Automated Security Proofs for Message
Authentication Codes*

Martin Gagné, Pascal Lafourcade, and Yassine Lakhnech

Laboratoire VERIMAG
Université Grenoble 1, CNRS, FRANCE
firstname.lastname@Rimag

—— Abstract

Message authentication codes (MACs) are an essential primitive in cryptography. They are used to ensure
the integrity and authenticity of a message, and can also be used as a building block for larger schemes,
such as chosen-ciphertext secure encryption, or identity-based encryption. We present a method for auto-
matically proving the security for block-cipher-based and hash-based MACs in the ideal cipher model.
Our method proceeds in two steps, following the traditional method for constructing MACs. First, the
‘front end’ of the MAC produces a short digest of the long message, then the ‘back end’ provides a mixing
step to make the output of the MAC unpredictable for an attacker. We develop a Hoare logic for proving
that the front end of the MAC is an almost-universal hash function. The programming language used to
specify these functions is quite expressive. As a result, our logic can be used to prove functions based on
block ciphers and hash functions. Second, we provide a list of options for the back end of the MAC, each
consisting of only two or three instructions, each of which can be composed with an almost-universal
hash function to obtain a secure MAC.

Using our method, we implemented a tool that can prove the security of many CBC-based MACs
(DMAC, ECBC, FCBC and XCBC to name only a few), PMAC and HMAC.

1998 ACM Subiject Classification F.3.1 Specifying and Verifying and Reasoning about Programs
Keywords and phrases Cryptography, Message authentication code, Hoare Logic

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Message authentication codes (MACs) are among the most common primitives in symmetric key
cryptography. They ensure the integrity and provenance of a message, and they can be used, in
conjunction with chosen-plaintext secure encryption, to obtain chosen-ciphertext secure encryption.
Given the importance of this primitive, it is important that their proofs of security be the object of
close scrutiny. The study of the security of MAC:s is, of course, not a new field. Bellare et al. [5] were
the first to prove the security of CBC-MAC for fixed-length inputs. Following this work, a myriad of
new MACs secure for variable-length inputs were proposed ([4, 7, 8, 9, 17]). None of these protocols’
proofs have been verified by any means other than human scrutiny.

Automated proofs can provide additional assurance of the correctness of these security proofs by
providing an independent proof of complex schemes. This paper presents a method for automatically
proving the security of MACs based on block ciphers and hash functions.

Contributions: To prove the security of MACs, we first break the MAC algorithms into two parts:
a ‘front-end’, whose work is to compress long input messages into small digests, and a ‘back-end’,
usually a mixing step, which obfuscates the output of the front-end. We present a Hoare logic to prove

* This work was partially supported by ANR project ProSe and Minalogic project SHIVA.

@@@@ © M. Gagné, P. Lafourcade and Y. Lakhnech;
AT licensed under Creative Commons License NC-ND
Conference title on which this volume is based on.

Editors: Billy Editor, Bill Editors; pp. 1-21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Automated Security Proofs for Message Authentication Codes

that the front-ends of MACs are almost-universal hash functions. We then make a list of operations
which, when composed with an almost-universal hash function, yield a secure MAC.

Our result differs significantly from our previous work that used Hoare logic to generate proofs of
cryptographic protocols (such as [12, 15]) because those results proved the security of encryption
schemes. Proving the security of MACs proved to be singularly more challenging since the predicates
required to model the security of authentication are far more complicated than those necessary to
prove the security of encryption. In particular, we have to consider the simultaneous execution of a
program on two input messages in order to bound collision probabilities. As a result, we propose a
new semantics, and define new invariants for determining equality or inequality of values. We also
present a treatment of for loops, which allows us to prove the security of protocols that can take
arbitrary strings as an input. This is an important improvement over previous results that only deal
with schemes that had fixed-length inputs.

Finally, we implemented our method into a tool [14] that can be used to prove the security of
several well-known MACs, such as HMAC [4], DMAC [17], ECBC, FCBC and XCBC [8] and
PMAC [9].

Related Work: The idea of using Hoare logic to automatically produce proofs of security for
cryptographic protocols is not new. Courant et al. [12] presented a Hoare logic to prove the security
of asymmetric encryption schemes in the random oracle model. This work was continued by Gagné
et al. [15], who showed a Hoare logic for verifying proofs of security of block cipher modes of
encryption. Also worth mentioning is the paper by Corin and Den Hartog [11], which presented a
Hoare-style proof system for game-based cryptographic proofs.

Fournet et al. [13] developed a framework for modular code-based cryptographic verification.
However, their approach considers interfaces for MACs. In a way, our work is complementary to
theirs, as our result, coupled with theirs, could enable a more complete verification of systems.

In [1], the authors introduce a general logic for proving the security of cryptographic primitives.
This framework can easily be extended using external results, such as [12], to add to its power. Our
result could also be added to this framework to further extend it.

Other tools, such as Cryptoverif [10] and EasyCrypt [3, 2], can be used to verify the security of
cryptographic schemes. However, they rely on a game-based approach and require human assistance
to enter the sequence of games. In contrast, our method is fully automatic.

Outline: In Section 3, we introduce cryptographic background. The following section introduces
our grammar, semantics and assertion language. In Section 4, we present our Hoare logic and method
for proving the security of almost-universal hash functions, and we discuss our implementation of
this logic and treatment of loops in Section 5. We then obtain a secure MAC by combining these with
one of the back-end options described in Section 6. Finally, we conclude in Section 7.

2 Cryptographic Background

Notation and Conventions
Throughout this paper, we assume that all variables range over domains whose cardinality is
exponential in the security parameter 77 and that all programs have length polynomial in 7.

For a probability distribution D, we denote by x & D the operation of sampling a value x

according to distribution D. If S is a finite set, we denote by z & S the operation of sampling x
uniformly at random among the values in S.

MAC Security

» Definition 1 (MAC). A message authentication code is a triple of polynomial-time algorithms (X,

M. Gagné, P. Lafourcade and Y. Lakhnech

MAC, V), where K (1) takes a security parameter 17 and outputs a secret key sk, M AC (sk,m)
takes a secret key and a message m, and outputs a fag, and V (sk, m,tag) takes a secret key, a
message and a tag, and outputs a bit: 1 for a correct tag, O otherwise.

» Definition 2 (Unforgeability). A MAC (K, M AC, V) is unforgeable under a chosen-message
attack (UNF-CMA) if for every oracle polynomial-time algorithm .4 whose output message m* is
different from any message it sent to the MAC oracle, the following probability is negligible

Pr[sk & K(1M); (m*, tag™) & AMAC(sk,),V(sk,,0) V(sk,m*, tag*) = 1]

A standard method for constructing MAC:s is to apply a pseudo-random function, or some other
form of ‘mixing’ step, to the output of an almost-universal hash function [18, 19]. Our verification
technique assumes that the MAC is constructed in this way.

» Definition 3 (Almost-Universal Hash). A family of functions H = {h;};c{0,1}» is a family of
almost-universal hash functions if for any two strings a and b, Pry,, e [hi(a) = h;(b)] is negligible,
where the probability is taken over the choice of h; in H.

It is much easier to work with this definition because the adversary against an almost-universal
hash function is non-adaptive, and must output his attempt at finding a collision in the almost-universal
hash function independently from the choice of the key.

Block Cipher Security and Random Oracle Model

Many MAC constructions are based on block cipher and fixed-input hash functions, and their
security are proven in the ideal cipher model and the random oracle model respectively. Due to space
restrictions, we refer a reader unfamiliar with these concepts to Appendix A.

Indistinguishable Distributions
Given two distribution ensembles X = { X, },ex and X’ = { X, },en, an algorithm A and
7 € N, we define the advantage of A in distinguishing X, from X ;] as the following quantity:

AdV(A, 7, X, X') = |Prle & X, 0 A(z) = 1] - Priz & X)) : A(z) = 1]].
We say that X and X’ are indistinguishable, denoted by X ~ X', if Adv(A,n, X, X’) is
negligible as a function of 7 for every probabilistic polynomial-time algorithm .A.

3 Model

3.1 Grammar

We consider the language defined by the following BNF grammar.
cmd = z:=E(y) |ri=HE) |ri=y|lr=y@ 2|2 :=ylz|z:=pi(y)
| for I = pto ¢ do: [cmd;] | cmd:; cmd2
Each command has the following effect:
x = &(y) denotes application of the block cipher £ to the value of y and assigning the result to
. We omit the key used every time to simplify the notation, but it is understood that a key was
selected at random at the beginning of the experiment and remains the same throughout.
2 := H(y) denotes the application of the hash function H to the value of y and assigning the
result to .
x := y @ z denotes the assignment to = of the xor or the values of y and z.
x := yl||z denotes the assignment to z of the concatenation of the values of y and z.

! The secret key sk can consist of one or several strings, depending on the MAC.

Automated Security Proofs for Message Authentication Codes

x := p'(y) denotes the i-fold application of the function p to the value of y (that s, p(. .. (p(y) .. .)),

where p is repeated ¢ times) and assigning the result to x.

for i = pto ¢ do: [cmd;] denotes the successive execution of cmd,, cmdy1,...,cmd,.

c1; co is the sequential composition of ¢; and cs.

The function p is used to compute the tweak in tweakable block ciphers ([16]). The function used to
compute this tweak can vary from one protocol to the next, so we only specify that it must be a public
function. When a scheme uses a function p, the properties of the function p required for the proof
will be added to the initial conditions of the verification procedure.

We assume that, prior to executing the MAC, the message has been padded using some unambigu-
ous padding scheme, so that all the message blocks m, ..., m; are of equal and appropriate length
for the scheme, usually the input length of the block cipher. We denote by Var the full set of variables
used in the program. This set always includes input and output variables, and the special variable &
that contains a secret key. The set var &; contains the variables of the programs that are neither input
variables, output variables or the secret key.

» Definition 4 (Generic Hash Function). A generic hash function Hash on i message blocks
ma1, ..., m; and with output ¢, is represented by a tuple (Fg, Fy, Hash(mq]| ... |m;,c) : var ;;
cmd;), where F¢ is a family of pseudorandom permutations (usually a block cipher), 5 is a family
of cryptographic hash functions, and Hash(my|| ... ||m;,c) : var 2;;cmd; is the code of the hash
function, where the commands of cmd; are built using the grammar described above.

Using this formalism, we describe the hash functions Hash¢ pc, which is used in DMAC [17]
and ECBC [8]:
Hashcpe(mal| ... ||mn,cn) s vari, zo, ..., 2n,C1y. .., Cn—1;
c1:=E(my);
fori =2tondo: [z; :=ci—1 ® my; ¢i == E(2i)]

Due to space restrictions, we put the description of Hashcpcer, Hashpyrac and Hashgarac,
which are used in FCBC, XCBC [8], PMAC [9] and HMAC [4], in Appendix B.

3.2 Semantics

In our analysis, we consider the execution of a program on two inputs simultaneously. These
simultaneous executions will enable us in Section 4 to define predicates about the equality or
inequality of intermediate values in the program.

A program takes as input a configuration (S,S',E,H,Le, L) and yields a distribution on
configurations. A configuration is composed of two states S and S’, a block cipher £, a hash function
"H, and two lists of pairs L¢ and L. The two states S and S’, which are functions that take a variable
as input and return a value in {0, 1}* U {_L} (the symbol L indicates that no value has been assigned
to the variable yet), assign values to all the variables in each of the two simultaneous executions of
the program. The lists L¢ and L4 record the values for which the functions £ and H were computed
respectively. These lists are common to both executions of the program. We denote by L¢.dom and
Leg.res the lists obtained by projecting each pair in L¢ to its first and second element respectively.
We define L4.dom and L4;.res similarly.

Let I" denote the set of configurations and DIST(I") the set of distributions on configurations. The
semantics is given in Table 1, where §(x) denotes the Dirac measure, i.e. Prz] = 1, S{z — v}
denotes the state which assigns the value v to the variable x, and behaves like S for all other variables,
Lg - (z,y) denotes the addition of element (x,y) to L¢ and o denotes function composition. The
semantic function ¢ : I' — DIST(T") of commands can be lifted in the usual way to a function
¢* : DIST(I") — Di1sT(T") by point-wise application of ¢. By abuse of notation we also denote the
lifted semantics by [cmd].

M. Gagné, P. Lafourcade and Y. Lakhnech

[z :=EW](S, S, E,H, Le, Ly) =
§(S{x— v}, S{e— v} EH, Le, Ly)if (S(y),v), (S (y),v) € L¢
d(S{x— v}, S{r— v} EH, Lo (S(y),v), Ly)

if (S(y),v) & Le, (S'(y),v)Eﬁs andv—r‘f(s(y))
§(S{x— v}, S{r— v} EH, Le- (S (y),v), L

if (S(y),v) € Lg, (S'(y), v)gﬁgandv =E&(5'(y))
6(S{z = v}, S{a = v'HEH, (Le - (S(y),v)) - (S'(y), V'), L)

if (S(y),v), (S"(y),v') € Le and v = E(S(y)),v" = E(S'(y))
[z :=H(y)](S, S, E,H, Le, Lgg) =
§(S{x— v}, S{r— v}, EH, Le, Ly) if (S(y),v), (S"(y),v") € Ly
d(S{x— v}, S{r— v} EH, Loy Loy (

if (S(y),v) & L, (5" (y),v
0(S{zx — v}, S {x— v}, E,H, Le, Loy - (S (y),v"))

if (S(y),v) € Ly, (5" (y), v
6(S{z = v}, S{a = '} EH, Le, (La - (S(y),v)) - (S ()’”U'))

if (S(y),v),(S"(y),v") & Ly andv = H(S(y)),v" = H(S"(y))

\-/'—h

NS
%)
Ry
o
5
a
<
I
=
“
S

[z :=y & 2](S, 5, & H, Le, Lyy) = 6(S{x — S(y) & S(2), S'{z — S'(y) & 5" (2)},E,H, Le, L)
[z :=yll2]](S’S”f,H,Eg,EH) = 0(5{z = SWIIS(2), 5{z = S"(W)IIS"(2)}, €, H, Le, L)

[z := p"(V)](S. ", &, H, Le, L3¢) = 6(S{z = p"(S())}, 8" {2 = p'(S'(y)}. €. H, Le, L)

[for i = pto ¢ do: [emd;]] = [emd,] o [emd,_1] o ... o [cmd,]

[e1; o] = [ea] o [en]

Table 1 The semantics of the programming language

Here, we are only interested in the distributions that can be constructed in polynomial time by
an adversary having access only to the random oracle. We denote their set by DIST(T", Fg, Fx),
where F¢ is a family of block ciphers, F7, is a family of hash functions, and is defined as the set of
distributions of the form:

(€& Fe(@)iH & Fu(m)u & {0,1)7,(S, 8", Le, Lq) & AH(17) -

(S{k = u}, S{k—u},E,H, Le, Lgg)]
where k is a variable holding a secret string needed in some MACs (among our examples, Hashpps ac
and Hashg pac need it) and A is a probabilistic polynomial-time algorithm with oracle access to
the hash function, such that £ contains the list of queries made by A to the random oracle, and L¢
is empty since .4 does not have access the key of the block cipher.

A notational convention. It is easy to see that commands never modify £ or H. Therefore, we can,

without ambiguity, write (5',5"7 e Lhy) & [e](S,S’, Le, L#) instead of (5'75”7577-1, Ly, L)
&[S, 8" & H, Le, L),

3.3 Assertion Language

We give an intuitive description of the six invariants used in our logic:

Empty: means that the probability that £¢ contains an element is negligible.

Equal(x, y): means that the probability that S(x) # S’(y) is negligible.

Unequal(x, y): means that the probability that S(xz) = S’(y) is negligible.

E(&;x;V): means that the probability that the value of x is either in Lg.dom or in V' is negligible.
H(H;x; V): means that the probability that the value of x is either in £4,.dom or in V' is negligible.

Automated Security Proofs for Message Authentication Codes

Indis(x; V;V’): means that no adversary has non-negligible probability to distinguish whether he is
given results of computations performed using the value of x or a random value, when he is given
the values of the variables in V' and the values of the variables in V' from the parallel execution. In
addition to variables in Var, the set V' can contain special symbols /¢ or £3. When the symbol £¢ is
present, it means that, in addition to the other variables in V, the distinguisher is also given the values
in Lg.dom, similarly for 4.

In the following, for any set V' C Var, we denote by S(V') the multiset resulting from the
application of S on each variable in V. We also use S(V, {¢) as a shorthand for S(V') U Lg.dom,
and similarly for S(V, ¢3) and S(V, {¢,¢4;). For a set V and a variable, we write V, = as a short-
hand for V' U {2z} and V' — z as a shorthand for V' \ {z} and we use Indis(z) as a shorthand for
Indis(z; Var, ¢, £4; Var).

Our Hoare logic is based on statements from the following language.

pu=true|pApleVely
¢ = Indis(z; V; V') | Equal(z, y) | Unequal(z,y) | Empty | E(&;z; V) | H(H; z; V)
where z,y € Var and V, V' C Var, except for Indis(x; V; V') where V' C Var U {{¢, ¢4, }.

More formally, we define that a distribution X satisfies ¢, denoted X = 1) as follows:

XEtue, X Forndiff X Foand X E, X EFeV iff X Epor X E ¢
X |= Empty iff Pr[(S, S, Le, L) & X : Le # 0] is negligible
X |= Equal(z, y) iff Pr[(S, S, Le, L) & X : S(z) # S'(y)] is negligible
X = Unequal(z,y) iff Pr[(S, 5", Le, Ly) &x. S(x) = S'(y)] is negligible
X = E(& 2 V)iff Pr((S, 8", Le, L3g) & X : {S(x), S (2)} N (Le.domUS(V —2)US' (V
x)) # 0] is negligible?
X EHH; z; V) iff Pr[(S, S, Le, L3) & x. {S(x), 5" ()}N(Ly.domUS(V —2)uS'(V
x)) # 0] is negligible
X [= Indis(z; V; V') iff the two following formulas hold:
(8,8, Le, L) & X+ (S(2), S(V = 2) U (V)] ~
((S,S", Le, La) & Xsu s U < (u, S(V —2) U S (V)]
(8,8, Le, Lu) & X+ (S'(x),S'(V — 2) US(V'))] ~
((S,S", Lo, Ly) & Xsu s U« (u, 8'(V —2) US(V"))]

» Lemma 5. The following relations are true for any sets Vi, Vo, V3 and variables x,y with x # y
Indis(xz; Vi; Va) = Indis(z; Va; Va) if Vs C Vi and Vy C Vs

HH; 2, V) = HH; 2, V) if VI CV

E&;x; V)= E&;x; V) if VI CV

Indis(z; V, £1;0) = H(H; z; V)

Indis(x; V, lg;0) = E(E;2;V)

. Indis(z; 0; {y}) = Unequal(z,y) N Unequal(y,)

The proof of this lemma is in Appendix C. Note that results 4, 5 and 6 are particularly helpful because
the invariant Indis is much easier to propagate than the other invariants.

DGR LN

2 Since the variable 2 is removed from the set V when taking the probability, we always have X |= E(&; z; V) iff
X | E(&;x; V,x). This is to remove the trivial case that Pr[{S(z), S"(z)} N (Le.domU S({z})US’ ({z})) # 0]
never holds, and to simplify the notation. The same is also used for invariants H(#; x; V) and Indis(x; V; V).

M. Gagné, P. Lafourcade and Y. Lakhnech

4 Proving Almost-Universal Hash

The main contribution of this paper is the procedure to prove that a program is an almost-universal hash
function. To do this, we require that the program be written in a way so that, on input mq || ... [|m,,
the program must assign values to variables cy, ..., ¢, in such a way that the variable c; contains the
output of the function on input m, the variable ¢y contains the output of the function on input 11 ||me
and so on. Under this assumption, we determine the condition under which a program computes an
almost-universal hash function family.

» Proposition 6. A generic hash (Fg, F3, P(m1]| ... ||my,c) : var 2;; cmd;) is an almost-universal
hash function on string of length at most [blocks if, at the end of execution, the following invariants
hold:

UNIV(l) = (Unequal(cl, a)V /\j}:1 Equal(mj,mj)) A /\é;i Unequal(c;, ¢;)

The intuition for this is that if 7 consists of I message blocks and m/’ consists of n < [message
blocks, then the fact that the probability that the hashes of m; and m, are equal is negligible, when the
probability is taken over the choice of the key, is captured exactly by the invariant Unequal(c;, ¢,).
The proof of this theorem is in Appendix C.

We prove that this predicate holds at the end of execution by propagating and generating invariants
through the program using rules of our Hoare Logic.

Hoare Logic Rules

We present a set of rules of the form {¢}cmd{y’}, meaning that execution of command cmd
in any distribution that satisfies (o leads to a distribution that satisfies ¢’. Using Hoare logic termin-
ology, this means that the triple {o}cmd{¢'} is valid. We group rules together according to their
corresponding commands. The proofs of soundness of our rules are given in Appendix C.

Since the invariants Equal(m;) are useful only if the whole prefix of the two messages up to the
i*" block are equal, so that keeping track of the equality or inequality of the message blocks after
that point is unnecessary. For this reason, when we design our rules, we never produce the invariants
Unequal(m;, m;) even when they would be correct.

In all the rules below, unless indicated otherwise, we assume that ¢t ¢ {x,y, 2} and © & {y, z}.
In addition, for all rules involving the invariant Indis, we assume that /¢ and ¢4, can be among the
elements in the set V.

Initialization:
The following predicate holds at the beginning of execution of the program. The string & is part of
the secret key sk of the MAC.

(Init) {Indis(k; Var, £¢, £4,; Var — k) A Equal(k, k) A Empty}
Generic preservation rules:
The following rules show how invariants are preserved by most of the commands when the invariants
concern a variable other than that being operated on. For all these rules, we assume that ¢ and ¢’ can
be y or z and cmd is either x := pi(y), v ==y, v == y||z, 2 :=y D 2z, 7 := E(y), or x := H(y).

(Gl) {Equal(t,t')} cmd {Equal(t,t")}

(G2) {Unequal(t,t')} cmd {Unequal(t, ')}

(G3) {E(&;t;V)}emd {E(E;t; V) } provided x € V and cmd is not z := E(y)

(G4) {H(H;t;V)} emd {H(H;t; V)} provided ¢ V and cmd is not x := H(y)

(G5) {Indis(¢; V;V’)} emd {Indis(¢; V;; V') } provided cmd is not z := £(y) or z := H(y), and

2 & V unless z is constructible from V' — ¢ and z ¢ V' unless x is constructible from V' — ¢
(G6) {Empty} cmd {Empty} provided cmd is not z := E(y)

Automated Security Proofs for Message Authentication Codes

Function p:
Since the details of the function p are not known in advance, we cannot infer many rules, other than
the following, which is a simple consequence of the fact that p is a function.

(P1) {Equal(y,y)} = := p’(y) {Equal(x, x)} for any positive integer

Assignment:
Most of the rules for the assignment follow simply from the fact that the value of x is equal to the
value of y.
(Al) {true} z := m; {(Equal(m;, m;) A Equal(z, z)) V Unequal(z, z) }
(A2) {Equal(y,y)} =z := y {Equal(z,z)}
(A3) {Unequal(y,y)} = := y {Unequal(z, x)}
(A4 {Indis(y; V;V')} & := y {Indis(z; V; V') } provided y ¢ V and z & V' unless y € V'
(A5 {E(&y; V) a =y {E(&z; V) AE(E;y; V)} provided y ¢ V
A6) {HH;y; V) o=y {H(H;2;V) AH(H;y; V) } provided y ¢ V/
A7) {EE: VY a =y {EE LV, z,y)}
(A8) {HH;t; V,y)t z =y {H(H;t; V.2, y)}

Concatenation:
The most important rule for the concatenation is (C4), which states that the concatenation of two
random strings results in a random string. Rules (C5) and (C6) state that if a string is indistinguishable
from a random value given all the values in the list of queries to the block cipher (or the hash function),
then clearly it cannot be a prefix of one of the strings L¢.

(C1) {Equal(y,y)} z := y||m: {(Equal(m;, m;) A Equal(z, z)) V Unequal(z, z)}

(C2) {Equal(y,y) A Equal(z,2)} z := y||z {Equal(z, z)}

(C3) {Unequal(y,y)} = := y||z {Unequal(z,z)}

(€4 A{Indis(y; V,y,2; V') Alndis(z; V, y, 2; V') } = := y||z {Indis(z; V,z; V') } provided z,y,z € V,

2 &V unlessy,z € V' andy # 2

(©35) {Indis(y; V. e5V)} 2 := yl|z {E(E;23V)}

©6) {Indis(y; V. £a; V)} & := yl|= {H(H; 23 V)
For rules (C1), (C3), (C5) and (C6), the roles of y and z, or y and m; in the case of (C1), can be
exchanged.

Xor operator:
Rules (X2) is reminiscent of a one-time-pad encryption of z with a random-looking value y. The
other rules are propagation of the Equal and Unequal predicates.
(X1) {Equal(y,y)} = := y & m; {(Equal(m;, m;) A Equal(z, z)) v Unequal(x, z)}
X2) {Indis(y; V,y,2;V')} 2 .=y ® 2 {Indis(z; V,z,2; V') } provided y # 2,y ¢ V andz & V'
unless y, 2 € V'
(X3) {Equal(y,y) AEqual(z,2)} z := y ® z {Equal(z, z)}
(X4) {Equal(y,y) A Unequal(z, 2)} = := y & z {Unequal(z, z)}
Due to the commutativity of the xor, the role of y and 2z can be exchanged in all the rules above.

Block cipher:
Since block ciphers are modeled as ideal ciphers, that is, functions picked at random among all
functions from {0, 1}" to {0, 1}7, the output of the function for a point on which the block cipher has
never been computed is indistinguishable from a random value. This is expressed in rules (B1) to
(B3), and also used in the proof of many other rules. Since the querying of a block cipher twice at any
point is undesirable, we always require the invariant E as a precondition.

B1) {Empty} z := £(m;) {(Equal(m,, m;) A Equal(z,z) A Indis(z; Var, £e, £3; Var — z)) vV

(Unequal(z, z) A Indis(z))}
B2) {E(&;y;0) AUnequal(y,y)} = := E(y) {Indis(z)}

M. Gagné, P. Lafourcade and Y. Lakhnech

(B3) {E(&;y;0) A Equal(y,y)} = := E(y) {Indis(z; Var, £s, £; Var — z) A Equal(z, z)}
B4) {E(&;y;0) Alndis(t; V; V) z .= E(y) {Indis(t; V,z; V', z)} provided £g € V, evenift =y
B3 {E(&;y;0) Alndis(t; V, Le,y; V', y)} o := E(y) {Indis(t; V, be, z,y; V', x,y)}
B6) {E(&y;0) ANE(E:tViy)a = E(y) {E(E:tV,y)}
We also have rules similar to (B2) to (B5), with the invariant E(&;y; () replaced by the invariant
Empty, since both imply that the value of ¥ is not in L.

Hash Function:
We note that the distinguishing adversary, described in Section 2, does not have access to the random
oracle. This is an unusual decision, but sufficient for our purpose since our goal is only to prove
inequality of strings, not their indistinguishability from random strings. As a result, the rules for the
hash function are essentially the same as those for the block cipher.

(H1) {H(H;y;0) A Unequal(y,y)} = := H(y) {Indis(z)}

(H2) {H(H;y;0) AEqual(y,y)} = := H(y) {Indis(z; Var, £+; Var — z) A Equal(z, z)}

(H3) {H(H;y;0) Alndis(t; V; V) } o := H(y) {Indis(t; V,z; V', z)} provided b3 & V,evenift =y
(H4) {H(H;y;0) A Indis(t- Vb, y; VVy) o := H(y) {Indis(t; V, b,z y; V' 2, y) }

(HS) {HH; 6V y)} o= H(y) {HH; &V y)}

For loop:
The rule for the For loop simply states that if an indexed predicate v (¢) is preserved through one
iteration of the loop, then it is preserved through the entire loop. We discuss methods for finding such
a predicate in Section 5.

(F1) {¥(p—1)}forl=ptogdo: [ecmd;] {¢)(q)} provided {p(I — 1)} e {¢p())} forp <1< ¢

Finally, we introduce a few general rules for consequence, sequential composition, conjunction

and disjunction. Let ¢1, ¢2, ¢3, ¢4 be any four predicates in our logic, and let cmd, cmd;, cmds be
any three commands.

(Csq) if 1 = ¢2, d3 = ¢ and {p2}cmd{¢s}, then {¢1 }cmd{ ¢4}

(Seq) if {¢1}emdi{¢2} and {p2}cmdz{¢ps3}, then {¢1}cmdy; cmda{¢s}

(Conj) if {¢1 }emd{¢»} and {¢s}omd{gu}. then {1 A és}omd{gs A ¢}

(Disj) if {¢1}cmd{ 2} and {p3}cmd{pas}, then {¢1 V ¢p3tecmd{ps V ¢4}

» Theorem 7. A generic hash Hash(mq|| ... ||m;,c) : var &;; cmd; computes an almost-universal
hash function if {init}emd; {UNIV (i)}.

The theorem is the consequence of Proposition 6 and of the soundness of our Hoare logic. We then
say that a sequence of predicates [¢, . . ., ¢, is a proof that a program [cmdy, . .., cmd,,] computes
an almost-universal hash function if ¢ = true, ¢, = UNIV (n) and for all 4, 1 < n, {¢;—1 } cmd;

{¢z} holds.

5 Implementation

To use our method, we start at the beginning of the program, at each command apply every possible
rule and, once done, test if the invariant U NIV (n) holds at the end of the program. One possible
downside of this approach is that the application of every possible rule could be very time consuming.
For this reason, we need a way to filter out unneeded invariants, so that execution time remains
reasonable.

Invariant Filter

We say that ¢ is an invariant on x if ¢ is either Equal(x, y), Unequal(x, y), E(E; z; V) H(H; z; V)
or Indis(z; V1, V). We say that an invariant ¢ on variable x is obsolete for program p if x does
not appear anywhere in p and if (¢ = Unequal(c,, ¢;)) and —(¢ = Equal(m;, m;)) for any i,
1 <7 < n. The following theorem shows that once an invariant is obsolete, it can be discarded.

10

Automated Security Proofs for Message Authentication Codes

» Theorem 8. Ifthere exists a proof [po, . . . ,] that a program p = [cmdy, . .., cmd,,] computes
an almost-universal hash function, then there also exists a proof [¢g, . .., @), that p computes an
almost-universal hash function where for each i, ¢; = ¢} and each ¢); does not contain any obsolete
invariants for [cmd; 1, . .., cmad,].

The theorem is a consequence of the fact that, in our logic, the rules for creating an invariant on x
following the execution of command z := e only have as preconditions invariants on the variables in
e. As aresult, we can always filter out obsolete invariants after processing each commands.

Also, we note that the only commands that can make an invariant Equal(m;, m;) appear are
those of the form = := e in which m; appears in e. As a result, if we find that, for some integer
[, the invariant Equal(m;, m;) is not present in one of the conjunction of the current predicate
(after transforming the predicate in DNF form) and that the variable m; is no longer present in
the rest of the program, then there is no longer any chance that it will satisfy the conjunction with
/\;;1 Equal(m;, m;) from UNIV (n). Therefore, we can also safely filter out all other invariants of
the form Equal(m;, m;) from that conjunction.

We also add a heuristic filter to speed up the execution of our method. We make the hypothesis
that the invariant Indis(c,,; V;{c1,...,cn—1}) will be present at the end of the program, which the
case for all our examples, so that we can filter out Indis(c¢;; V; V') if ¢ < n and ¢; is no longer present
in the remainder of the program. In addition to speeding up the program, filtering out these invariants
greatly simplifies the construction of loop predicates discussed in the next section. If we fail to
produce a proof while using the heuristic filter, we simply attempt again to find a proof without it.

Finding Loop Predicates

The programs describing the almost-universal hash function usually contains for loops. It is
therefore necessary to have an automatic procedure to detect the predicate (4) that allows us to apply
rule (F1). We now show a heuristic that can be used to construct such a predicate, and illustrate how
it works by applying them to Hashcpc, described in Section 3.1. One could easily verify that it also
works on Hashcpe, Hashgyrac and Hashppac.

Once we hit a command "for [= p to ¢ do: [cmd;]", we express the precondition in the form
©(p — 1). The classical method for finding a stable predicate consists in processing the instructions ¢;
contained in the loop to find the predicate (1) such that {o(I — 1)} ¢; {¢(1)}. If (1) = (1), then
we have found an predicate such that {o(l — 1)} ¢; {(I)} and we can apply rule (F'1). Otherwise,
we repeat this process with ¢’ (1) = (1) A 1(1) until we find a stable predicate.

Unfortunately, for certain loops, one could repeat the process infinitely and never obtain a stable
predicate. If, after a certain number n of iterations of the process above, we did not find a stable
invariant®, we decide that the classical method has failed and so we need a new heuristic to construct
the stable predicate. The heuristic we describe here is inspired from widening methods in abstract
interpretation. We start over with invariant (I — 1), and process the code of the loop once to
find invariant ¢ (1) such that {o(l — 1)} ¢; {¢1(1)}. Then, we repeat this starting with invariant
o(l—1) Atp1(I —1) to find invariant 12 (1) such that {o(I — 1) A1 (1 —1)} ¢ {¢p2(1) }. By analyzing
the predicates (1), (1) A 11(1) and p(1) A ¥1(1) A P2(l), we identify the predicate () such
that (1) appears in ¢(1), v(I — 1) appears in 1 (l) and (I — 2) appears in ¥(l). We then use
() =) A /\;:z;:ll ~(4) as our new starting predicate.

» Example 9. We now apply this method to Hashepe. After processing command ¢; := £(my),
we obtain the predicate p(1) = (Equal(my, m1) A Equal(cy, c1) A Indis(cq; Var, lg; Var — ¢q)) V
Indis(c;). Parameterizing this in terms of [, we obtain

3 The choice of the number of times the process is repeated is completely arbitrary, we choose to try only two iterations
since it is sufficient for all our examples.

M. Gagné, P. Lafourcade and Y. Lakhnech

(1) = (Equal(my, m;) A Equal(c, ¢;) A Indis(cy; Var, £e; Var — ¢;)) vV Indis(¢;)

After processing the code of the loop on ¢(I — 1), we obtain the following:

¥1(1) = (Equal(m;_1,m;_1) AEqual(m;, m;) AEqual(c, ¢;) AIndis(c; Var, £g; Var—¢;))

V Indis(¢;)
and repeat the same process with (I — 1) A 11 (I — 1) to obtain
LZJQ(I) = (Equal(ml,g, ml,g) A Equal(ml,l, mlfl) A Equal(ml, ml) A\ Equal(cl, Cl)
A Indis(¢g; Var, £g; Var — ¢;)) Vv Indis(¢;)
We deduce (1) = Equal(m;, m;) and use
o) = (/\ﬁ.:1 Equal(mi,mi)) A Equal(er, &) A Indis(ci; Var, € Var — ¢;)) V Indis(e;)

as our next attempt at finding a stable predicate. We find that ¢’ (1) is a stable predicate for the loop.
So we apply the rule (F1) to obtain that ¢’(n) holds at the end of the program, and we easily find that
¢'(n) = UNIV (n), thereby proving that Hashcpc computes an almost-universal hash function.

We programmed a tool in OCaml implementing our method for proving that the front end of
MACSs are almost-universal hash functions. The program requires about 1000 lines of code, and can
successfully produce proofs of security for all the examples discussed in this paper in less than one
second on a personal workstation. Our tool is available on [14].

6 Proving MAC Security

As mentioned in Section 2, we prove the security of MACs in two steps: first we show that the
‘compressing’ part of the MAC is an almost-universal hash function family, and then we show that the
last section of the MAC, when applied to an almost-universal hash function, results in a secure MAC.
The following shows how a secure MAC can be constructed from an almost-universal hash function.
The proof can be found in [4, 8, 9], so we do not repeat them here.
» Proposition 10. Let F¢ be a family of block ciphers, H = {h;}icf0,13» and H' = {h; }ico,13n
be families of almost-universal hash function and G be a random oracle. If h <i H, he ﬁ H’,
o Fe, G is sampled at random from all functions with the appropriate domain and range and
k, k1, ko & {0,1}", then the following hold:

MACy(m) = E(h;i(m)) is a secure MAC with key sk = (i, E).

MAC5(m) = G(Il||h;(m)) is a secure MAC with key sk = (i, k).

MACs(m) = { El(hi(m’)).whe’re m' = pad(m) .if m’s length is not a multiple of 7
Ey(hi(m)) if m’s length is a multiple of 7
is a secure MAC with key sk = (i, &1, Ea).

{ E(he(m') ® kq) where m’ = pad(m) if m’s length is not a multiple of 7

MAC4 (m) = . s . .
E(he(m) @ ko) if m’s length is a multiple of 7
is a secure MAC with key sk = (€, k1, k2)

Using Hashcpe with M AC, and M ACj3 yield the message authentication code DMAC and
ECBC respectively, using Hashcpor with M AC3 and M AC} yield FCBC and XCBC, combining
Hashpyac and M AC} yield a four key construction of PMAC and using Hash g ac with M ACs
yield HMAC.

7 Conclusion

We presented a Hoare logic that can be used to automatically prove the security of constructions
for almost-universal hash functions based on block ciphers and compression functions modeled as
random oracles. We can then obtain a secure MAC by combining with a few operations, such as

12

Automated Security Proofs for Message Authentication Codes

those presented in Section 6. Our method can be used to prove the security of DMAC, ECBC, FCBC,
XCBC, a two-key variant of HMAC and a four-key variant of PMAC.

It should be possible to extend our logic to prove exact reduction bounds for the security of the

e-universal hash function. This could be done by keeping track of exact security for each predicate to
obtain a bound on the final invariant. We are also working on integrating our tool for verifying the
security of MACs with the tool for verifying the security of encryption modes of operation of [15], to
get a general tool for producing security proofs of symmetric modes of operation.

—— References

1

10

11

12

13

14

15

16

17

18

19

G. Barthe, M. Daubignard, B. Kapron, and Y. Lakhnech. Computational indistinguishability logic.
In ACM-CCS 10, pages 375-386, 2010.

G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin. Computer-aided security proofs for
the working cryptographer. In CRYPTO 11, pages 71-90, 2011.

G. Barthe, B. Grégoire, Y. Lakhnech, and S. Zanella Béguelin. Beyond provable security verifiable
ind-cca security of OAEP. In CT-RSA, LNCS, pages 180-196. Springer, 2011.

M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In
CRYPTO 96, LNCS, pages 1-15. Springer-Verlag, 1996.

M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In CRYPTO ’94,
pages 341-358, 1994.

M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In ACM-CCS ’93, pages 62-73, 1993.

J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and secure message
authentication. In CRYPTO ’99, pages 216233, 1999.

J. Black and P. Rogaway. CBC MAC:s for arbitrary-length messages: The three-key constructions.
In CRYPTO ’00, LNCS, pages 197-215, 2000.

J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message authentica-
tion. In EUROCRYPT 2002. LNCS, pages 384-397. Springer-Verlag, 2002.

B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. In Cynthia
Dwork, editor, CRYPTO, volume 4117 of LNCS, pages 537-554. Springer, 2006.

R. Corin and J. den Hartog. A probabilistic hoare-style logic for game-based cryptographic proofs.
In ICALP 06, pages 252-263, 2006.

J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lahknech. Towards automated proofs
for asymmetric encryption schemes in the random oracle model. In ACM-CCS’08, 2008.

C. Fournet, M. Kohlweiss, and P. Strub. Modular code-based cryptographic verification. In Y.Chen,
G. Danezis, and V. Shmatikov, editors, ACM-CCS’11, pages 341-350. ACM, 2011.

M. Gagné, P. Lafourcade, and Y. Lakhnech. OCaml implementation of our method. Laboratoire
VERIMAG, Université Joseph Fourier, France, April 2012. Available athttp://www—verimag.
imag.fr/~gagne/macChecker.html.

M. Gagné, P. Lafourcade, Y. Lakhnech, and R. Safavi-Naini. Automated proofs for encryption
modes. In ASIAN’09, volume 5913 of LNCS, pages 39-53, 2009.

M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In Moti Yung, editor, CRYPTO
’02, volume 2442 of LNCS, pages 31-46. Springer, 2002.

E. Petrank and C. Rackoff. CBC MAC for Real-Time Data Sources. Journal of Cryptology, 13:315—
338, 1997.

M. Wegman and J. L. Carter. Universal classes of hash functions. Journal of Computer and System
Sciences, 18(2):143-154, 1919.

M. Wegman and J. L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265-279, 1981.

http://www-verimag.imag.fr/~gagne/macChecker.html
http://www-verimag.imag.fr/~gagne/macChecker.html

M. Gagné, P. Lafourcade and Y. Lakhnech 13

A Block Ciphers and Random Oracle Model

Block Cipher Security

A block cipher is a family of permutations £ : {0,1}*¥ x {0,1}7 — {0,1}"7 indexed with a
key K € {0,1}*. A block cipher is secure if, for a randomly sampled key, the block cipher is
indistinguishable from a permutation sampled at random from the set of all permutations of {0, 1}".
However, since random permutations of {0, 1}"” and random functions from {0, 1}" to {0, 1}" are
statistically close, and that random functions are often more convenient for proof purposes, it is
common to assume that secure block ciphers are pseudo-random functions.

» Definition 11 (Pseudo-Random Functions). Let P : {0,1}* x {0,1}" — {0, 1}" be a family
of functions and let .4 be an algorithm that takes an oracle and returns a bit. The prf-advantage of A
is defined as follows.

Advi L, = [Pr(K & {0,1}F APKD) = 1] — Pr[R & @,,; ARO) = 1]
where ®,, is the set of all functions from {0, 1}"™ to {0, 1}".

Random Oracle Model

For MACs that make use of a hash function, we assume that the hash function behaves like a
random oracle. That is, we assume that the hash function is picked at random among all possible
functions from the given domain and range, and that every algorithm participating in the scheme,
including all adversaries, has oracle access to this random function. This is a fairly common
assumption to analyze hash functions in cryptographic protocols [6].

B Other Hash Examples

We present here a few other examples of almost-universal hash functions used in common MAC

algorithms

The function Hashcpcer, used in FCBC and XCBC is described as follows:
Hashcpor(mal| ... ||mn,cn) s Var i, za, ..., 2n,C1y. .., Cn—1;
C1 = Ma;

for: = 2ton do: [Zz = g(Ci_l); Cci =2 D ml]

The function Hash g ac, used in HMAC is as follows:
Hashaavac(mal| ... ||mn,cn) s vari, zi,...,2n,C1y ..., Cn—1;
z1 1= k|lmi; 1 = H(z1)
fori =2tondo: [z := ci—1||ms; ¢i := H(z:)]

Finally, the function Hashpasac, used in PMAC is as follows:
Hashpyac(mal| ... ||mn,cn) : VA 4, W1, 1, Y1, 21, - -« s Wny, Ty Yny Zny Cly - - - 5 Cr—1;
c1:=muywi = p(k); x1 := w1 D ma; 21 = E(w);

fori=2tondo: [¢; := zi—1 ©m; wi = p*(k); i 1= wi © mis yi = E(x1): 20 1= zim1 D i)

C Proofs

Before presenting the proofs for all the claims in our paper, we present a few results that will be used
repeatedly in our proofs.

The following formalizes the intuition that if a value can be computed in polynomial time from
other values available, then adding this value does not give the adversary any useful information.

14

Automated Security Proofs for Message Authentication Codes

» Lemma 12. For any X, X' € DisT(T', Fg, Fy), any set of variables V, any expression e
constructible from V, and any variable x, if X ~y X' then [z := e](X) ~vz [z := e](X").

Proof. We assume X ~y X’. Suppose that [z := ¢](X) #v, [z := €](X’). This means there
exists a polynomial-time adversary A that, on input S(V,x) drawn either from [z := ¢](X) or
[z := e](X’), guesses the right initial distribution with non-negligible probability. We let 13 be the
adversary against X ~y X’ which simply computes = from values in S(V') — which can be done
in polynomial time since e is constructible from values in V' — and runs A(V,). It is clear that the
advantage of B is exactly that of A, which would imply that it is not negligible, although we assumed
X~y X, <

» Corollary 13. For any X € Dist1(T', Fg, Fx), any sets of variables V, any expression e
constructible from V', and any variable x, z such that z ¢ {x} U Var(e) if X |= Indis(z; V; V') then
[:= e](X) |= Indis(z; V,z; V'). We emphasize that here we use the notation Var(e) (in its usual
sense), that is to say, the variable z does not appear at all in e.

Similarly, if X = Indis(z; V', V), then [z := e](X) = Indis(z; V'; V, x).
Proof. Since X = Indis(z; V; V'), we have the two following:
((S,S", Lo, L30) & [= €] X : (S(2), S(V — 2) US'(V'))]
~ (8,8, Loy L) & [= e] Xyu & U (u, S(V — 2) US' (V)]
(S, S, Le, La) & [= €] X : (5(2), 8"(V — 2) US(V"))]
~ (8,8, Le, Ly) & [=] Xsu & U (u, 8'(V — 2) US(V'))]

Since z ¢ {x} U Var(e) using the same technique as in Lemma 12, we easily obtain

~ (8,8, Lo, L) & Xsudu:

(S, S, Lo, Lo) & X : (S(2), S(V — 2,2) US' (V)]
~ (8,8, Lo L) & Xsu U< (u, S(V — 2,2) US' (V)]
(S, 8", Lo, Log) & X : (S'(2),8'(V — z,2) US(V"))]
(

u, 8" (V — z,2) US(V"))]

which means [z := e¢] X |= Indis(z; V, z).
The proof that X |= Indis(z; V'; V) implies [z := €] (X) = Indis(z; V'; V, x) is done in exactly
the same way. <

The following will be useful when dealing with the concatenation command.

» Lemma 14. For any distribution X € DIST(I', Fg, F3), any program cmd produced by our
grammar any (S,S’,E,H, Le, Ly) & [emd] X and any variable v € Var, |S(v)| = |S’(v)|.

Proof. This is a trivial consequence of the fact that the message blocks always have equal length in
both executions. All values computed from there will therefore also have equal length. |

C.1 Proof of Proposition 6

» Proposition 6. A generic hash (Fg, Fp, P(ma]| ... ||my, ¢) : var @j; cmd;) is an almost-universal
hash function on string of length at most [blocks if, at the end of execution, the following invariants
hold:

UNIV(l) = (Unequal(cl, a)V /\;:1 Equal(mj,mj)) A /\ﬁ;} Unequal(c;, ¢;)

M. Gagné, P. Lafourcade and Y. Lakhnech

Proof. Say M; is a [block message, and M> is an & < [block message. Then, thanks to our
constraint on the construction of the program, with M; placed as the message in S and M placed in
S’, we will have that ¢, contains the hash of M in the first execution and ¢; contains the hash of My
in the second execution. If the predicate U NIV (k) holds, then we have that either Unequal(cg, ¢;),
which shows that the probability that the hashes are equal is negligible, or £ = [and all the message
blocks are equal which imply that M; = Mo. |

C.2 Proof of Lemma5

» Lemma 5. The following relations are true for any sets V1, Va, V3 and variables x,y with © # y
Indis(x; Vi; Vo) = Indis(xz; Va; Vy) if Vs C Vi and Vy C Vs

HM; 2, V) = HH; 2 V') if VI CV

E&x; V)= E&;x;V)ifVI CV

Indis(z; V, (343 0) = H(H; 5 V)

Indis(z; V, le;0) = E(E;z;V)

Indis(z; 0; {y}) = Unequal(zx,y) A Unequal(y, x)

OO0 AN

Proof. These are all fairly straightforward.

1. If an algorithm could distinguish (S(x), S(V3) U S’(Vy)) from (u, S(V3) U S’ (Vy)), a similar
algorithm would be able to distinguish (S(x), S(V1) U S’ (Vz)) from (u, S(V1) U S’'(V2)) by simply
disregarding the values in S(V1) \ S(V3) and S"(V2) \ S"(V4).

2.and 3. are trivial: x ¢ T = o ¢ T’ forT' C T.

4. to 6. follow from the simple observation that if X |= Indis(x, V'), then the probability that the
value of x is equal to the value of any variable in V' (or any values in L¢.dom, £3,.dom or in the
simultaneous execution, if Lg or L4 is in V) is negligible, otherwise an adversary could distinguish
the value of from a random value by comparing it to all the values in S(V'). |

C.3 Initialization

» Proposition 15 (Rule (init)).
INIT {Indis(k; Var, Lg, L1;; Var — k) A Empty}

Proof. We note that the initialization command can only appear at the beginning of a program. Let
X be an initial distribution, as described in the definition of security of e-universal hash function. We
have that [INIT]X = X because the initialization command has no impact on the distribution. So
we have to prove that X = Empty and X = Indis(k; Var, Lg, L£4;; Var — k). The former is obvious
since the adversary has no access to £ in the attack. The latter is also clear because k is sampled
randomly and independently after the adversary terminates. <

C.4 Generic Preservation

» Proposition 16 (Rule (G1)).
{Equal(¢)} cmd {Equal(¢)} evenift = yort = z

Proof. Trivial since ¢ # x and only the value of can be changed by the command. |

» Proposition 17 (Rule (G2)).
{Unequal(t)} cmd {Unequal(t)} evenift =y ort = z

Proof. Trivial since ¢ # x and only the value of 2 can be changed by the command. <

15

16

Automated Security Proofs for Message Authentication Codes

» Proposition 18 (Rule (G3)).
{E(&;t; V) emd {E(&;¢; V) } provided z ¢ V and cmd is not z := E(y)

Proof. Clearly, Pr[(S,S’, Le, L3) & x. S(t) € Le.domUS(V)VS'(t) € Le.domU S (V)] =
Pr((S, S, Le, L3g) & [1= EW)]X : S(t) € Le.domUS(V)VS'(t) € Le.domUS’ (V)] because,
the values in the sets S(V), S'(V') and Elist.dom are unchanged by the command. <

» Proposition 19 (Rule (G4)).
{H(#H;t;V)} emd {H(H;t;V)} provided z ¢ V and cmd is not z := H(y)

Proof. Similar to the proof of Rule (G3). <

» Proposition 20 (Rule (G5)).
{Indis(t; V; V')} emd {Indis(¢; V; V') } provided cmd is not z := E(y) or x := H(y), and x ¢ V
unless x is constructible from V' — ¢ and x ¢ V"’ unless x is constructible from V' — ¢

Proof. It should be clear that, since L¢ and L4 are unchanged by the command, the following hold
since the values of the variables in V' — x are unchanged by the command:

((S,S', Le, L30) & X;(S(t), S(V —2) US' (V' —)] =
(8,8, Le, Lqy) & [emd] X; (S(1), S(V — 2) US' (V' —)]
(S, S, Lo, L30) & X:(S'(1), S/ (V —2) US' (V' — 2))] =
(S, S, Le, Ly) & [emd]X; (S'(1), S'(V —z) US' (V' — 2))].

We can add back x to V' (resp. V') when z is constructible from V' — ¢ (resp. V' — ¢) using Corollary
13. It follows that (X = Indis(¢; V)) = ([emd] X k= Indis(¢; V). <

» Proposition 21 (Rule (G6)).
{Empty} cmd {Empty} provided cmd is not z := £(y)

Proof. This is obvious since the command does not modify L. <

C.5 Function p

» Proposition 22 (Rule (P1)).
{Equal(y)} « := p(y) {Equal(z)}

Proof. This is a trivial consequence of the fact that p is a (deterministic) function. |

C.6 Assignment

» Proposition 23 (Rule (A1)).
{true} x := m; {Equal(m,;, m;) A Equal(z, z) v Unequal(z, x)}

Proof. Clearly, if (5,5, Le, L) & X and S(m;) = S’(m;), then we have [z = y]|X |
Equal(m;, m;) A Equal(z, x). Otherwise, [z := y] X = Unequal(z, z). <

» Proposition 24 (Rules (A2) to (A9)). The following rules hold.
(A2) {Equal(y,y)} = := y {Equal(z,z)}
(A3) {Unequal(y,y)} = := y {Unequal(z, z)}
(A4 {Indis(y; V; V") } 2 := y {Indis(x; V; V') } provided y ¢ V UV’

M. Gagné, P. Lafourcade and Y. Lakhnech

(AS) {E(&;y: V) 2 :=y {E(E;a; V) } provided y ¢ V
(A6) {H(H; y; V) } x :=y {H(H;z; V) } providedy ¢ V
AND{EE: LV, y) v =y {E(E t; V a,y)}

A8) {HH; t; Viy)} o=y {H(H; t; V,z,9) }

Proof. The proofs of all those rules are trivial consequences of the fact that if X is any distribution,

then, in [z := y] X, the variables x and y will always be assigned the same value. <

C.7 Concatenation

» Proposition 25 (Rule (C1)).

{Equal(y, y)} = := y||m; {(Equal(m;, m;) A Equal(x, z)) V Unequal(z, z)}

Proof. Clearly, if X = Equal(y,y), (S,5’, Le, Lx) & X and S(m;) = S’(m;), then we have
[z := y|lm;] X = Equal(m;, m;) A Equal(z, z). Otherwise, [z := y||z] X = Unequal(z,z). <=

» Proposition 26 (Rule (C2)).
{Equal(y,y) A Equal(z,2)} = := y||» {Equal(z,)}

Proof. Trivial. <

» Proposition 27 (Rule (C3)).
{Unequal(y, y)} « := y = {Unequal(z,)}

Proof. Trivial consequence of the fact that for any distribution X and (S, 5", &, H, Le, L) & x ,
with overwhelming probability, S(y) # S’ (y), and, from Lemma 14, |S(y)| = |S’(y)| implies that
SWIS(z) # 5" ()5 (2). <

» Proposition 28 (Rule (C4)).
{Indis(y; V,y,z; V') Alndis(z; V,y,2z; V')} x := y||z {Indis(z; V,z; V') } provided z,y,z ¢ V
and z & V' unless y, 2 € V' and y # 2

Proof. We first consider the case where X be a distribution such that X = Indis(y; V,y, z) A
Indis(z; V., y, z) with z,y,z € V and « ¢ V'. We have that

(8,8, Le, L) & [:= yll2]X : (S(2), S((V,2) = 2) US' (V')

= [(5.8", L, L37) & [z := y|l2]X : (S(2), S(V) U S'(V'))]

= (5.8, L, £31) & X : (S@)IIS(2), S(V)US'(V'))]

~ (8,8 Le L) & Xour & U= (]| S(2), S(V)US' (V)]

~ (8,9, Loy Lo) & X ur & Usus E U (wn]|uz, S(V)U S (V)]

~ (8,8, Lo, L) & Xou & utd : (u, S(V)US' (V)]

~ (8.8, Lo, L30) & [o=yl 21X u & UU = (u, S((Viw) —) U S (V)]

The first two equality are consequences of the fact that z ¢ V UV’ and of the semantics of x := y||z.
The second to last line is true because, for strings u, u1, ug of appropriate sizes, [u1, us S u.
uyllug] = [u Eu. u]. The last line follows from the fact that z ¢ ¥V U V’. So we only have left

17

Automated Security Proofs for Message Authentication Codes

to justify the two lines in which S(y) and S(z) are replaced with uniform random values u; and us
respectively. Suppose there exists an adversary A that can break the following:

[(5,8", Le, L3) & X = (S(w)]IS(2), S(V)US'(V'))]
~ (S, 8", Lo, L) & X,ur E U = (ur||S(2), S(V) U S (V)]

Then we can construct an algorithm B that attacks the following:

[(5,5", Le, L) & X : (S(y), S(V,2) US' (V)]
~ (8,8 Le, L) & Xu & U (w, S(V,2) US' (V).

On input (b, B), B runs algorithm A on input (b||a, B — a) where a is the value of the variable z in A.
When A terminates, algorithm B outputs the same result as .A. It should be clear that B is successful
into distinguishing its two distributions precisely when A does. So if A succeeds in distinguishing
between its two distributions with non-negligible probability, so can 3, which violates our assumption
that X = Indis(y; V, y, z). We can show similarly that the following also holds:

(5,5, Le, L3) & X,ur & U : (un]|S(2), S(V) U S (V)]
~[(S, 8", Loy L) & X, ur & Uyus & U - (ur||us, S(V) U S (V)]

The same argument can be applied with the roles of S and S’ reversed, which completes the proof
that [z := y||z] X E Indis(z; V,z; V).

The case when y, z € V' is similar, the result follows from the argument above and Corollary
13. <

» Proposition 29 (Rules (C5) and (C6)).

(C5) {Indis(y; V, Le;0)} @ := yl|z {E(&;2;V)}
(C6) {Indis(y; V, Ly;0)} x :=yllz {H(H;2; V)}

Proof.

(C5) Let A be the algorithm which, on input (a, A), outputs 1 if and only if a is a prefix of one of the
strings in A. We examine .4 advantage in breaking the following:

[(5,5", Le, L3) & X:(S(y), SV, Le)] ~ [(5, 5", Le, L) & X, u & U (u, SV, Le))).

Since X = Indis(y; V, Lg; 0), A’s advantage in distinguishing the two distributions above must
be negligible. Noting that the probability that A outputs 1 when given an input from the second
distribution must be negligible (because v is sampled from a domain of size exponential in
the security parameter), then we must that that the probability that A outputs 1 when given
an output from the first distribution is negligible as well. That is, for (S,S’, L¢, L) & x ,
the probability that S(y) is a prefix of any string in S(V, L¢) is negligible. Thus, the prob-
ability that S(y)||S(z) = S(z) € S(V,Lg) is negligible. Similarly, we can find that the
probability that S’(y)||S'(z) = S'(z) € S'(V,Le) is negligible as well, which shows that
[z :=SWIIS(2)X E E(&; a5 V).
(C6) The proof is similar to the proof of Rule (C5), but with L4, instead of L¢.

M. Gagné, P. Lafourcade and Y. Lakhnech

C.8 Xor

» Proposition 30 (Rule (X1)).
{Equal(y,y)} = := y & m; {(Equal(x, z) A Equal(m,;, m;)) vV Unequal(z, z)}

Proof. Clearly, if X = Equal(y,y), (S,5’, Le, Lx) & X and S(m;) = S'(m;), then we have

[z :=y ®m;] X = Equal(m,;, m;) A Equal(z, z). Otherwise, [z := y ® m;] X | Unequal(z,).

<

» Proposition 31 (Rule (X2)).
{Indis(y; V,y,2z; V')} 2 .=y & z {Indis(x; V, z, 2; V') } provided y # z, y € V and = ¢ V' unless
y,z €V’
Proof. This proof is similar to the proof of Rule (C4). Let X be a distribution such that X =
Indis(y; V,y, z) withy # 2,y ¢ V and = ¢ V'. We have that

(5,5, Le, Lag) & [w =y @ 2] X : (S(2), S((V,,2) —) U S (V)]

=1[(S,9, Le, L1) & [x:=y®2]X :(S(x),S(V,2)u S (V"))]

= (8,8, L, £31) & X+ (S(y) @ S(2), SV, 2) US' (V)]
Nuayjﬁ;gixweu (u® S(2), S(V,2) US (V)]
~ (5,8, Le, L2g) & X,u & UU = (u, S(V.2) U S' (V)]
~ (8,8, Loy L) & [x =y @ 2] X, u & Utd : (w, S(V, 2, 2) — 2) US' (V)]

All those lines are justified similarly to the proof of Rule (C4), except for the two lines in which

S(y) is replaced with a uniform random values u, and the line in which u & S(%) is replaced with w.

The latter is easily justified by the fact that, for any random value independent from S(z), the two

distributions [u du ;u® S(%)] and [u Eu ; u] are identical (under the condition that y # 2).
As for the former, suppose there exists an adversary A that can break the following:

(5.5, Le. L3) & X 2 (S(y) @ S(=), SV, 2) US'(V'))]
~ 1088 Loy L30) & Xu & U (ud S(2),S(V,2) U S (V)
Then we can construct an algorithm 5 that attacks the following:

[(5,5", Le, L3) & X : (S(y), S(V,2) US' (V)]
~ (8,8, Lo L) & Xu & U (u, S(V,2) US' (V).

On input (b, B), B runs algorithm .A on input (b @ a, B) where a is the value of the variable z in A.

When A terminates, algorithm B outputs the same result as 4. It should be clear that B is successful
into distinguishing its two distributions precisely when A does. So if A succeeds in distinguishing
between its two distributions with non-negligible probability, so can B, which violates our assumption
that X = Indis(y; V,y, z; V').

The same argument can be applied with the roles of .S and S’ reversed, which completes the proof
that [:= y ® 2] X |= Indis(z; V, 2, z; V).

The case when y, z € V" is similar, the result follows from the argument above and Corollary 13.

<

19

Automated Security Proofs for Message Authentication Codes

» Proposition 32 (Rule (X3)).
{Equal(y,y) A Equal(z,2)} x := y @ z {Equal(z, z)}

Proof. Trivial. <

» Proposition 33 (Rule (X4)).
{Equal(y,y) A Unequal(z, z)} = := y @ z {Unequal(z, z)}

Proof. Trivial. <

C.9 Block Cipher

For many of the proofs of rules involving the evaluation of the block cipher, we use the fact that, in
the ideal cipher model, the block cipher is modeled as a perfectly random function. As a result, if
the block cipher has not yet been evaluated at a given point, then the value of the block cipher at
that point is indistinguishable from an independent random value. This is due to the fact that the
distinguishing adversary does not have any access to £.
» Proposition 34 (Rules (B1), (B2) and (B3)).

(B1) {Empty} x := £(m;) {(Equal(m;, m;) A Equal(z, z) A Indis(x; Var, Le, L4; Var — x))

V (Unequal(x, z) A Indis(z))}
B2) {E(&;y;0) AUnequal(y,y)} = == E(y) {Indis(z)}
(B3) {E(&;y;0) AEqual(y,y)} = := E(y) {Indis(z; Var, L¢, L4;; Var — z) A Equal(z, z)}

Proof.
(B1) Since X = Empty, we know that, with overwhelming probability, £(S(m;)) and E(S’'(m;))
have never been computed before. We have two cases to consider:

if S(m;) # S’(m;), i.e. X | Unequal(m;,m;), and since neither is in Lg.dom, then
both £(S(m;)) and £(S’(m;)) look random and independent from all other values (just as if
they had both been sampled randomly and independently), so [z := £(y)] X = Indis(x) is
immediate. It should be clear that, in this case, Unequal(m,, m;) is preserved by x := £(m;).
if S(m;) = S’(m;), thatis X |= Equal(m;, m;), then clearly [z := £(m;)] X = Equal(m;, m;)A
Equal(z, z) since £ is a function. As before, S(m;), S’ (m;) ¢ Lg.dom, so E(S(m;)
is indistinguishable from a random and independent value even given all other values in
the system, values except for £(S’(m;)), to which it is equal. So [z := E(W)]X E
Indis(x; Var, Lg, L44; Var —) is also clear.

(B2) Since Unequal(y, y) is given here, this is exactly the first case of the proof of Rule (B1).

(B3) Since Equal(y, y) is given here, this is exactly the second case of the proof of Rule (B1).

» Proposition 35 (Rule (B4)).
{E(&;y;0) Alndis(t; V; V) } x := E(y) {Indis(t; V,a; V',)} provided Lg € V, evenift =y

Proof. Since X = E(&;y;0), for any (S,S’, Le, L) & [z := E(y)] X, any adversary A that
successfully distinguishes ¢ from a random value given S(V, z) U S’(V’, z) could be simulated by
an algorithm which, given only S(V) U S’(V"), samples a uniform random « and runs A(¢, S(V') U
S’(V")y U {u}) (this is for the case in which S(y) = S’(y), we would need two random values if
S(y) # S’ (y) but the argument is the same), which would contradict X = Indis(¢; V; V'). The same
can be argued with the roles of S and S’ reversed. |

» Proposition 36 (Rules (B5)).

M. Gagné, P. Lafourcade and Y. Lakhnech

(B5) {E(&;y;0) Alndis(t;V, Le,y; V! y)} o = E(y) {Indis(t; V, Le, z,y; V', 2, 9)}

Proof. This is a simple consequence of the fact that, while the values of y (through both S and
S’) get added to Lg¢.dom, this does not change anything to the sets S(V, Lg,y) U S'(V’,y) and
S'(V, Le,y) US(V',y) since the values of y were already included in both. The addition of z in
Indis(t; V, Le, z,y; V', 2, y) can be proven in the same way as in the proof of Rule (B4). <

» Proposition 37 (Rule (B6)).
{E(&: 5 Viy)} o= E(y) {E(E: 1V y)}

Proof. Clearly, Pr[(S,S', Le, L) & X : {S(x),S'(z)} € Le.dom U S(V,y) U S (V,y)] =
Pr((S,S’, Le, Ly) & [x :=EW)]X : S(z) € Le.domU S(V,y)V S'(x) € Le.domU S'(V,y)]
because, since S(y), S'(y) € S(V,y) U S'(V,y), adding S(y), S’ (y) to Le.dom will not change the
set Lg.dom U S(V,y) U S (V,y). <

C.10 Hash Function

All the proofs for hash function computation are essentially the same as the proofs for block cipher
evaluation. This is due to our choice of using an adversary that does not have access to the random
oracle when trying to distinguish distributions (see Section 3).
» Proposition 38 (Rules (H1) to (H5))H1) {H(H;y;®)AUnequal(y,y)} = := H(y) {Indis(z)}
(H2) {H(H;y;0) A Equal(y,y)} = := H(y) {Indis(z; Var, L¢, L4, Var — z) A Equal(z, z)}
(H3) {H(H;y;0) A Indis(t; V;V')} z := H(y) {Indis(t; V,x; V', z)} provided L3, & V, even if
t=y
H4) {H(H;y:0) Aldndis(t; V, Loy, y; V',)} 2 == H(y) {Indis(t; V, Lag, 2, y: V', 2, 9)}
H5) {HA: 4 V,y)} 2= H(y) {HH: £V, y)}

Proof. All the proofs for hash function computation are essentially the same as the proofs for block
cipher evaluation. This is due to our choice of using an adversary that does not have access to the
random oracle when trying to distinguish distributions (see Section 3). <

C.11 For Loop

» Proposition 39 (Rule (F1)).
{y(i — 1)} forx =ito jdo: ¢, {¢(j)} provided {¢p(k — 1)} cx {p(k)} fori <k <j

Proof. This is a simple induction on z. <

21

	Introduction
	Cryptographic Background
	Model
	Grammar
	Semantics
	Assertion Language

	Proving Almost-Universal Hash
	Implementation
	Proving MAC Security
	Conclusion
	Block Ciphers and Random Oracle Model
	Other Hash Examples
	Proofs
	Proof of Proposition 6
	Proof of Lemma 5
	Initialization
	Generic Preservation
	Function
	Assignment
	Concatenation
	Xor
	Block Cipher
	Hash Function
	For Loop

