
P. Lafourcade, D. Lugiez,
and R. Treinen

Intruder Deduction

for the Equational Theory of
Exclusive-or

with Distributive Encryption.

Research Report LSV-05-19

October 2005

Intruder Deduction for the Equational Theory of

Exclusive-or with Distributive Encryption∗

Pascal Lafourcade
LIF, Université Aix-Marseille 1 & CNRS UMR 6166

LSV, ENS de Cachan & CNRS UMR 8643 & INRIA Futurs project SECSI

Denis Lugiez
LIF, Université Aix-Marseille 1 & CNRS UMR 6166

Ralf Treinen
LSV, ENS de Cachan & CNRS UMR 8643 & INRIA Futurs project SECSI

October 5, 2005

Abstract

Cryptographic protocols are small programs which involve a high level
of concurrency and which are difficult to analyze by hand. The most suc-
cessful methods to verify such protocols are based on rewriting techniques
and automated deduction in order to implement or mimic the process cal-
culus describing the execution of a protocol.

We are interested in the intruder deduction problem, that is the vul-
nerability to passive attacks, in presence of the theory of an encryption
operator which distributes over the exclusive-or. This equational theory
describes very common properties of cryptographic primitives. Solutions
to the intruder deduction problem modulo an equational theory are known
for the cases of exclusive-or, of Abelian groups, of a homomorphism sym-
bol alone, and of combinations of these theories. In this paper we consider
the case where the encryption distributes over exclusive-or. The interac-
tion of the distributive law of the encryption with the cancellation law of
exclusive-or leads to a much more complex decision problem. We prove
decidability of the intruder deduction problem for an encryption which
distributes over exclusive-or with an EXPTIME procedure and we give
a PTIME decision procedure relying on prefix rewrite systems for a re-
stricted case, the binary case.

∗This work was partially supported by the research programs ACI-SI Rossignol, and RNTL
PROUVÉ (n◦ 03 V 360).

1

1 Introduction

Cryptographic protocols are ubiquitous in distributed computing applications.
They are employed for instance in internet banking, video on demand services,
wireless communication, or secure UNIX services like ssh or scp. Cryptographic
protocols can be described as relatively simple programs which are executed in
an untrusted environment.

Verifying protocols is notoriously difficult, and even very simple protocols
which look completely harmless may have serious security holes, as it was demon-
strated by the flaw of the Needham-Schroeder protocol found by Lowe [Low95]
using a model-checking tool. It took 17 years since the protocol was published
to find an attack, a so-called man in the middle attack. An overview of authen-
tication protocols known a decade ago can be found in [CJ97], a more recent
data base of protocols and known flaws is [Jac].

There are different approaches to modeling cryptographic protocols and an-
alyzing their security properties: process calculi like the spi-calculus [AG99],
so-called cryptographic proofs (see, for instance, [AR00]), and the approach of
Dolev and Yao [DY83] which consists in modeling an attacker by a deduction
system. This deduction system specifies how the attacker can obtain new infor-
mation from previous knowledge, which he has either obtained by eavesdropping
the communication between honest protocol participants (in case of a passive
attacker), or by eavesdropping and fraudulently emitting messages, thus provok-
ing honest protocol participants to reply according to the protocol rules (this is
the case of a so-called active attacker). We call intruder deduction problem the
question whether a passive eavesdropper can obtain a certain information from
messages that he observes on the network.

Algebraic properties. Classically, the verification of cryptographic protocols
was based on the so-called perfect cryptography assumption which states that
it is impossible to obtain any information about an encrypted message without
knowing the exact key necessary to decrypt this message. Unfortunately, this
perfect cryptography assumption has been proven too idealistic: There are pro-
tocols which can be proven secure under the perfect cryptography assumption,
but which are in reality insecure since an attacker can use properties of the
cryptographic primitives in combination with the protocol rules to learn some
secret informations. These properties are typically expressed as equational ax-
ioms (so-called algebraic properties). The executability of cryptographic meth-
ods like DES or the more recent AES heavily relies on the algebraic proper-
ties of the exclusive-or operation (exclusive-or also written ⊕: associativity-
commutativity, existence of a unit element 0 and nilpotence x ⊕ x = 0). Al-
gebraic properties which are not used explicitly in the protocol can also be
exploited by an attacker to mount an attack, see [CDL05] for an overview of the
verification of cryptographic protocols in presence of algebraic properties. Many
results have already been obtained in this area, both for the intruder deduction
problem and for the preservation of secrecy under active attacks. The intruder
deduction problem in the case of the equational axioms of exclusive-or and of
Abelian groups is decidable in polynomial time [CLS03, CKRT03]. Likewise,

2

the intruder deduction problem is decidable in polynomial time [CLT03] in the
case of the equational theory of a homomorphism. In [CR05], the authors pro-
vide an algorithm that combines decision procedures for the active intruder in
the case of disjoint equational theories.

Our Contribution. In this paper we investigate the intruder deduction prob-
lem for cryptographic protocols that use an encryption operation which dis-
tributes over the binary exclusive-or operator ⊕, that is the encryption of a
sum ⊕ is the sum of the encryptions. We do not assume that the set of encryp-
tion keys is finite. Rather, any term can be used as an encryption key. Contrary
to the aforementioned combination algorithm, the equational theories of the ⊕
operation and of the encryption operation are not disjoint, therefore we must
design an algorithm dedicated to this case. Our results can be summarized as
follows:

(i) We can decide the intruder deduction problem in exponential time in the
general case.

(ii) We can decide the intruder deduction problem in polynomial time in the
so-called binary case, i.e. when the set of assumptions and the goal do
not contain more than two consecutive applications of ⊕.

Our solution is similar to the approach of [CLS03, CLT03]. It generalizes
McAllester’s locality method explained in Section 4 and relies on proof trans-
formations to establish a locality theorem. The improved complexity result in
the binary case is obtained by a new approach based on prefix word rewriting.

Plan of the paper: We present in Section 2 the usual notions needed in the
rest of the paper. In Section 3 we introduce the Dolev-Yao model of intruder
capacities extended by a rewrite system modulo AC and present the rewrite
system investigated in this paper. In Section 4 we explain the generalization
of McAllester’s proof technique. In the following two sections we provide the
two main ingredients which allow us to obtain an EXPTIME algorithm: We
show in Section 5 that the set of instances of our proof system is decidable in
polynomial time, and we show in Section 6 a proof normalization result which
is the technical core of our paper. We discuss in Section 7 the restriction to
the binary case and give a decision procedure in PTIME using prefix rewrite
systems. Finally, we conclude in Section 8.

2 Preliminaries

We summarize some basic notations used in this paper, see [DJ90, BN98] for an
overview of rewriting.

We denote as usual with U ∗ the set of all finite sequences of symbols from
U .

Let Σ be a signature. T (Σ, X) denotes the set of terms over the signature
Σ and the set of variables X, that is the smallest set such that:

3

1. X ⊆ T (Σ, X);

2. if t1, . . . , tn ∈ T (Σ, X), and f ∈ Σ has arity n ≥ 0, then f(t1, . . . , tn) ∈
T (Σ, X).

We abbreviate T (Σ, ∅) as T (Σ); elements of T (Σ) are called Σ-ground terms.
The set of variables occurring in a term t is denoted by V(t).

The set of occurrences of a term t is defined recursively as O(f(t1, . . . , tn)) =
{ε} ∪

⋃
i=1...n i · O(ti). For instance, O(f(a, g(b, x))) = {ε, 1, 2, 21, 22}. The

size |t| of a term t is defined as its number of occurrences, that is |t| =
cardinality(O(t)). We extend the notion of size to a set of terms T by |T | =
Σt∈T |T |. If o ∈ O(t) then the subterm of t at position o is defined recursively
by:

• t |ε= t

• f(t1, . . . , tn) |j·o= tj |o

We call a term r a subterm of a term t if r is a subterm of t at some position of
t. If t and s are terms and o ∈ O(t) then the grafting of s onto t at position o
is defined recursively as:

• t[ε← s] = s

• f(t1, . . . , tn)[j · o ← s] = f(t1, . . . , tj−1, tj [o ← s], tj+1, . . . , tn)

For instance, f(a, g(b, x))[22 ← h(c)] = f(a, g(b, h(c))).
A Σ-equation is a pair (l, r) ∈ T (Σ, X), commonly written as l = r. The

relation =E generated by a set of Σ equations E is the smallest congruence on
T (Σ) that contains all ground instances of all equations in E.

A Σ-rewriting system R is a finite set of so-called rewriting rules l → r where
l ∈ T (Σ, X) and r ∈ T (Σ,V(l)). A term t ∈ T (Σ, X) rewrites to s in one step
by R if there is a rewriting rule l → r in R, an occurrence o and a substitution
σ such that t |o= lσ and s = t[o ← rσ]. If the occurrence o is the empty string,
that is if rewriting takes places at the root of the tree, then t prefix-rewrites in
one step to s, noted t)→ s. We write →∗ for the reflexive and transitive closure
of →, and)→∗ for the reflexive and transitive closure of)→. A term t is in normal
form if there is no term s with t → s. If t →∗ s and s is a normal form then we
say that s is a normal form of t, and write s = t ↓.

A term rewriting system is called convergent if it is:

• strongly terminating, that is if there is no infinite sequence of the form
t1 → t2 → t3 → · · · .

• locally confluent, that is if t → s1 and t → s2 then there exists a term r
with s1 →∗ r and s2 →∗ r.

By a well known result (see, e.g., [DJ90]), every convergent rewrite system is
confluent, that is if t →∗ s1 and t →∗ s2 then there exists a term r with s1 →∗ r
and s2 →∗ r. As a consequence, in a convergent rewrite system every term has
a unique normal form

4

By R/S we denote the so-called class rewrite system composed of a set
R = {li → ri} of rewrite rules and a set S = {ui = vi} of equations. Generalizing
the notion of term rewriting, we say that s rewrites to t modulo S, denoted
s →R/S t, if s =S u[lσ]p and u[rσ]p =S t, for some context u, position p in u,
rule l → r in R, and substitution σ.

Let T be a set of terms, the mapping S : T → T is idempotent if for every
X ⊆ T : S(S(X)) = S(X). The mapping S is monotone if for all X, Y ⊆ T : if
X ⊆ Y then S(X) ⊆ S(Y). S is transitive if for all X, Y, Z ⊆ T , X ⊆ S(Y)
and Y ⊆ S(Z) implies X ⊆ S(Z).

Proposition 1 Let S be a mapping from sets of terms to sets of term. If the
mapping S is idempotent and monotone then it is transitive.

Proof: straightforward. !

3 A Dolev-Yao Model for Rewriting Modulo AC

We consider the classic model of deduction rules [DY83] introduced by Dolev
and Yao in order to model the deductive capacities of a passive intruder. We
present here an extension of this model where we assume an associative and
commutative operator ⊕, and an equational theory E which can be exploited
by the intruder to mount an attack. Knowledge of the intruder is represented
by terms built over a finite signature Σ = {〈·, ·〉, {·}·,⊕}-Σ0, where Σ0 is a set
of constant symbols. The term 〈u, v〉 represents the pairing of the two terms u
and v, and {u}v represents the encryption of the term u by the term v. For the
sake of simplicity we here only consider symmetric encryption.

The equational theory E is represented by a convergent rewrite system R
modulo AC, that is R is terminating and confluent modulo associativity and
commutativity of ⊕, and for all terms t, s ∈ T (Σ) we have that t =E s if and
only if t ↓R/AC =AC s ↓R/AC . The deduction system describing the deductive
capacities of an intruder is given in Figure 1. This deduction system is composed

(A)
u ∈ T

T . u ↓R/AC

(P)
T . u T . v

T . 〈u, v〉 ↓R/AC

(C)
T . u T . v

T . {u}v ↓R/AC

(GX)
T . u1 . . . T . un

T . u1 ⊕ . . . ⊕ un ↓R/AC

(UL)
T . r

T . u ↓R/AC
if 〈u, v〉 = r

(UR)
T . r

T . v ↓R/AC
if 〈u, v〉 = r

(D)
T . r T . v

T . u ↓R/AC

if r =E {u}v
and u ↓R/AC = u

Figure 1: A Dolev-Yao proof system working on normal forms by a rewrite
system R modulo AC

of the following rules: (A) the intruder may use any term which is in his initial
knowledge, (P) the intruder can build a pair of two messages, (UL, UR) he can

5

extract each member of a pair, (C) he can encrypt a message u with a key v,
(D) if he knows a key v he can decrypt a message encrypted by v. Sometimes,
we shall annotate the rules (C) and (D) by the key that they use, yielding rules
(Cv) and (Dv). Because of the algebraic properties of the ⊕ operator, we add
a family of rules (GX) which allows the intruder to build a new term from an
arbitrary number of already known terms by using the ⊕ operator. The need
for such a variadic rule (instead of just a binary rule) will become apparent in
Section 4.

In fact, this deductive system is equivalent in deductive power to a variant
of the system in which terms are not automatically normalized, but in which
arbitrary equational proofs are allowed at any moment of the deduction. The
equivalence of the two proof systems has been shown in [CLT03] without AC
axioms; in [LLT04] this has been extended to the case of a rewrite system
modulo AC.

From now on, we assume that the set T consists only of normalized terms.
We will investigate the Dolev-Yao deduction system modulo the following

rewrite system, which corresponds to the theory XDE (eXclusive-or with a
Distributive Encryption over ⊕): 0 ⊕ x → x; x ⊕ x → 0; {0}z → 0; {x ⊕ y}z →
{x}z ⊕ {y}z. We will omit the index R/AC and write ↓

4 Locality and Complexity of the Intruder Deduction

Problem

4.1 A Generalization of Locality

Our starting point is the locality technique introduced by McAllester [McA93].
He considers deduction systems which are represented by finite sets of Horn
clauses. He shows that there exists a polynomial-time algorithm to decide the
deducibility of a term w from a finite set of terms T if the deduction system has
the so-called locality property. A deduction system has the locality property if
any proof can be transformed into a local proof, that is a proof where all nodes
are syntactic subterms of T ∪{w}. The idea of the proof is to check existence of
a local proof by a saturation algorithm which computes all syntactic subterms
of T ∪ {w} that are deducible from T.

An abstract version of this algorithm is presented in Figure 2 where S is a
function which maps a set of terms to a set of terms such that S(T) is the set of
subterms of T (the set of syntactic subterms in McAllester’s original algorithm).
In this algorithm we denote the one-step deduction relation by .=1, where we
say that w is one-step deducible from T if we can obtain w from T with only
one application of a rule of the proof system.

There are two main restrictions in McAllester’s approach: the deduction sys-
tem must be finite and the notion of locality is restricted to syntactic subterms.
These restrictions raise a serious problem when we are working modulo AC, as
it is already pointed out in [CLS03]. If we used the rule (GX) only in its binary
form then we would have to consider all possible subterms modulo AC. Unfor-
tunately, there is in general an exponential number of subterms modulo AC of

6

Input: T, w
Sub ← S(T, w);
repeat

Tp ← T ;
foreach t ∈ Sub do

if Tp .=1 t then T ← T ∪ {t} fi

od

until Tp = T

Figure 2: Checking existence of an S-local proof.

a given term. The solution proposed in [CLS03], and which we also adopt here,
is to use the rule (GX) with an arbitrary number of hypotheses. However, we
are now stuck with an infinite number of rules. Fortunately, we can implement
the test in the loop in McAllester’s algorithm in a clever way that allows to get
a more efficient procedure.

In the rest of the paper we denote T ∪ {w} by T, w.

Definition 1 Let S be a function which maps a set of terms to a set of terms.
A proof P of T . w is S-local if all nodes are labeled by some T . v with
v ∈ S(T, w). A proof system is S-local if whenever there is a proof of T . w
then there also is a S-local proof of T . w.

The following theorem generalizes McAllester’s result.

Theorem 1 Let S be a function mapping a set of terms to a set of terms, and
P a proof system. Let T be a set of terms, let w be a term and let n be |T, w|.
If:

1. one-step deducibility of S . u in P is decidable in time g(|S, u|) for any
term u and set of terms S,

2. the set S(T, w) can be constructed in time f(n),

3. P is S-local,

then provability of T . w in the proof system P is decidable in time f(n)+f(n)∗
f(n) ∗ g(f(n)) (non-deterministic if one of (2), (1) is non-deterministic).

Proof: By S-locality of the proof system, provability of T . w is equivalent to
existence of an S-local proof for T . w. Existence of an S-local proof of T . w
is checked by the algorithm of Figure 2 and the computation of Sub takes time
f(n). As a consequence, the cardinality of Sub is bounded by f(n). Hence, the
number of iterations of the outer loop is bounded by f(n), and for each iteration
of the outer loop the number of iterations of the inner loop is also bounded by
f(n). Since the size of T is bounded by f(n) the conditional instruction can be
performed in time g(f(n)). !

Therefore the roadmap to prove deducibility in our more general setting is:

7

(i) show that one-step deducibility can be tested in time f(n), for some
complexity measure f ,

(ii) define a notion of subterms which can be computed in time g(n), for
some complexity measure g,

(iii) show locality with respect to this notion of subterms.

We first show that one-step deducibility is decidable in polynomial time for
the equational theory XDE. Then we define a notion of subterms (Definition 5)
which yields an exponential set and which enables us to prove a locality theorem
(Theorem 3), yielding the decidability of the intruder deduction problem. In
Section 7, we shall define a polynomial notion of subterms in the binary case,
which allows to get a polynomial-time complexity in this case.

5 One-Step Deducibility

Our method is inspired by the method used in [Nar96] to solve an unification
problem modulo AC-like theories.

Definition 2 Let u be a term in normal form, u is headed with ⊕ if u is of the
form u1 ⊕ . . . ⊕ un with n > 1. Otherwise u is not headed with ⊕. We define
the function atoms(u) as follows:

• If u = u1 ⊕ . . . ⊕ un, where each of the ui is not headed with ⊕, then
atoms(u) = {u1, . . . , un}. The ui’s are called the atoms of u.

• If u is not headed with ⊕ then atoms(u) = {u}.

Example 1 t1 = u ⊕ 〈v, w〉 is headed with ⊕, but t2 = 〈u, v ⊕ w〉 is not, hence
atoms(t2) = {t2} and atoms(t1) = {u, 〈v, w〉}.

The definition of atoms(T) is generalized to sets of terms T in normal form
by setting atoms(T) :=

⋃
t∈T atoms(t). According to the definition, the function

atoms is monotone and idempotent.

Theorem 2 Let T be a set of terms and w be a term. The question whether
w is one-step deducible from T with any of the rules of Figure 1 is decidable in
polynomial time.

Proof: We show how to decide one-step deducibility only for the family of rules
(GX). Checking one-step deducibility for the other deduction rules of Figure 1
is straightforward since it is a simple matching problem for a finite number of
patterns.

With the following transformation the problem of testing one-step deducibil-
ity for the rule (GX) is equivalent to the solvability of a system of linear Dio-
phantine equations over Z/2Z.

• Input:

8

– A finite set of terms T = {t0, . . . , tn}

– A term w

• Output

– A system D(T, w) of linear Diophantine equations over the variables
X = {x0, . . . , xn} such that T . w if and only if D(T, w) is solvable
in Z/2Z.

• Algorithm

– To each ti we associate the variable xi for i = 0, . . . , n.

– Let A = {a1, . . . , am} be the set of atoms of T, w.

– If u ∈ A and t ∈ (T, w), let δ(u, t) denote the number of occurrences
of the atom u in t.

– For each ai ∈ A we introduce the equation:

δ(ai, w) =
n∑

j=0

δ(ai, tj) ∗ xj

which states that the number of occurrences of ai in w is equal to
the sum of the number of occurrences of ai in (a sum of) tj ’s. The
system D(T, w) is the conjunction of these equations:

D(T, w) :=
m∧

i=1

n∑
j=0

δ(ai, tj) ∗ xj = δ(ai, w)

Lemma 1 shows that this system has a solution if and only if w is de-
ducible from T in one step using the rule (GX). Since the former problem is in
PTIME [KKS87], w is deducible in one-step from T in PTIME. !

Example 2 Let T = {a1 ⊕a2 ⊕a3, a1 ⊕a4, a2 ⊕a4} and w = a1 ⊕a2, where all
the ai are not headed with ⊕. We introduce numerical variables x0, x1, x2, that
is one numerical variable for each element of T :

x0 for a1 ⊕ a2 ⊕ a3

x1 for a1 ⊕ a4

x2 for a2 ⊕ a4

For every atom ai we create an equation, we get the following equation sys-
tem: 



a1 : x0 + x1 = 1
a2 : x0 + x2 = 1
a3 : x0 = 0
a4 : x1 + x2 = 0

We solve this system over Z/2Z to know if w is deducible in one-step from T .

9

Lemma 1 Let TS = {t1, . . . , tn} and let wS be such that for 1 ≤ i ≤ n, ti =
c1,i ∗ a1 ⊕ . . . ⊕ cm,i ∗ am and wS = d1 ∗ a1 ⊕ . . . ⊕ dm ∗ am where {a1, . . . , am}
is the set of atoms of TS , wS. Let S be the following system of equations:




c1,1x1 + . . . + c1,nxn = d1
...

...
...

cm,1x1 + . . . + cm,nxn = dm

Then (S) is satisfiable if and only if wS is deducible from TS with exactly one
instance of the rule (GX).

Proof: The proof is in Appendix A !

Notice that the transformation adapted in the proof of Theorem 2 can be
used to prove the one-step deducibility for several other AC-like theories, for
example the theory of Abelian groups. In the general case the domain over which
this system of equations is solved depends on the equational theory considered.
For instance, in case of Abelian groups the equations have to be solved over Z.

6 Locality in General Case for XDE

In the first part of this section we list all the definitions of subterms that we shall
use. Then we define the different kinds of proofs and the relevant properties
that we need. Finally we prove that S⊕-locality is decidable in EXPTIME for
the XDE equational theory.

6.1 Terms and Subterms

We list the different definitions of subterms.as usual:

Definition 3 The set of syntactic subterms of a term t is the smallest set S(t)
such that:

• t ∈ S(t).

• If 〈u, v〉 ∈ S(t) then u, v ∈ S(t).

• If {u}v ∈ S(t) then u, v ∈ S(t).

• If u = u1 ⊕ . . . ⊕ un ∈ S(t) then atoms(u) ⊆ S(t).

S is extended to a set T of terms in normal form by (T) :=
⋃

t∈T S(t).
In the definition of S(t) we do not take care of the distributivity of the

encryption rule. Because we work only on normal forms the notion of a syntactic
subterm ignores the fact that the term {a}v⊕{b}v⊕{c}v is equal to {a⊕b⊕c}v,
and that a⊕ b ⊕ c should be considered to be a subterm of {a}v ⊕ {b}v ⊕ {c}v.
This is accounted for in the next definition.

Definition 4 For any term t, ST (t) is the smallest set such that:

(i) S(t) ⊆ ST (t).

10

(ii) If n > 1 and {u1}v ⊕ . . . ⊕ {un}v ∈ ST (t) then u1 ⊕ . . . ⊕ un ∈ ST (t).

The definition is extended to a set T of terms in normal form by setting
ST (T) :=

⋃
t∈T ST (t), hence S(T) ⊆ ST (T).

Example 3 Let T = {〈a ⊕ {c}k, {d}k〉, {a}k ⊕ {{b}k}k}, then S(T) = T ∪
{a, b, c, d, k, {a}k, {b}k, {c}k, {d}k, {{b}k}k} and ST (T) = S(T) ∪ {a ⊕ {b}k}

Proposition 2 For any set of terms M ⊆ TΣ, we have:

• atoms(M) ⊆ S(M) for any set of terms M ⊆ TΣ

• atoms(ST (M)) ⊆ ST (M)

• S(S(M)) = S(M) and ST (ST (M)) = ST (M)

Proof: Obvious from the definitions of S, atoms and ST . !

Example 4 Let P be a proof of T . w, where T = {u ⊕ v, {v}k, k}, w = {u}k.

(GX)

(Ck)

(A)
u ⊕ v ∈ T

T . u ⊕ v
(A)

k ∈ T

T . k

T . {u}k ⊕ {v}k
(A)

{v}k ∈ T

T . {v}k

T . {u}k

We compute ST (T, w) = {u, v, u ⊕ v, k, {u}k, {v}k}. This proof is not ST -local
since {u}k ⊕ {v}k is not in ST (T, w).

Example 4 suggests that we define a new notion of subterm such that {u}k⊕
{v}k ∈ S⊕(T, w). This new definition takes into account the partial sums of
ST (T) and is required to get the locality property.

Definition 5 Define S⊕ as all the combinations of terms of ST (T) by ⊕:

S⊕(T) :=
{

(
⊕
s∈M

s) ↓ | M ⊆ ST (T)
}

Note that 0 always belongs to S⊕, that the size of S⊕ is exponential in the
size of T and ST (T) ⊆ S⊕(T).

Example 5 Let T = {〈a, b〉}. Then we get ST (T) = {〈a, b〉, a, b} and S⊕(T) =
ST (T) ∪ {0, a ⊕ b, b ⊕ 〈a, b〉, a ⊕ 〈a, b〉, a ⊕ b ⊕ 〈a, b〉}.

We state now the main properties of subterms that we use in the following.

Proposition 3 Let A and B be two sets of terms in normal forms. The map-
pings S, ST and S⊕ are monotone and have the property:

• S(A ∪ B) = S(A) ∪ S(B)

• ST (A ∪ B) = ST (A) ∪ ST (B)

11

• S⊕(A) ∪ S⊕(B) ⊆ S⊕(A ∪ B)

Proof: Monotonicity is obvious from the definitions of S(T), ST (T) and
S⊕(T). !

In the last of the previous proposition inclusion may hold. For instance, let
S⊕({a}) = {0, a} and S⊕({0, b}) = {b}. Then S⊕(A) ∪ S⊕(B) = {0, a, b} ⊆
S⊕(A ∪ B) = {0, a ⊕ b, a, b} and S⊕(A) ∪ S⊕(B) 1= S⊕(A ∪ B).

Lemma 2 If T be a set of terms in normal form then ST (S⊕(T)) = S⊕(T).

Proof: By definition 4, S⊕(T) ⊆ ST (S⊕(T)).
We prove the reverse inclusion by induction on the number of applications

of the rule for ⊕ in the construction of ST (S⊕(T)) (step (ii) in Definition 4).
Let u ∈ ST (S⊕(T)), and let n be the number of applications of the rule

for ⊕. By induction hypothesis, we assume that each term u′ ∈ ST (S⊕(T))
obtained with less than n applications of the rule for ⊕ is in S⊕(T).

Base case n = 0: u ∈ ST (v) for some v ∈ S⊕(T), where v = v1 ⊕ . . . ⊕ vp

and all vi ∈ ST (T). If u = v then u ∈ S⊕(T).
Otherwise u 1= v. In this case u ∈ S(vi) ⊆ ST (vi) for some i (since vi ∈

ST (T) and S(ST (T)) = ST (T)). Since v ∈ S⊕(T) there exists a ti ∈ T such that
vi ∈ ST (ti). Therefore vi ∈ ST (ti) ⊆ ST (T) with ti ∈ T , hence u ∈ ST (ST (T)) =
ST (T) ⊆ S⊕(T) by idempotence of ST .

Induction step: let u = u1⊕ . . .⊕un be obtained from {u1}v ⊕ . . .⊕{un}v ∈
ST (S⊕(T)). By induction hypothesis {u1}v ⊕ . . .⊕{un}v ∈ S⊕(T). Hence there
exists a partition I1 ∪ . . . ∪ Iq = {1, . . . , n} such that for every j, 1 ≤ j ≤ q,
wj = ⊕i∈Ij

{ui}v ∈ ST (tj). Hence, ⊕i∈Ij
ui ∈ ST (tj) by definition of ST . As a

consequence, u ∈ S⊕(T). !

Corollary 3 Let M be a set of terms in normal form then S⊕(S⊕(M)) =
S⊕(M). The mappings S, ST and S⊕ are transitive.

Proof: The first property is a consequence of Lemma 2 and Proposition 2.
The second property is a consequence of the first one and Propositions 1 and 2.

!

6.2 Different Kinds of Proofs

We define several notions on proofs that we use in the remainder of the paper.

Definition 6 Let P be a proof of T . w.

• A subproof P ′ of P is a sub-tree of P .

• The size of a proof P , denoted by |P |, is the number of nodes in P .

• The proof P is simple if each node T . v occurs at most once on each
branch and a node T . v occurs in every instance of (GX) at most once
as hypothesis of the rule (GX).

12

• The proof P is flat if there is no (GX) rule immediately above another
(GX) rule.

Since two successive (GX) rules can be merged into a single (GX) rule, each
proof can be transformed into an equivalent flat proof. To get a simple proof,
we eliminate the part of the proof between two occurrences of the same node in
a branch and in the hypothesis of a rule (GX). This simplification terminates
since it decreases |P |.

Lemma 4 Let P be a simple proof then (i) there is no rule (Dv) just after a
rule (Cv) in P , (ii) there is no rule (Cv) just after a rule (Dv) in P .

Proof: This is an immediate consequence of the simplicity. !

Definition 7 Let P be a flat proof of T . w. P is a ⊕-eager proof if there is
at most one rule (Cv) with the same key v immediately above a (GX) in P and
there is no rule (Dv) just after a (GX) with a rule (Cv) just above (GX).

Intuitively, in a ⊕-eager proof the (GX) rule is applied as early as possible.

Example 6 The following proof with T = {u, v, k, {v}k} and w = {u}k is not
⊕-eager.

(GX)

(C)

(A)
u ∈ T

T " u
(A)

k ∈ T

T " k

T " {u}k

(C)

(A)
v ∈ T

T " v
(A)

k ∈ T

T " k

T " {v}k

(A)
{v}k ∈ T

T " {v}k

T " {u}k

We can transform it into a ⊕-eager simple proof:

(GX)

(C)

(A)
k ∈ T

T . k
(GX)

(A)
u ∈ T

T . u
(A)

v ∈ T

T . v

T . u ⊕ v

T . {u ⊕ v}k = {u}k ⊕ {v}k
(A)

{v}k ∈ T

T . {v}k

T . {u}k

However, these proofs are not the shortest ones since there is a smaller proof:

(C)

(A)
u ∈ T

T . u
(A)

k ∈ T

T . k

T . {u}k

Now we present some transformations on proofs.

Proposition 4 All the transformations of proofs given in Figures 3, 4 and 5
decrease the number of nodes.

13

(GX)

(GX)
T . x1 . . . T . xn

T . x1 ⊕ . . . ⊕ xn T . y1 . . . T . ym

T . x1 ⊕ . . . ⊕ xn ⊕ y1 ⊕ . . . ⊕ ym

⇓

(GX)
T . x1 . . . T . xn T . y1 . . . T . ym

T . x1 ⊕ . . . ⊕ xn ⊕ y1 ⊕ . . . ⊕ ym

Figure 3: Transformation of (GX)-(GX) into (GX)

(GX)

(Cv)
T . x1 T . v

T . {x1}v
. . . (Cv)

T . xn T . v

T . {xn}v
(R1)

...

T . z1
. . .(Rm)

...

T . zm

T . {x1}v ⊕ . . . ⊕ {xn}v ⊕ z1 ⊕ . . . ⊕ zm

⇓

(GX)

(Cv)

(GX)
T . x1 . . . T . xn

T . x1 ⊕ . . . ⊕ xn T . v

T . {x1}v ⊕ . . . ⊕ {xn}v (R1)

...

T . z1
. . .(Rm)

...

T . zm

T . {x1}v ⊕ . . . ⊕ {xn}v ⊕ z1 ⊕ . . . ⊕ zm

Figure 4: Transformation of (Cv)-(GX) into (GX)-(Cv), all (Ri) are different of (Cv) and if
n ≥ 2

(Dv)

(GX)

(R1)
T " B1

T " B′

1

. . . (Rn)
T " Bn

T " B′

n

(Cv)
T " B T " v

T " {B}v

T " {u}v
T " v

T " u

⇓

(Dv)

(GX)

(GX)

(R1)
T " B1

T " B′

1

. . . (Rn)
T " Bn

T " B′

n

T " {c}v

(Cv)
T " B T " v

T " {B}v

T " {u}v
T " v

T " u

⇓

(GX)

(Dv)

(GX)

(R1)
T " B1

T " B′

1

. . . (Rn)
T " Bn

T " B′

n

T " {c}v
T " v

T " c T " B

T " u = c ⊕ B

Figure 5: Elimination of a rule (Dv) after a (GX) with a rule (Cv) just above the (GX) (Ck)-
(GX)-(Dk), with n ≥ 2.

14

Proof: We denote by πx the subproof of P with root T . x. Observe first that
all the transformations transform a proof with some hypotheses and a conclusion
into a proof of the same hypotheses and the same conclusion.

In Figure 3 it is obvious.
In Figure 4 the number of nodes of the initial proof is Σi=m

i=1 |πzi
|+Σi=n

i=1 |πxi
|+

n|πv|+n+1 and the final proof contains Σi=m
i=1 |πzi

|+Σi=n
i=1 |πxi

|+ |πv|+3 nodes,
which is less since n ≥ 2.

In Figure 5 the first proof has Σi=n
i=1 |πB′

i
| + |πB| + 2|πv| + 3 nodes and the

last proof has Σi=n
i=1 |πB′

i
| + |πB| + |πv| + 3 nodes. Hence, the number of nodes

decreases. !

Lemma 5 If there is a proof of T . w then there is also a ⊕-eager and simple
proof of T . w.

Proof: Let P be a proof of T . w. The transformation rules given in Fig-
ures 3, 4 and 5 decrease |P | as well as the transformation to get a simple rule.
Therefore the application of rules eventually terminates with an ⊕-eager simple
proof of T . w. !

6.3 Properties of Proofs in the XDE Case

First, we demonstrate a technical lemma used in the proof of Lemma 7. Then
we prove Lemma 7 and Lemma 8 which show that (i) the premise (a pair) in
the rules (UL-UR) belongs to S(T) (ii) the encrypted term which is a premise
of (D) belongs to S⊕(T). These lemmata are similar to lemmata in [CLS03].

Lemma 6 Let P be a simple proof of the form:

P =




P1 . . . Pn

T . w

If T . u does not occur in any of P1, . . . , Pn and 〈u, v〉 ∈ S(w) then there is at
least one Pi and there exists w′ such that 〈u, v〉 ∈ S(w′) and either the root of
Pi is T . w′ or w′ ∈ T .

Proof: The proof is detailed in Appendix B. !

Lemma 7 Let P be a simple proof of T . u or T . v. If P is one of

(UL)

...

T . 〈u, v〉

T . u
(UR)

...

T . 〈u, v〉

T . v

then 〈u, v〉 ∈ S(T).

15

Proof: Let us assume that the last rule is (UL), the case (UR) is similar.

P =




P1 . . . Pn

T . 〈u, v〉

T . u

P is simple so T . u does not occur in any of P1, . . . , Pn. Hence, we can apply

Lemma 6 to
P1 . . . Pn

T . 〈u, v〉
. Either 〈u, v〉 ∈ T , or there is some Pi with root T . w

such that 〈u, v〉 ∈ S(w) and T . u does not occur in Pi. Lemma 6 can be
applied again and the iteration of this reasoning finally leads to 〈u, v〉 ∈ T . !

Lemma 8 Let P be a ⊕-eager and simple proof of T . u. If P is

(D)

(R)

...

T . {u}v ↓ = r

...

T . v ↓

T . u

then {u}v ∈ S⊕(T).

Proof: The proof is technical and detailed in Appendix B. !

6.4 Normality

In the rest of the paper, we precise S(T)-local proof instead of S-local, where
T is the set of terms on which S is applied.

We define first a new kind of proof, the normal proofs. A normal proof consist
of initial subproofs which are S⊕(T)-local, followed by a proof tree consisting
only of the rule (GX), (C), and (P). We show that we can transform any proof
into a normal proof.

Definition 8 Let P be a proof of T . u. P is a normal proof if :

• either u ∈ S⊕(T) and P is an S⊕(T)-local proof,

• or P = C[P1, . . . , Pn] where every proof Pi is a normal proof of some
T . vi with vi ∈ S⊕(T) and the context C is built using the inference rules
(P), (C), (GX) only.

Lemma 9 If there is a simple and ⊕-eager proof of T . w then there is a
normal proof of T . w.

Proof: Using Lemma 8 and Lemma 7 we can construct a normal proof from
a simple and ⊕-eager one. The details of the proof are in Appendix B. !

We prove now that a normal proof is stable by the transformation rules used
in the construction of ⊕-eager and simple proofs.

16

Lemma 10 Let P be a normal proof of T . w. Then the application of the
simplification rule and of the proof transformations of Figure 3, 4 and 5 to P
terminates and yields a normal, ⊕-eager and simple proof of T . w.

Proof: We show that the simplification rule and the transformation rules of
figures 3, 4 and 5 transform a normal proof into a normal proof. We assume
that the initial proofs are normal and we prove that the resulting proofs are still
normal.

• Simplification rule: straightforward since no new term is constructed and
since the order of applications of rules is preserved.

• Flattening rule Figure 3: straightforward.

• Rule of Figure 4: we know that the sub-proofs of T . xi, T . zi and
T . v are normal. Since the transformation only permutes applications
of (GX) and (Cv) rules, the only case to consider is the preservation of
S⊕(T)-locality. If w = {x1}k⊕ . . .⊕{xn}k⊕z1⊕ . . .⊕zm ∈ S⊕(T) then all
nodes of the transformed proof are in S⊕(w) and hence belong to S⊕(T).
As a consequence, the transformation yields a normal proof.

• Rule of Figure 5: Since the sub-proof is normal and the last rule is (Dv)
it is in fact an S⊕(T)-local sub-proof. In the result we have to prove that
all nodes are in S⊕(T). Note that the second step of the transformation
all nodes are in S⊕(T) by definition of S⊕. Since {c}v, v, A ∈ S⊕(T) we
obtain that all nodes of the transformed proof are in S⊕(T). Hence, the
result of the transformation is also an S⊕(T)-local sub-proof.

Since all the transformations decrease |P |, the application of rules eventually
terminates. !

Lemma 11 Let P be a ⊕-eager and simple proof of T . w then
P is normal if and only if P is S⊕(T, w)-local.

Proof: We show the two directions of the equivalence.
Direction ⇐: Let us assume that P is S⊕(T, w)-local and prove that P is

normal.

• If w ∈ S⊕(T) then P is S⊕(T)-local i.e. P is normal.

• If w 1∈ S⊕(T) then we proceed by structural induction on P . The base
case is trivial, consider the last rule:

– (UR), (UL), (D): impossible since Lemma 7 and Lemma 8 show that
w ∈ S⊕(T) which contradicts the hypothesis.

– (P), (C), (GX): by induction hypothesis, the hypotheses wi of the
rule stem from normal proofs. Since the last rule is (P), (C) or (GX)
the proof P is normal.

17

Direction ⇒: Let us assume that P is normal and prove that P is S⊕(T, w)-
local.

• w ∈ S⊕(T): In this case, P is S⊕(T)-local, hence S⊕(T, w)-local.

• w 1∈ S⊕(T): We proceed by structural induction on P . The base case is
trivial. Consider the last rule of P :

– (UR), (UL), (D): impossible by definition of normal proof.

– (P), (C): these cases are similar, we just give the proof for (C). P

is s.t.
T . w1 T . w2

T . {w1}w2
= w

. By definition for i = 1, 2 wi ∈ S⊕(T, wi),

wi ∈ ST ({w1}w2
) = ST (w) ⊆ S⊕(w), and the induction hypothesis

which guarantees that all nodes of the sub-proofs are in S⊕(T, wi),
we conclude that P is S⊕(T, w)-local.

– (GX): P is s.t. (GX)

(R1)
T . B1

T . B′
1

. . . (Rn)
T . Bn

T . B′
n

T . w
. We will

prove that all B′
i are in S⊕(T, w). Consider the different cases for the

(Ri):

(A): by definition, B′
i ∈ S⊕(T).

(UR), (UL), (D): by Lemma 7 or by Lemma 8 we get that B ′
i ∈

S⊕(T).

(GX): impossible since P is ⊕-eager , which implies that P is flat.

(P): if B′
i ∈ S⊕(T) then the claim holds, otherwise B ′

i 1∈ S⊕(T).
Either B′

i is not canceled in the ⊕, then B′
i ∈ ST (w) ⊆ S⊕(w), or

otherwise B′
i is canceled by another element of the sum B ′

j . Since
B′

i is a pair B′
j can neither stem from a rule (C) nor from a rule (P)

since P is simple. Hence, it stems from one of the rules (A), (UL),
(UR) or (D) and B′

i ∈ ST (B′
j). According to Lemma 7 and Lemma 8

we have that B′
j ∈ S⊕(T), hence the claim holds by transitivity of

S⊕.

(Ck): if B′
i ∈ S⊕(T) then the claim holds immediately, otherwise

B′
i 1∈ S⊕(T). Note that B′

i can be partially canceled in the sum.
There are two possibilities for the atoms of B ′

i: to be present in
w, in which case atoms(B′

i) ∈ atoms(ST (w)) ⊆ atoms(S⊕(w)), or
to be canceled by other elements B ′

j of the sum, in which case
atoms(B′

i) ∈ atoms(S⊕(B′
j)) ⊆ atoms(S⊕(T)). In the latter case,

since B′
i is encrypted by the key k, B′

j can neither be the result of a
rule (Cv) with v 1= k, nor the result of a rule(Ck) since P is ⊕-eager ,
nor (P), hence it stems from one of the rules (A), (UL), (UR) or
(D). We conclude from Lemma 7 and Lemma 8 that B ′

j ∈ S⊕(T)
by using the transitivity of S⊕. In summary, for all i we get that
atoms(B′

i) ∈ atoms(S⊕(T, w)), that is B′
i ∈ S⊕(T, w). Hence, P is

S⊕(T, w)-local.

!

18

6.5 Locality in the General Case

Theorem 3 If there exists a proof of T . w then there exists an S⊕(T, w)-local
proof of T . w.

Proof: Let P be a proof of T . w. By Lemma 5 we can get a ⊕-eager
simple proof of T . w. By Lemma 9, we can get a normal proof of T . w. By
Lemma 10 we obtain a ⊕-eager simple and normal proof of T . w. We can now
apply Lemma 11 to prove that there is an S⊕(T, w)-local proof of T . w. !

Corollary 12 The problem of intruder deduction for the theory XDE is decid-
able in EXPTIME.

Proof: With Theorem 1 of locality adapted from McAllester’s algorithm,
Theorem 2 stating that one-step deducibility is in PTIME, the fact that com-
puting S⊕(T, w) is in EXPTIME, and Theorem 3 which ensures S⊕-locality we
obtain that the problem of intruder deduction for the theory XDE is decidable
in EXPTIME. !

7 Intruder Deduction in the Binary Case

We call a term in normal form top-binary if it is the sum of two different terms
not headed with ⊕, and at most binary if all its syntactic subterms are either
top-binary or not headed with ⊕. A set is at most binary if each of its elements
is. A proof tree P is called at most binary if for all its nodes T . u the term u
is at most binary.

We call two terms t1 and t2 in normal form disjoint if atoms(t1)∩atoms(t2) =
∅.

Our goal is to give a polynomial algorithm for the intruder deduction prob-
lem when the set of hypotheses and the conclusion are at most binary. Existence
of such an algorithm will be assured by a locality result for some subterm func-
tion which, when applied to at most binary terms, yields only at most binary
terms. This requires a new proof normalization since, as the following example
shows, a ⊕-eager -proof may involve terms with more than two atoms even if
the hypotheses and the conclusion are at most binary.

Example 7 The following proof of {b}k ⊕{c}k with T = {k, a⊕ b, d⊕ c, {d}k ⊕
{a}k} is simple and ⊕-eager but not binary.

(GX)

(C)

(A)
k ∈ T

T . k
(GX)

(A)
a ⊕ b ∈ T

T . a ⊕ b
(A)

c ⊕ d ∈ T

T . c ⊕ d

T . a ⊕ b ⊕ c ⊕ d

T . {a}k ⊕ {b}k ⊕ {c}k ⊕ {d}k
(A)

{a}k ⊕ {d}k ∈ T

T . {a}k ⊕ {d}k

T . {b}k ⊕ {c}k

19

7.1 A Variant of the Proof System

Definition 9 Let, for any set T of terms in normal form,

S⊕2(T) = ST (T) ∪ {a1 ⊕ a2 | a1, a2 ∈ ST (T), a1 1= a2}

Obviously we have that ST (T) ⊆ S⊕2(T) ⊆ S⊕(T) for any set T .
Our goal is to prove that a variant of the proof system, which is equivalent

in deductive power to the original one, is S⊕2-local. The difference between the
original proof system and the new one is that certain proof-trees consisting of
the rules (C), (GX) and (D) are collapsed into one instance of a new deduction
rule called (GCD). We first define the general form of a GCD-proof tree which
we will later slice into several instances of the (GCD) rule.

Definition 10 A proof tree P is a GCD-proof tree with set of leaves L, set of
keys K, and root u in any of the following cases:

1. P consists of a single node T . u and L = {u}, K = ∅,

2. or P is of the form (C)
P T " k

T " u
where P is a GCD proof tree with root

u′, leaves L and set of keys K ′, K = K ′ ∪ {k}, and {u′}k ↓ = u,

3. or P is of the form (D)
P T " k

T " u
where P is a GCD proof tree with root

u′, leaves L and set of keys K ′, K = K ′ ∪ {k}, and {u}k ↓ = u′,

4. or P consists of (GX)
P1 · · · Pn

u
with n ≥ 1 such that every Pi is a GCD-

proof tree with respective leaves Li, root u1, and set of keys Ki, and K =⋃n
i=1 Ki ∪ K ′ and L =

⋃n
i=1 Li.

In particular, any instance of one of the rules (GX), (C), or (D) is a GCD-
proof tree. We can hence imagine any proof tree as composed of of the rules
(A), (UL), (UR), (P), and of GCD-proof trees (remark that we shall use non-flat
proofs).

7.2 Locality in the binary case

Definition 11 A term v is in key position of a normal term w if {t}v ∈ S(w)
for some term t.

Lemma 13 Let P be a ⊕-eager and simple proof of T . w. All nodes which
are hypothesis of a rule (A), (UR), (UL), (P) or which are in key position in a
node of P are in S(T, w).

Proof: According to Lemma 7 or the definition of T if a node is an hypothesis
of a rule (A), (UR), (UL) then this node is in S(T).

If a node is the conclusion of the rule (P) then it is a pair, by Theorem 3
applying on P a simple and ⊕-eager proof of T . w, the pair is in S⊕(T, w). By

20

definition of S⊕ the only possibility to get a pair in S⊕(T, w) is that the pair is
in S(T, w). By consequence the hypothesis of the rule (P) are in S(T, w).

Now consider the last case, a node T . v of P where v is in key position in
a node {u}v of P . The result of locality on P gives that {u}v ∈ S⊕(T, w). The
construction of S⊕ builds all possible sums of elements of ST (T, w). It does not
add any applications of the encryption symbol. Hence {u}v ∈ ST (T, w), since
v ∈ S({u}v), we obtain that v ∈ ST (T, w). By the definition of the set ST (T, w)
if v is a term in key position and v ∈ ST (T, w) then v ∈ S(T, w). !

The following proposition is the key to obtaining S⊕2-locality. We recall
that two terms are called disjoint if their respective sets of atoms are disjoint.

Proposition 5 Let U be a finite set of at most binary terms and u =
⊕

U ↓.
There exist pairwise disjoint sets of terms U1, . . . , Uk ⊆ U such that:

1.
⊕

Ui ↓ is at most binary for 1 ≤ i ≤ k.

2.
⊕

Ui ↓ and
⊕

Uj ↓ are disjoint for i 1= j.

3.
⊕k

i=1(
⊕

Ui ↓) = u.

Note that, since all the
⊕

Ui ↓ are pairwise disjoint, we have that

(
k⊕

i=1

(
⊕

Ui ↓)) ↓ =
k⊕

i=1

(
⊕

Ui ↓)

Proof: The proof is by induction on the number of elements in U . If u = 0
then we choose k = 0. Otherwise U is non-empty. Let a ∈ atoms(u). Then there
exists a (at most binary) term u0 ∈ U such that a ∈ atoms(u0). Application of
the induction hypothesis to U ′ = U \{u0} yields a decomposition into l pairwise
disjoint sets U ′

1, . . . , U
′
l ⊆ U ′. Let u′ =

⊕
U ′ ↓. We have that u = (u′ ⊕ u0) ↓.

1. If u0 is not headed with ⊕ then, since u0 appears in atoms(u), it can
not appear in atoms(u′). We choose k = l + 1, Ui = U ′

i for i < k , and
Uk = {u0}.

2. If u0 is binary with atoms(u0) ∩ atoms(u′) = ∅ then u = u′ ⊕ u0. We
choose k = l + 1, Ui = U ′

i for i < k , and Uk = {u0}.

3. If u0 is binary, say u0 = a⊕ b, and b ∈ atoms(u′) then there exists a term
u1 and some set U ′

i such that b ∈ atoms(u1) and u1 ∈ U ′
i . We choose

k = l, Ui = U ′
i ∪ {u0}, and Uj = U ′

j for j 1= i.

!

Lemma 14 Let P be a GCD-proof tree with leaves L, set of keys K, and root
r. If L and r are at most binary then there exists an at most binary GCD-proof
tree P ′ with leaves L′ ⊆ L, keys K ′ ⊆ K, and root r.

21

Proof: First note that for any instance of a rule (C) or (D), which can be seen
as special cases of GCD-proof trees, the root is at most binary if and only if the
leaf is at most binary. Hence, if all instances of (GX) in the proof tree P have
an at most binary result then P is at most binary.

Otherwise, there exists an instance of (GX) whose result is not at most
binary and where all the leaves are at most binary. Since the root of P is at
most binary, the path from the root of the instance of (GX) to the root of P
eventually leads to another instance of the (GX) rule. That is, we have a proof
tree of the following form

(GX)

(GX)
T . u1 · · · T . un

(C,D)

(C,D)
T . u (= (u1 ⊕ · · · ⊕ un) ↓)

...

T . u′ P1 · · · Pn

P

where (C,D) is any instance of a rule (C) or (D), and where the keys are omit-
ted for the sake of clarity. By Proposition 5 there are pairwise disjoint sets
U1, . . . , Uk ⊆ {u1, . . . , un} such that the normal forms of their respective sums
are at most binary and pairwise disjoint, and such that

⊕
i(

⊕
Ui ↓) = u =

(u1 ⊕ . . . ⊕ un) ↓. We hence obtain, where we abbreviate by T . Ui the set of
sequents {T . z | z ∈ U}:

(GX)

(GX)

(GX)
T . U1

T . v1 · · ·
(GX)

T . Un

T . vn

(C,D)

(C,D)
T . u (= v1 ⊕ . . . ⊕ vn)

...

T . u′ P1 · · · Pn

P

In this proof tree we hence have that vi = (
⊕

Ui) ↓ for every i. We can now
apply the inverse transformation of Figure 4 and commute the (GX) rule with
succeeding (C) rules. Since the premises of the newly introduced instance of
(GX) are all disjoint we can also commute this (GX) rule with succeeding (D)
rules. We hence obtain:

(GX)

(GX)
T . U1

(C,D)
T . v1

(C,D)

...

T . u′
1

(GX)
T . Un

(C,D)
T . vn

(C,D)

...

T . u′
n P1 · · · Pn

P

where u′ = u′
1 ⊕ . . . ⊕ u′

n. We may now apply the induction hypothesis to this
proof tree since the number of instances of (GX) with a non at most binary
result has decreased by one. !

22

We can now define the (GCD) proof rule: An instance of this rule is a
particular form of a GCD-proof tree.

Definition 12 The rule (GCD) consists of all GCD-proof trees with exactly one
instance of (GX), where all instances of (C) are above the (GX) rule, and all
instances of (D) are below the (GX) rule.

Lemma 15 Let P be a simple and ⊕-eager GCD-proof tree with leaves L, keys
K, and root r. If L ∪ {r} ∈ S⊕2(T) for some set of terms T then there exists a
proof tree using exclusively the (GCD) rule such that all nodes are in S⊕2(T).

Proof: Let P ′ be the at most binary proof tree obtained from P by the
transformation of the proof of Lemma 14. We may assume w.l.o.g. that P ′

is simple, hence the only possible sequence of rule applications between two
consecutive (GX) rules is some applications of (D), followed by some applications
of (C). The “frontier” between two instances of the rule (GCD) is at the end of
the sequence of (D) rule applications. Since u ∈ S⊕2(T) by hypothesis, we also
have that vi ∈ S⊕2(T) since the vi are pairwise disjoint. As a consequence, any
term obtained by a sequence of decryptions form vi is also in S⊕2(T). !

Theorem 4 If T, w are at most binary then T . w is derivable if and only if
there exists an S⊕2(T, w)-local proof of T . w using rules (A),(UL), (UR), (P),
and (GCD) only.

Proof: If there is a proof of T . w. By Theorem 3 there is a S⊕-local proof
of T . w which is simple and ⊕-eager. By Lemma 13 all nodes which are
hypotheses or conclusion of one of (A), (UL), (UR) or (P) are in ST (T, w) ⊆
S⊕2 = (T, w). By Lemma 15 we can transform any GCD-proof tree into a proof
tree using the (GCD) rule only and where all nodes are in S⊕2(T, w). !

7.3 Deciding One-step deducibility by the (GCD) rule

In this section we will use an abbreviation for sequences of encryptions and write
{m}x1···xn for {· · · {m}x1

· · · }xn .
We are now faced with the problem of checking whether, for a given set U

of at most binary terms and an at most binary term r there is an instance of
rule (GCD) with leaves and keys contained in U and root r. There are three
possible cases to consider:

1. r is not headed with ⊕, and there is a sequence of top-binary terms
({ai}vi

⊕ {bi}vi
)i=1,...,N in U , a term aN+1 ∈ U not headed with ⊕, and

a sequence (hi)i=0,...,N+1 of words in U∗ such that {r}h0
= {a1}v1h1

and
{bi}vihi

= {ai+1}vi+1hi+1
for i = 1, . . . , N .

2. r is a top-binary term r1 ⊕ r2, and there are two instances of the rule
(GCD) as in the first case with roots r1, resp. r2, and with the same
sequence of keys h0.

23

3. r is a top-binary term r1 ⊕ r2, and there is a sequence of top-binary terms
({ai}vi

⊕ {bi}vi
)i=1,...,N in U and a sequence (hi)i=0,...,N of words in U∗

such that {r1}h0
= {a1}v1h1

, {bi}vihi
= {ai+1}vi+1hi+1

for i = 1, . . . , N −1,
and {bN}vNhN

= {r2}h0
.

...... ...
(GX)

(C) (C) (C)

(C) (C) (C)

(D)

(D)

(C)

(C)

(C)

(C)

(C)

(C)

Figure 6: Illustration of the third case

In the following we will only consider the last case, which is illustrated by
Figure 6, since the first two cases can be checked in a very similar way.

The idea is to reduce the problem to reachability in a prefix rewrite sys-
tem [Cau92]. Let us first explain the construction at hand of a special case. We
view a term {a}x, where a is not headed with ⊕ and not of the form {m}k, as the
term ax. That is, the string representation consists of a constant denoting the
message, followed by the sequence of keys from the innermost to the outermost
encryption. Alternatively, this can be seen as a configuration of a pushdown
process with state a and stack x, where the innermost encryption key is on top
of the stack.

If we ignore for the moment possible instances of the rule (D), and if we
assume for the moment that all terms in key positions of terms in U are also
contained in U then we can just construct the prefix rewrite system which allows,
for any binary term {a}v ⊕ {b}w ∈ L, to rewrite any term avx into bwx, and
vice versa:

{av → bw | {a}v ⊕ {b}w ∈ U or {b}w ⊕ {a}v ∈ U}

If we wish to check for an instance of the rule (GCD) with root {a}v ⊕ {b}w

then we just have to test whether the string av rewrites to the string bw in this
prefix rewrite system.

The first difficulty is that some of the keys may not be contained in U . In
this case we may rewrite avx into bwx only if x ∈ U ∗. We can implement this
check, in terms of a pushdown process, by maintaining a marker symbol # on
the stack which is always at the topmost position such that all symbols below
are in U . Formally, let left(x) and right(x), for any string x, be such that
x = left(x) · right(x), and such that right(x) is the maximal suffix of x which lies
in U∗. Then we construct the rewrite system as follows, in order to assure that

24

all redexes comprise, or are adjacent to the marker #:

{ a left(v)#right(v) → b left(w)#right(w) |

{a}v ⊕ {b}w ∈ U or {b}w ⊕ {a}v ∈ U }

Finally, it may be possible that the result of the (GCD) rule is only obtained after
some sequence of decryptions from the result of the (GX) rule. We hence cut
now the rewrite process in two consecutive processes. During the first process,
if we have a stack x and wish to apply a rewrite rule the left-hand side of
which contains x as a proper prefix then we just put the missing symbols with a
negative sign on the stack. In the second process we do the reverse action, that
is if some negative symbols are on the top of the stack and if the right hand
side of the rewrite rule produces these symbols, then we just pop these negative
symbols from the stack. We denote the negation of a symbol a as a. The states
of the second process are decorated with a hat in order to keep the two state
spaces disjoint. We denote by x for any x = x1 · · ·xn the string xn · · ·x1 (note
the inversion of the order). The symbol ⊥ is used to denote the right end of a
string (i.e., the bottom of a stack).

Definition 13 We define sta({t}k) = sta(t), sta(t) =
⋃

a∈atoms(t) sta(a), and
sta(t) = {t} if t is not headed with ⊕ and not of the form {x}y.

We define keys({t}k) = keys(t) ∪ {k}, keys(t) =
⋃

a∈atoms(t) keys(a), and
keys(t) = {} if t is not headed with ⊕ and not of the form {x}y.

For a set T of terms we define sta(T) =
⋃

t∈T sta(t) and keys(T) =
⋃

t∈T keys(t).

Example 8 Let T = {a}bc ⊕{d}e ⊕{d}ce, then sta(T) = {a, d} and keys(T) =
{b, c, e}.

We define, for given set U of at most binary terms and an at most binary
term r two prefix rewrite systems. Let Q = sta(U, r) and C = keys(U, r).

1. The prefix rewrite system PR1 is defined by the following rules:

{ a left(v)#right(v) → b left(w)#right(w)

a left(v)#v1γ → b left(w)#right(w)v2γ |

{a}v ⊕ {b}w ∈ U or {b}w ⊕ {a}v ∈ U,

v1v2 = right(v),

γ ∈ {⊥} ∪ {u | u ∈ U} }

2. The prefix rewrite system PR2 is defined by the following rules:

{ â left(v)#right(v) → b̂ left(w)#right(w)

â left(v)#right(v)w2 → b̂ left(w)#w1 |

{a}v ⊕ {b}w ∈ U or {b}w ⊕ {a}v ∈ U,

w1w2 = right(w) }

25

These two rewrite systems are symmetric one to the other with the technical
exception that the symbol γ in the system PR1 serves to ensure the invariant
that no negative symbol occurs to the left of a non-negative symbol. The system
PR2 maintains this invariant since it can not push negative symbols.

The following two lemmata state the central property of each of these two
prefix rewrite systems:

Lemma 16 The following two assertions are equivalent for every a, b ∈ Q,
x1, y1 ∈ {ε} ∪ C∗(C \ U), x2, y2, y3 ∈ U∗:

1. There is a prefix rewrite sequence by PR1

ax1#x2⊥)→∗ by1#y2y3⊥

2. either a = b, x1 = y1, x2 = y2, y3 = ε,
or there exists a sequence of binary terms {ai}vi

⊕{bi}wi
∈ U , i = 1, . . . , n,

and a sequence of strings hi ∈ U∗, i = 1, . . . , n, such that

(a) {a}x1x2y3
= {a1}v1h1

(b) {bi}wihi
= {ai+1}vi+1hi+1

for i = 1, . . . , n − 1

(c) {bn}wnhn = {b}y1y2

and such that for some i the longest common suffix of y3 and hi is ε.

Lemma 17 The following two assertions are equivalent for every a, b ∈ Q,
x1, y1 ∈ {ε} ∪ C∗(C \ U), x2, y2, y3 ∈ U∗:

1. There is a prefix rewrite sequence by PR2

âx1#x2x3⊥)→∗ b̂y1#y2⊥

2. either a = b, x1 = y1, x2 = y2, y3 = ε,
or there exists a sequence of binary terms {ai}vi

⊕{bi}wi
∈ U , i = 1, . . . , n,

and a sequence of strings hi ∈ U∗, i = 1, . . . , n, such that

(a) {a}x1x2
= {a1}v1h1

(b) {bi}wihi
= {ai+1}vi+1hi+1

for i = 1, . . . , n − 1

(c) {bn}wnhn = {b}y1y2x3

and such that for some i the longest common suffix of y3 and hi is ε.

The proof of these two lemmata can be found in the appendix, Section C.
We can finally define the complete rewrite system as consisting of the fol-

lowing rules:
PR1 ∪ PR2 ∪ {a → â | a ∈ Q}

Hence, if t and s are both not of the form {m}k then there is a proof of T .
{t}v ⊕ {s}w if and only if for some u, x1, x2, x3:

t left(v)#right(v)⊥)→∗ u x1#x2x3)→ û x1#x2x3)→∗ ŝ left(w)#right(w)⊥

26

Lemma 18 Let L be a set of at most binary terms, K a sets of terms, and r
an at most binary term. It is decidable in polynomial time whether there exists
an instance of the (GCD) rule with leaves L, keys K, and root r.

Proof: By Lemmata 16 and 17, checking an instance of (GCD) reduces to
a reachability problem in a prefix rewrite system of polynomial size (note that
we may w.l.o.g. exclude instances of (GCD) where all hypotheses of (GX) are
obtained by some (Cv) and where there is (Dv) immediately below the (GX)).
This can be done in polynomial time [Cau92]. !

As a consequence we obtain:

Theorem 5 The binary intruder deduction problem for the equational theory
XDE is decidable in polynomial time.

8 Conclusion

Related works. The use of locality in the analysis of cryptographic protocols
has been used first in [RT01], and later on by [CLS03, CKRT03]. In [LLT05], we
studied the case of a homomorphic operator that distributes over some binary
operation ⊕ which can be one of a the free associative-commutative operator,
the exclusive-or operator, or the addition of an Abelian group. The EXPTIME
result that we obtained for the intruder deduction problem for the theory of
exclusive-or and a homomorphism has been strengthened in [Del05] to get a
PTIME decision procedure by means of the resolution of polynomial equations
in Z/2Z[X]. There are two main differences with the present work: First, the
homomorphism is an isolated operation not related to the encryption opera-
tion, which is less realistic than our model. Second, the polynomial complexity
obtained in [Del05] relies on the fact that there is only a fixed number of ho-
momorphisms, while our case can be seen as the one of an infinite family of
homomorphisms (one for every possible key). Even in light of a locality result,
which implies that only the keys occurring in the goal term or in the set of hy-
potheses are relevant for a proof, the number of homomorphisms still depends
in our case on the problem instance.

A main step of our approach in the binary case uses an idea which is similar
to the one used in [Del05]: regroup certain combinations of “⊕-constructions”,
encryptions, and (in our case) decryptions into one “macro” rule, the instances
of which are then decided by an ad-hoc method.

Further work. The first main issue raised by our result is to extend this
framework to the case of a commutative encryption, i.e. {{x}y}z = {{x}z}y. A
preliminary work in this direction suggests that the same approach can be used
successfully, but that a lower EXPSPACE bound could be established in case of
non-symmetric keys, i.e. when there is an explicit operation I to compute the
inverse of a key such that a term {x}y can be decrypted only if one knows I(y).

The second main issue that is still not solved is the extension to the case of
an active intruder. Although it seems that the problem is decidable for the case
of a homomorphic operation which is not the encryption, the extension to our
framework seems quite difficult.

27

References

[AG99] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Information and Computation, 148(1):1–
70, January 1999.

[AR00] Martín Abadi and Phillip Rogaway. Reconciling two views of cryp-
tography (the computational soundness of formal encryption). In
Proc. 1st IFIP International Conference on Theoretical Computer
Science (IFIP–TCS), volume 1872 of Lecture Notes in Computer
Science, pages 3–22. Springer-Verlag, 2000.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[Cau92] Didier Caucal. On the regular structure of prefix rewriting. Theo-
retical Computer Science, 106(1):61–86, 1992.

[CDL05] Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A
survey of algebraic properties used in cryptographic protocols. Jour-
nal of Computer Security, 2005. To appear.

[CJ97] J. Clark and J. Jacob. A survey of authentication protocol literature.
http://www.cs.york.ac.uk/~jac/papers/drareviewps.ps, 1997.

[CKRT03] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP
decision procedure for protocol insecurity with XOR. In Proc. of 18th
Annual IEEE Symposium on Logic in Computer Science (LICS’03),
pages 261–270, Ottawa (Canada), 2003. IEEE Comp. Soc. Press.

[CLS03] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint
solving and insecurity decision in presence of exclusive or. In Proc.
of 18th Annual IEEE Symposium on Logic in Computer Science
(LICS’03), pages 271–280, Ottawa (Canada), 2003. IEEE Comp.
Soc. Press.

[CLT03] Hubert Comon-Lundh and Ralf Treinen. Easy intruder deductions.
In Nachum Dershowitz, editor, Verification: Theory & Practice, Es-
says Dedicated to Zohar Manna on the Occasion of His 64th Birth-
day, volume 2772 of Lecture Notes in Computer Science, pages 225–
242. Springer-Verlag, 2003.

[CR05] Yannick Chevalier and Michaël Rusinowitch. Combining intruder
theories. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catus-
cia Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of
Lecture Notes in Computer Science, pages 639–651. Springer, 2005.

[Del05] Stéphanie Delaune. Easy intruder deduction problems with homo-
morphisms. Research Report LSV-05-10, Laboratoire Spécification
et Vérification, ENS Cachan, France, July 2005. http://www.lsv.

ens-cachan.fr/Publis/RAPPORTS_LSV/rr-lsv-2005-10.pdf.

28

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems.
In Jan van Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, volume B - Formal Models and Semantics, chapter 6, pages
243–320. Elsevier Science Publishers and The MIT Press, 1990.

[DY83] D. Dolev and A.C. Yao. On the security of public-key protocols.
In Transactions on Information Theory, volume 29, pages 198–208.
IEEE Computer Society Press, March 1983.

[Jac] Florent Jacquemard. Security protocols open repository. Available
at http://www.lsv.ens-cachan.fr/spore/index.html.

[KKS87] E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Fast paral-
lel computation of hermite and smith forms of polynomial matrices.
SIAM J. Algebraic Discrete Methods, 8(4):683–690, 1987.

[LLT04] Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder de-
duction for AC -like equational theories with homomorphisms. Re-
search Report LSV-04-16, LSV, ENS de Cachan, November 2004.
Available at http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_

LSV/rapports-year-2004-list.php.

[LLT05] Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder de-
duction for AC-like equational theories with homomorphisms. In
Jürgen Giesl, editor, Proceedings of the 16th International Confer-
ence on Rewriting Techniques and Applications (RTA’05), volume
3467 of Lecture Notes in Computer Science, pages 308–322, Nara,
Japan, April 2005. Springer-Verlag.

[Low95] G. Lowe. An attack on the Needham-Schroeder public key authen-
tication protocol. Information Processing Letters, 56(3):131–133,
November 1995.

[McA93] David A. McAllester. Automatic recognition of tractability in infer-
ence relations. Journal of the ACM, 40(2):284–303, April 1993.

[Nar96] Paliath Narendran. Solving linear equations over polynomial semir-
ings. In Proc. of 11th Annual Symposium on Logic in Computer
Science (LICS’96), pages 466–472, July 1996.

[RT01] M. Rusinowitch and M. Turuani. Protocol insecurity with finite
number of sessions is NP-complete. In Proc. 14th Computer Secu-
rity Foundations Workshop (CSFW’01), pages 174–190, Cape Breton
(Canada), 2001. IEEE Comp. Soc. Press.

A Proof for Section 5

In the following we use the notation ct for an integer constant c ∈ {0, 1} and
term t, defined by 0t = 0 and 1t = t.

29

Lemma 19 Let TS = {t1, . . . , tn} and let wS be such that for 1 ≤ i ≤ n,
ti = c1,i ∗a1⊕ . . .⊕cm,i ∗am and wS = d1 ∗a1⊕ . . .⊕dm ∗am where {a1, . . . , am}
is the set of atoms of TS , wS. Let S be the following system of equations:




c1,1x1 + . . . + c1,nxn = d1
...

...
...

cm,1x1 + . . . + cm,nxn = dm

Then (S) is satisfiable if and only if wS is deducible from TS with exactly one
instance of the rule (GX).

Proof:

• If (S) is satisfiable then there exists a solution of (S) α such that:



c1,1α(x1) + . . . + c1,nα(xn) = d1
...

...
...

cm,1α(x1) + . . . + cm,nα(xn) = dm

Hence, we compute wS from TS and α:

α(x1) ∗ t1 ⊕ . . . ⊕ α(xn) ∗ tn = α(x1) ∗ (c1,1 ∗ a1 ⊕ . . . ⊕ cm,1 ∗ am)

⊕ . . . ⊕

α(xn) ∗ (c1,n ∗ a1 ⊕ . . . ⊕ cm,n ∗ am)

= c1,1 ∗ α(x1) ∗ a1 ⊕ . . . ⊕ c1,n ∗ α(xn) ∗ a1

⊕ . . . ⊕

cm,1 ∗ α(x1) ∗ am ⊕ . . . ⊕ cm,n ∗ α(xn) ∗ am

= d1 ∗ a1 ⊕ . . . ⊕ dm ∗ am = wS

• Let P be a proof of TS . wS , using only (A)(GX). We construct the system
(S) from TS and wS .

TS = {t1, . . . , tn}, Σ = {a1, . . . , am} = atoms(TS , wS)

wS = d1 ∗ a1 ⊕ . . . ⊕ dmam

For all i, 1 ≤ i ≤ n there exist cj,i for 1 ≤ j ≤ m such that

ti = c1,i ∗ a1 ⊕ . . . ⊕ cm,i ∗ am

We can deduce wS from TS , there exist a decomposition of di into ci,j ,
hence we obtain the following system:




c1,1x1 + . . . + c1,nxn = d1
...

...
...

cm,1x1 + . . . + cm,nxn = dm

!

30

B Proofs for Section 6

Lemma 20 Let P be a simple proof of the form:

P =




P1 . . . Pn

T . w

If T . u does not occur in any of P1, . . . , Pn and 〈u, v〉 ∈ S(w) then there is at
least one Pi and there exists w′ such that 〈u, v〉 ∈ S(w′) and either the root of
Pi is T . w′ or w′ ∈ T .

Proof: We consider all possible rules for the root of P :

• The last rule is (A): obvious since all elements of T are normalized.

• The last rule is (UL) or (UR): 〈u, v〉 ∈ S(w) by hypothesis, we denote w′ =
〈u1, u2〉 and by construction w ∈ S(〈u1, u2〉). We deduce by transitivity of
the subterm relation that 〈u, v〉 ∈ S(w′) and conclude with the induction
hypothesis.

• The last rule is (D): 〈u, v〉 ∈ S(w) by hypothesis, we denote w′ = {u1}u2

and by construction w ∈ S({u1}u2
). We deduce by transitivity of the

subterm relation that 〈u, v〉 ∈ S(w′) and conclude with the induction
hypothesis.

• The last rule is (GX): 〈u, v〉 ∈ S(w) by hypothesis and w = (u1 ⊕ . . . ⊕
un) ↓. Hence by definition of the subterm relation 〈u, v〉 ∈ ∪iS(ui), more
precisely there exists i such that 〈u, v〉 ∈ S(ui), because 〈u, v〉 is not
headed with ⊕ and conclude with the induction hypothesis.

• The last rule is (P): since T . u can not occur in P we have that w =
〈w1, w2〉 1= 〈u, v〉. But 〈u, v〉 ∈ S(w) by hypothesis so 〈u, v〉 ∈ S(〈w1, w2〉).
It is a subterm of w1 or of w2 and we conclude with the induction hypoth-
esis.

• The last rule is (C): We have that w = {w1}w2
1= 〈u, v〉. But 〈u, v〉 ∈ S(w)

by hypothesis so 〈u, v〉 ∈ S({w1}w2
). It is a subterm of w1 or of w2 and

we conclude with the induction hypothesis. !

Lemma 21 Let P be a ⊕-eager and simple proof of T . u. If P is

(D)

(R)

...

T . {u}v ↓ = r

...

T . v ↓

T . u

then {u}v ↓ ∈ S⊕(T).

Proof: The proof is by structural induction on P .
Base case: obvious.
Induction step: we perform a case analysis on the last rule (R) used in the

subproof of P with root {u}v ↓

31

• (R) is (A), (UL), (UR): the result is true by definition (rule (A)) or
Lemma 7 (rule (UL), (UR)).

• (R) is some rule (P): this cannot happen since {u}v ↓ is not a pair.

• (R) is some rule (C): this cannot happen since either (C) is (Cv) and P is
not simple or either (C) is (Cv′) and {u}v = {u′}v′ with v 1= v′ which is
impossible.

• (R) is some rule (D) s.t.
T . {{u}v}v′ T . v′

T . {u}v
. Then by induction hy-

pothesis {{u}v}v′ ∈ S⊕(T), yielding {u}v ∈ S⊕(T).

• (R) is (GX). The last deductions in the proof P are described in Figure 7
and we consider the different cases according to the rules (Ri) and to the
structure of {u}v ↓.

(Dv)

(GX)

(R1)
T " B1

T " B′

1

... (Rn)
T " Bn

T " B′

n

T " {u}v ↓

...

T " v ↓

T " u ↓

Figure 7: Illustration of the case (D) in Lemma 8

We will show that every atom of {u}v ↓ is in fact an element of ST (T).
Let a ∈ atoms({u}v ↓). Note that a is necessarily of the form {a′}v, and
that there is an i such that a ∈ atoms(B ′

i). We consider different possible
cases for the rule (Ri):

– (Ri) is (Cv) or (GX): impossible since the rule is ⊕-eager and flat.

– (Ri) is (Cv′) with v 1= v′. Then B′
i = {u′}v′ ↓ =

⊕n
j=1{u

′
j}v′ ↓. Since

v′ 1= v none of these {u′
j}v′ ↓ can be equal to a, hence this case is

impossible, too.

– (Ri) is (P). Then B′
i = 〈w1, w2〉 1= a and again this case is impossible.

– (Ri) is (A) (UL) or (UR). By definition or Lemma 7, B ′
i ∈ S⊕(T),

hence a ∈ ST (T).

– (Ri) is (Dv′) s.t. (Dv′)
T . {w1}v′ T . v′

T . w1 = B′
i

. By induction hypothesis

{w1}v′ ∈ S⊕(T), therefore B′
i ∈ S⊕(T) and a ∈ ST (T).

!

Lemma 22 Let P be a simple and ⊕-eager proof of T . u. Then there exists a
normal proof of T . u.

Proof: Consider first the case where u ∈ S⊕(T). We proceed by structural
induction on the proof P and case distinction of the last rule (R) of P :

32

• (R) is (A): P is obviously a normal proof.

• (R) is some rule (UL) or (UR) s.t.
T . 〈u1, u2〉

T . u
The induction hypothesis

yields that there exists a normal proof of 〈u1, u2〉. P is simple, we apply
Lemma 7 and get 〈u1, u2〉 ∈ S(T) ⊆ S⊕(T). Hence, the normal proof of
〈u1, u2〉 is S⊕(T)-local so P is normal since u ∈ S⊕(T).

• (R) is some rule (D) s.t.
T . {u}v T . v

T . u
The induction hypothesis yields

that there exists a normal proof of {u}v. Since P is ⊕-eager we get with
Lemma 8 that {u}v ∈ S(T) ⊆ S⊕(T). Hence, the normal proof of {u}v is
S⊕(T)-local so we deduce that P is normal since u ∈ S⊕(T).

• (R) is some rule (P), (C): Since these two case are similar We only give
the proof for the case (C), that is u = {u1}u2

. (R) is some (C) s.t.
T . u1 T . u2

T . {u1}u2

Since {u1}u2
= u ∈ S⊕(T) we deduce that u1 ∈ S⊕(T)

and u2 ∈ S⊕(T). Hence, applying the induction hypothesis, there are
normal proofs of u1 and u2 that are S⊕-local, hence P is normal.

• (R) is some rule (GX) such that

(GX)

(R1)
T . B1

T . B′
1

...(Rn)
T . Bn

T . B′
n

T . u

We will show that for every (Ri) we have that B′
i ∈ S⊕(T). We consider

the different cases for the rules (Ri):

– (Ri) is (GX): impossible since P is ⊕-eager which implies P is flat.

– (Ri) is (A), (UL), (UR) or (D): with the definition or Lemma 7
or Lemma 8 we obtain that B′

i ∈ S⊕(T). Applying the induction
hypothesis there is a normal proof of B ′

i which is S⊕(T)-local.

– (Ri) is (P), there are two possible cases: B ′
i is in ST (u) or not.

∗ B′
i ∈ ST (u) ⊆ S⊕(T): we can apply the induction hypothesis

and get a normal proof of B′
i which is S⊕(T)-local.

∗ B′
i 1∈ ST (u): we have that B′

i is canceled by some other element
B′

j . B′
j can not stem from a rule (P) since P is simple, nor from

a rule (C) since a pair is not an encrypted term. Hence, B ′
j

stems from a rule (A), (UL), (UR) or (D). With the definition
or Lemma 7 or Lemma 8 we obtain that B ′

j ∈ S⊕(T). More
precisely

⊕
B′

j ∈ S⊕(T), since B′
i ∈ S⊕(

⊕
B′

j) we deduce that
B′

i ∈ S⊕(T). We can apply the induction hypothesis and get a
normal proof of B′

i which is S⊕(T)-local.

– (Ri) is (Ck), this case is similar to the previous case. There are two
possible cases: B′

i is in ST (u) or not:

33

∗ B′
i ∈ ST (u) ⊆ S⊕(T): we can apply the induction hypothesis

and get a normal proof of B′
i which is S⊕(T)-local.

∗ B′
i 1∈ ST (u): B′

i is canceled by some other element B ′
j . B′

j can
not stem from a rule (P) since a pair is not an encrypted term,
nor from a rule (Cv) with v 1= k since B′

i is not encrypted with
the key k, nor from another rule (Ck) since there is at most one
occurrence of an encryption rule by a key above a (GX) rule by
the fact that P is ⊕-eager . So B ′

j stems from a rule (A), (UL),
(UR) or (D). With the definition or Lemma 7 or Lemma 8 we
obtain that B′

j ∈ S⊕(T). More precisely
⊕

B′
j ∈ S⊕(T), since

B′
i ∈ S⊕(

⊕
B′

j) we deduce that B′
i ∈ S⊕(T). we can apply

the induction hypothesis and get a normal proof of B ′
i which is

S⊕(T)-local.

Since all the subproofs of T . B′
i are normal we can conclude that P is

normal.

In the second case, we assume that u 1∈ S⊕(T) and the proof is of the form
C[P1, . . . , Pn] where P1, . . . , Pn are maximal S⊕-local subproofs. We prove the
result by structural induction on P :

• If C is empty, then u ∈ S⊕(T)

• If the last rule is (UL) (UR) or (D) we use the definition and Lemma 7
and Lemma 8 to get u ∈ S⊕(T).

• In the others cases we apply the induction hypothesis.

!

C Proofs for the Section 7

Definition 14 We call a string admissible for given Q, C, U if it is of the form
qx1#x2x3⊥ where

• there is some a ∈ Q such that q = a or q = â

• either x1 = ε or x1 ∈ C∗(C \ U)

• x2, x3 ∈ U∗

Proposition 6 The prefix rewrite system of section 7 rewrites admissible strings
into admissible strings.

The following proposition lists some basic properties of the decomposition
and inversion of strings which we will use in the sequel without further reference:

Proposition 7 For all x, y ∈ (C ∪ U)∗ :

1. xy = y x

34

2. If y ∈ U∗ then left(xy) = left(x) and right(xy) = right(x)y

We now prove the central lemmata of the prefix rewrite construction:

Lemma 23 The following two assertions are equivalent for every a, b ∈ Q,
x1, y1 ∈ {ε} ∪ C∗(C \ U), x2, y2, y3 ∈ U∗:

1. There is a prefix rewrite sequence by PR1

ax1#x2⊥)→∗ by1#y2y3⊥

2. either a = b, x1 = y1, x2 = y2, y3 = ε,
or there exists a sequence of binary terms {ai}vi

⊕{bi}wi
∈ U , i = 1, . . . , n,

and a sequence of strings hi ∈ U∗, i = 1, . . . , n, such that

(a) {a}x1x2y3
= {a1}v1h1

(b) {bi}wihi
= {ai+1}vi+1hi+1

for i = 1, . . . , n − 1

(c) {bn}wnhn = {b}y1y2

and such that for some i the longest common suffix of y3 and hi is ε.

Lemma 24 The following two assertions are equivalent for every a, b ∈ Q,
x1, y1 ∈ {ε} ∪ C∗(C \ U), x2, y2, y3 ∈ U∗:

1. There is a prefix rewrite sequence by PR2

âx1#x2x3⊥)→∗ b̂y1#y2⊥

2. either a = b, x1 = y1, x2 = y2, y3 = ε,
or there exists a sequence of binary terms {ai}vi

⊕{bi}wi
∈ U , i = 1, . . . , n,

and a sequence of strings hi ∈ U∗, i = 1, . . . , n, such that

(a) {a}x1x2
= {a1}v1h1

(b) {bi}wihi
= {ai+1}vi+1hi+1

for i = 1, . . . , n − 1

(c) {bn}wnhn = {b}y1y2x3

and such that for some i the longest common suffix of y3 and hi is ε.

Proof: First note that the two prefix rewrite systems PR1 and PR2 are
completely symmetrical (the only purpose of the occurrences of γ in PR1 is to
guarantee admissibility of all reachable configurations). We hence prove only
the first lemma, corresponding to the rewrite system PR1. The proof of the
second lemma is completely symmetrical.

For the direction from (1) to (2) we proceed by induction on the length of
the rewrite sequence. If the length of the rewrite sequence is 0 then obviously
a = b, x1 = y1, x2 = y2, and y3 = ε. If there is exactly one rewrite step then
there are two possible cases:

35

1. The rewrite rule is of the form

a left(r)#right(r) → b left(s)#right(s)

Then there exists a u such that

x1 = left(r) y1 = left(s)
x2 = right(r)u y2 = right(s)u

y3 = ε

We conclude by choosing

{a1}v1
⊕ {b1}w1

:= {a}r ⊕ {b}s

h1 := u

since then

{a}x1x2y3
= {a}x1x2

= {a}ru = {a1}v1h1

{b1}w1h1 = {b}su = {b}y1y2

2. The rewrite rule is of the form

a left(r)#r1⊥ → b left(s)#right(s)r2⊥

with right(r) = r1r2. Then we have

x1 = left(r) y1 = left(s)
x2 = r1 y2 = right(s)

y3 = r2, hence y3 = r2

We conclude by choosing

{a1}v1
⊕ {b1}w1

:= {a}r ⊕ {b}s

h1 := ε

since then

{a}x1x2y3
= {a}r = {a1}v1h1

{b1}w1h1
= {b}s = {b}y1y2

In both cases, the longest common suffix of h1 and y3 is ε.
In case there are N > 1 rewrite steps, the string obtained in N − 1 steps is

by Proposition 6 admissible. Hence, there are b ∈ Q, y1 ∈ {ε} ∪C∗(C \U), and
y2, y3 ∈ U∗ such that

ax1#x2⊥ →∗ by1#y2y3⊥ → cz1#z2z3⊥

By induction hypothesis, there exists a sequence of binary terms {ai}vi
⊕{bi}wi

∈
U , i = 1, . . . , n, and a sequence of strings hi ∈ U∗, i = 1, . . . , n, such that

1. {a}x1x2y3
= {a1}v1h1

36

2. {bi}wihi
= {ai+1}vi+1hi+1

for i = 1, . . . , n − 1

3. {bn}wnhn = {b}y1y2

and such that the longest common suffix of y3 and some hi is ε. We will show
that there exists some {an+1}vn+1

⊕ {bn+1}wn+1
∈ U , and a sequence of key

strings ki ∈ K∗, i = 1, . . . , n + 1 such that

1. {a}x1x2z3
= {a1}v1k1

2. {bi}wiki
= {ai+1}vi+1ki+1

for i = 1, . . . , n

3. {bn+1}wn+1kn+1
= {c}z1z2

and such that the common longest suffix of y3 and some kj is ε. There are two
possible cases for the rewrite rule used in the last rewrite step:

1. The rewrite rule is of the form

b left(r)#right(r) → c left(s)#right(s)

Then there exists u such that

y1 = left(r) z1 = left(s)
y2 = right(r)u z2 = right(s)u

z3 = y3, hence z3 = y3

We conclude by choosing

{an+1}vn+1
⊕ {bn+1}wn+1

:= {b}r ⊕ {c}s

ki := hi (i = 1, . . . , n)

kn+1 := u

since

{a}x1x2z3
= {a}x1x2y3

= {a1}v1h1
= {a1}v1k1

{bi}wiki
= {bi}wihi

= {ai+1}vi+1hi+1
= {ai+1}vi+1ki+1

(i = 1, . . . , n − 1)

{bn}wnkn = {b}y1y2
= {b}ru = {an+1}vn+1kn+1

{bn+1}wn+1kn+1
= {c}su = {c}z1z2

If the longest common suffix of y3 and hi, 1 ≤ i ≤ n, is ε then the longest
common suffix of z3 = y3 and ki = hi is ε.

2. The rewrite rule is of the form

b left(r)#r1γ → c left(s)#right(s)r2γ

with right(r) = r1r2, and γ ∈ {u | u ∈ U} ∪ {⊥}. Then we have

y1 = left(r) z1 = left(s)
y2 = r1 z2 = right(s)

z3 = r2 y3, hence z3 = y3r2

37

We conclude by choosing

{an+1}vn+1
⊕ {bn+1}wn+1

:= {b}r ⊕ {c}s

ki := hir2 (i = 1, . . . , n)

kn+1 := ε

since

{a}x1x2z3
= {a}x1x2y3r2

= {a1}v1h1r2
= {a1}v1k1

{bi}wiki
= {bi}wihir2

= {ai+1}vi+1hi+1r2
= {ai+1}vi+1ki+1

(i = 1, . . . , n − 1)

{bn}wnkn = {bn}wnhnr2
= {b}y1y2r2

= {b}r = {an+1}vn+1kn+1

{bn+1}wn+1kn+1
= {bn+1}wn+1

= {c}s = {c}z1z2

The longest common suffix of z3 and kn+1 = ε is ε.

For the direction from (2) to (1), if a = b, x1 = y1, x2 = y2, and y3 = ε
then we obviously have that ax1#x2⊥)→∗ by1#y2y3⊥. Otherwise, we proceed
by induction on n.

If n = 1 then there exists {a1}v1
⊕ {b1}wi

∈ U and h1 ∈ U∗ such that

1. {a}x1x2y3
= {a1}v1h1

2. {b1}w1h1
= {b}y1y2

and the longest common suffix of y3 and h1 is ε, that is y3 = ε or h1 = ε.

1. If y3 = ε then x1#x2 = left(v1)#right(v1)h1 and y1#y2 = left(w1)#right(w2)h1,
hence ax1#x2⊥)→ by1#y2⊥ by virtue of the the binary term {a1}v1

⊕
{b1}w2

∈ U .

2. If h1 = ε then x1#x2 = left(v1)#v1
1 and y3 = v2

1 for right(v1) = v1
1v

2
1, and

y1#y2 = left(w)#right(w). Hence ax1#x2⊥)→ by1#y2y3⊥ by virtue of
the the binary term {a1}v1

⊕ {b1}w2
∈ U .

If n ≥ 2 then there exists a sequence of binary terms {ai}vi
⊕ {bi}wi

∈ U ,
i = 1, . . . , n, and a sequence of strings hi ∈ U∗, i = 1, . . . , n, such that

1. {a}x1x2y3
= {a1}v1h1

2. {bi}wihi
= {ai+1}vi+1hi+1

for i = 1, . . . , n − 1

3. {bn}wnhn = {b}y1y2

and such that for some i the longest common suffix of y3 and hi is ε.

1. If there is an i < n such that the longest common suffix of y3 and hi is ε
then, by induction hypothesis,

ax1#x2)→∗ bn−1 left(wn−1)#right(wn−1)hn−1y3

38

Now, we have that bn−1left(wn−1)#right(wn−1)hn−1 = anleft(vn)#right(vn)hn

and that {b}y1y2
= {bn}wnhn Hence,

bn−1 left(wn−1)#right(wn−1)hn−1y3

= an left(vn)#right(vn)hny3

)→ bn left(wn)#right(wn)hny3

= by1#y2y3

2. Otherwise, the longest common suffix of hn and y3 is ε. Let s be the
longest common suffix of y3 and the hi for i < n, and let y′3, h

′
i (1 ≤ i < n)

be such that y3 = y′3s and h′
i = his. Hence, we also have that

(a) {a}x1x2y′

3
= {a1}v1h′

1

(b) {bi}wih′

i
= {ai+1}vi+1h′

i+1
for i = 1, . . . , n − 2

and for some i < n the longest common suffix of y′
3 and h′

i is ε. Hence, by
induction hypothesis,

ax1#x2)→∗ bn−1 left(wn−1)#right(wn−1)h
′
n−1y3

′

Now, we have that {bn−1}wn−1hn−1
= {an}vnhn , that is wn−1h′

n−1s = vnhn.
Since s is a suffix of y3, and since the longest common suffix of y3 and
hn is ε, we conclude that hn = ε, and s is a suffix of vn. We decompose
vn = v1

ns and obtain that

bn−1 left(wn−1)#right(wn−1)h
′
n−1y

′
3

= an left(vn)#v1
ny3

′

)→ bn left(wn)#right(wn)sy′3
= bn left(wn)#right(wn)hny3

= by1#y2y3

!

39

