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Abstract. We define a new notion of fairness for term rewriting sys-
tem (TRS). We prove the modularity of termination of TRS under such
fair strategies, that is, two TRS terminate under fair strategies if and
only if their disjoint union terminates under fair strategies. In order to
do so, we demonstrate that termination under fair strategies of a TRS
is equivalent to the TRS being weakly terminating and globally finite.
We then use modularity of weakly terminating and globally finite TRS
to obtain our modularity result. We also introduce a notion of proba-
bilistic fairness and show that termination of a TRS under a “reasonable
randomized fair strategy” is equivalent to termination of the same TRS
under fair strategies. The randomized version of all our results follows
straightforwardly.

1 Introduction

Modular verification is mandatory for complex systems, since it decomposes ver-
ification into smaller problems. While there is an important body of results for
the verification of safety properties, the situation is more complex for liveness
propertie. In general fairness conditions are needed to guarantee liveness proper-
ties. This is in particular the case of termination, as mentioned in [KZ05, GZ03].
A fairness condition is said to guarantee modular termination if the parallel
composition of terminating processes is also terminating under this fairness con-
dition. In this paper, we introduce a new notion of fairness which guarantees
modular termination. In contrast with other approaches in the field of TRS, our
notion of fairness is based on positions, substitutions and redexes of terms of
left part of rules that are visited infinitely often. Another key motivation of this
work is to introduce a sufficient notion of fairness that forces termination of the
direct sum of two terminating TRS, even if there exist infinite loops (as is the
case in the example of Toyama which will be our running example).

Contribution:

– We first introduce a new notion of fair strategy as a way to select fairly
the application of a rewriting rule. A fair strategy is a strategy that selects
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infinitely often all successors of a term, provided this term is visited infinitely
often.

– We propose a characterization of TRS terminating under fair strategies,
based on the fact that a fair strategy terminates if and only if the TRS is
weakly terminating, meaning that for any term there exists a finite derivation
reaching a terminal term, and globally finite, also called quasi-terminating,
meaning that the number of visited terms in any derivation is finite. Using
this characterization we deduce that termination under fair strategies is not
decidable.

– We prove the modularity of termination of TRS under fair strategies, since
weak termination of TRS and being globally finite for a TRS are both mod-
ular properties.

– We study the termination of TRS under probabilistic fair strategies. We have
identified a subclass of those strategies under which a TRS terminates with
probability one if and only if it terminates under fair strategies. We show that
these strategies can be defined and implemented, because they only need a
bounded amount of memory, or no memory at all. We call those strategies:
reasonable randomized fair strategies. This result is of importance because
if one wants to implement a fair strategy in a deterministic way, then one
would need to have an arbitrarily huge memory in order to store the history
of the set of previously visited terms.

– We also prove that using any reasonable randomized fair strategies is an
efficient way to reach a terminal term. We show indeed that termination
occurs within a finite mean number of rewriting steps, which is a grant of
efficiency.

Related Work: Modularity of termination of TRS is widely studied. In [Toy87]
Toyama shows that termination of TRS is not a modular property even if two
term rewriting systems do not share any symbol. However in [Rus87], Rusinow-
itch gives sufficient conditions for the modularity of termination of the disjoint
union of TRS. If there is no collapsing rule in one of the TRS and no duplicating
rule in the other one, then the disjoint union of those two terminating TRS is
terminating. Gramlich gives sufficient conditions for ensuring termination of the
union of two TRS possibly sharing constructors [Gra94]. In this context, the
projective TRS π is formed of the two rules {G(x, y) → x, G(x, y) → y} where
G is a fresh function symbol. Gramlich defines a Cǫ-termination, meaning that
a TRS R is Cǫ-terminating if R ∪ π is terminating. This notion is a modular
property for the disjoint union of TRS [Gra94, Ohl95], as well as for the union
of composable TRS as it is proved by Kurihara and Ohushi in [KO95]. Gram-
lich also shows in [Gra94] that all TRS whose termination can be shown using
a simplification order are Cǫ-terminating, whereas the converse is false. This
makes the Cǫ-termination a useful notion because it is modular and more pow-
erful than techniques using simplification orders to prove termination of TRS.
Arts and Giesl introduce dependency pairs in [AG00] for proving termination
of TRS, and exploit the modular structure of the dependency pair graph for
proving termination of TRS in a modular way in [AG98]. Theoretically speak-
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ing, this method is both sound and complete for proving termination of TRS,
meaning that for any terminating TRS, there exists a dependency pair graph,
and a quasi-order, that prove that the TRS is terminating. However, people
who try to prove termination automatically are more often looking for heuristics
that can compute the “smallest” approximation of the dependency pair graph
– computing the DP graph is undecidable – to minimize the chance of failing
to prove termination of a TRS. Urbain in [Urb01] uses Arts and Giesl’s work
to define a method for incrementally proving termination on TRS defined hi-
erarchically. This method allows him to prove that a TRS is terminating in a
modular way. In this work, Urbain considers TRS which can be represented as a
set of embedded modules, and incrementally proves termination on modules in
a modular way. This technique is implemented in the CiME tool [CM96]. Thie-
mann, Giesl and Schneider-Kamp improve Urbain’s work and implement it in
the AProVE termination prover [TGSK04]. Weak termination as well as weak
innermost termination of term rewriting are proved to be modular properties in
[KK90, BKM89, Dro89]. Gramlich later proves that innermost termination is a
modular property of TRS [Gra92].

The reader may notice that none of these existing results encompasses our
work on termination of fair strategies. It is not difficult to construct for each
method a TRS which terminates under fair strategies but does not fulfill hy-
potheses required by these different frameworks (most of the time Toyama’s ex-
ample is sufficient). We mention related work about fairness in Section 7, where
we show that our notion of fairness is different to the existing notions of fairness.

Outline In the next section, we recall basic rewriting definitions and results
that are used in this paper. In Section 3 we introduce the notion of termination
under fair strategies. In Section 4, we characterize the set of TRS that terminate
under fair strategies and deduce that termination under fair strategies is not
decidable. We prove in Section 5 that this termination under fair strategies is
modular. In Section 6 we give the definition of randomized fair strategies, and
reasonable randomized fair strategies. We prove that a TRS terminates positively
and almost surely under reasonable randomized fair strategies if and only if
it terminates under fair strategies. In Section 7, we compare our notion with
existing notions of fair termination. In the last section we conclude, and describe
our perspectives. All usual rewriting notions used in this paper are recalled in
Appendix A and all proofs of our results are presented in Appendix B and C for
the convenience of the reviewers.

2 Some Notations and Basic Results

In this paper we use the same notations as in [BN98]. In this section we present
the main basic definitions and results needed for the rest of the paper. In order
to define the notion of derivation, we use the symbol ⊥ which represents a fictive
successor to any terminal state. Notice that the symbol ⊥ does not belong to the
signature of the rewriting system. The only way to reach ⊥ is to reach a term
without any successor. Moreover once ⊥ is reached no more rule can be applied.
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Definition 1 (Derivation). Given a TRS R over the set of terms T (Σ, V ), a
derivation π is an infinite sequence of elements (πi)i∈N ∈ T (Σ, V ) ∪ {⊥} such
that:

(πn)n∈N

def

=















π0 ∈ T (Σ, V )
∀i ∈ N, πi →R πi+1

πi = ⊥ ⇒ ∀j > i, πj = ⊥
πi →R ⊥ ⇔ ∀t ∈ T (Σ, V ),¬(πi →R t)

The third item means that once ⊥ has been reached, the system artificially loops
on this symbol. The last item ensures that if πi can be rewritten into ⊥, then it
cannot be rewritten into anything else. We note by πi the i first elements of π

that belong to T (Σ, V ) ∪ {⊥}.

Definition 2 (Terminal Term, Terminating TRS, Weak Termination).
Given a TRS R over T (Σ, V ):

– A term t ∈ T (Σ, V ) is terminal if for any term t′ ∈ T (Σ, V ) ¬(t →R t′).
– A derivation π is said to be terminating if there exists an index i such that

πi = ⊥.
– R is terminating if, for all t ∈ T (Σ, V ), there exists no infinite derivation

t →R t1 →R . . . →R tn →R . . ..
– R is said to be weakly terminating if for all terms t ∈ T (Σ, V ), there exists

a terminal term t′ such that t →∗
R t′.

Example 1 (Toyama [Toy87]). Consider the two following TRS:

R1 =

{

g(x, y) → x

g(x, y) → y

R2 =
{

f(0, 1, z) → f(z, z, z)

The systems are disjoint and both terminating, however the disjoint union of
TRS R1 ⊎R2 is not terminating. The following derivation constitutes an infinite
loop:

f(0, 1, g(0, 1)) → f(g(0, 1), g(0, 1), g(0, 1)) → f(0, 1, g(0, 1))

We are interested in finding whether a derivation visits infinitely many differ-
ent terms or not and if the set of the terms visited infinitely often by a derivation
is empty.

Definition 3. Given a derivation (πi)i∈N, we note by

inf(π)
def

= {t ∈ T (Σ, V ) ∪ {⊥} | ∀i ∈ N, ∃j > i, πj = t}

the set of the terms which are visited infinitely often by π. We also note by V is(π)
the set of terms visited by π:

V is(π)
def

= {t ∈ T (Σ, V ) : ∃i ∈ N, πi = t}

V is(πn)
def

= {t ∈ T (Σ, V ) : ∃i, 1 ≤ i ≤ n, πi = t}
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and the number of different terms that π, resp. πn, visits is denoted by:

‖π‖
def

= #V is(π)

‖πn‖
def

= #V is(πn)

Definition 4. We define the set of accessible terms from a term t ∈ T (Σ, V )
w.r.t the rewriting relation induced by R, as:

T ∗
s (t)

def

= {t′|t →∗
R t′},

and the size of this set corresponds to the number of accessible terms from a term

t and it is denoted by ‖t‖
def

= #T ∗
s (t).

We use the same notation for the number of successors of a term and for
the number of different terms visited by a derivation. In the rest of the paper
the distinction is always clear according to the context. The reader can also
immediately notice that:

– limn→∞ V is(πn) = V is(π) ( T ∗
s (π0)

– ∀i < j, V is(πi) ⊆ V is(πj)
– inf(π) ⊆ V is(π) if inf(π) 6= {⊥}
– inf(π) = ⊥ ⇔ π is a terminal derivation
– inf(π) = {∅} ⇒ π is a derivation that visits infinitely many different terms.

The converse of the last point is false as shown in Example 2.

Example 2. Consider the usual Peano integer rewriting system which contains
the constant 0, the unary function succ and the two following rewriting rules:

1. x → succ(x)
2. succ(x) → x

We construct a derivation starting from succ(0) which visits all successors of this
term with the following constraint: before visiting a new successor the derivation
goes back to succ(0). This derivation visits infinitely many different terms by
construction, namely all successors of succ(0). Thus π is a derivation visiting
infinitely many different terms and such that inf(π) 6= ∅.

Definition 5. A TRS R over a set of term T (Σ, V ) is globally finite if for all
t ∈ T (Σ, V ), ‖t‖ < ∞. This is also called quasi-termination according to [Der87].

Remark 1. A TRS that is terminating is globally finite.

Proposition 1. Let R be a finite TRS over T (Σ, V ). If there exists a term
t ∈ T (Σ, V ) such that ‖t‖ = ∞, then there exists a derivation π such that
‖π‖ = ∞ and for all i 6= j, πi 6= πj.

The proof is detailed in Appendix A. A slightly different version of this
proposition can be found in [Der87].
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3 Termination under Fair Strategies

The notion of fairness is a qualitative notion, which basically means that if an
event can happen infinitely often, then it will happen infinitely often. Our new
notion of fairness is given in the following definition.

Definition 6 (Fair Derivation). Given a TRS R, a derivation (πi)i∈N is fair
w.r.t to the rewriting relation →R, if :

∀t ∈ inf(π), ∀t′ : (t →R t′) ⇒ t′ ∈ inf(π).

In other words, for every term t that is visited infinitely often, each term t′

such that t →R t′ is visited infinitely often.

Remark 2. Every derivation (πi)i∈N such that inf(π) = ∅ is fair. And every
derivation (πi)i∈N such that inf(π) = ⊥ is also fair by definition.

Intuitively, a strategy is an algorithm that chooses a successor to a term,
knowing the set of previously reached terms.

Definition 7 (Strategy). A strategy φ is a mapping φ from the set of deriva-
tion prefixes to T (Σ, V ) ∪ {⊥}, such that if πn = {π0, . . . , πn}:

– φ(πn) ∈ {t|πn →R t}, if πn is neither a terminal term nor πn 6= ⊥,
– {⊥}, otherwise.

A strategy gives the way to apply different rules on a term in order to con-
struct a derivation. We define how to construct a derivation under a strategy.

Definition 8 (Derivation under strategy). A derivation π is built under
strategy φ, if π0 ∈ T (Σ, V ) and for all n ∈ N, πn+1 = φ(πn).

Definition 9 (Termination under strategy). Let R be a TRS over T (Σ, V )
and φ a strategy, R is terminating under the strategy φ if, for all t ∈ T (Σ, V ),
for all derivations π under φ starting from π0 = t, there exists an index i such
that πi = ⊥ (meaning that φ(πi−1) = ⊥).

This is equivalent to the following definition: Let R be a TRS over T (Σ, V )
and φ a strategy, R is terminating under the strategy φ if there exists no infinite
derivation π under φ.

Definition 10 (Fair strategy). A strategy φ is called fair if for any derivation
π constructed under φ, π is a fair derivation.

Remark 3. Notice that if a TRS R is terminating, then it is terminating for
any strategy φ. However the converse is false, as illustrated in example 1, which
presents a TRS that generates a loop, whereas it is terminating under the fair
strategies we define in this paper. In this case we force the system to exit the
loop with our definition of fair strategies. This example is detailed in Section 7.
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4 Characterisation of Termination under Fair Strategies

The following theorem presents a characterisation of the TRS terminating under
fair strategies.

Theorem 1. A TRS R over a set of term T (Σ, V ) terminates under fair strate-
gies if and only if R is globally finite (or quasi-terminating) and R is weakly
terminating.

Proof. ⇒

– Let us notice first that if R terminates under fair strategies then that R is
weakly terminating.

– We show if R terminates under fair strategies then R is globally finite
(it means, for all t ∈ T (Σ, V ), ‖t‖ < ∞), by proving that if there exists
t ∈ T (Σ, V ) such that ‖t‖ = ∞, then there exists a non terminating fair
derivation. We already know, thanks to Proposition 1, that there exists an
infinite length derivation (πi)i∈N, with ∀i 6= j, πi 6= πj . We deduce that
inf(π) = ∅, hence π is fair.

⇐ Proving this implication is equivalent to show its contraposition:

∃ non terminating fair derivation ⇒ ∨

{

∃t ∈ T (Σ, V ), ‖t‖ = ∞
R is not weakly terminating

Let us consider that there exists a non terminating fair derivation π. We show
with a case distinction that the implication holds:

– inf(π) 6= ∅.

• inf(π) = {⊥}. This is equivalent to π being a terminating derivation,
which is not possible because we assume that π is a non terminating fair
derivation.

• inf(π) 6= {⊥}. We suppose that there exists t ∈ inf(π). Because π is fair,
we have by Definition 6 that for every t′ such that t →∗

R t′, t′ ∈ inf(π).
This means that all derivations starting from t never reach a terminal
state, in other words that R is not weakly terminating starting from t

(there exists t ∈ T (Σ, V ) such that for any terminal state t′,¬(t →∗
R t′)).

– inf(π) = ∅: we know that every term, that is visited by π (π a non terminal
fair derivation), is visited only finitely many times. That is to say that for
all integers i, there exists N ∈ N such that for all n > N , we have ∀ t ∈
V is(πi), πn 6= t. Intuitively, the terms visited by the first i steps of π are never
visited again by π after N . Then we define the integer sequence (Ni)i∈N for
all i ∈ N by:

N0
def

= min{n ∈ N|∀k ≥ n, πk 6= π0}

Ni+1
def

= min{n ∈ N|∀k ≥ n, ∀t ∈ V is(πNi
), πk 6= t}
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Using the sequence (Ni)i∈N, we can build the following increasing sequence
of sets, for the relation (:

V is(π0) ( V is(πN0
) ( . . . V is(πNi

) ( V is(πNi+1
) ( . . .

It clearly shows that ‖π‖ = ∞, which implies that all terms t in V is(π)
(Definition 3) satisfy ‖t‖ = ∞.

Example 2 is not fair terminating but is weakly terminating, (it is always
possible to return to 0), and trivially not globally finite (there is an infinite
of visited terms). Let us consider the following simple TRS: h(x) → f(x) and
f(x) → h(x), it is not fair terminating by construction, it is globally finite and
not weakly terminating. These simple examples emphasize that both conditions
of our characterization are necessary.

Undecidability: Tison proves in [Tis88] that fair termination of ground TRS is
decidable, by providing a decision algorithm based on tree automata. In [GKM83]
the authors prove that it is undecidable whether a (finite) rewriting system
is quasi-terminating, as it is mentionned in [Der87]. Using this result and our
characterisation we conclude that termination of TRS under fair strategies is
also undecidable.

5 Termination under fair strategies is a modular property

We first recall that weak termination is a modular property of TRS as shown
in [KK90, BKM89, Dro89]. We also provide a proof of modularity of the globally
finite property. Although this result is apparently simple, we are not aware of
any reference where it appears. That is why we propose a proof of this result
and also our own proof of modularity of weakly termination in Appendix B.

Lemma 1 (Weakly Termination is a modular property [KK90, Dro89,
BKM89]). Let R1 be a TRS over T (Σ1, V ) and R2 a TRS over T (Σ2, V ), with
Σ1 ∩ Σ2 = ∅. The TRS R1

⊎

R2 weakly terminates if and only if R1 weakly
terminates and R2 weakly terminates.

Lemma 2 (Modularity of globally finite property). Let R1 be a TRS over
T (Σ1, V ) and R2 a TRS over T (Σ2, V ), with Σ1∩Σ2 = ∅. The TRS R = R1

⊎

R2

is globally finite if and only if R1 is globally finite and R2 is globally finite.

Proofs of the two previous lemma are in Appendix B.
According to our characterization, the modularity of termination under fair

strategies is a consequence of the modularity of the two aforementioned lemmas.
We can now derive the main theorem which proves that termination under fair
strategies is a modular property .

Theorem 2. Let R1 be a TRS over T (Σ1, V ) and R2 a TRS over T (Σ2, V ),
with Σ1∩Σ2 = ∅. The TRS R1

⊎

R2 terminates under fair strategies if and only
if R1 terminates under fair strategies and R2 terminates under fair strategies.
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Because termination of TRS implies fair termination, an obvious corollary is
that the disjoint union of two terminating TRS is terminating under fair strate-
gies. We use this result in Section 7 for proving that Example 1 is terminating
under fair strategies.

6 Randomized Fair Strategy

Previous work [BK02, BG05, BG06, Gar07, BH03] considered the case of the
rules fired according to randomized strategies. So in this section we first lift
our definition to the randomized case in the sense of Luca de Alfaro’s notion of
probabilistic fairness introduced in [Alf99]. Then we show that the randomized
definition is equivalent to non-randomized one. This allows us to obtain all our
results in the randomized context.

Definition 11 (Randomized strategy). A randomized strategy is a function
φ that maps the set of derivations prefixes πn to the set of probabilistic distribu-
tions over the set Ω, where:

– Ω = {t|πn →R t} if πn is neither a terminal term nor equal to ⊥,

– Ω = {⊥} otherwise.

Example 3. We consider the TRS R over the Peano’s integer defined in Exam-
ple 2. We define φ, the randomized strategy such that:

P [φ(πn) = succ(succ(X))] = 1
n

P [φ(πn) = X ] = 1 − 1
n

}

if πn = succ(X)

Definition 12 (R-fair and RR-fair strategy). A randomized fair strategy,
or R-fair strategy, is a randomized strategy such that for any non terminal
derivation prefix πn, and for any t′ such that πn → t′,

P [φ(πn) = t′] > 0.

A R-fair strategy φ is said to be reasonable (with finite memory), or RR-fair, if
there exists N ∈ N such that for all πn with n > N

φ(πn) = φ(πn − πN )

where πn−πN is the natural substraction of two derivation prefixes, i.e., πn−N . . . πn.

In [BG05], the authors presented a model of probabilistic rewriting systems
where rules express probabilistic choices of successors, and techniques to prove
positive almost sure termination. Positive almost sure termination is a qualitative
notion, meaning that whatever the way you rewrite your terms, the mean number
of rewriting steps required to reach a terminal state is finite.
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Definition 13 (Almost sure termination under randomized strategy).
A term rewrite system R almost surely terminates under a randomized strategy
φ, if for any t ∈ T (Σ, V ), all derivations π under φ such that π0 = t

P [∃n ∈ N s.t. πn = ⊥] = 1.

Moreover, if the smallest integer τ such that πτ satisfies E[τ ] < ∞, then TRS
is said to be positively almost surely terminating under φ, noted +a.s terminating
for short.

This notion is particulary strong, and proving it is often challenging, even on
small instances of probabilistic TRS.

Theorem 3. A TRS R terminates under fair strategy if and only if it almost
surely terminates under RR-fair strategy.

This theorem is proved in Appendix C.
The following example shows that there exists randomized strategy φ such

that a TRS can be fair terminating (which is equivalent to be RR-fair terminat-
ing) but not terminating almost surely under φ.

Example 4. Let R be a TRS terminating under fair strategies but not termi-
nating (for instance the famous example of Toyama). It means that for all
t ∈ T (Σ, V ) such that ‖t‖ < ∞, there exists a cycle t∞0 → . . . → t∞N−1 → t∞0 .
We consider the following fair randomized strategy φ defined by:

P [φ(πk) = t] =

{

1 − e−k if πk = t∞k mod N ∧ t = t∞(k+1 mod N)
e−k

#{t′|t∞
k

→Rt′}−1 if πk = t∞k mod N ∧ πk → t ∧ t 6= t∞(k+1) mod N

P [φ(πk) = t] = 1
#{t′|πk→Rt′} if ∀i, πk 6= t∞i ∧ πk → t.

P [φ(πk) = t] = 0 if ¬(πk → t)

The strategy φ is fair randomized because given πn all successors t of πn

satisfy P [φ(t)] > 0 by construction. Consider the derivation π under strategy φ,
such that π0 = t∞0 . We adapt the proof of Theorem 3 to prove that the probability
to stay for ever on the cycle t∞0 → . . . t∞N → t∞0 satisfies the following equation:

P [∀n, πn = t∞n mod N ] ≥ (1 − e−1)
1

1−e−1 > 0

We also have that P [∀n, πn = t∞n mod N ] ≤ P [∀n, πn 6= ⊥]. Using the fact that
P [∃n, πn = ⊥] = 1 − P [∀n, πn 6= ⊥], we conclude that P [∃n, πn = ⊥] < 1,
meaning that this TRS is not almost surely terminating under the fair strategy
φ.

We notice that the strategy considered in Example 4 is a strategy with an
unbounded memory, meaning that the strategy has always access to all history
of the derivation.

Theorem 4. Let R be a fair terminating TRS. Then R is positively almost
surely terminating under all RR-fair strategies.

This theorem is proved in Appendix C.
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Remark 4. Almost surely terminating of a TRS does not imply termination as
shown by the following example: consider Σ = {succ, NIL} and the following
TRS over T (Σ, V ):

succ(x) → succ(succ(x))
succ(x) → x

This TRS positively almost surely terminates under the randomized strategy φ

defined as follows:

P [φ(succ(x)) = x] = 2
3

P [φ(succ(x)) = succ(succ(x))] = 1
3

However, this TRS is not fair terminating according for instance to the following
derivation:

succ(NIL) → succ(succ(NIL)) → succ(succ(succ(NIL))) → . . .

Using the previous theorem, we can apply a RR-fair strategy in order to
guarantee that a TRS is terminating under fair strategies. Using such RR-fair
strategies we ensure that the termination will occur within a finite mean num-
ber of rewriting steps. Moreover implementing a RR-fair strategy is easier than
implementing a fair strategy, because in this case we do not need to store the
set of previously visited term for deciding the next rule to take.

7 Comparison of Different Notions of Fairness

Strong fairness have been introduced by Porat and Francez [PF86a] in the con-
text of TRS. This notion of fairness means that if a rule can be applied infinitly
often, then it will be applied infinitly often. Basically, a derivation is fair, if it is
finite, or infinite and every rewrite rule that is enabled infinitely often is taken
infinitely often. In this context, a rewrite rule l → r being enabled in a term
t means that t contains a redex of l, and this rule being taken means that it
is applied on a redex of l, to compute the next term of the derivation. Porat
and Francez also investigate the termination of fair derivations of TRS modulo
an equational theory – namely E-fair termination – [PF86b]. They prove that
if R1 and R2 are two E-fair terminating TRS which satisfy the property called
“full-commutation” then R = R1∪R2 is E-fair terminating. Meseguer in [Mes05]
and Lucas and Meseguer [LM08] introduce new notions of fairness, in the con-
text of TRS. They study and compare the termination of derivations complying
with their definitions of fairness and justice, and implement their methods in
Maude [CDE+03]. They associate a label to rewrite rules, using a labeling func-
tion L. Each term of a computation is associated to the atomic proposition
enabled(α) if there exists a rule l → r that satisfies L(l → r) and that the
current term contains a redex of l. A term appearing in a derivation is labeled
taken(α) if a rule labelled α has been applied to the previous term to reach the
current one. They consider two notions:
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1. Fairness, which corresponds to the notion of strong fairness, strong fairness
means that if a rule is infinitely often enabled, then it is infinitely often
taken.

2. Justice, which corresponds to the notion of weak fairness, meaning that if a
rule is eventually always enabled, then it is infinitely often taken.

According to these definitions, fairness implies justice. From those two defi-
nitions, the authors distinguish the following sub-cases cases:

– 1-label RF -rule fairness and one 1-label RF -rule justice.
– RF -rule fairness and RF -rule justice.

The difference between 1-label RF -rule and RF -rule is that in the first case all
rules of RF are labelled with one single label (the same for all the rules) and in the
second case all rules in RF have different labels (all labels are pairwise distinct).
In [LM08] they provide a clear comparison of existing notions of fairness in TRS
and prove that their notion implies the Porat and Francez one. Moreover it is
not difficult to see that these approaches are not modular, using for instance the
famous example given by Toyama in [Toy87]. In the rest of this section, we show
that our notion of termination under fair strategies and the notion introduced
in [LM08] and [PF86a] are not comparable.

Definition given in [LM08, PF86a] does not imply our definition: We recall one
example of [LM08]:

α : a → f(a)
β : a → g(a, b)
γ : g(a, b) → c

This TRS is not globally finite due to the rule α from the term a it is possible
an infinite numbers of successors. Hence according to our definition and charac-
terization this TRS is not terminating under fair strategies, but it is according
to the definition of Lucas and Meseguer in [LM08], which also implies that is
fair terminating according to the definition given in [PF86a].

Our definition does not imply definition of [LM08, PF86a]: We show that Toyama’s
TRS is terminating under our definition of termination under fair strategies, but
does not terminate under the definition of Lucas and Meseguer, neither under
the definition of Porat and Francez.

– We label as follow the rules of the Toyama’s TRS:

α : g(x, y) → x

β : g(x, y) → y

γ : f(0, 1, z) → f(z, z, z)

We consider the following infinite derivation π, which corresponds to the
famous Toyama’s cycle, defined by:

f(0, 1, g(0, 1))
γ
→ f(g(0, 1), g(0, 1), g(0, 1))

α
→ f(0, g(0, 1), g(0, 1))

β
→ f(0, 1, g(0, 1)) . . .
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On all terms in this derivation, it is possible to apply rules α, β and γ.
Therefore in all terms of the derivation these three rules are infinitely often
enabled. We notice that these three rules are indeed infinitely often taken,
because the loop is constituted of infinite number of repetition of the fol-
lowing sequence of rules: γ, α, β. This derivation is thus R-rule fair. Hence
we conclude that this TRS is not R-rule fair terminating according to the
definition of [LM08]. Using the same example we can easily prove that this
TRS is not fair terminating according to the definition given in [PF86a].

– We prove that Toyama’s TRS is terminating under fair strategy by three
different ways:

1. Using direct definitions (Definition 9 and Definition 10): we have to show
that for all t ∈ T (Σ, V ), for all derivations π under fair strategy φ, there
exists an index i such that πi = ⊥. The detailed proof is long and quite
technical. The idea of the proof is to assume that there exists an infinite
derivation π under fair strategies which does not terminate and show a
contradiction using an analysis of the rank function.

2. Using our characterization (Theorem 1): It is not difficult to be convinced
that the Toyama’ TRS is weakly terminating (it is always possible to
apply rules α and β in order to force the termination) and globally
finite (using for instance the modularity of quasi-termination mentioned
in [Der87]). Using our characterization in Theorem 1, we conclude.

3. Using our modularity result (Theorem 2): we split the TRS in two dis-
joint TRS R1 = {α, β} and R2 = {γ}. These two TRS are terminating
by construction, thus they are terminating under fair strategies. Using
our modularity result in Theorem 2 we conclude.

Remark 5. The previous example clearly shows that our characterization and
result of modularity are easier to apply than the direct definition of termination
under fair strategies.

As shown with these two counter-examples, our definition and the definition
of Lucas and Meseguer and the one of Porat and Francez are different. The main
difference between these notions is that we are looking at the terms produced by
a rule but they are looking at the application of a rule. Indeed the granularity of
our notion of fairness allows us to prove the termination under fair strategies of
the famous Toyama’s example. But as seen on Lucas and Meseguer’s example,
our definition of fairness focus too much on the terms and it is not possible to
prove termination in this case. However, in the case where the considered TRS
is globally finite, the notion of termination under fairness given by Lucas and
Meseguer implies our definition, because it implies weakly termination.

8 Conclusion

We have introduced a new notion of fairness which is in some sense more general
than the existing ones as we have shown in the previous section. Moreover it is
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modular whereas the others are not. We give a surprisingly simple characteriza-
tion of our notion of fairness, and propose an equivalent randomized version of
our termination under fair strategies. We obtain results that are linked to the
positive almost sure termination of probabilistic TRS [BG05, BG06, Gar07], and
we provide a new criterion for proving this property. We conjecture it can be
possible to use an inductive approach as it is done by Gnaedig in [Gna07] for
improving our results. This opens perspectives in order to obtain “efficient” im-
plantation of such strategies in a tool. Another future work will be to adapt the
approach based on the pair dependency graph proposed in [AG00] for proving
weakly termination of a TRS.
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Probabilistes. Phd thesis, Institut National Polytechnique de Lorraine,
September 2007.

[GKM83] J. V. Guttag, D. Kapur, and D. R. Musser. On proving uniform termina-
tion and restricted termination of rewriting systems. SIAM J. Comput.,
12(1):189–214, 1983.

[Gna07] I. Gnaedig. Induction for positive almost sure termination. In M. Leuschel
and A. Podelski, editors, Proceedings of the 9th International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming,
July 14-16, 2007, Wroclaw, Poland, pages 167–178. ACM, 2007.

[Gra92] B. Gramlich. Relating innermost, weak, uniform and modular termination
of term rewriting systems. In A. Voronkov, editor, Logic Programming and
Automated Reasoning,International Conference LPAR’92, volume 624 of
LNCS, pages 285–296, St. Petersburg, Russia, 1992. Springer.

[Gra94] B. Gramlich. Generalized sufficient conditions for modular termination of
rewriting. Applicable Algebra in Engineering. Communication and Com-
putation, 5:131–158, 1994.

[GZ03] J. Giesl and H. Zantema. Liveness in rewriting. In R. Nieuwenhuis, edi-
tor, Rewriting Techniques and Applications, 14th International Conference,
RTA 2003, volume 2706 of LNCS, pages 321–336. Springer, june 2003.

[KK90] M. Kurihara and I. Kaji. Modular term rewriting systems and the termi-
nation. IPL: Information Processing Letters, 34, 1990.

[KO95] M. Kurihara and A. Ohuchi. Decomposable termination of composable
term rewriting systems. TIEICE: IEICE Transactions on Communica-
tions/Electronics/Information and Systems, 1995.

[KZ05] A. Koprowski and H. Zantema. Proving liveness with fairness using rewrit-
ing. In Proceedings of the 5th International Workshop on Frontiers of
Combining Systems, volume 3717 of LNCS, pages 232–247, 2005.

[LM08] S. Lucas and J. Meseguer. Termination of just/fair computations in term
rewriting. Information and Computation, 206(5):652–675, 2008.

[Mes05] J. Meseguer. Localized fairness: A rewriting semantics. In J. Giesl, edi-
tor, Term Rewriting and Applications, 16th International Conference, RTA
2005, pages 250–263, 2005.

[Ohl95] E. Ohlebusch. Modular properties of composable term rewriting systems.
JSC, 20(1):1–42, July 1995.

[PF86a] S. Porat and N. Francez. Fairness in term rewriting systems. In J. P.
Jouannaud, editor, Rewriting Techniques and Applications, volume 202 of
LNCS, pages 287–300. Springer-Verlag, Berlin-Heidelberg-New York, 1986.

[PF86b] S. Porat and N. Francez. Full-commutation and fair-termination in equa-
tional (and combined) term-rewriting systems. In J. H. Siekmann, editor,
Proceedings of the 8th International Conference on Automated Deduction,
volume 230 of LNCS, pages 21–41, Oxford, UK, July 1986. Springer.

[Rus87] M. Rusinowitch. On termination of the direct sum of term-rewriting sys-
tems. Information Processing Letters, 26(2):65–70, 1987.

[TGSK04] R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termi-
nation proofs using dependency pairs. In D. A. Basin and M. Rusinowitch,
editors, IJCAR, volume 3097 of LNCS, pages 75–90. Springer, 2004.

[Tis88] S. Tison. Fair termination is decidable for ground systems. Technical
report, Laboratoire d’Informatique Fondamentale de Lille, 1988.

[Toy87] Y. Toyama. Counterexamples to termination for the direct sum of term
rewriting systems. Information Processing Letters, 25(3):141–143, 1987.



16 Florent Garnier and Pascal Lafourcade

[Urb01] X. Urbain. Automated incremental termination proofs for hierarchically
defined term rewriting systems. In R. Goré, A. Leitsch, and T. Nipkow, ed-
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A Basics of Rewriting

In this paper we use the same notations as in [BN98]. In this section we recall
the basic notions, proofs and results used in this paper.

Definition 14 (Position, Subterm). Let be Σ a signature, V a set of variables
disjoint from Σ, and s, t ∈ T (Σ, V ).

1. The set Pos of the positions of a term s is a set of strings over the alphabet
of positive integers, which is inductively defined as follows :

– If s = x ∈ V , then Pos(s)
def

= {ǫ} where ǫ denotes the empty string.
– If s = f(s1, . . . , sn), then

Pos(s)
def

= {ǫ} ∪
n
⋃

i=1

{ip|p ∈ Pos(si)}.

The position ǫ is called the root position of the term s, and the function or
the variable at this position is called the root symbol of s, denoted root(s).

2. For p ∈ Pos(s), the subterm of s at the position p, denoted by s|p, is defined
by induction on the length of p :

s|ǫ
def

= s,

f(s1, . . . , sn)|iq
def

= si|q.

3. For p ∈ Pos(s), we define the replacement of the subterm of s at position p

by the term t, noted s[t]p, by induction on the length of p:

s[t]ǫ
def

= t,

f(s1, . . . , sn)[t]iq
def

= f(s1, . . . , si[t]q, . . . , sn).

Example 5 (Tree representation of a term). In [Toy87] Toyama provides a coun-
terexample for termination of the direct sum of TRS, his description is recalled in
Example 1. Figure 1 shows the tree representation of this term: f(g(0, 1), g(0, 1), X).
Label inside the tree nodes corresponds to function symbols, constant or vari-
ables, and labels near the nodes corresponds to the position of the subterm.
The subterm of f(g(0, 1), g(0, 1), X) at position 1 is g(0, 1) and the subterm at
position 2.1 is the constant 0.

Definition 15 (Substitution). A substitution σ is a function that maps a
finite set of variables {X1, . . . , Xn} ⊆ V to the set of terms T (Σ, V ). The set of
substitutions is noted Sub.

Definition 16 (Rewrite rule, TRS, Rewriting relation). Consider a set
of term T (Σ, V ):

– A rewrite rule is an element (l, r) ∈ T (Σ, V )2, where l is not a variable and
V ar(r) ⊆ V ar(l). The rule (l, r) is commonly noted l → r.

– A term rewrite system (TRS) R, is a set of rewrite rules.
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f

Xgg

010 1

ǫ

1.1 1.2 2.1 2.2

2 31

Fig. 1. Tree representation of the term f(g(0, 1), g(0, 1), X)

– Given a TRS R over a set of term T (Σ, V ), the rewrite relation →R⊆
T (Σ, V )2 is a binary relation over the terms, such that : t1 →R t2 if and
only if there exists p ∈ Pos(t1), σ ∈ Sub, a rewrite rule l → r ∈ R with
t1|p = σ(l) and t2 = t1[σ(r)]p.

Definition 17 (Degree of a term). The degree of a term t, denoted by deg(t),
is the number of terms t′ such that t →R t′.

Definition 18 (Disjoint union of TRS ). Let be R1 and R2 two term rewrit-
ing systems over the signatures Σ1 and Σ2. If Σ1 and Σ2 are disjoint, then we
note by R1 ⊎ R2 the term rewriting system over the set of terms T (Σ1 ∪ Σ2, V )
and call it the disjoint union of R0 and R1.

Definition 19 (Context). Let be � a symbol that does not appears in Σk ∪V .
A Σk-context is a term of T (Σk, V ∪ {�}), and can be seen as a term with
”holes”. Context are denoted by C. If {p1, . . . , pn} = {p ∈ Pos(C)|C|p = �},
where pi is at the left of pi+1 in the tree representation of C, then

C(t1, . . . , tn)
def

= C[t1]p1
. . . [tn]pn

Definition 20 (Pure term). If there exists k, such that s ∈ T (Σk, V ), then s

is called a pure term.

Given a term s, we write s = C[s1, . . . sn] if s = C(s1, . . . , sn) and

1. C 6= � is a Σk context for some k,
2. root(si) 6∈ Σk for i ∈ {1, . . . , n}

Definition 21 (Alien terms). Let be s a term such that s = C[s1, . . . sn], the
si are called the alien subterms of s.
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We use the function rank which maps the set of the terms T (Σ1

⊎

Σ2, V )
where V is a set of variables, two disjoint signatures Σ1 and Σ2, to the set of
integers.

Definition 22 (Rank of a term). The rank is a function that counts the
maximum number of signature changes along all branches of a tree representation
of a term. It is defined recursively as below:

rank(t)
def

=

{

0 if t is a pure term,

1 + maxi∈{1...n}{rank(ti)} if t = C[t1, . . . , tn]

Example 6. Consider the two TRS over the two disjoint signatures Σ1 = {g}
and Σ2 = {f}. The rank of the term f(0, 1, g(0, 1)) is 2 and the rank of f(0, 0, 0)
is one.

Proposition 2. If a TRS R over T (Σ, V ) is finite, then for all t ∈ T (Σ, V ),
deg(t) is finite.

Proof. Let R be a finite TRS over T (Σ, V ), we have for all t ∈ T (Σ, V ):

deg(t)
def

= #{t →R t′} ≤ #R × #Pos(t),

where #R denotes the the number of rules in R, and #Pos(t) stands for the
number of subterm of t.

Given a term algebra T (Σ, V ), a finite TRS R, and a term t ∈ T (Σ, V ), we
define a non deterministic algorithm which computes a covering shortest path
tree rooted in t, denoted by SPT (t) (in this notation for simplicity we omit to
mention the term algebra and the TRS). Intuitively, SPT (t)’s paths correspond
to the shortest paths (in number of application of rewriting rules) from t to any
term t′ ∈ T (Σ, V ).

The shortest path tree SPT (t) is composed of a set of nodes, NSPT (t) ⊆
T (Σ, V ), and a set of edges ESPT (t) are composed of rewriting relations (Def-
inition 16). We describe our algorithm to build SPT (t) in Definition 23. In this
construction we use a non-deterministic mapping, denoted by one, which chooses
an element in a set of elements, defined as follow:

one(X)
def

=

{

x ∈ X, if X 6= ∅
∅, otherwise.

Definition 23 (Construction of SPT (t)). Let R be a TRS over the term al-
gebra T (Σ, V ), the set SPT (t) = (NSPT (t), ESPT (t)) is the short path tree
rooted in t, where NSPT (t) is a set of term, called nodes, and ESPT (t) is a set
of edges. We construct SPT (t) inductively by a breadth first search. The shortest
path trees of depth n are denoted SPTn(t) = (NSPTn(t), ESPTn(t)). By con-
struction SPT (t) is equal to

⋃

n≥0 SPTn(t). SPTn(t) is inductively defined as
follow on the number of applications of a rule from the root term t:
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– Initialization :

{

NSPT0(t)
def

= t

ESPT0(t)
def

= ∅
– Inductive construction:

{

NSPTn+1(t)
def

= NSPTn(t)
⋃

t′ 6∈NSPTn(t)∧∃s∈NSPTn(t):s→Rt′ t′,

ESPTn+1(t)
def

= ESPTn(t)
⋃

t′ 6∈NSPTn(t) one(s →R t′|s ∈ NSPTn(t))

Remark 6. The non-deterministic operator one grants that every term has got at
most a predecessor. If this operator is removed, then this algorithm computes a
directed acyclic graph, with a single maximal element, the term t. To write a de-
terministic algorithm which complies to this non-deterministic specification, one
have to replace the one operator by a function that deterministicly chooses one
single element of a set. Usual implementations are based upon terms structure,
where subterms are visited for example from left to right.

Remark 7. For all t ∈ T (Σ, V ), the application SPTn(t) : N → 2T (Σ,V ) ×
2T (Σ,V )×T (Σ,V ) is monotonic for the ⊆ relation, i.e.

∀t ∈ T (Σ, V ), ∀n ∈ N

{

NPSTn(t) ⊆ NPSTn+1(t)
EPSTn(t) ⊆ EPSTn+1(t)

(1)

In Remark 8 we notice that SPT (t) is a covering tree of the reachable terms
from t using the TRS, it means that it captures all possible terms that can be
generated from t.

Remark 8. Our algorithm given in Defintion 23 for constructing SPTn(t) builds:

– the set of nodes NSPT (t) using a breadth first search, the reader can notice
that it is just an inductive implantation of the set T ∗

s (t).
– the set of edge ESPT (t) using the function one, we construct only one edge

to link a new reacheable term to the previous one. This leads to build an
tree, it means each node has at most one successor.

Proposition 3. Let R be a finite term rewrite system over T (Σ, V ), if there
exists a term t with ‖t‖ = ∞ then there exists t′ such that t →∗

R t′ with ‖t′‖ = ∞.

Proof. We make a proof by transposition. Consider a term rewrite system R over
T (Σ, V ) such that for each term t, and for all t′ such that t →R t′i there exists
ki ∈ N such that ‖t′i‖ ≤ ki. Let’s consider a term t, we denote by {t′1, . . . , t

′
deg(t)}

the set of the successors of t, then we obtain:

‖t‖ ≤

deg(t)
∑

i=1

(1 + ‖t′i‖) ⇒ ‖t‖ ≤

deg(t)
∑

i=1

(1 + ki) = deg(t) × (1 + ki)

⇒ ‖t‖ ≤ deg(t) × [1 + max
i∈{1,...,deg(t)}

ki] < ∞

We conclude thanks to Proposition 2 (deg(t) is finite) and the fact that R is
a finite term rewrite system.
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We recall the Koenig’s Lemma.

Lemma 3. A finitely branching tree is infinite iff it contains an infinite length
path.

Lemma 4. If s → t in a TRS then rank(s) ≥ rank(t).

Detailed proof is given in [BN98].
We extend Definition 4 in order to consider the terms reachable with a given

rank.

Definition 24. We define the set of accessible terms with the rank i from a
term t ∈ T (Σ, V ) w.r.t the rewriting relation induced by R, as :

Ts(t, i)
def

= {t′|t →∗
R t′ such that rank(t′) = i}

We deduce from Lemma 4 the following corollary.

Corollary 1. Given t a term of T (Σ1 ∪ Σ2, V ) then

1. ∀i > rank(t), then Ts(t, i) = ∅
2.

‖t‖ =

i=rank(t)
∑

i=0

#T ∗
s (t, i)

Proof. 1. The first point is proved using Lemma 4 and the definition of Ts(t, i).
According to Lemma 4 rank(t) ≤ rank(t′), hence ∀i > rank(t), then we
have Ts(t, i) = ∅.

2. The second point is just a direct consequence of the first point and the
definition.

‖t‖ = #T ∗
s (t) = #{t′|t →∗

R t′} =

i=rank(t)
∑

i=0

#T ∗
s (t, i)

Proposition 1. Let R be a finite TRS over T (Σ, V ). If there exists a term
t ∈ T (Σ, V ) such that ‖t‖ = ∞, then there exists a derivation π such that
‖π‖ = ∞ and for all i 6= j, πi 6= πj.

Proof. Let t be a term such that ‖t‖ = ∞. We have shown in Remark 8 that
SPT (t) is a tree with the following property T ∗

s (t) = NSPT (t). By Koenig’s
lemma (recall in lemma 3 in appendix), the short path tree SPT (t) contains
infinitely many nodes if and only if it contains an infinite path. Therefore, there
exists an infinite path (πi)i∈N in SPT (t), such that π0 = t. Because π is a path
belonging to a tree, it contains no cycles. By construction of SPT (t) we also
have that for all i 6= j πi 6= πj and ‖π‖ = ∞.



22 Florent Garnier and Pascal Lafourcade

B Proofs of Modularity

Lemma 1 (Weakly Termination is a modular property [KK90, Dro89,
BKM89]). Let R1 be a TRS over T (Σ1, V ) and R2 a TRS over T (Σ2, V ), with
Σ1 ∩ Σ2 = ∅. The TRS R1

⊎

R2 weakly terminates if and only if R1 weakly
terminates and R2 weakly terminates.

Proof. ⇒ This way of the demonstration is immediate, using a kind of projection.
⇐ Let suppose that R1, resp. R2 weakly terminates. We demonstrate that

for all t ∈ T (Σ1 ⊎Σ2, V ), t is weakly terminating by induction on the rank of t.

– Base case: rank(t) = 0, it means that t is a pure term, w.l.o.g we can
consider that t ∈ T (Σ1, V ). In this case, by hypothesis we know that there
exists a derivation from t that leads to a terminal term. We conclude that
the property holds for the base case.

– We suppose that for all terms t′ ∈ T (Σ1 ⊎ Σ2, V ) such that rank(t′) ≤ k,
there exists a derivation from t′ that leads to a terminal term. We prove that
for all t = C[s1, . . . sn] ∈ T (Σ1 ⊎ Σ2, V ) with rank(t) = k + 1 there exists a
derivation from t that leads to a terminal term.
We can suppose, w.l.o.g that root(t) ∈ Σ1. We notice that all the alien terms
have a rank less or equal than k, by definition of the rank. Hence, using
the induction hypothesis, for all these alien terms there exists a derivation
leading to a terminal term. This allows us to see all alien terms in t as some
constant terms in Σ1. Using the fact that the rewriting system R1 is weakly
terminating, we conclude that there exists a derivation from t to a terminal
term. This concludes the proof.

Lemma 2 (Modularity of globally finite property). Let R1 be a TRS over
T (Σ1, V ) and R2 a TRS over T (Σ2, V ), with Σ1∩Σ2 = ∅. The TRS R = R1

⊎

R2

is globally finite if and only if R1 is globally finite and R2 is globally finite.

Proof. ⇒ This way of the demonstration is immediate, the idea is to consider
only terms in one signature and restrict the application of rules of this signature
for the weakly termination.

⇐ Consider t0 be the first term of an infinite length derivation D = (ti){i∈N}

in R = R1

⊎

R2, we show that it contains finitely many different terms. We
demonstrate this result by induction on the rank function.

– Base case: rank(t0) = 0, it means that all elements of the term t0 are in
the signature of R1 or R2. By hypothesis these two TRS terminate, thus we
know that every derivation D associated to t0 have a finite number of terms.

– Induction: Assume that for all terms t such that rank(t) = n the result
holds, then we want to prove the lemma for t0 such that rank(t0) = n + 1.
We first decompose ‖t0‖ using corollary 1:
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‖t0‖ =

i=rank(t0)
∑

i=0

#T ∗
s (t0, i)

=

i=rank(t0)−1
∑

i=0

#T ∗
s (t0, i) + #T ∗

s (t0, rank(t0))

The first part is finite by induction hypothesis, based on the fact that the
rank is at most n for all these terms. In the following, we focus on the second
term and recall the definition.

#T ∗
s (t0, rank(t0)) = #{t′|t0 →∗ t′, rank(t′) = rank(t0)}

According to Lemma 4 on the rank, we deduce that all term in a such
derivation have the same rank, otherwise it is impossible to recover the initial
rank in a derivation after you passed through a term with a smaller rank.
Hence we have only to consider derivation where for all, t̂ such that t0 →∗ t̂,
we have rank(t0) = rank(t̂0).
This implies that there exists a branch a each step of rewriting such that
t0 = C[s1, . . . , sn], and ∃i ∈ {0, . . . , n} such that rank(t0) = 1 + rank(si).
We can conclude making an approximation of the number of possible terms
reachable from t0 with the same rank.

#T ∗
s (t0, rank(t0)) ≤ ‖t0‖� × T ∗

s (si)
max(arity(R1),arity(R2))

is finite, where ‖t0‖� is defined as the restriction to outer rewriting terms
in the definition of ‖t0‖. Formally, if t0 = C[s1, . . . , sn], ‖t0‖� is defined
by #{C′[s′1, . . . , s

′
m]|C[s1, . . . , sn] →∗

R1
C′[s′1, . . . , s

′
m]}. By construction the

arity of the two rewriting systems are finite. By induction hypothesis for all
i, T ∗

s (si) is finite because these terms have a smaller rank. Finally ‖t0‖� is
finite because t0 = C[s1, . . . , sn] and R1 is globally finite

C Proofs of Randomized Part

Theorem 3. A TRS R terminates under fair strategy if and only if it almost
surely terminates under RR-fair strategy.

Proof. ⇒ We consider that R is a TRS terminating under fair strategy, according
to our characterization in Theorem 1, the both assertions below hold:

(1) ∀t ∈ T (Σ, V ) ‖t‖ < ∞

(2) ∀t ∈ T (Σ, V ), ∃t′ s.t. (∀t′′ ∈ T (Σ, V ),¬(t′ →R t′′)).
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We prove that (1) ∧ (2) ⇒ (3), where

(3)







∀t ∈ T (Σ, V ), ∀φ RR-fair strategy
∀(π)n∈N derivation under φ

P [∃n such that πn = ⊥] = 1

We first show that, once a RR-strategy φ and a term t0 ∈ T (Σ, V ) are chosen,
then we have the following property for all t ∈ T ∗

s (π0):

∀t′ such that t → t′, ∀πn : πn = t, P [φ(πn) = t′] > Pminφ(t, t′) > 0

Where
Pminφ(t, t′)

def

= inf
πn,πn=s

{P [φ(πn) = s′]}.

The strategy φ is a RR-fair strategy, we have

{φ(π0 . . . πn) : πn = t} = {φ(πn−N . . . πn) : πn = t},

Thanks to hypothesis (1), ‖π0‖ is finite. Hence the number of different deriva-
tion prefix πn − πN is bounded by

#{πn−N . . . πn : πn = t} ≤ ‖πn−N‖N ≤ ‖π0‖
N

Because a randomized strategy is defined as a function we have that:

#{φ(π0 . . . πn) : πn = t} = #{φ(πn−N . . . πn) : πn = t}

Assume there exists a non terminal term t such that t ∈ inf(π) almost surely
(denoted a.s). Under this hypothesis, there exists almost surely infinitely many
n ∈ N for which πn = t. Therefore, in this case, the inf operator can be replaced
by a min, since we are looking forward the smallest value among a finite set:

Pminφ(t, t′) = min
πn,πn=t

{P [φ(πn) = (t′]}.

Because we are dealing with a fair strategy we have for all πn such that
πn = t:

1 ≥ P [φ(π0, . . . , πn) = t′] > 0

Hence
1 ≥ Pminφ(t, t′) > 0

Now we can better understand how a derivation evolves and which is the
probability that the strategy chooses a successor of the last term of a derivation
prefix which is closer to a terminal term. We recursively define the sets pren, as
follow:

pre0 def

= {t|t is terminal }

pren+1 def

=

{

t|∃t′ ∈ pren, t → t′ such that
∧ t → t′′, t′′ 6∈ prei, ∀i ∈ {1, . . . , n − 1}

}

pre∞
def

=
{

t|∀t′ terminal,¬(t→∗t′)}

}
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One immediate property of this set is that a rewriting rule can only decreases
by one when it is changing set, but can increase more than one. Formally we
express it by the following property: Let R be a TRS, ti ∈ prex and ti+1 ∈ prey

be two terms such that ti →R ti+1 and x > y then we have y = x− 1. The proof
of this property is an immediate consequence of the definition of pren.

The set pren, is the set of term t such that the smallest derivation prefix
starting from t and that leads to a terminal term has for length n. Because of
hypothesis (1), we know that ‖π0‖ is bounded, and because of hypothesis (2),

we know that for all non terminal πi ∈ π, πi ∈
⋃k=‖π0‖

k=1 prek. The latter equality
is justified by the fact that each term πi is a successor of π0 and that πi can be
rewritten in a terminal term using a number of rewriting steps less than ‖π0‖.

Given any 1 ≤ k ≤ M , we define Pminφ(k + 1, k)
def

= min{Pminφ(t, t′) : t ∈
prek+1 ∧ t′ ∈ prek}. the minimal probability for the strategy φ to chose a term
closer to the set of terminal terms when the last term of the derivation prefix πn

belongs to prek+1. Clearly Pminφ(k + 1, k) > 0, because it is the minimal value
chose among a finite set of values, each being strictly positive.

Due to the hypothesis (2) (weak termination) we deduce that for all k ∈ N,
there exists a n ∈ N such that πk ∈ pren and n ≤ ‖π0‖. We also deduce from
the definition of the sets pren, that for every k ∈ N such that πk ∈ pren+1

P [πk+1 ∈ pren] ≥ Pminφ(n + 1, n) > 0.

For the sake of readability, we will note PM,n the set PM,n
def

= ∪M
j=nprej .

We show that the latter equation implies that with probability one, there
exists k such that πk ∈ pre0, i.e. πk+1 = ⊥. We note by M the integer defined

as M
def

= max{n : ∃t ∈ T ∗
s (π0) ∧ t ∈ pren}.

We prove that the two propositions below are equivalent if R is a fair termi-
nating TRS:

(A) ∀k ∈ N, πk 6= ⊥
(B) ∃n, M > n ≥ 1 s.t. ∀k ∈ N, πk ∈

⋃M
i=n prei

Proof:

(B) ⇒ (A) : In this part of the proof, we do not need the fact that R is a fair terminating
TRS, it is just by definition of prei. According to (B) we deduce that for all
k ∈ N, πk 6∈ pre0 which implies that that for all k ∈ N, πk 6= ⊥

(A) ⇒ (B) : We first notice that we have πk ∈ pre0 ⇔ πk is a terminal term which
only implies that πk+1 = ⊥. (A) implies that πk ∈

⋃∞
i=1 prei. Using our

characterization of fair terminating TRS (Theorem 1), we have that for all
π0 ∈ T (Σ, V ), ‖π0‖ < ∞, it means that there exists M such that ‖π0‖ ≤ M .
Then due to the weak termination for all k ∈ N, πk ∈ T ∗

s (π0) this implies

that πk ∈
⋃M

i=n prei.

Hence we have that P [A] = P [B]. We show that the probability of the event
(B) is 0. We show that the events (B) is a subset of a set of event B′ whose
probability is zero. We recall that if B ⊆ B′ then P [B] ≤ P [B′]. We denote by
(B′) the following event:

B′ def

= ∃n ∈ N, ∃R ∈ N, ∀k ≥ R, πk ∈ PM,n
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The event (B′) means that a derivation stays forever in a set PM,n, after a finite
index R. The event B is as well an event B′ for which R = 0. The converse how-
ever is false. We show by induction on n, that the probability that a derivation
π stays forever in a set PM,n after a finite index R is 0.

– Base case: we suppose that n = M . Here we consider that the probability
that there exists R is positive, otherwise the left member of this equation is
equal to zero:

P [∃R, ∀k ≥ R, πk ∈ PM,M ] = P [∃R, πR ∈ PM,M ∩ ∀k ≥ R, πk ∈ PM,M ]

= P [∀k ≥ R, πk ∈ PM,M |πR ∈ PM,M ]

×P [∃R, πR ∈ PM,M ] (2)

= P [
⋂

k≥R

πk ∈ PM,M |πR ∈ PM,M ]

×P [∃R, πR ∈ PM,M ]

Equation 2 is deduced from the line above using the fact that P [A ∩ B] =
P [A|B]×P [B] if P [B] > 0. By definition of preM we know that if πk ∈ PM,M ,
then πk+1 ∈ PM,M or πk+1 = PM,M−1, because M is the integer such that
there exists no integer n greater than M for which a successor of π0 belongs
to pren. Because of hypothesis (2), for all terms t, there exists t′ ∈ PM,M−1

such that t → t′, however, there exists no t′′ such that t →R t′′ and no integer
n with t′′ ∈ PM,M−n. Therefore, ∀k ∈ N, the following equation holds:

P [πk+1 ∈ PM,M |πk ∈ PM,M ] = 1 − P [πk+1 ∈ PM,M−1|πk ∈ PM,M ]

As well as its obvious consequence:

P [πk+1 ∈ PM,M |πk ∈ PM,M ] ≤ 1 − Pminφ(M, M − 1). (3)

Notice that equation 3 holds whatever are the values taken by the random
values π0, . . . , πk−1. Now, we show that the term P [

⋂

k≥R πk ∈ PM,M |πR ∈ PM,M ]
in equation 2 is equal to zero:

P [
⋂

k≥R

πk ∈ PM,M |πR ∈ PM,M ] = P [
⋂

k+1>R

πk+1 ∈ PM,M |
k

⋂

i=R

πi ∈ PM,M ]

By equation 3, we know that for all k + 1 > R

P [πk+1 ∈ PM,M |
k

⋂

i=R

πi ∈ PM,M ] ≤ 1 − Pminφ(M, M − 1),

as far as the event πk ∈ PM,M belongs to the field of events generated by
⋂k

i=R πk ∈ PM,M . We then deduce that

P [
⋂

k≥R

πk ∈ PM,M |πR ∈ PM,M ] =
∏

k+1>R

(1 − Pminφ(M, M − 1))

= 0.
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– Let us show that if there exists an integer n ≥ 1 such that the property
H(n + 1) holds, then the property H(n) holds as well, where properties
H(n + 1) and H(n) are defined below:

H(n + 1) P [∃R ∈ N, ∀k > R, πk ∈ PM,n+1] = 0
H(n) P [∃R′ ∈ N, ∀k > R′, πk ∈ PM,n] = 0.

In order to compute the aforementioned probabilities, we need to define the
following sequence of random variables:

{

τ1,n
def

= min{i ∈ N : πi ∈ pren}

τk+1,n
def

= min{i ∈ N : πi ∈ pren ∧ i > τk,n}

The sequence of (τi,n)i∈N is a sequence of stopping times, and τi,n is the index
of the derivation π for which πτi,n

is the ith element of π that belongs to
pren. Let us recall that if the ith term of a derivation π, satisfies πi ∈ PM,n,
then the only condition that allows πi+1 to be selected in pren−1, is that
πi belongs to pren. In other words there must exists an integer k such that
i = τnk

. For proving, that H(n+1) implies H(n), we first show that H(n+1)
implies the property (τ), where:

(τ)

{

If τi,n < ∞ and πτi,n+1 ∈ PM,n

then P [τi+1,n < ∞] = 1.

We prove that under hypothesis H(n + 1), property (τ) holds.

Proof. We consider the two complementary cases below:
• If πτi,n+1 ∈ pren, then τi+1,n = τi,n + 1, by definition of sequence

(τi,n)i∈N.
• We consider now the case where πτi,n+1 ∈ PM,n+1.

H(n+1) ⇔ P [∀R ∈ N, ∃k ≥ R πk 6∈ PM,n+1] = 1 By setting R = τi,n +
1, we got that almost surely there exists an integer k > τi,n such that
πk 6∈ PM,n+1 and let be k′ the smallest k. This value satifies πk′ ∈ pren,
therefore τi+1,n = k′.

We have shown, that τi+1,n almost surely exists finite in the both comple-
mentary cases, therefore τi+1,n almost surely exists finite. 2

We show that the property H(n + 1) implies the following implication:

(B′) ∃R ∈ N, ∀k ≥ R, πk ∈ PM,n ⇒ (B′′)∃R′ ∈ N, ∀i ≥ R′ πτi,n+1 ∈ PM,n

The events (B′) and (B′′) are in fact equivalent, but we do not need to prove
the equivalence since we show that P [B′] ≤ P [B′′] = 0.

Proof. To prove that (B′′) holds, we have to show that almost surely the
stopping time sequence (τi)i∈N exists and that each τi is a finite value, almost
surely.
Hypothesis (B′), means there exists an integer R, such that for any integer
k greater or equal than R, πk ∈ PM,n. The induction hypothesis H(n + 1)
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is sufficient to prove that the stopping time τ0,n exists finite almost surely,
because H(n+1) means the probability that the sequence πk stay forever in
PM,n+1 equals zero. The following equivalence even holds under hypothesis
(B′),

P [∀k ≥ R, πk ∈ PM,n+1] = 0 ⇔ P [∃k ≥ R, πk ∈ pren] = 1

The right hand side of this equivalence is deduced from the left one, because
under hypothesis (B′), for all integers k, πk either belongs to PM,n+1 or be-
longs to pren and the two sets PM,n+1 and pren are disjoint. This means,
that almost surely, there exists an integer k such that πk ∈ pren a.s., i.e.
there exists an integer R′ such that k = τR′,n. Hypothesis (B′) entails that
πτR′,n+1 ∈ PM,n, therefore using the property (τ) we deduce that the se-
quence of stopping time (τi,n)i∈N almost surely exists finite, using property
(τ) as an induction step. Let us suppose τi,n almost surely exists, then be-
cause of (B′) πτi,n+1 ∈ PM,n, hence by property (τ), τi+1,n almost surely
exists finite. At this point, we proved (B′′).

2

We now have all the required material to compute the probability of the
event (B′′). We use the two complementary events:

K
def

= τ0,n < ∞

K
def

= τ0,n = ∞

P [B′′] = P [B′′ ∩ K] + P [B′′ ∩ K]

= P [B′′| K] × P [K] + P [B′′| K] × P [K]

We first show that P [B′′| K] = 0. We consider the two complementary situ-
ations:
• If π0 6∈ PM,n then for all k ∈ N πk 6∈ PM,n. This assertion is true,

because in this case, if there exists πk ∈ PM,n then there exists τ0,n ≤ k.
Therefore, in this case P [B′′| K] = 0.

• If π0 ∈ PM,n, then the event P [B′′| K] means that π0 ∈ PM,n+1 (oth-
erwise τ0,n = 0) and that for all k ∈ N, πk ∈ PM,n+1. The latter event
occurs with propability 0, because of the induction hypothesis H(n+1).

We now have to demonstrate that P [B′′| K] = 0. Knowing that K holds, we
know that almost surely τ0,n exists, therefore we can compute P [B′′| K], as
follow:

P [∃R, ∀k > R, πk ∈ PM,n| K] = P [
⋂

k≥R′

φ(πτk,n
) ∈ PM,n| K].

Because of the following P [φ(πτk,n
) ∈ PM,n] ≤ 1− Pminφ(n, n− 1), we get:

P [∃R, ∀k > R, πk ∈ PM,n| K] ≤
∏

k≥R′

(1 − Pminφ(n, n − 1, ))

= 0
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Which ends the proof by induction.

We have proved that P [B′′] = 0, thus P [B′] = 0 = P [A]. Hence we conclude
that

P [∃k ∈ N, πk = ⊥] = 1

.
Proof of the converse: ⇐.
We prove the converse by transposition:

¬(1) ∃t ∈ T (Σ, V ) ‖t‖ = ∞

¬(2) ∃t ∈ T (Σ, V ), ∀t →∗
R t′¬(∀t′′ ∈ T (Σ, V ),¬(t′ →R t′′)).

We prove that ¬(1) ∨ ¬(2) entails

¬(3)







∃t ∈ T (Σ, V ), ∃φ RR-fair strategy
∃(π)n∈N derivation under φ

s.t. P [∃n s.t πn = ⊥] < 1

The easiest part to show, is ¬(2) ⇒ ¬(3). Formula ¬(2) means there exists
a term t from which no terminal term is reachable. Therefore, for any RR-fair
strategy φ and any derivation π under φ such that π0 = t, P [∃n πn = ⊥] = 0.

Now, let’s prove ¬(1) ⇒ ¬(3). Let be t ∈ T (Σ, V ) with ‖t‖ = ∞. We proved
in proposition 1 the existence of a derivation (t∞i )i∈N such that t∞0 = t and
∀i 6= j t∞i 6= t∞j . Let us consider φ a randomized strategy satifying the following
equations:

P [φ(πk) = t]
def

=

{

1 − e−i if πk = t∞i ∧ t = t∞i+1
e−i

#{t∞
i

→Rt′}−1 if πk = t∞i ∧ πk → t ∧ t 6= t∞i+1

P [φ(πk) = t]
def

= 1
#{πk→Rt′} if πk 6= t∞i ∧ πk → t.

P [φ(πk) = t]
def

= 0 if ¬(πk → t)

The strategy φ is RR-fair, because it is fair and only the last state of the prefix
of a derivation is used to compute the probability mesure used to select the next
state of the current derivation. This kind of process is usually called memoryless
or Markovian. Now, we show that there exists an infinite length derivation (πi)i∈N

satifying P [∃n πn = ⊥] < 1. Consider π the derivation under the aforementioned
RR-strategy φ, with π0 = t∞0 . Using the fact that the following event ∃n, πn = ⊥
complementary is ∀n, πn 6= ⊥, we deduce that:

P [∃n, πn = ⊥] = 1 − P [∀n, πn 6= ⊥].

Therefore, proving that P [∃n, πn = ⊥] < 1 is logically equivalent to prove that
P [∀n, πn 6= ⊥] > 0. The event ∀n πn = t∞n is a subset of the set of events such
that ∀n πn 6= ⊥, henceforth :

P [∀n, πn = t∞n ] ≤ P [∀n, πn 6= ⊥],
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with

P [πn = t∞n ] =

n
∏

i=1

P [πn = t∞n |πn−1 = t∞n−1 ∧ . . . ∧ π0 = t∞0 ] (4)

=

n
∏

i=1

P [πn = t∞n |πn−1 = t∞n−1] (5)

=

n
∏

i=1

(1 − e−i).

Equation 5 is deduced from equation 4 using the fact that by definition φ is
memoryless. To complete the proof, we have to show that:

lim
n→∞

P [∀i ∈ {1, . . . , n} πi = t∞i ],

exists and is positive 1. To show this, we use the conveniant properties of the
classical Napier’s Logarithm:

lnP [∀i ∈ {1, . . . , n} πi = t∞i ] = ln(

n
∏

i=1

(1 − e−i))

=

i=n
∑

i=1

ln (1 − e−i)

Let be In
def

=
∑i=n

i=1 ln (1 − e−i), using Taylor’s series we get:

In =

i=n
∑

i=1

∑

k≥1

−
e−ik

k

= −
∑

k≥1

1

k

n
∑

i=1

e−ik

= −
∑

k≥1

1

k
e−k 1 − e−kn

1 − e−k

Therefore

lim
n→∞

In = −
∑

k≥1

1

k
e−k ×

1

1 − e−k

≥ −
1

1 − e−1
×

∑

k≥1

1

k
e−k

≥
1

1 − e−1
× ln(1 − e−1),

1 Non zero
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hence,

P [∀i ∈ {1, . . . , n} πi = t∞i ] ≥ (1 − e−1)
1

1−e−1 > 0

therefore

P [∃n, πn = ⊥] < 1,

which concludes the proof of the converse part, as well as the proof of theorem
3.

Theorem 4. Let R be a fair terminating TRS. Then R is positively almost
surely terminating under all RR-fair strategies.

Informally, this theorem states that for every fairly terminating TRS R, fir-
ing the rewriting rules thanks to any RR-strategy will lead to a terminal term
whithin a bounded mean number of rewrite steps.

Before starting the proof itself, we have to define some notations and random
variables that will ease the proof readability. Consider φ a RR-strategy, and πk

a prefix of the derivation π, computed under strategy φ.

We define the stopping time τπk,n as the random varible:

τπk,n
def

= min{j ≥ k : πj ∈ pren}

Proof. ⇒

Let R be a fairly terminant TRS, φ a RR-fair strategy and t ∈ T (Σ, V ). We
know thanks to theorem 1 that R is weakly terminating and that ‖t‖ < ∞. This
implies that there exists M ∈ N such that for every t ∈ T (Σ, V ) t ∈ pren with
n ∈ {0, . . . , M}.

We show by induction that the following property h(n) holds for all n ∈
1, . . .M :

h(n)
def

=







∃ Tn,n−1 < ∞
∀ πk with πk ∈ pren

E[τπk,n−1] ≤ Tn,n−1

We first show that h(N) holds.

Recall that because φ is RR-fair, we have that for any n ∈ {1, . . . , M}
Pminφ(n, n − 1) > 0. We now consider πk a prefix of a derivation whose last
term πk belongs to preM . We compute here a finite upper bound to E[τπk,M−1].
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E[τπk,M−1] =
∑

i≥1

iP [τπk,M−1 = i]

=
∑

i≥1

iP [∀j < i πk+j ∈ preM ∧ πi ∈ preM−1]

≤
∑

i≥1

i

i−1
∏

k=1

(1 − Pminφ(M, M − 1)) (6)

≤
∑

i≥1

i × (1 − Pminφ(M, M − 1))i−1

≤ − ln (Pminφ(M, M − 1)) (7)

Equation 6 is deduced from the previous line by not considering the proba-
bility that πi ∈ preM−1 and using the upper bound of

P [∀j < i πk+j ∈ preM ∧ πi ∈ preM−1]

we provided in theorem 3 proof. In the same way, equation 7 is deduced from the
line above using classical Taylor’s series. One may remark that the real number
− ln (Pminφ(M, M − 1)) is a positive and finite value, as far as

0 < Pminφ(M, M − 1) ≤ 1.

We now define

TM,M−1
def

= − ln (Pminφ(M, M − 1)),

and this concludes the proof of h(M).
Let us now prove that if for all l ∈ {n, . . . , M} property h(l) holds, then

h(n − 1) holds.
To do so, let us first show, that for any derivation π under φ with πk ∈ pren+j ,

with n + j ≤ M , we have the following equation :

E[τπk,n] ≤

j−1
∑

i=0

Tn+i+1,n+i (8)

To prove equation 8, let’s just write:

E[τπk,n] = E[τπk,n+m−1 + τπτπk,n+j−1
,n+j−2 + . . . + τπ

...τπk,n+j−1

,n]

≤ E[τπk,n+j−1] + . . . + E[τπ
...τπk,n+j−1

,n]

≤

j−1
∑

i=0

Tn+i+1,n+i
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We can now start the proof of induction step: To do this, we show that there
exists Tn,n−1 < ∞ s.t. E[τπk,n−1] ≤ Tn,n−1. Let us recall that we showed in
theorem 3 proof that the only way for π to reach a term of pren−1, when all terms
of πk belongs to PM,n is to reach pren first. Once πi ∈ pren, for some i, πi+1 may
belongs to pren−1 with probability greater or equal than Pminφ(n, n−1), or may
belong to PM,n with the complementary probability, at most 1−Pminφ(n, n−1).
If πi ∈ PM,n+1, then P [πi+1 ∈ pren−1] = 0.

Let us compute an upper bound of E[τπk,n−1] ≤ Tn,n−1, by using the equality

E[τπk,n−1] = E[E[τπk,n−1|(τi,n)i∈N]] (9)

Equation 9 holds because ∀i ∈ N the σ field σ(
⋃i

k=0 τk,n) contains the trivial
σ-field {∅, Ω}.

We compute E[τπk,n−1|(τi,n)i∈N]

E[τπk,n−1|(τi,n)i∈N] = (τ1,n + 1) × P [φ(πτ1,n
) ∈ pren−1]

+(τ2,n + 1) × P [φ(πτ2,n
) ∈ pren−1] × P [φ(πτ1,n

) 6∈ pren−1]

...

+(τk+1,n + 1) × P [φ(πτk,n
) ∈ pren−1] ×

k−1
∏

j=1

P [φ(πτj,n
) 6∈ pren−1]

...

In a compact form we have:

E[τtk,n−1|(τi,n)i∈N] = (τ1,n + 1) × P [φ(πτ1,n
) ∈ pren−1]

+
∑

k≥2

(τk,n + 1) × P [φ(πτk,n
) ∈ pren−1] ×

k−1
∏

j=1

P [φ(πτj,n
) 6∈ pren−1]

For computing an upper bound of E[τπk,n−1], we just compute an upper bound
of E[E[τπk,n−1|(τi,n)i∈N]]

E[τπk,n−1] = E[E[τπk,n−1|(τi,n)i∈N]]

E[τπk,n−1] = E

[

(τ1,n + 1) × P [φ(πτ1,n
) ∈ pren−1]

+
∑

k≥2(τk+1,n) × P [φ(πτk,n
) ∈ pren−1] ×

∏k−1
j=1 P [φ(πτj,n

) 6∈ pren−1]

]

≤ 1 + E[τ1,n] +
∑

i≥2

(1 − Pminφ(n, n − 1))i × E[(τi,n + 1)]

≤ 1 + TN,n +
∑

i≥2

TN,n × i × (1 − Pminφ(n, n − 1))i

≤ 1 + TN,n +
∑

i≥2

TN,n × i × (1 − Pminφ(n, n − 1))(i−1)

≤ 1 + TN,n(1 − ln(Pminφ(n, n − 1))).
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We proved indeed that: Tn,n−1 exists and

Tn,n−1 = 1 + TN,n(1 − ln(Pminφ(n, n − 1))),

which concludes the proof.


