
Practical Construction for Secure Trick-Taking
Games Even With Cards Set Aside⋆

Rohann Bella[0009−0004−1011−1860]1, Xavier Bultel[0000−0002−8309−8984]1, Céline
Chevalier[0009−0006−4231−4958]2, Pascal Lafourcade[0000−0002−4459−511X]3,

Charles Olivier-Anclin[0000−0002−9365−3259]3,4

1 INSA Centre Val de Loire, Laboratoire d’informatique fondamental d’Orléans,
France

2 CRED, Université Paris-Panthéon-Assas and DIENS, École normale supérieure,
PSL Université, CNRS, INRIA, Paris, France

3 Université Clermont-Auvergne, CNRS, Clermont-Auvergne-INP, LIMOS,
Clermont-Ferrand, France

4 be ys Pay

Abstract. Trick-taking games are traditional card games played all over
the world. There are many such games, and most of them can be played
online through dedicated applications, either for fun or for betting money.
However, these games have an intrinsic drawback: each player plays its
cards according to several secret constraints (unknown to the other play-
ers), and if a player does not respect these constraints, the other players
will not realize it until much later in the game.
In 2019, X. Bultel and P. Lafourcade proposed a cryptographic protocol
for Spades in the random oracle model allowing peer-to-peer trick-taking
games to be played securely without the possibility of cheating, even by
playing a card that does not respect the secret constraints. However, to
simulate card shuffling, this protocol requires a custom proof of shuf-
fle with quadratic complexity in the number of cards, which makes the
protocol inefficient in practice. In this paper, we improve their work in
several ways. First, we extend their model to cover a broader range of
games, such as those implying a set of cards set aside during the deal
(for instance Triomphe or French Tarot). Then, we propose a new effi-
cient construction for Spades in the standard model (without random
oracles), where cards are represented by partially homomorphic cipher-
texts. It can be instantiated by any standard generic proof of shuffle,
which significantly improves the efficiency. We demonstrate the feasibil-
ity of our approach by giving an implementation of our protocol, and we
compare the performances of the new shuffle protocol with the previous
one. Finally, we give a similar protocol for French Tarot, with comparable
efficiency.

⋆ This study was partially supported by the French ANR project ANR-18-CE39-0019
(MobiS5). Other programs also fund to write this paper, namely the French govern-
ment research program “Investissements d’Avenir” through the IDEX-ISITE initia-
tive 16-IDEX-0001 (CAP 20-25) and the IMobS3 Laboratory of Excellence (ANR-
10-LABX-16-01). Finally, the French ANR project DECRYPT (ANR-18-CE39-0007)
and SEVERITAS (ANR-20-CE39-0009) also subsidize this work.

1 Introduction

Trick-taking Games. With the development of computers, many traditional
games have been adapted into electronic versions. The emergence of the In-
ternet has naturally made it possible to play these games online with opponents
from all over the world. This is particularly the case for card games, and it is
now possible to play Poker, Bridge, Blackjack, Ramis, Triomphe, Écarté, Euchre
or Tarot with human opponents at any time and any place, thanks to the use of
dedicated applications on computers or smartphones. While these applications
allow users to play for fun, many of them offer to play for money. In this case,
there are several security issues to consider, since an application that allows play-
ers to cheat would illegitimately make honest players lose money. For this reason,
several works, initiated in the seminal paper of Goldwasser and Micali [13], have
proposed cryptographic protocols allowing to play cards securely.

Trick-taking games are a family of card games that all have the same struc-
ture: the cards are dealt to the players, then the game is divided into several
rounds; in each round, players take turns playing a card, and the player with the
highest value card wins the round. However, players cannot play any card from
their hand and must follow several constraints defined by the rules. For example,
in Whist and its variant Spades (which appeared in the 40’s), players must play
a card of the same suit as the first card of the round if they can. There are many
popular trick-taking games around the world such as Belote, Bridge, Tarot, Skat
or Whist. Some of them are gambling, and can be played in online casinos, such
as Spades, Bourré or Oh Hell Stackpot (a gambling version of Oh Hell).

Unlike other card games, trick-taking games allow players to cheat without
it being immediately detectable: since the players’ cards are hidden, it is not
possible to know if a player respects the rules at the time it plays its card.
The cheating is detected later in the game, when the cheater plays a card it
is not supposed to have. In this case, the game is cancelled at the detriment
of the other players which have lost time and energy. In addition, trick-taking
games are often played in teams, and the cheater’s teammates must then take
responsibility of the cheater’s behavior. While this may be embarrassing in the
presence of the other players, it is much easier to deal with online when players
are anonymous. To avoid this situation, online trick-taking game applications
prevent illegal plays. However, to do this control, the application must have
access to the cards of all players, which must therefore trust the application by
assuming that it is not rigging the games.

Since such cheating is possible with a physical deck of cards, the classical
cryptographic card game protocols do not prevent it. In [5], Bultel and Lafour-
cade introduce the secure trick-taking game protocols, which allows to detect
when a player does not respect the rules of the game, without learning anything
from its cards. Such protocols have the following properties:
Unpredictability: the cards are dealt at random.
Theft and cheating resistance: a player cannot play a card that is not in its

hand, and cannot play a card that does not follow the rules of the game.

2

Hand and game privacy: players do not know the hidden cards of their ad-
versaries at the beginning of the game, then at each step of the game, the
protocol does not reveal anything else than the cards that have been played.

Unfortunately, the security model from [5] cannot be applied to games in which
not all cards are used by the players, because the challenger deduces the op-
ponent’s hand from the knowledge of the honest players’ hands, which is not
possible if cards are discarded. This excludes some very famous games, such as
the well-known French Tarot, the Skat game, considered as the national card
game of Germany, as well as one of the oldest trick-taking games, Triomphe,
which dates back to the 15th century and is at the origin of both the word trump
and many other games, like Écarté and Euchre. As with Spades, for sake of
clarity, we choose to focus here on Tarot, but our approach is easily generalized.

Furthermore, the card distribution mechanism of the protocol in [5] suffers
from two drawbacks inherent to its design. In a nutshell, each player chooses a
secret key sk and computes the corresponding public key pk for each of its cards.
It then alters its public key (and other parameters) using a random value, and
shuffles the generator/key pairs (with a proof of correctness). At the end of this
step, each generator/key pair is assigned a random card thanks to a random
value the players need to agree on. The first issue is that this approach is highly
dependent on the random oracle model, the second is that the shuffle proof
proposed in [5] is not efficient since its complexity is in O(n2) in the number of
cards, which is 32, 54, 78 or even 104 cards depending on the game.

Contributions. In this paper, we first extend the security model from [5] to cover
the French Tarot (see Section 4). French Tarot being the most complex of the
games with Cards Set Aside, it is easy to simplify our model to adapt it to other
games having this property.

Then, we propose two new secure Trick-taking protocols based on a common
idea (as in [5], for the sake of clarity, we base one of our protocols on Spades,
but it can be adapted to any game having the same structure, such as Whist,
Bridge, etc., the other is based on Tarot for similar reasons). Their card rep-
resentations differ from [5] (and is closer to classical cryptographic card game
protocols), which allows us to address both of the above drawbacks. Each card
is encrypted by a key shared by all players using a partially homomorphic public
key encryption scheme, such that all shares are needed to decrypt a card. To
shuffle the deck, the players randomise and shuffle these encrypted cards in turn,
then each player is given its encrypted cards, and each player uses its key share
to partially decrypt the other players’ cards. Thus, at the end of this process,
the cards are only encrypted by their owner’s key share. This method has the
advantage of shuffling the cards directly instead of shuffling keys associated with
cards assigned a posteriori, so it is no longer necessary to use a random oracle
to assign the cards randomly. Moreover, the shuffle is done on a partially homo-
morphic encryption scheme, and there are many efficient generic zero-knowledge
proofs to prove the correctness of such a shuffle in the literature with linear com-
plexity in the number of ciphertexts [2,11,15]. This allows us to instantiate our
protocols much more efficiently than in [5], and to propose practical yet secure

3

trick-taking protocols. Details are given in Section 5 and proofs are presented in
the full version [3]. We also give a protocol for Tarot, with similar complexity
(see Section 6 and the full version [3]).

The goal is to reduce this additional cost to a point where cryptographic
operations would no longer cause delays during the game. The efficiency of our
Trick-taking protocols is assessed in [3], along with an implementation in Rust
to demonstrate their practicality. Most of the complexity cost comes from the
proofs (that everything was done correctly), and especially in the shuffle phase
(Proof 1 in Section 5). A first improvement is that we can implement two designs
for this proof. In order to show the advantage of our approach, we evaluate the
performance of our protocols when instantiated either with a specific proof built
from the same method (and a similar execution time) as [5] (5.64 s for the proof
and 5.72 s for the verification), or with the efficient generic proof proposed by
Groth in [15] (234.70 ms for the proof and 175.23 ms for the verification), which
is unapplicable to [5]. Provided with a linear execution time, usage of this design
makes our protocol practical even if used with more cards and/or more players
as its overall complexity is linear in the number of cards and in the number of
players.

Related Work. There are several cryptographic protocols in the literature for
securing online card games [1, 4, 8–10, 13, 16, 18, 20], but most of them do not
prevent illegal moves in trick-taking games. To the best of our knowledge, the
only protocol with this property is [5]. It is also possible to use generic tools
to obtain similar properties such as multiparty computation [7] or proofs of
circuits [12], but these approaches are too generic and inefficient. Finally, another
line of research, complementary to ours, studies ways to detect cheating in trick-
taking games by analysing the behavior of players [19]. The idea is to determine
if a player knows its opponent’s cards by analysing its playing style.

2 Technical Overview

2.1 Rules of Trick-Taking Games: the Example of Spades

The traditional version of Spades is played by 4 players divided into two teams
of 2 players, but the rules can be adapted for more players. It uses the traditional
deck of 52 cards divided into the 4 Latin suits, which are swords (spades ♠),
cups (hearts ♡), coins (diamonds ♢) and clubs (♣) and its rules are as follows:
Draw. All 52 cards are handed out equally to each player for a total of 13 cards

each. Each player then bids on the number of tricks it plans to win.
A round. The first player of a new game is chosen randomly, the others fol-

lowing in a determined order. The game consists of a sequence of rounds,
requiring all 4 players to play a card in turn. In each round, the suit of
the first card played is called the leading suit and the player that plays the
highest card wins the tricks (the 4 cards played), and starts the next round.

4

Rank of cards. The cards of the same suit are ranked from highest to lowest
as follows: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2. The cards of the
spade suit have a higher value than the cards of the leading suit.

Priority of cards. A player must play a card from the leading suit if it can.
Otherwise, it can play any card it wants. Note that since the players’ cards
are hidden, the other players cannot check if a player is following this rule
at the moment it plays the card. We address this limitation (among others)
with our secure trick-taking game protocol.

Objective. If the number of tricks exceeds a team’s bet, its players win 10
points per trick, plus 1 point for each additional trick, otherwise 0 points.
Most trick-taking games, including Bridge, Whist, Belotte, Bourré, Coinche,

Pinochle, Ho Hell and many others follow the same structure as Spades. The
differences are in the number of players or cards, the way scores are calculated,
the ranking and the priority of the cards. The rules of priority can be complex,
requiring cards of higher and higher values for a given suit, or requiring a par-
ticular suit when a player does not have a card of the leading suit. However,
as a general rule, at the time the card is played, it is always possible to deter-
mine which cards should have been played first if the player had had them. Our
protocol is based only on this property, so it can be easily generalized.

2.2 The Particularity of French Tarot

By describing Spades, we have given a quite general framework, powerful enough
to be adapted to almost any trick-taking game. But one particular case has never
been addressed: the case where a set of cards is set aside during the deal, such
as the dog (chien) in French Tarot. The dealing of this game generates another
hand: While played with 4 players, 6 cards are put aside in a fifth hand until
the bets are over. Once the cards are dealt, the bids start. The taker (the player
that bets the highest) then plays against the 3 other players and needs to obtain
a certain amount of points in its tricks to win. A player that does not bid passes.
If all players pass, new cards are dealt. Presented below in increasing importance,
the bids implies various dealing procedures for the dog:
Petite ("small"): the "dog" is revealed to all players and added to the hand of

the taker. The latter confidentially sets aside the same number of cards from
its hand and puts them aside to form the beginning of its score pile.

Garde ("guard"): same as petite, and points earned by the taker are double.
Garde sans ("guard without" the dog): the dog goes directly into the taker’s

score pile, no one gets to see it. The point multiplier is set to four.
Garde contre ("guard against" the dog): the dog goes directly into the oppos-

ing score pile. The score is worth six times the base score.
The deck in Tarot consists of 78 cards of 3 types: 52+4 normal cards (Ace,

King, Queen, Knight, Jack, 10 down to 2, nearly as in Spades) and 22 trumps
(from 1 to 21, and an Excuse). Excuse, 1 (Petit) and 21 of trumps are special
cards and called the oudlers. On a petite or garde, the taker may not set aside
in the dog a king or a trump, except if it cannot discard anything else; In this
case, the trumps put in the dog must be displayed. In any case, it is forbidden to

5

2♠ · · · A♠ · · · 2♢ · · · A♢
Adhoc

encryption
c0,1 · · · c0,13 · · · c0,37 · · · c0,52

(g, pk · idcard)

c4,1 · · · c4,13 · · · c4,37 · · · c4,52

ci,j = Rand(ci−1,δi(j), ri,j , pk)
Shuffles

Player’s 1 hand Player’s 4 hand

Fig. 1. Dealing cards in our trick-taking protocol. id : cards, pk : a public key, ri,j :
random numbers, permutations δi(j) ∈ J1, 52K for all i ∈ J0, 3K, j ∈ J1, 52K.

discard oudler trumps. Without entering into details of the game, Tarot follows
the general rule that at the time the card is played, it is always possible to
determine which cards should have been played first if the player had had them.

Note that unlike Tryomphe or Euchre, this game has very specific rules giving
rise to several particular cases. We treat the case of the French Tarot because its
model and protocol can be adapted easily to other games with cards set aside.

2.3 An Overview of our Protocols

To ensure that honest users can play online while no cheater can proceed for
more than one round, our trick-taking protocols (formally presented in Defini-
tion 3 and 4) require the following properties: First, at each step of the game, the
previous plays should have been valid for the rounds to continue. Secondly, no
player or central authority must have been trusted to reach the first requirement.
Finally, maybe the most important of the conditions, the algorithm has to be
practical, since a significant computational overhead would prevent any attempt
of a player to play the game. To achieve this level of security, we choose a model
in which at each round, for each of the played cards, the players must provide a
proof for each of their actions, that their fellows verify before proceeding. These
proofs have to be zero-knowledge, i.e., reveal nothing about the players’ hands.

Card Dealing. Before playing, the cards must have been shuffled and drawn
(proofs ensuring each player that everything was executed correctly). We use
randomisable encryption (that allows to randomise the ciphertext). A first phase
(graphically represented in Figure 1, for a standard set of cards) allows to give
each player its (encrypted) hand. A second phase allows it to recover its hand.
Setup. Each player Pi starts the game by (1.i) generating a key pair (pki, ski)

from which a global public key pk is generated. The canonical deck (with
predefined order) is denoted as D = (id1, . . . , id52). Proofs ensure that the
keys were generated correctly.

6

Generation of the Ciphertexts. Each player (1.ii) computes on his side ad
hoc randomisable (ElGamal) ciphertexts (c0,j)j=1,...,52 of all cards in D with
the common public key pk.

Shuffle. To shuffle this set of encrypted cards, each player Pi in turn (1.iii)
sequentially applies a random permutation (δi,j) to the ciphertexts and ran-
domise them using a secret random vector (ri,j) and the randomisation al-
gorithm of ElGamal presented in Section 2.3. Each of these steps is associ-
ated with a proof. Cards are now shuffled and distributed in between the
players. For i ∈ {1, 2, 3, 4}, player Pi receives the ciphertexts of indices in
{13 · (i− 1) + 1, 13 · i}.

Hand Recovery. All players (2.i) broadcast some values θi,j (beside a proof)
for the 39 ciphertexts they have not been attributed. This allows each player
Pi to (2.ii) remove the randomness on the other players’ keys on the ci-
phertexts to recover a vector of ciphertexts only encrypted by pki. Its cards
remain oblivious to the other players as they are still encrypted with its key.
It can finally obtain its cards by decrypting these values using ski.

Dog Generation. The rules of a trick-taking game may require some cards to be
set aside during the shuffle. To keep these cards secret, some ciphertext indices
are associated to the dog and the matching θi,j may not be revealed by the
players. Unrevealed cards form the dog, based on the rules, they can later be
revealed (through a similar process as part 2 of the shuffle), permuted or shuffled
with some other cards (as in 1.iii). All outputs of these operations are produced
alongside the associated proofs. As highlighted in Section 2.2, in French Tarot,
kings and trumps may not be placed in the dog unless it is impossible to proceed
otherwise. For later use, we define a set O ⊂ D ∈ Deck composed of the cards
id that may not be discarded. To guaranty that rules are followed, one has to
prove that none of the cards placed in the dog do belong to O.

Card Playing. How a card is picked is not specified in our protocol, but it ensures
that it follows the rules of the game. When player Pi picks one of its cards to be
played, it first proves that the played card is indeed in its hand (by showing it
matches one of its ciphertexts). Then it shows that the played card follows the
rules of the game: if it does not follow the leading suit, it has to prove that none
of its remaining ciphertexts encrypt cards that could have followed this suit.
Immediate verification of the proofs by the other players remove all potential
doubts on the validity of the new play.

3 Cryptographic Tools

First we recall the Decision Diffie-Hellman hypothesis (DDH): Let G be a group.
The DDH assumption states that given (g, ga, gb, gz) ∈ G4, there exists no
polynomial-time algorithm able to decide whether z = a · b or not. Our schemes
uses the ElGamal encryption scheme defined by the following algorithms:
KeyGen(K): Picks dk

$← Z∗
q (draw uniformly in the specified set) and computes

ek = gdk. Returns (ek, dk).

7

Enc(m, ek): Draws y
$← Z∗

q , returns c = (c1 = gy, c2 = m · eky).
Dec(c, dk): Parses c as (c1, c2) and returns m = c2 · c−dk

1 .
ElGamal is IND-CPA secure (indistinguishable under chosen plaintext attack)
under DDH [17], moreover it is partially homomorphic and randomizable, which
means that there exists an algorithm Rand that changes a ciphertext c into a
new ciphertext c′ of the same plaintext:
Rand(c, r, ek): Parses c as (c1, c2) and returns c′ = (c′1 = c1 · gr, c′2 = c2 · ekr).

Our construction also uses Non-Interactive Zero-Knowledge Proofs of Knowl-
edge (NIZKP) [14]. Let R a binary relation and s, w two elements verifying
(s, w) ∈ R. A (NIZKP) is a cryptographic primitive allowing a prover knowing
a witness w to show that w and s verify the relation R leaking no information
on w. Throughout this paper, we use the Camenisch and Stadler notation [6],
i.e., ZK{w : (w, s) ∈ R} denotes the proof of knowledge of w for the statement s
and the relation R, and Ver(s, π) returns 1 if the proof π is correct, 0 otherwise.

Let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R). A NIZKP is said to
be sound when there is no polynomial-time adversary A such that A(L) outputs
(s, π) such that Ver(s, π) = 1 and s ̸∈ L with non-negligible probability. It is said
to be extractable when there exist a polynomial-time knowledge extractor Ext
and a negligible function ϵSoK such that, for any algorithm ASim(·,·) that outputs
a fresh statement (s, π) with Ver(s, π) = 1 such that A has access to a simulator
that forges proofs for chosen statements, ExtA outputs w such that (s, w) ∈ R
having access to A with probability 1 − ϵextract. It is said to be Zero-knowledge
when a proof leaks no information, i.e., there exists a polynomial-time algorithm
Sim called the simulator such that ZK{w : (s, w) ∈ R} and Sim(s) follow the
same probability distribution.

4 Models for Trick-Taking Game Revisited

4.1 Formal Definitions of Trick-Taking Scheme and Protocol

Trick-taking schemes and protocols were formalised in [5], but their definitions
miss the French Tarot. Here we extend them to cover this additional game while
staying consistent with the existing. We introduce a new definition covering both
the existing and our work, for that we merge algorithms DeckGen and GKeyGen
as it could have been in [5]. Only DeckGen is kept for the shuffle. In order to
cover the dog in French Tarot, we also add up an algorithm named MakeDog.

Trick-taking Game Scheme. In trick-taking games, a card is defined based on
two attributes: a suit and a number, such that id = (suit, val) ∈ Suits × Values
is a card. A deck of k cards is modeled by a k-tuple D = (id1, . . . , idk), where
∀i, j ∈ J1, kK, idi ̸= idj . The set of all possible decks is denoted by Decks. A deck
D might contains a subset O of cards that may not be discarded in the dog.

We first define trick-taking schemes, which contain all the algorithms that are
used by the players. KeyGen allows each player to generate its public/secret key.
DeckGen is a protocol that distributes the cards. MakeDog allows to manipulate

8

a dog. GetHand determines the hand of a given player from its secret key and
the game key. Play allows a player to play a card, and to prove that it follows
the rules of the game. Verif allows the other players to check this proof. Finally,
GetSuit returns the leading suit of the current round. Formally:

Definition 1. A trick-taking scheme W , definied as a tuples composed of al-
gorithms (Init,KeyGen,VerifKey,DeckGen,GetHand,Play,Verif,GetSuit) executed
between m participants is defined as follows:
Init(K): It returns a setup parameter setup.
KeyGen(setup): It returns a key pair (pk, sk).
DeckGen: It is a m-party protocol, where for all i ∈ J1,mK the ith party, denoted

as Pi, takes as input (ski, {pkl}1≤l≤m). This protocol returns a deck D and
a game public key PK, or the bottom symbol ⊥.

GetHand(n, sk, pk,PK): It returns a set of cards H ⊂ D called a hand if the
player index n matches the keys.

Play(n, id, sk, pk, st,PK): It takes as input a player index n ∈ J1,mK, a card id, a
pair of secret/public key, a global state st that stores the relevant information
about the previous plays, the game public key PK and returns a proof Π, and
the updated global state st′.

Verif(n, id, Π, pk, st, st′,PK): It takes as input a player index n ∈ J1,mK, a card
identity id, a proof Π generated by the algorithm Play, the global state st
and the updated global state st′, the game public key PK and returns a bit b.
If b = 1, we say that Π is valid.

GetSuit(st): It returns a suit suit ∈ Suits from the current global state of the
game st, where suit is the leading suit for the current turn.

An additional algorithm can be added to trick-taking schemes to support a dog:
MakeDog(n,PK): This is an m-party protocol outputting an updated game public

key PK based on the previously derived key and a player index n.

Trick-taking Protocol. We now present the trick-taking protocol, which defines
the order of execution of the above algorithms. It is divided into three phases:
keys generation, shuffle and splitting of the card, and finally the game phase.

Definition 2. Let W be a trick-taking scheme potentially with a MakeDog algo-
rithm and K ∈ N be a security parameter. Let P1, . . . ,Pm be m polynomial-time
algorithms. The trick-taking protocol instantiated by W between P1, . . . ,Pm is
the following protocol:

Keys generation phase: P1 runs setup ← Init(K) and broadcasts setup. The
players set st =⊥. Each player Pi runs (pki, ski)← KeyGen(setup) and broad-
casts pki.

Shuffle phase: All the players start by checking the other players’ proofs. Then
P1 generates a deck D ∈ Decks and broadcasts it. The players generate PK
by running the protocol DeckGen together. For all i ∈ J1,mK, Pi runs Hi ←
GetHand(n, sk, pk,PK). Then if instantiated, the players run MakeDog based
on the derived game public key PK and for a common index n.

9

Game phase: This phase is composed of k (sequential) steps (corresponding to
the number of cards played in a game). The players initialize the current
player index p = 1. At each turn, Pp designates the player which plays. Each
step proceeds as follows:
– Pp chooses id ∈ Hp, then runs (Π, st′)← Play(p, id, skp, pkp, st,PK).
– For all i ∈ J1,mK \ {p}, Pp sends (id, Π, st′) to Pi.
– Each Pi then checks that Verif(p, id, Π, pkp, st, st

′,PK) = 1, otherwise,
Pi sends error to Pp, which repeats this step.

– If Verif(p, id, Π, pkp, st, st
′,PK) = 1, all players update the state st := st′,

and update the index p that points to the next player according to the
rule of the game.

4.2 Security Properties

We now recall the security model of trick-taking protocols introduced in [5]. We
give a high-level description of its properties, the full formalism is given in the
full version [3]. Note that we adjusted some parts to make them more generic to
cover both the protocol of [5] and our Spades protocol (the model proposed in [5]
being too specific to the design of the related protocol). To formalise the security
of our French Tarot protocol, that does not fall within the general model, an ad
hoc model is depicted at the end of this section and detailed in [3].

In general, we consider a security experiment where a challenger interacts
with an adversary. The adversary simulates the behaviour of a malicious player
and its teammate, which we will refer to as an accomplice (we therefore consider
strong attacks where the adversary colludes with its teammate). The adversary
chooses the secret key of the malicious player and shares its public key after the
challenger has sent the public keys of the other three players, then the adversary
chooses its accomplice, and the challenger reveals the key of the accomplice to
the adversary. They then perform the shuffle phase, where the adversary plays
the role of the malicious user and its accomplice, and the challenger simulates
the behaviour of the other two players. Note that the challenger knows the secret
keys of three players, so it can determine their hands, and thus deduce the hand
of the malicious user. Finally, the adversary and the challenger simulate the
game phase, where the adversary plays the role of the malicious user and its
accomplice, and the challenger plays the role of the other two honest players.
Of course, the security properties we describe must be proven regardless of the
algorithm the challenger uses to simulate the two honest players.

Theft and cheating resistance: A protocol is theft-resistant when a player cannot
play a card that is not in its hand. To attack the theft-resistance, the adversary
must make the challenger accept a card that is not in the hand of the mali-
cious player during the experiment with non-negligible probability. A protocol
is cheating-resistant when a player cannot play a card that does not follow the
rules of the game. To attack the cheating-resistance in a trick-taking protocol,
the adversary must make the challenger accept a card that is not of the lead-
ing suit from the malicious player during the experiment with non-negligible
probability, even though it has such cards in its hand.

10

Unpredictability: The unpredictability ensures that the cards are dealt at ran-
dom. The adversary breaks this property if it can alter the shuffle in such a way
that a card chosen at the beginning of the experiment ends up in one chosen
hand with a significantly different probability than the usual distribution. Thus,
unpredictable holds if no adversary succeeds this attack for any chosen card
with a significant advantage. We have slightly modified this property to achieve
a stronger version that the one originally presented in [5]. Here, our adversary
chooses the card and the hand where it expects the card to be distributed.

Hand-privacy: The hand-privacy ensures that the players do not know the hand
of the other players at the beginning of the game. This time, the adversary has
no accomplice, and the original experiment is truncated before the game phase.
The challenger then chooses two out of the three honest players, and randomly
picks one of their cards. To break the hand-privacy, the adversary must guess
which player owns this card with a non-negligible advantage.

Game-privacy: A protocol is game-private when at each step of the game phase,
the players learn nothing else than the previously played cards. This property is
defined by a real/simulated experiment. In the real setting, the adversary plays
the real protocol with a challenger as in the experiment described above (again,
the adversary has no accomplice). In the ideal one, the protocol is simulated
using the public parameters of the honest users only. If there is a simulator such
that the adversary cannot distinguish whether it is playing a real or simulated
experiment with a non-negligible advantage, then the protocol is game-private.
Intuitively, this means that a player could have simulated the protocol itself
convincingly, which means that an adversary does not learn anything private
during the game. Note that the combination of hand-privacy and game-privacy
shows that the players have no information about the other players’ hands except
for all the cards they have already played.

Particularity of Dog’s Security. One would expect a dog (or any set of card set
aside in general) to behave as one of the player’s hands: it should not be possible
to steal (covered by theft resistance), to predict (unpredictability), to influence
(theft-resistance) nor learn the cards in the dog (hand and game privacy) at
the end of the shuffle. Despite fitting the model in terms of required properties,
games with dogs do not allow us to rely completely on what exists. As specified
above, the challenger must deduce the adversary’s hand from its knowledge of
the other three. With the dog, since some cards are not in the players’ hands,
this is no longer possible. The model must therefore be refined, at the expense
of its genericity. Since the hand can no longer be implicitly inferred, we need to
add an extractable NIZK of the players’ secret keys to the formal definition to
allow the challenger to explicitly retrieve the hand of the adversary. A less ad
hoc model is left as an open problem.

In addition, to empower our adversary we let it decide which player takes
and its bet. A second accomplice is also granted. Based on the rules of the Tarot
game, the security of the dog should be insured through an additional property.

11

The rules disallow to place some cards in the dog during the MakeDog algorithm.
The latter is ensured through a property that we call Dog security.

5 Our Spades protocol

We first define our new Spades protocol based on the randomisation of ElGamal.
Here the deck D contains 52 cards, and each of the 4 players hands 13 cards.

Definition 3. Algorithms of our Spades scheme are instantiated as follows:

Init(K): It generates a group G of prime order q, a generator g ∈ G and returns
setup = (G, q, g).

KeyGen(setup): It picks dk
$← Z∗

q and computes ek = gdk. Then a proof of knowl-
edge Πek = ZK{dk : ek = gdk} is computed and (sk = dk, pk = (ek, Πpk)) is
returned.

DeckGen: It is a 4-party protocol, where for all i ∈ J1, 4K the ith party is denoted
as Pi, and takes as input his/her secret keys ski and the public keys of all
the players {pkl}1≤l≤4. This protocol returns a game public key PK, or ⊥.
Phase 1:
– The canonical deck D ∈ Decks is initialized by each player.
– Each user parses D = (id1, . . . , id52) and computes pk =

∏4
i=1 eki, then

for all j ∈ J1, 52K each player computes c0,j ← (g, pk · idj) and set c0 ←
(c0,j)1≤j≤52.

– For each i ∈ {1, 2, 3, 4}, each Pi does in turn: it picks at random a
permutation δi ∈ J1, 52K52, and (ri,j)1≤j≤52

$← (Z∗
q)

52. Pi then computes
ci,j ← Rand(ci−1,δi(j), ri,j , pk) and generates a proof

πi,1 ← ZK
{
(δi, (ri,j)1≤j≤52) : ci,j = Rand(ci−1,δi(j), ri,j , pk)

}
. (1)

Finally, Pi sets ci ← (ci,j)1≤j≤52 and broadcasts (ci, πi,1).
– Each player verifies the proofs (πi,1)1≤i≤4.

Phase 2:
– For all i ∈ J1, 4K, player Pi parses c4 = (c4,j)1≤j≤52 and c4,j = (xj , yj).
– For all j ∈ J1, 52K\J13 · (i− 1) + 1, 13 · iK, each Pi computes θ(i,j) = xski

j ,

πi,2 ← ZK

{
ski :

∧
j∈J1,52K\J13·(i−1)+1,13·iK

θ(i,j) = xski
j ∧ pki = gski

}
, (2)

then Pi broadcasts (θ(i,j))j∈J1,52K\J13·(i−1)+1,13·iK and πi,2.
– For all i ∈ J1, 4K, for all l ∈ J1, 4K, for all j ∈ J13 · (l − 1) + 1, 13 · lK,

each Pi computes c∗j ←
(
xj ,

yj∏
1≤γ≤4;γ ̸=l θ(γ,j)

)
, and verifies the proofs

(πγ,2)γ∈J1,4K\{i}.
– Each player returns PK← (c∗j)1≤j≤52.

GetHand(n, sk, pk,PK): The algorithm parses PK as (c∗j)1≤j≤52 and returns a
hand H ← {Decsk(c∗j)}j∈J13·(n−1)+1,13·nK.

12

Play(n, id, sk, pk, st,PK): It parses PK = (c∗j)1≤j≤52 and the state element st =
(α, suit, U1, U2, U3, U4). If st =⊥ it sets four empty sets U1, U2, U3 and U4.
Let t ∈ J13 · (n − 1) + 1, 13 · nK be the integer such that id = Decsk(c

∗
t). It

sets U ′
n = Un ∪ {t}. Note that at each step of the game, the set Un contains

the indices of all the (c∗j)j∈J13·(n−1)+1,13·nK that have already been used by
player n to play a card. For all i ∈ J1, 4K\ {n}, it sets U ′

i = Ui.
If α = 4 or st =⊥ then it sets α′ = 1 and suit′ = id.suit. Else it sets α′ = α+1
and suit′ = suit. The index α states how many players have already played
this round, so if α = 4, players start a new round. Moreover, suit states
which suit is the leading suit of the round, given by the first card played in
the round. This algorithm sets st′ = (α′, suit′, U ′

1, U
′
2, U

′
3, U

′
4). It generates

Π0 = ZK {sk : id = Decsk(c
∗
t)} , (3)

which proves that the played card id matches one of the ciphertexts in PK
attributed to the player n. Let L ⊂ J1, 52K be a set such that for all l ∈ L,
suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards that are not of the
leading suit this round. Then it produces:
– If suit′ = id.suit or if |Un ∪ {t}| = 13, it sets Π1 ←⊥ (if the card id is of

the leading suit, then the player can play it in any case).
– If suit′ ̸= id.suit and |Un ∪ {t}| < 13, it generates

Π1 = ZK

{
sk :

∧
j∈J13·(n−1)+1,13·nK

j ̸∈Un∪{t}

∨
l∈L

idl = Decsk(c
∗
j)

}
. (4)

Which proves that the player n cannot play a card of the leading suit.
Finally, it returns the proof Π = (t,Π0, Π1), and the updated value st′.

Verif(n, id, Π, pk, st, st′,PK): It parses st as (α, suit, U1, U2, U3, U4), st′ as (α′,
suit′, U ′

1, U
′
2, U

′
3, U

′
4), the key PK as (c∗j)1≤j≤52, and Π as (t, Π0, Π1). First

checks if t ∈ J13 · (n − 1) + 1, 13 · nK, if not return 0. If st =⊥, it sets four
empty sets U1, U2, U3 and U4. Let L ∈ J1, 52K be a set such that for all l ∈ L,
suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards that are not of the
leading suit. This algorithm first checks that the state st is correctly updated:
– If there exists i ∈ J1, 4K\ {n} such that U ′

i ̸= Ui, then it returns 0.
– If t ∈ Un or Un ∪ {t} ≠ U ′

n, then it returns 0.
– If α = 4 or st =⊥, and α′ ̸= 1 or suit′ ̸= id.suit, then it returns 0.
– If α ̸= 4 and suit ̸=⊥, and α′ ̸= α+ 1 or suit′ ̸= suit, then it returns 0.

This algorithm then verifies the ZKP to check that the player does not cheat
by playing a card it has not, or by playing a card that is not of the leading
suit even though it could play a card of the leading suit.
– If Π0 is not valid then it returns 0.
– If suit′ ̸= id.suit and there exists an integer j ∈ J1, 13K such that (13 ·

(n− 1) + j) ̸∈ Un and Π1 is not valid then it returns 0.
If none of the previous checks fails, then this algorithm returns 1.

GetSuit(st): It parses st as (α, suit, U1, U2, U3, U4) and returns suit.

13

Security. This Spades protocol relies on the unpredictability of the randomness
introduced by the players, security of the ZKP and the DDH hypothesis.

Theorem 1. Given proofs of knowledge with soundness, extractability and zero-
knowledge, our protocol is theft-resistant, cheating-resistant, hand-private, un-
predictable, and game-private under the DDH assumption.

For lack of space, the proof of this theorem is given in the full version [3].

6 Our French Tarot’s Protocol

We now show how to achieve a protocol that contains a dog through highlighting
an instantiation of a Tarot protocol. Adapted from our previously presented
Spades scheme of Section 5, we need to address the MakeDog algorithm based
on the rules of this game. We present this protocol for 4 players and a regular
deck of 78 cards. Based on the rules this leads to 18 cards for each player and a
dog composed 6 cards. We assume that cards indexed by i ∈ J73, 78K are reserved
for the dog and that O contains the cards that may not be discarded in the dog.

Definition 4. Our French Tarot protocol is defined similarly to Definition 3
(the few differences are implied trivially by the specificity of the rules) except for
the algorithm MakeDog defined as follows (see the full version [3] for details).

MakeDog: It is a 4-party protocol taking as input the index n of a player.
– For all i ∈ J1, 4K, player Pi parses c4 = (c4,j)1≤j≤78 and c4,j = (xj , yj).
– For all j ∈ J73, 78K, each Pi send θ(i,j) = xski

j , as well as a proof π′
i,2 ←

ZK
{
ski :

∧
j∈J73,78K θ(i,j) = xski

j ∧ pki = gski
}
.

– For all i ∈ J1, 4K, j ∈ J73, 78K, each Pi recovers id∗j ←
(

yj∏
1≤γ≤4 θ(γ,j)

)
,

the cards of the dog, and verifies the proofs (π′
γ,2)γ∈J1,4K\{i}.

– Pn shuffles its cards with the dog: first sets c∗j = (g, pk · idj) for j ∈
J73, 78K, then let K = J18 ·(n−1)+1, 18 ·nK∪J73, 78K. It picks a permuta-
tion δ ∈ K24, and (rj)j∈K

$← (Z∗
q)

24, computes c5,j ← Rand(c∗δ(j), rj , pk)

for j ∈ K and a proof π5 ← ZK
{
(δ, (rj)j∈K) : c

∗
5,j = Rand(c∗δ(j), rj , pk)

}
.

For all j ∈ J1, 78K \ K, set c5,j ← c∗j . Player Pn sets c∗ ← (c5,j)1≤j≤78.
– Pn shows that it follows the rules and did not put unauthorized card in

the dog by producing the proof:

Πn ←− ZK

{
skn :

∧
j∈J73,78K

∨
l/∈O

idl = Decskn(c5,j)

}
, (5)

then it sends (c∗, π5, Πn). If Pn has no choice but to put l trumps in
the dog, then it cannot produce this proof. Let j1, . . . , jl ∈ J73, 78K be the
indices of these cards. In this case, Pn produces the tokens θjk = xskn

jk

14

and the proofs πjk ← ZK
{
skn : θjk = xskn

jk
∧ pki = gski

}
for 1 ≤ k ≤ l.

It also proves than it cannot proceed otherwise:

Π ′
n ←− ZK

{
skn :

∧
j∈J18·(j−1)+1,18·jK

∨
l∈O

idl = Decskn(c5,j)

}
, (6)

and then produces proof 5, with j ∈ J73, 78K\{j1, . . . , jl}. Player Pn then
broadcasts (c∗, π5, Πn) and (Π ′

n, {θjk , πjk}1≤k≤l).
– Each Pi for i ∈ J1, 4K \ {n}, checks all the received proofs and checks

that for all j ∈ J1, 78K \ K, c5,j = c∗l . In case Pn has revealed a card, Pi

computes idjk ← yjk/θjk and checks idjk is an authorised oudler.
– Each player returns PK← c∗.

Theorem 2. Given proofs of knowledge with soundness, extractability and zero-
knowledge, our tarot protocol is theft-resistant, cheating-resistant, hand-private,
unpredictable, game-private and dog-secure under the DDH assumption.

This theorem is based on similar arguments as exposed in Section 5. The
proof is avalable in the full version [3].

7 Conclusion

In this paper, we modify and expand the security model for trick-taking games.
It encompasses the security for a broader range of protocols and enables to
put aside some cards after the shuffle and appoint them to a player later in
the game. Two new trick-taking schemes with security in the standard model
are proposed. These protocols can be instantiated with any proof of shuffle on
partially homomorphic encryption, which makes them efficient and usable.

Future work would consist in implementing them in real conditions, with real
and not simulated interactions between the players.

References

1. Barnett, A., Smart, N.P.: Mental poker revisited. In: Cryptography and Coding,
9th IMA International Conference. Springer (2003)

2. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Advances in Cryptology – EUROCRYPT. Springer (2012)

3. Bella, R., Bultel, X., Chevalier, C., Lafourcade, P., Olivier-Anclin, C.: Practical
construction for secure trick-taking games even with cards set aside. Cryptol-
ogy ePrint Archive, Paper 2023/309 (2023), https://eprint.iacr.org/2023/309,
https://eprint.iacr.org/2023/309

4. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. In: Ad-
vances in Cryptology – ASIACRYPT. Springer (2017)

5. Bultel, X., Lafourcade, P.: Secure trick-taking game protocols - how to play on-
line spades with cheaters. In: Goldberg, I., Moore, T. (eds.) FC 2019. Springer,
Heidelberg (2019), https://eprint.iacr.org/2019/375

15

6. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Advances in Cryptology — CRYPTO. Springer (1997)

7. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Advances in Cryptology – CRYPTO.
Springer (2012)

8. David, B., Dowsley, R., Larangeira, M.: 21-bringing down the complexity: fast com-
posable protocols for card games without secret state. In: Australasian Conference
on Information Security and Privacy. Springer (2018)

9. David, B., Dowsley, R., Larangeira, M.: Kaleidoscope: An efficient poker protocol
with payment distribution and penalty enforcement. In: 21st International Confer-
ence, FC (2018)

10. David, B., Dowsley, R., Larangeira, M.: Royale: A framework for universally com-
posable card games with financial rewards and penalties enforcement. In: Financial
Cryptography and Data Security. Springer (2019)

11. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Advances in
Cryptology — CRYPTO. Springer (2001)

12. Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: Faster zero-knowledge for boolean
circuits. In: Proceedings of the 25th USENIX Conference on Security Symposium.
USENIX Association (2016)

13. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing. STOC, ACM (1982)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on computing (1989)

15. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Journal of
Cryptology. Springer (2010)

16. Stamer, H.: Bibliography on mental poker. https://www.nongnu.org/libtmcg/
MentalPoker.pdf

17. Tsiounis, Y., Yung, M.: On the security of elgamal based encryption. In: Interna-
tional Workshop on Public Key Cryptography. Springer (1998)

18. Wei, T.j.: Secure and practical constant round mental poker. In: Information Sci-
ences (2014)

19. Yan, J.: Collusion detection in online bridge. In: Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI. AAAI Press (2010), http://
www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1942

20. Zhao, W., Varadharajan, V., Mu, Y.: A secure mental poker protocol over the
internet. In: ACSW frontiers. Conferences in research and practice in information
technology, Australian Computer Society (2003)

16

