations
additionally has an associated trapdoor td that allows for efficient inversion of f0
and f1. Observe that given such trapdoor information, it is easy to find a claw: sim-
ply choose arbitrary y and compute x0 := f−1

0 (y) and x1 := f−1
1 (y); thus, hardness

of finding a claw holds only for algorithms that do not have access to the trapdoor.

Definition 2.6. A tuple Π = (Gen,Samp, f0, f1) of PPT algorithms is a clawfree
permutation family if the following hold:

• Gen, the parameter-generation algorithm, is a probabilistic algorithm that
takes as input a security parameter 1k and outputs parameters I (with |I| ≥ k)
along with an associated trapdoor td.
Each value of I output by Gen defines a set DI that constitutes the domain and
range of permutations fI,0, fI,1 defined below.

• Samp, the sampling algorithm, is a probabilistic algorithm that takes as input
parameters I and outputs an element x ∈ DI whose distribution is statistically
close to the uniform distribution over DI . We usually leave Samp implicit, and
just write x← DI .

• f0 and f1, the evaluation algorithms, are deterministic algorithms that take as
input parameters I and an element x∈DI , and output an element y∈DI . We write
this as y := fI,0(x) or y := fI,1(x).

42 2 Cryptographic Hardness Assumptions

• The following is negligible for all PPT algorithms A:

Pr
[
(I, td)← Gen(1k);(x0,x1)← A(I) : fI,0(x0) = fI,1(x1)

]
.

Π = (Gen,Samp, f0, f1, f−1
0 , f−1

1) is a clawfree trapdoor permutation family if
(Gen,Samp, f0, f1) is a clawfree permutation family and the following additionally
hold:

• f−1
0 and f−1

1 , the inversion algorithms, are deterministic algorithms that take as
input parameters I, a trapdoor td, and an element y ∈DI . They output an element
x ∈ DI . We leave I implicit, and write this as x := f−1

td,0(y) or x := f−1
td,1(y).

• For all k, all (I, td) output by Gen(1k), all x ∈ DI , and b ∈ {0,1} we have
f−1
td,b(fI,b(x)) = x. Thus, f−1

td,b(·) and fI,b(·) are permutations over DI and inverses
of each other.

As in the case of trapdoor permutations, we often refer to “clawfree (trapdoor)
permutations” rather than “clawfree (trapdoor) permutation families.” We may also
switch to a less cumbersome notation and write (f0, f1, f−1

0 , f−1
1)←Gen(1k) for the

output of Gen, and then use f0(·), f1(·) in place of fI,0(·), fI,1(·) and, similarly, use
f−1
0 (·), f−1

1 (·) in place of f−1
td,0(·), f−1

td,1(·). As before, it is important to keep in mind
that f−1

0 , f−1
1 cannot be efficiently evaluated without knowledge of td.

We also note, once again, that it is possible for f0, f1 to be defined over some
set (strictly) containing the domain D over which these functions are guaranteed to
be permutations. The final condition of the definition, however, requires that it be
“hard” to find any x0,x1 for which f0(x0) = f1(x1) (i.e., even x0,x1 6∈ D).

The existence of clawfree trapdoor permutations represents a (possibly) stronger
assumption than the existence of trapdoor permutations:

Lemma 2.2. If Π = (Gen,Samp, f0, f1, f−1
0 , f−1

1) is a clawfree trapdoor permuta-
tion family, then Π ′ = (Gen,Samp, f0, f−1

0) is a trapdoor permutation family. Thus,
the existence of clawfree permutations implies the existence of trapdoor permuta-
tions.

Proof (sketch). The syntactic requirements are easily seen to match up, and so all
we need to prove is hardness of inversion. Fix any PPT algorithm A′ and define:

δA′(k)
def= Pr

[
(I, td)← Gen(1k);y← DI ;x← A′(I,y) : f0(x) = y

]
.

This is exactly the probability with which A′ inverts Π ′, and so we prove that Π ′ is
a trapdoor permutation family by showing that δA′(k) is negligible.

Consider the following algorithm A for finding a claw in Π , using A′ as a sub-
routine:

Algorithm A:
The algorithm is given parameters I, generated using Gen(1k).
Its goal is to find a claw.

2.2 Specific Assumptions 43

• Choose x1 ← DI and compute y := f1(x1).
• Run A′(I,y) to obtain x0.
• If f0(x0) = y, then output the claw (x0,x1).

Clearly, A runs in polynomial time. Furthermore, A succeeds in outputting a claw
whenever A′ succeeds in inverting y with respect to f0. Since A chooses x1 uniformly
at random from DI and f1 is a permutation over this set, the value y given by A to A′
is also uniformly distributed in DI . Thus, the probability that A′ succeeds in inverting
y is exactly δA′(k), and this is exactly the probability with which A outputs a claw.
The fact that Π is clawfree thus implies that δA′(k) is negligible, as desired.

By analogy with the case of trapdoor permutations, we may also define a notion
of doubly enhanced clawfree trapdoor permutations:

Definition 2.7. Let Π = (Gen,Samp, f0, f1, f−1
0 , f−1

1) be a clawfree trapdoor per-
mutation family. We say Π is doubly enhanced if both Π0 = (Gen,Samp, f0, f−1

0)
and Π1 = (Gen,Samp, f1, f−1

1) are doubly enhanced trapdoor permutation families.
That is:

• For b ∈ {0,1} and any PPT algorithm A the following is negligible:

Pr
[
(I, td)← Gen(1k);r ←{0,1}∗;y := Samp(I;r);x← A(I,y,r) : fI,b(x) = y

]
.

• If we let p(k) denote the length of the random tape used by Samp on security
parameter 1k, there exist PPT algorithms Samp0,Samp1 where Sampb takes as
input I and outputs a tuple (x,y,r) with x ∈ DI and r ∈ {0,1}p(k) and such that:

1. fI,b(x) = y and y = Samp(I;r);
2. the distribution on r is statistically close to uniform.

We may also define a clawfree trapdoor permutation family over bit-strings in
the obvious way, and it is easy see that any such family is also a doubly enhanced
clawfree trapdoor permutation family.

2.2 Specific Assumptions

The discussion thus far has been very general. We now show some concrete ex-
amples of number-theoretic problems conjectured to be hard, and demonstrate how
these can be used to instantiate the generic assumptions described thus far. We as-
sume in this section some familiarity with basic number theory; see the notes at the
end of this chapter for pointers to existing references covering this material.

In this chapter we have chosen to focus on the most well known and long-
standing cryptographic assumptions; some more recent assumptions are introduced
and discussed in Chapters 4 and 5.

44 2 Cryptographic Hardness Assumptions

2.2.1 Hardness of Factoring

The factoring problem is probably the longest-studied “hard” problem in algorith-
mic number theory. It is also one of the easiest one-way functions to explain, at least
informally, since multiplication is clearly “easy” (i.e., polynomial time) yet finding
the prime factorization of a (large) number is widely believed4 to be “hard”. But
does the conjectured “hardness of factoring” trivially imply a one-way function? A
natural first candidate for a one-way function is the function fmult(x,y) = xy. A little
thought, however, shows that fmult is decidedly not one-way: with probability 3/4
at least one of x or y will be even, making it trivial to find a factor of xy (recall that
one-wayness is defined in terms of the inability to find any preimage of a randomly
generated point). To avoid problems of this sort, we simply need to restrict the in-
puts of fmult to (large) primes of equal length. Formally, we construct a function
family (Gen,Samp, f) as follows (cf. Definition 2.3):

• Gen(1k) simply outputs I = 1k. We let DI denote the set of all pairs of k-bit
primes.

• Samp(1k) is a randomized algorithm that outputs two random (and independently
chosen) k-bit primes.

• f (p,q) outputs the product pq.

One way to state the factoring conjecture is as the assumption that the family
(Gen,Samp, f) defined above is one-way.

Of course, we have omitted what is perhaps the most important detail in the
above: how to generate random primes in polynomial time. An algorithm computing
Samp follows fairly readily from the following two facts:

1. Prime numbers are sufficiently dense that a random integer is prime with “suffi-
ciently high” probability.

2. There exist (probabilistic) polynomial-time algorithms that can determine (ex-
cept with negligibly small error) whether a given integer is prime.

We refer the reader to the references listed in the notes at the end of this chapter for
further information.

For our purposes, it will be convenient to let GenModulus denote an (unspecified,
but polynomial-time) algorithm that, on input 1k, outputs (N, p,q) such that N = pq,
and p and q are k-bit primes (with all but negligible probability in k). We can then
express the factoring assumption relative to a particular algorithm GenModulus:

Definition 2.8. We say that factoring is hard relative to GenModulus if for all PPT
algorithms A, the following is negligible:

Pr[(N, p,q)← GenModulus(1k);(p,q)← A(N) : pq = N].

4 It is crucial to keep in mind here that running time is measured in terms of the length(s) of the
input(s) and not their magnitude. It is easy to factor a number N in time linear in N using trial
division by all numbers less than N. But a polynomial-time algorithm for factoring N is required
to work in time polynomial in |N|= Θ(logN).

2.2 Specific Assumptions 45

The factoring assumption is that there exists a GenModulus relative to which factor-
ing is hard.

We stress that we do not require that GenModulus choose p and q to be random
k-bit primes; though that is certainly one possibility (that is also used frequently in
practice), we allow for other means of choosing the primes p and q so long as the
factoring assumption (relative to GenModulus) is still believed to hold.

Interestingly, the factoring assumption — that, at first glance, seems only to
guarantee the existence of a one-way function — can be used to construct a much
stronger cryptographic primitive: a (doubly enhanced) clawfree trapdoor permuta-
tion family. We first show how to use the factoring assumption to construct a trap-
door permutation family, and then describe the extension to give the result claimed.

We begin with a small amount of (standard) number-theoretic background. Given
any integer N > 1, letZN

def= {0, . . . ,N−1}. It is a well-known fact that this is a group
under addition modulo N. We also define

Z∗N
def= {x ∈ {1, . . . ,N−1} | gcd(x,N) = 1}.

It is not too difficult to prove that Z∗N is a group under multiplication modulo N;
this follows from the fact that Z∗N contains exactly those elements of ZN that have a
multiplicative inverse modulo N.

The squaring function modulo N is the function that maps x ∈ Z∗N to x2 mod N.
Elements of Z∗N that have a square root are called quadratic residues modulo N, and
we denote the set of quadratic residues modulo N by QRN . If N is a product of two
distinct, odd primes, then squaring modulo N is a four-to-one function; i.e., each
quadratic residue modulo N has exactly four square roots. We use this fact in the
proof of the following:

Lemma 2.3. Let N = pq with p,q distinct, odd primes. Given x, x̂ such that x2 = y =
x̂2 mod N but x 6=±x̂ mod N, it is possible to factor N in polynomial time.

Proof. We claim that either gcd(N,x + x̂) or gcd(N,x− x̂) is equal to one of the
prime factors of N. Since gcd computations can be carried out in polynomial time,
this proves the lemma.

If x2 = x̂2 mod N then

0 = x2− x̂2 = (x− x̂) · (x+ x̂) mod N,

and so N |(x− x̂)(x+ x̂). Then p |(x− x̂)(x+ x̂) and so p divides one of these terms.
Say p |(x+ x̂) (the proof proceeds similarly if p |(x− x̂)). If q |(x+ x̂) then N |(x+ x̂),
but this cannot be the case since x 6=−x̂ mod N. So q6 |x+ x̂ and gcd(N,x+ x̂) = p.

The following important result shows (roughly) that if N is hard to factor then
squaring modulo N is one-way. Formally, define a function family Πsquaring =
(Gen,Samp, f) as follows:

• Gen(1k) computes (N, p,q)← GenModulus(1k), and outputs parameters N. Let
DN = Z∗N and RN = QRN .

46 2 Cryptographic Hardness Assumptions

• Samp(N) chooses a uniform element ofZ∗N . (This can be done easily by choosing
random elements of ZN until one is found that is relatively prime to N.)

• fN(x) outputs x2 mod N.

Theorem 2.2. If factoring is hard relative to GenModulus, then Πsquaring is a one-
way function family.

Proof. Let A be a probabilistic polynomial-time algorithm, and define

εA(k) def= Pr
[
N ← Gen(1k);y← QRN ;x← A(N,y) : x2 = y mod N

]
.

Since setting y := x2 mod N for a uniformly random x∈Z∗N is equivalent to choosing
y uniformly from QRN (because squaring is four-to-one), the above exactly repre-
sents A’s success probability in inverting the squaring function modulo N. Showing
that εA(k) is negligible thus proves the theorem.

Consider the following probabilistic polynomial-time algorithm Afact that at-
tempts to factor moduli output by GenModulus:

Algorithm Afact:
The algorithm is given a modulus N as input.

• Choose random x← Z∗N and compute y := x2 mod N.
• Run A(N,y) to obtain output x̂.
• If x̂2 = y mod N and x̂ 6= ±x mod N, then factor N using

Lemma 2.3.

By Lemma 2.3, we know that Afact succeeds in factoring N exactly when x̂ 6=
±x mod N and x̂2 = y mod N. Since the modulus N given as input to Afact is gen-
erated by GenModulus(1k), and y is a random quadratic residue modulo N (since
x was chosen uniformly at random from Z∗N), the probability that A outputs x̂ sat-
isfying x̂2 = y mod N is exactly εA(k). Moreover, conditioned on the value of the
quadratic residue y given to A, the value x used by Afact is equally likely to be any
of the four possible square roots of y. This means that, conditioned on A outputting
some square root x̂ of y, the probability that x̂ 6= ±x mod N is exactly 1/2. Putting
this together, we have:

Pr[(N, p,q)← GenModulus(1k) : Afact factors N]

= Pr
[

(N, p,q)← GenModulus(1k);x← Z∗N ;
y := x2 mod N; x̂← A(N,y)

: x̂ 6=±x mod N
∧

x̂2 = y mod N
]

=
1
2
·Pr

[
(N, p,q)← GenModulus(1k);x← Z∗N ;

y := x2 mod N; x̂← A(N,y)
: x̂2 = y mod N

]

= εA(k)/2.

Since factoring is hard relative to GenModulus, we conclude that εA(k) must be
negligible, completing the proof.

2.2 Specific Assumptions 47

One approach to making Πsquaring a permutation family is to consider specific
moduli N and restrict the domain of the function. For N = pq a product of two
distinct primes p and q, we say that N is a Blum integer if p = q = 3 mod 4. It is a
fact that if N is a Blum integer, then any quadratic residue modulo N has exactly one
square root that is also a quadratic residue. Thus, the squaring function for a Blum
integer N is a permutation over QRN .

It is also known that computing square roots modulo N is “easy” (i.e., can be done
in polynomial time) given the factorization of N. Combining this with the previous
observation, we obtain a trapdoor permutation family based on factoring:

• Gen(1k) computes (N, p,q)←GenModulus(1k), where GenModulus is such that
p = q = 3 mod 4. It then outputs parameters N and trapdoor (p,q). Let DN =
QRN .

• Samp(N) chooses a uniform element of y ∈ QRN . (This can be done easily by
choosing a random element r ∈ Z∗N and setting y := r2 mod N.)

• fN(x) outputs x2 mod N.
• f−1

(p,q)(y) computes the unique square root of y modulo N that is itself a quadratic
residue.

Theorem 2.2 implies that the above is a trapdoor permutation family as long as
factoring is hard relative to GenModulus. Notice, however, that (as described) it is
not a doubly enhanced trapdoor permutation family: given the random coins r used
by Samp, which we view5 as an element of Z∗N , it is trivial to compute a square root
of the output value y = r2 mod N. We will see below how this can be addressed.

Extending the above gives a construction of a clawfree trapdoor permutation fam-
ily:

• Gen(1k) computes (N, p,q) ← GenModulus(1k), where p = q = 3 mod 4, and
chooses random z← QRN . It then outputs parameters (N,z) and trapdoor (p,q).
Let DN = QRN .

• Samp(N) chooses a uniform element of QRN as above.
• Given (N,z), we define f0 and f1 as follows:

f0(x) = x2 mod N and f1(x) = z · x2 mod N.

• Given (N,z) and the trapdoor information (p,q), the inverses of f0 and f1 can
be computed as follows: To compute f−1

0 (y), find the unique square root of y
modulo N that is itself a quadratic residue. To compute f−1

1 (y), find the unique
square root of y/z mod N that is itself a quadratic residue.

Theorem 2.3. If factoring is hard relative to GenModulus, then the above consti-
tutes a clawfree trapdoor permutation family.

5 This is justified since it is easy to map a sufficiently long bit-string to an element of Z∗N such that
a random bit-string yields an element of Z∗N whose distribution is statistically close to uniform, and
the mapping is invertible in the sense required.

48 2 Cryptographic Hardness Assumptions

Proof. The only condition difficult to verify is that it is computationally infeasible
to find a claw. We show that any “claw-finding” algorithm A can be used to compute
square roots modulo N. Theorem 2.2 thus implies that finding a claw is computa-
tionally infeasible.

Fix any PPT algorithm A and define

εA(k) def= Pr[(N,z, p,q)← Gen(1k);(x0,x1)← A(N,z) : x2
0 = z · x2

1]. (2.1)

Since this is exactly the probability with which A succeeds in finding a claw, we
need to show that εA(k) is negligible.

Construct a PPT algorithm A′ computing modular square roots as follows:

Algorithm A′:
The algorithm is given a modulus N and an element z ∈ QRN
as input.

• Run A(N,z) to obtain output (x0,x1).
• If x2

0 = z · x2
1 mod N, then output x0/x1 mod N.

It is easy to see that if the input z given to A′ is chosen uniformly from QRN , then the
input (N,z) given to A is distributed identically to the experiment of Equation (2.1).
Thus, the probability that A outputs (x0,x1) with x2

0 = z · x2
1 mod N is exactly εA(k).

Furthermore, whenever this occurs A′ outputs a square root of its input z. But if
factoring is hard relative to GenModulus, we know from Theorem 2.2 that this can
happen with only negligible probability.

As in the case of the trapdoor permutation family presented earlier, the construc-
tion just given is not doubly enhanced. We will fix this below. To do so, we need
to introduce some brief facts about the Jacobi function JN : Z∗N → {−1,+1}. (We
introduce here all the facts that are needed for the construction that follows. For fur-
ther information about the Jacobi function, consult the references at the end of the
chapter.) An element x ∈ Z∗N with JN(x) = +1 is said to have Jacobi symbol +1,
and similarly if JN(x) =−1 then we say that x has Jacobi symbol−1. The relevant
facts are:

1. Exactly half the elements of Z∗N have Jacobi symbol +1, and half have Jacobi
symbol −1.

2. Given N,x, it is possible to compute JN(x) in polynomial time without knowl-
edge of the factorization of N.

3. For N a Blum integer, we have seen that every quadratic residue z has exactly
one square root x that is also a quadratic residue. It is furthermore the case that
z has exactly two square roots with Jacobi symbol +1, and these are given by
±x mod N.

Let J +1
N denote the set of elements of Z∗N with Jacobi symbol +1. We now present

the construction of a doubly enhanced clawfree trapdoor permutation:

2.2 Specific Assumptions 49

• Gen(1k) computes (N, p,q) ← GenModulus(1k), where p = q = 3 mod 4, and
chooses random z← QRN . It then outputs parameters (N,z) and trapdoor (p,q).
Let DN = QRN .

• Samp(N) chooses a uniform element y ∈ QRN by choosing a random r ∈J +1
N

and setting y := r2 mod N. (The random r ∈J +1
N is chosen by taking random

bit-strings r1, . . . of the appropriate length, and letting r be the first of these that
is in Z∗N and has Jacobi symbol +1.)

• Given (N,z), we define f0 and f1 as follows:

f0(x) = x4 mod N and f1(x) = z2 · x4 mod N.

• Given (N,z) and the trapdoor information (p,q), the inverses of f0 and f1 can
be computed as follows: To compute f−1

0 (y), find the unique fourth root of y
modulo N that is itself a quadratic residue. To compute f−1

1 (y), find the unique
fourth root of y/z2 mod N that is itself a quadratic residue.

Theorem 2.4. If factoring is hard relative to GenModulus, then the above consti-
tutes a doubly enhanced clawfree trapdoor permutation family.

Proof (sketch). We first show that finding a claw implies the ability to compute
square roots modulo N; it follows from Theorem 2.2 that finding a claw is infeasible.
Say we are given N and a quadratic residue z ∈ QRN . Given a claw (x0,x1) such
that x4

0 = z2 · x4
1 mod N, we have (x2

0/x2
1)

2 = z2 mod N. Since the quadratic residue
z2 mod N has a unique square root that is also a quadratic residue (namely, z itself),
it must be the case that x2

0/x2
1 = z mod N and so x0/x1 mod N is a square root of z

as desired.
A similar proof shows that it is hard to find a pre-image of y with respect to

f1 even when given the randomness used to generate y. Let A be a PPT algorithm
inverting f1, and consider the following probabilistic polynomial-time algorithm A′
for computing square roots:

Algorithm A′:
The algorithm is given a modulus N and r̂ ∈ QRN as inputs.

• Choose random ẑ ∈ Z∗N and set z := ẑ2 mod N.
• Choose random b ∈ {0,1} and set r := (−1)br̂ mod N.
• Compute y := r2 mod N.
• Run A(N,z,y,r) to obtain output x.
• Output ẑ · x.

The input to A is distributed correctly, since r is uniformly distributed in J +1
N (this

follows because JN(r̂) = +1 since r̂ is a quadratic residue) and z is uniform in
QRN . Furthermore, we have

z2x4 = y mod N ⇒ (
ẑ2x2)2

= r̂2 mod N ⇒ ẑ2x2 = r̂ mod N

50 2 Cryptographic Hardness Assumptions

(the final implication uses the fact that quadratic residues have a unique square root
that is also a quadratic residue), and so ẑx is a square root of r̂. Lemma 2.3 thus im-
plies that A inverts with only negligible probability. A proof for the case of inverting
f0 follows analogously.

To conclude, we show algorithms Samp0,Samp1 as required6 by Definition 2.7.
Samp0 proceeds as follows: Given (N,z), choose random x ∈ Z∗N and compute
y := x4 mod N. Choose a random bit b and compute r := (−1)b · x2 mod N. Output
(x,y,r). It is clear that (x,y,r) satisfy the functional requirement of Definition 2.7.
Furthermore, y is uniform in QRN and r is a random square root of y having Jacobi
symbol +1. From this it follows that r is uniform in J +1

N .
Algorithm Samp1 as required by Definition 2.7 can be defined analogously as

follows: Given (N,z), choose random x∈Z∗N and compute y := z2x4 mod N. Choose
a random bit b and compute r := (−1)b · z · x2 mod N; output (x,y,r). Once again,
(x,y,r) satisfy the functional requirement of Definition 2.7. Also, y is uniform in
QRN and r is a random square root of y having Jacobi symbol +1. From this it
follows that r is uniform in J +1

N .

2.2.2 The RSA Assumption

Another popular assumption related to factoring is the RSA assumption, named after
R. Rivest, A. Shamir, and L. Adleman who proposed this assumption in 1978. The
RSA assumption implies that factoring is hard, while the converse it not known;
thus, the RSA assumption is potentially stronger than the assumption that factor-
ing is hard. (In other words, it is possible that an efficient algorithm for the RSA
problem might be developed even while the factoring problem remains infeasible.)
Nevertheless, the RSA assumption has stood the test of time for over 30 years.

We begin with a little background. Let N = pq be a product of two odd primes
p and q. Then we have seen that Z∗N is a group with respect to multiplication mod-
ulo N. An easy computation shows that the number of elements in Z∗N is given by

φ(N) def= (p−1) · (q−1); in other words, φ(N) is the order of the group Z∗N . From
this it follows that if e is an integer that is relatively prime to φ(N), then the func-
tion fN,e : Z∗N → Z∗N given by fN,e(x) = xe mod N is in fact a permutation. In other
words, for every y ∈ Z∗N there exists a unique x ∈ Z∗N satisfying xe = y mod N. For
x,y satisfying this relation, we write x = y1/e mod N.

The RSA problem, roughly speaking, is to compute the eth root of y modulo N;
the RSA assumption is that computing eth roots modulo an integer N of unknown
factorization is hard. Formally, let GenRSA be a probabilistic polynomial-time al-
gorithm that, on input 1k, outputs a modulus N that is the product of two k-bit
primes (except possibly with negligible probability), along with an integer e > 0

6 We concentrate on showing how a uniform r ∈J +1
N can be sampled, since going from this to

the random coins needed to generate r is easy (due to the fact that the Jacobi symbol is efficiently
computable).

2.2 Specific Assumptions 51

with gcd(e,φ(N)) = 1 and an integer d > 0 satisfying ed = 1 mod φ(N). (We will
see below the role played by d. Note that such a d is guaranteed to exist since e is
relatively prime to φ(N).) Then:

Definition 2.9. We say that the RSA problem is hard relative to GenRSA if for all
PPT algorithms A, the following is negligible:

Pr[(N,e,d)← GenRSA(1k);y← Z∗N ;x← A(N,e,y) : xe = y mod N].

The RSA assumption can be formalized as the assumption that there exists a
GenRSA relative to which the RSA problem is hard. For certain applications, how-
ever, additional assumptions regarding the output of GenRSA are required.

The RSA assumption implies the existence of a one-way permutation family.
Moreover, for any (N,e,d) output by GenRSA and any y ∈ Z∗N we have

(yd)e = yde = yde mod φ(N) = y1 = y mod N,

and so computing eth roots is equivalent to raising to the dth power. Thus, viewing
d as a trapdoor we see that the RSA assumption implies the existence of trapdoor
permutations. Moreover, since sampling uniformly from Z∗N is trivial, we actually
obtain a doubly enhanced trapdoor permutation “for free”.

As with GenModulus in the previous section, here too we are agnostic regarding
the exact way GenRSA is implemented. One way to implement GenRSA based on
any algorithm GenModulus (not necessarily outputting Blum integers) is as follows:

1. On input 1k, compute (N, p,q)← GenModulus(1k). Then compute

φ(N) := (p−1)(q−1).

2. Choose e > 0 such that gcd(e,φ(N)) = 1. (We leave the exact manner in which
e is chosen unspecified, though in practice certain values of e may be preferred.)
Compute d := e−1 mod φ(N) and output (N,e,d).

Since φ(N) can be computed given the factorization of N, and d = e−1 mod φ(N)
can be computed in polynomial time given φ(N), it is clear that hardness of the RSA
problem relative to GenRSA as constructed above implies hardness of factoring rel-
ative to GenModulus. As mentioned earlier, the converse is not known to be true.
On the other hand, the only techniques currently known for attacking the RSA prob-
lem rely on first factoring N. In addition, it is known that recovering the trapdoor d,
given N and e, is as hard as factoring (nevertheless, it is not clear that recovery of
d is necessary in order to compute eth roots). With respect to existing technology,
then, the RSA and factoring problems may be viewed as “equally hard”.

As in the case of the factoring assumption, the RSA assumption may also be
used to construct a (doubly enhanced) clawfree trapdoor permutation family in a
very similar fashion:

• Gen(1k) computes (N,e,d)← GenRSA(1k) and chooses random z← Z∗N . It then
outputs parameters (N,e,z) and trapdoor d. Let DN = Z∗N .

52 2 Cryptographic Hardness Assumptions

• Samp(N) chooses a uniform element of Z∗N in the trivial way.
• Given (N,e,z), define f0 and f1 as follows:

f0(x) = xe mod N and f1(x) = z · xe mod N.

• Given (N,e,z) and the trapdoor information d, the inverses of f0 and f1 can be
computed as follows: To compute f−1

0 (y), simply compute yd mod N. To com-
pute f−1

1 (y), simply compute (y/z)d mod N.

The proof that the above is a clawfree trapdoor permutation follows the proof of
Theorem 2.3, and is omitted. Observe that this construction is also doubly enhanced
(once again, this comes “for free” due to the triviality of sampling from Z∗N).

In Chapter 4, we will introduce the (more recent) strong RSA assumption that
offers additional flexibility as compared to the RSA assumption described here.

2.2.3 The Discrete Logarithm Assumption

An assumption of a different flavor is obtained by considering the discrete logarithm
problem, which may be defined in any finite cyclic group G. For the most part, we
will consider only groups G of prime order q (though this is not required in any
sense); such groups have the feature that every element in G other than the identity
is a generator, and have several other advantages as well. Letting g be a generator of
the group, and h ∈G be arbitrary, define the discrete logarithm of h with respect to
g (denoted logg h) as the smallest non-negative integer x such that gx = h. (Note that
we always have logg h < q.) The discrete logarithm problem is to compute x given
g and a random group element h. We remark that it is easy to sample a random
element h ∈G by choosing a uniform integer y ∈ {0, . . . ,q−1} and setting h := gy.

For certain classes of groups, the discrete logarithm problem is believed to be
hard. The problem is certainly not hard in all cyclic groups, and hardness depends
to a great extent on the way elements of the group are represented. (This must be so,
since all cyclic groups of the same order q are isomorphic yet the discrete logarithm
problem is easy in the additive group Zq.)

To formally state the discrete logarithm assumption, we must consider an infinite
sequence of groups as defined by an appropriate group-generation algorithm. Let G
be a polynomial-time algorithm that, on input 1k, outputs a (description of a) cyclic
group G, its order q (with q a k-bit integer), and a generator g ∈ G. (Unless stated
otherwise, we will also assume that q is prime except with negligible probability.)
We also require that membership in G can be tested efficiently, and that the group
operation in G can be computed efficiently (namely, in time polynomial in k). This
implies that exponentiation in G can be performed efficiently as well.

Definition 2.10. The discrete logarithm problem is hard relative to G if for all
PPT algorithms A, the following is negligible:

Pr[(G,q,g)← G (1k);h←G;x← A(1k,G,q,g,h) : gx = h].

2.3 Hash Functions 53

The discrete logarithm assumption is that there exists a G relative to which the
discrete logarithm problem is hard.

We often abuse terminology and say that the discrete logarithm problem is hard for
G when G is a group that is output by G .

It is immediate that the discrete logarithm assumption implies the existence of a
one-way function family; take fG,q,g(x) that outputs gx. The functions in this family
are one-to-one if we take the domain of fG,q,g(x) to be Zq. For certain groupsG (for
which the discrete logarithm problem is assumed to be hard), we can in fact obtain
a one-way permutation family. One example, commonly used in cryptography, is
given by groups of the form Z∗p for p prime. (The order of this group is q = p−1,
and is not prime. The fact that groups of this form are cyclic is not obvious, but
can be proved using basic field theory.) In this case, the “natural” mapping fG,q,g :
Zp−1 → Z∗p is the one given above, where fG,q,g(x) = gx mod p. But by simply
“shifting” the domain we get the function f ′G,q,g : Z∗p → Z∗p given by

f ′G,q,g(x) = gx−1 mod p.

We do not discuss other examples of groups for which the discrete logarithm
problem is assumed to be hard. For the purposes of this book, abstracting the choice
of group will be more convenient and suffices for our purposes.

The reader may be familiar with other assumptions related to the discrete log-
arithm assumption, most prominently the computational and decisional Diffie-
Hellman assumptions. Interestingly, although these assumptions are extremely use-
ful for the construction of efficient public-key encryption schemes, they have thus
far had little application to the construction of efficient signature schemes. An ex-
ception is in the context of bilinear maps, discussed in Chapter 5, and we defer any
discussion to there.

2.3 Hash Functions

Hash functions play a central role in the construction of secure signature schemes.
Constructions of hash functions based on various assumptions are known, and we
also have extremely efficient constructions (not based on any particular hard cryp-
tographic problem) that one can reasonably assume to be secure. We will return to
this point after defining the basic types of hash functions we will consider.

2.3.1 Definitions

A hash function is simply a function that compresses its input. Hash functions are
used throughout computer science, but we will be interested in two types of cryp-
tographic hash functions. Our hash functions will be keyed: that is, a function H is

54 2 Cryptographic Hardness Assumptions

defined (this is sometimes also called a hash family); a key s is sampled uniformly
at random and published; and we then look at the security of the keyed function Hs.
A hash function H is said to be collision-resistant if, roughly speaking, it is hard
to find distinct x,x′ that “collide”, that is, for which Hs(x) = Hs(x′). A hash func-
tion is called universal one-way if, informally, it is hard to find a collision for a
pre-specified input x, chosen independently of the key s;

Definition 2.11. A hash function is a pair of probabilistic polynomial-time algo-
rithms (Gen,H) such that:

• Gen is a probabilistic algorithm that on input 1k outputs a key s. (We assume that
1k is implicit in s.)

• There exists a polynomial ` such that H takes as input a key s and x∈ {0,1}∗, and
outputs a string Hs(x) ∈ {0,1}`(k). (Note that the running time of H is allowed to
depend on |x|.)

If Hs is defined only for inputs x ∈ {0,1}`′(k), where `′(k) > `(k) for all k, then we
say that (Gen,H) is a fixed-length hash function for inputs of length `′.

We now define the security properties stated informally earlier.

Definition 2.12. Hash function (Gen,H) is collision-resistant if the following is
negligible for all PPT algorithms A:

Pr
[
s← Gen(1k);(x,x′)← A(1k,s) : x 6= x′∧Hs(x) = Hs(x′)

]
.

Definition 2.13. (Gen,H) is universal one-way if the following is negligible for all
stateful PPT algorithms A:

Pr
[
x← A(1k);s← Gen(1k);x′← A(1k,s) : x 6= x′∧Hs(x) = Hs(x′)

]
.

This is sometimes also called second pre-image resistance in the literature.

It is easy to see that collision-resistance implies universal one-wayness.

2.3.2 The Merkle-Damgård Transform

The Merkle-Damgård (MD) transform can be used to convert a fixed-length hash
function (Gen,H ′) to a hash function (Gen,H) taking inputs of arbitrary length,
while preserving collision-resistance. Besides being useful in its own right, the ex-
istence of the MD transform means that we can focus our attention on designing
collision-resistant compression functions operating on short, fixed-length inputs,
and then automatically convert such compression functions into full-fledged hash
functions. The MD transform is also used extensively in practical constructions of
hash functions.

2.3 Hash Functions 55

Construction 2.1: The Merkle-Damgård transform

Let (Gen,H ′) be a fixed-length hash function for inputs of length 2`(k). (This as-
sumption is for simplicity only.) Construct a hash function (Gen,H) as follows:

• The key-generation algorithm Gen is unchanged.
• Hs is defined for inputs of length at most 2`−1. To compute Hs(x) do:

1. Set L := |x| and B :=
⌈L

`

⌉
(i.e., B is the number of blocks in x). Pad the input

x with zeroes until its length is an integer multiple of `, and parse the result
as the sequence of `-bit blocks x1, . . . ,xB. Set xB+1 := L, where L is encoded
using exactly ` bits.

2. Set z0 := 0`.
3. For i = 1, . . . ,B+1, compute zi := H ′

s(zi−1|xi).
4. Output zB+1.

Theorem 2.5. If (Gen,H ′) is collision-resistant, then so is (Gen,H).

Proof (sketch). The proof follows easily from the observation that any collision in
Hs yields a collision in H ′

s. Let x and x′ be two different strings, of lengths L and L′
respectively, with Hs(x) = Hs(x′). Let x1, . . . ,xB denote the padded version of x, and
let x′1, . . . ,x

′
B′ be the result of padding x′. Recall further that xB+1 = L and x′B′+1 = L′.

Let zi (resp, z′i) be as in Construction 2.1. There are two cases to consider:

1. Case 1: L 6= L′. We have

Hs(x) = H ′
s(zB|L) = H ′

s(z
′
B′ |L′) = Hs(x′).

Since zB|L 6= z′B′ |L′, this is a collision in H ′
s.

2. Case 2: L = L′. In this case, note that B = B′ and xB+1 = x′B+1. Since x 6= x′, there
must exist an index i with 1≤ i≤ B such that xi 6= x′i. Let i∗ ≤ B+1 be the largest
index for which zi∗−1‖xi∗ 6= z′i∗−1‖x′i∗ . If i∗ = B+1 then zB‖xB+1 and z′B‖x′B+1 are
a collision in H ′

s exactly as in the previous case. If i∗ ≤ B, then maximality of i∗
implies zi∗ = z′i∗ , in which case zi∗−1‖xi∗ and z′i∗−1‖x′i∗ are a collision in H ′

s.

The MD transform is only guaranteed to preserve collision-resistance; it is not
guaranteed to preserve universal one-wayness. (A variant of the MD transform
where an independent key is chosen for each iteration does preserve universal one-
wayness, although this approach yields a hash function with a very long key. See
further discussion at the end of Section 2.3.4.)

56 2 Cryptographic Hardness Assumptions

2.3.3 Constructing Collision-Resistant Hash Functions

In this section we describe constructions of (fixed-length) collision-resistant hash
functions based on the number-theoretic assumptions introduced earlier in this chap-
ter. We conclude with a brief discussion of hash functions used in practice.

Collision-resistant hash functions from clawfree permutations. We begin with
a construction of collision-resistant hashing from any clawfree permutation fam-
ily. Although not very practical, the construction provide a good illustration of
how “strong” cryptographic primitives can be constructed from “weaker” building
blocks. It also shows that the factoring and RSA assumptions imply the existence of
collision-resistant hash functions.

Construction 2.2: Collision resistance from clawfree permutations

Let (Gen,Samp, f0, f1) be a clawfree permutation family, and assume that if I is
output by Gen(1k) then elements of DI can be described using ` bits. Define the
fixed-length hash function (GenH ,H) as follows:

• GenH(1k) computes I ←Gen(1k), chooses r←DI , and outputs the key s = (I,r).
In what follows, let ` = `(k) and write f0, f1 in place of fI,0, fI,1.

• Hs(x), where x ∈ {0,1}2`(k), parses s as (I,r) and parses x = x1 · · ·x2` where each
xi is a single bit. It then outputs fx2`

(
fx2`−1 (· · ·(fx1 (r)) · · ·)).

Theorem 2.6. If (Gen,Samp, f0, f1) is a clawfree permutation family, then hash
function (GenH ,H) from Construction 2.2 is collision-resistant.

Proof (sketch). The proof follows easily from the observation that any collision in
Hs yields a claw. For x ∈ {0,1}2` and 1≤ i≤ 2` define

H i
s = fxi

(
fxi−1 (· · ·(fx1 (r)) · · ·)) ;

note that Hs(x) = H2`
s (x). Let x = x1 · · ·x2` and x′ = x′1 · · ·x′2` be two different strings

with Hs(x) = Hs(x′), and let i denote the largest index such that xi 6= x′i (so x j = x′j
for all j > i). Since f0, f1 are permutations,

H2`
s (x) = H2`

s (x′) ⇒ H i
s(x) = H i

s(x
′) ⇒ fxi(H

i−1
s (x)) = fx′i(H

i−1
s (x′));

but then H i−1
s (x) and H i−1

s (x′) are a claw.

Collision-resistant hash functions from the discrete logarithm assumption. In
certain groups G (namely, where there is an efficiently computable bijection from
G to Z|G|), the discrete logarithm assumption implies a clawfree permutation family

2.3 Hash Functions 57

and thus a construction of a collision-resistant hash function as discussed above.
We give a more direct and more efficient construction here, that additionally has the
advantage of not working with arbitrary G.

Let G be a group-generation algorithm, and assume that if (G,q,g)←G (1k) then
elements ofG can be described using k+O(1) bits. (This assumption is for simplic-
ity only, and a generalization of the following construction works if this assumption
does not hold.) Define a fixed-length hash function (Gen,H) as follows:

• Gen(1k) computes (G,q,g)← G (1k) and chooses random h ∈ G. It outputs the
key s = (G,q,g,h).

• Let s = (G,q,g,h), and define Hs : Zq×Zq →G as

Hs(x,y) = gxhy.

If we want to view Hs as mapping bit-strings to bit-strings, note that Hs can
handle inputs of length 2 · (k− 1) (since any (k− 1)-bit integer can be viewed
naturally as an element of Zq, using the fact that q is a k-bit integer), and the
output of Hs can be encoded using k + O(1) bits. Thus, for k large enough we
have compression.

Theorem 2.7. If the discrete logarithm problem is hard relative to G , the above
construction is collision resistant.

Proof. Let A be a PPT collision-finding algorithm, and let

εA(k) def= Pr
[

(G,q,g,h)← Gen(1k);
(x,y,x′,y′)← A(G,q,g,h) : (x,y) 6= (x′,y′)∧Hs(x,y) = Hs(x′,y′)

]

(where s = (G,q,g,h)) denote the probability with which A finds a collision. Con-
struct the following PPT algorithm B solving the discrete logarithm problem relative
to G :

Algorithm B:
The algorithm is given (G,q,g,h) as input.
Its goal is to compute logg h.

• Run A(G,q,g,h) to obtain x,y,x′,y′ ∈ Zq.
• If y 6= y′, output (x−x′) ·(y′−y)−1 mod q. (Any (y′−y) 6= 0

has an inverse modulo q since q is prime.)

First note that A’s input when run as a sub-routine by B is distributed identically to
the keys output by Gen (this is true because B’s input has h chosen uniformly from
G). Thus, A returns a collision with probability exactly εA(k). We complete the proof
of the theorem by showing that B outputs the correct answer logg h whenever A finds
a collision. To see this, note that

gxhy = gx′hy′ ⇒ gx−x′ = hy′−y ,

58 2 Cryptographic Hardness Assumptions

and if the above holds and furthermore (x,y) 6= (x′,y′) then it must be the case that
y′− y 6= 0. So g(x−x′)/(y′−y) = h, and this is exactly what is output by B.

Dedicated collision-resistant hash functions. We have seen that collision-resistant
hash functions can be constructed based on a variety of number-theoretic assump-
tions. Yet these constructions are rather inefficient. In practice, dedicated construc-
tions of (conjectured) collision-resistant hash functions are used that are orders of
magnitude faster. These functions are generally unkeyed and have fixed length out-
puts. For these reasons, they cannot be said to satisfy asymptotic notions of secu-
rity; nevertheless, appropriate concrete notions of security can be defined. Notable
examples of hash functions in widespread use as of the time of this writing in-
clude SHA-1 (which hashes arbitrary-length inputs to 160-bit outputs) and SHA-256
(which hashes arbitrary-length inputs to 256-bit outputs).

2.3.4 Constructing Universal One-Way Hash Functions

Collision-resistance is a strong requirement. From a theoretical point of view, we
currently know how to construct collision-resistant hash functions only from con-
crete, number-theoretic assumptions; constructions based on generic assumptions
such as trapdoor permutations are not known. (Moreover, there is evidence that such
constructions are impossible.) From a practical point of view, recent years have seen
tremendous progress developing methods to attack hash functions. A prime exam-
ple is the hash function MD5. For well over a decade MD5 was considered to be
collision-resistant for all practical purposes. In 2005, however, Chinese cryptana-
lysts discovered a new technique for finding collisions in MD5. The attacks only
got better, to the point where collisions in MD5 can now be found in minutes, and
structured collisions in MD5 (i.e., colliding inputs x,x′ that each satisfy certain for-
matting requirements) can now easily be found as well.

It is thus useful, when possible, to rely on the weaker assumption of universal
one-wayness. Doing so potentially allows constructions based on weaker assump-
tions, and only makes it harder for an adversary to attack a deployed scheme. (In
particular, MD5 is still considered to be universal one-way for the time being.) As
an example of the former, we show here a construction of a (fixed-length) universal
one-way hash function from any one-way permutation. (The construction can be
easily modified to work with families of one-way permutations over bit-strings as
well.) It is known that universal one-way hash functions can be constructed based on
the (minimal) assumption of one-way functions; this construction is quite complex,
unfortunately, and is beyond the scope of this book.

The construction of a universal one-way hash function from one-way permuta-
tions will use a particular pairwise-independent function family we now introduce.
Let F2k denote the field with 2k elements, and note that there is a natural correspon-
dence between elements in F2k and k-bit strings. Define the function family

Hk
def= {ha,b : F2k →{0,1}k−1 | b ∈ F2k , a ∈ F2k \{0}},

2.3 Hash Functions 59

as
ha,b(x) = chop(ax+b),

where chop simply removes the final bit of its input. We will use the following
properties of Hk:

Lemma 2.4. For every b ∈ F2k , a ∈ F2k \{0}, the function ha,b is two-to-one.

Proof. Fix a,b and any z ∈ {0,1}k−1. Let z0 = z‖0 and z1 = z‖1. The equation
ax + b = z0 has the unique solution x = a−1 · (z0 − b) in F2k (using a 6= 0), and
similarly for the equation ax+b = z1.

Lemma 2.5. Fix arbitrary y∈ F2k , and consider choosing a,b in the following way:

1. Choose uniform y′ ∈ F2k \{y}, uniform z∈ {0,1}k−1, and uniform c∈ {0,1}. Set
z′ = z‖c and z̄′ = z‖c̄, and view z′, z̄′ as elements of F2k .

2. Solve for a,b in the following system of equations:

ay+b = z′ (2.2)
ay′+b = z̄′. (2.3)

Then the distribution induced on (a,b) is uniform over (F2k \{0})×F2k .

Proof. Note first that y′,z,c determine a,b uniquely, and that a 6= 0 always. Now fix
a ∈ F2k \ {0} and b ∈ F2k and let us see how many choices of y′,z,c result in this
(a,b) being chosen. Since a,y,b are now fixed, there is a unique choice of z,c satis-
fying Equation (2.2). Given this, y′ = (z̄′−b) ·a−1 6= y is the unique value satisfying
Equation (2.3). We thus see that each pair (a,b) is selected with probability

1
|F2k \{0}|× |{0,1}k−1|× |{0,1}| =

1
|F2k \{0}|× |F2k | ,

and so the distribution of (a,b) is uniform over the indicated sets.

Let f : {0,1}∗ → {0,1}∗ be a length-preserving bijection. Define (Gen,H) as
follows:

• Gen(1k) chooses uniform a ∈ F2k \{0} and b ∈ F2k , and outputs the key (a,b).
• Ha,b(x) outputs ha,b(f (x)).

Note that Ha,b is two-to-one for every a,b; this follows from Lemma 2.4 and the fact
that f is one-to-one.

Theorem 2.8. If f is a one-way permutation, then the above hash function is uni-
versal one-way.

Proof. Let A be a PPT collision-finding algorithm in the sense of Definition 2.13.
Define

60 2 Cryptographic Hardness Assumptions

εA(k)
def= Pr

[
x← A(1k);(a,b)← Gen(1k);x′← A(a,b) : x 6= x′∧Ha,b(x) = Ha,b(x′)

]
.

Construct the following PPT algorithm B inverting f :

Algorithm B:
The algorithm is given y′ ∈ {0,1}k as input.
Its goal is to compute x′ ∈ {0,1}k with f (x′) = y′.

• Run A(1k) to obtain x; set y = f (x). If y′ = y then output x
and stop.

• Otherwise choose random z,c and then compute a,b as in
Lemma 2.5. Run A(a,b) to obtain x′. Output x′.

If y′ = y then B clearly outputs an inverse of y. Conditioned on the event that this
does not occur, y′ is uniform in F2k \ {y}. (This follows because B’s input y′ is
computed as y′ = f (x′) for uniform x′, and f is a permutation.) It follows from
Lemma 2.5 that a,b are distributed identically to the output of Gen, and so A finds a
collision with probability exactly εA(k) in this case.

By construction of B,

Ha,b(x) = chop(a · f (x)+b) = chop(a · y+b) = chop(z‖c) = z .

Since Ha,b is two-to-one and

Ha,b(f−1(y′)) = chop(a · y′+b) = chop(z‖c̄) = z

collides with x, it follows that f−1(y′) is the only input that collides with x, and so B
outputs the correct result f−1(y′) whenever A finds a collision. The theorem follows.

Improving the compression. The construction above only compresses its input by
a single bit. Nevertheless, this suffices for constructing a universal one-way hash
function mapping p(k)-bit inputs to (k− 1)-bit outputs (for any desired polyno-
mial p) using a variant of the Merkle-Damgård transform, with the difference being
that independent keys must be used in each iteration. This gives a universal one-
way hash function where the key size grows linearly in the input length and, in
fact, is longer than the input. (This is no problem as far as the definition of uni-
versal one-wayness is concerned, but causes difficulty in some applications as will
become clear in Chapter 3.) Transformations that improve the compression using
smaller keys are also known; these can be used to construct universal one-way hash
functions handling inputs of unbounded length. The details are beyond the scope of
this book. Furthermore, as noted earlier, universal one-way hash functions can be
constructed from one-way functions. For completeness we record the following:

Theorem 2.9. Assuming the existence of one-way functions, there exist universal
one-way hash functions (for arbitrary-length inputs).

2.4 Applications of Hash Functions to Signature Schemes 61

2.4 Applications of Hash Functions to Signature Schemes

We wrap up this chapter by showing how to use cryptographic hash functions to
improve the parameters of digital signature schemes. We first show how to increase
the message length of a signature scheme: specifically, we show how to convert a
signature scheme capable of signing k-bit messages into one that can sign messages
or arbitrary length. (We have already shown such a construction in Section 1.9, but
the one given here is much more efficient.) This technique is used extensively in
practice to enable signing large files. We then show how to decrease the size of pub-
lic keys (at the expense of increasing the signature length), constructing in particular
a one-time signature scheme that can sign messages twice as long as its own public
key. This will form a crucial ingredient in our construction (in the following chapter)
of an existentially unforgeable signature scheme from any one-way function.

2.4.1 Increasing the Message Length

Given a signature scheme for “short” messages, a natural way of handling longer
messages is to hash all messages before signing them. We show how this can be
implemented using both collision-resistant and universal one-way hash functions.

Using collision-resistant hash functions. When using collision-resistant hash func-
tions, the above idea is simple to implement.

Construction 2.3: Increasing the message length using collision resistance

Let Π = (Gen,Sign,Vrfy) be a signature scheme for k-bit messages, and let
(GenH ,H) be a hash function mapping p(k)-bit inputs to k-bit outputs. Construct
signature scheme Π ′ = (Gen′,Sign′,Vrfy′) for p(k)-bit messages as follows:

Key generation: Gen′(1k) computes (pk,sk) ← Gen(1k) and s ← GenH(1k). The
public key is (pk,s) and the secret key is (sk,s).

Signature generation: Algorithm Sign′sk,s(m) outputs Signsk(Hs(m)).

Signature verification: Algorithm Vrfy′pk,s(m,σ) outputs Vrfypk(Hs(m),σ).

Theorem 2.10. If Π is existentially unforgeable (resp., strongly unforgeable) under
an adaptive chosen-message attack and (GenH ,H) is collision-resistant, then Π ′
is existentially unforgeable (resp., strongly unforgeable) under an adaptive chosen-
message attack.

Proof (sketch). The proof is quite straightforward, and so we merely provide a
sketch for the case of existential unforgeability. Let m1, . . . ,m` denote the messages

62 2 Cryptographic Hardness Assumptions

submitted by an adversary A to the signing oracle Sign′sk,s(·), and let (m,σ) denote
a purported forgery output by A. There are two possibilities: either Hs(m) = Hs(mi)
for some i ∈ {1, . . . , `} or not. If so, then A has found a collision in Hs (something
that, by assumption on (GenH ,H), occurs with only negligible probability). If not,
then Hs(m) is a k-bit string different from all k-bit strings {Hs(m1), . . . ,Hs(m`)} that
were signed using scheme Π . But then A has in fact output a valid forgery for Π
(something that, by assumption on Π , occurs with only negligible probability).

Using universal one-way hash functions. In order to use universal one-way hash
functions, we have to work a little harder. Note first that Theorem 2.10 is no longer
guaranteed to hold if (GenH ,H) is only universal one-way: In that case an adversary
who observes s — which is included in the public key — might be able to find two
different messages m,m′ hashing to the same value, and then forge a signature on
m′ after requesting a signature on m. However, we can claim the following weaker
version of Theorem 2.10:

Theorem 2.11. If Π is existentially unforgeable (resp., strongly unforgeable) un-
der a known-message attack and (GenH ,H) is universal one-way, than Π ′ (as in
Construction 2.3) is existentially unforgeable (resp., strongly unforgeable) under a
known-message attack.

Proof (sketch). The proof uses exactly the same ideas as in the proof of Theo-
rem 2.10, the key difference being that in a known-message attack on Π ′ the ad-
versary must “commit” to its messages m1, . . . ,m` before it sees the public key (and
so, in particular, before it sees the key s used for the hash function). Thus, if the
adversary were able to output a forgery (m,σ) with Hs(m) = Hs(mi) for some i, this
would violate the assumed universal one-wayness of (GenH ,H).

The above already suffices to increase the message length for signature schemes
secure against an adaptive chosen-message attack: given an existentially unforge-
able signature scheme Π (which is in particular also secure against known-message
attacks) for k-bit messages, apply the above theorem to obtain scheme Π ′ for
arbitrary-length messages that is secure against known message attacks (and hence
also against random-message attacks); then apply either of Theorems 1.1 or 1.2. As
we shall see, a direct construction with better efficiency is possible.

The problem with Construction 2.3 (when a universal one-way hash function is
used in place of a collision-resistant hash function) is that the adversary may select
messages to be signed in a manner that depends on the hash key s included as part
of the public key. We would like to prevent this, and “force” the adversary to choose
the messages submitted to the signing oracle independently of the hash key. We can
accomplish this by choosing the hash key “on the fly” as part of signature genera-
tion. Specifically, consider the following construction starting with an existentially
unforgeable signature scheme Π = (Gen,Sign,Vrfy) and universal one-way hash
function (GenH ,H):

• Key generation is unchanged; i.e., compute (pk,sk)← Gen(1k).

2.4 Applications of Hash Functions to Signature Schemes 63

• To sign a message m using secret key sk, compute s← GenH(1k) and output the
signature

(s,Signsk(s|Hs(m))) .

We stress that a fresh key s is computed for every message signed.
• To verify the signature (s,σ) on a message m with respect to a public key pk,

output 1 iff Vrfypk(s|Hs(m),σ) ?= 1.

The above construction is existentially unforgeable. To see this, let m1, . . . ,m` de-
note the messages submitted by the adversary A to its signing oracle, and let
(s1,σ1), . . . ,(s`,σ`) be the signatures returned. Say A outputs forgery (m,(s,σ))
with m 6∈ {m1, . . . ,m`}. Arguing as in the proof of Theorem 2.10, if (s,Hs(m)) 6=
(si,Hsi(mi)) for all i then A has, in fact, generated a forgery in the original scheme Π
(something that is assumed to occur with only negligible probability). On the other
hand, if (s,Hs(m)) = (si,Hsi(mi)) but m 6= mi (making the simplifying, but inessen-
tial, assumption that the {si} are distinct), then A has violated the assumed universal
one-wayness of (GenH ,H). (The key point being that the adversary chose mi before
it knew the hash key si.)

The main problem with this transformation is that the hash key itself is signed
(along with the hashed message) by the underlying scheme, yet many theoretical
constructions of universal one-way hash functions use rather long keys. In particular,
when the hash key is longer than the input length of the hash function (as was the
case for the construction described at the end of Section 2.3.4) the transformation is
of no use. Instead, Construction 2.4 — which can be viewed as following the same
paradigm used in Construction 1.2 — can be utilized.

Construction 2.4: Increasing the message length using universal one-wayness

Let Π = (Gen,Sign,Vrfy) be a signature scheme for 2k-bit messages, (GenH ,H)
be a hash function mapping p(k)-bit inputs to k-bit outputs and having keys of
length h(k), and (Gen′H ,H ′) be a hash function mapping h(k)-bit inputs to k-bit
outputs. Construct signature scheme Π ′ = (Gen′,Sign′,Vrfy′) for p(k)-bit messages
as follows:

Key generation: Gen′(1k) computes (pk,sk)← Gen(1k) and s′ ← Gen′H(1k). The
public key is (pk,s′) and the secret key is (sk,s′).

Signature generation: Sign′sk,s′(m) computes s← GenH(1k) and outputs

(
s,Signsk(H

′
s′(s) |Hs(m))

)
.

Once again, we stress that a fresh key s is chosen for each message signed.

Signature verification: Vrfy′pk,s′(m,(s,σ)) outputs Vrfypk(H ′
s′(s)|Hs(m),σ).

64 2 Cryptographic Hardness Assumptions

The reader is referred to [11] for a proof of the following:

Theorem 2.12. If Π is existentially unforgeable (resp., strongly unforgeable) under
an adaptive chosen-message attack and (GenH ,H) and (Gen′H ,H ′) are both univer-
sal one-way, then Π ′ is existentially unforgeable (resp., strongly unforgeable) under
an adaptive chosen-message attack.

2.4.2 Reducing the Public-Key Length

As our next application of hash functions to signature schemes, we consider ways of
shortening the public key. While these techniques are generally useful — in partic-
ular, they show that schemes with optimal public-key size are possible — our goal
here is to use these techniques to construct a (one-time) signature scheme capable
of signing messages twice as long as its own public key; this will be used when we
construct existentially unforgeable signature schemes based on general assumptions
in the next chapter.

The obvious way to decrease the public-key size is to simply hash the orig-
inal public key. Formally, let Π = (Gen,Sign,Vrfy) be an existentially unforge-
able signature scheme having q(k)-bit public keys, and let (GenH ,H) be a hash
function mapping q(k)-bit inputs to k-bit outputs. Then the following scheme
Π ′ = (Gen′,Sign′,Vrfy′) has public keys of length k:

• Gen′(1k) computes (pk,sk) ← Gen(1k) and s ← GenH(1k), and sets pk′ :=
Hs(pk). The public key is (s, pk′) and the secret key is (pk,sk).

• Sign′pk,sk(m) outputs (pk,Signsk(m)).

• Vrfys,pk′(m,(pk,σ)) outputs 1 iff (1) Hs(pk) ?= pk′ and (2) Vrfypk(m,σ) ?= 1.

It is not difficult to verify that Π ′ is existentially unforgeable if (GenH ,H) is uni-
versal one-way. (Note that the hashed input pk is chosen independently of the hash
key s.) But public keys in Π ′ have length |pk′|+ |s| = k + |s| bits, an improvement
only if |s| < q(k)− k. While this bound on the length of the hash key s can be
achieved fairly easily if we are willing to assume collision-resistance, the bound is
more difficult to ensure based on universal one-wayness alone (cf. the discussion at
the end of Section 2.3.4).

Fortunately, it is possible to guarantee a public key shorter than the message by
running sufficiently many copies of the original signature scheme in parallel.

Let us first verify the claim regarding the lengths of the public key and the mes-
sages. Π ′ has public keys of size h(k)+ ` · k and can sign messages of length 3k · `.
By our choice of ` we have

3k` > 2k`+ k · (2h(k)/k) = 2k`+2h(k),

and so the messages that can be signed have length at least twice that of the public
key. As for the security of the construction, we have:

2.4 Applications of Hash Functions to Signature Schemes 65

Construction 2.5: A signature scheme for messages twice as long as public keys

Let Π = (Gen,Sign,Vrfy) be a signature scheme for 3k-bit messages having q(k)-
bit public keys, and let (GenH ,H) be a hash function mapping q(k)-bit inputs to
k-bit outputs and having keys of length h(k). Choose `(k) > 2h(k)/k, and construct
signature scheme Π ′ = (Gen′,Sign′,Vrfy′) as follows:

Key generation: Gen′(1k) does as follows:

1. Compute s← GenH(1k).
2. For i = 1 to `, compute (pki,ski)← Gen(1k) and set pk′i := Hs(pki).

The public key is (s, pk′1, . . . , pk′`), and the secret key is (pk1,sk1, . . . , pk`,sk`).

Signature generation: Sign′pk1,sk1,...,pk`,sk`
(m) parses m as m1, . . . ,m` with |mi|= 3k

for all i. It then outputs the signature
(

pk1,Signsk1
(m1), . . . , pk`,Signsk`

(m`)
)
.

Signature verification: Vrfy′s,pk′1,...,pk′`
(m,(pk1,σ1, . . . , pk`,σ`)) parses the message

m as m1, . . . ,m` with |mi| = 3k for all i. It then outputs 1 iff for all i: (1) Hs(pki)
?=

pk′i, and (2) Vrfypki
(mi,σi)

?= 1.

Theorem 2.13. If Π is existentially unforgeable (resp., strongly unforgeable) under
a one-time chosen-message attack and (GenH ,H) is universal one-way, then Π ′
is existentially unforgeable (resp., strongly unforgeable) under a one-time chosen-
message attack.

Proof (sketch). We treat the case of existential unforgeability; strong unforgeabil-
ity can be proven similarly. Consider a PPT adversary A attacking Π ′ in a one-time
chosen-message attack. Let m′ = m′

1, . . . ,m
′
` be the message whose signature is re-

quested by A, and say A outputs the forged signature (p̂k1,σ1, . . . , p̂k`,σ`) on the
message m = m1, . . . ,m` 6= m′ If p̂ki 6= pki for some i, then A has violated the as-
sumed universal one-wayness of (GenH ,H). Letting j be any index with m j 6= m′

j,
we thus have that σ j is a forged signature on the message m j with respect to
scheme Π (and public key pk j).

An alternate, somewhat easier proof of the above theorem relies on the construc-
tion of universal one-way hash functions with high compression and short keys. We
have given the above proof in order to keep the exposition self-contained.

Construction 2.5 is not existentially unforgeable when an adversary can request
signatures on more than one message (even if Π is). However, a variant of the con-
struction — in which each block of a signed message is pre-pended with a random,
message-specific identifier — is secure in that sense (when Π is). See Construc-
tion 1.4 for the general idea.

66 2 Cryptographic Hardness Assumptions

2.5 Further Reading

Goldreich’s book [56] is a good source for further information regarding generic
assumptions, while more details regarding the number-theoretic assumptions dis-
cussed here can be found in [72]. The notions of a one-way function and a trapdoor
permutation originate in the work of Diffie and Hellman [40], though formal defi-
nitions appeared only much later. Clawfree trapdoor permutations were introduced
by Goldwasser, Micali, and Rivest [61] in the course of constructing the first secure
digital signature scheme, and that work also contains a construction of clawfree
trapdoor permutations based on the hardness of factoring (that is slightly different
from the one given here).

Rabin [97] was the first to propose a trapdoor function based on the hardness of
factoring, and Williams [110] and Blum [16] suggested restricting N to a special
form to obtain a trapdoor permutation. As mentioned previously, the RSA assump-
tion is due to Rivest, Shamir, and Adleman [99]. A recent survey by Boneh [17]
discusses various attacks on RSA and also covers known results on the relationship
between the RSA and factoring assumptions. The discrete logarithm assumption
(without the restriction to prime order groups) is due to Diffie and Hellman [40].

Collision-resistant hash functions were first formally defined by Damgård [37],
and the construction of collision-resistant hash functions from clawfree permuta-
tions is from that work as well. The Merkle-Damgård transformation was introduced
independently in [38, 81], and our treatment in Section 2.3.2 is adapted from [72,
Section 4.6.4]. Universal one-way hash functions originated in the work of Naor
and Yung [88], where the construction of universal one-way hash functions based
on one-way permutations was given. Rompel [100] (see also [71]) showed that uni-
versal one-way hash functions could be built from any one-way function. See [72]
for extensive further discussion about hash functions and their applications.

Techniques for increasing the compression of universal one-way hash functions
with reduced key expansion can be found in [11, 105]. Construction 2.4 is due
to [11].

Part II
Digital Signature Schemes without

Random Oracles

Chapter 3
Constructions Based on General Assumptions

Our objective in this chapter is to present a construction of a digital signature scheme
based on the minimal assumption (cf. Theorem 2.1) that one-way functions exist.
Along the way we will see a relatively simple construction, due to Lamport, of a
one-time signature scheme based on the same assumption. We warn the reader at
the outset that efficiency will not be a consideration here; we aim instead for gen-
erality (first) and simplicity of exposition (second). Interestingly, although several
improved constructions of one-time signatures from one-way functions or permuta-
tions are known, the construction of a CMA-secure signature described in this chap-
ter is essentially the best known (from any of the general assumptions discussed in
the previous chapter); improving the efficiency of this generic construction remains
an interesting and important open question.

Determining the weakest possible assumptions on which signatures can be based
is, of course, essential for a solid theoretical understanding of signature schemes.
Beyond this, one might wonder whether there is any practical value in studying
schemes based on general assumptions given that all known examples of, say, one-
way functions have some additional algebraic structure. In fact, this is not quite
true: it is reasonable to treat, e.g., the hash function SHA-1 as a one-way function1,
and so we can use SHA-1 to instantiate the one-way function in schemes based on
this assumption. Given the vast efficiency advantage of SHA-1 relative to number-
theoretic assumptions, this may yield a scheme that is actually more efficient (at
least2 in certain respects) than the “efficient” schemes we show in later chapters.
This is particularly true with regard to the Lamport one-time signature scheme.

1 Since SHA-1 is defined only for fixed output length, it cannot be a one-way function in the
complexity-theoretic sense. Nevertheless we certainly expect SHA-1 to be “hard to invert” for
algorithms running in any practical amount of time.
2 All known signature schemes based on general assumptions have very long signatures (regardless
of how the underlying assumption is instantiated). On the other hand, the computational efficiency
of signing or verifying (when using a scheme based on one-way functions that is instantiated with
SHA-1) may — depending on the message length and the security desired — be competitive with
the efficiency of number-theoretic schemes.

© Springer Science+Business Media, LLC 2010
J. Katz, Digital Signatures, DOI 10.1007/978-0-387-27712-7_3, 69

70 3 Constructions Based on General Assumptions

Overview of the chapter. We begin by describing Lamport’s construction of a one-
time signature scheme based on any one-way function. We then observe, in a series
of steps, that we can use a tree-based approach to build a full-fledged signature
scheme starting from any one-time signature scheme that can sign messages twice
as long as its public key. It is worth remarking that a scheme with this property is
trivial to construct if we are willing to assume the existence of collision-resistant
hash functions. If we want a construction based only on one-way functions, we
have to work a bit harder. The Lamport scheme, in particular, does not have this
property (indeed, the public key in the Lamport scheme is much longer than the
messages that can be signed). Fortunately, a signature scheme satisfying the stated
requirement (and based only on one-way functions) follows fairly easily from our
work in the previous chapter.

3.1 Lamport’s One-Time Signature Scheme

The basic idea of Lamport’s signature scheme is simple, and we illustrate it first for
the case of signing 3-bit messages. Let f be a one-way function. The public key
consists of 6 elements y1,0, y1,1, y2,0, y2,1, y3,0, y3,1 in the range of f ; the private key
contains the corresponding pre-images x1,0, x1,1, x2,0, x2,1, x3,0, x3,1. These keys can
be visualized as two-dimensional arrays:

pk =
(

y1,0 y2,0 y3,0
y1,1 y2,1 y3,1

)
sk =

(
x1,0 x2,0 x3,0
x1,1 x2,1 x3,1

)
.

To sign a message m = m1‖m2‖m3, where each mi is a single bit, the signer releases
the appropriate pre-image xi,mi for 1≤ i≤ 3; that is, the signature σ simply consists
of the three values (x1,m1 ,x2,m2 ,x3,m3). Verification is carried out in the natural way:
presented with the candidate signature (x1,x2,x3) on the message m = m1 ·m2 ·m3,

the verifier accepts if and only if f (xi)
?= yi,mi for 1 ≤ i ≤ 3. This is shown graphi-

cally in Figure 3.1. The Lamport scheme for arbitrary message length ` is described
formally as Construction 3.1.

Signing m = 011:

sk =

(
x1,0 x2,0 x3,0

x1,1 x2,1 x3,1

)
⇒ σ = (x1,0, x2,1, x3,1)

Verifying for m = 011 and σ = (x1,x2,x3):

pk =

(
y1,0 y2,0 y3,0

y1,1 y2,1 y3,1

) }
⇒

f (x1)
?= y1,0

f (x2)
?= y2,1

f (x3)
?= y3,1

Fig. 3.1 The Lamport scheme used to sign the message m = 011.

3.1 Lamport’s One-Time Signature Scheme 71

Construction 3.1: The Lamport one-time signature scheme

Let f be a function, and let ` = `(k) denote the desired message length.

Key generation: Algorithm Gen(1k) is defined as follows. For i ∈ {1, . . . , `}, do:

1. Choose random xi,0,xi,1 ←{0,1}k.
2. Compute yi,0 := f (xi,0) and yi,1 := f (xi,1).

The public key pk and the private key sk are

pk :=
(

y1,0 y2,0 · · · y`,0
y1,1 y2,1 · · · y`,1

)
sk :=

(
x1,0 x2,0 · · · x`,0
x1,1 x2,1 · · · x`,1

)
.

Signature generation: On input a private key sk as above and a message m∈{0,1}`

with m = m1‖· · ·‖m`, output the signature (x1,m1 , . . . , x`,m`
).

Signature verification: On input a public key pk as above, a message m ∈ {0,1}`

with m = m1‖· · ·‖m`, and a signature σ = (x1, . . . ,x`), output 1 if and only if it is
the case that f (xi) = yi,mi for 1≤ i≤ `.

Theorem 3.1. Let ` be any polynomial. If f is a one-way function, then Construc-
tion 3.1 is existentially unforgeable under a one-time chosen-message attack.

Proof. We let ` = `(k) for the rest of the proof. As intuition for the security of the

scheme, note that for an adversary given public key pk =
(

y1,0 y2,0 · · · y`,0
y1,1 y2,1 · · · y`,1

)
,

finding an x such that f (x) = yi∗,b∗ for any (i∗,b∗) amounts to inverting f . So it will
certainly be hard to compute a signature on any message m given only the public key.
What about computing a signature on some message m after being given a signature
on a different message m′? If m′ 6= m then there must be at least one position i∗
on which these messages differ. Say mi∗ = b∗ 6= m′

i∗ . Then forging a signature on
m requires, in particular, finding an x such that f (x) = yi∗,b∗ . But finding such an x
does not become any easier even when given {xi,b} for all (i,b) 6= (i∗,b∗) (since the
values {xi,b}(i,b)6=(i∗,b∗) are all chosen independently of xi∗,b∗).

We now turn this intuition into a formal proof. Let Π = (Gen,Sign,Vrfy) denote
the Lamport signature scheme. Let A be a probabilistic polynomial-time adversary,
and denote by (m,σ)← ExptA,Π (1k) the experiment

(pk,sk)← Gen(1k);(m,σ)← ASignsk(·)(pk),

where A is allowed only a single query to its signing oracle. Letting m′ denote the
message that A queries to its signing oracle in a particular execution of ExptA,Π (1k)
(we assume without loss of generality that there is always some such message), we
then let Forge be the event that Vrfypk(m,σ) = 1 and m 6= m′.

72 3 Constructions Based on General Assumptions

Define
SuccA,Π (k) def= Pr

[
(m,σ)← ExptA,Π (1k) : Forge

]

and note that this is exactly the success probability of A as defined in Definition 1.7.
To prove the theorem we must show that SuccA,Π (k) is negligible.

In a particular execution of ExptA,Π (1k) where Forge occurs, we say that A output
a forgery at (i,b) if b = mi 6= m′

i. In other words, this means that A has succeeded
in forging a valid signature on a message m after being given a signature on some
message m′ 6= m, and moreover mi = b while m′

i = 1−b. It is immediately clear that
whenever Forge occurs, A outputs a forgery at some (i,b).

We now construct the following PPT algorithm I attempting to invert the one-
way function f :

Algorithm I :
The algorithm is given y and 1k as input. It goal is to output x
with f (x) = y.

1. Choose a random index i∗←{1, . . . , `} and a random bit b∗←{0,1}.
Set yi∗,b∗ := y.

2. For all i ∈ {1, . . . , `} and b ∈ {0,1} with (i,b) 6= (i∗,b∗):
• Choose xi,b ←{0,1}k and set yi,b := f (xi,b).

3. Run A on input pk :=
(

y1,0 y2,0 · · · y`,0
y1,1 y2,1 · · · y`,1

)
.

4. When A requests a signature on the message m′:
• If m′

i∗ = b∗, stop.
• Otherwise, return the correct signature σ =(x1,m′1 , . . . ,x`,m′`

).
5. When A outputs (m,σ) with σ = (x1, . . . ,xp):
• If A output a forgery at (i∗,b∗), then output xi∗ .

Whenever A outputs a forgery at (i∗,b∗), algorithm I succeeds in inverting its
given input y. We are interested in the probability that this occurs when the input to
I is generated by choosing a random x ← {0,1}k and then setting y := f (x) (cf.
Definition 2.1). To analyze this probability it is useful to imagine a “mental exper-
iment” in which I is given x at the outset, sets xi∗,b∗ := x, and then always returns
a signature to A in step 4 (i.e., even if m′

i∗ = b∗). It is not hard to see that the view
of A being run as a subroutine by I in this mental experiment is distributed iden-
tically to the view of A in ExptA,Π (1k). Therefore, the probability that A outputs a
forgery in step 5 is exactly SuccA,Π (k). Because (i∗,b∗) was chosen at random at
the beginning of the experiment, and the view of A is independent of this choice,
the probability that A outputs a forgery at (i∗,b∗) — conditioned on the fact that A
outputs a forgery — is at least 1/2`. (This is because a signature forgery implies a
forgery for at least one point (i,b). Since there are 2` points, the probability of the
forgery being at (i∗,b∗) is at least 1/2`.) We conclude that, in this mental experi-
ment, the probability that A outputs a forgery at (i∗,b∗) is at least SuccA,Π (k)/2`.

Returning to the real experiment involving I as initially described, the key ob-
servation is that the probability that A outputs a forgery at (i∗,b∗) is unchanged.

3.1 Lamport’s One-Time Signature Scheme 73

This is because the mental experiment and the real experiment coincide if A outputs
a forgery at (i∗,b∗). That is, the experiments only differ if A requests a signature on
a message m′ with m′

i∗ = b∗; but if this happens then it is impossible (by definition)
for A to subsequently output a forgery at (i∗,b∗). So, in the real experiment, the
probability that A outputs a forgery at (i∗,b∗) is still at least SuccA,Π (k)/2`. That is:

Pr[x←{0,1}k;y := f (x);x′←I (1k,y) : f (x′) = y]≥ SuccA,Π (k)/2`.

Because f is a one-way function, we must have SuccA,Π (k)/2` ≤ negk(k); since `
is polynomial, we conclude that SuccA,Π (k) is negligible.

It is worth noting that the Lamport scheme is completely insecure if it is used to
sign more than one message: an adversary who obtains signatures on both 0` and 1`

(with respect to the same public key) learns the entire secret key!

Achieving strong unforgeability. An easy observation if that if the function f in
Lamport’s scheme is a one-way permutation (or generated from a family of one-way
permutations in the natural way), then the scheme is strongly unforgeable under a
one-time chosen-message attack. A variant of Lamport’s scheme achieves strong
unforgeability under the (minimal) assumption that one-way functions exist. The
basic idea here is to instantiate the one-way function f in Construction 3.1 with a
universal one-way hash function (that, in turn, can be constructed from any one-way
function; see Section 2.3.4). In more detail, let (GenH ,H) be a universal one-way
hash function mapping 2k-bit inputs to k-bit outputs. Key generation now works by
choosing a random seed s← GenH(1k) and then proceeding as in Construction 3.1.
I.e., for i ∈ {1, . . . , `}, do:

1. Choose random xi,0,xi,1 ←{0,1}2k.
2. Compute yi,0 := Hs(xi,0) and yi,1 := Hs(xi,1).

The public key pk is

pk :=
(

s,
(

y1,0 y2,0 · · · y`,0
y1,1 y2,1 · · · y`,1

))

(note the inclusion of s), and the secret key is as before. Verification is done in the
natural way. We have:

Theorem 3.2. Let ` be any polynomial. If (GenH ,H) is universal one-way, then the
above construction is strongly unforgeable under a one-time chosen-message attack.

Proof (sketch). The reduction is, in fact, easier than that used in the preceding
proof. Construct an algorithm I as follows:

Algorithm I:

1. For all i ∈ {1, . . . , `} and b ∈ {0,1}, choose xi,b ←{0,1}2k.
2. Choose random i∗ ← {1, . . . , `} and b∗ ← {0,1}. Output

xi∗,b∗ and receive in return a key s.

74 3 Constructions Based on General Assumptions

3. For all i ∈ {1, . . . , `} and b ∈ {0,1}, set yi,b := Hs(xi,b).

4. Run A on input pk :=
(

s,
(

y1,0 y2,0 · · · y`,0
y1,1 y2,1 · · · y`,1

))
.

5. When A requests a signature on the message m′, return the
correct signature σ = (x1,m′1 , . . . ,x`,m′`

).
6. When A outputs (m,σ) with σ = (x1, . . . ,xp):
• If A output a forgery at (i∗,b∗), then output xi∗ .

Since I never need abort, it is not immediately clear that A outputs a forgery at
(i∗,b∗) with probability at least SuccA,Π (k)/2` (with SuccA,Π (k) defined in the nat-
ural way). Now, however, an additional argument is needed in order to claim that I
succeeds (cf. Definition 2.13) with overwhelming probability whenever A outputs
a forgery at (i∗,b∗). (Indeed, it could be the case that xi∗ = xi∗,b∗ in which case I
does not succeed.) This follows from the facts that, with overwhelming probability,
the number of pre-images of yi∗,b∗ with respect to Hs is exponential, and A has no
information regarding which pre-image of yi∗,b∗ algorithm I chose.

3.2 Signatures from One-Time Signatures

Lamport’s one-time signature scheme can be useful in its own right: although the
public key (and signatures) are long, signing and verification can be very efficient
when the one-way function is instantiated using, e.g., a cryptographic hash function.
Lamport’s scheme will also be a key component in our eventual construction of a
CMA-secure signature scheme. Building to that result, we show here how to build
a full-fledged signature scheme from any one-time signature scheme that can sign
messages twice as long as its public key. Had Lamport’s scheme satisfied this crite-
rion, we would be done; alas, in Lamport’s scheme the public key is much longer
than the messages being signed. (E.g., if we take f to be length-preserving then a
public key of length 2k` is needed to sign messages of length `.) Nevertheless, the
results of the preceding chapter already show how to construct a one-time signature
scheme with the desired property, as we will later observe.

We build up to our final construction of this section in stages. In Section 3.2.1
we define the notion of a stateful signature scheme, where the signer updates its
private key after each signature, and show how to construct a CMA-secure stateful
signature scheme. In Section 3.2.2 we discuss a more efficient variant of this scheme
that is still stateful. We then describe how this construction can be made stateless,
as required by our original definition of a signature scheme.

3.2 Signatures from One-Time Signatures 75

3.2.1 “Chain-Based” Signatures

We first define the notion of a stateful signature scheme, where the signer may main-
tain some state that is updated after every signature is produced.

Definition 3.1. A stateful signature scheme consists of three efficient algorithms
(Gen∗, Sign∗, Vrfy∗) such that:

• The randomized key-generation algorithm Gen∗ takes as input the security pa-
rameter 1k, and outputs (pk,sk,s0) where pk is the public key, and sk is the
private key, and s0 is the initial state.

• The signing algorithm Sign∗ takes as input a secret key sk, the current state si−1,
and a message m. It outputs a signature σ and an updated value si for the state.

• The deterministic verification algorithm Vrfy takes as input a public key pk, a
message m, and a (purported) signature σ . It outputs a single bit b, with b = 1
signifying “accept” and b = 0 signifying “reject.”

We impose the natural correctness condition: for every k, every (pk,sk,s0) output
by Gen∗(1k), and any sequence of messages m1, . . . ,m`, if we compute (σi,si) ←
Sign∗sk,si−1

(mi) for i ∈ {1, . . . , `}, then for every i ∈ {1, . . . , `} we have

Vrfy∗pk(mi,σi) = 1.

We emphasize that the state is not needed in order to verify a signature. Signature
schemes that do not maintain state (as per the standard definition) are called stateless
to distinguish them from stateful schemes. Clearly, stateless schemes are preferable
though stateful schemes can still potentially be useful depending on the context. In
any case, as discussed earlier, our aim in introducing stateful signatures is simply to
use them as a stepping stone to a full stateless construction.

Existential unforgeability under an adaptive chosen-message attack for the case
of stateful signatures schemes is defined in a manner exactly analogous to Defi-
nition 1.6, with the only subtleties being that the signing oracle only returns the
signature (and not the state), and that the signing oracle updates and maintains the
state appropriately each time it is invoked.

We can easily construct a stateful “`-time” signature scheme that can sign
` = `(k) messages for any polynomial `. (The notion of security here would be
analogous to the definition of one-time signatures given earlier; we do not give a
formal definition since our discussion here is only informal.) Such a construction
works by simply letting the public key consist of ` independently generated public
keys for some one-time signature scheme Π , with the private key similarly con-
structed; i.e., set pk := (pk1, . . . , pk`) and sk := (sk1, . . . ,sk`) where each (pki,ski)
is an independently-generated key-pair for some one-time signature scheme. The
state is just a counter initially set to 1. To sign a message m using the private key sk
and current state i≤ `, simply compute σi ← Signski

(m) (that is, generate a one-time
signature on m using the ith private key ski), output the signature (i,σi), and update
the state to i + 1. In other words, the ith message is signed using ski. Verification

76 3 Constructions Based on General Assumptions

of a signature (i,σi) on a message m can be done by checking whether σi is a valid
signature on m with respect to pki.

Intuitively, this scheme is secure if used to sign ` messages because each private
key is used to sign only a single message. (In fact, if Π is strongly unforgeable under
a one-time chosen-message attack then the construction is strongly unforgeable un-
der an `-time chosen-message attack.) Since ` may be an arbitrary polynomial, why
doesn’t this give us the solution we are looking for? The main drawback is that the
scheme requires the upper bound ` on the number of messages that can be signed
to be fixed in advance, at the time of key generation. (In particular, the scheme does
not satisfy Definition 1.2.) This is a potentially severe limitation since once the up-
per bound is reached a new public key would have to be generated and distributed.
We would like instead to have a single, fixed scheme that can support signing an
unbounded number of messages. Another drawback of the scheme is the fact that
it is not very efficient, since the public and private keys have length that is linear
in the total number of messages that can be signed. (We remark that more efficient
constructions of `-time signatures are possible, by direct modification of Lamport’s
scheme. Such scheme still have public and private keys whose length is linear in the
number of messages to be signed and, in any case, the first drawback remains.)

Let Π = (Gen,Sign,Vrfy) be a one-time signature scheme. In the scheme we
have just described, the signer runs ` invocations of Gen to obtain public keys
pk1, . . . , pk`, and includes each of these in its actual public key pk. The signer is
then restricted to signing at most ` messages. We can do better by using a “chain-
based scheme” in which the signer generates and certifies additional public keys
on-the-fly as needed.

Let us now assume that Π can sign messages twice as long as its public keys.
For concreteness and without loss of generality, we assume that public keys have
length k, and that messages of length 2k can be signed.

In the chain-based scheme, the public key consists of just a single public key pk1
generated using Gen, and the private key contains the associated private key sk1; the
initial state is empty. To sign the first message m1 ∈ {0,1}k, the signer first generates
a new key-pair (pk2,sk2) using Gen, and then signs both m1 and pk2 using sk1 to
obtain σ1 ← Signsk1

(m1‖pk2). The signature that is output includes both pk2 and σ1,
and the signer adds (m1, pk2,sk2,σ1) to its state. In the general case, when it comes
time to sign the ith message the signer will have stored {(m j, pk j+1,sk j+1,σ j)}i−1

j=1

as its state. To sign the ith message mi ∈ {0,1}k, the signer generates a new key-pair
(pki+1,ski+1) using Gen, and then signs mi and pki+1 using ski to obtain a signature
σi ← Signski

(mi‖pki+1). The actual signature that is output includes pki+1, σi, and
also the values {m j, pk j+1,σ j}i−1

j=1. The signer then adds (mi, pki+1,ski+1,σi) to its
state.

To verify a signature (pki+1,σi,{m j, pk j+1,σ j}i−1
j=1) on a message m = mi with

respect to public key pk1, the receiver verifies each link between the public key
pk j and the next public key pk j+1 in the chain, as well as the link between the last
public key pki+1 and m. That is, the verification procedure outputs 1 if and only if

3.2 Signatures from One-Time Signatures 77

Vrfypk j
(m j‖pk j+1,σ j)

?= 1 for all j ∈ {1, . . . , i}. Observe that this verification begins
from the public key pk1 that was initially distributed.

It is not hard to be convinced — at least on an intuitive level — that the signa-
ture scheme thus constructed is existentially unforgeable under an adaptive chosen-
message attack, regardless of how many messages are signed. (In fact, if Π is
strongly unforgeable then so is the chain-based scheme constructed from Π .) In-
formally, this is once again due to the fact that each key-pair (pki,ski) is used to
sign only a single “message” (where in this case the “message” is actually the con-
catenation mi‖pki+1 of a message and a public key). Since we are going to prove
the security of a more efficient scheme in the next section, we do not give a formal
proof of security for the chain-based scheme here.

The chain-based signature scheme is a stateful signature scheme that is exis-
tentially unforgeable under an adaptive chosen-message attack. It has a number of
disadvantages, though. For one, there is no immediate way to eliminate the state
(recall that our ultimate goal is a stateless scheme satisfying Definition 1.2). It is
also not very efficient, in that the signature length, size of the state, and verification
time are all linear in the number of messages that have been signed. Finally, each
signature reveals all previous messages that have been signed. While this does not
technically violate any security requirement for signatures, it is easy to imagine that
this may be undesirable in some contexts. We will eliminate all these advantages in
the next section.

3.2.2 “Tree-Based” Signatures

The signer in the chain-based scheme of the previous section can be viewed as
maintaining a tree, rooted at the public key pk1, whose degree is 1 and whose depth
is equal to the number of messages signed thus far. A natural way to improve the
efficiency of this approach is to use a binary tree in which each node has degree 2. As
before, a signature will correspond to a “certified” path in the tree from a leaf to the
root; notice that as long as the tree has polynomial depth (even if it has exponential
size!), verification can still be done in polynomial time.

Concretely, to sign messages of length k we will work with a binary tree of
depth k having 2k leaves. As before, the signer will add nodes to the tree “on-the-
fly,” as needed (and in particular this ensures that only polynomially many leaves
are explicitly defined, while the rest remain implicit). In contrast to the chain-based
scheme, though, only leaves (and not internal nodes) will be used to certify mes-
sages. Each leaf of the tree will correspond to one of the possible messages of
length k.

In more detail, we imagine a binary tree of depth k where the root is labeled by ε
(i.e., the empty string), and a node that is labeled with the binary string w of length
less than k has left-child labeled w0 and right-child labeled w1. For every node w,
we associate a pair of keys pkw,skw from our one-time signature scheme Π . (We
continue to assume that Π can sign messages up to twice as long as its public key.)

78 3 Constructions Based on General Assumptions

The public key of the root, pkε , is the actual public key of the signer. To sign a
message m ∈ {0,1}k, the signer carries out the following steps:

1. It first generates keys (as needed) for all nodes on the path from the root to the leaf
labeled m. (Some of these public keys may have been generated in the process
of signing previous messages; in this case the previous value — stored as part of
the state — is used.)

2. Next, the signer “certifies” the path from the root to the leaf labeled m by com-
puting a signature on pkw0‖pkw1, using private key skw, for each string w that is
a proper prefix of m.

3. Finally, the signer “certifies” m itself by computing a signature on m using the
private key skm.

The final signature on m consists of the signature on m with respect to pkm, as well
as all the information needed to verify the path from the leaf labeled m to the root.
The signer also updates its state by storing all the key pairs generated as part of the
signing process. A formal description of this scheme is given as Construction 3.2.

Notice that each of the underlying keys in this scheme is used to sign only a
single “message”: each key associated with an internal node signs a pair of public
keys, and keys at the leaves are used to sign a single message.

Before proving security of this tree-based approach, let us note that it improves
on the chain-based scheme in a number of respects. It still allows for signing an
unbounded number of messages. In terms of efficiency, the signature length and
verification time are now proportional to the message length k but are independent
of the number of messages signed. (If some bound ` on the total number of messages
to be signed were known, a modification of the scheme would have signature length
and verification time O(log`).) The scheme is stateful, but we will see that this can
be rectified after we prove the following result.

Theorem 3.3. Let Π be a signature scheme that is existentially unforgeable (resp.,
strongly unforgeable) under a one-time chosen-message attack. Then Construc-
tion 3.2 is existentially unforgeable (resp., strongly unforgeable) under an adaptive
chosen-message attack.

Proof. We prove existential unforgeability, but the proof of strong unforgeability
(assuming Π is strongly unforgeable) is essentially the same. Let Π ∗ denote Con-
struction 3.2. Let A∗ be a probabilistic polynomial time adversary, let `∗ = `∗(k) be
a (polynomial) upper bound on the number of signing queries made by A∗, and set
` = `(k) def= 2k`∗(k)+1. Note that ` upper-bounds the number of public keys from Π
that are needed to generate `∗ signatures using Π ∗. This is because each signature
in π∗ requires at most 2k new keys from Π (in the worst case), and there is one
additional key from Π that is used as the actual public key pkε .

Let ExptA∗,Π∗(1k) denote the experiment in which A∗ interacts with Π ∗ exactly
as in Definition 1.6 (with the only difference being that now the signing oracle main-
tains state). Let δ (k) denote the probability with which A∗ outputs a valid forgery
in ExptA∗,Π∗(1k). Consider the following PPT adversary A attacking the one-time
signature scheme Π :

3.2 Signatures from One-Time Signatures 79

Construction 3.2: A “tree-based” signature scheme

Let Π = (Gen,Sign,Vrfy) be a signature scheme signing messages twice as long as

its public key. For a binary string m, let m|i def= m1 · · ·mi denote the i-bit prefix of m

(with m|0 def= ε , the empty string).

Key generation: Algorithm Gen∗(1k) is defined as follows. On input 1k, compute
(pkε ,skε)←Gen(1k) and output the public key pkε . The private key and initial state
are skε .

Signature generation: To sign a message m ∈ {0,1}k using the current state, algo-
rithm Sign∗ does the following:

1. For i = 0 to k−1:

• If pkm|i0, pkm|i1, and σm|i are not in the current state, compute them:

(pkm|i0,skm|i0)← Gen(1k)

(pkm|i1,skm|i1)← Gen(1k)
σm|i ← Signskm|i

(pkm|i0 ‖ pkm|i1),

and then store all these computed values as part of the state.

2. If σm is not yet included in the state, compute σm ← Signskm(m) and store it as
part of the state.

3. Output the signature
({

σm|i , pkm|i0, pkm|i1
}k−1

i=0 , σm

)
.

Signature verification: On input a public key pkε , a message m ∈ {0,1}k, and
signature

({
σm|i , pkm|i0, pkm|i1

}k−1
i=0 , σm

)
, output 1 if and only if:

1. Vrfypkm|i
(pkm|i0 ‖ pkm|i1,σm|i)

?= 1 for all i ∈ {0, . . . ,k−1}.

2. Vrfypkm(m,σm) ?= 1.

Adversary A:
A is given as input a public key pk (the security parameter k is
implicit).

• Choose a random index i∗ ← {1, . . . , `}. Construct a list
pk1, . . . , pk` of keys as follows:
– Set pki∗ := pk.
– For i 6= i∗, compute (pki,ski)← Gen(1n).

• Run A∗ on input the public key pkε = pk1. When A∗ requests
a signature on a message m do:

80 3 Constructions Based on General Assumptions

1. For i = 0 to k−1:
– If the values pkm|i0, pkm|i1, and σm|i have not yet been

defined, then set pkm|i0 and pkm|i1 equal to the next
two unused public keys pk j and pk j+1, and com-
pute a signature σm|i on pkm|i0 ‖ pkm|i1 with respect
to pkm|i .

3

2. If σm is not yet defined, compute a signature σm on m
with respect to pkm (see footnote 3).

3. Give
({

σm|i , pkm|i0, pkm|i1
}k−1

i=0 , σm

)
to A∗.

• Say A∗ outputs a message m and a signature
({

σ ′m|i , pk′m|i0, pk′m|i1
}k−1

i=0 , σ ′
m

)
.

If this is a valid signature on m, then:
Case 1: Say there exists a j ∈ {0, . . . ,k− 1} for which
pk′m| j0 6= pkm| j0 or pk′m| j1 6= pkm| j1; this includes the case
when pkm| j0 or pkm| j1 were never defined by A. Take the
minimal such j, and let j∗ be such that pk j∗ = pkm| j = pk′m| j
(such a j∗ exists by the minimality of j). If j∗ = i∗, output
(pk′m| j0‖pk′m| j1, σ ′m| j).

Case 2: If case 1 does not hold, then pk′m = pkm. Let j∗ be
such that pk j∗ = pkm. If j∗ = i∗, output (m,σ ′m).

The final step of A may seem more complicated than it is due to the burdensome
notation, but what is going on is rather simple: If A∗ forges a signature (with respect
to Π ∗) on a message m, then this implies that A∗ has effectively forged a signature
(with respect to Π) somewhere along the path from the root to the leaf associated
with m. The last step of A is simply to find the first such place where this occurs, and
to identify the public key pk j∗ from its list of public keys {pk1, . . . , pk`} where the
forgery occurs. A succeeds in forging a signature (with respect to Π) if it happens
to be the case that pk j∗ = pki∗ = pk (the public key A was given initially).

The view of A∗ when run as a subroutine by A, when A is given pk generated
by Gen(1k), is distributed identically to the view of A∗ in ExptA∗,Π∗(1k). Thus, the
probability that A∗ outputs a forgery when it is run as a subroutine by A is ex-
actly δ (k). Assuming that A∗ outputs a forgery, consider each of the two possible
cases described above:

Case 1: Since i∗ was chosen uniformly at random and is independent of the view of
A∗, the probability that j∗ = i∗ is exactly 1/`. If j∗ = i∗, then A requested a single
signature on the message pkm| j0‖pkm| j1 with respect to the public key pk = pki∗ =

3 If i 6= i∗ then A can compute a signature with respect to pki by itself. For i = i∗, the algorithm A
can obtain a (single) signature with respect to pki∗ by making the appropriate query to its signing
oracle. This is what is meant here.

3.2 Signatures from One-Time Signatures 81

pkm| j that it was given. Moreover,

pk′m| j0‖pk′m| j1 6= pkm| j0‖pkm| j1

and yet σ ′m| j is a valid signature on pk′m| j0‖pk′m| j1 with respect to pk. Thus, A outputs
a valid forgery in this case.

Case 2: Again, since i∗ was chosen uniformly at random and is independent of the
view of A∗, the probability that j∗ = i∗ is exactly 1/`. Assuming j∗ = i∗, then A did
not request any signatures with respect to the public key pk = pk j∗ = pkm and yet
σ ′m is a valid signature on m with respect to pk. We see again that A outputs a valid
forgery in this case.

That is, conditioned on A∗ outputting a forgery (and regardless of which of the
above cases occurs) A outputs a forgery with probability exactly 1/`. This means
that A succeeds in outputting a valid forgery with probability exactly δ (k)/`. By the
assumed security if Π and the fact that ` is polynomial, we conclude that δ (k) must
be negligible.

Another approach. For completeness, we remark that a variant of the tree-based
approach can be applied directly to any one-time signature scheme Π (i.e., even if Π
cannot sign messages twice as long as its own public key). We describe this variant
informally. The public key of Π ∗ contains pkε as in Construction 3.2 but now also
include a key s for a universal one-way hash function. The same binary tree structure
as in Construction 3.2 is used, except that now a node labeled w (associated with the
key pair (pkw,skw)) authenticates its two children (associated with the key pairs
(pkw0,skw0) and (pkw1,skw1), respectively) by computing

σw ← Signskw (Hs (pkw0 ‖ pkw1)) .

(Messages are signed by leaves exactly as before, without any hashing.) The obser-
vation is that universal one-way hashing suffices here because all the public keys
associated with internal nodes are outside the control of the attacker (i.e., they are
chosen by the signer independent of the hash key s).

Reducing the tree depth. To sign messages of length `, Construction 3.2 utilizes
a tree of depth ` and associates each possible message m ∈ {0,1}` with the leaf la-
beled by m. (Of course, the underlying one-time signature scheme Π must be able to
sign messages of length `.) Since the signature time, verification time, and signature
length all depend linearly on the tree depth, the efficiency of the scheme can be im-
proved by decreasing the depth of the tree. A tree of depth ω(logk) can be used (to
sign messages of arbitrary length) in the following way: when signing a message,
choose a random leaf; sign the message using the key associated with that leaf; and
then authenticate the path from that leaf to the root exactly as in Construction 3.2.
(It does not matter if different leaves end up being used to sign the same message. In
particular, the signer need not store the leaves that are used to sign the different mes-
sages as part of its state [although it will continue to store the keys associated with

82 3 Constructions Based on General Assumptions

each node in the tree, including the leaves].) If the same leaf ever gets used to sign
two different messages, an adversary can forge a signature (using that same leaf);
however, this occurs with only negligible probability since the number of leaves is
super-polynomial. Besides taking this complication into account, the security proof
is otherwise unchanged.

3.2.3 A Stateless Solution

In Construction 3.2, as described, the signer’s state depends on the messages that
have been signed. One could imagine, however, having the signer generate all nec-
essary information (for all the nodes in the entire tree) in advance, at the time of key
generation. (That is, at the time of key generation the signer could generate keys
{(pkw,skw)} and signatures {σw} for all binary strings w of length at most k.) If key
generation were done in this way, the signer would not have to update its state at
all; these values would instead all be stored as part of a (large) private key, and we
would obtain a stateless scheme. The problem with this approach, of course, is that
generating all these values at the time of key generation requires exponential time.

An alternative is to store some randomness that can be used to generate the values
{(pkw,skw)} and {σw}, as needed, rather than storing the values themselves. That
is, the signer could store a random string rw for each w, and whenever the values
pkw,skw were needed the signer could compute (pkw,skw) := Gen(1k;rw). (Simi-
larly, if the signing procedure were probabilistic, the signer could store r′w and then
set σw := Signskw(pkw0‖pkw1;r′w).) Generating and storing sufficiently many ran-
dom strings at the time of key generation, however, would still require exponential
time and space.

A simple modification of this alternative gives a polynomial-time solution. In-
stead of storing random rw and r′w as suggested above, the signer can store two
keys k,k′ for a pseudorandom function F . Roughly, a keyed function F is pseudo-
random if the function Fk(·) (for random key k) is indistinguishable from a truly
random function with the same domain and range. (The reader is referred to [72] for
a formal definition of pseudorandom functions. This is the only place in the book
where they are used.) When needed, the values pkw,skw can now be generated by
the following two-step process:

1. Compute rw := Fk(w).4

2. Compute (pkw,skw) := Gen(1n;rw) (as before).

In addition, the key k′ is used to generate the value r′w that is used to compute the
signature σw. This gives a stateless signature scheme in which key generation (as
well as signing and verifying) can be carried out in polynomial time. Intuitively,
this works because storing a random function is equivalent to storing all the rw and
r′w values that are needed, and storing a pseudorandom function is “just as good”.

4 We assume F handles variable-length inputs, and has output length that is sufficiently long.

3.3 Signatures from One-Way Functions 83

We leave it as an exercise to prove that this modified scheme remains existentially
unforgeable under an adaptive chosen-message attack.

3.3 Signatures from One-Way Functions

We now have all the pieces in place to construct a CMA-secure signature scheme
from any one-way function.

3.3.1 Putting the Pieces Together

The results of the previous section can be summarized as follows:

Theorem 3.4. Assuming the existence of a signature scheme that is strongly un-
forgeable under a one-time chosen-message attack and can sign messages twice as
long as its own public key, there exists a signature scheme that is strongly unforge-
able under an adaptive chosen-message attack.

Proof. A signature scheme as assumed in the theorem implies the existence of one-
way functions (Theorem 2.1); these, in turn, are known to imply the existence of
pseudorandom functions (see [64]). The discussion in the preceding section then
gives the stated result.

Theorem 3.5. Assuming the existence of one-way functions, there exists a signature
scheme that is strongly unforgeable under an adaptive chosen-message attack.

Proof. By the preceding theorem, it suffices to show how to construct a signature
scheme Π that is strongly unforgeable under a one-time chosen-message attack and
can sign messages twice as long as its own public key. Recall that the existence of
one-way functions implies the existence of universal one-way hash functions (The-
orem 2.9), and hence the existence of a signature scheme Π ′ that is strongly un-
forgeable under a one-time chosen-message attack (Theorem 3.2). Applying Con-
struction 2.5 to Π ′ gives a signature scheme Π with the required properties.

3.3.2 Thoughts on the Construction

It is worth reflecting just how inefficient and complicated the resulting construction
of a CMA-secure signature scheme is (when based directly on one-way functions,
assuming no other primitives). Given a one-time signature scheme Π that can sign
messages twice as long as its own public key, the stateful tree-based construction
of a CMA-secure signature scheme Π ∗ described in Section 3.2.2 is conceptually

84 3 Constructions Based on General Assumptions

simple but not very efficient, with the signing time, verification time, and signature
length all depending linearly on the tree depth. (The tree depth is O(k) as described
in Section 3.2.2, but can be improved to ω(logk) as discussed at the end of that
section.) Making Π ∗ stateless requires a pseudorandom function: although block
ciphers such as DES or AES (see [72]) provide efficient practical instantiations of
pseudorandom functions, building a pseudorandom function from a one-way func-
tion is incredibly complex and inefficient.

Moreover, the underlying (one-time) scheme Π relies in an essential way on the
construction of universal one-way hash functions from one-way functions — itself
a complicated and inefficient process. Given such a hash function, building Π is
not too complex (and, as noted following Theorem 3.5, can be further simplified)
but is not very efficient, either. (The alternate approach discussed at the end of Sec-
tion 3.2.2 still requires a universal one-way hash function.)

Some sort of tree-based approach seems essential to constructing signatures from
one-way functions, although no proof of this is known. (One way to formalize the
question would be to ask whether signature schemes built from one-way functions
inherently have long signatures. In fact, a tree-based approach seems inherent even
if we are willing to rely on stronger assumptions such as [clawfree] trapdoor per-
mutations or collision-resistant hash functions.) More surprising, perhaps, is that
all known constructions of (stateless) signature schemes from one-way functions
rely on pseudorandom functions and universal one-way hash functions, even though
there appears to be no inherent reason why this should be the case.

The above should only motivate the reader to either improve on the known con-
structions, or to show that further improvements are impossible!

3.4 Further Reading

We survey here the historical development of constructions of signature schemes
based on progressively weaker assumptions, even though we have not covered all
these early constructions in the text.

Lamport’s one-time signature scheme was published in 1979 [76], though it was
already described in [40]. Other, more efficient, constructions (that do not rely on
specific number-theoretic assumptions but in some cases assume more than one-way
functions) include those given in [79, 80, 45, 20, 15, 98, 85].

The first construction of a CMA-secure signature scheme was given by Gold-
wasser, Micali, and Rivest [61] based on the existence of clawfree trapdoor per-
mutations. The Goldwasser-Micali-Rivest scheme was stateful, and Goldreich [55]
(based on an idea credited to Levin) showed how to make it stateless using pseudo-
random functions. Their scheme relies on a tree-based construction (similar, though
not identical, to what is outlined in this chapter) whose genesis can be traced back
to Merkle [80, 78, 79]. The idea for reducing the tree depth to ω(logk) is also due
to Goldreich [55].

3.4 Further Reading 85

Given the benefit of hindsight, it is interesting to observe that alternate — and,
in some cases, simpler — constructions of stateful CMA-secure signature schemes
could have been obtained at around the same time as the journal publication of [61].
(Note that the conference version of [61] appeared in 1984.) Goldwasser, Micali,
and Yao [62] gave a KMA-secure scheme that could have been converted to a CMA-
secure scheme using the techniques from Section 1.7.2. Their scheme is based on
specific assumptions like RSA and factoring, but could have also been viewed as
relying on clawfree trapdoor permutations. The tree-based approach described in
Section 3.2.2 is based on ideas by Merkle [80] that go back to the late ’70s; coupled
with Lamport’s scheme, this could have been used to construct signature schemes
from collision-resistant hash functions via Construction 3.2. (Collision-resistant
hash functions, in turn, can be constructed from clawfree permutations [37].) None
of this is meant to take away anything from the incredible achievement of [61],
which provides the first rigorous proof of security for any signature scheme con-
struction.

Following the work of [61], the race was on to find the minimal assumptions
under which signature schemes could be based. Bellare and Micali [5, 6] showed
that trapdoor permutations suffice. Naor and Yung [88] introduced the concept of
universal one-way hash functions; showed that these suffice for constructing sig-
nature schemes; and gave constructions of universal one-way hash functions from
one-way permutations, this establishing that this assumption implies the existence
of signature schemes. Subsequently, de Santis and Yung [39] showed that one-to-
one one-way functions imply the existence of universal one-way hash functions.
The question was finally settled by Rompel [100] (see also [71]), who showed that
one-way functions suffice.

Apropos the discussion in Section 3.3.2, lower bounds on the (black-box) ef-
ficiency of one-time signature schemes based on general assumptions have been
shown [52, 3].

Chapter 4
Signature Schemes Based on the (Strong) RSA
Assumption

4.1 Introduction

The signature schemes described in the previous chapter have the advantage of be-
ing based on very weak cryptographic assumptions, but have the drawback of being
incredibly inefficient. (Even the Lamport scheme, which could conceivably be used,
has very large public keys and signatures.) It is natural to wonder whether relying
on stronger, more specific assumptions might yield more efficient schemes. Un-
fortunately, progress in this direction has been limited: only a handful of schemes
are known that are more efficient than the “generic” constructions of the previous
chapter and, of these, even fewer are efficient enough to compete with the signature
schemes currently used in practice.1 In fact, and somewhat disappointingly, the only
schemes we currently have that come close to the efficiency of signature schemes
currently in use are based on relatively “new” cryptographic assumptions discussed
in this and the following chapter. (Admittedly, this point is debatable and depends
to some extent on what one takes as his measure of efficiency.)

In this chapter we present signature schemes based on the RSA assumption or a
recent variant (discussed later) called the “strong” RSA assumption. In the following
chapter we will introduce schemes that rely on bilinear maps.

4.1.1 Technical Preliminaries

We begin with some technical lemmas that will prove useful in the analysis of the
schemes discussed in this chapter.

The RSA assumption (informally) is that given a modulus N (that is a product of
two primes), a random element y ∈ Z∗N , and an exponent e that is relatively prime
to φ(N), it is “hard” to compute the eth root of y (modulo N). Might it be easier to

1 We stress that here we are referring to schemes that can be proven secure without resorting to the
random oracle model. Part III of this book discusses schemes of the latter type.

© Springer Science+Business Media, LLC 2010
87J. Katz, Digital Signatures, DOI 10.1007/978-0-387-27712-7_4,

88 4 Signature Schemes Based on the (Strong) RSA Assumption

compute the eth root of some power of y; i.e., to compute the eth root of ye′ mod N
for some e′ of our choice? The following lemma shows that this is not the case as
long as e and e′ are relatively prime.2 Specifically, the lemma states that if e,e′ are
relatively prime then an eth root of ye′ mod N can be used to compute an eth root of
y itself. (Note that the lemma does not require e or e′ to be relatively prime to φ(N).)

Lemma 4.1. Given N, elements x,y ∈ Z∗N , and integers e,e′ for which it holds that
gcd(|e|, |e′|) = 1 and xe = ye′ mod N, an eth root of y (modulo N) can be computed
in polynomial time.

Proof. Assume without loss of generality that e,e′ are positive (if not, we can al-
ways re-write the equation by taking inverses). Applying the extended Euclidean
algorithm to e,e′ we can efficiently compute integers A,B satisfying

Ae+Be′ = gcd(e,e′) = 1.

We claim that yAxB mod N (which can be computed easily given what is known) is
an eth root of y. Indeed, we have

(
yAxB)e

mod N = yAe (xe)B mod N

= yAe(ye′)B mod N

= yAe+Be′ = y1 = y mod N,

concluding the proof.

A nice consequence of the above is the observation, due to Shamir [102], that it
does not become any easier to compute y1/e mod N even given {y1/ei mod N} for
some set of primes {ei} not containing e. More formally:

Lemma 4.2. Say the RSA problem is hard relative to GenRSA, and let {ei}`
i=1 be

a set of primes that does not contain the exponent e output by GenRSA and such
that gcd(φ(N),ei) = 1 for all N output by GenRSA and all i. Then the following is
negligible for all PPT algorithms A:

Pr
[

(N,e,d)← GenRSA(1k);y← Z∗N ;
x← A(1k,N,e,y,{ei,y1/ei}`

i=1)
: xe = y mod N

]
. (4.1)

Proof. Given a PPT algorithm A, construct the following algorithm A′ which at-
tempts to solve the (standard) RSA problem:

Algorithm A′:
The algorithm is given (N,e,y) as input.
Its goal is to compute y1/e mod N.

• Set ê := ∏`
i=1 ei.

2 Note that it may be trivial to compute the eth root of ye′ if gcd(e,e′) 6= 1. For example, if e′ = k ·e
for an integer k then yk is the eth root of ye′ .

4.1 Introduction 89

• Set êi := ê/ei for 1≤ i≤ `. (Note êi is an integer for all i.)
• Set Y := yê mod N and Yi := yêi mod N for 1≤ i≤ `.
• Run A(1k,N,e,Y,{ei,Yi}`

i=1) and obtain output X .

• If Xe ?= Y = yê mod N, then compute x = y1/e mod N using
Lemma 4.1.

The key to the above algorithm is that the êi are all integers, and so A′ can efficiently
compute the values

Yi = yêi = yê/ei = Y 1/ei mod N.

Thus, A′ is a PPT algorithm. Furthermore, Lemma 4.1 does indeed apply since
gcd(e, ê) = 1 (this follows easily since the {ei} are prime and e 6∈ {ei}). We con-
clude that A′ successfully outputs the eth root of its given input value y whenever A
successfully outputs the eth root of its input value Y . The theorem follows by noting
that the distribution on the inputs given to A in the above algorithm is identical to the
distribution on the inputs given to A in Equation (4.1): since gcd(φ(N),∏i ei) = 1,
the value Y = yê is uniformly distributed in Z∗N when y is uniformly distributed in
Z∗N , and it is easy to see from what we have already said that the remainder of A’s
inputs have the correct distribution.

We conclude that A′ computes the eth root of y with probability exactly that given
by Equation (4.1). If the RSA problem is hard relative to GenRSA, then, Equa-
tion (4.1) must be negligible for any PPT algorithm A as claimed.

We do not directly use Lemma 4.2 in what follows, though we will often implic-
itly rely on the techniques used in its proof. To get a feeling for why the above lemma
might be useful in our context, note that it suggests the following very simple signa-
ture scheme (which only supports a polynomial-size message space as described):
the public key contains (N,y,{ei}`

i=1) (where the {ei} satisfy the conditions of the
lemma above); a signature on the message i (for 1≤ i≤ `) is given by y1/ei mod N.
Lemma 4.2 implies that it is hard to compute the signature on a message j even
when given the signatures on all other messages {i}i 6= j. (This can be turned into a
formal proof.) We will see in Section 4.3.5 that an extension of this idea yields a
relatively efficient scheme (which is, however, proved secure based on a stronger
assumption than standard RSA).

Lemma 4.2 requires a set of (distinct) primes {ei} each of which is relatively
prime to φ(N). In the applications that follow, it will be convenient to fix this set
of primes independently of N (and, in particular, before N is even known). An easy
way to achieve this is to choose the primes such that ei > max{p,q}, where p,q are
the factors of N. This is easy to ensure (without knowledge of the factorization of N)
by choosing ei as a (k +1)-bit prime (recall that p and q, the factors of N, are k-bit
integers when GenRSA is run on security parameter 1k).

90 4 Signature Schemes Based on the (Strong) RSA Assumption

4.1.2 Outline of the Chapter

We present here a number of signature schemes based on the RSA and strong RSA
assumptions. We begin by describing a signature scheme proposed by Dwork and
Naor, as well as an improvement of this scheme due to Cramer and Damgård. Both
of these schemes rely on a tree-based approach similar to that used in the previous
chapter, with the efficiency improvements being due to the fact that, by relying on
the RSA assumption, trees of larger degree (and hence lower depth) can be used. We
then show a recent scheme by Hohenberger and Waters that can also be viewed as
using a tree-based approach, but has the advantage of yielding shorter signatures. All
these schemes are proven secure based on a variant of the standard RSA assumption
(see the next section for details).

The RSA assumption states that, given N, e, and y, it is infeasible to compute
y1/e mod N. The strong RSA assumption (described formally in Section 4.3) is that,
given N and y, it is infeasible to compute (e,x1/e) for any e≥ 2, even if we allow the
freedom to choose e. Cramer and Shoup have shown how the strong RSA assump-
tion can be used to dramatically simplify and improve the efficiency of the Cramer-
Damgård scheme; we discuss the resulting Cramer-Shoup signature scheme, as well
as further improvements of this scheme due to Fischlin, in Sections 4.3.3 and 4.3.4.
A different approach, but also relying on the strong RSA assumption, is taken in the
Gennaro-Halevi-Rabin scheme shown in Section 4.3.5.

4.2 Signature Schemes Based on the RSA Assumption

In this section we will show three schemes based on the RSA assumption. Each of
these schemes, as described, actually requires a variant of the RSA assumption that
we formalize now.

Throughout this section, let GenModulus be a probabilistic polynomial-time al-
gorithm that, on input 1k, outputs a modulus N along with two (distinct) k-bit primes
p,q with N = pq. Let GenPrime be a probabilistic polynomial-time algorithm that,
on input 1k, outputs a prime e of length at least k. We require that GenPrime gener-
ates primes “at random” in the sense that if we run GenPrime twice, the outputs of
these two executions are equal with only negligible probability. (This immediately
implies that even if we run GenPrime polynomially many times, the probability of
getting a repeated output is negligible.) We highlight that GenPrime does not take N
or the factors of N as input, but if e is a prime of length at least k (and N is a product
of k-bit primes) then we are guaranteed that gcd(e,φ(N)) = 1.

We use the following variant of the RSA assumption in Sections 4.2.1 and 4.2.2:

Definition 4.1. The RSA problem is hard relative to GenModulus and GenPrime
if for all polynomials p (with p(k) ≥ k for all k) and all PPT algorithms A, the
following is negligible:

4.2 Signature Schemes Based on the RSA Assumption 91

Pr
[

(N, p,q)← GenModulus(1k);y← Z∗N ;
e← GenPrime(1p(k));x← A(N,e,y)

: xe = y mod N
]
.

In other words, this definition requires that the RSA problem is hard relative to a
“random” large public exponent e.

In Section 4.2.3 we use a slightly stronger version of the above:

Definition 4.2. The RSA problem is hard relative to GenModulus and GenPrime,
even with public coins if for all PPT algorithms A, the following is negligible:

Pr
[

(N, p,q)← GenModulus(1k);y← Z∗N ;
ω ←{0,1}k;e← GenPrime(1k;ω);x← A(N,e,y,ω)

: xe = y mod N
]
.

In other words, this definition requires that the RSA problem is hard relative to a
“random” large public exponent e, even if the random coins used to generate e are
known.

4.2.1 The Dwork-Naor Scheme

Dwork and Naor [42] showed that by relying on specific properties of the RSA prob-
lem it is possible to construct signature schemes that are more efficient than what
would be obtained by using the generic construction of the previous chapter. As in
Construction 3.2, the signer in the Dwork-Naor scheme maintains a tree of vertices.
Each vertex is here associated with a label that, for now, can be viewed as roughly
analogous to the public key that is associated with each vertex in Construction 3.2.
Continuing the analogy to Construction 3.2, here too the label of the root vertex is
included as part of the public key; vertices authenticate their children; and messages
are signed by associating them with leaves of the tree (although the exact way this
is done is now slightly different). The main novelty of the Dwork-Naor scheme —
and the key feature that makes it more efficient than a naive instantiation of Con-
struction 3.2 — is that in the Dwork-Naor scheme a vertex can authenticate each of
its children independently instead of having to authenticate its children all at once.
Specifically, in the Dwork-Naor scheme a verifier can check that a particular node v
(with some known label) is authenticated by its parent without having to know the
labels of any of v’s siblings. (In contrast, the verifier in Construction 3.2 needed to
know the labels of all of v’s siblings in order to verify authenticity of v.) As a con-
sequence, the Dwork-Naor scheme can more readily use a tree of larger degree, and
hence smaller depth, resulting in a more efficient construction.3 We now describe in
more detail exactly how this is accomplished.

Fix some integer `≥ 2 representing the degree of the tree that will be constructed
as part of the scheme. The public key in the Dwork-Naor scheme includes a modulus

3 Of course, Construction 3.2 could also have used a tree of larger degree (given a signature scheme
capable of signing sufficiently long messages), but the reader can check that this will reduce the
efficiency in that case.

92 4 Signature Schemes Based on the (Strong) RSA Assumption

N (a product of two k-bit primes) as well as a list Y = {y1, . . . ,y2k} of elements
from Z∗N and a set of distinct primes E = {e1, . . . ,e`} that are all relatively prime
to φ(N). In the tree that will be constructed vertices will be labeled with strings of
length 2k; observe that elements of Z∗N can be represented as strings of this length.
The basic authentication step, which we now describe, enables a vertex with label L
to authenticate its ith child (1≤ i≤ `) having label L′, and is defined as follows:

auth(L i→ L′) def=

L · ∏

j : [L′] j=1
y j

1/ei

mod N (4.2)

(in the above, [L′] j refers to the jth bit of L′). This authentication information can
be computed if the factorization of N is known. Note also that given a (presum-
ably authenticated) parent vertex with label L, its candidate ith child with label L′,
and authentication information auth, it is easy to verify the authenticity of L′ with
respect to a known public key by checking whether

authei ?= L · ∏
j : [L′] j=1

y j mod N. (4.3)

With the above basic authentication step in place, designing a full-fledged signa-
ture scheme is relatively straightforward given the results of the previous chapter.
The signer will maintain a tree of degree ` and depth d, where the root of the tree
is assigned a label that is included as part of the public key. Messages will be as-
sociated with the leaves of this tree, meaning that the scheme can be used to sign
at most4 B = `d messages. (For a fixed value of B, larger values of ` translate to a
larger public key but shorter signatures.) To sign a message m ∈ {0,1}2k, the signer
assigns the label m to the next unused leaf, and then authenticates the path from the
root to this leaf. The verifier validates the claimed sequence of authenticators in the
obvious way. Note that the scheme, as described, is stateful since the signer must
keep track of both which leaves have been used as well as the labels assigned to
internal nodes in the tree.5

The scheme is formally described as Construction 4.1.
Efficiency of the scheme can be improved by using a collision-resistant hash

function H to map elements of Z∗N to shorter strings. In this case, a basic authenti-
cation step would take the form

auth(L i→ L′) def=

L · ∏

j : [H(L′)] j=1
y j

1/ei

mod N .

4 It is not difficult to extend the scheme so that an unbounded number of messages can be signed;
for simplicity, however, the scheme is described with a fixed upper bound on the number of signa-
tures to be issued.
5 Although it is possible to avoid maintaining state using essentially the same techniques described
in Section 3.2.3, doing so would reduce the efficiency of the scheme.

4.2 Signature Schemes Based on the RSA Assumption 93

Construction 4.1: The Dwork-Naor scheme

Let GenModulus,GenPrime be as described in the text.

Key generation: On input security parameter 1k, proceed as follows:

• Run (N, p,q)← GenModulus(1k).
• For i ∈ {1, . . . , `}, compute ei ← GenPrime(1k). Set E := {e1, . . . ,e`}.
• For i ∈ {1, . . . ,2k}, let yi be a uniformly distributed element in Z∗N . Also choose

Lv0 ← Z∗N . Set Y := {y1, . . . ,y2k}.
• The public key is (N,Lv0 ,Y,E) and the secret key is p,q.

Signature generation: The signer implicitly holds a tree of depth d and out-degree
` whose root v0 has label Lv0 . To generate a signature on a message m ∈ {0,1}2k, let
vd be the left-most leaf in the tree that has not yet been used. Assign label Lvd := m
to this leaf. Let (i1, . . . , id) denote the sequence of edges on the path from the root
to this leaf (where each i1, . . . , id lies in the range {1, . . . , `}), and let (v1, . . . ,vd) be
the nodes on this path (not including the root). Let (Lv1 , . . . ,Lvd) denote the labels of
these nodes (if any of these nodes have not yet been assigned a label, they are now
assigned a label chosen uniformly at random from Z∗N). The signature on m is then:

(i1, . . . , id),(Lv1 , . . . ,Lvd−1),auth(Lv0

i1→ Lv1), . . . ,auth(Lvd−1

id→ Lvd),

where the auth(L i→ L′) are computed as in Equation (4.2).

Signature verification: A signature

(i1, . . . , id),(Lv1 , . . . ,Lvd−1),auth1, . . . ,authd

on a message m is verified in the natural way, by setting Lvd := m, and then verifying
auth1, . . . ,authd as in Equation (4.3).

It would then suffice for the set Y to include, say, only 160 elements of Z∗N rather
than 2048 elements of Z∗N .

Theorem 4.1. If the RSA problem is hard relative to GenModulus and GenPrime,
the Dwork-Naor scheme is existentially unforgeable under an adaptive chosen-
message attack.

Proof. Given a PPT adversary A attacking the scheme, we construct a PPT algorithm
A′ which attempts to solve the RSA problem. Before giving an informal overview of
A′, we first introduce some terminology. Say a label Lv associated with a particular
node v in the tree is legitimate if Lv is the label assigned to v by the legitimate signer,
and say the label is illegitimate otherwise. (We assume without loss of generality that
A requests `d signatures before it outputs its forgery, and so the signer does indeed
assign a label to every node in the tree.) If A outputs a valid signature forgery

94 4 Signature Schemes Based on the (Strong) RSA Assumption

(i1, . . . , id),(L̃v1 , . . . , L̃vd−1),auth1, . . . ,authd

on some new message m then, letting L̃vd := m and L̃v0 := Lv0 , there must be some
minimum r ∈ {1, . . . ,d} for which label L̃vr−1 is legitimate (for node vr−1) but label
L̃vr is illegitimate (for node vr). We will refer to vr−1 as the critical node and call
ir (indicating the position of vr among the children of vr−1) the critical index. If
we let Lvr denote the legitimate label of vr, then there must be a minimum position
j ∈ {1, . . . ,2k} for which the jth bit of L̃vr and the jth bit of Lvr differ; call such j
the critical position.

We are now ready to give an overview of A′. Algorithm A′ is given an instance
(N,y,e) of the RSA problem, and will use A as a subroutine in an attempt to solve the
given instance. At the beginning of its execution, A′ guesses values i∗ ∈ {1, . . . , `}
and j∗ ∈ {1, . . . ,2k} for the critical index and critical position, respectively; it then
generates a public key and simulates the actions of a legitimate signer for A. If A
outputs a forgery and the guesses i∗, j∗ made by A′ are correct, then A′ will be able
to solve its given instance of the RSA problem; since this happens with inverse
polynomial probability, we see that that the success probability of A is polynomially
related to the success probability of A′. We remark that A′ does not need to guess
the critical node.

We now describe A′ in more detail. A′ is given N,y, and a prime e, and is supposed
to compute y1/e mod N. To do this, it first generates a public key and node labels in
the following way:

• Choose random i∗ ∈ {1, . . . , `} and j∗ ∈ {1, . . . ,2k}. (As described above, i∗ rep-
resents a guess as to the critical index of the forgery output by A, and j∗ represents
a guess as to the critical position.)

• Set ei∗ := e. For i 6= i∗, compute ei ← GenPrime(1k); set E := {e1, . . . ,e`}. Let

ê def= ∏i ei. (We assume throughout the following that the {ei} are distinct, since
this occurs with all but negligible probability.)

• Set y j∗ := yê/ei∗ mod N. For j 6= j∗, choose s j ← Z∗N and set y j := sê
j mod N. Let

Y := {y1, . . . ,y2k}.
• For each non-leaf node v in the tree, A′ now generates a label Lv. It does so in a

way that ensures it can compute appropriate authentication values for all nodes
(except possibly the leaves), as we will discuss. For each non-leaf node v, we will
let bv denote the j∗th bit of Lv
A′ begins by choosing a random bit bv for every leaf node v. Starting from the
nodes at level d− 1 and working backwards to the root (at level 0), A′ assigns
label Lv to node v as follows:

– Let v′ be the i∗th child of v, with associated bit bv′ .
– Choose random rv ∈ Z∗N and compute

Lv := rê
v/y

bv′
j∗ mod N.

The bit bv associated with node v is defined to be the j∗th bit of Lv.

4.2 Signature Schemes Based on the RSA Assumption 95

• The public key is (N,Lv0 ,Y,E), where Lv0 is the value assigned to the root v0 in
the above procedure.

We claim that both the public key and the labels generated in the above process
are distributed exactly the same as they would be in a real execution of the signature
scheme. It is immediate that N and the {ei} have the correct distribution. (Here,
we use the fact that the prime e given as input to A′ is generated using GenPrime.)
Furthermore, since the initial input y as well as the {s j} are all uniformly distributed
in Z∗N , and the {ei} are all relatively prime to φ(N), it follows that the {y j} are
uniformly distributed as required. One can also easily check that the label of every
non-leaf node is a uniform element of Z∗N .

We may also observe that, due to the way the {yi} are computed, A′ can compute
y1/ei

j mod N for all (j, i) 6= (j∗, i∗). In particular, then, A′ is able to compute the
necessary authentication value for any internal node v′ (with label Lv′) having parent
v (with label Lv): Indeed, if v′ is the i∗th child of v then

auth(Lv
i∗→ Lv′)

def=

Lv · ∏

j : [Lv′] j=1
y j

1/ei∗

mod N

=

rê
v · ∏

j : [Lv′] j=1

j 6= j∗

y j

1/ei∗

mod N,

using the fact that [Lv′] j∗
def= bv′ . Since, by construction, A′ knows the ei∗ th root of

y j when j 6= j∗, the desired authentication value can be computed. Similarly, if v′ is
the ith child of v for some i 6= i∗, then

auth(Lv
i→ Lv′) =

(rê

v/yb
j∗) · ∏

j : [Lv′] j=1
y j

1/ei

mod N

for some bit b; since A′ knows the eith root of every y j (including y j∗), the necessary
authentication value can again be computed.

Furthermore, we show how A′ can compute the desired answer y1/e if its guesses
for i∗ and j∗ are correct. Say A outputs a forged signature which contains an ille-
gitimate label L̃v′ associated with a node v′, where v′ is the i∗th child of its parent v
having legitimate label L̃v = Lv. Let Lv′ denote the legitimate label of node v′, and
assume further that L̃v′ and Lv′ differ on their j∗th bit. As part of its forgery, A must

have output a value auth = auth(Lv
i∗→ L̃v′) satisfying:

authei∗ = Lv · ∏
j : [L̃v′] j=1

y j mod N

96 4 Signature Schemes Based on the (Strong) RSA Assumption

= (rê
v/y

bv′
j∗) · ∏

j : [L̃v′] j=1

y j mod N

= rê
v · y1−2bv′

j∗ · ∏
j : [L̃v′] j=1

j 6= j∗

y j mod N,

relying here on the fact that [L̃v′] j∗ = 1−bv′ (since [Lv′] j∗ = bv′ , and Lv′ and L̃v′ differ

on their j∗th bit). Let S def= { j : [L̃v′] j = 1∧ j 6= j∗} and b def= bv′ . Re-arranging, using
the fact that e = ei∗ , and substituting the chosen values for the {y j}, we obtain:

 auth

rê/e
v ∏ j∈S sê/e

j

e

= y(1−2b)·(ê/e) mod N.

Since (1−2b) ∈ {−1,1} and ê/e is relatively prime to e, Lemma 4.1 shows that A′
can efficiently compute the eth root of y, as desired.

One piece is missing in our informal description of A′. We showed earlier that
A′ can compute the necessary authentication values for any internal node; however,
this does not extend to the case of computing the necessary authentication values
for the leaves. The problem is that the labels for the leaves are outside the control
of A′, since A chooses “labels” for the leaves by selecting messages to be signed.
We remark that it would be easy to show that the Dwork-Naor scheme is existen-
tially unforgeable under a known message attack (and then apply Construction 1.2
to obtain security under a chosen-message attack); as we will see, however, the
Dwork-Naor scheme can be proven secure as-is under a chosen-message attack.

To be precise about where the difficulty lies, note that for any leaf v that is not an
i∗th child, A′ can compute the desired authentication value regardless of the message
m chosen by A to be assigned to this leaf. On the other hand, when a leaf v is an i∗th
child then A′ can compute the desired authentication value only when bv is equal to
the j∗th bit of the message m chosen by A to be assigned to this leaf. Since the view
of A is independent of bv, it will be possible for A′ to generate a valid signature with
probability 1/2. Unfortunately, this is not enough to provide a “good” simulation
since there are polynomially many leaves of the tree that are i∗th children (and A′
would have to answer correctly for all such leaves).

Instead, we will have A′ rewind A (using a new guess for bv each time) in order
to enable a good simulation. Say a leaf v is “hard” if it is an i∗th child of its parent,
and call it “easy” otherwise. For messages associated with “easy” leaves, A′ will
provide a signature as discussed earlier. For a message m associated with a “hard”
leaf v′ whose parent is v, do:

1. If m j∗ = bv′ , provide a signature using the approach described earlier.
2. Otherwise, rewind A to the point where node v is first used. Choose a new, ran-

dom bit bv′ for the leaf and generate a new label Lv for the parent node v as
follows:

4.2 Signature Schemes Based on the RSA Assumption 97

Repeat the following until the j∗th bit of Lv is equal to bv: choose random rv ∈ Z∗N and
compute

Lv := rê
v/y

bv′
j∗ mod N.

3. Resume execution of A from the point where v is first used, and return to Step 1
when signing a message associated with the leaf v′.

Note that the value of bv is not changed, so no other labels are affected by the above
and A′ can continue to provide valid signatures until possibly reaching leaf v′ again.

Assuming that A′ can complete the simulation described above, the view of A at
the end of the simulation is identically distributed to the view of A in an execution
with a real signer. Moreover, this simulation is independent of i∗ and j∗; thus, the
guesses of i∗, j∗ are correct with probability 1/2`k. A consequence is that if A out-
puts a forgery with some probability ε , then A′ outputs the desired RSA inverse with
probability ε ′ = ε/`k. We thus conclude that ε is negligible.

It remains only to argue that A′ can complete its simulation in (expected) polyno-
mial time. View the simulation provided by A′ as occurring in a sequence of phases,
where a phase is identified with a node in level d−1 that is being used to issue sig-
natures. (Thus, a given phase associated with a node v at level d−1 encompasses `
signatures associated with each of the ` children of v.) In the phase corresponding to
node v (at level d−1), A′ can issue all signatures until (possibly) the point when it
reaches the i∗th child of v; at that point, A′ can compute a valid signature with prob-
ability 1/2 and must otherwise rewind A to the beginning of that phase. It is thus
clear that A′ can complete the simulation of any given phase in expected polynomial
time. Furthermore, once A′ successfully completes the simulation of some phase it
proceeds to the next phase (and never rewinds to a point prior to the current phase).
Since there are a polynomial number of phases, it follows that A′ can complete its
entire simulation in expected polynomial time.6 This completes the proof.

4.2.2 The Cramer-Damgård Scheme

A drawback of the Dwork-Naor scheme is that the public key is relatively large,
as it contains both a set E of ` prime numbers as well as a set Y of 2k elements
of Z∗N . Cramer and Damgård [34] introduced a modification of the Dwork-Naor
scheme which improves the length of the public key by avoiding the need for the
set Y . (Note that ` is likely to be an order of magnitude smaller than k, and so this
does indeed yield a significant improvement in practice.) In addition, the Cramer-
Damgård scheme has some conceptual advantages as compared to the Dwork-Naor

6 We can convert A′ to a strict polynomial-time algorithm using standard techniques. Let kc be an
upper bound on the expected running time of A′, and say A′ succeeds with probability at least 1/kc′

for infinitely many values of k. Using Markov’s inequality, A′ runs more than 2kc′kc steps with
probability less than 1/2kc′ ; truncating A′’s execution at 2kc′+c steps gives a strict polynomial-time
algorithm with success probability at least 1/kc′ −1/2kc′ = 1/2kc′ for infinitely many values of k.

98 4 Signature Schemes Based on the (Strong) RSA Assumption

scheme: (1) it avoids the need for rewinding in the proof of security, thus simplifying
the proof; also, (2) the Cramer-Damgård scheme serves as a sort of “template” for
the Cramer-Shoup signature scheme that we will see later.

The Cramer-Damgård scheme has the same underlying structure as the Dwork-
Naor scheme in that it also relies on a “short” tree of “high” degree ` in which a
node v′ can be authenticated by its parent v independently of the other children of v.
The scheme also relies on a set E := {e1, . . . ,e`} of ` distinct primes to perform this
authentication. (Each such prime will now be of length 2k + 1, but this technical
detail can be ignored for now.) The primary difference between the schemes — and
what leads to the efficiency improvement — is the use of a different authentication
technique which now requires only a single element h ∈ Z∗N to be included in the
public key (rather than a set Y of 2k such elements). This basic authentication step,
which enables a vertex with label L to authenticate its ith child (1 ≤ i ≤ `) having
label L′, is defined as follows:

auth(L i→ L′) def=
(

L ·hL′
)1/ei

mod N, (4.4)

where L′ is a 2k-bit string viewed as an integer in the range {0, . . . ,22k−1} (in fact,
all internal labels will be elements of Z∗N). As usual, this authentication information
can be computed if the factorization of N is known. Furthermore, given a (presum-
ably authenticated) parent vertex with label L, the candidate label L′ of its ith child,
and authentication information auth, anyone can verify the authenticity of L′ by
checking whether

authei ?= L ·hL′ mod N. (4.5)

Plugging the basic authentication step of Equation (4.4) into the Dwork-Naor
construction yields a signature scheme which can be shown7 to be existentially un-
forgeable under a known message attack; applying Construction 1.2 (using an arbi-
trary one-time signature scheme secure under a known-message attack) would then
give a scheme that is existentially unforgeable under an adaptive chosen-message
attack. Better efficiency can be obtained, however, by relying on the paradigm of
Construction 1.2 but using a specific one-time signature scheme at the bottom level,
in particular, by using at the bottom level the same basic authentication step as above
(with the same values of h,N) but with a different prime e`+1 6∈ {e1, . . . ,e`}. As in
the Dwork-Naor scheme, then, the signer implicitly works with a tree of depth d
having out-degree ` and whose root v0 is labeled with a value Lv0 included in the
public key. Here, however, a leaf of the tree is not directly labeled with a message
to be signed, but is instead assigned a randomly generated label that is then used to
authenticate the message itself. One can picture this as a tree in which there is a des-
ignated “message node” hanging off each “leaf”. (For consistency with the previous

7 We remark that the rewinding technique used in the proof of Theorem 4.1 would not apply in
this case since one would have the guess the entire message whose signature is requested by the
adversary, rather than just a single bit of this message.

4.2 Signature Schemes Based on the RSA Assumption 99

notation, when a leaf with label L is used to authenticate a message m, the resulting
authentication information will be denoted by auth(L `+1→ m).)

4.2.2.1 A One-Time Signature Scheme

Before giving a complete description and proof of security for the full Cramer-
Damgård scheme, it will be instructive to analyze the basic authentication step as a
one-time signature scheme. (See Construction 4.2.) We do not directly rely on this
result in what follows, but the techniques used here will be helpful in understanding
the proof of the full Cramer-Damgård scheme.

Construction 4.2: An RSA-based one-time signature scheme

Let GenModulus,GenPrime be as described in the text.

Key generation: On security parameter 1k, proceed as follows:

• Compute (N, p,q)← GenModulus(1k) and e← GenPrime(12k+1).
• Choose random Lv0 ,h ∈ Z∗N .
• The public key is (N,Lv0 ,h,e) and the secret key is d.

Signature generation: To sign message m ∈ {0,1}2k, viewed as an integer in the
range {0, . . . ,22k−1}, the signer computes

auth :=
(
Lv0 ·hm)1/e

.

The signature is auth.

Signature verification: To verify signature auth on message m, simply verify
whether authe ?= Lv0 ·hm mod N.

Theorem 4.2. If the RSA problem is hard relative to GenModulus and GenPrime,
then Construction 4.2 is strongly unforgeable under a one-time, known-message
attack.

Proof. Since for a given public key there is only one valid signature on any given
message, it suffices to prove (regular) unforgeability. Given a PPT adversary A which
forges a valid signature on a new message with non-negligible probability, we con-
struct a PPT algorithm A′ that solves the RSA problem with the same probability.
A′, given an RSA modulus N, an element y ∈ Z∗N , and a (2k + 1)-bit prime e, uses
A as a subroutine in the following way: First, run A(1k) to obtain a message m to be
signed. Set h := y, choose random s ∈ Z∗N , and compute Lv0 := seh−m mod N. Give
to A the public key (N,Lv0 ,h,e) along with the signature s. One can verify that the

100 4 Signature Schemes Based on the (Strong) RSA Assumption

public key given to A is distributed identically to a real public key (in particular, Lv0
is uniformly distributed in Z∗N), and s is a valid signature on m with respect to the
given public key.

We claim that if A outputs (m′,s′) such that m′ 6= m and (s′)e = Lv0 hm′ mod N
(i.e., A forges a valid signature s′ on a new message m′), then A′ can compute
y1/e mod N. To see this, assume without loss of generality that m′ > m and observe
that

(s′)eh−m′ = Lv0 = seh−m mod N

and so (s′/s)e = hm′−m = ym′−m mod N. Since m,m′ ∈ {0, . . . ,22k−1}, their differ-
ence m′−m is less then e (here, we use the fact that e is a (2k + 1)-bit integer).
Since e is prime, it follows that gcd(e,m′−m) = 1 and so Lemma 4.1 applies. But
this means A′ can efficiently compute the eth root of y modulo N.

4.2.2.2 The Cramer-Damgård Scheme

The Cramer-Damgård scheme is given as Construction 4.3. As in the case of the
Dwork-Naor scheme, the scheme as described is stateful (but see footnote 5).

Theorem 4.3. If the RSA problem is hard relative to GenModulus and GenPrime,
then the Cramer-Damgård scheme is existentially unforgeable under an adaptive
chosen-message attack.

Proof. We first establish some notation. The nodes at the first d−1 levels of the tree
will be referred to as internal nodes, while the nodes at depth d will be called leaves.
The union of these will be called the tree nodes. The children of the leaves will be
referred to as message nodes. As in the proof of Theorem 4.1, a label Lv associated
with particular node v is called legitimate if Lv is the label assigned to this node by
the signer; the label is illegitimate otherwise. (As before, we assume without loss of
generality that the adversary requests `d signatures before it outputs its forgery, and
so the signer does indeed assign a label to every tree node.)

Let A be a PPT adversary attacking the Cramer-Damgård signature scheme and
having success probability ε(k). If A outputs a valid forgery

(i1, . . . , id),(L̃v1 , . . . , L̃vd),auth1, . . . ,authd+1 (4.6)

on some message m then, letting L̃vd+1 := m and L̃v0 := Lv0 , there must be some
minimum r ∈ {1, . . . ,d + 1} for which label L̃vr−1 is legitimate (for node vr−1) but
L̃vr is illegitimate (for node vr). We will refer to such vr−1 as the critical node.

Let ε1(k) denote the probability that A outputs a signature forgery whose critical
node is an internal node, and let ε2(k) be the probability that A outputs a signature
forgery whose critical node is a leaf. We will give PPT algorithms A′1,A

′
2 that run A

as a subroutine and solve the RSA problem with probability polynomially related to
ε1,ε2, respectively. Because the RSA problem is hard for GenRSA, both ε1 and ε2
must therefore be negligible. Since ε(k) = ε1(k)+ ε2(k), this yields the theorem.

4.2 Signature Schemes Based on the RSA Assumption 101

Construction 4.3: The Cramer-Damgård scheme

Let GenModulus,GenPrime be as described in the text.

Key generation: On security parameter 1k, proceed as follows:

• Run (N, p,q)← GenModulus(1k).
• For i = 1 to `+1, compute ei ← GenPrime(12k+1). Set E := {e1, . . . ,e`+1}.
• Choose random Lv0 ,h ∈ Z∗N .
• The public key is (N,Lv0 ,h,E) and the secret key is p,q.

Signature generation: The signer implicitly maintains a tree of depth d and out-
degree ` whose root v0 is labeled with Lv0 . The `d “leaves” of this tree each have
a single child at depth d + 1 (and thus, technically speaking, they are not leaves
although we will continue to refer to them as such). Each leaf will be used to sign a
single message.
To generate a signature on a message m ∈ {0,1}2k, let vd be the left-most leaf in
the tree which has not yet been used, and let vd+1 be its child. Assign a random
label Lvd ∈ Z∗N to vd , and set Lvd+1 := m. Let (i1, . . . , id) denote the sequence of
edges on the path from the root to the leaf (where each i1, . . . , id lies in the range
{1, . . . , `}), and let (v1, . . . ,vd) be the nodes on this path (not including the root). Let
(Lv1 , . . . ,Lvd) denote the labels of these nodes; if any of these nodes have not yet
been assigned a label, they are now assigned a label chosen uniformly at random
from Z∗N . The signature is then:

(i1, . . . , id),(Lv1 , . . . ,Lvd),

auth(Lv0

i1→ Lv1), . . . ,auth(Lvd−1

id→ Lvd),auth(Lvd
`+1→ Lvd+1)

,

where the auth(L i→ L′) are computed as in Equation (4.4).

Signature verification: A signature

(i1, . . . , id),(Lv1 , . . . ,Lvd),auth1, . . . ,authd ,authd+1

on a message m is verified in the natural way, by using the root value Lv0 contained in
the public key, setting Lvd+1 := m, and then verifying the values auth1, . . . ,authd+1
as in Equation (4.5).

Algorithm A′1 is constructed using essentially the same idea used to construct
algorithm A′ in the proof of the Dwork-Naor scheme; actually, the proof is a bit
simpler here since all legitimate labels of the tree nodes are chosen uniformly at
random by the signer (and, in particular, are outside the control of A); thus, no
rewinding of A is necessary. Algorithm A′2 is devised in a manner similar to the
A′ used in the proof of the one-time signature scheme of the previous section (cf.
Theorem 4.2) using the observation that, in the present scheme, the signer does not

102 4 Signature Schemes Based on the (Strong) RSA Assumption

“commit” to the label Lv of any leaf v until after the adversary decides what message
should be authenticated by this leaf. (This is in contrast to the Dwork-Naor scheme
where the label of a node v at level d−1 is chosen and revealed by the signer before
all the messages that will be authenticated by the children of v are determined. Note
the similarity with Construction 1.2.)

We proceed with a description and analysis of the two algorithms. In each case
we use the adversary A as a subroutine of an algorithm that will attempt to compute
y1/e mod N for given input values N,y, and e.

Algorithm A′1. Say A outputs a forgery as in Equation (4.6). If the critical node vr−1
is an internal node then we call ir the critical index. As in the proof of Theorem 4.1,
we will have A′1 guess in advance the value i∗ ∈ {1, . . . , `} of the critical index. A′1
will then generate a public key (N,Lv0 ,h,E) along with labels for all the tree nodes
such that (1) these values are distributed identically to the public key and tree-node
labels in a real execution of the signature scheme; (2) A′1 will be able to answer
all signing queries of A (without having to rewind A); yet (3) if A outputs a forgery
whose critical node is an internal node, and A′1’s guess of the critical index is correct,
then A′1 will be able to compute the desired answer y1/e mod N. Since the guess of
the critical index is correct with probability 1/`, we conclude that A′1 succeeds in
solving its given RSA instance with probability ε1(k)/`.

We now describe A′1 in more detail. A′1 is given N,y, and a (2k + 1)-bit prime e,
and its goal is to compute y1/e mod N. It prepares a public key and labels for the
tree nodes as follows:

• Choose random i∗←{1, . . . , `}. Set ei∗ := e, and compute ei ←GenPrime(12k+1)
for i 6= i∗. Define E = {e1, . . . ,e`,e`+1}, and let ê := ∏`+1

i=1 ei. (We assume in
what follows that all the primes {ei} are distinct, since this occurs with all but
negligible probability.)

• Set h := yê/ei∗ mod N.
• Generate labels for all tree nodes in the following bottom-up fashion:

– For a node v at level d (i.e., v is a leaf node), choose the label Lv as follows:
pick random sv ← Z∗N and let Lv := se`+1

v mod N.
– For a node v at level r < d, choose the label Lv as follows: let w be the i∗th

child of v having label Lw. Choose sv ← Z∗N and set Lv := sê
v ·h−Lw mod N.

In this way, A′1 eventually obtains a label Lv0 for the root of the tree.
• The public key is (N,Lv0 ,h,E).

We first claim that both the public key and the labels generated in the above
process are distributed identically to their distribution in a “real” execution of the
signature scheme. This is immediate for the case of N and the {ei}. Since y is a uni-
form element of Z∗N and ê/ei∗ is relatively prime to φ(N), we see that h is uniformly
distributed as well. A similar argument applies for the labels of all the tree nodes
since the {sv} are chosen independently and uniformly at random from Z∗N .

More interestingly, the public key and the labels of the tree nodes are set up in
such a way that A′1 can compute a valid signature on any message given to it by the
adversary (without rewinding); this follows from the observations that:

4.2 Signature Schemes Based on the RSA Assumption 103

• Say i 6= i∗, and let w be the ith child of some internal node v. Then A′1 can compute

auth(Lv
i→ Lw), where Lv,Lw are the labels computed in the above process. To

see this, let w∗ be the i∗th child of v and note that

auth(Lv
i→ Lw) def=

(
Lv ·hLw

)1/ei mod N

=
(
sê

v ·hLw−Lw∗
)1/ei mod N

= sê/ei
v ·

(
yê/eiei∗

)Lw−Lw∗
mod N.

Since both ê/ei and ê/eiei∗ are integers, A′1 can compute the above even though
it does not know the factorization of N.

• Let w∗ be the i∗th child of some internal node v. We show that A′1 can compute

auth(Lv
i∗→ Lw∗), where Lv,Lw∗ are the labels computed in the above process. To

see this, note that:

auth(Lv
i∗→ Lw∗)

def=
(
Lv ·hLw∗

)1/ei∗ mod N

=
(
sê

v
)1/ei∗ mod N

= sê/ei∗
v mod N.

Again, since ê/ei∗ is an integer, A′1 can compute the above without knowledge of
the factorization of N.

• For any leaf v and any message m chosen by the adversary to be authenticated by
this leaf, A′1 can compute auth(Lv

`+1→ m). To see this, note that

auth(Lv
`+1→ m) = (Lv ·hm)1/e`+1 mod N

=
(

se`+1
v ·

(
yê/ei∗

)m)1/e`+1
mod N

= sv ·
(

yê/e`+1ei∗
)m

mod N.

Once again, since ê/e`+1ei∗ is an integer, A′1 can easily compute the above.

Finally, we show that if A outputs a valid forgery where the critical node is an
internal node, and the guess i∗ for the critical index is correct, then A′1 can compute
the desired solution y1/e = y1/ei∗ mod N. Indeed, assume A outputs a valid forgery
as in Equation (4.6) with critical node vr−1 (for r ≤ d) and such that ir = i∗. Using
the fact that the forgery is valid we have (recall that Lvr is the legitimate label of
node vr):

auth
ei∗
r = Lvr−1 ·hL̃vr mod N

=
(

sê
vr−1

·h−Lvr

)
·hL̃vr mod N

= sê
vr−1

·hL̃vr−Lvr mod N

104 4 Signature Schemes Based on the (Strong) RSA Assumption

= sê
vr−1

· y(ê/ei∗)·(L̃vr−Lvr) mod N,

and so A′1 can compute the value γ := authr/sê/ei∗
v mod N such that

γ ei∗ = y(ê/ei∗)·(L̃vr−Lvr) mod N.

Now, since ei∗ is relatively prime to both ê/ei∗ and |L̃vr −Lvr | (using, in the latter
case, the fact that |L̃vr −Lvr |< ei∗ since ei∗ is a (2k +1)-bit prime while L̃vr and Lvr

are 2k-bit values), A′1 can compute y1/ei∗ using Lemma 4.1.
It is easy to see that A’s view is independent of the initial guess i∗ made by A′1.

Thus, the probability that this guess is correct, even conditioned on the fact that A
outputs a forgery whose critical node is an internal node, is exactly 1/`. This means
that A′1 solves its given RSA instance with probability ε1(k)/`. Since this must be
negligible by assumption, we conclude that ε1 is negligible.

Algorithm A′2. We now construct an algorithm A′2 that succeeds in solving its given
RSA instance whenever A outputs a valid forgery whose critical node is a leaf. Now,
A′2 will construct a public key along with a set of node labels for all internal nodes
(but not the leaves) in such a way that A′2 can authenticate any leaf node regardless
of the label this leaf nodes is assigned; to authenticate a message chosen by A, we
will then have A′2 choose the label of the corresponding leaf in such a way that it can
issue a legitimate signature. It is thus essential that in the Cramer-Damgård scheme
the label of the leaf used to authenticate some message is not determined until after
the message to be signed is chosen by A. This is in contrast to the Dwork-Naor
scheme (where the adversary gets to see the label of a node before having to decide
on some message that should be authenticated by that node), and is essential to the
current proof.

We now give a more complete description of A′2. Recall that A′2 is given N, y, e
and is to compute y1/e mod N. It prepares a public key and labels for the internal
nodes of the tree as follows:

• Set e`+1 := e and compute ei ← GenPrime(12k+1) for i 6= i∗. Define E :=
{e1, . . . ,e`,e`+1}, and let ê := ∏`

i=1 ei (note that ê is defined differently than be-
fore). We assume in what follows that all the primes {ei} are distinct, as this
occurs with all but negligible probability.

• Set h := yê mod N.
• Generate a label Lv for every internal node v as follows: pick random sv ← Z∗N

and let Lv := sê
v mod N.

• The public key is (N,Lv0 ,h,E), where v0 is the root of the tree.

Using similar arguments as in the previous analysis of A′1, one can verify that
the public key and all node labels generated in the above procedure are distributed
exactly as in a real execution of the signature scheme. We thus turn to showing
that A′2 can indeed authenticate any leaf regardless of the label that leaf is assigned.
Indeed, let v be an internal node and let w be the ith child of v for some i∈ {1, . . . , `}
(note that w may be a leaf). Then regardless of the label Lw assigned to w, the
simulator can compute auth(Lv

i→ Lw) since:

4.2 Signature Schemes Based on the RSA Assumption 105

auth(Lv
i→ Lw) def=

(
Lv ·hLw

)1/ei mod N

=
(
sê

v · yê)1/ei mod N

= sê/ei
v · yê/ei mod N,

and ê/ei is an integer.
Given the above, it is straightforward to show that A′2 can respond correctly to

any signing query of A. This will be done as in the proof of Theorem 4.2: when A
requests (by making a signing query) that a message m be authenticated by leaf v,
algorithm A′2 chooses sv ← Z∗N and sets the label of v to

Lv := se`+1
v ·h−m mod N.

Note that Lv is distributed uniformly at random in Z∗N , as in a real execution of
the signature scheme. Now, by what we have said earlier, A′2 can provide correct
authentication values for each of the nodes on the path from the root to v; it only
remains to show that A′2 can authenticate m using the newly created label Lv. This

is done by setting auth(Lv
`+1→ m) := sv (it is easily verified that this is the correct

authentication value).
Say A outputs a forgery in which the critical node is a leaf v. To complete the

description of A′2, we show how this allows A′2 to compute the desired solution
y1/e mod N. Let m be the message that A′2 authenticated using v, let m′ be the mes-
sage included by A in its forgery, and let Lv denote the legitimate label of v (con-
structed as described above). As in the proof of Theorem 4.2, A′2 can recover from
A’s forgery the value

s def= auth(Lv
`+1→ m′)

=
(

Lv ·hm′
)1/e`+1

mod N

=
(

se`+1
v · y(m′−m)·ê

)1/e`+1
mod N

= sv · y(m′−m)·ê/e`+1 mod N,

and so s/sv is the e`+1th root of y(m′−m)·ê (recall that A′2 knows sv). Because
m′,m ∈ {0, . . . ,22k − 1}, we have |m−m′| < e`+1; since e`+1 is prime, it follows
that gcd(e`+1, |m−m′|) = 1. We know also that e`+1 and ê are relatively prime.
Using Lemma 4.1, it follows that A′2 can compute the desired e`+1th root of y.

To conclude, we have shown that A′2 computes the desired solution with proba-
bility exactly ε2(k), which must be negligible by assumption. It must therefore be
the case that ε2 is negligible, as desired.

As we have shown that both ε1 and ε2 are negligible, this completes the proof of
the theorem.

106 4 Signature Schemes Based on the (Strong) RSA Assumption

4.2.3 The Hohenberger-Waters Scheme

Hohenberger and Waters [67] recently introduced a signature scheme based on the
RSA assumption that has several advantages relative to the two schemes described
previously. The primary advantage is that signatures in the Hohenberger-Waters
scheme are short, even though a tree of large depth is still (implicitly) used. (Even
though the Hohenberger-Waters scheme is only proved security under a known-
message attack, one can apply Construction 1.2 to get a scheme secure against
chosen-message attacks whose signatures are still shorter than in the Dwork-Naor or
Cramer-Damgård schemes.) Because the signature length is independent of the tree
depth, and the tree is maintained only implicitly, the Hohenberger-Waters scheme
can afford to use a binary tree of depth k (and exponential size) and can therefore
more easily be made stateless. (Specifically, a leaf can be assigned to each possible
message m ∈ {0,1}k to be signed, as in Construction 3.2.)

In the Dwork-Naor and Cramer-Damgård schemes, the signer uses a tree of de-
gree ` and a prime ei is associated with each of the ` outgoing “directions”. Thus,
for example, the same prime e1 is assigned to the left-most outgoing edge of every
node in the tree. In the Hohenberger-Waters scheme a different prime is associated
with every edge in the tree. Since (as noted earlier) the scheme uses a tree of expo-
nential size, it is impossible to explicitly list all these primes as part of the public
key; instead, a (compact, keyed) function f mapping edges to primes is included in
the public key. (The same idea could be used to reduce the size of the public key
in the Dwork-Naor and Cramer-Damgård schemes.) As we will see in the proof of
security, this function can be “programmed” by a simulator so as to map a specific
edge to a given prime e (that is given to the simulator as part of the RSA challenge).

We now describe the keyed function f that we use.8 Let F be a pseudorandom
function that, for simplicity, we assume maps arbitrary-length inputs to k-bit out-
puts. Given a string m ∈ {0,1}≤k, define fK,c(m) = GenPrime(1k;FK(m)⊕ c). The
Hohenberger-Waters scheme is given as Construction 4.4.

Theorem 4.4. If the RSA problem is hard relative to GenModulus and GenPrime,
even for public coins, then the Hohenberger-Waters scheme is strongly unforgeable
under a known-message attack.

Proof. Observe that for a given public key, each message m has a unique valid
signature. (This relies on the fact that GenPrime always outputs an e relatively prime
to φ(N).) We prove existential unforgeability, and strong unforgeability follows.

Fixing K,c, define E(m) = { fK,c(m|i)}k
i=1; this is just the set of primes that are

used to sign m. We also define e(m) = ∏e∈E(m) e (this matches the definition of e(m)
in the description of the scheme). If we imagine that the signer implicitly maintains
a binary tree of depth k, we can associate any message m ∈ {0,1}k, in the natural
way, with a path P(m) in this tree from the root to a leaf. We can similarly associate
any prefix m|i with a path from the root to a node at depth i; it is then natural to view
the prime e = fK,c(m|i) as being associated with the last edge on this path.

8 Hohenberger-Waters suggest a different function, but our choice of f yields a simpler proof.

4.2 Signature Schemes Based on the RSA Assumption 107

Construction 4.4: The Hohenberger-Waters scheme

Let GenModulus,GenPrime, and f be as described in the text. Given a binary string
m, let m|i def= m1 · · ·mi denote the i-bit prefix of m.

Key generation: On security parameter 1k, proceed as follows:

• Compute (N, p,q)← GenModulus(1k).
• Choose random h ∈ Z∗N , and K,c ∈ {0,1}k.
• The public key is (N,h,K,c) and the secret key is p,q.

Signature generation: To sign message m ∈ {0,1}k, do:

• For i = 1 to k, let ei := fK,c(m|i). Define e(m) = ∏k
i=1 ei.

• Output the signature σ = h1/e(m) mod N.

Signature verification: To verify signature σ on message m, do:

• For i = 1 to k, let ei := fK,c(m|i). Define e(m) = ∏k
i=1 ei.

• Output 1 iff σ e(m) ?= h mod N.

Given a PPT algorithm A attacking the scheme in a known-message attack, we
construct a PPT algorithm A′ attempting to solve the RSA problem: A′ is given as
input N,e,y,ω with GenPrime(1k;ω) = e. It proceeds as follows:

• Run A(1k) to get messages m1, . . . ,m`.
• Imagining a depth-k binary tree as discussed above, let Pi = P(mi) be the path

associated with mi and set P := ∪`
i=1Pi.

• Choose a node v∗ at random9 from among those nodes adjacent to P (i.e., nodes
connected to P but not in P), and set m∗ equal to the message prefix associated
with the path from the root to node v∗. Let j∗ denote the depth of v∗ (or, equiva-
lently, the length of m∗).

• Choose random K ∈ {0,1}k, and set c := FK(m∗)⊕ω . (Note that this ensures
fK,c(m∗) = e.)

• Let Ê =∪`
i=1E(mi), and set ê := ∏ei∈Ê ei. Security of the pseudorandom function

can be shown to imply that, with all but negligible probability, e 6∈ Ê (and so
gcd(e, ê) = 1); we assume this to be the case from now on.

• Set h := yê mod N and give to A the public key (N,h,K,c) and the signatures
{σi = yê/e(mi) mod N}`

i=1.
• If A outputs a forgery (m,σ), let vm denote the first node on the path P(m) that

is not in P. (The path from the root to vm corresponds to the shortest prefix of m

9 Even though the (implicit) tree has exponential size, it is not hard to see that this step can be
performed efficiently.

108 4 Signature Schemes Based on the (Strong) RSA Assumption

that is not a prefix of any of the {mi}. Since m 6∈ {mi}, some such prefix must
exist.) If vm = v∗, then A′ computes the desired solution as described next.

• Assuming vm = v∗ and recalling that v∗ is at depth j∗, we thus have m| j∗ = m∗
and so

e(m) =
`

∏
i=1

fK,c(m|i) = fK,c(m∗) · ∏
i 6= j∗

fK,c(m|i)

= e · ∏
i 6= j∗

fK,c(m|i).

Because σ is a valid signature on m, we have σ e(m) = h mod N and so
(

σ∏i6= j∗ fK,c(m|i)
)e

= yê mod N.

Using that fact that gcd(e, ê) = 1, it follows from Lemma 4.1 that A′ can effi-
ciently compute the desired solution y1/e mod N.

It is not hard to verify that the view of A when run by A′ is identically distributed
to the view of A in a real execution of the signature scheme. Moreover, since there
are only polynomially many nodes adjacent to P, the guess of m∗ by A′ is correct
with inverse polynomial probability. We conclude that A′ correctly solves its given
RSA instance with probability that is polynomially related to the success probability
of A in its attack. This completes the proof of the theorem.

4.3 Schemes Based on the Strong RSA Assumption

The constructions we have seen so far in this chapter are more efficient than the
generic schemes of the previous chapter, but are still not considered efficient enough
to be used in practice (and they are certainly not competitive with the RSA-based
solutions that will be discussed in Chapter 7). For this reason, researchers have
explored a variant of the RSA assumption (termed the strong RSA assumption),
and have used it to construct more efficient signature schemes. We will describe
two such approaches here. The first approach, initiated by Cramer and Shoup with
subsequent efficiency improvements by Fischlin, may be viewed as a modification
of the Cramer-Damgård scheme in which the tree has depth 1 and the edges leaving
the root are associated with primes e1, . . . chosen “on-the-fly” (and, in particular, no
longer included as part of the public key). The second approach, due to Gennaro,
Halevi, and Rabin, uses the strong RSA assumption to construct a secure scheme
“directly”, in a manner inspired by Lemma 4.2. The Gennaro-Halevi-Rabin scheme
has the advantage of being quite straightforward to analyze (at least for the variant
presented here); the Cramer-Shoup/Fischlin schemes, however, appear to be more
practical.

4.3 Schemes Based on the Strong RSA Assumption 109

4.3.1 The Strong RSA Assumption

The RSA assumption states, informally, that given (y,e,N) it is “hard” to compute
y1/e mod N. The strong RSA assumption asserts that this problem remains “hard”
even given the freedom to choose e: that is, given (N,y) it is “hard” to output a
valid solution (e,y1/e mod N) for any chosen e ≥ 2 (we sometimes refer to this as
finding a non-trivial root of y). More formally, let GenModulus be as in the previous
section. Then:

Definition 4.3. The strong RSA problem is hard relative to GenModulus if the
following is negligible for all PPT algorithms A:

Pr
[

(N, p,q)← GenModulus(1k);y← Z∗N ;
(x,e)← A(N,y) : e≥ 2

∧
xe = y mod N

]
.

We stress that e need not be prime, nor do we require gcd(e,φ(N)) = 1.

Although the strong RSA assumption can be formulated with respect to arbitrary
moduli N, for technical reasons we will assume throughout this section that the
factors p,q of moduli N output by GenModulus are such that (p− 1)/2 and (q−
1)/2 are also prime (p,q of this type are known as strong primes). This ensures that
φ(N) = (p− 1)(q− 1) = 4p′q′ for p′,q′ prime. Note also that any odd e of length
less than k−1 is relatively prime to φ(N) in this case.

We continue to let GenPrime denote an algorithm that, on input 1`, outputs an
`-bit prime. We assume primes output by GenPrime are “random” in the sense dis-
cussed at the beginning of Section 4.2.

4.3.2 Security Against Known-Message Attacks

As an instructive prelude to the full Cramer-Shoup scheme, we first present a scheme
that is secure against known-message attacks. The scheme is essentially a variant of
the one-time signature scheme shown in Section 4.2.2.1, where here a fresh prime
is used each time a signature is generated. (There are some other, more minor dif-
ferences as well).

Theorem 4.5. If the strong RSA problem is hard relative to GenModulus, then Con-
struction 4.5 is strongly unforgeable under a known-message attack.

Proof. Let A be a PPT adversary attacking the scheme and having success probabil-
ity ε(k). A attacks the scheme in a known-message attack by requesting signatures
on t = t(k) messages {mi}t

i=1 chosen by A before it is given the public key. Let the
public key be (N,Lv0 ,h) and denote the signature on message mi by (ei,authi). We
will assume throughout the rest of the proof that the {ei} are distinct (since this
fails to hold with only negligible probability); therefore, if the adversary outputs a
valid forgery (e,auth) on some message m, there are two cases: (1) e = e j for some

110 4 Signature Schemes Based on the (Strong) RSA Assumption

Construction 4.5: A scheme secure against known-message attacks

Let GenModulus,GenPrime be as described in the text, and set ` = bk/2c.
Key generation: On security parameter 1k, proceed as follows:

• Run (N, p,q)← GenModulus(1k), where p and q are strong primes.
• Choose random Lv0 ,h ∈ QRN .
• The public key is (N,Lv0 ,h) and the secret key is p,q.

Signature generation: To sign message m ∈ {0,1}`, viewed as an integer in the
range {0, . . . ,2`−1}, the signer sets e← GenPrime(1`+1) and computes

auth :=
(
Lv0 ·hm)1/e mod N

using the factorization of N. The signature is (e,auth).

Signature verification: To verify signature (e,auth) on message m, check that e is
an odd, (`+1)-bit number and then verify whether

authe ?= Lv0 ·hm mod N.

(unique) j, or (2) e 6∈ {ei}. Let ε1(k) denote the probability of the first event, and
ε2(k) be the probability of the second. We claim that both ε1,ε2 are negligible. Since
ε = ε1 + ε2 (except for a negligible term relating to the probability that ei = e j for
some i 6= j), this concludes the proof of the theorem.

The proof that ε1 is negligible follows almost immediately from the analysis
of algorithm A′1 in the proof of Theorem 4.3 (and relies on the “standard” RSA
assumption as used there); we therefore focus on bounding ε2. (Interestingly, here
we can bound ε2 even for an adaptive chosen-message attack.) In doing so, we will
rely on the strong RSA assumption. Thus, we will present a PPT algorithm A′ (using
A as a subroutine) that is given (N,y) as input and outputs (e,y1/e) (with e≥ 2) with
probability polynomially related to ε2. Under the strong RSA assumption, it follows
that ε2 is negligible as claimed.

Let t be a polynomial upper-bound on the number of signatures requested by A.
Algorithm A′, on input (N,y), proceeds as follows:

• For i = 1 to t, compute ei ← GenPrime(1`+1), and set ê := ∏t
i=1 ei.

• Set h := y2ê mod N. Choose random a←{1, . . . ,N2} and set Lv0 := ha mod N.
• Give to A the public key (N,Lv0 ,h). When A requests a signature on the ith mes-

sage mi, compute

authi := y2aê/ei y2mi ê/ei mod N

4.3 Schemes Based on the Strong RSA Assumption 111

=
(
Lv0hmi

)1/ei mod N,

and give to A the signature (ei,authi).
• If A outputs valid signature forgery (e,auth) on a message m, with e 6∈ {e1, . . .et},

then A′ will attempt to compute (e′,y1/e′) for some e′ ≥ 2 as discussed below.

We will show in a moment how A′ attempts to compute (e′,y1/e′) in the case when
A outputs a valid signature forgery with e 6∈ {e1, . . . ,et}. Let us first argue, however,
that the probability that A outputs such a forgery is negligibly close to ε2. This fol-
lows from the fact that A’s view in the above interaction with A′ is statistically close
to A’s view in an interaction with a real signer: N is clearly distributed identically
in both cases, and since y is uniformly distributed in Z∗N and gcd(ê,φ(N)) = 1, we
have that h is uniformly distributed in QRN . Furthermore, the signatures given to A
are all valid and correctly distributed signatures with respect to the given public key.
It only remains to argue that the distribution of Lv0 in the above experiment is sta-
tistically close to the distribution that results from the true key-generation process.
The real key-generation algorithm chooses Lv0 uniformly from QRN . Turning to the
above experiment, we first note that QRN is a cyclic subgroup of Z∗N with order p′q′
for some primes p′,q′ (this is due to the fact that N is a product of strong primes).
Since h is a random quadratic residue, h is a generator of QRN with all but negligible
probability; assume this to be the case in what follows.

Let c def= a mod p′q′, viewed as an integer between 0 and p′q′−1 (inclusive). For
any γ ∈ {0, . . . , p′q′−1}, the probability (over choice of a) that c = γ is at least

b N2

p′q′ c
N2 ≥

N2

p′q′ −1

N2 ≥ 1
p′q′

− 1
N2

and (using similar reasoning) at most 1
p′q′ +

1
N2 . It follows that the distribution of c

is statistically close to uniform over {0, . . . , p′q′−1}. Since Lv0 depends only on c,
we conclude that the distribution of Lv0 is statistically close to uniform over QRN .

We now show that when A outputs a forgery (e,auth) on a message m with
e 6∈ {e1, . . . ,et}, then A′ can compute a correct solution with noticeable probability.
Since authe = Lv0hm mod N, we have

authe = ha+m = y2·(a+m)·ê mod N.

Let K := 2 · (a + m) · ê. If gcd(e,K) = 1, then A′ can apply Lemma 4.1 and output
(e,y1/e) as a solution. In fact, as long as e does not divide K it is possible to compute
a non-trivial root: say d = gcd(e,K) 6= e, and notice that — since d < e < min{p′,q′}
and e (and hence d) is odd — we have gcd(d,2p′q′) = 1. Thus,

authe/d = yK/d mod N.

Now, since gcd(e/d,K/d) = 1 and e/d > 2, algorithm A′ can still apply Lemma 4.1
to compute a (non-trivial) (e/d)th root of y.

112 4 Signature Schemes Based on the (Strong) RSA Assumption

It thus only remains to show that, with noticeable probability, e does not di-
vide K. Let r be any prime dividing10 e, and note that gcd(r,2ê) = 1. We show
that, with noticeable probability, r does not divide (a + m); equivalently, we show
that, with noticeable probability, (a + m) 6= 0 mod r. Write a as a = bp′q′ + c (so
c = a mod p′q′ as before). Although Lv0 reveals c (in an information-theoretic
sense), the conditional distribution on b given Lv0 is statistically close to uniform
on {0, . . . ,bN2/p′q′c}. Since r/bN2/p′q′c is negligible, it follows that b mod r is
statistically close to uniform on {0, . . . ,r−1} (even conditioned on the adversary’s
view). Using the fact that p′q′ 6= 0 mod r, we see that

Prb[a+m = 0 mod r] = Prb[(bp′q′+(c+m)) = 0 mod r]
= Prb[bp′q′ =−(c+m) mod r]
= Prb[b =−(c+m)/p′q′ mod r],

and this final probability is negligibly close to 1/r ≤ 1/3. We conclude that, with
noticeable probability, r does not divide (a+m); hence, with noticeable probability,
e does not divide K. This completes the proof.

4.3.3 The Cramer-Shoup Scheme

We now have all the building blocks in place to present the Cramer-Shoup signature
scheme [36]. (See Construction 4.6. Our description is intended to highlight the cor-
respondence with the Cramer-Damgård scheme.) The scheme assumes a collision-
resistant hash function H mapping inputs to strings of length ` = bk/2c. We also
continue to assume that the signature scheme is defined for messages of length `.

Theorem 4.6. If the strong RSA problem is hard relative to GenModulus, then
the Cramer-Shoup signature scheme is existentially unforgeable under an adaptive
chosen-message attack.

Proof. All the necessary components of the proof are contained in the proofs of The-
orems 4.3 and 4.5, and so we will be relatively brief here. Let A be a PPT adversary
attacking the Cramer-Shoup signature scheme that outputs a forgery with probabil-
ity ε(k). Say A obtains t = t(k) signatures {ei,Li,auth1,i,auth2,i)}t

i=1 on messages
{mi}t

i=1, and outputs a forgery (e,L,auth1,auth2) on a message m. Let ε1(k) denote
the probability that A outputs a forgery such that e = ei for some i, and let ε2(k)
be the probability that A’s forgery satisfies e 6∈ {ei}. Since ε(k) = ε1(k) + ε2(k),
showing that both ε1 and ε2 are negligible will complete the proof.

We can bound ε1 by exactly following the proof of Theorem 4.3. In fact, we can
bound ε1 by direct reduction to the Cramer-Damgård scheme using depth d = 1.11

10 Recall that signature verification does not check whether e is prime.
11 Hardness of the strong RSA problem relative to GenModulus implies hardness of the RSA
problem relative to GenModulus and an arbitrary GenPrime. This, in turn, implies security of the
Cramer-Damgård scheme by theorem 4.3.

4.3 Schemes Based on the Strong RSA Assumption 113

Construction 4.6: The Cramer-Shoup scheme

Let GenModulus,GenPrime be as described in the text, and set ` = bk/2c.
Key generation: On security parameter 1k, proceed as follows:

• Run (N, p,q)← GenModulus(1k), where p and q are strong primes.
• Choose random Lv0 ,h ∈ QRN and compute e′← GenPrime(1`+1).
• The public key is (N,Lv0 ,h,e′) and the secret key is p,q.

Signature generation: To sign message m ∈ {0,1}`, viewed as an integer in the
range {0, . . . ,2` − 1}, choose random quadratic residue L ∈ QRN and set e ←
GenPrime(1`+1). Then compute

auth1 :=
(

Lv0 ·hH(L)
)1/e

mod N

and
auth2 := (L ·hm)1/e′ mod N.

The signature is (e,L,auth1,auth2).

Signature verification: To verify signature (e,L,auth1,auth2) on message m, first
verify that e is an odd, (`+1)-bit integer different from e′ (note that it is not required
to verify primality of e). Then check that

authe
1

?= Lv0 ·hH(L) mod N

and
authe′

2
?= L ·hm mod N.

In detail, we construct an adversary A′ for the Cramer-Damgård scheme as follows:
Given public key (N,Lv0 ,h,E = {e1, . . . ,et ,et+1}) for an instance of the Cramer-
Damgård scheme, A′ runs A on public key (N,Lv0 ,h,et+1). The t signing queries
of A are answered in the natural way, and a forgery by A in which e ∈ {e1, . . . ,et}
immediately yields a forgery for A′ as well. We therefore turn our attention to bound-
ing ε2.

The bound on ε2 is derived in a manner essentially the same as that used in the
proof of Theorem 4.5. In particular, we can construct an algorithm A′ (using A as a
subroutine) that solves an instance (N,y) of the strong RSA problem with probabil-
ity polynomially related to ε2(k). The public key is constructed by A′ exactly as in
the proof of Theorem 4.5, with the only difference being the additional selection of
a prime e′ ← GenPrime(1`+1) and its inclusion in the public key. As described in

the proof of that theorem, A′ will be able to compute auth1,i
def=

(
Lv0 ·hH(Li)

)1/ei
for

114 4 Signature Schemes Based on the (Strong) RSA Assumption

arbitrary Li. To respond to the ith signature request of A on some message mi, we
thus have A′ proceed as follows:

• Choose random si ← Z∗N .
• Set Li := se′

i ·h−mi mod N and auth2,i := si.

• Compute auth1,i
def=

(
Lv0 ·hH(Li)

)1/ei
as in the proof of Theorem 4.5.

• Output the signature (ei,Li,auth1,i,auth2,i).

Arguing as in the proof of Theorem 4.5, we have that A will output a forgery such
that e 6∈ {ei}with probability negligibly close to ε2(k). Furthermore, as in that proof,
when this occurs A′ can compute a non-trivial root of y with noticeable probability.
It follows that ε2 is negligible.

This completes the proof.

4.3.4 The Fischlin Scheme

An improvement to the Cramer-Shoup scheme was subsequently proposed by Fis-
chlin [48] and is presented as Construction 4.7. This variant offers the advantages of
faster signing and verification, as well as shorter signatures. It is fair to say that this
scheme is currently the most efficient known scheme which can be proven secure
based on standard assumptions.

Theorem 4.7. If the strong RSA problem is hard relative to GenModulus, then Con-
struction 4.7 Fischlin is existentially unforgeable under an adaptive chosen-message
attack.

Proof. The proof relies on many of the same ideas as the proof of Theorem 4.6, and
also has some similarities with Construction 1.1. As usual, let A be a PPT adversary
attacking the scheme that outputs a forgery with probability ε(k). Say A obtains
t = t(k) signatures {(ei,αi,authi)}t

i=1 on adaptively chosen-messages {mi}t
i=1 and

outputs forgery (e,α,auth) on a message m. Let ε1(k) denote the probability that
A’s forgery satisfies e = ei for some (unique12) i, and let ε2(k) be the probability
that e 6∈ {ei}. As in the previous proofs, we are done once we show that ε1 and ε2
are negligible.

If A’s forgery (e,α ,auth) satisfies e = ei then either α 6= αi or α ⊕m 6= αi ⊕
mi (or possibly both). Let ε1

1 (k) (resp., ε2
1 (k)) denote the probability that the first

(resp., second) case occurs. Note that ε1(k) ≤ ε1
1 (k)+ ε2

1 (k). We will prove that ε1
1

is negligible; the proof that ε2
1 is negligible is completely analogous.

We show an algorithm A′1 that solves an instance (N,y,e) of the (regular) RSA
problem with probability polynomially related to ε1

1 (k). A′1 begins by making a ran-
dom guess j ← {1, . . . , t} (recall, t is the number of signatures requested by A).
Next, A′1 prepares a public key as follows:

12 We assume the {ei} are distinct, since a collision occurs with negligible probability.

4.3 Schemes Based on the Strong RSA Assumption 115

Construction 4.7: The Fischlin scheme

Let GenModulus,GenPrime be as described in the text, and set ` = bk/2c.
Key generation: On security parameter 1k, proceed as follows:

• Run (N, p,q)← GenModulus(1k), where p and q are strong primes.
• Choose random L,h1,h2 ∈ QRN .
• The public key is (N,L,h1,h2) and the secret key is p,q.

Signature generation: To sign message m∈ {0,1}`, compute e←GenPrime(1`+1)
and choose a random `-bit string α . Then compute

auth :=
(
L ·hα

1 ·hα⊕m
2

)1/e mod N

(using the known factorization of N), viewing both m and α ⊕m as integers in the
range {0, . . . ,2`−1}. The signature is (e,α,auth).

Signature verification: To verify signature (e,α,auth) on message m, first check
that e is an odd, (`+1)-bit integer (again, we stress that verifying the primality of e
is not necessary). Then check whether

authe ?= L ·hα
1 ·hα⊕m

2 mod N.

• Set e j := e and compute e j ← GenPrime(1`+1) for j ∈ {1, . . . , t}\{i}. Then set
ê := ∏i ei.

• Choose random v,w ← QRN and set h1 := y2ê/e j mod N and h2 := vê mod N.
Choose α j ←{0,1}` and set L := h

−α j
1 wê mod N.

• The public key is (N,L,h1,h2).

The resulting public key is distributed identically to the public keys output by the
true key generation algorithm. (Here, we rely on the fact that v,w are generators of
QRN except with negligible probability, something that is true because N is a prod-
uct of strong primes.) Furthermore, it is fairly immediate that for i 6= j it is possible
for A′1 to generate a correctly distributed signature (using ei) on any message mi
chosen by A: in particular, A′1 need only choose a random αi and then compute

authi := y2(αi−α j)ê/eie j ·wê/ei · v(α⊕m)ê/ei mod N

= h
(αi−α j)/ei
1 ·wê/ei ·h(α⊕m)/ei

2 mod N

=
(
L ·hαi

1 ·hα⊕m
2

)1/ei mod N.

Finally, A′1 can also compute a signature using e j on any message m j chosen by A;
here, A′1 uses the α j it had chosen in advance and sets

116 4 Signature Schemes Based on the (Strong) RSA Assumption

auth j := wê/e j · v(α j⊕m)ê/e j mod N

=
(

wê ·h−α j
1 ·hα j

1 ·hα j⊕m
2

)1/e j
mod N

=
(

L ·hα j
1 ·hα j⊕m

2

)1/e j
mod N.

Since α j was chosen uniformly, and is independent of the public key, this signature
too has the correct distribution.

Continuing the description of A′1: it runs A using the generated public key and
answers the signing queries of A as outlined above. Assume A outputs a valid forgery
(e,α,auth) on a message m with e = e j and α 6= α j. Since A′1 perfectly simulates
a real execution of the scheme and the guess j of A′1 is correct with probability 1/t,
this occurs with probability ε1

1 (k)/t. Moreover, when this occurs we have authe j =
L ·hα

1 ·hα⊕m
2 mod N and so

h
−α j
1 ·wê = L = authe j ·h−α

1 ·h−(α⊕m)
2 mod N

or, re-writing,
h

α−α j
1 = authe j ·h−(α⊕m)

2 ·w−ê mod N.

Due to the way h1,h2 were computed, this implies:

y2·(α−α j)·ê/e j = authe j · (vê)−(α⊕m) ·w−ê mod N

=
(
auth · (vê/e j)−(α⊕m) ·w−ê/e j

)e j
mod N.

Note that A′1 can compute γ def= auth · (vê/e j)−(α⊕m) ·w−ê/e j mod N. So, A′1 can com-
pute y1/e j by application of Lemma 4.1 (the {ei}i 6= j are all relatively prime to e j, and
|α−α j| < e j so that difference is relatively prime to e j as well). We conclude that
A′1 correctly solves its given RSA instance with probability polynomially related to
ε1

1 , and so this must be negligible. (As we have previously stated, a similar argument
applies to ε2

1 . Hence, this concludes the proof that ε1 is negligible.)
We next turn to bounding ε2. Here we construct an algorithm A′2 that solves an

instance (N,y) of the strong RSA problem with probability polynomially related
to ε2(k). Since the analysis here largely follows that of the proofs for Theorems 4.5
and 4.6, we merely provide a sketch. A′2 constructs a public key as follows:

• Compute ei ← GenPrime(1`+1) for i = 1, . . . , t. Then set ê := ∏i ei
• Set h1 := y2ê mod N. Choose a,a′ ← {1, . . . ,N2}, and set h2 := ha

1 mod N and
L := ha′

1 mod N.
• The public key is (N,L,h1,h2).

As argued in the proof of Theorem 4.5, the distribution on the public key (N,L,h1,h2)
generated in this way is statistically close to the distribution on public keys output
by the real key generation procedure. Furthermore, since A′2 knows the eth

i roots of
L,h1, and h2 for all i, it is not hard to see that A′2 can provide any signatures requested

4.3 Schemes Based on the Strong RSA Assumption 117

by A (and these signatures will have the correct distribution). Finally, if A outputs a
valid forgery (e,α,auth) on some message m, and it is the case that e 6∈ {ei}, then

authe = L ·hα
1 ·hα⊕m

2 mod N

= y2ê·(a′+α+a·(α⊕m)) mod N

from which A′2 can compute a non-trivial root of y with noticeable probability (as in
the proof of Theorem 4.5). This concludes the proof.

4.3.5 The Gennaro-Halevi-Rabin Scheme

The scheme presented here as Construction 4.8, due to Gennari, Halevi, and Ra-
bin [53], is markedly different from the Cramer-Shoup-Fischlin scheme, and can
be said to more directly follow the ideas of Lemma 4.2. As presented here, the
Gennaro-Halevi-Rabin scheme has the advantage of being very easy to analyze al-
though it is less efficient than the previous two schemes we have seen. The original
paper discusses a more efficient variant of the scheme that is more difficult to ana-
lyze, and relies on a somewhat non-standard assumption.

For the purposes of the presentation, we assume there exists an efficient, de-
terministic function f mapping messages to odd primes of length at least k. (This
assumption on f can be relaxed [53] at the expense of a more complicated analy-
sis. Again, our intention here is not to present the most optimized instantiation of
the scheme, but only to convey the main ideas.) Furthermore, f is required to be
collision resistant. We refer the reader to the bibliographic notes at the end of this
chapter for references to various constructions of such an f .

Construction 4.8: The Gennaro-Halevi-Rabin scheme

Let GenModulus and f be as described in the text.

Key generation: On security parameter 1k, proceed as follows:

• Run (N, p,q)← GenModulus(1k) with p,q strong primes.
• Choose random z← Z∗N .
• The public key is (N,z) and the secret key is p,q.

Signature generation: The signature on message m is z1/ f (m) mod N, computed
using the factorization of N.

Signature verification: To verify signature σ on message m, simply output 1 iff
σ f (m) ?= z mod N.

118 4 Signature Schemes Based on the (Strong) RSA Assumption

Note the strong parallel with what is claimed in Lemma 4.2. A key difference is
that here the set of roots {z1/ f (mi) mod N} that are available to an adversary may
be chosen adaptively since the primes { f (mi)} depend on message {mi} that are
potentially under the control of an adversary. Indeed, it is not known whether the
scheme as presented in Construction 4.8 can be proven secure against adaptive
chosen-message attacks based on the strong RSA assumption. (Although we re-
mark that security against adaptive chosen-message attacks can be proved based on
a somewhat non-standard assumption [53].) Nevertheless, we can prove the scheme
secure against known message attacks.

Theorem 4.8. If the strong RSA problem is hard relative to GenModulus, the
Gennaro-Halevi-Rabin scheme is strongly unforgeable under a known-message at-
tack.

Proof. Every message has a unique valid signature, so existential unforgeability
and strong unforgeability and it suffices to prove the former. Given a PPT adversary
A succeeding in a known-message attack with probability ε(k), we construct an
algorithm A′ that solves a given instance (N,y) of the strong RSA problem with the
same probability. It follows by assumption that ε(k) must be negligible.

The attack begins when A(1k) outputs a set of t = t(k) messages {mi}t
i=1. Next,

A′ prepares a public key and signatures as follows: it computes ê := ∏i f (mi) and
sets z := yê mod N. The public key is (N,z). Furthermore, the signature on each
message mi is computed as

σi := yê/ f (mi) = z1/ f (mi) mod N

(note that A′ can compute this value since ê/ f (mi) is an integer). It is easy to see
that the public key and all signatures are distributed exactly as in an execution of the
real signature scheme.

Now, if A outputs a valid forgery (m,σ) with m 6∈ {mi} then we have

σ f (m) = z = yê mod N.

Since f (m) is prime and f is collision resistant, we have gcd(f (m), ê) = 1 (except
with negligible probability) and A′ can compute a non-trivial f (m)th root of y using
Lemma 4.1. This concludes the proof.

4.4 Further Reading

It is interesting to observe that all known schemes based on the RSA assump-
tion with even moderate efficiency require the RSA problem (i.e., computing
y1/e mod N) to be hard for several primes e (e.g., a random large prime as in the
constructions described here, or several fixed small primes). It remains open to con-
struct an efficient scheme based on the assumption, say, that the RSA problem with
fixed exponent e = 3 is hard.

4.4 Further Reading 119

Extending the ideas used in the Dwork-Naor [42] and Cramer-Damgård [34]
signature schemes, Catalano and Gennaro [26] show a tree-based signature scheme
based on a variant of the factoring assumption.

The strong RSA assumption was introduced in [50, 4]. Although seemingly much
stronger than the standard RSA assumption, the best known attacks on the RSA and
strong RSA problems currently have the same complexity.

Construction 4.8 is based on the original Gennaro-Halevi-Rabin signature scheme
introduced in [53], and was also implicitly considered by Naccache, et al. [86]. In
the original paper presenting the scheme [53], existential unforgeability is shown
directly (i.e., without resorting to Theorem 1.1) by introducing slight modifica-
tions to the scheme and imposing additional assumptions on the function f (but see
[31] for further discussion regarding the validity of those assumptions). Functions f
which unconditionally satisfy the properties as required for Theorem 4.8 are given
in [23, 83, 31, 86]; none of these constructions, however, is particularly efficient.

Besides the schemes discussed in this chapter, other notable signature schemes
based on the strong RSA assumption includes [24, 75, 27, 65]; see [70] for a recent
survey of those and other works.

As we have mentioned, the signature schemes of Cramer-Shoup and Fischlin are
currently the most efficient provably secure schemes known. In our description of
these schemes, however, we have been concerned more with clarity than efficiency.
We refer the reader to [36, 48] for various efficiency improvements as well as dis-
cussions on efficient implementation of these schemes.

A second paper by Hohenberger-Waters [66] shows an approach by which certain
signature schemes based on the strong RSA assumption can be converted to stateful
schemes based on the standard RSA assumption.

Chapter 5
Constructions Based on Bilinear Maps

5.1 Introduction

In the past 10 years cryptographic constructions based on bilinear maps have
become extremely popular, most prominently following their use in constructing
identity-based encryption schemes. Bilinear maps have also led to several efficient
signature schemes, and we explore two such constructions here.

5.1.1 Technical Preliminaries

For the purposes of this chapter, we treat bilinear maps in a completely abstract
fashion without discussing any specific instantiation. A detailed understanding of
bilinear maps as used in cryptography requires a more in-depth familiarity with
elliptic curves than we are willing to assume on behalf of the reader. The references
at the end of this chapter serve as a good starting point for further reading on this
topic.

Let G be an efficient algorithm that, on input 1k, outputs (G,GT ,q,g, ê) where:

• G,GT are (descriptions of) two groups of prime order q, where group operations
in G,GT can be performed efficiently.

• g is a random1 generator of G.
• ê is a (description of an) efficiently computable function2 ê :G×G→GT whose

properties are summarized below.

1 The assumption that g is random can be relaxed, but assuming g is random simplifies things.
2 Often ê is defined as a mapping ê : G1 ×G2 → GT where G1,G2 are isomorphic but do not
necessarily share the same representation. (This is sometimes referred to as the asymmetric case,
in contrast to the symmetric case presented in this text.) We have opted to focus on the symmetric
case because doing so allows us to simplify the notation; all the results covered in this chapter,
however, carry over to the asymmetric setting.

© Springer Science+Business Media, LLC 2010
121J. Katz, Digital Signatures, DOI 10.1007/978-0-387-27712-7_5,

122 5 Constructions Based on Bilinear Maps

The function ê is required to be bilinear, meaning that for every g,h ∈G and every
a,b ∈ Zq

ê(ga,hb) = ê(g,h)ab.

We also assume that ê is non-degenerate, namely that ê(g,g) 6= 1.
Later, we will formally state the specific computational assumptions that will

be used to prove security of the signature schemes that will be presented. To gain
some familiarity with bilinear maps, though, we include some preliminary discus-
sion here.

We always assume that the discrete logarithm problem is hard in G. Formally,
we assume the following is negligible for all PPT algorithms A:

Pr[(G,GT ,q,g, ê)← G (1k);h←G;x← A(1k,G,GT ,q,g,h, ê) : gx = h].

This implies hardness of the discrete logarithm problem in GT : if not, then A could
efficiently compute the discrete logarithm of h ∈G as follows:

• Compute gT = ê(g,g). By non-degeneracy of ê and the fact that the orders of G
and GT are prime, we have that gT is a generator of GT .

• Compute hT = ê(g,h).
• Compute loggT

hT = x (using the fact that the discrete logarithm problem in GT
is easy).

This succeeds because of bilinearity; namely, because if h = gx then

hT = ê(g,h) = ê(g,gx) = ê(g,g)x = gx
T .

5.1.2 Outline of the Chapter

In this chapter we focus on two signature schemes built using bilinear maps. The first
scheme we present is due to Boneh and Boyen and relies on an assumption similar in
some respects to the strong RSA assumption. We then show a scheme due to Waters
that can be based on the more standard computational Diffie-Hellman assumption
(though in a group where an efficiently computable bilinear map is defined). This
scheme is interesting in that it is derived from an identity-based encryption scheme;
the reader is referred to Waters’s original paper [109] for further details.

Our intention here is to highlight the techniques used in designing these schemes
and proving them secure, not to discuss their relative performance benefits. Such a
discussion would require a more extensive digression into the specifics of bilinear
maps as used in cryptography.

5.2 The Boneh-Boyen Scheme 123

5.2 The Boneh-Boyen Scheme

Let G , as before, be an algorithm that generates parameters (G,GT ,q,g, ê) defining
a bilinear map. For compactness, we abbreviate the output of G by params. The
strong Diffie-Hellman (SDH) assumption states that the following problem is hard:

Given params and gx,gx2
, . . . ,gxq ∈G (for random x),

output
(

c,g1/(x+c)
)

for an arbitrary c ∈ Zq.

(The solution with c =−x is disallowed.) We will in fact require this problem to be
hard for any (polynomial) q. Observe that a candidate solution (c,h) ∈ Zq×G can
be verified (with respect to the given instance g,gx, . . . ,gxq

) by checking whether
ê(gx gc,h) ?= ê(g,g). Letting h = g1/(x+c′) for some c′ ∈ Zq (note that if h = 1 then
ê(gx gc,h) = 1 6= ê(g,g); in any other case, c′ is well-defined), this works because

ê(gxgc,h) = ê(gx+c,g1/(x+c′)) = ê(g,g)(x+c)/(x+c′),

and the final expression is equal to e(g,g) if and only if c = c′.
Formally:

Definition 5.1. The SDH problem is hard relative to G if for all PPT algorithms A
and all polynomials q = q(k) the following is negligible:

Pr
[

params← G (1k);x← Zq;
(c,h)← A(params,gx,gx2

, . . . ,gxq
)

: ê(gx gc,h) = ê(g,g)
]
.

The SDH assumption, as stated, is vaguely similar to the strong RSA assumption
insofar as A is given the freedom to choose c. A stronger correspondence is given
by the following lemma, which can be viewed as an analogue of Lemma 4.2.

Lemma 5.1. Say the SDH problem is hard relative to G . Then for all PPT algo-
rithms A, all polynomials q, and any set of integers {ci}q

i=1, the following is negligi-
ble:

Pr

[
params← G (1k);x← Zq;

(c,h)← A
(
params,gx,{ci,g1/(x+ci)}q

i=1

) : ê(gx gc,h) = ê(g,g)
∧

c 6∈ {ci}
]

.

Stated differently, even given several SDH solutions {ci,g1/(x+ci)}q
i=1 it remains

difficult for A to find a new SDH solution (c,g1/(x+c)). This immediately yields a sig-
nature scheme secure under a known-message attack, as we will see subsequently.
We first prove the lemma.

Proof. Given a PPT algorithm A, a polynomial q, and a set of integers {ci}q
i=1 as in

the lemma, we construct a PPT algorithm B solving the SDH problem. Algorithm B
is given params = (G,GT ,q,g, ê) and {gxi}q+1

i=1 . A key observation is that given any
polynomial f (X) ∈ Zq[X] of degree at most q+1, it is possible for B to compute

124 5 Constructions Based on Bilinear Maps

g f (x) (where x here is the same as in the instance B is given). This is done by writing
f (X) = ∑q+1

i=0 fiX i and then computing

q+1

∏
i=0

(
gxi

) fi
= g∑q+1

i=0 fixi
.

We use this extensively in what follows.
B defines the polynomial f (X) = ∏q

i=1(X +ci) and chooses a random r ← Zq. It
then computes the following values, exactly as described above:

1. ḡ :=
(

g f (x)
)r

.

2. ḡ′ :=
(

gx f (x)
)r

. (Note that the polynomial X f (X) has degree q+1.)

3. For i ∈ {1, . . . ,q}, hi :=
(

g f (x)/(x+ci)
)r

. (Note that, by construction of f , we in-
deed have that f (X)/(X + ci) ∈ Zq[X] for all i.)

B then runs A on input params′ = (G,GT ,q, ḡ, ê), ḡ′, and {ci,hi}q
i=1. Observe that

• ḡ is a random element of G;
• ḡ′ = ḡx for a random x ∈ Zq (unknown to B);
• hi = ḡ1/(x+ci) for all i.

We assume f (x) 6= 0 since this event occurs with negligible probability (and would
anyway allow B to compute x). Thus, the inputs given to A have the correct distribu-
tion and so the probability with which A outputs (c, h̄) with h̄ = ḡ1/(x+c) and c 6∈ {ci}
remains unchanged.

Assuming A does indeed output (c, h̄) with h̄ = ḡ1/(x+c) and c 6∈ {ci}, we show
that it is possible for B to compute a valid solution to its SDH instance. Using long
division, B computes a polynomial f ′ ∈ Zq[X] and a non-zero scalar c′ ∈ Zq such
that f (X) = f ′(X) · (X +c)+c′. (We have c′ 6= 0 by definition of f and the fact that
c 6∈ {ci}.) Then B outputs the solution

(
c,

(
h̄1/r/g f ′(x)

)1/c′
)

,

where the value g f ′(x) is computed as described earlier. This is a valid solution to
B’s given SDH instance since

(
h̄1/r

g f ′(x)

)1/c′

=

(
ḡ1/(r(x+c))

g f ′(x)

)1/c′

=

(
gr f (x)/(r(x+c))

g f ′(x)

)1/c′

=

g f ′(x)+ c′

x+c

g f ′(x)

1/c′

=
(

g
c′

x+c

)1/c′

= g1/(x+c).

5.2 The Boneh-Boyen Scheme 125

The previous lemma suggests the following signature scheme. The public key
contains (G,GT ,q,g, ê) along with a value X = gx; the secret key is x. The signature
on the message m ∈ Zq is just σ = g1/(x+m). (We require m 6= −x.) To verify a
signature σ on a message m, it is simply required to check whether

ê(X gm,σ) ?= ê(g,g);

this succeeds because for a correct signature σ we have

ê(X gm,σ) = ê(gxgm,g1/(x+m)) = ê(g,g)(x+m)/(x+m) = ê(g,g).

Lemma 5.1 immediately implies that the scheme just described is existentially
unforgeable under a known-message attack. We could of course then apply Con-
struction 1.2 to obtain a scheme secure under an adaptive chosen-message attack.
The Boneh-Boyen scheme, given as Construction 5.1, applies essentially the same
idea but more efficiently.

Construction 5.1: The Boneh-Boyen scheme

Let G be as described in the text.

Key generation: Compute params
def= (G,GT ,q,g, ê)← G (1k) and choose random

x,y ∈ Zq. The public key is (params,gx,gy) and the secret key is x,y.

Signature generation: Given a message m∈Zq, the signer choose a random r ∈Zq

and outputs the signature
(

r,g1/(x+m+yr)
)

. (Note that x + m + yr 6= 0 mod q except
with negligible probability over choice of r.)

Signature verification: To verify a signature (r,σ) on a message m with respect to

a public key (params,X ,Y), check whether ê(XgmY r,σ) ?= ê(g,g).

Theorem 5.1. If the SDH problem is hard relative to G , then the Boneh-Boyen
scheme is strongly unforgeable under an adaptive chosen-message attack.

Proof. Fix some PPT algorithm A attacking the signature scheme, and let q be a
(polynomial) upper-bound on the number of signature queries made by A. For a
given public key (params,X ,Y) (with associated secret key x,y), say A obtains sig-
natures {(ri,σi)} on messages {mi} and outputs a strong forgery m,(r,σ). (We allow
m ∈ {mi} as long as (m,r,σ) 6∈ {(mi,ri,σi)}.) We assume A never requests a signa-
ture on the message m =−x; this is without loss of generality since, given m =−x,
it is trivial to construct a forgery. Let ε1(k) denote the probability with which A
outputs a valid forgery and m + ry = mi + riy for some i, and let ε2(k) denote the
probability with which A outputs a forgery and m+ ry 6= mi + riy for all i. (Note that
one can efficiency determine which is the case, even given only the public key, by

126 5 Constructions Based on Bilinear Maps

checking if gmY r = gmiY ri for some i.) We show that ε1 and ε2 are negligible; since
the overall success probability of A is ε(k) = ε1(k)+ε2(k), this completes the proof.

We begin by bounding ε2 since this is the easier case. Consider the following
algorithm B2 given input as in Lemma 5.1 for random {ci}q

i=1:

Algorithm B2:
The algorithm chooses3 random {ci}q

i=1, and is then given
params,gx,{ci,σi = g1/(x+ci)}q

i=1.

• Choose y ← Zq \ {0}, and then give to A the public key
(params,gx,gy).

• When A requests a signature on the ith message mi, set ri :=
(ci−mi)/y mod q and return the signature (ri,σi).

• If A outputs a strong forgery m,(r,σ) with m+ry 6= mi +riy
for all i, then output the solution (m+ ry,σ).

Since the {ci} are chosen at random, independent of the public key given to A,
the distribution over A’s view in the above experiment is statistically close to the
distribution over A’s view in a real attack on the signature scheme. (In particular,
the {ri} are random and signatures constructed by B2 are correctly distributed.)
Thus, with probability exactly ε2 in the above experiment, A outputs a strong forgery
m,(r,σ) where m+ry 6= mi +riy for all i. In this case, σ = g1/(x+(m+ry)). Further, by
construction of B2 we have ci = mi + riy for all i. Thus, m+ ry 6∈ {ci} and therefore
B2 outputs a new (and correct) SDH solution with probability ε2. By the assumed
hardness of the SDH problem and Lemma 5.1, it follows that ε2 is negligible.

We now bound ε1. The main idea is similar to that used above, but the algebra is
slightly more complicated. Consider the following algorithm B1

Algorithm B1:
The algorithm chooses random non-zero {ci}q

i=1, and is then
given params,gy,{ci,σi = g1/(y+ci)}q

i=1.

• Choose x ← Zq, and give the public key (params,gx,gy)
to A.

• When A requests a signature on the ith message mi, set ri :=

(x + mi)/ci mod q and return the signature
(

g1/(y+ci)
)1/ri

.
(Note that ri 6= 0 by our assumption that mi 6=−x.)

• If A outputs a strong forgery (r,σ) on a message m, with
gm(gy)r = gmi(gy)ri for some i, then compute

y := (m−mi)/(ri− r) mod q.

(We show below that r 6= ri.) At this point it is trivial to
output a new SDH solution.

3 Although Lemma 5.1 was only stated for the case of fixed {ci}, it is not difficult to see that the
lemma extends to this setting as well.

5.3 The Waters Scheme 127

It is straightforward to see that the public key given to A has the same distribution
as in a real attack, and the {ri} are all random. It takes a little more work to see that
the signatures constructed by B1 have the correct form; this is so because

(
g1/(y+ci)

)1/ri
= g1/(riy+rici) = g1/(riy+x+mi),

by choice of ri. Finally, say A outputs a strong forgery m,(r,σ) with gm(gy)r =
gmi(gy)ri for some i. For a given public key and m,r, there is a unique σ such that
(r,σ) is a valid signature on m. Since (r,σ) is a valid signature on m but (m,r,σ) 6=
(mi,ri,σi), we must in fact have (m,r) 6= (mi,ri). But if gm(gy)r = gmi(gy)ri then
m+ ry = mi + riy and so actually m 6= mi and r 6= ri. It follows that B1 can correctly
solve for y as described, and so B1 outputs a new (and correct) SDH solution with
probability ε1. By the assumed hardness of the SDH problem and Lemma 5.1, it
follows that ε1 is negligible.

This concludes the proof.

5.3 The Waters Scheme

We conclude this chapter by presenting the Waters signature scheme. This construc-
tion is of significant interest for several other applications it has beyond merely
serving as a standard signature scheme, most prominently to identity-based encryp-
tion (the context in which it was first proposed); unfortunately, we will not be able to
survey these diverse applications in this book. For our purposes, the scheme serves
as an example of an efficient scheme based on (what is for the most part) a standard
assumption. The proof technique used to prove it secure is quite clever too.

We can define the computational Diffie-Hellman (CDH) assumption in any
(cyclic) groupG, and this assumption had been used well before bilinear maps were
introduced to cryptography. Roughly, the CDH assumption is that the following
problem is hard for any generator g ∈G:

Given ga,gb ∈G (for random exponents a,b), output gab ∈G.

Interestingly, in the general case a valid solution to the CDH problem cannot neces-
sarily be verified; that is, there is not necessarily any efficient mechanism to deter-
mine whether a candidate solution h to a CDH instance (g,ga,gb) is correct or not.
Moreover, in certain groups G it is even reasonable to assume that it is (essentially)
never possible to verify a solution; this is, roughly speaking, what the decisional
Diffie-Hellman assumption entails.

When an efficiently computable bilinear map is defined over G, however, it is
possible to efficiently verify correct solutions to the CDH problem (and so, in par-
ticular, the decisional Diffie-Hellman assumption cannot hold). Indeed, given four

128 5 Constructions Based on Bilinear Maps

elements g,gx,gy,gz, where g has order q, checking whether z ?= xy mod q is equiva-
lent to checking whether ê(g,gz) ?= ê(gx,gy). Assuming the CDH assumption holds,
this asymmetry between the difficulty of computing a correct solution and the ease
of verifying it proves very useful; we will see this both here, as well as later in
Section 7.1.1.

The CDH assumption is formally stated as follows:

Definition 5.2. The CDH problem is hard relative to G if for all PPT algorithms A
the following is negligible:

Pr
[
params← G (1k);a,b← Zq : A(params,ga,gb) = gab

]
.

We jump right in with a description of the Waters scheme.

Construction 5.2: The Waters scheme

Let G be as described in the text.

Key generation: Compute params
def= (G,GT ,q,g, ê) ← G (1k). Choose a ← Zq

and set g1 := ga. Choose also random g2,u0, . . . ,uk ← G. The public key is
(params,g1,g2,u0, . . . ,uk) and the secret key is ga

2.

Fixing a public key, we set H(m) def= u0 ·∏k
i=1 umi

i where m = m1 · · ·mk ∈ {0,1}k.

Signature generation: Given a message m ∈ {0,1}k, the signer choose a random
r ∈ Zq and outputs the signature (ga

2 ·H(m)r, gr).

Signature verification: To verify a signature (σ1,σ2) on a message m, check

whether ê(g,σ1)
?= ê(σ2,H(m)) · ê(g1,g2).

Let us first verify correctness. Given an honestly generated signature (σ1,σ2) on a
message m, we have

ê(g,σ1) = ê(g, ga
2 ·H(m)r)

= ê(g, ga
2) · ê(g, H(m)r)

= ê(ga,g2) · ê(gr,H(m))
= ê(g1,g2) · ê(σ2,H(m)),

as desired.

Theorem 5.2. If the CDH problem is hard relative to G , then the Waters scheme is
unforgeable under an adaptive chosen-message attack.

We remark that the Waters scheme is not strongly unforgeable, as there is an
easy way to “re-randomize” a valid signature on any message. This can actually be
a useful feature for certain applications.

5.3 The Waters Scheme 129

Proof. Given an adversary A attacking the signature scheme, making at most qs
signing queries, and having success probability ε , we construct an adversary B solv-
ing the CDH problem with probability polynomially related to ε . Informally, B will
generate a public key (having the appropriate distribution) for which B can compute
valid signatures on a (random) subset S ⊂ {0,1}k of messages, and such that any
forgery produced by A on a message outside of S allows B to solve its given CDH
instance. We expect B to be successful with probability roughly

ε ·
(|S|

2k

)qs

·
(

1− |S|
2k

)
;

setting |S|/2k ≈
(

1− 1
qs

)
then gives B success probability O(ε). The formal analysis

is a bit more subtle, and is given next.

Algorithm B:
The algorithm is given params = (G,GT ,q,g, ê) and g1,g2.

• Set ` = 2qs. We assume k` < q, which holds for k large
enough.

• Choose x0 ←{−k`, . . . ,0} and x1, . . . ,xk ←{0, . . . , `}. Also
choose y0, . . . ,yk ← Zq.

• For i = 0, . . . ,k, set ui := gxi
2 gyi . Define the functions F(m) def=

x0 +∑k
i=1 mixi and G(m) def= y0 +∑k

i=1 miyi.
• Run A on the public key (params,g1,g2,u0, . . . ,uk). When

A requests a signature on a message m, do:
1. If F def= F(m) = 0 mod q then abort.

2. Otherwise, set w := F−1 mod q and G def= G(m). Choose
r ← Zq and return the signature

(
gFr

2 gGr g−Gw
1 , gr g−w

1

)
.

• If A outputs a valid forgery (m,(σ1,σ2)), do:
1. If F(m) 6= 0 mod q then abort.
2. Otherwise, output σ1/σG(m)

2 .

It is easy to see that the public key given to A has the correct distribution. Let
us next argue that as long as B does not abort (1) the signatures given to A are
distributed correctly, and (2) B outputs a correct solution to its given CDH instance.
Let a = logg g1 and b = logg g2. Recall that a real signature on the message m would
be computed as

(
ga

2H(m)r̄, gr̄
)

for a random r̄. Setting F = F(m), G = G(m), w =
F−1 mod q (using the fact that B only returns a signature if F 6= 0 mod q), and
r̄ = r−aw, and observing that H(m) = gF(m)

2 gG(m), we have

ga
2H(m)r̄ = ga

2H(m)r−aw = ga
2 ·

(
gF

2 gG)r−aw

= ga
2gFr−a

2 gGr−Gaw

= gFr
2 gGrg−Gw

1

130 5 Constructions Based on Bilinear Maps

and
gr̄ = gr−aw = grg−aw = grg−w

1 ,

exactly as returned by B. Since B chooses r at random, r̄ = r−aw is uniformly dis-
tributed and we conclude that signatures returned by B have the correct distribution.

Say A outputs a valid signature (σ1,σ2) on a message m for which F(m) = 0 mod
q. By definition of the verification algorithm, this means ê(g,σ1)/ê(σ2,H(m)) =
ê(g1,g2) = ê(g,gab), and so

ê(g,g)ab =
ê(g,σ1)

ê(σ2,H(m))

=
ê(g,σ1)

ê(g,g0
2gG(m))

,

from which we conclude that σ1/gG(m) = gab.
It remains only to analyze the probability with which B does not abort, and suc-

cessfully completes the simulation. Since the {xi} chosen by B are independent of
the public key given to A, we can analyze this probability by imagining a “men-
tal experiment” in which A interacts with the real signature scheme, requesting
signatures on messages m1, . . . ,mqs and then outputting a forgery on a message
m 6∈ {m1, . . . ,mqs} with (overall) probability ε . After this point, {xi} are chosen
from the same distribution used by B, and we ask whether

F(m1) 6= 0 mod q ∧ ·· · ∧ F(mqs) 6= 0 mod q ∧ F(m) = 0 mod q. (5.1)

We stress that the probability that the above event holds is not independent of m
and the {mi}, and this dependence creates problems some application of the Waters
scheme (most notably in the context of proving that it gives a secure identity-based
encryption scheme). In our context, however, it suffices to give a lower bound for
the probability of the above event that holds for any m and {mi}.

Fix arbitrary m and {mi}, and let E be the event in Equation (5.1). We are in-
terested in the probability of this event over choice of x and the {xi}. We can sim-
plify things by noting that |F(m)| < q for all m, and therefore F(m) = 0 mod q iff
F(m) = 0. We then have

Pr[E]≤ Pr[F(m) 6= 0]+
qs

∑
i=1

Pr
[
F(m) = 0

∧
F(mi) = 0

]
.

For any x1, . . . ,xk, there is exactly one choice of x0 for which F(m) = 0; thus,
Pr[F(m) 6= 0] = k`/(k` + 1). Next consider any i ∈ {1, . . . ,qs}, and let M = mi.
Since m 6= M, there must be some index j where they differ. Without loss of gen-
erality, say the jth bit of m is 1 and the jth bit of M is 0. Fixing some choice of
x1, . . . ,x j−1,x j+1, . . . ,xk, we see that F(m) = 0 and F(M) = 0 only if

x0 + x j =−∑
i 6= j

mixi and x0 =−∑
i 6= j

Mixi,

5.4 Further Reading 131

and therefore
Pr[F(m) = 0

∧
F(mi) = 0]≤ 1

k`+1
· 1
`+1

.

Putting everything together, we have

Pr[E]≤ k`
k`+1

+
qs

(k`+1) · (`+1)
,

and so

Pr[E]≥ 1
k`+1

·
(

1− qs

`+1

)
≥ 1

4kqs +2
.

From this we conclude that B succeeds with probability at least ε/(4kqs + 2), and
so ε must be negligible if the CDH problem is hard relative to G .

5.4 Further Reading

A good introduction to elliptic-curve cryptography, including a discussion of bi-
linear maps, can be found in the textbook by Washington [108]. Galbraith et
al. [51] give a more up-to-date treatment of the bilinear maps used in cryptographic
schemes, along with a detailed discussion of their efficiency.

Our proof of security for the Boneh-Boyen scheme was adapted directly from
their paper [18]. For the Waters scheme [109], the proof given here more closely
follows an alternate approach suggested by Bellare and Ristenpart [8] although we
stress that the same basic ideas were used already by Waters. We remark that is
both these aforementioned works [109, 8], the proofs are significantly complicated
because they provide a security analysis for identity-based encryption. In contrast,
here we faced the easier task of proving security as a signature scheme only.

Part III
Digital Signature Schemes in the

Random Oracle Model

Chapter 6
The Random Oracle Model

The signature schemes described in the previous chapters, whether based on the
RSA/strong RSA assumptions or bilinear maps, represent essentially the extent of
what is currently known regarding efficient yet provably secure signature schemes.
These schemes have some clear disadvantages:

• They are based on a relatively small set of assumptions. Notably, we are lacking
efficient constructions based on the hardness of factoring or the discrete loga-
rithm problem, or even the computational Diffie-Hellman assumption in groups
without an associated bilinear map.

• Though efficient, the existing schemes are currently viewed as not being efficient
enough for most practical applications. This is especially true given the avail-
ability of various “heuristically secure” schemes (i.e., schemes whose security
has not been broken thus far) that are much more efficient than the provably
secure schemes we know.

Given what appears to be the status quo — that the only schemes having a chance
of being widely used are those whose efficiency is truly comparable with currently

we would surely prefer to use schemes having some concrete evidence for their
security; on the other hand the schemes that we can (currently) prove secure are not
(yet) efficient enough.

One approach to addressing this dilemma is to introduce new number-theoretic
assumptions; these may, in turn, enable constructions of more efficient schemes
based on those assumptions, or might allow for proofs of security for existing
schemes. (To some extent, this has already happened with the introduction of the
strong RSA assumption and — even more so — with the variety of assumptions that
have been proposed in the context of groups over which a bilinear map is defined.)
This is certainly a reasonable approach. Of course, that there is always the danger
that a new problem turns out to be not quite as hard as it appeared on first glance!
There is also a more subtle problem that arises when introducing a new assumption
expressly to prove an existing scheme secure: at what point does introducing a new
assumption become “equivalent” to simply assuming the security of the signature

© Springer Science+Business Media, LLC 2010
135

deployed schemes — we are left with somewhat of a dilemma. On the one hand

J. Katz, Digital Signatures, DOI 10.1007/978-0-387-27712-7_6,

136 6 The Random Oracle Model

scheme itself? This is not a question that can be answered readily (see [87] for one
possible approach), but the point remains that it is preferable to base schemes on
well-studied, widely accepted assumptions rather than newer ones.

Another approach to resolving the dilemma has become popular, though the the-
oretical soundness of the approach has yet to be rigorously justified. This method-
ology advocates the use of a new model, called the random oracle model, in which
to prove security of cryptographic schemes.1 As suggested by the name, the random
oracle model is an idealized model that assumes the existence of a public, random
function H such that all parties can obtain H(x) (for any desired input value x) only
by interacting with an oracle computing H; parties cannot compute H (for any in-
put) on their own. The oracle (equivalently, H) is assumed to implement a truly
random function, something that can be visualized in the following way: the oracle
maintains a table of pairs {(xi,yi)} which is initially empty. When the oracle re-
ceives a query x it first checks whether x = xi for some i; if so, the corresponding yi
is returned. Otherwise, a random string y of the appropriate length is chosen, the
answer y is returned, and the oracle stores (x,y) in its table so that the same output
value can be returned if the same input is queried again. Queries to the oracle are
assumed to be private so that, for example, if an honest party queries the oracle on
input x then an adversary does not learn x.

The random oracle model is used to design cryptographic primitives via the fol-
lowing two-step approach:

1. A scheme is designed and proven secure assuming the existence of this random
oracle (and possibly also using other number-theoretic or cryptographic assump-
tions); that is, the scheme is designed in this idealized “random oracle model.”
We will describe the model in more detail below.

2. In the real world, of course, no random oracle is available. In practice, then, the
random oracle is instantiated with a cryptographic hash function (such as SHA-1,
modified appropriately) that is hoped to be “sufficiently good” at simulating a
random oracle.

As we shall see, it is not clear exactly what is meant for a hash function to be
“sufficiently good” at simulating a random oracle, nor is it clear that this is a goal
that can possibly be achieved in general. Thus, proofs of security for a given scheme
in the random oracle model should not be viewed as proofs that apply to any “real-
world” instantiation of the scheme. Before discussing in more detail the theoretical
drawbacks of the random oracle model, as well as the practical justifications for
using it, we will describe by way of example why the random oracle model is so
useful in proving security of cryptographic schemes.

1 Indeed, use of the random oracle model is not limited to the case of signature schemes.

6.1 Security Proofs in the Random Oracle Model 137

6.1 Security Proofs in the Random Oracle Model

At a high level, the random oracle model is used in the following way: given an
adversary A breaking some scheme/violating some cryptographic assumption in the
random oracle model, A is transformed to an algorithm A′ which violates some
cryptographic assumption in the standard model by having A′ simulate the random
oracle for A. Our algorithm A′ gains two advantages here: (1) A′ gets to see the
queries that A makes to the random oracle; and (2) A′ gets to answer these queries
“any way it likes” (although to provide a good simulation these queries should be
answered in a “random-looking” way). There is also a third, perhaps more obvious
advantage (already implicit in the random oracle model itself): the value of H(x)
for any point x not explicitly queried by A is completely random, at least from the
perspective of A.

We give two quick examples of proofs where the above techniques are used in an
essential way. We make no attempt to be rigorous here; rather, our goal is to provide
the reader with enough intuition so that the later proofs in the random oracle model
(given in the chapters that follow) will be easier to digest.

First example. For the first example we consider the following game: a “challenger”
generates an RSA key (N,e), chooses random m ∈ {0,1}` and r ∈ Z∗N , and sends
(N,e,re mod N,H(r)⊕m) to A, where H : Z∗N → {0,1}` is taken to be a random
oracle. We claim that, under the RSA assumption, no PPT adversary A can learn any
information about m (beyond what it could determine by random guessing) except
with negligible probability. To see this, we argue as follows: The only way A can
learn anything about m is by explicitly querying the random oracle at the point r;
this is a consequence of the fact that H(r) is completely random (from the point
of view of A) unless A specifically queries H at this point. Letting ε denote the
probability that A does indeed query H(r), we have that A learns no information
about m except with probability ε .

We now show that ε must be negligible by constructing a PPT algorithm A′ which
solves the RSA problem with probability exactly ε:

Algorithm A′
The algorithm is given (N,e,y), and its goal is to compute
y1/e mod N.

• Choose random r′←{0,1}`.
• Run A on input (N,e,y,r′). Perfectly simulate the random

oracle queries of A by returning random answers to each
(fresh) query.

• When A is done, let x1, . . . ,xn denote the queries that A made
to the random oracle.

• If there exists an i for which xe
i mod N ?= y, then output xi.

The input given to A is distributed identically to the above experiment, and it is
trivial for A′ to simulate the random oracle for A (since A makes only polynomial-

138 6 The Random Oracle Model

lymany queries, A′ need only store a polynomial-size table of input/output pairs).
Since A′ can see the queries made by A to the random oracle, it follows that A′ in-
verts its given input y with probability exactly ε . We conclude that, under the RSA
assumption, ε is negligible as claimed.

Second example. We now consider a game in which the challenger generates (N,e)
as before, and sends these and a random value y ∈ Z∗N to an adversary A. The goal
is for A to compute y1/e mod N. The “twist” is that A can query the random or-
acle H : Z∗N → Z∗N at any sequence of points x1, . . . ,x` ∈ Z∗N (we assume with-
out loss of generality that these are distinct), receiving in return the output values
y1 = H(x1), . . . ,y` = H(x`); the challenger then gives to A the values y1/e

i mod N
for all i (assume the challenger knows the factorization of N and so can compute
these values). We claim that A still cannot compute y1/e mod N except with negli-
gible probability. To see this, construct the following adversary A′ which computes
y1/e mod N with the same probability at A, but without any additional “help” from
the challenger:

Algorithm A′
The algorithm is given (N,e,y) as input, and its goal is to com-
pute y1/e mod N.

• Run A on input (N,e,y).
• For each random oracle query H(xi) of A:

– Choose ri ← Z∗N .
– Answer the query using yi := re

i mod N.
• Give r1, . . . ,r` to A. Output whatever value is output by A.

The key point to notice in the above is that A′ perfectly simulates the random oracle
queries of A (indeed, each answer yi is uniformly distributed in Z∗N), but in such a
way that A′ knows the corresponding inverses ri = y1/e

i mod N. Thus, the view of A
above is identically distributed to its view in the real experiment, and so A′ outputs
the correct inverse of y with exactly the same probability with which A outputs the
correct inverse in the original game.

6.2 Is the Random Oracle Methodology Sound?

The proofs we have given in the previous two examples are rather simple and clean.
It is worth noting, however, that the proofs rely heavily on the random oracle model,
and cannot be translated to the “real world” when the random oracle H is instantiated
with any concrete hash function.2 In the first example, the proof relies on the fact
that H(r) is completely random unless r is explicitly queried to the oracle, and on

2 This is not to say that there might not be some other way to prove the same results as in the two
examples; the point is only that the proofs given earlier do not work.

6.2 Is the Random Oracle Methodology Sound? 139

the ability of A′ to see the queries being made by A. Neither of these assumptions
hold for any concrete function H which can be evaluated by A on its own. First of
all, it is not even clear in this case what it means for A to “explicitly query H(r),”
since A may be able to evaluate H(r) other than by explicitly making a query to a
subroutine that computes H. Given this, it is doubly unclear what it might mean for
H(r) to be “completely random” from the point of view of A — note in particular
that once A is given a program to compute H, the value H(r) is decidedly no longer
random. Finally, once A no longer needs to make explicit queries to compute H(r)
there is no way for A′ to “intercept” these queries and check for an inverse of y.

The proof of the second example, above, relies on the ability of A′ to answer
the random oracle queries of A in any manner of its choosing. Once the function H
is fixed (in particular, once A is given the code to compute H), however, this is of
course no longer possible.

The objections raised above are representative of a more general problem with
the random oracle model. Recall the two-step approach to designing schemes in this
model: first, a scheme is developed and proven secure in the random oracle model;
next, the scheme is instantiated in the real world using a hash function which is
assumed to provide a “sufficiently good” simulation of a random oracle. Unfortu-
nately, we do not in general know how to prove that any concrete hash function is
“sufficiently good” at simulating a random oracle; thus, a proof of security in the
random oracle model does not actually constitute a proof of security (for the in-
stantiated scheme) in the real world. Worse, we cannot in general even define (in a
meaningful way) what “simulating a random oracle” means. Because of this, using
the random oracle model to “prove” security of a scheme is qualitatively differ-
ent from, e.g., introducing a new cryptographic assumption in order to prove some
scheme secure, and a proof of security in the random oracle model is generally re-
garded as less desirable than a proof of security in the so-called3 standard model
which does not allow for random oracles. (The division of the chapters in this book
is meant to emphasize this preference for proofs that avoid random oracles.)

It is worth stressing at this point that a random oracle is fundamentally different
from a pseudorandom function, and in particular a pseudorandom function cannot
be used generically to instantiate a random oracle. A pseudorandom function is a
keyed function which can only be evaluated (in the real world) when the key is
known, and is only “random-looking” when the key is unknown. In contrast, a ran-
dom oracle is unkeyed and, when instantiated by a hash function in the real world,
can be evaluated by anyone; yet it is supposed to remain “random-looking” in some
ill-defined sense. Finally, pseudorandom functions can be (meaningfully) defined
and realized; in contrast, it is clear that no real-world function will have the proper-
ties of a random oracle that were relies upon in the proofs above. (As in footnote 2,
this is not to say that there does not exist any real-world function for which the pre-
vious claims of security hold; only that there is no real-world function for which the
previous proofs will work.)

3 In the use of “standard model” to designate the non-random oracle model, one can already sense
the unease with which the random oracle model is regarded.

140 6 The Random Oracle Model

In light of the above, a major current research question is what, exactly, a proof
of security in the random oracle model does guarantee vis-a-vis the security of the
scheme in the real world. It is fair to say that we are a long way from a good under-
standing of the answer to this question.

6.2.1 Negative Results

In fact, a number of negative results concerning the use of the random oracle model
are known. These negative results generally show a (contrived) scheme which is
provably-secure in the random oracle model but demonstrably insecure for any con-
crete instantiation of the random oracle. (In at least one case [89] a stronger result
is demonstrated whereby a security goal is shown to be achievable in the random
oracle model, but not achievable — by any scheme — in the standard model.) We
will give the general flavor of these results, again without being completely formal.

As a warm-up, we first show a weaker result: that for any real-world hash func-
tion H∗ there exists a signature scheme which is secure in the random oracle model
but insecure when instantiated using H. The idea is quite simple: let H∗(0) = v0,
where the output-length of H∗ is assumed to be linear in the security parameter.
Now take any secure signature scheme and modify it so that, when signing a mes-
sage, the signer first checks whether H(0) ?= v0 (where H is the random oracle); if
so, the signer outputs its secret key (if not, then the signature is computed normally).
In the random oracle model, this modified scheme is still secure: the probability that
H(0) = v0 for any value v0 is negligible, and assuming this is not the case then the
signature scheme is unchanged. On the other hand, the scheme is clearly insecure
when H is instantiated using H∗.

Along the same general lines, but using a more technically difficult proof, one
can show the following, stronger result: there exists a signature scheme which is
secure in the random oracle model, but which is insecure when instantiated using
any real-world hash function H∗. Take any secure signature scheme and modify
it in the following way: when signing a message m the signer first interprets m
as the code for a function fm (if m cannot be interpreted as a program, the signer
can take fm as, say, the identity function). The signer then chooses random values
r1, . . . ,r` for some sufficiently-large (but polynomial) value `, and checks whether
fm(r1)

?= H(r1), . . . , fm(r`)
?= H(r`). If so, then the signer outputs its secret key;

otherwise, the signature is computed normally.
It is easy to see that the scheme is insecure for any concrete choice of H∗, as

an adversary can simply request that the signer sign the code for the program com-
puting H∗. On the other hand, intuitively the scheme is secure in the random oracle
model since there is unlikely to exist any “short” program m for which fm agrees
with the random oracle on a large fraction of their inputs. (We have glossed over
many technical details; the interested reader is referred to [25, 14].) Note that this
“disconnect” relies exactly on the fact that a truly random function (as realized by a

6.3 The Random Oracle Model in Practice 141

random oracle) is an exponential-size object, while any concrete function instantiat-
ing a random oracle must have polynomial size (that is, there must be a polynomial-
size program computing this function).

6.3 The Random Oracle Model in Practice

Given the theoretical problems with the random oracle model, as well as the negative
results discussed above, are schemes with proofs of security in the random oracle
model any better than schemes having no proof of security at all? Although there are
those who would disagree, we believe that they are, and offer the following reasons
in support of this conviction:

• A proof of security for a given scheme in the random oracle model indicates that
the design of the scheme is “sound,” in the sense that the only possible weakness
in (the real-world instantiation of) the scheme can arise due to a weakness in the
hash function used to instantiate the random oracle. Alternately, the only way to
“break” the scheme is to “break” the hash function itself (in some way); thus, if
the hash function is “good enough” we have some confidence in the security of
the scheme itself. Furthermore, if a given instantiation of the scheme is success-
fully cryptanalyzed, we can replace the hash function being used with a “better”
one.

• Finally, there have been no real-world attacks on any “natural” scheme proven
secure in the random oracle model (this is meant to rule out the attacks on the
“contrived” schemes such as those discussed in Section 6.2.1). This gives ev-
idence to the usefulness of the random oracle model in designing schemes in
practice.

• In light of the above, a proof of security in the random oracle model is preferable
to no proof at all. Of course, this assumes that these are the only options; i.e.,
that schemes with proofs of security in the standard model will not be used due
to their inefficiency. (We do not argue that choosing efficiency at the expense of
security is the right decision to make, only that it seems to be the decision made
most frequently in practice. This also assumes that the schemes proven secure
in the random oracle model are indeed significantly more efficient than known
schemes with proofs in the standard model.)

Nevertheless, the above ultimately represent only intuitive speculation as to the use-
fulness of the random oracle model rather than rigorous proof, and we emphasize
our opinion that proofs of security in the standard model are preferable to proofs
in the random oracle model. Understanding exactly what such proofs guarantee in
the real world remains, in our mind, one of the most important research questions
facing cryptographers today.

142 6 The Random Oracle Model

6.4 Further Reading

See [72, Chapter 13] for extensive additional discussion of the pros and cons of
the random oracle model, examples of its application to security proofs, and some
comments regarding implementation of random oracles in the real world.

The use of random oracle model to facilitate proofs was first suggested by Fiat
and Shamir [47]. The model was formalized, advocated, and popularized by the
seminal work of Bellare and Rogaway [9], after which the use of the random oracle
model to prove security of cryptographic constructions truly began to take off.

For negative results concerning the random oracle model, see [25, 14].

Chapter 7
Full-Domain Hash (and Related) Signature
Schemes

An important class of signature schemes proven secure in the random oracle model
is given by the full-domain hash (FDH) signature scheme and its variants. In ad-
dition to being simple and natural, as well as quite efficient, constructions in this
family are also the basis for standardizes signature schemes that are widely used.

We begin by describing the basic FDH signature scheme, which can be instanti-
ated with any doubly enhanced1 trapdoor permutation. (The same ideas can also be
instantiated using groups over which a bilinear map is defined.) We then focus on
techniques for improving the tightness of the security reduction, i.e., the “gap” be-
tween the probability with which an adversary forges a signature and that with which

based. (This will be explained more concretely after our treatment of FDH.) Inter-
estingly, these techniques all rely on the stronger assumption of (doubly enhanced)
clawfree trapdoor permutations (though they are all described here using RSA as a
special case).

We first show that a tighter analysis of FDH is possible. Even this reduction has
some slack, however, and so we turn to other schemes that offer optimally right
reductions. The first of these is a randomized variant of FDH where a random “salt”
is chosen (and included with the signature) each time a message is signed. We then
show how the salt can be avoided while maintaining the tight reduction.

7.1 The Full-Domain Hash (FDH) Signature Scheme

Full-domain hash (FDH) gives what is perhaps the most intuitively appealing ap-
proach to constructing digital signatures, and can be viewed as a secure realization
of the original ideas of Diffie and Hellman. At a high level, the public key in FDH
consists of (a description of) a trapdoor permutation f ; the secret key is (the de-

1 In the literature, FDH is usually described as being based on trapdoor permutations. As we will
see in the proof of Theorem 7.1, however, doubly enhanced trapdoor permutations are needed.

© Springer Science+Business Media, LLC 2010
143

the security reduction solves the underlying hard problem on which the scheme is

J. Katz, Digital Signatures, DOI 10.1007/978-0-387-27712-7_7,

144 7 Full-Domain Hash (and Related) Signature Schemes

scription of) the inverse f−1. Letting H be a hash function (that will be modeled as
a random oracle) mapping messages to the domain of f , the signature on a message
m is simple f−1(H(m)). Verification of a candidate signature σ can be done by sim-

ply checking whether f (σ) ?= H(m). This is formalized as Construction 7.1, where
the main difference is that we are more precise regarding our use of H..

Construction 7.1: The FDH signature scheme

Let Π = (Gen,Samp, f , f−1) be a trapdoor permutation family, and let H : {0,1}k →
{0,1}k be a hash function.

Key generation: Compute (I, td)← Gen(1k). The public key is I and the secret key
is td.

Signature generation: To compute the signature on a message m, compute r :=
H(m) followed by y := Samp(I;r). Then output the signature f−1

td (y).

Signature verification: To verify a signature σ on a message m, compute r := H(m)
followed by y := Samp(I;r). Then output 1 iff f (σ) ?= y.

Theorem 7.1. If Π is a doubly enhanced trapdoor permutation, and H is modeled
as a random oracle, then Construction 7.1 is strongly unforgeable under an adaptive
chosen-message attack.

Proof. Messages in FDH have unique signatures, so unforgeability implies strong
unforgeability. Given a PPT adversary A attacking the FDH signature scheme, mak-
ing qH hash queries (i.e., queries to the random oracle computing H) and forging
a signature with probability ε , we construct a PPT algorithm A′ inverting Π (in the
sense described in Definition 2.5) with probability at least ε/qH . Since qH must be
polynomial, we conclude that ε must be negligible.

Because Π is doubly enhanced, there exists (cf. Definition 2.5) an algorithm
Samp′ that takes as input I and outputs a tuple (x,y,r) such that (1) fI(x) = y and
y = Samp(I;r), and (2) the distribution on r is statistically close to uniform. For
simplicity we will assume that the distribution on r is uniform. We also make three
assumptions, without loss of generality, regarding the behavior of A:

1. A never repeats a query to the random oracle.
2. Before making a signature query on a message m, adversary A first makes the

hash query H(m).
3. Before outputting a forgery (m,σ), adversary A first makes the hash query H(m).

Our algorithm A′ proceeds as follows:

Algorithm A′:
The algorithm is given (I,y,r) as input, with y = Samp(I;r).
Its goal is to output x such that fI(x) = y.

7.1 The Full-Domain Hash (FDH) Signature Scheme 145

• Choose j ←{1, . . . ,qH}.
• Run A on the public key I. Store triples (·, ·, ·) in a table,

initially empty. An entry (mi,xi,ri) indicates that A′ has set
H(mi) = ri, and fI(xi) = Samp(I;ri) (in particular, xi is a
valid signature on mi).

• When A makes its ith random oracle query H(mi), answer it
as follows:
– If i = j, return r.
– Otherwise, compute (xi,yi,ri) ← Samp′(I), return ri as

the answer to the query, and store (mi,xi,ri) in the table.
When A requests a signature on a message m, let i be such
that m = mi and answer this query as follows:
– If i 6= j, then there is an entry (mi,xi,ri) in the table. Re-

turn xi.
– If i = j then abort.

• If A outputs a forgery (m,σ) with m = m j, return σ .

We may easily observe that as long as A′ does not abort, the simulation it provides
for A is perfect. Specifically:

1. The public key has the correct distribution.
2. A’s jth query to the random oracle is answered with the random string r. By def-

inition of Samp′, all of A’s other queries to the random oracle are also answered
with a random string.

3. Signing queries (assuming A′ does not abort) are also answered correctly; this,
again, follows from the properties of Samp′.

Moreover, if A outputs a forgery (m,σ) with m = m j then

fI(σ) = Samp(I;H(m j)) = Samp(I,r) = y,

and so A′ correctly solves its given instance. The theorem follows from the fact that
the guess j made by A′ (representing a guess of the hash-query index for which A
will produce its forgery) is correct with probability 1/qH .

7.1.1 An Instantiation Using Bilinear Maps

For completeness, we show here how the FDH approach can be instantiated using
bilinear maps (even though these do not quite give a trapdoor permutation family).
The scheme described here was introduced by Boneh, Lynn, and Shacham and is re-
ferred to as the BLS signature scheme. For simplicity in the description that follows,
we assume a random oracle mapping directly to the appropriate group; in practice,
one has to be careful to instantiate this random oracle properly.

146 7 Full-Domain Hash (and Related) Signature Schemes

Construction 7.2: The BLS signature scheme

Let G be as in Chapter 5.

Key generation: Compute params = (G,GT ,q,g, ê)← G (1k). Choose x← Zq and
set y := gx. The public key is (params,y) and the secret key is x.

Let H : {0,1}k →G be a hash function.

Signature generation: To compute the signature on a message m, compute h :=
H(m) and output the signature hx.

Signature verification: To verify a signature σ on a message m, check whether
ê(σ ,g) ?= ê(H(m),y).

Theorem 7.2. If the CDH problem is hard relative to G , and H is modeled as a
random oracle, then Construction 7.2 is strongly unforgeable under an adaptive
chosen-message attack.

Proof. The proof here is substantially identical to the proof of Theorem 7.1, and so
we only sketch the analysis. Given a PPT adversary A attacking the BLS signature
scheme, making qH hash queries (i.e., queries to the random oracle computing H)
and forging a signature with probability ε , we construct a PPT algorithm A′ solving
the CDH problem with probability at least ε/qH . We make the same assumptions
on the behavior of A as in the proof of Theorem 7.1.

Our algorithm A′ proceeds as follows:

Algorithm A′:
The algorithm is given (G,GT ,q,g, ê,y,h) as input, and its goal
is to output σ ∈G with ê(σ ,g) = ê(h,y).

• Choose j ←{1, . . . ,qH}.
• Run A on the public key (params,y). Store triples (·, ·, ·) in

a table, initially empty. An entry (mi,xi,hi) indicates that A′
has set H(mi) = hi, and hi = gxi .

• When A makes its ith random oracle query H(mi), answer it
as follows:
– If i = j, return h.
– Otherwise, choose xi ← Zq, set hi := gxi , return hi as the

answer to the query, and store (mi,xi,hi) in the table.
When A requests a signature on a message m, let i be such
that m = mi and answer this query as follows:
– If i 6= j, then there is an entry (mi,xi,hi) in the table.

Return yxi .
– If i = j then abort.

• If A outputs a forgery (m,σ) with m = m j, return σ .

7.2 An Improved Security Reduction for FDH 147

It is not difficult to verify that, unless A′ aborts, the simulation provided for A is
perfect and A′ correctly solves its given CDH instance if A forges a signatures. The
theorem follows.

7.2 An Improved Security Reduction for FDH

The proofs of security we have given for the FDH and BLS signature schemes pro-
vide the following guarantee: if there exists a PPT adversary A making qH hash
queries who can “break” the signature scheme with probability ε , then there exists a
PPT algorithm A′ that can solve the underlying hard problem with probability ε/qH .
(In general, the running time of the reduction A′ as a function of the running time
of A is also an important concern. In the proofs we have given, however, the run-
ning time of A′ was within a relatively small multiple of the running time of A.)
Turning this around, this means that if we believe that some relevant computational
problem is hard to solve in time t with probability better than ε ′ (for some concrete
setting of the security parameter k), then using this computational problem in one of
these constructions gives a signature scheme that cannot be broken with probability
better than qHε ′. Since qH , in practice, corresponds to the number of hash function
evaluations made by A, this can lead to a significant loss in security! For example,
one may set parameters so that ε ′ ≈ 2−100. But then if qH ≈ 280 (a large, but not
unachievable, value), the signature scheme only has security ε ≈ 2−20 (a not-very-
conservative choice). In theory, the schemes are still “secure” since we may take
the security parameter as high as we like (and are assured that, asymptotically, the
advantage of any adversary will decay quickly); in practice, however, we see that
the tightness of a security reduction is of extreme importance.

Interestingly, the security reduction for the FDH signature scheme can be im-
proved when a clawfree trapdoor permutation family is used. (A similar idea can be
applied directly to the BLS signature scheme, using the observation — recorded in
Section 2.3.3 — that groups in which the discrete logarithm problem is hard imply
clawfree permutations.) It can be shown that if there exists a PPT adversary A mak-
ing qS signing queries who can “break” the signature scheme with probability ε ,
then there exists a PPT algorithm A′ that can solve the underlying hard problem with
probability O(ε/qS). Since qS ¿ qH , this represents a significant improvement.

We illustrate the idea here using the specific example of RSA as a (doubly en-
hanced) clawfree trapdoor permutation (cf. Section 2.2.2). Here, the public key is
(N,e) and the signature on a message m is H(m)1/e mod N. Examining the reduc-
tion A′ presented in the proof of Theorem 7.1, and assuming for simplicity that the
hash function H maps directly onto Z∗N , we see that A′ will guess the index i of the
hash query that results in a forgery; A′ then sets the output of the ith hash query
H(mi) to be y (the value to be inverted). The output of all other hash queries H(m j)
is set to xe

j mod N for random x j ∈Z∗N . In this way, A′ can answer all signing queries

148 7 Full-Domain Hash (and Related) Signature Schemes

except those for message mi; furthermore, if adversary A outputs a forged signature
on mi, then A′ obtains the desired inverse. The loss of security arises from having to
guess the index i from among all qH hash queries of A.

We can improve the reduction by having A′ be a bit more clever in how it re-
sponds to hash queries of A. Specifically, each hash query will now be answered
in one of two ways. With probability γ , a hash query is answered as before (i.e.,
H(m) = xe mod N for a random x); let us refer to any message whose hash is com-
puted the way as a type-0 message. With probability 1− γ , however, a hash query is
answered by choosing random x ∈ Z∗N and setting the answer to be yxe mod N; we
refer to any message whose hash is computed this way as a type-1 message. Note
that A′ can compute a valid signature, exactly as before, on any type-0 message; a
forged signature on a type-0 message, though, is useless to A′. In exactly the op-
posite way, A′ is unable to compute a valid signature on any type-1 message, but a
forgery on any such message allows A′ to compute the desired inverse as we now
describe. Say A forges a valid signature σ on a type-1 message m whose hash was
computed as H(m) = yxe mod N. Then

(σ/x)e = σ e/xe = H(m)/xe = y mod N,

and so σ/x mod N is the correct answer. For completeness, we give the reduction
here:

Algorithm A′:
The algorithm is given (N,e,y) as input, and its goal is to out-
put x such that xe = y mod N.

• Run A on the public key (N,e). Store triples (·, ·, ·) in a ta-
ble, initially empty. An entry (bi,mi,xi) indicates that mi is
a type-bi message, answered using randomness xi (see be-
low).

• When A makes its ith random oracle query H(mi), choose
random xi ← Z∗N and answer the query as follows:
– With probability γ , return xe

i mod N as the answer to the
query, and store (0,mi,xi) in the table.

– With probability 1− γ , set bi := 2, return yxe
i mod N as

the answer to the query, and store (1,mi,xi) in the table.
When A requests a signature on a message m, let i be such
that m = mi and let (bi,mi,xi) be the corresponding entry in
the table. Answer this query as follows:
– If bi = 0, then return xi. If bi = 1, then abort.

• If A outputs a forgery (m,σ), let i be such that m = mi and let
(bi,mi,xi) be the corresponding entry in the table. If bi = 0
abort. Otherwise output σ/xi mod N.

A′ aborts if A ever asks for a signature on any type-1 message, or if A′ outputs a
forgery on a type-0 message. The probability with which A′ does not abort is thus

7.3 Probabilistic FDH 149

p def= γ qS · (1− γ),

which is maximized at p = O(1/qS) by setting γ = qS/(qS +1). Putting everything
together, if A outputs a valid forgery with probability ε then A′ solves its given RSA
instance with probability O(ε/qS) as claimed.

For the generalization of the above to the case of arbitrary clawfree trapdoor
permutations, see the references at the end of this chapter.

7.3 Probabilistic FDH

The result described in the previous section still leaves a gap. Here, we show a
probabilistic variant of FDH (called PFDH) that achieves a tight security reduction;
namely, this scheme has a proof of security showing that an adversary breaking the
scheme with probability ε yields an algorithm solving the underlying computational
problem with probability ε ′≈ ε . Here, too, the stronger assumption of clawfree trap-
door permutations is needed; Construction 7.3 gives an instantiation of the approach
using RSA. (We discuss how to set κ as part of the security proof below.)

Construction 7.3: The PFDH-RSA signature scheme

Let GenRSA be as in Chapter 4.

Key generation: Compute (N,e,d) ← GenRSA(1k). The public key is (N,e) and
the secret key is d.

Let H : {0,1}k → Z∗N be a hash function.

Signature generation: To compute the signature on a message m, choose random
r ←{0,1}κ , compute y := H(r‖m), and output the signature (r,yd mod N).

Signature verification: To verify a signature (r,σ) on a message m, check whether

σ e ?= H(r‖m).

The key novelty here is that messages now have multiple valid signatures, and the
reduction A′ can use this to its advantage. Let (N,e,y) be the RSA instance given
to A′. In the reduction that follows, A′ gives the public key (N,e) to A and (essen-
tially) computes in advance a list of qS signatures for each possible message m. (To
avoid exponential running time, A′ determines the list of signatures for a message
m only after m is used in a hash query of A.) That is, for each message m the re-
duction A′ chooses random r1, . . . ,rqS , sets H(m‖ri) = xe

i mod N for all i (with the
{xi} chosen randomly and independently, except that xi = xi if ri = r j), and fixes
the ith signature on m to be (ri,xi). The r1, . . . ,rqS are stored in a list Lm. Using the
terminology from the previous section, any hash query H(m‖r) with r ∈ Lm is thus

150 7 Full-Domain Hash (and Related) Signature Schemes

answered as a type-0 query. A hash query H(m‖r) with r 6∈ Lm is answered as a
type-1 query; that is, A′ sets the answer to be yxe mod N for random x ∈ Z∗N . We see
that A′ can answer all signing queries of A without any possibility of abort. More-
over, if A outputs a forgery (r,σ) on a message m, then A′ can output the desired
solution to its RSA instance iff r 6∈ Lm; we then only need to argue that this happens
with sufficiently high probability.

We now describe the reduction formally:

Algorithm A′:
The algorithm is given (N,e,y) as input, and its goal is to out-
put x such that xe = y mod N.

• Run A on the public key (N,e). Store triples (·, ·, ·) in a table
that is initially empty.

• When A makes oracle query H(m‖r) do:
1. If there is an entry (m‖r,x,z) in the table, return z.
2. If list Lm already exists, go to the next step. Otherwise,

choose qS values rm,1, . . . ,rm,qS ←{0,1}κ and store them
in a list Lm.

3. If r ∈ Lm then let i be such that r = rm,i. Choose random
xm,i ∈ Z∗N and return the answer z = xe

m,i mod N. Store
(m‖r,xm,i,z) in the table.

4. If r 6∈ Lm, choose random x ∈ Z∗N and return the answer
z = yxe mod N. Store (m‖r,x,z) in the table.

When A requests some message m to be signed for the
ith time, let rm,i be the ith value in Lm and compute z =
H(m‖rm,i) as above if the hash query H(m‖rm,i) has not yet
been asked. Let (m‖rm,i,xm,i,z) be the corresponding entry
in the table. Output the signature (rm,i,xm,i).

• If A outputs a forgery (m,(r,σ)) and r ∈ Lm then abort. Oth-
erwise, let (m‖r,x,z) be the corresponding entry of the table,
and output σ/x mod N.

As noted above, A′ provides a perfect simulation for A, and so if A outputs a
forgery with probability ε in a real attack on the signature scheme then it outputs a
forgery with the same probability in the above experiment. Conditioned on A’s out-
putting a valid forgery (r,σ) on a message m, the reduction A′ succeeds iff r 6∈ Lm.
Since each element in Lm is chosen uniformly, this occurs with probability exactly
p = (1−2−κ)qS . Setting kappa = logqS (and assuming qS ≥ 2), we have p≥ 1/4.
Overall, then, A′ outputs the correct solution to its given RSA instance with proba-
bility at least ε/4, and the reduction is therefore tight.

We remark that the same argument, applied to the same reduction, shows that
PFDH-RSA is in fact strongly unforgeable.

7.4 A Simpler Variant with a Tight Reduction 151

7.4 A Simpler Variant with a Tight Reduction

The PFDH scheme in the previous section uses a random salt, included as part of
the signature, each time a message is signed. Here we show a simple technique that
maintains the tight reduction while avoiding the salt altogether. As in the previous
two sections, the basic idea here can be instantiated using any clawfree trapdoor
permutation but we illustrate the idea using the specific example of RSA.

Construction 7.4: A (deterministic) variant of FDH

Let GenRSA be as in Chapter 4.

Key generation: Compute (N,e,d)← GenRSA(1k) and then choose a random ele-
ment y ∈ Z∗N . The public key is (N,e,y) and the secret key is d.

Let H : {0,1}k → Z∗N be a hash function.

Signature generation: To compute the signature on a message m, compute z :=
H(m) and choose a random bit b ∈ {0,1}. Then:

• If b = 0 output zd mod N.
• If b = 1 output (yz)d mod N.

If a given message is ever signed more than once, the same signature is released
each time (see text).

Signature verification: A signature σ on a message m is accepted as valid if either

σ e ?= H(m) mod N or σ e ?= y ·H(m) mod N.

In order to obtain a tight security proof, it is essential that only one signature
is released for any given message. (Interestingly, however, the scheme remains se-
cure [with a non-tight reduction] even if both possible signatures are released.) In
practice this could be done, without maintaining state, by including a key K for a
pseudorandom function as part of the secret key and then determining the bit b for
a given message m as b := FK(m).

The reduction here is actually quite simple. Let us call a signature σ on a
message m a type-0 signature if σ e = H(m) mod N, and a type-1 signature if
σ e = yH(m) mod N. For each message m, the reduction A′ chooses a random bit
b in advance and then sets H(m) in such a way that it can compute a type-b signa-
ture for m. If the adversary outputs a forgery, then with probability 1/2 the forged
signature will have the opposite type than the signature that is known by A′. In that
case, A′ easily computes a eth root of the value y included as part of the public key.

152 7 Full-Domain Hash (and Related) Signature Schemes

(In fact, the scheme is even strongly unforgeable.) We present the reduction here in
its entirety:

Algorithm A′:
The algorithm is given (N,e,y) as input, and its goal is to out-
put x such that xe = y mod N.

• Run A on the public key (N,e,y). Store tuples (·, ·, ·, ·) in a
table that is initially empty.

• When A makes oracle query H(m), choose a random bit b ∈
{0,1} and a random x ∈ Z∗N and then do:
1. If b = 0, return z = xe mod N as the answer to the query.
2. If b = 1, return z = xe/y mod N as the answer to the

query.
Store (b,m,x,z) in the table.
When A requests the signature on some message m, find the
entry (b,m,x,z) in the table and output x.

• If A outputs a forgery (m,σ), find the entry (b,m,x,z) in the
table and then:
1. If b = 0 and σ e = yz, then output σ/x mod N.
2. If b = 1 and σ e = z, then output x/σ mod N.

If A forges a signature with probability ε , then A′ solves its given RSA instance with
probability ε/2.

7.5 Further Reading

The FDH signature scheme, inspired by existing signature standards, was presented
and analyzed by Bellare and Rogaway [9]. The reduction in Section 7.1 is based on
their work. The improved analysis in Section 7.2 is due to Coron [28], who later
gave evidence [29] that this reduction is the best possible (for FDH). The idea of
using randomized hashing to obtain a tight security reduction is due to Bellare and
Rogaway [10], who introduced a scheme called PSS; the PFDH scheme shown here
was introduced by Coron [29] as a simplified abstraction of PSS. In the same work,
Coron showed how to improve the reduction given in [10] so that a shorter random
salt could be used; we have used Coron’s tighter analysis (as applied to PFDH) in
Section 7.3. PSS-RSA has since been standardized [95]. The FDH variant presented
in Section 7.4 adapts ideas of Katz and Wang [73].

Coron’s analysis in each of the works just cited was specific to an RSA-based
instantiation, and Dodis and Reyzin [41] subsequently showed that the analysis in
each case could be extended to any trapdoor clawfree permutation.

The BLS signature scheme appears in [19]. Techniques for hashing onto the ap-
propriate group are discussed in that paper as well as more recent work of Coron
and Icart [30].

7.5 Further Reading 153

Factoring-based instantiations of FDH-like schemes, resulting in what are among
the most efficient signatures known, are analyzed thoroughly by Bernstein [13].

Chapter 8
Signature Schemes from Identification Schemes

There are currently two main techniques for constructing signature schemes in the
random oracle model. The first technique uses the “full-domain hash” approach,
and several schemes designed using this approach were introduced in the previous
chapter. Here we cover the second central method, in which signature schemes are
derived from so-called identification schemes. We note up front that there is a rich
literature studying identification schemes in their own right; however, we limit our-
selves to a discussion of only those aspects that are most directly relevant to the
construction of signature schemes.

The chapter is organized as follows. We first define identification schemes as
well as the notion of passive security for such schemes; although this definition
of security is relatively weak as far as identification schemes are concerned, the
definition suffices for our purposes. We then describe and prove secure the Fiat-
Shamir transform, which provides a general method for converting (a certain class
of) passively secure identification schemes to signature schemes in the random ora-
cle model. We also discuss a simple transformation of certain identification schemes
to KMA-secure signature schemes without relying on the random oracle model.
Armed with these result, we then devote several sections to identification schemes

number-theoretic assumptions, to which the Fiat-Shamir transform can be applied.
We remark that many of the ideas explored in this chapter have proven extremely

useful in other areas of cryptography, most notably in the context of zero-knowledge
proofs. Although we do not describe any of these additional applications, we hope
to whet the reader’s appetite and thereby motivate the reader to explore these appli-
cations; we also expect that the material covered here will provide a firm foundation
with which to better understand these more advanced topics.

© Springer Science+Business Media, LLC 2010
155

per se: specifically, we show several identification schemes, based on a variety of

J. Katz, Digital Signatures, DOI 10.1007/978-0-387-27712-7_8,

156 8 Signature Schemes from Identification Schemes

8.1 Identification Schemes

Consider a scenario in which a party P (or prover) wants to convince another
party V (or verifier) that P is indeed who he claims to be. One can imagine this
arising in many ways: for example, perhaps P and V have never met before, or
perhaps P and V are communicating over a network (and not face-to-face) and V
wants to ensure that he is not communicating with P rather than an imposter. For
the problem to be meaningful there must clearly be some information distinguish-
ing P from everyone else; otherwise, anyone could easily impersonate P . In a set-
ting in which P wants to be able to convince multiple potential verifiers (rather than
just a single, fixed verifier), the natural approach is to assume that P establishes a
public key pk which is known to any potential verifier; then, using an associated
secret key sk generated along with this public key, P can run an instance of an
identification scheme to convince V that he is the party identified with pk.

Before defining any notion of security for this setting, let us first give a purely
syntactic definition of an identification scheme in order to fix some notation. For
two interactive protocols A and B, we let b ← 〈A(x),B(y)〉 denote an execution of
A (holding input x) with B (holding input y), with b denoted the final output of B at
the conclusion of the protocol.

Definition 8.1. An identification scheme consists of three probabilistic, polynomial-
time algorithms (Gen,P,V) such that:

• The randomized key generation algorithm Gen takes as input the security pa-
rameter k (in unary). It outputs a pair of keys (pk,sk), where pk is called the
public key and sk is called the secret key. We assume the security parameter k
is implicit in both pk and sk.

• P and V are interactive protocols. The prover algorithm P takes as input a
secret key sk and the verification algorithm V takes as input a public key pk. At
the conclusion of the protocol, V outputs a bit b with b = 1 signifying “accept”
and b = 0 signifying “reject.”

We require that for all k and all (pk,sk) output by Gen(1k) we have:

Pr [〈P(sk),V (pk)〉= 1] = 1.

Let us explore next what kind of security an identification scheme should achieve.
For an identification scheme to be useful, a minimal level of security requires that
an adversary A who knows the public key pk of some honest prover P should be
unable to falsely impersonate P to a verifier. A bit more formally, this would mean
that for any efficient adversary A the following should be negligible:

Pr
[
(pk,sk)← Gen(1k) : 〈A(pk),V (pk)〉= 1

]
. (8.1)

This notion of security is easy to achieve: simply generate the public and secret
keys by choosing a random x and setting sk = x and pk = f (x), where f is a one-
way function. During an execution of the identification protocol, the prover simply

8.1 Identification Schemes 157

P(x) V (pk)

x -
verify: f (x) ?= pk

Fig. 8.1 A simple identification protocol.

sends x and the verifier checks whether pk ?= f (x) (see Figure 8.1). It is easy to see
that this both satisfies the functional definition stated earlier as well as the notion of
security expressed in Equation (8.1).

What is wrong with this simple protocol? Well, it clearly does not protect against
an eavesdropping adversary who monitors even a single execution of the protocol
between P and V . In particular, P sends its entire secret key in the clear; hence,
any adversary who eavesdrops on one execution of the protocol obtains the secret
key and can impersonate P from that point on.

An identification scheme is secure against passive attacks if, informally, it re-
mains difficult for an adversary to impersonate P even after eavesdropping on
arbitrarily many executions of the protocol between P and an honest verifier V .
To give a formal definition, we introduce an oracle Transsk,pk(·) which, on empty
input, returns a transcript (i.e., all messages sent and received) of an honest execu-
tion 〈P(sk),V (pk)〉 of the identification scheme. We can thus model each eaves-
dropping attempt of an adversary by a query to this oracle. Note that if P,V are
randomized, then Trans is randomized as well and so returns a (possibly) different
transcript every time it is invoked. We point out also that Trans only returns those
messages that would be available to an eavesdropper; in particular, the internal states
of the parties (and specifically their random coins) are not included in the informa-
tion returned by Trans. Finally, we stress that this oracle is modeling eavesdropping
attacks on honest executions of the protocol (i.e., executions of P with an honest
verifier V); see further discussion below.

With this in place, we now give the formal definition.

Definition 8.2. An identification scheme (Gen,P,V) is secure against a passive
attack, or passively secure, if the following is negligible for all PPT adversaries
A = (A1,A2):

Pr

[
(pk,sk)← Gen(1k)

s← A
Transsk,pk(·)
1 (pk)

: 〈A2(s),V (pk)〉= 1

]
.

In the above definition we imagine the adversary carrying out an attack in two
“stages”: first the adversary eavesdrops on the protocol multiple times (this is re-
flected by giving A1 access to the Trans oracle), and it eventually outputs some state
information s; the adversary, using s, then tries to impersonate P . This definition
is equivalent to the seemingly stronger definition in which we allow A2 to query the
Trans oracle even while it is actively trying to impersonate P (so, for example, if

158 8 Signature Schemes from Identification Schemes

P(sk) V (pk)

generate I
(probabilistically) I -

c←Ω
¾ c

compute response r
r - verify using pk, I,c,r

Fig. 8.2 A canonical identification scheme (see text).

the identification scheme is a three-round protocol then A2 might decide to query the
Trans oracle between the second and third rounds). To see that security in this case
is implied by Definition 8.2, let A be an adversary strategy (there is clearly no longer
any point in separating the adversary into two stages) which makes queries to Trans
both before and during its interaction with V , and consider the following strategy
A′ = (A′1,A

′
2) which achieves identical success probability but does not query the

Trans oracle during its second stage. Let q = q(k) be a (polynomial) upper bound
on the number of times A queries the Trans oracle. Then A′1 makes q queries to
Trans to obtain a sequence of transcripts t1, . . . , tq. The output of A′1 is s = t1, . . . , tq.
In the second stage, A′2(s) simply runs A (forwarding messages to/from V in the ob-
vious way); whenever A makes its ith query to Trans, this is answered by A′2 using
the transcript ti it has already obtained. Clearly A′2 makes no queries to Trans, yet A′
succeeds in impersonating P with exactly the same probability as A does.

We will freely use either formulation of Definition 8.2 in what follows.
Before moving on to discuss the connection between identification schemes and

signature schemes in the following section, we do want to remark that passive se-
curity is indeed a rather weak notion of security: for one, it does not protect against
adversaries who pose as verifiers (and thus interact with P in executions of the
identification scheme) and can behave dishonestly as they do so, and then subse-
quently try to impersonate P to some other (honest) verifier. Security against such
attacks, termed active security, as well as security in other, stronger attack models,
has received a lot of attention in the literature (see the end of this chapter for some
pointers) and such considerations lead to a number of fascinating research direc-
tions. Since these stronger definitions of security are irrelevant for our purposes,
though, we do not provide any further details here.

Throughout this chapter, we assume identification schemes for which the follow-
ing hold (see Figure 8.2):

• The identification protocol itself takes three rounds: i.e., an execution of the pro-
tocol consists of an initial message I sent by P , a “challenge” c sent by V , and
a final response r sent by P .

• We assume the challenge c is chosen uniformly from some set Ω . (Technically,
Ω = {Ωk} depends on the security parameter k. In general, it may also depend
on the public key pk.) This implies that anyone given the transcript of an exe-

8.2 From Identification Schemes to Signatures 159

cution of the protocol (along with P’s public key pk), can efficiently determine
whether V would have accepted following that execution. By way of terminol-
ogy, we say that (pk, I,c,r) is an accepting transcript if V would accept an ex-
ecution of the protocol resulting in this transcript. (When pk is understood from
the context, we simply refer to (I,c,r) as an accepting transcript.)

• We assume the fist message of the protocol is “non-degenerate” in the following
sense: for any secret key sk and any fixed message Î, the probability that P(sk)
outputs I = Î as the first message is negligible. (This implies, in particular, that the
probability that some first message I repeats in polynomially many executions of
the protocol is negligible.) Note that this can easily be achieved for any 3-round
identification scheme by simply having P send an additional k-bit random string
(which is ignored by V) as part of its first message.

We refer to identification schemes satisfying the above as canonical.

8.2 From Identification Schemes to Signatures

We begin by describing the Fiat-Shamir transform, an extremely general tech-
nique for converting passively-secure (canonical) identification schemes to signa-
ture schemes in the random oracle model. We then isolate two criteria that are suffi-
cient (though not necessary) to assure passive security of an identification scheme.
(Although these criteria are not required to apply the Fiat-Shamir transform, rely-
ing on these criteria simplifies matters.) We conclude this section by showing how
identification schemes satisfying slightly stronger criteria (satisfied by all the iden-
tification schemes that will be presented in the following section) can be converted
to KMA-secure signature schemes without invoking the random oracle model.

8.2.1 The Fiat-Shamir Transform

The basic idea behind the Fiat-Shamir transform is to have the prover run an instance
of the identification protocol by itself, generating the challenge c by applying a hash
function H to the first message I and then computing an appropriate response r.
(Compare Figure 8.3 to Figure 8.2.) If H is modeled as a random oracle, then the
challenge c generated by H is “truly random” and so it will be just as difficult for
an adversary (who does not know sk) to find an accepting transcript (I,H(I),r) as
is would be to impersonate the prover in an honest execution of the protocol. (This
intuition is formalized in the proof of the theorem that follows.) By including a
message m in the input to H, an accepting transcript (I,H(I,m),r) thus constitutes
a signature on m. Since H(I,m) is redundant (as it can be computed from I and m),
the actual signature is just (I,r).

The Fiat-Shamir transform is formalized as Construction 8.1.

160 8 Signature Schemes from Identification Schemes

Construction 8.1: The Fiat-Shamir transform

Let Π = (Gen,P,V) be a canonical identification scheme where the verifier’s chal-
lenges are chosen uniformly from Ω . Let H : {0,1}∗→Ω be a hash function.

Key generation: Run Gen(1k) to generate keys (pk,sk). These are the public and
secret keys, respectively.

Signature generation: To sign message m using secret key sk, do:

• Run the prover algorithm P(sk) to generate an initial message I.
• Compute c := H(I,m).
• Compute the appropriate response r to the “challenge” c using P(sk).

The signature is (I,r).

Signature verification: To verify the signature (I,r) on message m with respect to
public key pk, proceed as follows:

• Compute c := H(I,m).
• Accept the signature iff (pk, I,c,r) is an accepting transcript.

Theorem 8.1. Let Π = (Gen,P,V) be a canonical identification scheme that is
secure against a passive attack. Then if H is modeled as a random oracle, the sig-
nature scheme Π ′ resulting from the Fiat-Shamir transform applied to Π is existen-
tially unforgeable under an adaptive chosen-message attack.

Proof. The intuition behind the proof is relatively straightforward, although there
are some technical details to take care of. We will use an adversary A′ attacking the
signature scheme to construct an adversary A attacking the identification scheme.
Adversary A is given a public key pk as well as access to the oracle Transsk,pk, and
interacts with an honest verifier V (recall by the discussion following Definition 8.2
that we can allow A to access the Trans oracle even during its interaction with V).
To get a feel for the main idea, assume for simplicity that A′ acts in the following

P(sk)

generate I
(probabilistically) I -

¾ c := H(I,m)

compute response r
the signature is (I,r)

Fig. 8.3 “Collapsing” an identification scheme using the Fiat-Shamir transform.

8.2 From Identification Schemes to Signatures 161

way: it first requests signatures on (distinct) messages m1, . . . ,m`; next, it makes a
single hash query c := H(I,m′) (where m′ 6∈ {m1, . . . ,m`}); finally, it outputs the
signature forgery (I,r) on the message m′.

To construct A, we must show two things: how it can simulate the signing queries
made by A′, and how it can use the forgery produced by A′ to attack the identification
scheme Π . For the “toy” example just mentioned these are both quite simple: In
response to a request by A′ for a signature on the message mi, we have A proceed as
follows:

1. Query Transsk,pk to obtain a transcript (Ii,ci,ri) of an execution of Π .
2. Return the signature (Ii,ri) to A′. (By doing so, A implicitly sets H(Ii,mi) = ci.)

For each message mi, the signature (Ii,ri) returned by A is distributed identically to
a signature that would be generated using signature scheme Π ′. To see this, compare
how the values (Ii,ci,ri) are generated in each case:

An execution of Π

1. Choose random coins ωi.
2. P(sk;ωi) generates Ii.
3. V chooses random ci ←Ω .
4. P(sk,ci;ωi) outputs ri.

An execution of Π ′

1. Choose random coins ωi.
2. P(sk;ωi) generates Ii.
3. ci := H(Ii,mi).
4. P(sk,ci;ωi) outputs ri.

The only difference is in step 3; however, since H is a random oracle, the ci’s are dis-
tributed identically in the two experiments. (Though there is no randomness explicit
in step 3 of the execution of Π ′, the randomness is implicit in the initial, random
selection of H from the set of all functions.) We conclude that, for this particular A′,
our adversary A is able to perfectly simulate all signing queries of A′.

We next describe how A can use the forgery of A′ to successfully impersonate P .
When A′ makes its hash query H(I,m′), then A simply sends the initial message I
to the verifier V . When V responds with a challenge c, then A responds to the hash
query of A′ with exactly this value. Finally, when A′ outputs the signature forgery
(I,r) on message m′, the response r is forwarded by A to V ; see Figure 8.4. Note that

A′(pk) A(pk) V (pk)

query H(I,m′) -
I -

¾ c

¾ c

output forgery (I,r) on m′
-

r -

Fig. 8.4 A uses A′ to impersonate the honest prover P .

162 8 Signature Schemes from Identification Schemes

(1) c is uniformly distributed in Ω , exactly as the output of a random oracle should
be; and (2) if Vrfypk(m′,(I,r)) = 1 then (I,H(I,m′),r) is an accepting transcript and
so 〈A, V (pk)〉= 1; that is, A succeeds in impersonating P exactly when A′ outputs
a valid forgery.

We now generalize these ideas to construct an adversary A from any forger A′.
Among the difficulties we must now deal with are that A does not know which hash
query of A′ will be used by A′ to construct its forgery; also, A′ may interleave its
hash and signing queries in an arbitrary fashion.

So, let A′ be a PPT adversary attacking Π ′. We make a few simplifying assump-
tions without any loss of generality. First, we assume that A′ makes any given hash
query only once. For convenience, when a signature (I,r) on a message m is given to
A′ we also include the value H(I,m); we may therefore assume that A′ never queries
H(I,m) after receiving such a signature. We also require that if A′ outputs the forgery
(I,r) on a message m, then A′ had previously asked the hash query H(I,m). We will
call this unique such query the special hash query. Let qH be a polynomial upper
bound on the number of hash queries made by A′.

We now describe out PPT adversary A attacking Π . Adversary A is given as input
a public key pk, has access to the oracle Transsk,pk, and interacts with a verifier V .
The first thing A does is guess at random an index i ← {1, . . . ,qH}; this represents
a guess as to the index of the special hash query (if any) that will be made by A′.
Adversary A then runs A′(pk), answering the oracle queries of A′ as follows

Hash query H(I,m): There are two cases:

• If this is the ith query to H, then A is (implicitly) guessing that this query will
be the special hash query. A sends I to the honest verifier V with which it is
interacting, and receives in return a challenge c. Then A returns c as the answer
to this hash query.
We will refer to this hash query as the guessed query.

• If this is not the ith hash query, then A simply chooses a random value c ← Ω
and returns c as the answer to this query.

In either case, the value returned to A′ is uniformly distributed in Ω as required.

Signing query Signsk(m): A queries its oracle Transsk,pk and obtains in return a
transcript (I,c,r). If the hash value H(I,m) was previously defined, then A aborts. If
not, then A returns the signature (I,r) to A′ (along with the hash value H(I,m) = c).

If A′ outputs a valid forgery (Î, r̂) on a message m̂, then A checks whether the
guessed query H(I,m) is equal to the special query H(Î, m̂). If not, then A aborts.
Otherwise, A sends r̂ to its verifier V . Observe that as long as A does not abort
during its execution, and its guess for the special query is correct, A succeeds in
impersonating the honest prover. This is so because

• When the guessed query is equal to the special query, this means that A has sent
Î to its verifier, and received in return the challenge c = H(Î, m̂).

• (Î, r̂) is a valid signature on m̂ exactly if (Î,c, r̂) is an accepting transcript.

8.2 From Identification Schemes to Signatures 163

A aborts if, in the process of answering a signing query for the message m, it
happens that A obtains a transcript (I,c,r) for which the hash query H(I,m) was
already made by A′. Since the identification protocol Π is assumed to be canonical
(and so the first message of the protocol is non-degenerate), this event occurs with
only negligible probability.

Assuming A did not abort during its execution, it provides a perfect simulation
for A′. Moreover, A’s guess for the special query is correct with probability 1/qH
(and this event is independent of the event that A′ outputs a valid forgery). We con-
clude that if A′ succeeds in outputting a valid forgery with probability ε ′, then A
succeeds in its impersonation attempt with probability exactly ε = (ε ′−µ(k))/q(k)
for some negligible function µ . Since identification scheme Π is secure by assump-
tion, this completes the proof.

It is easy to see that, in general, the signature scheme Π ′ need not be strongly
unforgeable. For example, say Π is a canonical identification scheme having the
property that (pk, I,c,r0) is an accepting transcript iff (pk, I,c,r1) is; i.e., the last bit
of P’s response is ignored by V . Then in the derived scheme Π ′, a valid signature
(I,rb) on a message m can be changed to the different valid signature (I,rb̄) on the
same message. On the other hand, it can be shown (via a modification of the above
proof) that this sort of attack is the only possibility. Thus, if Π has the property
that for any pk, I,c there is (at most) a single r so that (pk, I,c,r) is an accepting
transcript, then the derived scheme Π ′ is strongly unforgeable under an adaptive
chosen-message attack.

A second observation, which proves quite useful in practice, is that for some spe-
cific identification schemes a more efficient variant of the Fiat-Shamir transform is
possible. Specifically, say a canonical identification scheme Π has the property that
given any public key pk, any challenge c, and any response r, it is possible to deter-
ministically compute (in polynomial time) an initial message I such that (pk, I,c,r)
is an accepting transcript. Then we can modify the signature scheme Π ′ so that
the signature is (c,r) rather than (I,r). (Verification is done in the natural way; see
Construction 8.2.) Since signatures computed according to this variant approach
can be converted to signatures computed using the approach of Construction 8.1,
and vice versa, existential unforgeability of this variant follows. (Note, however,
that for strong unforgeability of this variant an additional assumption on the identi-
fication protocol is needed beyond the assumption required for strong unforgeability
for Construction 8.1.)

8.2.2 Two Useful Criteria

In this section we will explore two useful criteria for identification schemes that,
if satisfied, imply passive security. (We continue to assume canonical identification
schemes, although most of what we say can be appropriately generalized if this is
not the case.) The criteria given here are sufficient for passive security, but not nec-
essary. Nevertheless, introducing these criteria has a three-fold benefit: (1) many

164 8 Signature Schemes from Identification Schemes

Construction 8.2: The Fiat-Shamir transform (variant)

Key generation: As before.

Signature generation: To sign message m using secret key sk, do:

• Run the prover algorithm P(sk) to generate an initial message I.
• Compute c := H(I,m).
• Compute the appropriate response r to the “challenge” c using P(sk).

The signature is (c,r).

Signature verification: To verify the signature (c,r) on message m with respect to
public key pk, do:

• Deterministically compute I such that (pk, I,c,r) is an accepting transcript. If no
such A exists, reject.

• Accept the signature c ?= H(I,m).
• Accept the signature iff (pk, I,c,r) is an accepting transcript.

identification schemes satisfy these criteria, and as such it is often convenient to be
aware of this fact when considering other applications of those schemes; (2) intro-
ducing these criteria helps simplify and unify proofs of security for the identification
schemes we will see later in the chapter (as well as many others that have been pro-
posed in the literature); (3) as noted earlier in this chapter, the criteria defined here
are extremely useful in other areas of cryptography (outside the realm of identifica-
tion schemes), and so there is an independent benefit to studying them.

Informally, the two criteria are as follows:

Honest-verifier zero knowledge (HVZK) There is an efficient probabilistic al-
gorithm Sim that takes a public key pk and outputs transcripts that are indis-
tinguishable from transcripts of honest executions of the identification protocol.
While computational indistinguishability suffices, we remark that all the identi-
fication schemes considered in this chapter satisfy perfect HVZK whereby the
transcripts output by Sim are identically distributed to the transcripts of real exe-
cutions 〈P(SK),V (pk)〉.

Special soundness Given public key pk (but not the associated secret key sk),
it is computationally infeasible to output two accepting transcripts (I,c1,r1),
(I,c2,r2) with the same first message but c1 6= c2. Roughly speaking (we will
see a more precise formulation of this below), this implies that for any PPT ad-
versary trying to impersonate P the following holds: for any initial message I
of the adversary’s choosing, the adversary will only be able to respond correctly
to at most one challenge (and so the adversary’s probability of successful imper-
sonation is at most |Ω |−1).

We now make these ideas more formal.

8.2 From Identification Schemes to Signatures 165

Definition 8.3. An identification protocol Π is honest-verifier zero knowledge
(HVZK) if there exists a PPT algorithm Sim such that the following distributions
are computationally indistinguishable:

{
(pk,sk)← Gen(1k) :

(
sk, pk, Sim(pk)

)}

and {
(pk,sk)← Gen(1k) :

(
sk, pk, Transsk,pk

)}
.

If the above distributions are identical, we say Π is perfect honest-verifier zero
knowledge.

By a standard hybrid argument,1 if Π is honest-verifier zero knowledge (resp.,
perfect honest-verifier zero knowledge) then the following is negligible (resp., zero)
for any PPT adversary A:

∣∣∣Pr
[
(pk,sk)← Gen(1k) : ATranssk,pk(·)(pk) = 1

]

− Pr
[
(pk,sk)← Gen(1k) : ASim(pk)(pk) = 1

]∣∣∣

(where Sim is the algorithm guaranteed by Definition 8.3). Of course, one could
simply define honest-verifier zero knowledge via the above equation (which is,
in general, weaker than Definition 8.3); however, it will be much easier to prove
honest-verifier zero knowledge using Definition 8.3.

Definition 8.4. An identification protocol Π satisfies special soundness if the fol-
lowing is negligible for all PPT algorithms A:

Pr

(pk,sk)← Gen(1k)
(I,c1,r1,c2,r2)← A(pk) :

c1 6= c2
and

(pk, I,c1,r1), (pk, I,c2,r2)
are both accepting transcripts

 .

The following result is quite natural, although the proof is a bit technical.

Theorem 8.2. Assume canonical identification protocol Π is honest-verifier zero
knowledge and satisfies special soundness. Then for any PPT adversary A = (A1,A2)
we have:

Pr

[
(pk,sk)← Gen(1k)

s← A
Transsk,pk(·)
1 (pk)

: 〈A2(s),V (pk)〉= 1

]
−|Ωk|−1 ≤ µ(k)

for some negligible function µ(·). In particular, if |Ωk| = ω(poly(k)) then Π is
secure against a passive attack.

1 The proof relies on the fact that, in Definition 8.3, indistinguishability holds even given the real
secret key sk. This is one reason we formulated the definition as we did, even though in the literature
the definition is often formulated as requiring indistinguishability of the transcripts only.

166 8 Signature Schemes from Identification Schemes

The theorem can be modified appropriately for the case when the space of chal-
lenges Ω depends on the public key.

Proof. Given a PPT adversary A attacking Π in an impersonation attack, we con-
struct an algorithm B that violates special soundness. (B, as described, runs in ex-
pected polynomial time; using standard techniques, it can be modified to run in strict
polynomial time.) The intuition is simple: B, given a public key pk, runs A1(pk). The
Trans queries of A1 are simulated by B using the procedure Sim for simulating exe-
cutions of protocol Π (such a Sim exists since Π is honest-verifier zero knowledge).
When A1 is done, it passes some state s to A2 that, informally, enables A2 to imper-
sonate P with “high” probability. Now, B runs A2 with B playing the role of the
verifier. The intuition here is that since A2 succeeds with “high” probability (over
random choice of challenge c ∈ Ωk), then with high probability B will be able to
find two distinct challenges c1,c2 for which A2 answers correctly on the same first
message I (note A2’s initial message I is fixed before the challenge is sent by B).
This exactly violates special soundness. See Figure 8.5 for a high-level depiction of
the main idea.

A2(s) B

I -
c1 ←Ωk

¾ c1

r1 -
if (I,c1,r1) is an accepting transcript:

rewind A2
c2 ←Ωk

¾ c2

r2 -
if (I,c2,r2) is an accepting transcript
and c1 6= c2:

output (I,c1,r1,c2,r2)

Fig. 8.5 Intuition as to how B violates special soundness using A2.

For technical reasons, however, the proof is a bit more complicated. We formally
define B in two stages. The first stage of B exactly follows the intuition outlined
above, resulting in A1 outputting state s that is then passed to A2:

Algorithm B:
The algorithm is given a public key pk.

• Run A1(pk).
• To respond to a query Transsk,pk(·) made by A1, run Sim(pk)

and give the result to A1.

8.2 From Identification Schemes to Signatures 167

• When A1 is done, it outputs state s. Run procedure Extract
(below) using A2(s).

• If Extract outputs “success”, then output (I,c1,r1,c2,r2)
with c1 6= c2 and (I,c1,r1), (I,c2,r2) both accepting tran-
scripts.

The second stage of B, which we have called Extract above, uses A2(s) in an at-
tempt to compute two accepting transcripts (I,c1,r1) and (I,c2,r2) with c1 6= c2. In
our description of the Extract algorithm, we implicitly assume that A2 is determin-
istic; this is without loss of generality, as any random coins for A2 could just as well
be included in the state s. Thus, we may view A2(s) as follows: first, A2(s) outputs
some initial message I; next, for any challenge c ∈ Ωk, running A2(s,c) results in
some response r.

Algorithm Extract:
This algorithm interacts with A2(s).

• Run A2(s), which outputs some initial message I.
• Choose c1 ←Ωk, and compute r1 := A2(s;c1).
• If (I,c1,r1) is not an accepting transcript, then output “fail”

and abort
• Otherwise, for c′ ∈Ωk \{c1} do:

– Choose c2 ←Ωk \{c1} and compute r2 := A2(s;c2).
– Also compute r′ := A2(s;c′).
– If either (I,c2,r2) or (I,c′,r′) are accepting, output “suc-

cess” and stop.
• Output “fail” and abort.

We analyze the behavior of B in the following claims.

Claim. B runs in expected polynomial time.

Proof. It is clear that the main routine of B runs in strict polynomial time (assuming
A1 does). What remains is to analyze the running time of Extract. Fix the algorithm
A2(s) that Extract interacts with; we show that, regardless of the behavior of A2(s)
the number of times Extract runs A2 is polynomial in expectation. (Thus, since A2
runs in strict polynomial time the overall running time of Extract is polynomial in
expectation.) It suffices to show that the expected number of iterations of the inner
for loop is polynomial. Fix any s, and let p be the number of challenges c ∈ Ωk for
which A2(s) responds correctly (i.e., for which (A2(s),c,A2(s,c)) is an accepting
transcript). Then the probability that A2(s) succeeds in impersonating the prover
is exactly p/|Ωk|, and so Extract enters the for loop with exactly this probability.
Assuming Extract enters the for loop, there are two possibilities:

Case 1: p = 1. In this case, Extract will never output “success” but will instead run
the maximum |Ωk|−1 iterations of the for loop. But since it enters the for loop with
probability only 1/|Ωk|, the expected number of iterations of the for loop is only:

168 8 Signature Schemes from Identification Schemes

1
|Ωk|

· (|Ωk|−1) < 1.

Case 2: p > 1. Then there are p−1 > 0 challenges c2 ∈Ωk \{c1} for which A2(s)
responds correctly. The probability of selecting such a challenge, in any given it-
eration of the for loop, is (p− 1)/(|Ωk| − 1) > (p− 1)/|Ωk|. It follows that the
expected number of iterations of the for loop is at most |Ωk|/(p−1). Since Extract
only enters the for loop with probability p/|Ωk|, the expected number of iterations
of the for loop, overall, is at most:

p
|Ωk|

· |Ωk|
p−1

≤ 2.

This completes the proof of the claim.

The next claim shows that if A2(s) succeeds with high probability (over random
choice of challenge c ∈ Ωk), then Extract outputs “success” with similarly high
probability.

Claim. Fix A2 and s and let

Pr [〈A2(s),V 〉= 1] = ρ

(the above probability is over V ’s choice of challenge only). Then ExtractA2(s) out-
puts “success” with probability at least ρ−|Ωk|−1.

Proof. When ρ ≤ |Ω |−1 the claim is trivially true. For the case of ρ > |Ωk|−1 we
show something stronger: that Extract outputs “success” with probability exactly ρ .
To see this, note that Extract enters the for loop with probability exactly ρ . But
when ρ > |Ωk|−1, there are at least two challenges (and hence at least one challenge
c2 ∈ Ωk \ {c1}) for which A2(s) responds correctly. Since Extract does not exit
the for loop until all challenges in Ωk \ {c1} have been tried (to see whether A2(s)
responds correctly), it is clear that Extract outputs “success” in this case whenever
it enters the for loop. It follows that if ρ > |Ωk|−1, then Extract outputs “success”
with probability exactly ρ .

To complete the proof, we show that if

Adv(k) def= Pr

[
(pk,sk)← Gen(1k)

s← A
Transsk,pk(·)
1 (pk)

: 〈A2(s),V (pk)〉= 1

]
−|Ωk|−1

is not negligible, then the probability that B outputs “success” (and hence violates
special soundness) is non-negligible as well. Special soundness of Π then implies
that Adv must be negligible, as desired.2

2 Technically speaking, we are not quite done since B runs in expected polynomial time rather than
strict polynomial time. But the same ideas as in footnote 6 of Chapter 4 apply here as well.

8.2 From Identification Schemes to Signatures 169

So, assume Adv is not negligible, and define

Adv′(k) def= Pr

[
(pk,sk)← Gen(1k)
s← ASim(pk)

1 (pk)
: 〈A2(s),V (pk)〉= 1

]
−|Ωk|−1

(the difference is that we have replaced A1’s access to Trans with access to Sim).
Since Π is honest-verifier zero knowledge, it must be that

∣∣Adv(k)−Adv′(k)
∣∣ is

negligible (see also the remark following Definition 8.3) and hence Adv′ is not neg-
ligible. Next, note that we may write

Adv′(k) = Exp

[
(pk,sk)← Gen(1k)
s← ASim(pk)

1 (pk)
: Pr

[
〈A2(s),V 〉= 1

]]
−|Ωk|−1,

where the outer expectation is taken over an experiment that is identical to the first
phase of B, and the inner probability is taken over random choice of the verifier’s
challenge. Using Claim 8.2.2 we thus have:

Pr[B outputs “success”]

= Exp

[
(pk,sk)← Gen(1k)
s← ASim(pk)

1 (pk)
: Pr [Extract outputs “success”]

]

≥ Exp

[
(pk,sk)← Gen(1k)
s← ASim(pk)

1 (pk)
: Pr

[
〈A2(s),V 〉= 1

]
−|Ωk|−1

]

= Exp

[
(pk,sk)← Gen(1k)
s← ASim(pk)

1 (pk)
: Pr

[
〈A2(s),V 〉= 1

]]
−|Ωk|−1

= Adv′(k).

We thus see that if Adv′ is not negligible, then B violates special soundness with
non-negligible probability. This completes the proof of the theorem.

An identification protocol satisfying the criteria of Theorem 8.2 is said to achieve
soundness 1/|Ωk|.

8.2.3 One-Time Signature Schemes without Random Oracles

In the following section we will demonstrate several identification protocols that are
honest-verifier zero knowledge and also satisfy special soundness. By Theorem 8.2,
this implies passive security for each of those protocols and so the Fiat-Shamir trans-
form can be applied to each of them to obtain a construction of a CMA-secure signa-
ture scheme in the random oracle model. Here, we identify here a slight strengthen-
ing of the HVZK condition and then show how this (along with special soundness)

170 8 Signature Schemes from Identification Schemes

gives a simple construction of a one-time KMA-secure signature scheme without
relying on random oracles.

We first describe the construction. The public key of the signature scheme is sim-
ply a public key for the underlying identification scheme, along with an initial first
message I. The message m ∈Ω to be signed is interpreted as a “challenge”; to sign
this message, the signer simply computes the appropriate response r. (Verification
is done in the natural way.) See Construction 8.3 for a formal specification.

Construction 8.3: One-time signatures from canonical identification schemes

Let Π = (Gen,P,V) be a canonical identification scheme with challenge
space Ω = {Ωk}. (If Ω depends on the public key, the following scheme can be
modified appropriately.)

Key generation: Run Gen(1k) to generate keys (pk,sk). Then run the prover algo-
rithm P(sk) to generate an initial message I. The public key is (pk, I) and the secret
key includes sk as well as the random coins used to generate I.

Signature generation: To sign message m ∈Ω , interpret m ∈Ω as a challenge and
compute the appropriate response r using the prover algorithm, secret key sk, and
random coins used to generate I (which are part of the signer’s secret key). The
signature is r.

Signature verification: To verify signature r on message m with respect to public
key (pk, I), simply check whether (pk, I,m,r) is an accepting transcript.

To analyze the security of this construction, we introduce a slightly stronger vari-
ant of HVZK called special HVZK. Recall that HVZK requires the existence of a
simulator Sim that, on input a public key pk, outputs transcripts indistinguishable
from transcripts of real executions of the identification protocol between P and V .
Special HVZK, roughly speaking, requires this simulator to work in a specific way:
namely, Sim additionally takes as input a challenge c∈Ω and outputs a transcript in
which c is the challenge. We define this notion formally only for the case in which
the resulting transcript is perfectly indistinguishable from real transcripts.

Definition 8.5. Identification protocol Π is special honest-verifier zero knowledge
if there exists a PPT algorithm Sim such that the following distributions are identical:

{
(pk,sk)← Gen(1k);c←Ω ;

(I,r)← Sim(pk,c) :
(

sk, pk, I,c,r
)}

and {
(pk,sk)← Gen(1k);c←Ω ;
(I,s)←P(sk); r ←P(s,c) : (sk, pk, I,c,r)

}
.

(In the above, s represents the prover’s state.)

8.3 Some Secure Identification Schemes 171

Note that if Π is special HVZK then it is also HVZK; given a special-HVZK sim-
ulator Sim we can construct an HVZK simulator Sim′ by simply choosing random
c ∈Ω and then running Sim(pk,c). We remark also that, for our application here, it
would suffice in Definition 8.5 for indistinguishability to hold without being given sk
(but in that case the definition would be incomparable to HVZK).

Theorem 8.3. If Π is special honest-verifier zero knowledge and satisfies special
soundness, then Construction 8.3 yields a one-time signature scheme that is existen-
tially unforgeable under a known-message attack.

Proof. The proof is straightforward, and so we only sketch it here. Given a PPT ad-
versary A attacking the signature scheme, we construct a PPT adversary A′ violating
special soundness. Adversary A′, given as input a public key pk, works as follows:
first, it runs A to obtain message m (recall that in a known-message attack A must
decide on its message before obtaining the public key). Then, it runs Sim(pk,c) to
obtain (I,r). Finally, it returns to A the public key (pk, I) and the signature r on the
message m. Note that both the public key and the signature are distributed exactly
as in a real experiment involving A and the signer.

If A outputs a valid signature forgery r′ on a message m′ 6= m, then A′ exactly
violates special soundness of Π . The theorem follows.

Although the level of security obtained using Construction 8.3 is relatively weak,
schemes designed using this methodology can be very efficient and thus highly use-
ful, e.g., for application in Construction 1.2.

We conclude this section with two remarks on the proof:

• As in the case for signature schemes resulting from the Fiat-Shamir transform,
signatures built using Construction 8.3 need not be strongly unforgeable. How-
ever, if Π has the property that for any pk, I,c there is (at most) a single r so that
(pk, I,c,r) is an accepting transcript, then applying Construction 8.3 does yield
a strongly unforgeable scheme.

• It suffices for the identification protocol to be HVZK (rather than special HVZK)
in order to prove security of signatures resulting from Construction 8.3 under a
random message attack.

8.3 Some Secure Identification Schemes

In order to apply the Fiat-Shamir transform and obtain concrete signature schemes,
it remains only to show examples of canonical identification protocols that are both
honest-verifier zero knowledge and satisfy special soundness (and also have expo-
nentially large challenge spaces Ω). In fact, all the identification schemes we show
will satisfy special HVZK and so Construction 8.3 can also be applied.

On parallel repetition. Before presenting any concrete examples of protocols, a
brief remark is in order regarding the parallel composition of identification schemes.

172 8 Signature Schemes from Identification Schemes

To be precise, let Π = (Gen,P,V) be an identification protocol, let t = t(k) be
polynomial, and consider the protocol Π t = (Gen,Pt ,V t) in which P ′ and V ′ are
obtained via t-fold (parallel) repetition of P and V , respectively. (Note that Gen is
unchanged, and so Pt and V t execute parallel repetitions with respect to a single
public key output by Gen.) It is not hard to see that if Π is (special) honest-verifier
zero knowledge and satisfies special soundness, then Π t does as well. If the chal-
lenge space for Π is Ωk, then the challenge space for Π t is Ω t(k)

k . We conclude (via
application of Theorem 8.2) that if Π achieves soundness ε(k) then Π t achieves
soundness ε(k)t(k). Parallel repetition therefore provides an exponential improve-
ment to the soundness. A corollary is that, at least from a theoretical perspective, it
suffices to design protocols achieving constant soundness (say, soundness 1/2).

The above arguments extend to the case when the same protocol is repeated in
parallel using different public keys, and also to the more general case when different
protocols are executed in parallel.

In the sections that follow, we show a number of identification protocols satis-
fying the criteria required by Theorem 8.2. Many examples of such protocols have
been proposed in the literature, and it is not our intention to provide an exhaustive
survey here. Instead, we will focus on a few well-known, representative examples.
We remark also that various efficiency improvements for the schemes we present
are possible; our aim is to present the schemes in as straightforward and as simple a
manner as possible.

8.3.1 The Fiat-Shamir Scheme

The first scheme we describe is also one of the first to have been proposed and
proven secure. We start by presenting a “basic” version, due to Goldwasser, Micali,
and Rackoff, and then discuss in detail a more efficient variation given by Fiat and
Shamir. Both protocols rely for their security on the hardness of computing square
roots modulo N (where N is a product of two primes); by Theorem 2.2, this is
equivalent to basing security on the hardness of factoring.

The basic scheme is given as Construction 8.4. One can easily check that the ver-
ifier always accepts an honest execution of the protocol. We will prove next that, as-
suming the hardness of factoring, the protocol is honest-verifier zero knowledge and
achieves special soundness; we conclude that the identification scheme has sound-
ness 1/2. Repeating the protocol sufficiently-many times in parallel (see the earlier
discussion) allows us to achieve any desired level of security.

Theorem 8.4. The Goldwasser-Micali-Rackoff identification scheme is (perfect)
special honest-verifier zero knowledge. Furthermore, if factoring is hard relative
to GenModulus then it also satisfies special soundness.

Proof. We first prove that the Goldwasser-Micali-Rackoff (GMR) scheme is (per-
fect) special honest-verifier zero knowledge. Consider the following algorithm Sim:

8.3 Some Secure Identification Schemes 173

Construction 8.4: The Goldwasser-Micali-Rackoff identification scheme

Let GenModulus be a PPT algorithm that, on input 1k, outputs a modulus N along
with two (distinct) k-bit primes p,q with N = pq.

Key generation: Run (N, p,q)← GenModulus(1k). Choose a random x ∈ Z∗N and
then set y := x2 mod N. The public key is (N,y) and the secret key is x.

Prover’s initial message: Choose s← Z∗N and send I := s2 mod N.

Verifier’s challenge: Choose and send challenge c←{0,1}.

Prover’s response: Send r := xc ·s mod N. (Here, x is taken from the secret key and
s is the randomness used to generate the first-round message.)

Acceptance criterion: Accept transcript (I,c,r) with respect to the public key
(N,y) if either (1) c = 0 and r2 = I mod N, or (2) c = 1 and r2 = y · I mod N. (It is
important also to verify that I,r ∈ Z∗N and, in particular, I 6= 0.)

Algorithm Sim:
The algorithm is given a public key (N,y) in addition to a chal-
lenge c ∈ {0,1}.

• Choose r ← Z∗N .
• Output the transcript (r2/yc mod N,c,r).

To see that this perfectly simulates a real execution of the protocol for any given
public key (N,y), any3 secret key x, and any given challenge c we look — in each
case — at the distribution of r (conditioned on the given values), and then at the
distribution of I conditioned on r (and the given values). In a real execution of the
protocol, r is uniformly distributed in Z∗N regardless of the choice of c. (When c = 0
then r = s and so this is clear; when c = 1 then r = sx mod N, but since s is uniform
sx is uniform for any x.) Then I is the unique value satisfying I = r2/yc mod N. In a
simulated transcript, r and I are chosen from identical distributions by construction.

Special soundness follows easily from the following observation: given two ac-
cepting transcripts (I,0,r0) and (I,1,r1) with respect to some public key (N,y), it
is possible to efficiently compute a square root of y modulo N. (This implies spe-
cial soundness, since then any PPT algorithm violating special soundness with non-
negligible probability can be used to compute square roots of random elements of
Z∗N with non-negligible probability for N output by GenModulus. By Theorem 2.2,
this contradicts the assumed hardness of factoring relative to GenModulus.) To see
this, note simply that by definition of the acceptance criterion we have

r2
0 = I = r2

1/y mod N

3 Recall that each public key has four possible associated secret keys.

174 8 Signature Schemes from Identification Schemes

with r0,r1 ∈ Z∗N , and so r1/r0 mod N is a square root of y modulo N.

As we have already noted, by running the GMR protocol in parallel k times we
can amplify the soundness from 1/2 to 2−k. Better communication complexity (at
the expense of a longer public key) can be achieved using an approach due to Fiat
and Shamir; see Construction 8.5 (and also Figure 8.6).

Construction 8.5: The Fiat-Shamir identification scheme

Let GenModulus be a PPT algorithm that, on input 1k, outputs a modulus N along
with two (distinct) k-bit primes p,q with N = pq.

Key generation: Compute (N, p,q)← GenModulus(1k). Then choose x1, . . . ,xk ←
Z∗N and set yi := x2

i mod N for all i. The public key is (N,y1, . . . ,yk) and the secret
key is (x1, . . . ,xk).

Prover’s initial message: Choose s← Z∗N and send I := s2 mod N.

Verifier’s challenge: Choose and send challenge c←{0,1}k.

Prover’s response: Parse the challenge c as a sequence of bits c1, . . . ,ck. Send

r := s ·
k

∏
i=1

xci
i mod N = s · ∏

i|ci=1
xi mod N,

where the xi are from the secret key and s is the randomness used in the first round.

Acceptance criterion: Accept transcript (I,c,r) (where c = c1 · · ·ck) with respect
to the public key (N,y1, . . . ,yk) iff

r2 ?= I · ∏
i|ci=1

yi mod N.

(It is important also to verify that I,r ∈ Z∗N and, in particular, I 6= 0.)

It is not difficult to verify that the honest prover is always accepted since, in an
honest execution:

r2 =

(
s · ∏

i|ci=1
xi

)2

= s2 · ∏
i|ci=1

x2
i = I · ∏

i|ci=1
yi mod N.

Theorem 8.5. The Fiat-Shamir identification scheme is (perfect) special honest-
verifier zero knowledge. Furthermore, if factoring is hard relative to GenModulus
then it also satisfies special soundness.

Proof. We first prove that the scheme is perfect special honest-verifier zero knowl-
edge. Consider the following algorithm Sim:

8.3 Some Secure Identification Schemes 175

P(N,x1, . . . ,xk) V (N,y1, . . . ,yk)
s← Z∗N

I := s2 mod N I -
c←{0,1}k

¾ c

parse c as c1 · · ·ck
r := s ·∏i|ci=1 xi mod N

r - check whether

r2 ?= I ·∏i|ci=1 yi mod N

Fig. 8.6 An execution of the Fiat-Shamir identification scheme.

Algorithm Sim:
The algorithm is given a public key (N,y1, . . . ,yk) and a chal-
lenge c = c1 · · ·ck ∈ {0,1}k.

• Choose r ← Z∗N .
• Set I := r2 · (∏i|ci=1 yi

)−1 mod N.
• Output the transcript (I,c,r).

To see that this perfectly simulates a real execution of the protocol for any public
key (N,y1, . . . ,yk), any secret key (x1, . . . ,xk), and any challenge c we look — in
each case — at the distribution of r conditioned on the given values, and then at the
distribution of I conditioned on the given values and r. In an honest execution of
the protocol, r = s ·∏i|ci=1 xi mod N for a uniformly distributed value s ∈ Z∗N and
so r is uniform regardless of c and (x1, . . . ,xk). Then I is the unique value satisfying
I = r2 · (∏i|ci=1 yi

)−1 mod N. In simulated transcripts r and I are distributed in the
same manner, by construction.

Special soundness is a bit more involved.4 We will show how to use any PPT algo-
rithm which violates special soundness to factor moduli N output by GenModulus.
Assume a PPT algorithm A for which

Pr

N ← GenModulus(1k);
x1, . . . ,xk ← Z∗N ;

∀i : yi := x2
i mod N;

pk = (N,y1, . . . ,yk);
(I,c1,r1,c2,r2)← A(pk)

:

c1 6= c2
and

(pk, I,c1,r1), (pk, I,c2,r2)
are both accepting transcripts

is not negligible. Consider the following PPT algorithm F which takes as input
a modulus N output by GenModulus: algorithm F first chooses random values
x1, . . . ,xk ← Z∗N , and then sets yi := x2

i mod N for all i. Next, F runs A on input

4 In contrast to the GMR scheme, a violation of special soundness here does not directly enable
computation of the prover’s secret key; for this reason, the proof of special soundness is somewhat
more involved.

176 8 Signature Schemes from Identification Schemes

(N,y1, . . . ,yk). Note that the input provided to A by F is distributed identically to
a real public key in the Fiat-Shamir scheme, and so A violates special soundness
with the same probability. Assuming A outputs (I,c1,r1,c2,r2) with c1 6= c2 and
where (I,c1,r1), (A,c2,r2) are both accepting transcripts, F proceeds as follows. By
definition of the acceptance criterion,

r2
1 ·

k

∏
i=1

y
−c1,i
i = I = r2

2 ·
k

∏
i=1

y
−c2,i
i mod N,

where c1,i (resp., c2,i) refers to the ith bit of c1 (resp., c2). We also have r1,r2 ∈ Z∗N .

Let ∆ci
def= c1,i− c2,i. It follows that

(r1/r2)2 =
k

∏
i=1

y∆ci
i =

(
k

∏
i=1

x∆ci
i

)2

mod N,

and so F knows two square roots R def= (r1/r2) and X def= ∏k
i=1 x∆ci

i of the same value

Y def= X2 = R2 mod N. Note, however, that from the point of view of A the value
X is a random square root of Y . (This is so since the xi are chosen uniformly at
random from Z∗N , the ∆ci lie in {−1,0,1}, and at least one ∆ci is non-zero.) As in
Theorem 2.2, then, R 6= ±X mod N with probability 1/2; furthermore, when this
occurs F can compute the factorization of N. We conclude that if A indeed violates
special soundness with non-negligible probability, then F factors moduli N output
by GenModulus with non-negligible probability — but this contradicts the assumed
hardness of factoring relative to GenModulus.

8.3.2 The Guillou-Quisquater Scheme

We now show an identification scheme introduced by Guillou and Quisquater whose
security against passive attacks is based on the RSA assumption. See Construc-
tion 8.6 (and also Figure 8.7).

P(N,e,x) V (N,e,y)
s← Z∗N

A := se mod N I -
c← Ze

¾ c

r := xc · s mod N
r - check whether re · y−c ?= I mod N

Fig. 8.7 An execution of the Guillou-Quisquater identification scheme.

8.3 Some Secure Identification Schemes 177

Construction 8.6: The Guillou-Quisquater (GQ) Identification Scheme

Let GenRSA be as in Chapter 4.

Key generation: Compute (N,e,d)←GenRSA(1k), where e is prime. Then choose
x← Z∗N and set y := xe mod N. The public key is (N,e,y) and the secret key is x.

Prover’s initial message: Choose s← Z∗N and send I := se mod N.

Verifier’s challenge: Choose and send challenge c← Ze.

Prover’s response: Send the response r := xc · s mod N, where x is taken from the
secret key and s is the randomness used in the first round.

Acceptance criterion: Accept transcript (I,c,r) with respect to the public key
(N,e,y) iff

re · y−c ?= I mod N.

(It is important also to verify that I,r ∈ Z∗N and, in particular, I 6= 0.)

In an honest execution of the Guillou-Quisquater protocol, the verifier always ac-
cepts since

re · y−c = (xc · s)e · y−c = yc · se · y−c = se = I mod N.

Theorem 8.6. The Guillou-Quisquater identification scheme is (perfect) special
honest-verifier zero knowledge. Furthermore, if the RSA problem is hard relative
to GenRSA then is also satisfies special soundness.

Proof. We first prove that the GQ scheme achieves perfect special HVZK. Consider
the following algorithm Sim:

Algorithm Sim:
The algorithm is given a public key (N,e,y) in addition to a
challenge c ∈ Ze.

• Choose r ← Z∗N .
• Set I := re · y−c mod N.
• Output the transcript (I,c,r).

To see that this perfectly simulates a real execution of the protocol for any given
public key (N,e,y) (note that this fixes the secret key) and challenge c, we look —
in each case — at the distribution of r conditioned on the given values, and then at
the distribution of I conditioned on the given values and r. In a real execution of the
protocol, r is uniformly distributed in Z∗N (regardless of c) since r = xc · s mod N
for a uniformly distributed value s ∈ Z∗N . Then I is the unique value satisfying I =
re · y−c mod N. In simulated transcripts, both r and I are chosen from these same
distributions by construction.

178 8 Signature Schemes from Identification Schemes

Special soundness follows easily from the following observation: given two ac-
cepting transcripts (I,c1,r1) and (I,c2,r2) (with c1 6= c2 and c1,c2 ∈Ze) with respect
to an arbitrary public key (N,e,y), it is possible to efficiently compute y1/e mod N.
(This implies special soundness, as any PPT algorithm violating special soundness
with non-negligible probability can thus be used to solve the RSA problem with
respect to GenRSA.) To see that this is true, note that by definition of the acceptance
criterion we have

re
1 · y−c1 = I = re

2 · y−c2 mod N

with r1,r2 ∈ Z∗N , and so (r1/r2)e = yc1−c2 mod N. Now, since c1,c2 ∈ Ze the abso-
lute value of their difference is less than e; since e is prime,

gcd(e, |c1− c2|) = 1

and we may apply Lemma 4.1 to compute y1/e mod N.

The GQ protocol achieves soundness 1/e. To achieve passive security, then, we
need to choose e large enough so that 1/e is negligible. (Alternately, we may use a
smaller e and parallel repetition.)

8.3.3 The Micali/Ong-Schnorr Scheme

The next scheme we consider is secure under the assumption that factoring Blum
integers is hard (cf. Section 2.2.1). The scheme is more efficient than the Fiat-Shamir
scheme (whose security is based on essentially the same assumption), but we have
deferred its presentation to now because of its similarities to the Guillou-Quisquater
scheme.

P(N, t,x) V (N, t,y)
s← Z∗N

I := s2t
mod N I -

c← Z2t

¾ c

r := xc · s mod N
r - check whether

r2t · y−c ?= I mod N

Fig. 8.8 An execution of the Micali/Ong-Schnorr identification scheme.

As usual, it is easy to check that correctness always holds:

r2t · y−c = (xc · s)2t · y−c = yc · s2t · y−c = I mod N.

8.3 Some Secure Identification Schemes 179

Construction 8.7: The Micali/Ong-Schnorr Identification Scheme

Let GenModulus be a PPT algorithm that, on input 1k, outputs a modulus N along
with two (distinct) k-bit primes p,q with N = pq and p = q = 3 mod 4. Fix some
parameter t = ω(logk).

Key generation: Compute (N, p,q)←GenModulus(1k). Choose x←Z∗N and com-
pute y := x2t

mod N. The public key is (N,y) and the secret key is x.

Prover’s initial message: Choose s← Z∗N and send I := s2t
mod N.

Verifier’s challenge: Choose and send challenge c← Z2t .

Prover’s response: Send the response r := xc · s mod N, where x is taken from the
secret key and s is the randomness used in the first round.

Acceptance criterion: Accept transcript (I,c,r) with respect to the public key
(N,y) iff

r2t · y−c ?= I mod N.

(It is important also to verify that I,r ∈ Z∗N and, in particular, I 6= 0.)

The similarity to the GQ scheme is clear. On the other hand, the analysis is more
complex. The issue is this: from two accepting transcripts (I,c1,r1), (I,c2,r2) (with
c1 6= c2), one can compute (as in the proof of special soundness for the Guillou-
Quisquater scheme):

(r1/r2)2t
= yc1−c2 mod N. (8.2)

But now gcd(2t ,c1− c2) is not necessarily equal to 1, and so we cannot necessarily
compute y1/2t

mod N. Instead, using the fact that N is a Blum integer, we show that
Equation (8.2) enables computation of a square root of y. As in Theorem 2.2, this
contradicts the assumed hardness of factoring N.5 We now proceed with the details.

Theorem 8.7. The Micali/Ong-Schnorr scheme is (perfect) special honest-verifier
zero knowledge. Furthermore, if factoring is hard for GenModulus then it also sat-
isfies special soundness.

Proof. A proof that the scheme is honest-verifier zero knowledge follows along
similar lines to the proof for the case of the Guillou-Quisquater scheme, and so we
omit it. Before proving special soundness, we recall a key property of Blum integers
(cf. Section 2.2.1: if N is a Blum integer, then squaring modulo N is a permutation on
the set QRN of quadratic residues modulo N. Thus, if x,y∈QRN and x2 = y2 mod N

5 As in the case of the Fiat-Shamir scheme, then, a violation of special soundness does not enable
computation of the prover’s secret key (but can still be shown to be infeasible).

180 8 Signature Schemes from Identification Schemes

we can conclude that x = y mod N; more generally, if x2`
= y2`

mod N then x =
y mod N. We stress that this implication is valid only when x,y ∈ QRN .

With the above in mind, we first show that given two accepting transcripts
(I,c1,r1) and (I,c2,r2) (with c1 6= c2 and c1,c2 ∈ Z2t) it is possible to compute
a square root of y modulo N. As in the Guillou-Quisquater scheme, we may derive
Equation (8.2); assume without loss of generality that c1 > c2 and let ∆ = c1− c2.
Compute integers `,m (with m ≥ 1 odd) such that ∆ = 2` ·m; note that this can be
done easily, and does not require the full factorization of ∆ . Note further that since
c1,c2 ∈ Z2t we have ∆ < 2t and so ` < t.

Re-writing Equation (8.2), we have:

((r1/r2)2t−`
)2`

= (ym)2`
mod N.

The key observation is that ym ∈ QRN (since y ∈ QRN) and furthermore it is also
the case that (r1/r2)2t−` ∈ QRN (since t− ` ≥ 1). By what we have said above, we
conclude that

((r1/r2)2t−`−1
)2 = ym mod N

(using the fact that N is a Blum integer). Since gcd(2,m) = 1, we may apply
Lemma 4.1 to compute a square root of y.

8.3.4 The Schnorr Scheme

The final identification scheme we present in this section is due to Schnorr, and is
based on the hardness of the discrete logarithm problem. For concreteness and sim-
plicity, we describe the protocol based on some fixed group G of (publicly known)
prime order q; in general, of course, the size of the group will have to grow with the
security parameter k and so we need an infinite family of such groups along with
an efficient algorithm generating (descriptions of) groups of the required form. A
description of the scheme follows (see also Construction 8.8):

Public: group G, group order q, generator g

P(x) V (y = gx)
s← Zq

I := gs I -
c← Zq

¾ c

r := cx+ s mod q
r - check whether gr · y−c ?= I

Fig. 8.9 An execution of the Schnorr identification scheme.

8.3 Some Secure Identification Schemes 181

Construction 8.8: The Schnorr identification scheme

Assume a group G of prime order q and a generator g ∈ G are publicly known
(otherwise, they can also be generated during key generation and included with the
public key).

Key generation: Choose random x ← Zq and set y := gx. The public key is y ∈ G
and the secret key is x ∈ Zq.

Prover’s initial message: Choose s← Zq and send I := gs.

Verifier’s challenge: Choose and send challenge c← Zq.

Prover’s response: Send the response r := cx + s mod q, where x is the secret key
and s is the randomness used in the first round.

Acceptance criterion: Accept transcript (A,c,r) with respect to the public key y iff

gr · y−c ?= I.

(In general, one must also verify that I ∈G and c ∈ Zq.)

Correctness is easily verified.

Theorem 8.8. The Schnorr identification scheme is (perfect) special honest-verifier
zero knowledge. Furthermore, if the discrete logarithm problem is hard in G then it
also satisfies special soundness.

Proof. We first prove that the Schnorr scheme achieves perfect special HVZK. Con-
sider the following algorithm Sim:

Algorithm Sim:
The algorithm is given a public key y and a challenge c ∈ Zq.

• Choose r ← Zq.
• Set I := gr · y−c.
• Output the transcript (I,c,r).

To see that this perfectly simulates a real execution of the protocol for any given
public key y (which fixed the secret key x) and challenge c, we look — in each case
— at the distribution of r conditioned on the given values, and then at the distribution
of I conditioned on the values of the given values and r. In a real execution of the
protocol, r is uniformly distributed in Zq (regardless of c) because r = cx+ s mod q
for a uniformly distributed value s ∈ Zq. Then I is the unique value satisfying I =
gr ·y−c. In simulated transcripts, r and I have the same distributions by construction.

Special soundness follows easily from the following observation: given two ac-
cepting transcripts (I,c1,r1) and (I,c2,r2) (with c1 6= c2 and c1,c2 ∈ Zq) with re-
spect to a public key y, it is possible to efficiently compute logg y. (To see that this

182 8 Signature Schemes from Identification Schemes

implies special soundness, note that any PPT algorithm violating special soundness
with non-negligible probability can thus be used to compute discrete logarithms of
a random group element y ∈ G with non-negligible probability.) To see this, note
that by definition of the acceptance criterion we have

gr1 y−c1 = I = gr2 y−c2

and so gr1−r2 = yc1−c2 and
g(r1−r2)/(c1−c2) = y.

We conclude that logg y = (r1 − r2) · (c1 − c2)−1 mod q, which can be computed
efficiently (note that c1− c2 6= 0 mod q and so the desired inverse modulo q exists).

8.4 Further Reading

Identification schemes have a long history, and we have only covered here what is
necessary for our treatment of signature schemes. The reader interested in identifi-
cation schemes per se is referred to the references cited here, as well as other works
(e.g., [93]), for a full discussion of stronger definitions of security and how they can
be achieved.

Canonical identification schemes as we have described them here are also known
as sigma protocols (Σ -protocols). This abstract notion, as well as the definitions of
(special) HVZK and special soundness, were first proposed in [32]; see there for
further discussion and applications.

The Fiat-Shamir transform was first presented in [47]. Our proof here follows
that of Abdalla et al. [1], though earlier proofs of slightly weaker results were also
known [96, 92]. The proof relies heavily on the random oracle model, and it remains
an active area of research to give a proof of the Fiat-Shamir transform (or a suitable
variant) in the standard model, or to show the insecurity of practical schemes derived
using the Fiat-Shamir transform. For some negative results indicating limitations on
what can be proved regarding the Fiat-Shamir transform in general, see [43, 58].

The weaker transformation from identification protocols to KMA-secure one-
time signature schemes (Construction 8.3) is implicit in work of Cramer and
Damgård [33], where it was then used to construct an existentially unforgeable sig-
nature scheme. The idea has also been formalized as chameleon signatures [74],
which have several applications. See the work of [103] for some particularly effi-
cient instantiations.

Construction 8.4 is implicit in the work of Goldwasser, Micali, and Rack-
off [60], though it was presented in a somewhat different context there. Fiat and
Shamir [47] gave the improved Construction 8.5 and analyzed it as an identifica-
tion scheme. A slight generalization of the Fiat-Shamir scheme was studied in later
work by Feige, Fiat, and Shamir [46]. Construction 8.6 was presented by Guillou
and Quisquater [63].

8.4 Further Reading 183

Micali introduced a signature scheme derived from an identification scheme
much like Construction 8.7 in an unpublished manuscript [82]; the scheme was first
published by Ong and Schnorr [94]. Several variants and extensions of this con-
struction have been given in the literature [91, 69, 104, 49]. Construction 8.8 is due
to Schnorr [101].

In contrast to Chapter 7, here we have not focused much on the concrete security
bounds of our proofs of security. In fact, the reader may notice that the concrete se-
curity bound guaranteed by our proof of Theorem 8.1 is quite bad; it is open whether
this can be improved for specific schemes. An alternative to the Fiat-Shamir trans-
form was suggested by Micali and Reyzin [84]; their transform yields a tighter con-
crete security analysis, but only applies to restricted types of identification schemes.
Work of Goh et al. [54] introduces signature schemes that can be viewed as being
derived from some specific identification schemes; their schemes have tight reduc-
tions to the computational or decisional Diffie-Hellman assumptions.

A notable omission from this book is the Digital Signature Algorithm/Digital
Signature Standard (DSA/DSS), a US government standard [90]. Despite its im-
portance, we have made a conscious decision to leave a discussion of DSS out of
this book because existing proofs of security for DSS (or variants thereof) require
proof techniques beyond the scope of this book. The interested reader is referred
to [21, 107, 77, 22] or the analyses of DSA/ECDSA posted on the CRYPTREC
website.6

6 http://www.cryptrec.go.jp/english/estimation.html

References

1. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures
via the Fiat-Shamir transform: Necessary and sufficient conditions for security and forward-
security. IEEE Transactions on Information Theory, 54(8):3631–3646, 2008.

2. J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In
Advances in Cryptology — Eurocrypt 2002, volume 2332 of LNCS, pages 83–107. Springer,
2002.

3. B. Barak and M. Mahmoody-Ghidary. Lower bounds on signatures from symmetric primi-
tives. In 48th Annual Symposium on Foundations of Computer Science (FOCS), pages 680–
688. IEEE, 2007.

4. N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes with-
out trees. In Advances in Cryptology — Eurocrypt ’97, volume 1233 of LNCS, pages 480–
494. Springer, 1997.

5. M. Bellare and S. Micali. How to sign given any trapdoor function. In Advances in Cryptol-
ogy — Crypto ’88, volume 403 of LNCS, pages 200–215. Springer, 1990.

6. M. Bellare and S. Micali. How to sign given any trapdoor function. Journal of the ACM,
39(1):214–233, 1992.

7. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In Advances in Cryptology — Asiacrypt 2000,
volume 1976 of LNCS, pages 531–545. Springer, 2000.

8. M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified proof and
improved concrete security for Waters’ IBE scheme. In Advances in Cryptology — Euro-
crypt 2009, volume 5479 of LNCS, pages 407–424. Springer, 2009.

9. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In 1st ACM Conference on Computer and Communications Security, pages 62–73.
ACM Press, 1993.

10. M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA
and Rabin. In Advances in Cryptology — Eurocrypt ’96, volume 1070 of LNCS, pages 399–
416. Springer, 1996.

11. M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs prac-
tical. In Advances in Cryptology — Crypto ’97, volume 1294 of LNCS, pages 470–484.
Springer, 1997.

12. M. Bellare and S. Shoup. Two-tier signatures from the Fiat-Shamir transform, with appli-
cations to strongly unforgeable and one-time signatures. IET Proc. Information Security,
2(2):47–63, 2008.

13. D. J. Bernstein. Proving tight security for Rabin-Williams signatures. In Advances in Cryp-
tology — Eurocrypt 2008, volume 4965 of LNCS, pages 70–87. Springer, 2008.

185

186 References

14. J. Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash func-
tion. In Fast Software Encryption – FSE 2006, volume 4047 of LNCS, pages 328–340.
Springer, 2006.

15. D. Bleichenbacher and U. M. Maurer. On the efficiency of one-time digital signatures. In
Advances in Cryptology — Asiacrypt’96, volume 1163 of LNCS, pages 145–158. Springer,
1996.

16. M. Blum. Coin flipping by telephone. In Proc. IEEE Spring COMPCOM, pages 133–137,
1982.

17. D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the American
Mathematical Society, 46(2):203–213, 1999.

18. D. Boneh and X. Boyen. Short signatures without random oracles and the SDH assumption
in bilinear groups. Journal of Cryptology, 21(2):149–177, 2008.

19. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of
Cryptology, 17(4):297–319, September 2004.

20. J. N. Bos and D. Chaum. Provably unforgeable signatures. In Advances in Cryptology —
Crypto ’92, volume 740 of LNCS, pages 1–14. Springer, 1993.

21. E. F. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validations for discrete
logarithm based signature schemes. In 3rd Intl. Workshop on Theory and Practice in Public
Key Cryptography(PKC 2000), volume 1751 of LNCS, pages 276–292. Springer, 2000.

22. D. R. L. Brown. Generic groups, collision resistance, and ECDSA. Designs, Codes, and
Cryptography, 35(1):119–152, 2005.

23. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In Advances in Cryptology — Eurocrypt ’99, volume 1592
of LNCS, pages 402–414. Springer, 1999.

24. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In 3rd
Intl. Conf. on Security in Communication Networks (SCN), volume 2576 of LNCS, pages
268–289. Springer, 2002.

25. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. Journal
of the ACM, 51(4):557–594, 2004.

26. D. Catalano and R. Gennaro. Cramer-Damgård signatures revisited: Efficient flat-tree sig-
natures based on factoring. In 8th Intl. Workshop on Theory and Practice in Public Key
Cryptography(PKC 2005), volume 3386 of LNCS, pages 313–327. Springer, 2005.

27. B. Chevallier-Mames and M. Joye. A practical and tightly secure signature scheme without
hash function. In Cryptographers’ Track — RSA 2007, volume 4377 of LNCS, pages 339–
356. Springer, 2007.

28. J.-S. Coron. On the exact security of full domain hash. In Advances in Cryptology —
Crypto 2000, volume 1880 of LNCS, pages 229–235. Springer, 2000.

29. J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In Advances in
Cryptology — Eurocrypt 2002, volume 2332 of LNCS, pages 272–287. Springer, 2002.

30. J.-S. Coron and T. Icart. An indifferentiable hash function into elliptic curves. Available at
http://eprint.iacr.org/2009/340.

31. J.-S. Coron and D. Naccache. Security analysis of the Gennaro-Halevi-Rabin signature
scheme. In Advances in Cryptology — Eurocrypt 2000, volume 1807 of LNCS, pages 91–
101. Springer, 2000.

32. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis,
University of Amsterdam, 1996.

33. R. Cramer and I. Damgård. Secure signature schemes based on interactive protocols. In
Advances in Cryptology — Crypto ’95, volume 963 of LNCS, pages 297–310. Springer, 1995.

34. R. Cramer and I. Damgård. New generation of secure and practical RSA-based signatures.
In Advances in Cryptology — Crypto ’96, volume 1109 of LNCS, pages 173–185. Springer,
1996.

35. R. Cramer and T. Pedersen. Efficient and provable security amplifications. Technical Report
CS-R9529, CWI, 1995.

36. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM
Transactions on Information and System Security, 3(3):161–185, 2000.

References 187

37. I. Damgård. Collision free hash functions and public key signature schemes. In Advances in
Cryptology — Eurocrypt ’87, volume 304 of LNCS, pages 203–216. Springer, 1988.

38. I. Damgård. A design principle for hash functions. In Advances in Cryptology — Crypto ’89,
volume 435 of LNCS, pages 416–427. Springer, 1990.

39. A. De Santis and M. Yung. On the design of provably secure cryptographic hash functions.
In Advances in Cryptology — Eurocrypt ’90, volume 473 of LNCS, pages 412–431. Springer,
1990.

40. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

41. Y. Dodis and L. Reyzin. On the power of claw-free permutations. In 3rd Intl. Conf. on
Security in Communication Networks (SCN), volume 2576 of LNCS, pages 55–73. Springer,
2002.

42. C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and its
applications. Journal of Cryptology, 11(3):187–208, 1998.

43. C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions. Journal of the ACM,
50(6):852–921, 2003.

44. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31:469–472, 1985.

45. S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. Journal of Cryptol-
ogy, 9(1):35–67, 1996.

46. U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology,
1(2):77–94, 1988.

47. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and sig-
nature problems. In Advances in Cryptology — Crypto ’86, volume 263 of LNCS, pages
186–194. Springer, 1987.

48. M. Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In 6th Intl. Work-
shop on Theory and Practice in Public Key Cryptography(PKC 2003), volume 2567 of
LNCS, pages 116–129. Springer, 2003.

49. M. Fischlin and R. Fischlin. The representation problem based on factoring. In Cryptogra-
phers’ Track — RSA 2002, volume 2271 of LNCS, pages 96–113. Springer, 2002.

50. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular poly-
nomial relations. In Advances in Cryptology — Crypto ’97, volume 1294 of LNCS, pages
16–30. Springer, 1997.

51. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

52. R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of generic cryp-
tographic constructions. SIAM Journal on Computing, 35(1):217–246, 2005.

53. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random
oracle. In Advances in Cryptology — Eurocrypt ’99, volume 1592 of LNCS, pages 123–139.
Springer, 1999.

54. E.-J. Goh, S. Jarecki, J. Katz, and N. Wang. Efficient signature schemes with tight reductions
to the Diffie-Hellman problems. Journal of Cryptology, 20(4):493–514, 2007.

55. O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In
Advances in Cryptology — Crypto ’86, volume 263 of LNCS, pages 104–110. Springer, 1987.

56. O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University
Press, Cambridge, UK, 2001.

57. O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge Univer-
sity Press, Cambridge, UK, 2004.

58. S. Goldwasser and Y. Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm. In 44th
Annual Symposium on Foundations of Computer Science (FOCS), pages 102–115. IEEE,
2003.

59. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984.

60. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, 1989.

188 References

61. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

62. S. Goldwasser, S. Micali, and A. C.-C. Yao. Strong signature schemes. In 15th Annual ACM
Symposium on Theory of Computing (STOC), pages 431–439. ACM Press, 1983.

63. L. C. Guillou and J.-J. Quisquater. A “paradoxical” indentity-based signature scheme result-
ing from zero-knowledge. In Advances in Cryptology — Crypto ’88, volume 403 of LNCS,
pages 216–231. Springer, 1990.

64. J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

65. D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. In Advances
in Cryptology — Crypto 2008, volume 5157 of LNCS, pages 21–38. Springer, 2008.

66. S. Hohenberger and B. Waters. Realizing hash-and-sign signatures under standard assump-
tions. In Advances in Cryptology — Eurocrypt 2009, volume 5479 of LNCS, pages 333–350.
Springer, 2009.

67. S. Hohenberger and B. Waters. Short and stateless signatures from the RSA assumption. In
Advances in Cryptology — Crypto 2009, volume 5677 of LNCS, pages 654–670. Springer,
2009.

68. Q. Huang, D. S. Wong, and Y. Zhao. Generic transformation to strongly unforgeable sig-
natures. In ACNS 07: 5th International Conference on Applied Cryptography and Network
Security (ACNS), volume 4521 of LNCS, pages 1–17. Springer, 2007.

69. M. Jakobsson. Reducing costs in identification protocols. Presented at the rump session of
Crypto 1992. Available at http://www.informatics.indiana.edu/markus/papers.asp.

70. M. Joye. How (not) to design strong-RSA signatures. Designs, Codes, and Cryptography.
To appear.

71. J. Katz and C.-Y. Koo. On constructing universal one-way hash functions from arbitrary
one-way functions. Available at http://eprint.iacr.org/2005/328.

72. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC Press,
2007.

73. J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security
reductions. In ACM CCS ’03: 10th ACM Conference on Computer and Communications
Security, pages 155–164. ACM Press, 2003.

74. H. Krawczyk and T. Rabin. Chameleon signatures. In Network and Distributed System
Security Symposium – NDSS 2000. The Internet Society, 2000.

75. K. Kurosawa and K. Schmidt-Samoa. New online/offline signature schemes without ran-
dom oracles. In 9th Intl. Conference on Theory and Practice of Public Key Cryptogra-
phy(PKC 2006), volume 3958 of LNCS, pages 330–346. Springer, 2006.

76. L. Lamport. Constructing digital signatures from a one-way function. Technical Report
SRI-CSL-98, SRI Intl. Computer Science Laboratory, October 1979.

77. J. Malone-Lee and N. P. Smart. Modifications of ECDSA. In SAC 2002: 9th Annual Inter-
national Workshop on Selected Areas in Cryptography (SAC), volume 2595 of LNCS, pages
1–12. Springer, 2003.

78. R. C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security &
Privacy, pages 122–134. IEEE, 1980.

79. R. C. Merkle. A digital signature based on a conventional encryption function. In Advances
in Cryptology — Crypto ’87, volume 293 of LNCS, pages 369–378. Springer, 1988.

80. R. C. Merkle. A certified digital signature (that antique paper from 1979). In Advances in
Cryptology — Crypto ’89, volume 435 of LNCS, pages 218–238. Springer, 1990.

81. R. C. Merkle. One way hash functions and DES. In Advances in Cryptology — Crypto ’89,
volume 435 of LNCS, pages 428–446. Springer, 1990.

82. S. Micali. A secure and efficient digital signature algorithm. Technical Report MIT/LCS/TM-
501b, Massachusetts Institute of Technology, Laboratory for Computer Science, April 1994.

83. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In 40th Annual
Symposium on Foundations of Computer Science (FOCS), pages 120–130. IEEE, 1999.

84. S. Micali and L. Reyzin. Improving the exact security of digital signature schemes. Journal
of Cryptology, 15(1):1–18, 2002.

References 189

85. M. Mitzenmacher and A. Perrig. Bounds and improvements for BiBa signature schemes.
Technical Report TR-02-02, Harvard University, 2002.

86. D. Naccache, D. Pointcheval, and J. Stern. Twin signatures: An alternative to the hash-and-
sign paradigm. In ACM CCS ’01: 8th ACM Conference on Computer and Communications
Security, pages 20–27. ACM Press, 2001.

87. M. Naor. On cryptographic assumptions and challenges (invited talk). In Advances in Cryp-
tology — Crypto 2003, volume 2729 of LNCS, pages 96–109. Springer, 2003.

88. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applica-
tions. In 21st Annual ACM Symposium on Theory of Computing (STOC), pages 33–43. ACM
Press, 1989.

89. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In Advances in Cryptology — Crypto 2002, volume 2442 of
LNCS, pages 111–126. Springer, 2002.

90. National Institute of Standards and Technology. Digital signature standard (DSS). Fed-
eral Information Processing Standards (FIPS) Publication #186-3, 2009. Available at
http://www.itl.nist.gov/fipspubs/by-num.htm.

91. K. Ohta and T. Okamoto. A modification of the Fiat-Shamir scheme. In Advances in Cryp-
tology — Crypto ’88, volume 403 of LNCS, pages 232–243. Springer, 1990.

92. K. Ohta and T. Okamoto. On concrete security treatment of signatures derived from identi-
fication. In Advances in Cryptology — Crypto ’98, volume 1462 of LNCS, pages 354–369.
Springer, 1998.

93. T. Okamoto. Provably secure and practical identification schemes and corresponding signa-
ture schemes. In Advances in Cryptology — Crypto ’92, volume 740 of LNCS, pages 31–53.
Springer, 1993.

94. H. Ong and C.-P. Schnorr. Fast signature generation with a Fiat-Shamir-like scheme. In
Advances in Cryptology — Eurocrypt ’90, volume 473 of LNCS, pages 432–440. Springer,
1990.

95. PKCS #1 version 2.1: RSA cryptography standard. RSA Data Security, Inc., 1998. Available
at http://www.rsa.com/rsalabs.

96. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, 2000.

97. M. O. Rabin. Digitalized signatures and public-key functions as intractable as factorization.
Technical Report MIT/LCS/TR-212, Laboratory for Computer Science, MIT, January 1979.

98. L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast signing and
verifying. In 7th Australian Conference on Information Security and Privacy, ACISP 2002,
volume 2384 of LNCS, pages 144–153. Springer, 2002.

99. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

100. J. Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd
Annual ACM Symposium on Theory of Computing (STOC), pages 387–394. ACM Press,
1990.

101. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

102. A. Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM
Trans. on Computer Systems, 1(1):38–44, 1983.

103. A. Shamir and Y. Tauman. Improved online/offline signature schemes. In Advances in
Cryptology — Crypto 2001, volume 2139 of LNCS, pages 355–367. Springer, 2001.

104. V. Shoup. On the security of a practical identification scheme. Journal of Cryptology,
12(4):247–260, 1999.

105. V. Shoup. A composition theorem for universal one-way hash functions. In Advances in
Cryptology — Eurocrypt 2000, volume 1807 of LNCS, pages 445–452. Springer, 2000.

106. R. Steinfeld, J. Pieprzyk, and H. Wang. How to strengthen any weakly unforgeable signature
into a strongly unforgeable signature. In Cryptographers’ Track — RSA 2007, volume 4377
of LNCS, pages 357–371. Springer, 2007.

190 References

107. S. Vaudenay. The security of DSA and ECDSA. In 6th Intl. Workshop on Theory and
Practice in Public Key Cryptography(PKC 2003), volume 2567 of LNCS, pages 309–323.
Springer, 2003.

108. L. Washington. Elliptic Curves: Number Theory and Cryptography. CRC Press, 2008.
109. B. R. Waters. Efficient identity-based encryption without random oracles. In Advances in

Cryptology — Eurocrypt 2005, volume 3494 of LNCS, pages 114–127. Springer, 2005.
110. H. C. Williams. A modification of the RSA public-key encryption procedure. IEEE Trans-

actions on Information Theory, 26(6):726–729, 1980.

Index

attacks
(adaptive) chosen-message, 13, 16–27
known-message, 13, 15–16, 23, 27, 109
random-message, 12, 14–15, 19–23
replay, 10, 11

bilinear maps, 121
signature schemes based on, 121–131

Blum integer, 47, 48, 178
Boneh-Boyen scheme, 125
Boneh-Lynn-Shacham scheme, 145

canonical identification schemes, see
identification schemes, canonical

clawfree permutation
construction of hash function from, 56–57

clawfree trapdoor permutation, 41–43, 143,
147, 149

doubly enhanced, 43, 48, 51, 143
from the factoring assumption, 47–48
from the RSA assumption, 51

collision-resistant hash function, see hash
function, collision-resistant

constructions of signature schemes
based on bilinear maps, 121–131, 145–147
based on the RSA assumption, 87–108,

147–152
based on the strong RSA assumption,

108–118
chain-based signatures, 75
CMA-security from KMA-security, 23–27,

98
CMA-security from RMA-security, 19–23
from any one-way function, 83
from identification schemes, 155–182
full-domain hash, 143–145
Lamport scheme, 74

strong unforgeability from unforgeability,
27–30

the Boneh-Boyen scheme, 122–127
the Boneh-Lynn-Shacham scheme, 145
the Cramer-Damgård scheme, 97–105
the Cramer-Shoup scheme, 98
the Dwork-Naor scheme, 91–97
the Fischlin scheme, 114–117
the Gennaro-Halevi-Rabin scheme, 117–118
the Hohenberger-Waters scheme, 105–108
the Lamport scheme, 70–71
the Waters scheme, 127–131
tree-based signatures, 77

Cramer-Damgård scheme, 100
Cramer-Shoup scheme, 112

definitions of security
identification schemes, 157
relations between, 18
signature schemes, 14–19

Diffie-Hellman assumptions, 53, 127, 128, 183
Digital Signature Standard (DSS), 183
discrete logarithm assumption, 52–53, 122,

180
construction of hash functions from, 56–58

doubly enhanced, see clawfree trapdoor
permutation, doubly enhanced, see
trapdoor permutation, doubly enhanced

Dwork-Naor scheme, 92

existential unforgeability, 11, 14–18

factoring assumption, 43–50, 56, 172, 174
clawfree trapdoor permutation from, 47
trapdoor permutations from, 47

Fiat-Shamir identification scheme, 172–176
Fiat-Shamir transform, 159–163

191

192 Index

Fischlin scheme, 114
full-domain hash (FDH), 143–145

probabilistic, 149–150
tigher security reduction for, 147–149
variant of, 150–152

Gennaro-Halevi-Rabin scheme, 117
Goldwasser-Micali-Rackoff identification

scheme, 172–174
Guillou-Quisquater identification scheme,

176–178

hash function, 53
collision-resistant, 54–55, 58, 61–62

constructions of, 55–58
Merkle-Damgård transform, 54–55
universal one-way, 54, 62–64, 73, 81

constructions of, 58–60
Hohenberger-Waters scheme, 106
honest-verifier zero knowledge, see identi-

fication schemes, honest-verifier zero
knowledge

special, 170

identification schemes
canonical, 159
definition of security for, 157
Fiat-Shamir transform, 159–163
functional definition of, 156
honest-verifier zero knowledge, 164, 165,

170
parallel repetition of, 171
special soundness, 164, 165, 170
the Fiat-Shamir scheme, 172–176
the Goldwasser-Micali-Rackoff scheme,

172–174
the Guillou-Quisquater scheme, 176–178
the Ong-Schnorr scheme, 178–180
the Schnorr scheme, 180–182

Lamport one-time signature scheme, 70–74

Merkle-Damgård transform, 54–55
message authentication codes

comparison with signature schemes, 4–6
message space, 9

fixed vs. key-dependent, 10
increasing the size of, 30–32, 61–64

negligible (definition), 7

on-line/off-line signature schemes, 27

one-time signature scheme, 23, 27, 64, 70–74,
99, 171

constructing signatures from, 75
one-way function, 36–39

necessary for signatures, 39
SHA-1 as, 69
sufficient for one-time signatures, 70
sufficient for signatures, 83

one-way permutation, 36–39, 73
construction of universal one-way hash

function from, 59
Ong-Schnorr identification scheme, 178–180

pseudorandom function
use in constructing signatures, 82

RSA assumption, 50–52, 56, 143, 147, 176
clawfree trapdoor permutation from, 51
signature schemes based on, 87–108,

147–152

Schnorr identification scheme, 180–182
security

computational, 7–9
unconditional, 6–7

sigma protocols (Σ -protocols), 182
signature schemes

definitions of security for, 11–19
functional definition of, 9
one-time, 12, 17
properties of, 4
stateful vs. stateless, 11

special soundness, see identification schemes,
special soundness

stateful signature scheme, 11, 75–82, 92, 100,
119

definition of, 75
strong Diffie-Hellman assumption, 123
strong RSA assumption, 90

signature schemes based on, 108–118
strong unforgeability, 12, 14–18, 27–30, 33, 73

from unforgeability, 27

trapdoor permutation, 39–41, 85, 143
doubly enhanced, 40, 51, 143
from the factoring assumption, 47
from the RSA assumption, 51

universal one-way hash function, see hash
function, universal one-way

Waters scheme, 128

	Digital Signatures
	Preface
	Contents

	Part ISetting the Stage
	Chapter 1Digital Signatures: Background and Definitions
	1.1 Digital Signature Schemes: A Quick Introduction
	1.1.1 Properties of Digital Signatures

	1.2 Computational Security
	1.2.1 Computational Notions of Security
	1.2.2 Notation

	1.3 Defining Signature Schemes
	1.4 Motivating the Definitions of Security
	1.5 Formal Definitions of Security
	1.5.1 Security against Random-Message Attacks
	1.5.2 Security against Known-Message Attacks
	1.5.3 Security against Adaptive Chosen-Message Attacks

	1.6 Relations Between the Notions
	1.7 Achieving CMA-Security fromWeaker Primitives
	1.7.1 CMA-Security from RMA-security
	1.7.2 CMA-Security from KMA-Security

	1.8 From Unforgeability to Strong Unforgeability
	1.9 Extending the Message Length
	1.10 Further Reading

	Chapter 2Cryptographic Hardness Assumptions
	2.1 “Generic” Cryptographic Assumptions
	2.1.1 One-Way Functions and Permutations
	2.1.2 Trapdoor Permutations
	2.1.3 Clawfree (Trapdoor) Permutations

	2.2 Specific Assumptions
	2.2.1 Hardness of Factoring
	2.2.2 The RSA Assumption
	2.2.3 The Discrete Logarithm Assumption

	2.3 Hash Functions
	2.3.1 Definitions
	2.3.2 The Merkle-Damg°ard Transform
	2.3.3 Constructing Collision-Resistant Hash Functions
	2.3.4 Constructing Universal One-Way Hash Functions

	2.4 Applications of Hash Functions to Signature Schemes
	2.4.1 Increasing the Message Length
	2.4.2 Reducing the Public-Key Length

	2.5 Further Reading

	Part IIDigital Signature Schemes withoutRandom Oracles
	Chapter 3Constructions Based on General Assumptions
	3.1 Lamport’s One-Time Signature Scheme
	3.2 Signatures from One-Time Signatures
	3.2.1 “Chain-Based” Signatures
	3.2.2 “Tree-Based” Signatures
	3.2.3 A Stateless Solution

	3.3 Signatures from One-Way Functions
	3.3.1 Putting the Pieces Together
	3.3.2 Thoughts on the Construction

	3.4 Further Reading

	Chapter 4Signature Schemes Based on the (Strong) RSAAssumption
	4.1 Introduction
	4.1.1 Technical Preliminaries
	4.1.2 Outline of the Chapter

	4.2 Signature Schemes Based on the RSA Assumption
	4.2.1 The Dwork-Naor Scheme
	4.2.2 The Cramer-Damg°ard Scheme
	4.2.3 The Hohenberger-Waters Scheme

	4.3 Schemes Based on the Strong RSA Assumption
	4.3.1 The Strong RSA Assumption
	4.3.2 Security Against Known-Message Attacks
	4.3.3 The Cramer-Shoup Scheme
	4.3.4 The Fischlin Scheme
	4.3.5 The Gennaro-Halevi-Rabin Scheme

	4.4 Further Reading

	Chapter 5 Constructions Based on Bilinear Maps
	5.1 Introduction
	5.1.1 Technical Preliminaries
	5.1.2 Outline of the Chapter

	5.2 The Boneh-Boyen Scheme
	5.3 The Waters Scheme
	5.4 Further Reading

	Part IIIDigital Signature Schemes in theRandom Oracle Model
	Chapter 6 The Random Oracle Model
	6.1 Security Proofs in the Random Oracle Model
	6.2 Is the Random Oracle Methodology Sound?
	6.2.1 Negative Results

	6.3 The Random Oracle Model in Practice
	6.4 Further Reading

	Chapter 7Full-Domain Hash (and Related) SignatureSchemes
	7.1 The Full-Domain Hash (FDH) Signature Scheme
	7.1.1 An Instantiation Using Bilinear Maps

	7.2 An Improved Security Reduction for FDH
	7.3 Probabilistic FDH
	7.4 A Simpler Variant with a Tight Reduction
	7.5 Further Reading

	Chapter 8Signature Schemes from Identification Schemes
	8.1 Identification Schemes
	8.2 From Identification Schemes to Signatures
	8.2.1 The Fiat-Shamir Transform
	8.2.2 Two Useful Criteria
	8.2.3 One-Time Signature Schemes without Random Oracles

	8.3 Some Secure Identification Schemes
	8.3.1 The Fiat-Shamir Scheme
	8.3.2 The Guillou-Quisquater Scheme
	8.3.3 The Micali/Ong-Schnorr Scheme
	8.3.4 The Schnorr Scheme

	8.4 Further Reading

	References
	Index

