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Résumé : Dans ce rapport, nous présentons le travail de vérification qui a été réalisé sur le
protocole de vote électronique que nous avons introduit et formalisé dans le rapport [6].
Ce protocole a été mis au point par J. Traoré, ingénieur de recherche chez France
Télécom. Il est basé sur le mécanisme de signature en aveugle et peut être considéré
comme un dérivé du protocole de Fujioka, Okamoto et Ohta [8].

La formalisation de ce protocole à mis en évidence une grande complexité due en
particulier aux structures de données et aux primitives cryptographiques manipulées.
D’un autre côté ce travail a également révélé que les propriétés de sûreté à garantir sont
particulièrement subtiles. Ce document présente les résultats qui ont été obtenus lors
de la vérification de ce protocole. En particulier nous montrons que certaines propriétés
de sûreté ont pu être prouvées automatiquement alors que pour d’autres une preuve
manuelle s’est avérée nécessaire.



1 Introduction

Dans cette section nous allons dans un premier temps rappeler le protocole de vote dont il est
question et les propriétés de sûreté a garantir. Ensuite nous donnerons un aperçu des résultats
présentés dans les autres sections. Pour une présentation plus générale sur les protocoles de vote
électronique, le lecteur pourra consulter la présentation qui en est faite dans [6]. Dans ce même
document le lecteur trouvera également la spécification des notions qui sont présentées de façon
informelle dans cette introduction.

Le protocole de J. Traoré fournit par France Télécom est une évolution du protocole de Fu-
jioka, Okamoto, Ohta (FOO92) [8]. Ce dernier nécessite l’intervention de l’électeur à plusieurs
reprises. Il n’est donc pas « vote and go ». En effet, l’électeur pour ne pas révéler son vote va
simplement envoyer un engagement. Il doit donc lors d’une première phase obtenir la signature de
cet engagement auprès d’une autorité et envoyer cet engagement. Ensuite, une fois cette première
phase terminée, il doit faire parvenir une donnée permettant d’ouvrir son engagement.

Or, pour être utilisable en pratique, il est important que l’électeur n’ait pas à intervenir plu-
sieurs fois au cours de la procédure de vote. Pour parer à ce défaut, Ohkubo et al. [12] ont modifié
le protocole de FOO92. Ils proposent de ne plus utiliser un schéma d’engagement qui aboutit
nécessairement à un protocole de vote en deux phases, mais un schéma de chiffrement classique
associé à un réseau de mélangeurs. Une implémentation de ce schéma a été réalisée, il s’agit de
VOTOPIA [9].

J. Traoré a mis en évidence une faille (concernant la vérifiabilité) sur VOTOPIA et propose
l’utilisation d’un schéma de signature en aveugle à anonymat révocable [13] pour contourner le
problème. C’est ce dernier protocole qui est notre cas d’étude.

Outre les schémas classiques de la cryptographie notre cas d’étude met en oeuvre deux notions
moins connues que nous rappelons ci-dessous.

Le schéma de signature en aveugle introduit par D. Chaum [4]. Ce schéma permet à une
entité d’obtenir d’une autre entité la signature d’un message sans que le signataire ne connaisse
son contenu. Ainsi, chaque électeur va pouvoir obtenir une signature de son vote par une autorité
qui vérifiera avant de signer que l’électeur est bien inscrit sur les listes électorales et qu’il n’a pas
déjà voté pour cette élection. Commence ensuite la phase de vote proprement dite au cours de
laquelle chaque électeur envoie à l’urne son vote signé. Bien entendu, seuls les votes signés par
l’autorité seront comptabilisés.

Notre cas d’étude utilise une évolution de ce schéma appelée signature en aveugle à anonymat
révocable. Ce schéma permet à l’aide d’une autorité compétente (appelée juge) de retrouver l’iden-
tité du votant fraudeur et le couple (message, signature) en cas de litige. En plus du protocole
de signature entre le signataire et l’utilisateur, il faut ajouter un protocole, appelé protocole de
révocation, entre le signataire et le juge.

Les réseaux de mélangeurs introduit par D. Chaum [3]. Un mélangeur est une bôıte noire
qui simule une permutation aléatoire. Prenant en entrée des données son but est de cacher la
correspondance entre ces données et celles produites en sortie. Lors de l’utilisation de plusieurs
mélangeurs en série, on parle de réseaux de mélangeurs. Un réseau de mélangeur permet de réaliser
un canal anonyme et c’est ce point qui est à la base de son utilisation dans certains protocoles de
vote.

1.1 Propriétés de sûreté des protocoles de vote

Un protocole de vote, pour être utilisable, doit vérifier un certain nombre de propriétés. Nous
allons en dresser la liste et donner une brève description informelle de chacune d’entre elles.

Un caractéristiques des protocoles de vote est que les propriétés de sûreté a garantir sont
subtiles, parfois elle peuvent même sembler contradictoire. En effet, chaque électeur doit pouvoir
vérifier que son vote a été pris en compte (individuellement vérifiable), et pourtant il ne doit pas
pouvoir prouver à un tiers comment il a voté !
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Secret des Votes (Anonymat). Personne ne doit être capable de faire le rapprochement entre
un électeur et son vote. Il ne s’agit pas du secret au sens habituel du terme. En effet, supposons
qu’il s’agisse d’un simple référendum, les valeurs oui et non ne sont pas secrètes, mais bien connues
de l’agent malhonnête.

Éligibilité - Double Vote. Seules les personnes autorisées à voter le peuvent, et aucun électeur
ne doit pouvoir voter deux fois lors d’une même élection. La première propriété est vérifiée si
l’intrus ne peut pas obtenir au cours de la première phase du vote la signature ou le certificat lui
permettant de continuer le protocole. La deuxième propriété (pas de double vote) assure le fait
qu’un électeur ne puisse pas faire en sorte que son vote soit comptabilisé deux fois. Il faut donc
que le scrutateur dispose d’un mécanisme lui permettant de rejeter les messages similaires. Mais
attention, il ne faudrait pas non plus rejeter des votes valides.

Vérifiabilité (Individuellement / Universellement). Chaque électeur peut vérifier que son
vote a été comptabilisé. Toute personne doit pouvoir se convaincre que tous les votes valides ont
été comptabilisés sans avoir été modifiés.

Pas de Résultat Partiel. Personne ne doit être capable d’obtenir des résultats partiels, la
connaissance de ces résultats pourrait influencer les électeurs n’ayant pas encore voté.

Sans Reçu. Aucun électeur ne doit être capable de prouver la manière dont il a voté. Obtenir
ou être capable de construire un reçu de son vote, c’est à dire un document prouvant la manière
dont on a voté, permettrait l’achat de vote ou la coercition (forcer quelqu’un à voter d’une certaine
manière et s’en assurer ensuite).

1.2 Description du Protocole

Nous allons décrire brièvement les différentes phases du protocole (plus de détails dans [13]).
Les différents intervenants sont :

– l’administrateur AS,
– le votant Vi,
– les réseaux de mélangeurs M et TM,
– le bulletin board BB,
– l’autorité de confiance I.

Phase d’Enregistrement Dans un premier temps, le votant Vi s’enregistre auprès de l’admi-
nistrateur AS pour obtenir un certificat Ci et avoir le droit de participer aux futures élections.

Phase de Vote

1. Vi contacte AS qui vérifie si Vi a le droit de vote et s’il n’a pas déjà voté.

2. Vi chiffre son vote vi avec la clef pub(TM) du réseau de mélangeurs TM. Il obtient xi =
{vi}pub(TM). Ensuite Vi cache xi en calculant ei = fairblind(xi, ri) où ri est un nombre
aléatoire. Enfin, Vi signe ei pour obtenir si = sign(ei, priv(Vi)). Il envoie (Vi, Ci, ei, si) à
l’administrateur.

3. AS vérifie que si est une signature valide et envoie di = sign(ei, priv(AS)) à Vi.

4. Vi obtient la signature yi de son bulletin xi en « retirant » son nombre aléatoire ri, yi =
unblind(di, ri).

5. Vi chiffre bi = (xi, yi) avec la clef du réseau de mélangeurs M, ci = {bi}pub(M)
. Soit Pi une

preuve de connaissance à divulgation nulle de connaissance du message en clair caché dans
ci (i.e. bi). Vi signe ci, σi = sign(ci, priv(Vi)) et envoie (Vi, Ci, ci, σi, Pi) au bulletin board
BB qui vérifie la validité de la signature σi et de la preuve Pi.

2



6. Lors de la clôture des élections, AS annonce le nombre de participants ayant reçu une
signature de l’administrateur et publie la liste finale LAS des n-ulpets (Vi, Ci, ei, si). De
même BB publie la liste LBB des messages postés (Vi, Ci, ci, σi, Pi). Les deux listes sont
comparées. Si un votant a obtenu une signature de la part de l’administrateur AS mais n’a
pas posté son bulletin sur le bulletin board, alors I révoque l’anonymat de ei. Le couple
(revmsg(ei, sign(ei, priv(AS))), revsign(ei, sign(ei, priv(AS)))) est mémorisé sur une liste
noire pour que tout le monde soit en mesure de reconnâıtre le couple message-signature
(xi, yi) à l’origine de la fraude plus tard. Inversement, si Vi apparâıt dans LBB mais pas dans
LAS , alors (Vi, Ci, ci, σi, Pi) est supprimé de la liste LBB.

Phase de Comptage BB envoie au réseau de mélangeurs M, la liste L0 des ci extraite à partir
de LBB. M déchiffre la liste des ci, permute aléatoirement la liste des (xi, yi) ainsi obtenue et
envoie cette liste Lk au réseau de mélangeurs TM.

1. TM teste si des paires (xi, yi) apparaissent deux fois dans la liste Lk.
– Si de telles paires n’existent pas, on continue au point 2.
– Sinon, pour chaque paire (x̃g, ỹg), il faut lancer la procédure de back tracing. Les mélangeurs

doivent alors fournir une preuve montrant qu’il se sont comportés correctement, sous peine
d’être disqualifiés. Si tout les mélangeurs fournissent une telle preuve, alors la procédure
de back tracing identifie le votant Vf malhonnête, révèle son identité ainsi que la paire
(c̃f , σ̃f ) étant à l’origine de (x̃g, ỹg) dans Lk. L’anonymat est révoqué, le bulletin (x̃, ỹ)
correspondant à (c̃f , σ̃f ) est obtenu et est inséré dans la liste noire. La paire (x̃g, ỹg) est
supprimée de Lk.

2. TM teste la validité de la signature yi pour chacune des paires (xi, yi) dans Lk.
– Si toutes les signatures sont valides, la procédure continue au point 3.
– Autrement, pour chaque paire (xi, yi) incorrecte, il faut déterminer si l’anomalie provient

d’un des mélangeurs ou si la fraude provient du votant, à l’aide de la procédure de back
tracing. Si l’anomalie est due au votant, l’utilisation du mécanisme de signature en aveugle
à anonymat révocable permettra de retrouver l’identité du fraudeur.

3. TM compare la liste Lk avec la liste noire.
– Si ces deux listes n’ont aucun élément en commun alors priv(TM) est révélée. Les xi sont

déchiffrés et TM publie le résultat de l’élection.
– Sinon, pour chaque paire (x̃g, ỹg), la procédure de back tracing est lancée pour déterminer

le fraudeur. La procédure continue au point 3.

La procédure de back tracing permet de retrouver le mélangeur à l’origine de l’anomalie ou de
retrouver le votant à l’origine de la fraude. Compte tenu du fait que dans notre modélisation, le
réseau de mélangeurs est abstrait par un processus unique, nous avons choisi de considérer que
les mélangeurs ne pouvaient pas être à l’origine d’une anomalie. En revanche, nous recherchons le
votant à l’origine de la fraude.

1.3 Résultats obtenus

Lors de la création du projet Prouvéle but était la prise en compte de protocoles dans la
veine de ceux que l’on peut trouver dans [5], c’est à dire des protocoles dont les propriétés de
sûreté peuvent en général s’exprimer comme des invariants de trace ou d’état. Notre premier cas
d’étude qui était un porte-monnaie électronique appartenait à cette classe de protocoles et il a
pu être traité à l’aide des outils du projet. Plutôt que de répéter une expérimentation de même
nature, les motivations du second cas d’étude étaient très différentes. L’objectif était d’apporter
des réponses aux questions ci-dessous pour le vote électronique qui est l’un des protocoles les plus
complexes existant à ce jour.

1. Est-il possible de formaliser un protocole de cette nature et ses propriétés de sûreté dans le
langage Prouvé ?
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2. Est-ce que les outils automatiques développées dans le cadre du projet sont une aide pour
l’analyse de propriétés de sûreté de ce protocole ?

3. Est-ce que des propriétés de sûreté aussi subtiles que celles de ce protocole sont formellement
vérifiables ?

4. Pour appréhender des protocoles aussi complexes quelles sont les carences des outils du projet
et plus généralement des outils existants ?

5. Comment les techniques et les outils existants doivent ils évoluer pour mécaniser le traitement
de tels protocoles.

Pourvoir répondre à ces questions est crucial car la moindre faille pourrait permettre la réalisation
d’une fraude à grande échelle, d’un autre côté les polémiques survenues lors des récentes élections
ont montré qu’il s’agit d’un véritable sujet de société.

Le rapport [6] a répondu à la question 1 et le rapport de synthèse des expérimentations répondra
aux questions 4 et 5. Dans la section 2 de ce rapport nous répondons par l’affirmative à la question
2 en montant que le secret faible du vote peut être vérifié automatiquement avec un outil du projet.
Dans la section 3 nous répondons à la question 3 en montrant que des propriétés de sûreté autres
que des invariants de trace ou d’état peuvent être prouvées formellement dans le modèle symbolique
(i.e. le modèle de Dolev-Yao [7]). Dans la section 4 nous apportons également une réponse à la
question 3 en montrant que pour des objets aussi complexes que des mélangeurs, il est possible
de prouver formellement des propriétés telles que l’anonymat au niveau du modèle calculatoire.
Finalement dans la conclusion nous donnons des éléments de réponse à la question 4, éléments qui
seront développés et mis en relief dans le rapport final de synthèse sur les expérimentations.

2 Analyse automatique du secret faible du vote

Dans cette section nous présentons une preuve automatique du secret faible du vote à la fin de
la première phase du protocole. Le problème a été formalisé dans le langage Prouvé et la preuve
a été réalisée avec l’outil Hermès 2 du projet. Hermès 2 et une refonte de Hermès qui entre
autres permet la prise en compte des propriétés algébriques des primitives cryptographiques. Cette
preuve a pu être réalisée pour un nombre non borné de sessions et d’acteurs grâce au mécanisme
d’abstraction inclu dans l’outil.

Le lecteur pourra trouver dans l’annexe C la spécification complète du protocole qui a été fourni
à l’outil. La plus grande partie de cette spécification est naturelle et n’appelle pas de commentaire.
Cependant dans ce qui suit nous détaillons certains points qui sont délicat ou intéressant. Par rap-
port au protocole original la principale divergence concerne les listes qui n’ont pas été modélisées.
Dans le langage Prouvé , le type List existe mais très peu de fonctionnalités sont offertes, il est
uniquement possible d’ajouter un élément dans une liste et de tester si un élément donné est dans
la liste. De plus, d’un point de vue vérification les outils du projets ne permettent pas la prise en
compte des fonctionnalités qui seraient nécessaires pour traiter les listes.

2.1 Signature en aveugle à anonymat révocable

Une variante des schémas de signature en aveugle consiste à rendre cet anonymat révocable.
Pour un tel schéma, en plus du signataire et de l’utilisateur, une troisième entité peut intervenir,
c’est l’autorité (encore appelée juge). Il existe deux types de levée d’anonymat, suivant l’informa-
tion que l’autorité reçoit du signataire :

1. L’autorité reçoit la partie du protocole de signature venant du signataire et donne une
information permettant à n’importe qui de retrouver le message et la signature.

2. À l’aide du message et de la signature, l’autorité permet au signataire de retrouver l’utilisa-
teur ou la partie du protocole correspondant à la signature.

Le shéma proposé dans le rapport [6] était le suivant :
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(* Signature en Aveugle à Anonymat Révocable de type I*)
fun fairblind/2.
fun sign/2.
fun unblind/2.
fun revmsg/2.
fun revsign/2.

equation unblind(sign(fairblind(x,y),z),y) = sign(x,z).
equation revmsg(fairblind(x,y), sign(fairblind(x,y),z)) = x.
equation revsign(fairblind(x,y), sign(fairblind(x,y),z)) = sign(x,z).

Les fonctions revmsg et revsign sont ici considérées comme des fonctions privées, i.e. non connues
de l’intrus. On aurait pu choisir de considérer ces symboles de fonctions comme des symboles de
fonctions publiques et ajouter un troisième argument qui aurait été la clé privée du juge. Le
listing 1 montre le codage de la signature en aveugle à anonymat révocable que nous avons utilisé
pour cette expérimentation. Cette modélisation diffère quelque peu de la spécification ci-dessus
suite à des restrictions de l’outil sur les théories équationnelles cependant la sémantique reste
comparable :

– h(x,y) représente le contenu caché qui doit être signé par l’administrateur et h est un sym-
bole libre qui code l’opération de masquage. h(x,y) correspond à l’expression fairblind(x,y)
de la spécification originale.

– sign(asym, inv(PK(AS)), h(x,y)) correspond au contenu caché, signé avec la clé privée
inv(PK(AS)) de l’administrateur.

– symcrypt(sym, y, sign(asym, inv(PK(AS)), x)) code la notion de révocation : si on
dispose du contenu signé et du secret y (le secret du juge) alors il est possible de déduire le
contenu en clair. Ce qui est dit ici correspond à l’équation equation revmsg(fairblind(x,y),
sign(fairblind(x,y),z)) = x de la spéficification originale.

– L’opérateur revsign n’a pas pu être codé mais son intérêt est mineur pour cette étude.

axioms
dec lare
x : message ;
y : symkey ;
begin

s i g n ( asym , i n v (PK(AS) ) , h ( x , y ) ) =
symcrypt ( sym , y , s i g n ( asym , i n v (PK(AS) ) , x ) ) ;

end

Listing 1 – Signature en aveugle à anonymat révocable

2.2 Scénario

Le scénario est la partie de la spécification qui initialise les différents rôles ou en d’autres termes
qui définit pour quel schéma d’exécution la propriété de sûreté est vérifiée. Le listing 2 indique
qu’un nombre arbitraire de rôles de chaque type sont lancés en parallèle. De plus :

– administrator (inv(PK(AS))) signifie que tous les administrateurs partagent le même
identifiant et la même clé privée.

– exists v : principal signifie que le votant peut être n’importe quel rôle, ceci rend possible
des cas où par exemple le votant est un administrateur.

– voter (v,inv(PK(v)),AS,TM,M, sign(asym,inv(PK(AS)),[v,PK(v)])) indique que chaque
votant reçoit lors de son initialisation : son identifiant, sa clé privée, l’identifiant de l’admi-
nistrateur ainsi que ceux des mélangeurs et son certificat.
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scenar io
p a r a l l e l

f o r a l l i : i n t . a dm i n i s t r a t o r ( i n v (PK(AS ) ) )
| f o r a l l i : i n t . b u l l e t i nB o a r d (AS)
| f o r a l l i : i n t .
e x i s t s v : p r i n c i p a l .
v o t e r ( v , i n v (PK( v ) ) ,AS ,TM,M,

s i g n ( asym , i n v (PK(AS ) ) , [ v ,PK( v ) ] ) )
end

end

Listing 2 – Scénario

2.3 Propriété de sûreté

La propriété qui a été vérifiée est le secret faible du vote, elle est décrite dans le listing 3.

p u b l i c
V1 , TM, AS , M, i n t r u d e r , PK

i n i t i a l
x M = [ [ i n v (PK( i n t r u d e r ) ) ] ]

a lways

f o r a l l P : v o t e r . ( P . myname 6= i n t r u d e r ) → i s s e c r e t (P . vo te )

Listing 3 – Secret faible

– x M = [[inv(PK(intruder))]] indique que l’intrus dispose d’une clé privée reconnue par
le protocole de vote. Cette clé lui permet de jouer le rôle de votant.

– forall P :voter.(P.myname != intruder) -> issecret(P.vote) est la propriété elle même.
Préfixée par always elle stipule qu’a tout moment si le votant n’est pas l’intrus alors son
vote est secret.

3 Analyse du protocole de vote de Fujioka, Okamoto et
Ohta

Dans la section 2 nous avons présenté une preuve automatique du secret faible du vote. Une
telle preuve ne permet pas d’exclure des attaques par dictionnaire ou une divulgation partielle
du secret. Le lecteur trouvera dans l’annexe A un article [10] publié dans le cadre du projet. Ce
document montre sur un protocole plus simple que celui de notre cas d’étude que le secret fort
peut être vérifié automatiquement. Le protocole traité est celui de Fujioka, Okamoto, Ohta [8]
et l’outil utilisé est ProVerif [2]. Outre le secret fort, l’éligibilité à également pu être prouvée
automatiquement par contre pour l’anonymat une preuve manuelle a été nécessaire.

4 Étude calculatoire du schéma de vote de Chaum

Le réseaux de mélangeurs est une pièce importante de notre cas d’étude car c’est l’élément
qui est à la base de l’anonymat. Le problème est que sa complexité est telle qu’actuellement et
à notre connaissance il n’a jamais été traité dans les preuves formelles des protocoles de vote.
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Les mélangeurs de notre cas d’étude sont les plus difficiles a prendre en compte car on peut
les voir comme des mélangeurs optimistes. Ceci signifie qu’une procédure de détection de fraude
potentielle (le backtracing) n’est lancée que s’il y a une suspicion de fraude. Dans le cadre de
ce projet un travail a été réalisé pour débroussailler le terrain dans ce sens. Le lecteur pourra le
trouver dans le rapport [11] de l’annexe B une étude du schéma de vote de Chaum qui est en fait
un réseau de mélangeurs. Ce document est intéressant à plusieurs titres, d’un côté il prouve dans
le modèle symbolique l’anonymat de vote pour ce schéma mais en plus il donne des conditions sur
les primitives cryptographiques pour que ce résultat reste valide dans le modèle caculatoire.

5 Conclusions

Le protocole de vote de notre cas d’étude n’a pas pu être traité d’un seul tenant et dans un
cadre uniforme. Ceci n’a rien d’étonnant et c’était prévu dès le départ du projet. Contrairement
au premier cas d’étude (porte-monnaie électronique) qui était un problème adapté aux outils du
projet ici le but était très différent : évaluer les carences et les évolutions potentielles des techniques
développées au sein du projet sur un des protocoles les plus complexes.

Globalement les résultats sont très positifs. Ils montrent que même sur un protocole complexe
les outils de preuve automatique apportent une aide considérable sur certains aspects comme la
preuve de secret du vote ou de l’éligibilité. D’un autre côté la plupart des propriétés de sûreté qui
sortent du spectres des outils existants ont pu être prouvées manuellement mais formellement. Ce
dernier point est important car ce travail manuel a permis de mieux apprécier les méthodes qui
devront être mises en oeuvre demain pour mécaniser les preuves qui ont été réalisées.

Un premier grand enseignement de ce travail est que la notion d’équivalence observationnelle
est une pièce mâıtresse pour appréhender des protocoles aussi complexes. Intuitivement cette
notion signifie que quoi que fasse un intrus il sera incapable de distinguer deux exécutions. Il s’agit
d’une propriété de base fondamentale car elle permet de coder la plupart des propriétés de notre
protocole. Aujourd’hui le seul outil d’analyse de protocoles cryptographiques capable de prendre
en compte cette notion est ProVerif [2]. Cependant la technique utilisée impose des limitations
qui ne permettent par de traiter des propriétés comme l’anonymat dans notre cas.

Le second grand enseignement concerne l’importance du modèle calculatoire. Ce point est mis
en relief dans le travail réalisé autour des réseaux de mélangeurs. Intuitivement et dans un cas
extrême le problème est le suivant : dans le modèle symbolique il peut-être impossible d’invalider
une propriété de sûreté alors que dans le modèle calculatoire elle peut-être invalidée avec une
probabilité de 99%. Cette remarque ne signifie pas que le modèle symbolique soit inutile bien au
contraire, c’est dans ce modèle que les preuves ont le plus de chance de pouvoir être automatisées.
Ce que signifie cette remarque c’est qu’il n’est pas possible de travailler dans le modèle symbolique
en laissant de côté le modèle calculatoire. Quand un cryptologue rédige une preuve manuelle il
passe perpétuellement d’un modèle à l’autre selon les aspects qu’il doit traiter. Ceci signifie que
les outils a venir devrons être capable de faire de même, pour obtenir ce résultat le principe le plus
prometteur a vu le jour en 2000 dans [1]. L’idée est de considérer le modèle symbolique comme une
abstraction du modèle calculatoire et de prouver que cette abstraction est sûre. Depuis cet article
fondateur ce domaine a donné lieu à une recherche intense dont font partie beaucoup travaux
réalisés dans ce projet.

Actuellement une réflexion est en cours au sein du projet suite à cette expérimentation. Son
but est de définir qu’elles sont les voies le plus prometteuses pour traiter des protocoles aussi
complexes que celui du vote. Le résultat de ce travail sera présenté dans le rapport de synthèse
sur les expérimentations.
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[7] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2) :198–208, 1983.

[8] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large scale
elections. In J. Seberry and Y. Zheng, editors, Advances in Cryptology (AUSCRYPT’92),
volume 718 of LNCS, pages 244–251. Springer, 1992.

[9] K. Kim, J. Kim, B. Lee, and G. Ahn. Experimental design of worldwide internet voting
system using PKI. In SSGRR’01, L’ Aquila (Italy), 2001.

[10] S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied pi-
calculus. In Proc. 14th European Symposium on Programming (ESOP’05), volume 3444 of
LNCS, pages 186–200, Edinburgh, U.K., 2005. Springer.
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Abstract. Electronic voting promises the possibility of a convenient, efficient
and secure facility for recording and tallying votes in an election. Recently high-
lighted inadequacies of implemented systems have demonstrated the importance
of formally verifying the underlying voting protocols. The applied pi calculus
is a formalism for modelling such protocols, and allows us to verify properties
by using automatic tools, and to rely on manual proof techniques for cases that
automatic tools are unable to handle. We model a known protocol for elections
known as FOO 92 in the applied pi calculus, and we formalise three of its ex-
pected properties, namely fairness, eligibility, and privacy. We use the ProVerif
tool to prove that the first two properties are satisfied. In the case of the third
property, ProVerif is unable to prove it directly, because its ability to prove ob-
servational equivalence between processes is not complete. We provide a manual
proof of the required equivalence.

1 Introduction

Electronic voting promises the possibility of a convenient, efficient and secure facil-
ity for recording and tallying votes. It can be used for a variety of types of elections,
from small committees or on-line communities through to full-scale national elections.
However, the electronic voting machines used in recent US elections have been fraught
with problems. Recent work [13] has analysed the source code of the machines sold by
the second largest and fastest-growing vendor, which are in use in 37 US states. This
analysis has produced a catalogue of vulnerabilities and possible attacks.

A potentially much more secure system could be implemented, based on formal
protocols that specify the messages sent between the voters and administrators. Such
protocols have been studied for several decades. They offer the possibility of abstract
analysis of the protocol against formally-stated properties. There are two main kinds
of protocol proposed for electronic voting [16]. In blind signature schemes, the voter
first obtains a token, which is a message blindly signed by the administrator and known
only to the voter herself. She later sends her vote anonymously, with this token as proof
of eligibility. In schemes using homomorphic encryption, the voter cooperates with the
administrator in order to construct an encryption of her vote. The administrator then



exploits homomorphic properties of the encryption algorithm to compute the encrypted
tally directly from the encrypted votes.

Among the properties which electronic voting protocols may satisfy are the follow-
ing:

Fairness: no early results can be obtained which could influence the remaining voters.
Eligibility: only legitimate voters can vote, and only once.
Privacy: the fact that a particular voted in a particular way is not revealed to anyone.
Individual verifiability: a voter can verify that her vote was really counted.
Universal verifiability: the published outcome really is the sum of all the votes.
Receipt-freeness: a voter cannot prove that she voted in a certain way (this is important

to protect voters from coercion).

In this paper, we study a protocol commonly known as the FOO 92 scheme [12],
which works with blind signatures. By informal analysis (e.g., [16]), it has been con-
cluded that FOO 92 satisfies the first four properties in the list above.

Because security protocols are notoriously difficult to design and analyse, formal
verification techniques are particularly important. In several cases, protocols which
were thought to be correct for several years have, by means of formal verification tech-
niques, been discovered to have major flaws [14, 6]. Our aim in this paper is to use
verification techniques to analyse the FOO 92 protocol. We model it in the applied pi
calculus [3], which has the advantages of being based on well-understood concepts. The
applied pi calculus has a family of proof techniques which we can use, is supported by
the ProVerif tool [4], and has been used to analyse a variety of security protocols [1,
11].

2 The FOO 92 protocol

The protocol involves voters, an administrator, verifying that only eligible voters can
cast votes, and a collector, collecting and publishing the votes. In comparison with
authentication protocols, the protocol also uses some unusual cryptographic primitives,
such as secure bit-commitment and blind signatures. Moreover, it relies on anonymous
channels.

In a first phase, the voter gets a signature on a commitment to his vote from the
administrator. To ensure privacy, blind signatures [7] are used, i.e. the administrator
does not learn the commitment of the vote.

– Voter V selects a vote v and computes the commitment x = ξ(v,r) using the com-
mitment scheme ξ and a random key r;

– V computes the message e = χ(x, b) using a blinding function χ and a random
blinding factor b;

– V digitally signs e and sends his signature σV (e) to the administrator A together
with his identity;

– A verifies that V has the right to vote, has not voted yet and that the signature is
valid; if all these tests hold, A digitally signs e and sends his signature σA(e) to V ;

– V now unblinds σA(e) and obtains y = σA(x), i.e. a signed commitment to V ’s
vote.



The second phase of the protocol is the actual voting phase.

– V sends y, A’s signature on the commitment to V ’s vote, to the collector C using
an anonymous channel;

– C checks correctness of the signature y and, if the test succeeds, enters (`, x, y)
onto a list as an `-th item.

The last phase of the voting protocol starts, once the collector decides that he re-
ceived all votes, e. g. after a fixed deadline. In this phase the voters reveal the random
key r which allows C to open the votes and publish them.

– C publishes the list (`i, xi, yi) of commitments he obtained;
– V verifies that his commitment is in the list and sends `, r to C via an anonymous

channel;
– C opens the `-th ballot using the random r and publishes the vote v.

Note that we need to separate the voting phase into a commitment phase and an opening
phase to avoid releasing partial results of the election.

3 The applied pi calculus

The applied pi calculus [3] is a language for describing concurrent processes and their
interactions. It is based on the pi calculus, but is intended to be less pure and therefore
more convenient to use. Properties of processes described in the applied pi calculus
can be proved by employing manual techniques [3], or by automated tools such as
ProVerif [4]. As well as reachability properties which are typical of model checking
tools, ProVerif can in some cases prove that processes are observationally equivalent
[5]. This capability is important for privacy-type properties such as those we study here.
The applied pi calculus has been used to study a variety of security protocols, such as
those for private authentication [11] and for fast key establishment [1].

To describe processes in the applied pi calculus, one starts with a set of names
(which are used to name communication channels or other constants), a set of variables,
and a signature Σ which consists of the function symbols which will be used to define
terms.

In the applied pi calculus, one has (plain) processes and extended processes. Plain
processes are built up in a similar way to processes in the pi calculus, except that mes-
sages can contain terms (rather than just names). Extended processes can also be active
substitutions: {M/x} is the substitution that replaces the variable x with the term M .
Active substitutions generalise “let”. The process νx.({M/x} | P ) corresponds exactly
to “let x = M in P ”.

Active substitutions are useful because they allow us to map an extended process A
to its frame φ(A) by replacing every plain processes in A with 0. A frame is an extended
process built up from 0 and active substitutions by parallel composition and restriction.
The frame φ(A) can be viewed as an approximation of A that accounts for the static
knowledge A exposes to its environment, but not A’s dynamic behaviour.

The operational semantics of processes in the applied pi calculus is defined by struc-
tural rules defining two relations: structural equivalence, noted ≡, and internal reduc-
tion, noted →. A context C[·] is a process with a hole; an evaluation context is a context



whose hole is not under a replication, a conditional, an input, or an output. Structural
equivalence is is the smallest equivalence relation on extended processes that is closed
under α-conversion on names and variables, by application of evaluation contexts, and
satisfying some further basic structural rules such as A | 0 ≡ A, associativity and
commutativity of |, binding-operator-like behaviour of ν, and when Σ ` M = N the
equivalences:

νx.{M/x} ≡ 0 {M/x} | A ≡ {M/x} | A{M/x} {M/x} ≡ {N/x}

Internal reduction → is the smallest relation on extended processes closed under struc-
tural equivalence such that ā〈x〉.P | a(x).Q → P | Q and whenever Σ 6` M = N ,

if M = M then P else Q → P if M = N then P else Q → Q.

Many properties of security protocols (including some of the properties we study
in this paper) are formalised in terms of observational equivalence between processes.
To define this, we write A ⇓ a when A can send a message on a, that is, when A →∗

C[ā〈M〉.P ] for some evaluation context C that does not bind a.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that A R B implies:

1. if A ⇓ a then B ⇓ a.
2. if A →∗ A′ then B →∗ B′ and A′ R B′ for some B′.
3. C[A] R C[B] for closing evaluation contexts C.

In cases in which the two processes differ only by the terms they contain, if they
are also observationally equivalent then ProVerif may be able to prove it directly. How-
ever, ProVerif’s ability to prove observational equivalence is incomplete, and therefore
sometimes one has to resort to manual methods, whose justifications are contained in
[3].

The method we use in this paper relies on two further notions: static equivalence
(≈s), and labelled bisimilarity (≈l). Static equivalence just compares the static knowl-
edge processes expose to their environment. Two frames are statically equivalent if,
when considered as substitutions, they agree on the distinguishability of terms. For
frames, static equivalence agrees with observational equivalence, while for general ex-
tended processes, observational equivalence is finer.

The definition of labelled bisimilarity is like the usual definition of bisimilarity,
except that at each step in the unravelled definition one additionally requires that the
processes are statically equivalent. Labelled bisimilarity and observational equivalence
coincide [3]. Therefore, to prove observational equivalence, it is sufficient to prove
bisimilarity and static equivalence at each step. This is what we do to prove the pri-
vacy property.

4 Modelling FOO 92 in the applied pi calculus

4.1 Model
We use the applied pi calculus to model the FOO 92 protocol. The advantage is that we
can combine powerful (hand) proof techniques from the applied pi calculus with au-
tomated proofs provided by Blanchet’s ProVerif tool. Moreover, the verification is not



(* Signature *)
fun commit /2 (* bit commitment *)
fun open /2 (* open bit commitment *)
fun s ign /2 (* digital signature *)
fun checksign /2 (* open digital signature *)
fun pk /1 (* get public key from private key *)
fun host /1 (* get host from public key *)
fun getpk /1 (* get public key from host *)
fun b l i n d /2 (* blinding *)
fun unb l ind /2 (* undo blinding *)

(* Equational theory *)
equat ion open ( commit (m, r ) , r ) = m
equat ion getpk ( host ( pubkey ) )= pubkey
equat ion checksign ( s ign (m, sk ) , pk ( sk ) ) = m
equat ion unb l ind ( b l i n d (m, r ) , r ) = m
equat ion unb l ind ( s ign ( b l i n d (m, r ) , sk ) , r ) = s ign (m, sk )

Process 1. signature and equational theory

restricted to a bounded number of sessions and we do not need to explicitly define the
adversary. We only give the equational theory describing the intruder theory. Generally,
the intruder has access to any message sent on a public, i.e. unrestricted, channel. These
public channels model the network. Note that all channels are anonymous in the applied
pi calculus. Unless the identity or something like the IP address is specified explicitly
in the conveyed message, the origin of a message is unknown. This abstraction of a real
network is very appealing, as it avoids having us to model explicitly an anonymiser ser-
vice. However, we stress that a real implementation needs to treat anonymous channels
with care.

Most of our proofs rely directly on Blanchet’s ProVerif tool. The input for the tool
is given in an ascii version of the applied pi calculus. To be as precise as possible, the
processes described below are directly extracted out of the input files and are given in
a pretty-printed version of the ascii input. The minor changes with the usual applied pi
calculus notation should be clear.

4.2 Signature and equational theory

The signature and equational theory are represented in Process 1. We model cryptogra-
phy in a Dolev-Yao style as being perfect. In this model we can note that bit commitment
(modeled by the functions commit and open) is identical to classical symmetric-key
encryption. The functions and equations that handle public keys and hostnames should
be clear. Digital signatures are modeled as being signatures with message recovery, i.e.
the signature itself contains the signed message which can be extracted using the check-
sign function. To model blind signatures we add a pair of functions blind and unblind.
These functions are again similar to perfect symmetric key encryption and bit commit-
ment. However, we add a second equation which permits us to extract a signature out of



process
ν ska . ν skv . (* private keys *)
ν pr ivCh . (* channel for registering legimitate voters *)
l e t pka=pk ( ska ) in
l e t hosta = host ( pka ) in
l e t pkv=pk ( skv ) in
l e t hostv=host ( pkv ) in
(* publish host names and public keys *)
out ( ch , pka ) . out ( ch , hosta ) .
out ( ch , pkv ) . out ( ch , hostv ) .
(* register legimitate voters *)
( ( out ( privCh , pkv ) . out ( privCh , pk ( s k i ) ) ) |
( ! processV ) | ( ! processA ) | ( ! processC ) )

Process 2. environment process

a blinded signature, when the blinding factor is known. The ProVerif tool also implic-
itly handles pairing: pair(x,y) is abbreviated as (x,y). We also consider the functions
fst and snd to extract the first, respectively second element of a pair. Note that because
of the property that unblind(sign(blind(m,r),sk),r) = sign(unblind(blind(m,r),r),sk)
= sign(m,sk), our theory is not a subterm theory. Therefore the results for deciding
static equivalence from [2] do not apply. However, an extension of [2] presents new re-
sults that seem to cover a more general family of theories, including the one considered
here [9].

4.3 The environment process

The main process is specified in Process 2. Here we model the environment and specify
how the other processes (detailed below) are combined. First, fresh secret keys for the
voters and the administrator are generated using the restriction operator. For simplicity,
all legitimate voters share the same secret key in our model (and therefore the same
public key). The public keys and hostnames corresponding to the secret keys are then
sent on a public channels, i.e. they are made available to the intruder. The list of le-
gitimate voters is modeled by sending the public key of the voters to the administrator
on a private communication channel. We also register the intruder as being a legitimate
voter by sending his public key pk(ski) where ski is a free variable: this enables the
intruder to introduce votes of his choice and models that some voters may be corrupted.
Then we combine an unbounded number of each of the processes (voter, administra-
tor and collector). An unbounded number of administrators and collectors models that
these processes are servers, creating a separate instance of the server process (e.g. by
“forking”) for each client.

4.4 The voter process

The voter process given in Process 3 models the role of a voter. At the beginning two
fresh random numbers are generated for blinding, respectively bit commitment of the



l e t processV =
ν b l i n d e r . ν r .
l e t bl indedcommitedvote= b l i n d ( commit ( v , r ) , b l i n d e r ) in
out ( ch , ( hostv , s ign ( bl indedcommitedvote , skv ) ) ) .
in ( ch ,m2) .
l e t bl indedcommitedvote0=checksign (m2, pka ) in
i f bl indedcommitedvote0=bl indedcommitedvote then
l e t signedcommitedvote=unb l ind (m2, b l i n d e r ) in
phase 1 .
out ( ch , signedcommitedvote ) .
in ( ch , ( l ,= signedcommitedvote ) ) .
phase 2 .
out ( ch , ( l , r ) )

Process 3. voter process

l e t processA =
in ( privCh , pubkv ) . (* register legimitate voters *)
in ( ch ,m1) .
l e t ( hv , s ig )=m1 in
l e t pubkeyv=getpk ( hv ) in
i f pubkeyv = pubkv then
out ( ch , s ign ( checksign ( s ig , pubkeyv ) , ska ) )

Process 4. administrator process

vote. Note that the vote is not modeled as a fresh nonce. This is because generally the
domain of values of the votes are known. For instance this domain could be {yes, no},
a finite number of candidates, etc. Hence, vulnerability to guessing attacks is an impor-
tant topic. We will discuss this issue in more detail in section 5. The remainder of the
specification follows directly the informal description given in section 2. The command
in(ch,(l,=s)) means the process inputs not any pair but a pair whose second argument
is s. Note that we use phase separation commands, introduced by the ProVerif tool as
global synchronization commands. The process first executes all instructions of a given
phase before moving to the next phase. The separation of the protocol in phases is useful
when analyzing fairness and the synchronization is even crucial for privacy to hold.

4.5 The administrator process

The administrator is modeled by the process represented in Process 4. In order to verify
that a voter is a legitimate voter, the administrator first receives a public key on a private
channel. Legitimate voters have been registered on this private channel in the environ-
ment process described above. The received public key has to match the voter who is
trying to get a signed ballot from the administrator. If the public key indeed matches,
then the administrator signs the received message which he supposes to be a blinded
ballot.



l e t processC =
phase 1 .
in ( ch ,m3) .
ν l . out ( ch , ( l ,m3) ) .
phase 2 .
in ( ch , ( = l , rand ) ) .
l e t voteV=open ( checksign (m3, pka ) , rand ) in
out ( ch , voteV )

Process 5. collector process

4.6 The collector process

In Process 5 we model the collector. When the collector receives a committed vote,
he associates a fresh label ’l’ with this vote. Publishing the list of votes and labels is
modeled by sending those values on a public channel. Then the voter can send back
the random number which served as a key in the commitment scheme together with the
label. The collector receives the key matching the label and opens the vote which he then
publishes. Note that in this model the collector immediately publishes the vote without
waiting that all voters have committed to their vote. In order to verify in section 5 that
no early votes can be revealed we simply omit the last steps in the voter and collector
process corresponding to the opening and publishing of the results.

5 Analysis

We have analysed three major properties of electronic voting protocols: fairness, eligi-
bility and privacy. Most of the properties can be directly verified using ProVerif. The
tool allows us to verify standard secrecy properties as well as resistance against guess-
ing attacks, defined in terms of equivalences. For all but one property, privacy, the tool
directly succeeds its proofs. When analysing privacy, we need to rely on the proof tech-
niques introduced in [3]. Although the results are positive results, we believe that the
way we verify the properties increases the understanding of the properties themselves
and also the way to model them.

5.1 Fairness

Fairness is the property that ensures that no early results can be obtained and influence
the vote. Of course, when we state that no early results can be obtained, we mean that
the protocol does not leak any votes before the opening phase. It is impossible to prevent
“exit polls”, i.e. people revealing their vote when asked.

We model fairness as a secrecy property: it should be impossible for an attacker to
learn a vote before the opening phase, i.e. before the beginning of phase 2.



Standard secrecy. Checking standard secrecy, i.e. secrecy based on reachability, is the
most basic property ProVerif can check. We request ProVerif to check that the private
free variable v representing the vote cannot be deduced by the attacker. ProVerif directly
succeeds to prove this result.

Resistance against guessing attacks. In the previous paragraph we deduce that a stan-
dard attacker cannot learn a legitimate voter’s vote. However, voting protocols are par-
ticularly vulnerable to guessing attacks because the values of the votes are taken from
a small domain of possible values. Intuitively, in a guessing attack, an attacker guesses
a possible value for the secret vote and then tries to verify his guess. A trivial example
of a guessing attack is when the voter encrypts his vote with the collector’s public key
(using deterministic encryption). Then the attacker just needs to encrypt his guess and
compare the result with the observed encrypted vote. Guessing attacks have been for-
malized by Lowe [15] and later by Delaune and Jacquemard [10]. A definition in terms
of equivalences has been proposed by Corin et al. in [8]:

Definition 2. Let φ be a frame in which v is free. Then we say that φ verifies a guess of
v if φ6≈sνv.φ. Conversely, we say that φ is secure wrt v if φ≈sνv.φ.

Intuitively, if φ and νv.φ can be distinguished then an adversary can verify his guess
using φ. This is also the definition checked by ProVerif. ProVerif succeeds in proving
this stronger version of secrecy for the commitment phase of the FOO 92 protocol. Note
that verification of guessing attacks does not support considering the protocol up to a
given phase. Therefore, we slightly change the processes presented in section 4: we
omit the last sending of the voter process which allows the opening of the commitment.

Strong secrecy. We also verified strong secrecy in the sense of [5]. Intuitively, strong
secrecy is verified if the intruder cannot distinguish between two processes where the
secret changes. For the precise definition, we refer the reader to [5]. The main difference
with guessing attacks is that strong secrecy relies on observational equivalence rather
than static equivalence. ProVerif directly succeeds to prove strong secrecy.

Corrupt administrator. We have also verified standard secrecy, resistance against guess-
ing attacks and strong secrecy in the presence of a corrupt administrator. A corrupt ad-
ministrator is modeled by outputting the administrator’s secret key on a public channel.
Hence, the intruder can perform any actions the administrator could have done. Again,
the result is positive: the administrator cannot learn the votes of a honest voter, before
the committed votes are opened. Note that we do not need to model a corrupt collector,
as the collector never uses his secret key, i.e. the collector could anyway be replaced by
the attacker.

5.2 Eligibility

Eligibility is the property verifying that only legitimate voters can vote, and only once.
The way we verify the first part of this property is by giving the attacker a challenge
vote. We modify the processes in two ways: (i) the attacker is not registered as a legit-
imate voter; (ii) the collector tests whether the received vote is the challenge vote and



l e t processC =
phase 1 .
in ( ch ,m3) .
ν l . out ( ch , ( l ,m3) ) .
phase 2 .
in ( ch , ( = l , rand ) ) .
l e t voteV=open ( checksign (m3, pka ) , rand ) in
ν a t tack .

i f voteV=chal lengeVote then
out ( ch , a t t ack )

else
out ( ch , voteV )

Process 6. modified collector process for checking the eligibility properties

outputs the restricted name attack if the test succeeds. The modified collector process
is given in Process 6. Verifying eligibility is now reduced to secrecy of the name attack.
ProVerif succeeds in proving that attack cannot be deduced by the attacker.

If we register the attacker as a legitimate voter, the tool finds the trivial attack, where
the intruder votes challenge vote. Similarly, if a corrupt administrator is modeled then
the intruder can generate a signed commitment to the challenge vote and insert it.

The second part of the eligibility property (that a voter can vote only once) cannot
be verified in our model, because of our simplifying assumption that all voters share the
same key.

5.3 Privacy

The privacy property aims to guarantee that the link between a given voter V and his
vote v remains hidden. Anonymity and privacy properties have been successfully stud-
ied using equivalences. However, the definition of privacy in the context of voting pro-
tocols is rather subtle. While generally most security properties should hold against an
arbitrary number of dishonest participants, arbitrary coalitions do not make sense here.
Consider for instance the case where all but one voter are dishonest: as the results of
the vote are published at the end, the dishonest voter can collude and determine the
vote of the honest voter. A classical trick for modeling anonymity is to ask whether two
processes, one in which V1 votes and one in which V2 votes, are equivalent. However,
such an equivalence does not hold here as the voters’ identities are revealed (and they
need to be revealed at least to the administrator to verify eligibility). In a similar way,
an equivalence of two processes where only the vote is changed does not hold, because
the votes are published at the end of the protocol. To ensure privacy we need to hide the
link between the voter and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we need to suppose that at least
two voters are honest. We denote the voters V1 and V2 and their votes vote1, respectively
vote2. We say that a voting protocol respects privacy whenever a process where V1

votes vote1 and V2 votes vote2 is observationally equivalent to a process where V1

votes vote2 and V2 votes vote1.



process
l e t x=choice [ v1 , v2 ] in
l e t y=choice [ v2 , v1 ] in
( ( out ( ch , x ) ) | ( out ( ch , y ) ) )

Process 7. limitation of the ProVerif tool to prove observational equivalence

With respect to the modeling given in section 4 we explicitly add a second voter.
However, the equivalence that is checked by ProVerif is strictly finer than observational
equivalence. Therefore the tool does not succeed in proving the above given privacy
property. In Process 7, we illustrate a simple process that is observationally equivalent
(it is actually structurally equivalent), but cannot be proven so by ProVerif. This exam-
ple also illustrates ProVerif’s choice operator used to define two processes that should
be proven observationally equivalent. The choice operator is a binary operator that de-
fines two processes P1 and P2 such that choice(x1,x2) evaluates to x1 in P1 and to
x2 in P2. Although the two processes are structurally equivalent, the current version of
ProVerif does not succeed in proving observational equivalence.

As ProVerif takes as input processes in the applied pi calculus, we can rely on hand
proof techniques to show privacy. The processes modeling the two voters are shown
in Process 8. The main process is adapted accordingly to publish public keys and host
names.

Proposition 1. The FOO 92 protocol respects privacy, i.e. P [vote1/v1, vote2/v2] ≈
P [vote2/v1, vote1/v2], where P is given in Process 9.

The proof can be sketched as follows. First note that the only difference between
P [vote1/v1, vote2/v2] and P [vote2/v1, vote1/v2] lies in the two voter processes. We
therefore first show that

(processV 1|processV 2)[vote1/v1, vote2/v2]
≈

(processV 1|processV 2)[vote2/v1, vote1/v2].

To prove this we show labelled bisimilarity. We denote the left-hand process as P1 and
the right-hand process as P2. The labelled transition of P1

P1
νx1.c̄h〈x1〉−→ νblinder1.νr1.νblinder2.νr2.

(P ′
1|{(hostv1,sign(blind(commit(v1,r1),blinder1),skv1)/x1})

νx2.c̄h〈x2〉−→ νblinder1.νr1.νblinder2.νr2.
(P ′′

1 |{(hostv1,sign(blind(commit(v1,r1),blinder1),skv1)/x1}
|{(hostv2,sign(blind(commit(v2,r2),blinder1),skv2)/x2})



(* Voter1 *)
l e t processV1 =

ν b l i nde r1 . ν r1 .
l e t bl indedcommitedvote1= b l i n d ( commit ( v1 , r1 ) , b l i nde r1 ) in
out ( ch , ( hostv1 , s ign ( bl indedcommitedvote1 , skv1 ) ) ) .
in ( ch ,m21) .
l e t bl indedcommitedvote01=checksign (m21, pka ) in
i f bl indedcommitedvote01=bl indedcommitedvote1 then
l e t signedcommitedvote1=unb l ind (m21, b l i nde r1 ) in
phase 1 .
out ( ch , signedcommitedvote1 ) .
in ( ch , ( l1 ,= signedcommitedvote1 ) ) .
phase 2 .
out ( ch , ( l1 , r1 ) )

(* Voter2 *)
l e t processV2 =

ν b l i nde r2 . ν r2 .
l e t bl indedcommitedvote2= b l i n d ( commit ( v2 , r2 ) , b l i nde r2 ) in
out ( ch , ( hostv2 , s ign ( bl indedcommitedvote2 , skv2 ) ) ) .
in ( ch ,m22) .
l e t bl indedcommitedvote02=checksign (m22, pka ) in
i f bl indedcommitedvote02=bl indedcommitedvote2 then
l e t signedcommitedvote2=unb l ind (m22, b l i nde r2 ) in
phase 1 .
out ( ch , signedcommitedvote2 ) .
in ( ch , ( l2 ,= signedcommitedvote2 ) ) .
phase 2 .
out ( ch , ( l2 , r2 ) )

Process 8. two voters for checking the privacy property

can be simulated by P2 as

P2
νx1.c̄h〈x1〉−→ νblinder1.νr1.νblinder2.νr2.

(P ′
2|{(hostv1,sign(blind(commit(v2,r1),blinder1),skv1)/x1})

νx2.c̄h〈x2〉−→ νblinder1.νr1.νblinder2.νr2.
(P ′′

2 |{(hostv1,sign(blind(commit(v2,r1),blinder1),skv1)/x1}
|{(hostv2,sign(blind(commit(v1,r2),blinder1),skv2)/x2})

For the first input of both voters, we need to consider two cases: either the input of
both voters corresponds to the expected messages from the administrator or any other
message has been introduced by the attacker. In the first case, both voters synchronize



process
ν ska . ν skv1 . ν skv2 . (* private keys *)
ν pr ivCh . (* channel for registrating legimitate voters *)
l e t pka=pk ( ska ) in
l e t hosta = host ( pka ) in
l e t pkv1=pk ( skv1 ) in
l e t hostv1=host ( pkv1 ) in
l e t pkv2=pk ( skv2 ) in
l e t hostv2=host ( pkv2 ) in
(* publish host names and public keys *)
out ( ch , pka ) . out ( ch , hosta ) .
out ( ch , pkv1 ) . out ( ch , hostv1 ) .
out ( ch , pkv2 ) . out ( ch , hostv2 ) .
l e t v1=choice [ vote1 , vote2 ] in
l e t v2=choice [ vote2 , vote1 ] in
( ( out ( privCh , pkv1 ) . out ( privCh , pkv2 ) . out ( privCh , pk ( s k i ) ) ) |
( processV1 ) | ( processV2 ) | ( ! processA ) | ( ! processC ) )

Process 9. main process with two voters

at phase 1 and the frames of P1, respectively P2 are

φ1 = νblinder1.νr1.νblinder2.νr2.
(hostv1,sign(blind(commit(v1,r1),blinder1),v1))/x1,
(hostv2,sign(blind(commit(v2,r2),blinder2),v2))/x2,
sign(blind(commit(v1,r1),blinder1),skva)/x3,
sign(blind(commit(v2,r2),blinder2),skva)/x4}

φ2 = νblinder1.νr1.νblinder2.νr2.
{(hostv1,sign(blind(commit(v2,r1),blinder1),v1))/x1,
(hostv2,sign(blind(commit(v1,r2),blinder2),v2))/x2,
sign(blind(commit(v2,r1),blinder1),skva)/x3,
sign(blind(commit(v1,r2),blinder2),skva)/x4}

Given our equational theory and the fact that the blinding factors are restricted, these
frames are statically equivalent. In the second case, if at least one input does not corre-
spond to the correct administrator’s signature, both voter processes will block, as testing
correctness of the message fails and hence they cannot synchronize.

After the synchronization at phase 1, the remaining of the voter processes are struc-
turally equivalent: the remaining of the first voter’s process of P1 is equivalent to the
remaining of the second voter’s process of P2 and vice-versa. Due to this structural
equivalence, P2 can always simulate P1 (and vice-versa). Moreover static equivalence
will be ensured: with respect to frames φ1 and φ2 no other difference will be introduced
and the blinding factors are never divulged.

Given observational equivalence of the voter processes, we can conclude obser-
vational equivalence of the the whole process, as observational equivalence is closed
under application of closed evaluation contexts.



Note also that the use of phases is crucial for privacy to be respected. Surprisingly,
when we omit the synchronization after the registration phase with the administrator,
privacy is violated. Consider the following scenario. Voter 1 contacts the administrator.
As no synchronization is considered, voter 1 can send his commited vote to the collec-
tor before voter 2 contacts the administrator. As voter 2 could not have submitted the
commited vote, the attacker can link this commitment to the first voter’s identity. This
problem was found during a first attempt to prove the protocol where the phase instruc-
tions were omitted. The original paper divides the protocol into three phases but does
not explain the crucial importance of the synchronization after the first phase. Our anal-
ysis emphasizes this need and we believe that it increases the understanding of some
subtle details of the privacy property in this protocol.

6 Conclusion

We have modelled the FOO 92 electronic voting scheme in the applied pi calculus, and
proved three kinds of property. Each property is checked either by reachability analysis
or by checking observational equivalence:

Fairness. F1: the vote of a particular voter is not leaked to an attacker (reachability).
F2: a guess of a vote cannot be verified by the attacker and strong secrecy is guaran-
teed (observational equivalence). These properties are also proved in the presence
of a corrupt administrator.

Eligibility. E1: an attacker cannot trick the system into accepting his vote (reachabil-
ity).

Privacy. P1: the attacker cannot distinguish the actual situation from one in which two
voters have swapped their votes (observational equivalence).

The reachability properties (F1, E1) and the first observational equivalence property
(F2) can be proved by ProVerif. The other observational equivalence property (P1) is
more delecate, both in the way it is formulated and in the way that it is proved. ProVerif
cannot prove this observational equivalence automatically. Therefore we proved it man-
ually, by showing that the two processes are labelled-bisimilar.

In proving P1 manually, we noticed a feature of the protocol which is not much
stressed in the descriptions (e.g. [12, 16]) but is vital for the proof: every participant
must finish the registration stage before proceeding to the voting stage, and every par-
ticipant must finish the voting stage before the collector can begin opening the votes.
Otherwise, some attacks are possible. For example, if voting could begin before every-
one has registered, the attacker could break privacy by temporarily blocking all regis-
trations but V ’s. If V then votes, the attacker can establish a link between V and V ’s
vote. We used the phase construct of ProVerif to prevent this.
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2. Martı́n Abadi and Véronique Cortier. Deciding knowledge in security protocols under equa-
tional theories. In Josep Diaz, Juhani Karhumäki, Arto Lepistö, and Don Sannella, editors,
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Abstract. A predicate is opaque for a given system, if an adversary will never be able
to establish truth or falsehood of the predicate for any observed computation. This notion
has been essentially introduced and studied in the context of transition systems whether
describing the semantics of programs, security protocols or other systems. In this paper, we
are interested in studying opacity in the probabilistic computational world. Indeed, in other
settings, as in the Dolev-Yao model for instance, even if an adversary is 99% sure of the
truth of the predicate, it remains opaque as the adversary cannot conclude for sure. In this
paper, we introduce a computational version of opacity in the case of passive adversaries
called cryptographic opacity. Our main result is a composition theorem: if a system is secure
in an abstract formalism and the cryptographic primitives used to implement it are secure,
then this system is secure in a computational formalism. Security of the abstract system
is the usual opacity and security of the cryptographic primitives is IND-CPA security. To
illustrate our result, we give two applications: a short and elegant proof of the classical
Abadi-Rogaway result and the first computational proof of Chaum’s visual electronic voting
scheme.
Keywords: Opacity, Non-Interference, Chaum’s Voting Scheme, Computational Model,
Probabilistic Encryption.

Introduction

Roughly speaking, a predicate is opaque for a given system, if an adversary will never be able
to establish truth or falsehood of the predicate, for any observed execution of the system. It is
clear that this notion only makes sense when the adversary does not have access to the complete
state of the system but rather accesses its execution through an observation function. Typically,
the predicate of interest concerns some non-determinism that is resolved initially such as the
votes in a voting scheme. This notion has been essentially introduced and studied in the context
of transition systems whether describing the semantics of programs, security protocols or other
systems. It generalizes well-known security properties such as anonymity and non-interference
(See [7] for a discussion).

Opacity has been essentially studied in the so-called formal 1 world of security, where cryptog-
raphy is assumed perfect. A typical formal model, for security protocols for instance, is the Dolev
and Yao model [11] where messages are described by algebraic terms and there is one single adver-
sary that subsumes all possible attacks. In this paper, we are interested in studying opacity in the
probabilistic computational world. Indeed, in the formal world, even if an adversary is 99% sure
of the truth of the predicate, it remains opaque as the adversary cannot conclude for sure. Such a
definition is clearly not useful in the probabilistic computational setting. Therefor, we introduce
a computational version of opacity. We restrict ourselves to the case of passive adversaries and
call our security notion cryptographic opacity. More generally, we introduce probabilistic opacity
that includes : strict opacity, plausible deniability and cryptographic opacity. All three notions are
defined by experiments and in terms of the advantage of the adversaries. Strict opacity requires
that the advantage is null; plausible deniability requires that the probability to win the experiment
is different from 1 and cryptographic opacity requires that the advantage is negligible.

1 One might prefer the word symbolic here since formal is not used in the sense of rigorous.



Then, the question of how to prove probabilistic cryptographic opacity rises. For strict opacity,
we show a decidability result for finite systems. The main core of the paper, however, deals with
cryptographic opacity. Our answer to this question is inspired by a recent trend started by [2] and
pushed further in [4, 18, 15, 10] in bridging the gap that separates the Dolev-Yao model and its
perfect cryptography assumption on one hand and the computational model on the other hand.
Indeed, we prove our main result that states the following: if a predicate is opaque in the formal
model for an abstraction of the considered system and if the cryptographic primitives are IND-
CPA, then cryptographic opacity of the predicate holds in the computation model. The previously
mentioned results on the relationship between the formal and the computational models do not
immediately apply in our case as we have to carefully deal with random coins used for encryption.
Indeed, in the case of Chaum’s voting scheme, for instance, some of these coins appear as plain-
text. On the other hand, for some IND-CPA schemes, e.g. [6], knowledge of the random coins
induces knowledge about the encrypted message. To deal with this problem, we introduce a new
security criterion, called n-RPAT-CPA. We then show that any IND-CPA secure cryptographic
scheme is also n-RPAT-CPA secure.

An other important contribution of our paper is the proof of opacity for Chaum’s visual voting
scheme [8]. This is done by applying our main result. We also give a sort proof of Abadi and
Rogaway’s result as an application of our main theorem.

Related work. The initial work of Abadi and Rogaway was pushed further in [1]. This last paper
considers systems with cryptographic primitives and studies indistinguishability, but this property
lacks the generality of opacity. Another interesting work is [3] which links a computational version
of probabilistic non-interference [14] to the notion of simulatability. This work is very general
as it considers active adversaries but as a consequence, their main theorem is more difficult to
apply. In [17], a computational definition of indistinguishability (or strong secrecy) is given. This
security notion is less general than opacity. Laud also formulates an analysis allowing verification
of programs using cryptographic primitives but these primitives are still abstracted.

This paper is structured as follows. The first section recalls some necessary preliminaries. The
second section introduces strict opacity, plausible deniability and cryptographic opacity . The
following section proves a decidability result for strict opacity. Section 4 presents an approach
to verification of cryptographic opacity. This approach is applied to Chaum’s voting scheme in
Section 5. The proof of main result and the security criterion n-RPAT-CPA are discussed in
Section 6.

1 Preliminaries

In this section, we recall some basic definitions that are useful when considering probabilistic
systems and introduce a general definition of security criteria along with a decomposition theorem
that is used later in the paper. All these notions are detailed in [16].

1.1 Cryptographic Primitives

Let η be the security parameter of the system, it characterizes the strength of the cryptographic
primitives as well as the length of nonces.

An asymmetric encryption scheme AE = (KG, E ,D) is defined by three algorithms. The key
generation algorithm KG is a randomized function which given a security parameter η outputs a
pair of keys (pk, sk), where pk is a public key and sk the associated secret key. The encryption
algorithm E is also a randomized function which given a message and a public key outputs the
encryption of the message by the public key. The random part is explicitly represented as a nonce
(bit-string of length η) bs which is given as argument to E . Finally the decryption algorithm
D takes as input a secret key and a cypher-text and outputs the corresponding plain-text, i.e.,
D(E(m, pk, bs), sk) = m for any bs and any pair (pk, sk) produced by the key generation algorithm.
The execution time of the three algorithms is assumed polynomially bounded by η.

A function g : R→ R is negligible, if it is ultimately bounded by x−c, for each positive c ∈ N,
i.e., for all c > 0 there exists Nc such that |g(x)| < x−c, for all x > Nc.



1.2 Security Criteria

Security criteria define the correctness (or the expected properties) of an encryption scheme. They
are defined as an experiment involving an adversary. Given access to a set of oracles, the adversary
has to guess a randomly chosen data. 2 Roughly speaking, a scheme is safe w.r.t. a given criterion,
if no adversary has a better probability to win than an adversary who does not have access to the
oracles. Therefor, the strength of a criterion depends on the allowed adversaries and the offered
oracles. In this paper, we consider adversaries that are terminating random Turing machines
(RTM) or polynomial-time random TM (PRTM) when considering computational encryption.
The time is bounded in the security parameter η. An RTM B is said to have a complexity similar
to the complexity of A if the execution of B is polynomially bounded in the (maximum) execution
duration of A.

Let us now define formally security criteria. A criterion γ is a triple (Θ;F ;V ) where

– Θ is a (P)RTM that randomly generates some challenge θ (for example, a bit b and a pair of
key (pk, sk)).

– F is a (P)RTM that takes as arguments a string of bits s and a challenge θ and outputs a new
string of bits. F represents the oracles that an adversary can call to solve its challenge.

– V is a (P)RTM that takes as arguments a string of bits s and a challenge θ and outputs either
true or false. It represents the verification made on the result computed by the adversary. The
answer true (resp. false) means that the adversary solved (resp. did not solve) the challenge.

Note that Θ can generate an arbitrary number of parameters and F can represent an arbitrary
number of oracles. Thus, it is possible to define criteria with multiples Θ and F . When no confusion
may rise, we use the same notation for the challenge generator Θ and the generated challenge θ
(both are denoted using θ).

A criterion (Θ;F ;V ) and adversary A produce the following experiment. First θ is generated
randomly. The adversary can now make some computation using the oracle F , this is denoted by
A/F . The behavior of the oracle depends on θ. At the end of computation, the adversary has to
return a string of bits which is verified by an algorithm V . Also V uses θ (e.g. θ includes a bit
b and the adversary has to output the value of b). The aim of the adversary A is produce a bit
string that is verified by V . More formally, the experiment ExpγA(η) involving A and γ is defined
by the following Turing machine:

Experiment ExpγA(η):
θ←Θ(η)
d←A/η, λs.F (s, θ)
return V (d, θ)

Experiment Exp′γA(η):
θ←Θ(η)
d←A/η
return V (d, θ)

We can now define the advantage of A against γ as follows:

AdvγA(η) = 2.
(
pr(ExpγA(η) = true)− PrRandγ

)
,

where PrRandγ is the best probability to solve the challenge that an adversary can have without
using oracle F . Formally, PrRandγ is the maximum of pr(Exp′γA(η) = true) where A ranges over
any possible adversaries and Exp′ is similar to Exp except that F cannot be used by A.

1.3 Decomposition of Security Criteria

In this section, we recall the reduction theorem given in [16]. Let γ = (θ1, θ2;F1, F2;V2) be a
criterion. Let γ1 and γ2 be two criteria such that:

– There exist two PRTM G and H such that:

G(H(s, θ2, θ′2), 1, θ1) = F1(s, θ1, θ2)
G(H(s, θ2, θ′2), 0, θ1) = F1(s, θ1, θ′2)

2 In some cases, as for symmetric encryption or signature, the adversary has other ways to win. This is
not relevant for this paper.



Oracle G operates on a string of bits, thus it must receive two challenge informations, a bit b
and θ1.

– γ2 = (θ2;F2;V2) and γ1 = (b, θ1;G; verifb) where b generates a random bit and verifb is the
PRTM verifying that the output of the adversary is b: verifb(s, b, θ1) = (s⇔ b).

– F2(s, θ1, θ2) and V2(s, θ1, θ2) do not depend on θ1.

Then we say that (γ1, γ2) is a valid simplified partition of γ.

Theorem 1. Let (γ1, γ2) be a valid simplified partition of γ. For any RTM A, there exist two
RTM Ao and B of similar complexity such that

|AdvγA(η)| ≤ 2.|Advγ1B (η)|+ |Advγ2Ao(η)|

2 Probabilistic Opacity

2.1 Systems and Observations

First, we give a general definition for random systems then we explain how their behaviors can be
observed by an eavesdropper. As the results of this section do not depend on any particular model
of systems, we simply consider randomized functions.

Let Σ be a finite alphabet representing actions made by a system. A trace is a finite sequence
of actions, i.e., a word over Σ. Let Σ∗ be the set of words over Σ and ε be the empty word.

A system is a random function ∆ from a finite set S of initial states to sequences of actions.
Random means that the system can perform some non-deterministic operations. For example it
can pick up a random bit b. If b = 0, it performs action a else action b. The set of possible traces
of a system ∆ is denoted by ∆(S). In a similar way, ∆({s}) is the set of possible traces starting
from s in S. This set can have more than one element as function ∆ is random.

An observation function allows the eavesdropper to see only limited information about traces
produced by the studied system. These functions are mappings from Σ to Σ ∪ {ε}. Hence, it is
possible for an action to be totally invisible from the outside if the observation function replaces
it with ε.

2.2 Opacity

Let us consider a system ∆ with possible initial states S and an observation function obs. A
property ψ is a predicate over S. A property ψ is opaque if given s ∈ S and t ∈ ∆({s}), it is
not possible, for an adversary that has access uniquely access to obs(t) to know whether s verifies
ψ. Here, not possible means that it should not be possible to achieve this with ”reasonable”
probability. This notion of opacity is introduced under the name of initial opacity in [7].

More than in opacity itself, we are here interested in the advantage that an adversary can get by
having access to the observation of the trace. If a very vast majority of initial states in S verify ψ,
the adversary can suppose that s verifies ψ even without looking at the trace. However, by looking
at the trace, it is possible to get some new information and to deduce the result for sure. To define
this advantage, we consider that the adversary A tries to win the following game/experiment:

1. An initial state s is chosen randomly in S;
2. The adversary A is given the observation of a trace in ∆({s}) and has to output a bit b;
3. A wins its challenge, when b is equivalent to the property ”s satisfies ψ”.

This game is represented by an experiment which is a random Turing machine. The experiment
related to adversary A and to obs is the following RTM.

Experiment ExpobsA :
s← S
t← ∆(s)
b← A(obs(t))
return b⇔ (s ∈ ψ)



The advantage is the difference between the probability that A solves its challenge and the best
probability that one can get without access to the observation. Hence, it is defined by the following
formula.

AdvobsA = 2.
(
pr(ExpobsA → true)− PrRandψ

)
Where PrRandψ is the greatest possible value for pr(ExpεB → true) for any B and ε represents
the observation function that associates ε to any action in Σ.

Note that the above definitions for the experiment and the advantage can easily be defined in
an equivalent way by using the general notion of security criterion.

– Θ randomly generates an initial parameter s and a trace t;
– F gives access to the trace observation obs(t);
– V verifies that the output bit b correctly answers the question: does s verify ψ ?

Criterion (Θ;F ;V ) has exactly the same related experiment and advantage as those given above.
Using the definition of advantage, it is possible to tell if an observation function has any use

in trying to solve the challenge.

Definition 1. Let ∆ be a system, S be the set of its initial states and ψ a property over S. An
observation function obs is called

– safe for strict opacity of ψ , if for any RTM A, AdvobsA = 0
– safe for cryptographic opacity of ψ, if for any PRTM A, AdvobsA is negligible
– safe for plausible deniability of ψ, if for any RTM A, AdvobsA 6= 2 − 2.P rRandψ i.e.
pr(ExpobsA → true) is different from 1.

Plausible deniability coincides with the opacity notion introduced in [7], which is itself closely
related to anonymity [19] and non-interference [12, 20]. This link and some useful basic properties
are detailed in appendix A.1.

For strict opacity, if an observation function is safe then an adversary gets no advantage at all
by looking at the observation. This is for example the informations exchanged by cryptographers
during the cryptographs diner (if we consider that one of them paid the diner for any element of
S).

For cryptographic opacity, an observation function may return some relevant information that
cannot be exploited in a reasonable (i.e. polynomial) time. For example, if we consider that all the
actions made by a system are encrypted using a safe encryption scheme, then the observation is
safe. In this context, a safe encryption scheme is an IND-CPA encryption scheme, this is detailed
further in this document.

The idea is that with plausible deniability, if the adversary observes some trace t, then it
cannot conclude for sure whether property ψ is verified or not. There exists at least one initial
state satisfying ψ and one not satisfying ψ that both produce the observation obs(t).

There is no clear hierarchy among strict opacity and plausible deniability as the first notion
does not imply the second one (this implication is only true when PrRand is different from one).

3 Decidability of Strict Opacity for Finite Systems

Let us consider the case where only a finite number of traces can occur. Thus, we suppose that
both S and ∆(S) are finite. With this assumption, the greatest advantage for any adversary can
be computed. Moreover, there exists an adversary that reaches this advantage.

Let O be the set of all possible observations, i.e. O = obs(∆(S)). We first define the interest
of an observation function obs. This definition is rather intuitive as an observation function can
bring some advantage if the probability for ψ to be true knowing the observation is different from
the general probability of ψ. This explains why this definition uses the term |pr(ψ)− pr(ψ|o)|.
Definition 2. The interest Iobs of an observation function obs is given by:

Iobs = 2.
∑
o∈O

pr(o).
∣∣pr(ψ)− pr(ψ|o)

∣∣



Then, the main result of this section is that the interest is the greatest possible advantage. For
that reason, as it is possible to effectively compute the interest of a given observation, safety for
strictly opacity of an observation function is a decidable problem. The following proposition states
the main result. Its proof is given in Appendix A.

Proposition 1. For any adversary A and observation function obs, |AdvobsA | ≤ Iobs. Moreover,
there exists an RTM Aobs whose advantage is exactly Iobs.

It is important to notice that the second statement of the previous proposition asserts existence
of an RTM Aobs with AdvobsA = Iobs. This RTM is not necessarily a legal adversary. Indeed,
Aobs has an execution time which is linear in the number of possible observations. This is not a
problem when considering strict opacity or plausible denying as adversaries are RTM. However,
for cryptographic opacity, we only admit adversaries in PRTM. Worse, even if we assume the quite
fair hypothesis (for an eavesdropper) that there is only a bounded number of messages which all
have some bounded size, the number of possible observations may be exponential in the security
parameter η, and hence, Aobs may not a PRTM.

Nevertheless, this result is interesting at least for strict opacity as shown now. Indeed, a con-
sequence of this proposition is that no adversary has an advantage if and only if for any o in
O, pr(ψ) = pr(ψ|o). When one wants to verify strict opacity, it is possible to test that for any
observation, the probability for ψ to be true assuming that observation is exactly the general
probability for ψ to be true. Hence, we have

Proposition 2. Let obs be an observation function and ψ a property. Then, obs is safe for strict
opacity of ψ if and only if for any o ∈ obs(∆(S)), pr(s ∈ ψ) = pr(s ∈ ψ|obs(s) = o)

4 An Approach to the Verification of Cryptographic Opacity

As we noted in the previous section, we make the finite behavior hypothesis for cryptographic
systems (with passive adversaries). That is, we assume that S and ∆(S) are finite. The approach
proposed for proving strict opacity using the interest of the observation function and the existence
of an adversary matching this interest is not applicable for cryptographic opacity. Indeed, when
considering cryptographic opacity, adversaries are restricted PRTM. Therefor, we present here a
different approach. The main clue in this approach is to decompose the verification of cryptographic
opacity into the verification of strict opacity for an abstracted system on one hand and the safety
of the underlying encryption scheme on the other hand.

It is useful to notice that this approach is similar to the approach followed for proving secrecy
properties of cryptographic protocols, where one proves an abstraction of the secrecy property while
making the perfect cryptography hypothesis and relies on the fact that this verification is valid
in the computational model, if the cryptographic primitives satisfy some well-defined properties.
The formal justification of this approach is the result of recent research aiming at relating the
formal and the computational models for security protocols [2, 4, 10]. These papers show that the
Dolev-Yao [11] model is a safe abstraction of the computational model (where adversaries are
poly-time Turing machines) as soon as the cryptographic primitives (e.g. the encryption scheme)
verify some computational properties.

4.1 Specifications and Patterns

In the cryptographic setting, the alphabet Σ consists of the symbols, 0 and 1. Thus, an action of
the alphabet is a bit-string. We consider systems that produce some finite size bit-string (usually,
their size is polynomial in the security parameter η).

To define the abstract systems, we introduce patterns which are simply elements of the free
algebra of terms almost as in the Dolev-Yao model. It is almost because in our setting and as we are
interested in opacity, we have to be careful in handling the random coins3 used in encryption. Let us
3 Random coins are also nonces but some times we use rather random coins to insist on the fact they are

used to randomize encryptions



explain. In the simplest Dolev-Yao model (also called the formal or symbolic model) an encryption
of a message m with key pk is represented by the term {m}pk. Thus, two message {m1}pk1 and
{m2}pk2 are equal iff m1 = m2 and pk1 = pk2. Moreover, an adversary who does not know the
inverse key of pk cannot get any information from {m}pk. This means that the random nonce is
completely abstracted away. In some refinements of this model, however, labels are introduced to
distinguished encryptions made at different instants during a protocol execution [10]. Such labels
are only an approximation of random coins as the latter may be equal even when two encryptions
are performed at different instants. As we want to verify the Chaum voting scheme, we have to
include explicitly random coins in our patterns. Therefor, we write {m;N}pk to represent the
result of encrypting m with key pk using nonce N as random coins for the encryption algorithm.

Let K be an infinite set of keys (as explained above rather key names); k−1 represents the
private key corresponding to a public key k. Moreover, let N be a set of nonces. Patterns are
defined by the following grammar where k is a key, bs a bit-string and N is a nonce:

pat ::= bs|N |〈pat, pat〉|{pat;N}k|k k may be a public or private key

Without loss of generality, we consider abstract systems that only produce one pattern and not a
list of patterns as it is possible to concatenate patterns using pairing. Thus, a specification ∆s is
a function from S to pat.

Obviously, given a pattern pat the information that can be extracted from pat depends on the
set of private keys that can be computed from pat. The set of patterns that can be learned/computed
from a pattern is defined as follows:

Definition 3. Let p be a pattern, the set dec(p) is inductively defined by the following inferences.

– p is in dec(p).
– If 〈p1, p2〉 is in dec(p), then p1 and p2 are in dec(p).
– If {p1;N}k and k−1 are in dec(p), then p1 and N are in dec(p).
– If {p1;N}k and N are in dec(p), then p1 is in dec(p).

Notice that since, we only consider atomic keys, we only have to consider decompositions. It is also
useful to notice that the last clause is usually not considered in the Dolev-Yao model. This clause
is motivated by the existence of IND-CPA algorithms such that the knowledge of the random used
for encryption allows to decrypt the message. An example of such algorithm is presented in [6].

A pattern has also a denotation in the cryptographic setting. This depends on a context θ that
associates keys and nonces to their corresponding bit-string values. Thus, the cryptographic (or
computational) value of a term {pat;N}k is E(m, bs, bs′), where m is the value of pat, bs the value
of pk and bs′ the value N . Let θ be a mapping associating bit-strings to nonces and keys. The
value of a pattern in the context θ is defined recursively:

v(bs, θ) = bs v(〈p1, p2〉, θ) = v(p1, θ).v(p2, θ)
v(N, θ) = θ(N) v({p;N}k, θ) = E(v(p, θ), θ(k), θ(N)) v(k, θ) = θ(k)

Let us briefly summarize what we have introduced. We defined the systems we want to consider
whose behavior in each initial state s is a set of patterns and we have associated to each pattern
its value, a bit-string, in a given context.

We now turn our attention to the observations we can make about a pattern. We define
two observations. The concrete observation of a pattern pat in a context θ is defined as follows:
obsc(pat, θ) = v(pat, θ), that is, obsc corresponds to the observations that can be made in the
cryptographic setting. The abstract observation obsa applied to a pattern replaces every sub-
terms of the form {pat;N}k with ♦N , that is, it simply replaces it by a black box. Formally,
patterns are transformed in obfuscated patterns which are given by the following grammar:

opat ::= bs|N |〈opat, opat〉|{opat;N}k|♦N |k

And observation obsa of a pattern pat is recursively defined by the following rules.

obsa(bs) = bs obsa(〈p1, p2〉) = 〈obsa(p1), obsa(p2)〉
obsa(N) = N obsa({p;N}k) = {obsa(p);N}k if k−1 ∈ dec(pat) ∨N ∈ dec(pat)
obsa(k) = k obsa({p;N}k) = ♦N else



As encryption cycles may lead to some vulnerabilities, we restrict ourselves to well-formed
patterns. For that purpose, we define an ordering on pairs consisting of a key and a nonce. Let pat
be a pattern and let E< be the set of pairs (k,N) such that there is a pattern of the form {pat′;N}k
in dec(pat) with k and N not in dec(pat). Then, for (k,N), (k′, N ′) ∈ E<, (k,N) < (k′, N ′) iff
there exist two patterns {pat1;N}k and {pat2;N ′}k′ in dec(pat) verifying one of the following
conditions:

1. N , k or k−1 is a sub-term of pat2;N ′;
2. N = N ′ and {pat1;N}k 6= {pat2;N}k′ .

A pattern pat is well-formed, if the projection of < on keys is acyclic. Finally, we only consider
well-formed specifications, i.e. specifications that output well-formed patterns.

The conditions above imply that if pat is well-formed, then for (k,N) ∈ E<, there is only
one encoding using each N (and a non-deducible key) in dec(pat). Hence when obsa transforms
an encoding into ♦N , this always denotes the exact same encoding (in particular, there is no
randomness-reuse as described in [5]). Thus the N label can be seen as a constraint over encodings
(specifying possible bit-to-bit equalities). This is why, equality between two opat is defined modulo
renaming of the nonces. To illustrate this, let us consider two patterns pat0 = 〈{m;N}k, {m;N}k〉
and pat1 = 〈{m;N ′′}k, {m;N ′}k〉. Then obsa(pat0) = 〈♦N ,♦N 〉 and obsa(pat1) = 〈♦N ′

,♦N ′′〉. As
obsa(pat1) and obsa(pat2) are different, and hence, pat0 and pat1 are distinguishable. If we consider
pat0 = {m;N}k and pat1 = {m;N ′′}k. Then obsa(pat0) = ♦N and obsa(pat1) = ♦N ′

. In this case,
obsa(pat1) and obsa(pat2) are equal (modulo renaming), and hence, pat0 and pat1 are indistin-
guishable. And in fact, if the encryption scheme is IND-CPA, pat0 and pat1 are indistinguishable
even in the computational setting.

Main result The main result of this paper, that we prove in Section 6, is that for each adversary
A, there exist two adversaries Ao and B such that

|Advobsc×obsa

A | ≤ |Advobsa

Ao |+ 2.|Advn−RPAT−CPAB |

Where n is the number of keys, n-RPAT-CPA is a security criterion verified by any IND-CPA
algorithm, observable obsc×obsa gives access to both obsc and obsa (see appendix A.1 for details).
This means that if the encryption scheme used is IND-CPA, opacity in the formal world implies
opacity in the computational world.

4.2 Application: the Classical Abadi-Rogaway Result

Using our main theorem, it is possible to prove a slightly extended version of the seminal result of
Abadi and Rogaway [2]. This result states that provided the used encryption scheme is IND-CPA
indistinguishability in the formal (Dolev-Yao) model implies indistinguishability in the computa-
tional model. In fact, obfuscated patterns are close to patterns as introduced in [2]. The main
difference is that our patterns explicitly represent random coins. However, it is still possible to get
exactly Abadi and Rogaway’s result by assuming fresh distinct nonces for every encryption. If we
consider messages with no encryption cycles, then the corresponding patterns (using fresh nonces)
are well-formed. Moreover as nonces used for encryption are fresh, each ♦N has a different label,
thus to test equality these labels are not considered. The Abadi-Rogaway theorem can be stated
as an opacity problem. Let m0 and m1 be two well-formed patterns. There are two initial states
in S: 0 and 1. Specification ∆S(s) outputs ms. Then m0 and m1 are indistinguishable if for any
adversary A, |Advobsc

A | is negligible.

Proposition 3. Let m0 and m1 be two well-formed patterns such that obsa(m0) = obsa(m1). If
the encryption scheme AE used in v is IND-CPA then m0 and m1 are indistinguishable.

This result is immediate if we apply the above theorem: as obsa returns the same result for the
two patterns, |Advobsa

Ao | is equal to zero. Hence as |Advn−RPAT−CPAB | is negligible, the advantage
of A is also negligible and we get the desired result.



5 Application: Chaum’s Visual Electronic Voting

To illustrate our results, we consider a slightly modified version of the electronic voting scheme
proposed by Chaum [9]. The main advantage of this scheme is that it is verifiable using an audit
procedure that preserves opacity of the votes [13], i.e., what did voter V vote?. However, this
paper still makes the perfect cryptography hypothesis, encryptions are considered as black-box
and are not taken into account. We give here a proof of security for Chaum’s voting scheme in
a computational setting. For that purpose, we assume that the encryption scheme is IND-CPA
and prove that then, security results still hold (but we may have to add some negligible terms
representing brute force attack against the encryption scheme).

5.1 System Description

Let us briefly recall how the Chaum’s voting scheme works. We omit some important pieces (mostly
the visual aspect) that are not relevant for this paper. The interested reader may consider read-
ing [9] or [8] for details.
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A vote session uses n trustees to guarantee the secu-
rity of the procedure. Each trustee Ci has a public
key pki and an associated secret key ski. The vote
procedure works as follows: voters choose a vote value
v, then the following bit-string is given to C1 where
each nonce N i (unique for any voter) represents the
random information used to compute the encryp-
tion layer using key pki:

{
...{v;Nn}pkn ;N1

}
pk1

. Each
trustee decodes its layer then makes a random per-
mutation of all the votes and submits the resulting
list to the next trustee. All the intermediate lists are
made public and the last list allows anyone to com-
pute the results of the vote.

After the decoding phase, an audit process allows to verify that trustees behave correctly with
great probability. Hence each trustee Ci has to reveal the permutation it used for half the ballots.
Thus it shows for these ballots the link between the input ballot encoded by pki and the output
ballot encoded by pki+1, the trustee also shows nonce N i to allow anyone to check that the link is
valid (it is supposed that the encryption algorithm allows the trustee to get this nonce). Verified
ballots are not chosen randomly but as described in figure above. The first set of verified ballot (for
step 1) is chosen randomly. For step 2, verified ballots correspond to unconnected ballots w.r.t.
step 1. For step 3, verified ballots are half unconnected ballots and half connected ones, the halves
are chosen randomly. Finally, for step 4, verified ballots are unconnected ballots w.r.t. step 3. In
the figure, vij is the ith ballots in the input of the jth trustee and σj is the permutation chosen by
this trustee. The set Ij consists of integers k such that the transition that reaches vjk is revealed.

5.2 Verification of the system

The property we are interested in is opacity of the vote. However, it should be possible to generalize
our results to more complex properties like the bound over variation distance given in [13].

To simplify, let us suppose that there are two possible values for the vote: y and n. Then the
set S of initial states contains all the vote distributions that give a fixed final result, i.e. for any
element of S the number of voters that choose y is fixed, all the other variables are chosen at
random (permutations, audit sets).

We study the opacity of property ψ = (v1
1 = y) : are we able to deduce that the vote chosen

by voter 1 is y ? We want to prove that the audit information cannot bring any advantage to an
attacker. This requires that for any observation o, pr(ψ|o) = pr(o). Then, as PrRand is given by
the vote result, it is clear that it is impossible to guess the value of v1 with better efficiency than
when answering the most probable vote with respect to the result. The specification of the system



is pretty straightforward: ∆s outputs the revealed permutations, the ballots lists and the nonces
used to check the link for any k ∈ Ij . The output pattern is well-formed (there are no cycles for
<, the form of the ballots gives pkn < pkn−1 < ... < pk1).

After applying obsa, the abstract system gives information on the permutations and the final
ballot line, indeed there are two cases for remaining encrypted ballots: they can be abstracted
to ♦N or they can be linked by a permutation to a vote in the final (unencrypted) line and
so these ballots are useless to the description because it would be possible from the rest of the
description to rebuild them using the final vote and the revealed nonce. Let o be an observation in
the formal world. Let py be the percentage of voter that choose y. Then a quick calculus detailed
in appendix A.3 gives us that pr(v1

1 = y|o) = py. This proves opacity of ψ in the abstract world.
Security in the computational world is easy to obtain by applying our composition theorem:

let A be a PRTM, then there exist Ao and B two PRTMs such that:

|Advobsc×obsa

A | ≤ |Advobsa

Ao |+ 2.|Advn−RPAT−CPAB |

The advantage related to obsa is zero. Moreover, if we consider that the encryption scheme used
is IND-CPA, then Advn−RPAT−CPAB is negligible. Thus the advantage of A is negligible and we
can conclude that the observable obsc is safe for the cryptographic opacity of ψ.

6 Formal Description of the Main Result

The aim of this section is to prove our main result. We proceed in two steps. We first define
n-RPAT-CPA and relate it to IND-CPA. Then, we prove that the advantage of any adversary
who accesses the observation functions obsa and obsc is bounded by a linear combination of the
advantage of an adversary that has access to obsa and the advantage of an adversary that has
access to obsc. In both steps, we apply Theorem 1. Although, the criterion we introduce is implied
to IND-CPA, it is technically more appealing to use it to prove the main result. Besides this, our
new criterion is of interest on its own as it clarifies and discloses some subtleties related to the
treatment of random coins.

6.1 The RPAT Extension to IND-CPA

In IND-CPA, the experiment consists of generating a random bit b and a random public key pk. The
adversary tries to guess the value of b. For that purpose, it accesses a left-right oracle submitting
two bit-strings bs0 and bs1 and receives the encryption of bsb using pk. The adversary also has
access to the public key. An encryption scheme AE is said secure against IND-CPA if any PRTM
has a negligible advantage in trying to find b (the advantage is two times the probability to answer
correctly minus one). The criterion we introduce below allows the adversary to ask for encryption
of patterns where challenged keys may be included and insisting on using the same random coins
in different encryptions. Moreover, patterns may include encryption with the adversaries keys. As
we show later these extensions do not give more power to an adversary, if he is deemed to produce
well-formed patterns.

Let us now introduce n-RPAT-CPA. To do so, let n be a non-negative integer. We first define
R-patterns:

rpat ::= bs|N |〈rpat, rpat〉|{rpat;N}k|{rpat;N}bs|{rpat; bs}k|{rpat; bs}bs′ |k

The only difference with respect to patterns introduced in Section 4 is the encryption with a
non-challenge key or a non-challenge nonce. The evaluation function v is extended to R-patterns.



The experiment defining the criterion n-RPAT-CPA is as follows:

pat0, pat1, σ ← A1;
b← {0, 1};
(bsi, bs′i)← KG(η); for i = 1, · · · , n
bs′′i ← {0, 1}η; for i = 1, · · · , l
θ ← [b, (pk1, sk1) 7→ (bs1, bs′1), · · · , (pkn, skn) 7→ (bsn, bs′n),

N1 7→ bs′′1 , · · · , Nl 7→ bs′′l ];
y ← v(patb, θ);
d← A2(y, σ)
V (d, θ)← b = d

The adversary is split up in two parts A1 and A2, A1 outputs two patterns pat0 and pat1. Pattern
patb is computed (l is the number of nonces used by the pattern and n is the maximal number of
keys that a pattern can use), it is given to A2 which has to answer the value of b. It is also possible
to consider a single adversary A that access a left-right oracle F , giving it the two patterns. In
this case, oracle F only answer its first call.

In the experiment of n-RPAT-CPA, it is mandated that 〈pat0, pat1〉 is well-formed.
We show that algorithms secure w.r.t. IND-CPA are secure w.r.t. n-RPAT-CPA and as, there

are algorithms strongly believed to verify IND-CPA, these algorithms also verify n-RPAT-CPA.

Proposition 4. If an asymmetric encryption scheme is secure against IND-CPA, then it is secure
against n-RPAT-CPA for any number of keys n.

The proof is detailed in appendix A.4.This proposition can be generalized to a polynomial number
of keys and nonces using the technique introduced in [16].

6.2 Composition Result

Our main result states that given a specification, the advantage of an adversary against the concrete
system is lower than the advantage of the abstract system and the advantage of another adversary
against n-RPAT-CPA.

Theorem 2. For each adversary A, there exist two adversaries Ao and B such that

|Advobsc×obsa

A | ≤ |Advobsa

Ao |+ 2.|Advn−RPAT−CPAB |

The proof of the main theorem is given in appendix A.5
Using proposition 4, it is clear that if an encryption scheme is secure against IND-CPA, then

it is secure against n-RPAT-CPA for any integer n. Therefor, we have

Corollary 1. If the encryption scheme AE used in v is IND-CPA and obsa brings negligible
advantage to any adversary then obsc brings negligible advantage to any adversary.

Conclusion

Probabilistic opacity is far more realistic than classical opacity. However, our main result makes
it simple to prove cryptographic opacity for systems involving cryptographic primitives by first
proving opacity for the related abstract system and then using an IND-CPA cryptographic scheme.
This composition result seems very general as it can be applied to get the classical Abadi-Rogaway
result. Another interesting result is the implication from IND-CPA to the new criterion n-RPAT-
CPA. This criterion allows us to consider systems where the random information used for public-
key encryption is exchanged (usually, to allow checking of this encryption). This is necessary to
deal with complex systems such as Chaum’s vote protocol. Hence, our last result is the first (to
our knowledge) proof of this voting scheme in a computational setting.



A natural extension of this work is to consider the case of active adversaries as in [3]. To do
this, we need to consider simulation but modular proofs seems quite harder to obtain when using
this relation. We also intend to extend our result to other cryptographic primitives such as digital
signature, symmetric encryption or hashing as in [16]. Finally, it would be of interest to extend
the computational security results for Chaum’s voting scheme to properties given in [13].
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A Appendix

A.1 Basic Properties

Using the definition of advantage given above, some rather obvious properties can be stated. They
prove relations between different kind of advantages except the first one that details the value of
PrRand. This proposition relates the value of PrRand to the probability for an element of s to
be in S.

Proposition 5. Let pr(ψ) be the probability for a random element of S to verify ψ. Then the
greatest possible advantage is obtained by answering 1 if pr(ψ) > 1

2 and 0 otherwise. Hence, the
best probability is: PrRandψ = 1

2 + |pr(ψ)− 1
2 |

Proof. Let A be an adversary that can only use the ε observation function. As A does not have
access to any oracle. Its behavior can be represented by its probability p to answer 1. Of course,
A also has probability 1− p to answer 0. The probability that A answers correctly is:

pr(ExpεA → true) = pr(ψ).p+ (1− pr(ψ)).(1− p)
= 1− pr(ψ) + p.(2.pr(ψ)− 1)

Then, if pr(ψ) ≥ 1
2 ,

pr(ExpεA → true) ≤ pr(ψ)

In the other case,
pr(ExpεA → true) ≤ 1− pr(ψ)

These two inequalities allow us to deduce the following.

pr(ExpεA → true) ≤ max(pr(ψ), 1− pr(ψ))

≤
∣∣pr(ψ)− 1

2

∣∣ +
1
2

By looking at the PrRand definition, an adversary cannot get a better probability to succeed with
no observations. Thus it is clear that an adversary cannot get a positive advantage.

Proposition 6. For any adversary A, AdvεA ≤ 0.

If an adversary gets a negative advantage, it is possible to inverse its behavior (by inversing its
output) and this may create a greater advantage.

Proposition 7. For any adversary A, there exists an adversary B of similar complexity such that
AdvobsB + 4.P rRandψ = 2−AdvobsA .

The following properties state that some observation functions can bring no advantage compared
to other observation functions. Basically, if an observation obs2 has a ”finer resolution” than obs1,
then the advantage related to obs2 is greater than the one related to obs1.

Proposition 8. Let obs1 and obs2 be two observation functions such that for any pair of trace
t, t′ in ∆(S), obs2(t) = obs2(t′) implies obs1(t) = obs1(t′). Then, for any adversary A, there exists
an adversary B of similar complexity such that Advobs2B = Advobs1A .

If obs1 and obs2 are two observation functions, obs1× obs2 gives access to both simultaneously.
Formally, let obs1 and obs2 be two observation functions from Σ to Σ ∪ {ε}. Then obs1 × obs2
is an observation function from Σ to Σ ∪ {ε} × Σ ∪ {ε} such that the result on action a is
(obs1(a), obs2(a)). It is clear that the sum of two observation functions gives a better advantage
than the advantages related to one of the two functions.

Proposition 9. Let obs1 and obs2 be two observation functions. For any adversary A, there exists
an adversary B of similar complexity such that Advobs1×obs2B = Advobs1A .



Relation with Classical Opacity

Probabilistic opacity is closely linked to the opacity notion introduced in [7]. We consider plausible
deniability for probabilistic opacity and initial opacity with a static observation function.

Let ∆ be a deterministic system and S be the set of initial states. Let Π be a labeled transition
system whose set of initial states is S and that has the same behavior as ∆. Let obs be an
observation function.

Proposition 10. A predicate ψ over S is opaque with respect to obs iff for any adversary A,

AdvobsA < 2.
(
1− PrRandψ

)
Classical opacity can be linked to anonymity [19] and non-interference [12, 20] and the same

thing can be done with probabilistic opacity.

A.2 Proof of proposition 1

Proposition For any adversary A and observation function obs,

|AdvobsA | ≤ Iobs

Moreover, there exists an adversary Aobs which advantage is exactly Iobs.

Proof. This proof is achieved in three steps:
Step 1 First, consider the case where there is only one possible observation, |O| = 1. Then,

the calculus defining PrRand can be applied. Adversary A has a probability p (resp. 1 − p) to
answer 1 (resp. 0).

pr(ExpobsA → true) = pr(ExpobsA → true|s ∈ ψ).pr(ψ) + pr(ExpobsA → true|s /∈ ψ).pr(¬ψ)
= p.pr(ψ) + (1− p).(1− pr(ψ))
= (1− pr(ψ)) + p.(2.pr(ψ)− 1)

Then, if pr(ψ) ≥ 1
2 ,

pr(ExpobsA → true) ≤ pr(ψ)

In the other case,
pr(ExpobsA → true) ≤ 1− pr(ψ)

These two inequalities allow us to deduce the following.

pr(ExpobsA → true) ≤ max(pr(ψ), 1− pr(ψ))

pr(ExpobsA → true) ≤
∣∣pr(ψ)− 1

2

∣∣ +
1
2

pr(ExpobsA → true) ≤ PrRandψ

Hence, the advantage is negative.
Step 2 Now, it is possible to generalize the above result for any set O.

pr(ExpobsA → true) =
∑
o∈O

pr(o).pr(ExpobsA → true|o)

≤
∑
o∈O

pr(o).
(∣∣pr(ψ|o)− 1

2

∣∣− 1
2
)

≤ 1
2

+
∑
o∈O

pr(o).
∣∣pr(ψ|o)− 1

2

∣∣



We introduce PrRandψ in the former equation using its form |pr(ψ)− 1
2 |+

1
2 . Hence,

AdvobsA ≤
∑
o∈O

pr(o).
(∣∣pr(ψ|o)− 1

2

∣∣− ∣∣pr(ψ)− 1
2

∣∣)
|AdvobsA | ≤

∑
o∈O

pr(o).
∣∣∣∣pr(ψ|o)− 1

2

∣∣− ∣∣pr(ψ)− 1
2

∣∣∣∣
≤

∑
o∈O

pr(o).
∣∣pr(ψ|o)− pr(ψ)

∣∣
≤ Iobs

Step 3 The machine Aobs which advantage is exactly Iobs is very simple:

Adversary Aobs(o):
p← pr(ψ|o)
if p ≥ 0.5, return true
else return false

Probability for the different obs equivalence classes are hardwired in the machine. As there are
only a finite number of classes, Aobs works in polynomial time (w.r.t. the size of o). The advantage
of this adversary can be computed in a similar way as step 1 and 2. ut

A.3 Opacity of Chaum Voting Scheme

There are two cases to consider. First case, the link starting from v1
1 is revealed.

pr(v1
1 = y|o) = pr(v2

1σ1
= y|o)

=
2
n

∑
i/∈I3

pr(v3
i = y|o)

=
1
n

n∑
i=1

pr(v4
i = y|o)

= py

In the second case, a similar calculus can be done.

pr(v1
1 = y|o) =

2
n

∑
i/∈I2

pr(v2
i = y|o)

=
2
n

∑
i∈I3

pr(v3
i = y|o)

=
1
n

n∑
i=1

pr(v4
i = y|o)

= py

A.4 Proof of proposition 4

In this section, we prove that IND-CPA implies n-RPAT-CPA. Henceforth, letAE be an encryption
scheme. We proceed in three steps.

Let n-RPATc-CPA be the same criterion as n-RPAT-CPA except that adversaries can only
output clean patterns, i.e. 〈pat0, pat1〉 such that dec(pat0, pat1) does not contain any nonce nor
private key. Our first step consists in proving that IND-CPA implies 1-RPATc-CPA.



Lemma 1. If AE is secure w.r.t. IND-CPA then it is secure w.r.t. 1-RPATc-CPA.

Proof. Let us consider an adversary A = (A1,A2) against 1-RPATc-CPA. We construct an adver-
sary B against IND-CPA whose advantage the same as the advantage of A.

Let k be the unique challenge key. As there are no cycles among keys, there does not exist any
pair of nonces N,N ′ such that (k,N) < (k,N ′). Hence relation < is empty. For any nonce N such
that (k,N) ∈ E<, N appears in exactly one encoding (but this encoding can be used several times
as in 〈{m;N}k, {m;N}k〉) and in this case it appears as a random coin.

The adversary B uses A1 and A2 as sub-machines. However, as A1 outputs patterns while B
has to output messages, B has to simulate the evaluation function v using the IND-CPA left-right
oracle. This is done using the function vsim in the description of B :

pat0, pat1, σ ← A1;
y ← vsim(pat0, pat1);
d← A2(y, σ);
return d

We now have to describe the function vsim. First notice that nonces N that do not appear in E<
appear encrypted in the patterns. Therefor, vsim generates some random values for these nonces
and creates the corresponding environment θsim. The context θsim is extended with public key k.
Next, as pat0 and pat1 have the same obsa (modulo renaming), the following recursive function
vrecθsim is applied to pat0, pat1:

vrecθsim(bs, bs) = bs

vrecθsim(m1.m2,m
′
1.m

′
2) = vrecθsim(m1,m

′
1).vrecθsim(m2,m

′
2)

vrecθsim
({m;N}k, {m′;N}k) = F

(
v(m, θsim), v(m′, θsim)

)
Note that for the last line, if vrecθsim

is called twice on the exact same patterns, then the same
value has to be returned (so it is necessary to store the value although this is not done here to
preserve simplicity). Finally, vsim(pat0, pat1) returns vrecθsim

(pat0, pat1).
The experiments involving B and A are the same and as PrRand is equal to 1/2 for both

criteria, the advantages of B and A are equal. �

The second step is to show that 1-RPATc-CPA implies n-RPATc-CPA for any n.

Lemma 2. If AE is secure w.r.t. 1-RPATc-CPA then it is secure w.r.t. n-RPATc-CPA.

Proof. Let us consider an adversary A = (A1,A2) against n-RPATc-CPA.
Using the reduction Theorem 1, we split up the advantage between an advantage against (n−1)-

RPATc-CPA and an advantage against 1-RPATc-CPA. We assume that adversary A accesses the
left-right oracle F exactly once. Let k be a maximal key for <. The partition of θ is defined as
follows: θ1 contains key pairs k, k−1, any nonce N such that (k,N) ∈ E<. On the other hand,
θ2 contains the other informations from θ including the challenge bit. Oracle F2 generates the
encodings related to keys in θ2 and F1 those related to k.

As k is maximal, there are no keys k′ different from k such that for a nonce N in θ1 and
any nonce N ′, (k,N) < (k′, N ′). This is why nonce N is only used as the random coins of an
encryption using k.

F1 can be separated into two layers G and H defined by:

H(〈pat0, pat1〉, θ2, θ′2) =
〈
v(patb2 , θ2), v(patb′2 , θ

′
2)

〉
G(〈pat0, pat1〉, b, θ1) = v(patb, θ1)

Where b2 and b′2 are the challenge bits contained respectively in θ2 and θ′2.
Let pat0 and pat1 be two R-patterns such that obsa(pat0) = obsa(pat1). Then both patterns

are the concatenation of encodings and similar bit-strings. The call to F has to be simulated using
F1 and F2. For that purpose, the valuation of their encodings is performed in a similar way as



in vrec except that F1 and F2 should only be called once. To achieve this, requests to F1 and F2

are stored in a single pattern as described for F1 by function vrec2 which outputs a list of pair of
patterns:

vrec2(bs, bs) = [ ]
vrec2(m1.m2,m

′
1.m

′
2) = vrec2(m1,m

′
1).vrec2(m2,m

′
2)

vrec2({m;N}k, {m′;N}k) = 〈{m;N}k, {m′;N}k〉

Then this list of pair (〈p1, p
′
1〉; ...; 〈pn, p′n〉) is transformed into the pair of list 〈p1; ...; pn, p′1; ...; p

′
n〉

which is the argument given to F1. Another function should perform the same operation for keys
different from k. After submitting the results to oracle F1 and F2, it it easy to rebuild the output
of F .

Note that patterns submitted to F1 and F2 are pairs of encodings. F2 receives two well-formed
patterns that have the same obsa and this is the same thing for G (both receives a concatenation
of some ♦N ).

As F2 only depends on θ2, our partition is valid, criterion (θ2;F2;V2) is (n − 1)-RPAT-CPA
and (θ1, b;G;Vb) is 1-RPAT-CPA. The reduction theorem applies and gives that there exist two
PRTM Ao and B such that

|Advn−RPATA (η)| ≤ 2.|Adv1−RPAT
B (η)|+ |Adv(n−1)−RPAT

Ao (η)|

A simple induction proves that as AE is secure against 1-RPATc-CPA, it is secure against n-
RPATc-CPA for any integer n. �

Finally, we show that n-RPATc-CPA implies n-RPAT-CPA.

Lemma 3. If AE is secure w.r.t. n-RPATc-CPA then it is secure w.r.t. n-RPAT-CPA.

Proof. Let us consider an adversaryA = (A1,A2) against n-RPAT-CPA. As in step 1, an adversary
B = (B1,B2) is built such that B1 returns clean patterns. For that purpose, B2 is similar to A2. B1

executes A1 and computes dec(pat0, pat1). Then it generates some keys and nonces and uses them
for elements of dec on the answer of pat0 and pat1. The patterns remain well-formed and still have
the same obsa. B and A have the same advantage but B is an adversary against n-RPATc-CPA.
As AE is secure against n-RPATc-CPA, it is also secure against n-RPAT-CPA. �

Proposition 4 is a simple consequence of the three above lemma.

Proposition If an asymmetric encryption scheme is secure against IND-CPA, then it is secure
against n-RPAT-CPA for any number of keys n.

A.5 Proof of the Main Theorem

This theorem is an application of the reduction theorem 1. Let ∆s be a specification. Let n be
the maximal number of keys used by ∆s. Then the experiment related to obsc × obsa can be
reformulated as the following experiment:

– Θ is split up on two parts: Θ1 generates the n pairs of keys (pki, ski) and l nonces ni; Θ2

generates the initial state s in S and the pattern p = ∆s(s).
– We have two oracles: F2 gives access to obsa(p), F1 gives access to v(p, θ1) which is obsc(p).
– V2 verifies that the output b made by the adversary is equivalent to s ∈ φ.

F1 can be be cut in two layers. G corresponds to the left-right encryption algorithm for n-RPAT-
CPA, H(x, θ2, θ′2) takes any argument as input x and outputs the pair 〈p′, p〉 where p and p′ are
the patterns respectively contained in θ2 and θ′2.

It is now possible to apply the reduction theorem 1 to obtain that for each adversary A, there
exist two adversaries Ao and B such that

|AdvγA| ≤ |Advγ2Ao |+ 2.|Advγ1B |



Moreover, γ is equivalent to the criterion related to obsc× obsa, γ2 is equivalent to the one related
to obsa. Finally, γ1 = (b, θ1;G;λx.x = b), G is only the left-right oracle, hence this criterion is the
n-RPAT-CPA criterion except that there is no oracle to view the public keys. As this criterion is
weaker than n-RPAT-CPA, it is possible to conclude that with a different machine B (but still of
comparable complexity),

|Advobsc×obsa

A | ≤ |Advobsa

Ao |+ 2.|Advn−RPAT−CPAB |



C Spécification partielle du protocole de vote de J.Traoré

############# Spécification Vote Électronique

signature
V1, TM, AS, M, intruder : principal;
PK: principal -> pubkey;

hashfunctions
h: message -> message;

end

# Hermes translates the axioms as a set of protocol rules that may be executed
# whenever and how often is necessary, however they are not used
# by the term unification algorithm

axioms
declare
x: message;
y: symkey;
begin
sign(asym, inv(PK(AS)), h(x,y)) =
symcrypt(sym, y, sign(asym, inv(PK(AS)), x));
end

role voter ( myname:principal;
skv:privkey;
as,tm,m: principal;
cert:message)

declare
vote : nonce;
r, x, e, s : message;
y, b, c, sigma : message;

begin
new(r);
new(vote);
x := crypt (asym, PK(tm), vote);
e := h(x,r);
s := sign (asym, skv, e);
send ([myname, cert, e, s]);
recv (sign(asym, inv(PK(as)), e));
y := sign(asym, inv(PK(as)), e);
b := [x, y];
c := crypt (asym, PK(m), b);
sigma := sign (asym, skv, c);
send ([myname, cert, c, sigma]);
end

role administrator (ska:privkey)
declare
voter : principal ;
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ev , dv : message ;

begin
recv ([voter, sign (asym, ska, [voter, PK(voter)]), ev, sign (asym, inv(PK(voter)), ev)]);
dv := sign (asym, ska , ev);
send (dv) ;
end

role bulletinBoard (as: principal)

declare
voter : principal;
cb: message;

begin
recv ([voter, sign(asym, inv(PK(as)),[voter, PK(voter)]),

cb, sign(asym, inv(PK(voter)), cb)]);
end

scenario
parallel
forall i : int . administrator (inv(PK(AS)))
|forall i : int . bulletinBoard (AS)
|forall i : int .
exists v : principal .
voter (v,inv(PK(v)),AS,TM,M,

sign(asym,inv(PK(AS)),[v,PK(v)]))
end
end

############# Spécification de la vérification du secret faible du vote
public
V1, TM, AS, M, intruder, PK

initial
x_M = [[inv(PK(intruder))]]

always

forall P:voter . ( P.myname != intruder ) -> issecret(P.vote)
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