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Abstract. MapReduce is one of the most popular distributed program-
ming paradigms that allows processing big data sets in parallel on a clus-
ter. MapReduce users often outsource data and computations to a public
cloud, which yields inherent security concerns. In this paper, we consider
the problem of matrix multiplication and one of the most efficient ma-
trix multiplication algorithms: the Strassen-Winograd (SW) algorithm.
Our first contribution is a distributed MapReduce algorithm based on
SW. Then, we tackle the security concerns that occur when outsourcing
matrix multiplication computation to a honest-but-curious cloud i.e.,
that executes tasks dutifully, but tries to learn as much information as
possible. Our main contribution is a secure distributed MapReduce al-
gorithm called S2M3 (Secure Strassen-Winograd Matrix Multiplication
with MapReduce) that enjoys security guarantees such as: none of the
cloud nodes can learn the input or the output data. We formally prove
the security properties of S2M3 and we present an empirical evaluation
devoted to show its efficiency.

Keywords: Cloud security, Privacy-preserving cloud computations, MapRe-
duce, Matrix multiplication, Strassen-Winograd algorithm.

1 Introduction

Matrix multiplication is a mathematical tool useful for solving various problems
spanning over a plethora of domains e.g., statistical analysis, medicine, image
processing, machine learning or web ranking. Indeed, Markov chains applications
on genetics and sociology [6], or applications such that computation of short-
est paths [28,32], convolutional neural network [21] deal with data processed as
matrix multiplication. In such applications, the size of the matrices to be multi-
plied is often very large. The matrix multiplication is also the original purpose
for which the Google implementation of MapReduce was created. Indeed, such
multiplications are needed by Google in the computation of the PageRank algo-
rithm [11]. Whereas a naive matrix multiplication algorithm has cubic complex-
ity, many research efforts have been made to propose more efficient algorithms.
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Fig. 1. Architecture of SW matrix multiplication with MapReduce.

One of the most efficient algorithms is Strassen-Winograd [29,25] (denoted as SW
in the sequel), the first sub-cubic time algorithm, with an exponent log2 7 ≈ 2.81.
The best algorithm known to date [17] has an exponent ≈ 2.38. Although many
of the sub-cubic algorithms are not necessarily suited for practical use as their
hidden constant in the big-O notation is huge, the SW algorithm and its variants
emerged as a class of matrix multiplication algorithms in widespread use.

In this paper, we tackle the problem of distributing the SW algorithm using
the MapReduce paradigm and we address the inherent security concerns that
occur when outsourcing data and computations to a public cloud. Indeed, many
cloud providers offer an important amount of data storage and computation
power at a reasonable price e.g., Google Cloud Platform, Amazon Web Services,
Microsoft Azure. Despite these benefits, cloud providers do not usually address
the fundamental problem of protecting the security of the data, which in our
case consists of input and output matrices. The outsourced data can be com-
municated over some network and processed on some machines where malicious
cloud admins could learn and leak sensitive data.

Problem Statement. Two distinct data owners respectively hold compatible
square matrices M and N of dimension d ∈ N∗. A user (who does not know the
matrices M and N) wants their product P := MN . Matrices M and N are sent
to the distributed file system of some public cloud provider. We assume that the
matrices M (resp. N) is initially spread over a set M (resp. N ) of nodes of the
public cloud storing a chunk of M (resp. N), i.e., a set of elements of M (resp.
N). The final result P is computed over sets of nodes D1, . . . ,D`, C1, . . . , C` before
it is sent to the user’s nodes P, where ` depends on the dimension d. Moreover,
we assume that data owners (resp. the user) cannot collude with the public
cloud and the user (resp. the public cloud and data owners). We illustrate the
architecture of SW matrix multiplication with MapReduce in Fig. 1.

We expect the following security properties:

1. the user cannot learn any information about input matrices M and N ,
2. cloud nodes cannot learn any information about matrices M , N , and P .

Related Work. Chapter 2 of [22] presents an introduction to the MapReduce
paradigm. The security and privacy concerns of MapReduce have been summa-



rized in a recent survey [12]. The state-of-the-art techniques for secure execution
of MapReduce computations focus on problems such as word search [3], infor-
mation retrieval [26], grouping and aggregation [7], equijoins [13,5], set intersec-
tion [8], and matrix multiplication [4]. The goal of these works is similar to ours
i.e., execute MapReduce computations such that the public cloud cannot learn
any information on the input or output data.

In this paper, we focus on matrix multiplication. Recently, [4] secured the
two standard MapReduce algorithms for matrix multiplication using one and
two MapReduce rounds cf. Chapter 2 of [22]. For each algorithm, they proposed
two approaches: SP (Secure-Private) and CRSP (Collision-Resistance Secure-
Private). The two approaches are based on the Paillier partially homomorphic
cryptosystem [27]. Contrary to the CRSP approach, the SP approach assumes
that cloud nodes do not collude. In this paper, we assume that all cloud nodes can
collude, hence our secure protocol S2M3 can be considered as a CRSP approach.
We show that MapReduce matrix multiplication can be done faster using the
SW algorithm, compared to the standard MapReduce matrix multiplication for
both no-secure and secure approaches.

Distributed matrix multiplication has been thoroughly investigated in the se-
cure multi-party computation model (MPC) [14,15,1,30], whose goal is to allow
different nodes to jointly compute a function over their private inputs without
revealing them. The aforementioned works on secure distributed matrix multi-
plication have different assumptions compared to our MapReduce framework: (i)
they assume that nodes contain entire vectors, whereas the division of the initial
matrices in chunks as done in MapReduce does not have such assumptions, and
(ii) in MapReduce, the functions specified by the user [11] are limited to map
(process a key/value pair to generate a set of intermediate key/value pairs) and
reduce (merge all intermediate values associated with the same intermediate key)
while the MPC model relies on more complex functions than map and reduce.
Moreover, generic MPC protocols [24,10] allow several nodes to securely evaluate
any function such that matrix multiplication computation. Such protocols could
be used to secure MapReduce. However, due to their generic nature, they are
inefficient and require a lot of interactions between parties. Our goal is to design
a secure and efficient MapReduce protocol based on the SW algorithm.

Summary of Contributions and Paper Organization. This paper is an
extension of our previous paper [9], which is to the best of our knowledge the
first one to propose a secure MapReduce-based protocol based on the SW algo-
rithm. We next discuss the organization and contributions of this paper, while
highlighting the differences with respect to [9].

– In Sect. 2, we introduce preliminary notions: crypographic tools and the
basic SW algorithm.

The cryptographic tools presented here go beyond [9] because we need to in-
troduce more notions to be able in Sect. 6 to formally prove our security
results that are not part of [9].



– In Sect. 3, we present our first contribution, that is a MapReduce ver-
sion of the SW matrix multiplication algorithm. We call our protocol SM3
(Strassen-Winograd Matrix Multiplication with MapReduce).

In our initial version of the paper [9], we present only the basic case where
the matrix dimension is a power of 2 and we briefly discuss the intuition be-
hind generalizing the algorithm to arbitrary dimensions. On the other hand,
we provide here pseudocode and we discuss in detail two different flavors
(padding and peeling) for generalizing the basic algorithm to arbitrary di-
mensions.

– In Sect. 4, we present our secure protocol for SW matrix multiplication with
MapReduce, which is the main contribution of the paper. Our secure protocol
S2M3 (Secure Strassen-Winograd Matrix Multiplication with MapReduce)
relies on the MapReduce paradigm and on Paillier’s public-key cryptosystem.
The public cloud performs the multiplication on the encrypted data. At the
end of the computation, the public cloud sends the result to the user that
queried the matrix multiplication result. The user has just to decrypt the
result to discover the matrix multiplication result. The public cloud cannot
learn none of the input or output matrices.

Similarly to the previous point, in this extended version, we also include
secure algorithms for multiplying matrices whose dimension is not necessarily
a power of 2. We achieve this generalization by using padding and peeling
techniques, which were not part of our first version of the paper [9].

– In Sect. 5, we present an experimental evaluation of our two MapReduce
protocols (SM3 and S2M3) using Hadoop [16], the Apache MapReduce im-
plementation.

– In Sect. 6, we formally prove, using a standard security model, that the S2M3
protocol satisfies the security properties from the problem statement, which
hold even in the presence of collusions among the cloud’s nodes.

All theorems and lemmas from this paper are new with respect to the first
version of our paper [9].

– In Sect. 7, we discuss conclusions and future work.

To sum up, the main novel content of this paper w.r.t. [9] consists of new
non-trivial algorithms and proofs, which significantly add more than 30% of new
material (the volume of the paper actually increased from 8 to 25 pages). More-
over, as required in the instructions, we have enriched the paper structure, and
avoided as much as possible the verbatim repetitions e.g., we have changed the
title, abstract, introduction, as well as the presentation of the subset of material
that is common to [9]. Moreover, among the 25 figures in this paper, only the 2
from Sect. 5 are common to [9].

2 Preliminaries

We present cryptographic tools in Sect. 2.1 and the SW algorithm in Sect. 2.2



2.1 Cryptographic Tools

Notations. We define some notations that we use throughout the paper.

a‖b Concatenation of two strings a and b

x
$← E Uniformly random choice of a value x from the set E

lcm(a, b) Least common multiple of two integers a and b
a := b+ c Set the result of b+ c into a
Sa×b Matrix of a rows and b columns with elements in S
A×B Cartesian product between A and B
ε Empty string

Negligible Function. A function µ : N → R+ is called negligible if for every
positive polynomial p(·) there exists Np ∈ N such that for all integers x > Np,
we have µ(x) < 1/p(x).

Security Parameter and Adversaries. In order to formalize security notions,
we need to bound the computing power of an adversary. Indeed, an arbitrary
adversary can always break cryptosystems using a large enough computer and
spending an exponential amount of time. We first define a polynomial-time al-
gorithm: Let λ ∈ N. An algorithm A is said to run in polynomial-time if there
exists a polynomial p(·) such that for every input x ∈ {0, 1}λ, the execution time
of A(x) is bounded by p(λ) steps.

In cryptography, we restrict cryptosystems protection against a reasonable
adversary represented by an algorithm A. To do so, we use the notion of security
parameter, denoted λ ∈ N. The security parameter is passed as input to the
adversary, under its unary form and indicates that the running time of the
adversary is polynomial in λ and whose computation success probability is non-
negligible in λ, i.e., significantly high.

Moreover, when a polynomial-time algorithm A is allowed to “throw coins”,
we said that A is a probabilistic polynomial-time algorithm. In the following,
ppt(λ) denotes the set of probabilistic algorithms that are bounded in the secu-
rity parameter λ.

Experiments. Security property of a cryptosystem can be proven using an
experiment (or game). We call an experiment, an algorithm that proposes some
challenge to an adversary (i.e., a probabilistic polynomial-time algorithm). The
challenge can be considered as an algorithmic problem that the adversary tries
to solve. If the adversary successfully resolves the challenge, we say that the
adversary wins the experiment.

In order to have concrete adversary model, the adversary may have access
to black-box algorithms (sometimes with some restrictions), called oracles. An
oracle allows the adversary to learn some information that she cannot obtain
by herself in order to solve the experiment. For instance, an oracle can be an
algorithm that decrypts some ciphertexts using a key that the adversary does
not know. We denote by AOracle to mean that the adversary A has access to the
oracle denoted Oracle.



When there is no such an adversary that wins the experiment with a non-
negligible probability in polynomial-time, then we say that the cryptosystem is
secure according to the considered property.

Computational Indistinguishability [23]. We first recall that a distribution
ensemble is a sequence of random variables indexed by a countable set. In the
context of secure computation, this sequence of random variables are indexed by
I ∈ I where I is the set of all inputs of parties, and by the security parameter
λ ∈ N, i.e., X0 := {X(I, λ)}I∈I,λ∈N.

Let X0 := {X(I, λ)}I∈I,λ∈N and Y0 := {Y (I, λ)}I∈I,λ∈N be two distribution
ensembles. We say that X0 and Y0 are computationally indistinguishable if for
every probabilistic polynomial algorithm D outputting a single bit, there exists
a negligible function µ(·) such that for every I ∈ I and every λ ∈ N, we have∣∣Pr[D(X(I, λ)) = 1]− Pr[D(Y (I, λ) = 1]

∣∣ ≤ µ(λ) .

We call the algorithm D a distinguisher, and we denote by X0
c≡ Y0 two compu-

tationally indistinguishable distribution ensembles.

Simulation-based Proofs. The security proofs from this paper follow the
ideal/real simulation paradigm [19]. In other terms, proofs are based on the in-
distinguishability of two different distribution ensembles X0 and X1. However,
in many cases it is infeasible to directly prove this indistinguishability. Instead,
we use the hybrid argument consisting in the construction of simulators that
generate a sequence of distributions ensembles, starting with X0, and ending
with X1. Then, we prove that consecutive distribution ensembles are indistin-
guishable. The indistinguishability between X0 and X1 is therefore obtained by
transitivity.

Secure Multiparty Computation. Some cryptographic protocols involve sev-
eral participants, called parties, in order to jointly compute a function over their
inputs while keeping those inputs private. This model is called multiparty com-
putation [31]. Unlike traditional cryptosystems where the adversary is outside of
the system and tries, for instance, to break the confidentiality or the integrity
of communication, the adversary in this model controls one of the parties. We
consider semi-honest (or honest-but-curious) adversaries [18]. Such an adver-
sary controls one of the parties and follows the protocol specification exactly.
However, it may try to learn more information than allowed by looking at the
transcript of message that it received and its internal state. A protocol that is
secure in the presence of semi-honest adversaries does guarantee that there is no
inadvertent leakage of information.

Intuitively, a multiparty protocol is secure if whatever can be computed by
a party participating in the protocol can be computed based on its input and
output only. This idea is formalized according to the simulation paradigm by
requiring the existence of a simulator who generates the view of a party, i.e.,
all values received, computed, and sent by this party during an execution of
the protocol. More formally, the view is defined as follows: Let λ ∈ N be a
security parameter, and π be a n-party protocol. The view of the party Pi, for



all i ∈ J1, nK, during an execution of π on I = (Ii)i∈J1,nK is denoted viewπPi(I, λ)
and equals (Ii,Mi, Oi), where Ii is the input of Pi, Mi represents messages
sent by other parties and received by Pi, and Oi is the output of Pi computed
from Ii and Mi during the protocol execution. We denote by viewπPi,Pj (I, λ) =
(viewπPi(I, λ), viewπPj (I, λ)), with i, j ∈ J1, nK, the joint view of a collusion between
parties Pi and Pj .

Since the parties have input and output, the simulator must be given a party’s
input and output in order to generate its view. Thus, the security is formalized by
saying that there exists a simulator that simulates a party’s view in a protocol
execution given its input and output. The formalization implies that a party
cannot extract any information from her view during the protocol execution
beyond what they can derive from their input and prescribed output.

We now formally define the security of a multiparty protocol with respect to
static semi-honest adversaries [23]: Let π be a n-party protocol that computes
the function f = (fi)i∈J1,nK for parties (Pi)i∈J1,nK using inputs I = (Ii)i∈J1,nK ∈ I
and security parameter λ ∈ N. We say that π securely computes f in the presence
of static semi-honest adversaries if there exists, for each party Pi with i ∈
J1, nK, a probabilistic polynomial-time simulator Si such that SPi(1λ, Ii, fi(I))

c≡
viewπPi(I, λ) . We say that π is secure against collusions between parties Pi and
Pj with i, j ∈ J1, nK, if there exists probabilistic polynomial-time simulators

SPi,Pj such that SPi,Pj ((1λ, Ii, fi(I)), (1λ, Ij , fj(I)))
c≡ viewπPi,Pj (I, λ) .

Asymmetric Encryption. Let λ ∈ N be a security parameter. An asymmetric
encryption scheme is a triple of polynomial-time algorithms (G, E ,D) such that

– G(1λ) is a probabilistic algorithm that takes as input the security parameter
λ, and outputs a private key sk from the secret key space Ks, a public key
pk from the public key space Kp, a plaintext space M, and a ciphertext
message C.

– E(pk,m) is a deterministic or probabilistic algorithm that takes as input a
public key pk ∈ Kp and a plaintext m ∈M, and outputs a ciphertext c ∈ C.

– D(sk, c) is a deterministic algorithm that takes as input a secret key sk ∈ Ks
and a ciphertext c ∈ C, and outputs either a plaintext m ∈ M or a special
reject value (distinct from all messages).

In the following, we only consider correct asymmetric encryption schemes,
that is schemes such that, for any λ ∈ N, we have

Pr
[
(sk, pk,M, C) := G(1λ);m

$←M;m′ := D(sk,m) : m = m′
]

= 1 .

Indistinguishability Under Chosen Plaintext Attack. The indistinguisha-
bility under chosen plaintext attack is a fundamental security property for asym-
metric encryption schemes. Intuitively, this security notion implies that two dif-
ferent plaintexts can be distinguished by their respective ciphertext. In other
terms, a ciphertext leaks no information about its corresponding plaintext.

Consider an adversary that chooses a couple of plaintexts (m0,m1), and that
receives the encryption of one of the two plaintexts. If such an adversary is not



able to guess the chosen message with a non-negligible probability, then the
asymmetric encryption scheme achieves the indistinguishability security under
chosen plaintext attack.

The basic definition of indistinguishability under chosen plaintext attack al-
lows one adversary to submit a couple of plaintexts only one time. However, it
is know that the indistinguishability security under chosen plaintext attack is
equivalent to the indistinguishability security under multiple chosen plaintexts
attack in a multi-user setting [2]. That means the adversary can receive several
public keys and choose several couples of plaintexts (m0,m1). For each of these
couples, the adversary receives the encryption of mb for the different public keys,
where the same b ∈ {0, 1} is used each time.

More precisely, we use the Left-Or-Right definition [2]. Let Π = (G, E ,D)
be an asymmetric encryption scheme, A ∈ ppt(λ), and (α, β) ∈ N2. For all
i ∈ J1, βK, the oracle E(pki, (LoRb(·, ·), α)) takes as input a couple of plaintexts
(m0,m1), and returns E(pki,mb). Moreover, this oracle cannot be called more
than α times.

We define the (α, β)-indistinguishability under chosen plaintext attack (IND-

CPA) experiment, denoted Exp
indcpa-bα,β
Π,A for the adversary A against Π in Fig. 2.

Experiment: Exp
indcpa-bα,β
Π,A (λ)

foreach i ∈ J1, βK do
(ski, pki,Mi, Ci) := G(λ)

b∗ := AE(pk1,(LoRb(·,·),α)),...,E(pkβ ,(LoRb(·,·),α))(λ)
return b∗

Fig. 2. IND-CPA experiment.

We define the advantage of the adversary A with respect to Π as follows

Adv
indcpaα,β
Π,A (λ) :=

∣∣∣Pr
[
Exp

indcpa-1α,β
Π,A (λ) = 1

]
− Pr

[
Exp

indcpa-0α,β
Π,A (λ) = 1

]∣∣∣ .
Indistinguishability under multiple chosen plaintexts attack [2] Let
λ ∈ N be a security parameter. An asymmetric encryption scheme Π achieves
the (α, β)-indistinguishability security under multiple chosen plaintexts attack,
if there exists a negligible function µ(·) such that

max
A∈ppt(λ)

{
Adv

indcpa-bα,β
Π,A (λ)

}
≤ µ(λ) .

In the sequel, we denote by Expindcpa-bΠ,A the IND-CPA experiment.

Paillier’s cryptosystem. Paillier’s cryptosystem is an asymmetric encryption
scheme. It is well known due to its homomorphic properties described next. Let
λ ∈ N be a security parameter. The Paillier cryptosystem is an asymmetric



encryption scheme defined by a triple of polynomial-time algorithms (G, E ,D)
such that:

– G(1λ) generates two prime numbers p and q according to the security pa-
rameter λ, sets n := p · q and Λ := lcm(p − 1, q − 1), generates the group
(Z∗n2 , ·), randomly picks g ∈ Z∗n2 such that M := (L(gΛ mod n2))−1 mod n
exists, with L(x) := (x− 1)/n. It sets sk := (Λ,M), pk := (n, g), M := Zn,
and C := Z∗n2 . Finally, it outputs ((sk, pk),M, C).

– E(pk,m) randomly picks r ∈ Z∗n, computes c := gm ·rn mod n2, and outputs
c.

– D(sk, c) computes m := L(cΛ mod n2) ·M mod n, and outputs m.

Paillier’s cryptosystem achieves the indistinguishability security against cho-
sen plaintext attack under the DCR assumption [27].

Next, we present the homomorphic properties of Paillier’s cryptosystem.

Homomorphic Addition of Plaintexts. Let m1 and m2 be two plaintexts
in Zn. The product of the two associated ciphertexts with the public key pk =
(n, g), denoted c1 := E(pk,m1) = gm1 ·rn1 mod n2 and c2 := E(pk,m2) = gm2 ·rn2
mod n2, is the encryption of the sum of m1 and m2. Indeed, we have:

E(pk,m1) · E(pk,m2) = c1 · c2 mod n2

= (gm1 · rn1 ) · (gm2 · rn2 ) mod n2

= (gm1+m2 · (r1 · r2)n) mod n2

= E(pk,m1 +m2 mod n) .

We also remark that E(pk,m1) · E(pk,m2)−1 = E(pk,m1 −m2).

Specific Homomorphic Multiplication of Plaintexts. Let m1 and m2 be
two plaintexts in Zn and c1 ∈ Z∗n2 be the ciphertext of m1 with the public key
pk, i.e., c1 := E(pk,m1). With Paillier’s cryptosystem, c1 raised to the power of
m2 is the encryption of the product of the two plaintexts m1 and m2. Indeed,
we have:

E(pk,m1)m2 = cm2
1 mod n2

= (gm1 · rn1 )m2 mod n2

= (gm1·m2 · rn·m2
1 ) mod n2

= E(pk,m1 ·m2 mod n) .

Interactive Homomorphic Multiplication of Ciphertexts. Cramer et al. [10]
show that a two-party protocol makes possible to perform multiplication over
ciphertexts using additive homomorphic encryption schemes as Paillier’s cryp-
tosystem. More precisely, P1 knows two ciphertexts c1, c2 ∈ Z∗n2 of the plain-
texts m1,m2 ∈ Zn encrypted using the public key pk of P2, she wants to
obtain the ciphertext corresponding to m1 · m2 without revealing to P2 the
plaintexts m1 and m2. In order to do that, P1 has to interact with P2 as
described in Fig. 3. First, P1 randomly picks δ1, δ2 ∈ Zn and sends to Alice



P2 P1

c1 := E(pk,m1)
c2 := E(pk,m2)

δ1, δ2
$← Zn

α1 := c1 · E(pk, δ1)

D(sk, α1) = m1 + δ1 mod n
α1,α2←−−−− α2 := c2 · E(pk, δ2)

D(sk, α2) = m2 + δ2 mod n

c := E(pk, (m1 + δ1) · (m2 + δ2) mod n)
c−−−−→ E(pk,m1 ·m2 mod n)

Fig. 3. Paillier interactive multiplicative homomorphic protocol [10].

α1 := c1 · E(pk, δ1) and α2 := c2 · E(pk, δ2). By decrypting respectively α1 and
α2, P2 recovers respectively m1 + δ1 mod n and m2 + δ2 mod n. She sends to
P1 c := E(pk, (m1 + δ1) · (m2 + δ2) mod n). Then, P1 can deduce the value of
E(pk,m1 ·m2 mod n) by computing c · (E(pk, δ1 · δ2 mod n) · cδ11 · c

δ2
2 )−1.

Indeed, E(pk, (m1+δ1)·(m2+δ2) mod n) = E(pk,m1 ·m2 mod n)·E(pk,m1 ·
δ2 mod n) · E(pk,m2 · δ1 mod n) · E(pk, δ1 · δ2 mod n).

2.2 Strassen-Winograd Algorithm

Let M and N two compatible matrices such that M ∈ Ra×b and N ∈ Rb×c with
(a, b, c) ∈ (N∗)3. We denote by mi,j the element of the matrix M which is in the
i-th row and the j-th column with i ∈ J1, aK and j ∈ J1, bK. In the same way, we
denote by nj,k the element of the matrix N which is in the j-th row and k-th
column with j ∈ J1, bK and k ∈ J1, cK. Moreover, we denote by P the product
MN , and by pi,k the element of the matrix P which is in the i-th row and the
k-th column with i ∈ J1, aK and k ∈ J1, cK.

Strassen-Winograd Algorithm for 2-Power Size Matrices. The Strassen-
Winograd matrix multiplication algorithm is denoted SW. It works with two
square matrices of same dimension. We assume that M,N ∈ Rd×d where d := 2k

and k ∈ N∗.
First, the SW algorithm splits matrices M and N into four quadrants of

equal dimension such that

M :=

[
M11 M12

M21 M22

]
, and N :=

[
N11 N12

N21 N22

]
.

Using these 8 quadrants, SW performs the computation presented below.

– 8 additions

S1 := M21 +M22 ,
S2 := S1 −M11 ,
S3 := M11 −M21 ,
S4 := M12 − S2 ,

T1 := N12 −N11 ,
T2 := N22 − T1 ,
T3 := N22 −N12 ,
T4 := T2 −N21 .



– 7 recursive SW matrix multiplications

R1 := M11N11 ,
R2 := M12N21 ,
R3 := S4N22 ,
R4 := M22T4,

R5 := S1T1 ,
R6 := S2T2 ,
R7 := S3T3 .

– 7 final additions

P1 := R1 +R2 ,
P2 := R1 +R6 ,
P3 := P2 +R7 ,
P4 := P2 +R5,

P5 := P4 +R3 ,
P6 := P3 −R4 ,
P7 := P3 +R5 .

Then, the final result is P :=

[
P1 P5

P6 P7

]
.

This algorithm works only if the dimension of M and N is equal to a 2-power
integer. However, two methods exist to use SW algorithm with any dimension.

Padding and Peeling: On a Quest for All Dimensions. Three meth-
ods, namely static padding, dynamic padding and dynamic peeling [20] allow to
perform Strassen-Winograd matrix multiplication with two compatible square
matrices of arbitrary dimension, i.e., dimension that is equal to a 2-power integer
or not.

Static Padding. The static padding method checks if the dimension of original
matrix M and N is even or not. If not, it pads both matrices with zeros to obtain
matrix order that is equal to a 2-power integer. Hence SW can run on these two
padded matrices. At the end of the computation, extra rows and columns of
zeros are removed.

Dynamic Padding. The dynamic padding method checks if the dimension of
original matrices M and N is even or not. If not, it pads matrices with an extra
column and and extra row of zeros. In that way, SW is able to produce the four
quadrants of equal dimension and the 8 additions as described in Sect. 2.2.

For each of the 7 recursive multiplications, this method checks the parity
of matrices to multiply. If the matrices already have an even dimension, then
nothing is done since the algorithm can split them in four quadrants. However,
if matrices have an odd dimension, then an extra row column and an extra row
of zeros are added to them before to split the matrix in four quadrants.

Once the computation of the multiplication of padded matrices is done, the
extra row and column are removed.

Dynamic Peeling. Instead of adding an extra row and an extra column to
make matrices even sized as in the dynamic padding method, the dynamic peeling
method removes a row and a column. Let M and N be two square matrices of
size d. If d is an odd number, the dynamic peeling builds four quadrants for each
matrix as illustrated in Fig. 4.

Since d is an odd number, quadrants M11 := (mi,j)i,j∈J1,d−1K and N11 :=
(ni,j)i,j∈J1,d−1K are square matrices of even size. Moreover, we define M12 :=



M =


m1,1 . . . m1,d−1 m1,d

...
. . .

...
...

md−1,1 . . . md−1,d−1 md−1,d

md,1 . . . md,d−1 md,d

 , N =


n1,1 . . . n1,d−1 n1,d

...
. . .

...
...

nd−1,1 . . . nd−1,d−1 nd−1,d

nd,1 . . . nd,d−1 nd,d

 .

Fig. 4. Dynamic peeling for matrices M and N .

(mi,d)i∈J1,d−1K, M21 := (md,j)j∈J1,d−1K, M22 := md,d, N12 := (ni,d)i∈J1,d−1K,
N21 := (nd,j)j∈J1,d−1K, and N22 := nd,d. Hence, the multiplication of M with N
is given using blocks multiplication

MN :=

[
M11N11 +M12N21 M11N12 +M12N22

M21N11 +M22N21 M21N12 +M22N22

]
,

where the product M11N11 is computed using the SW and the dynamic peeling
method if needed, while other block multiplications are computed using standard
matrix multiplication.

3 Strassen-Winograd Matrix Multiplication with
MapReduce

We present our three MapReduce protocols that compute the multiplication of
square matrices M and N using the Strassen-Winograd algorithm. The first
one is the Strassen-Winograd matrix multiplication, denoted SM3, and assumes
that matrices’ dimension is a 2-power integer. The second one (resp. third one)
denoted SM3-Pad (resp. SM3-Peel) is the Strassen-Winograd matrix multiplica-
tion using the dynamic padding (resp. dynamic peeling) method and considers
square matrices of any dimension.

Each protocol is decomposed in two phases: (i) the deconstruction phase, and
(ii) the combination phase. The aim of the deconstruction phase is to divide re-
cursively M and N until the recursive Strassen-Winograd matrix multiplications
have an order that is equal to 1. The aim of the combination phase is to combine
all results of scalar multiplications to build P := MN . Each phase is composed
of a Map function and of a Reduce function. Due to the recursive nature of the
Strassen-Winograd algorithm, each phase is run several times depending on the
protocol. At the last round of the combination phase of each protocol, the public
cloud obtains P := MN and sends it to the user.

3.1 Strassen-Winograd MapReduce Protocol

The Strassen-Winograd matrix multiplication protocol, denoted SM3, assumes
that M and N are two matrices such that M,N ∈ Rd×d and ` := log2(d) ∈ N∗.



Deconstruction Phase. We present the deconstruction phase of SM3. The Map
function (resp. the Reduce function) of the deconstruction phase is presented in
Fig. 5 (resp. Fig. 6).

Map function:

Input: (key , value)
// key : id of a chunk of M or N
// value: collection of (i, j,mi,j) or (k, l, nk,l)
foreach (i, j,mi,j) ∈ value do

emitM→D1(0, (M, i, j,mi,j , d))
foreach (k, l, nk,l) ∈ value do

emitN→D1(0, (N, k, l, nk,l, d))

Fig. 5. Map function for the deconstruction phase of the SM3 protocol.

– The Map Function. It is run only during the first MapReduce round of the
deconstruction phase by sets of nodes M and N . It consists in rewriting
each matrix element sent by data owners in the form of key-value pair such
that they share the same key initialized to 0. Hence, when the set of nodes
M receives chunks of M from the owner, the Map function creates for each
matrix element mi,j the key-value pair (0, (M, i, j,mi,j , d)), where d is the
dimension of M . Likewise, when the set of nodes N receives chunks of N
from the owner, the Map function creates for each matrix element nk,l the
key-value pair (0, (N, k, l, nk,l, d)). We stress that M and N in the values are
the names of matrices, that can be encoded with a single bit, and not the
matrices themselves. During other rounds of the deconstruction phase, the
Map function is the identity function.

– The Reduce Function. It is executed by nodes Ds, with s ∈ J1, `K. Each
key is associated to two matrices sent from previous nodes. When s = 1,
matrices are M and N and are sent by nodes M and N . When s ∈ J2, `K,
the two matrices correspond to a recursive matrix multiplication and are
sent by Ds−1. The Reduce function follows the Strassen-Winograd algorithm
using these two matrices. Since the Strassen-Winograd algorithm needs to
compute 7 recursive matrix multiplications, the Reduce function produces
key-value pairs for 7 different keys where each key is associated to a pair of
submatrices to multiply. These key-value pairs are sent to the next nodes
of the deconstruction phase Ds+1. For the last round of the deconstruction
phase, i.e., when s = `, matrix multiplications are degenerated into scalar
multiplications. Hence, the Reduce function produces key-values pairs with
the result of scalar multiplications and sends them to the set of nodes C1.

Combination Phase. We present the combination phase of SM3. In this phase,
the Map function is just the identity function. The Reduce function of the com-
bination phase is presented in Fig. 7.



Reduce function:

Input: (key , values)
// key : t ∈ {0, 7}`
// values: collection of (M, i, j,mi,j , δ) or (N, k, l, nk,l, δ)

// Build M and N from values

M := (mi,j)(M,i,j,mi,j ,δ)∈values
N := (nk,l)(N,k,l,nk,l,δ)∈values

// Split M and N into four quadrants of equal dimension[
M11 M12

M21 M22

]
:= M ,

[
N11 N12

N21 N22

]
:= N

// Build submatrices according to the Strassen-Winograd algorithm

S1 := M21 +M22

S2 := S1 −M11

S3 := M11 −M21

S4 := M12 − S2

T1 := N12 −N11

T2 := N22 − T1

T3 := N22 −N12

T4 := T2 −N21

// Create a list L containing couple of matrices

L :=
[
[M11, N11], [M12, N21], [S4, N22], [M22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

δ′ := δ/2
`′ := log2(d/δ′)
foreach u ∈ J1, 7K do

(m′v,w)v,w∈J1,δ′K := L[u][0]
(n′v,w)v,w∈J1,δ′K := L[u][1]
foreach (v, w) ∈ J1, δ′K2 do

emitD`′−1→D`′ (t‖u, (M, v, w,m
′
v,w, δ

′))

emitD`′−1→D`′ (t‖u, (N, v, w, n
′
v,w, δ

′))

else
foreach u ∈ J1, 7K do

emitD`→C1(t, (u, 1, 1, L[u][0] · L[u][1], 1))

Fig. 6. Reduce function for the deconstruction phase of the SM3 protocol.

– The Map Function. The Map function corresponds to the identity function.

– The Reduce Function. It is executed by each set of nodes Cs with s ∈ J1, `K.
For the first round of the combination phase, i.e., when s = 1, each key is
associated to 7 values corresponding to the scalar multiplications sent by D`.
The Reduce function follows the Strassen-Winograd algorithm and combines
all these values to build matrices of dimension 2 that is sent to the next nodes
C2. Other rounds of the combination phase work in the same way but in this
case, each key is associated to 7 matrices of dimension δ and produces a
matrix of dimension 2 · δ. At the last round, i.e., s = `, the Reduce function
produces key-value pairs corresponding to the final result P = MN and send
them to the user’s set of nodes P.



Reduce function:

Input: (key , values)
// key : t0 . . . te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, i, j, ri,j , δ) such that u ∈ J1, 7K and i, j ∈ J1, δK

// Build matrices Ru from values with u ∈ J1, 7K
foreach u ∈ J1, 7K do

Ru := (ri,j)(u,i,j,ri,j ,δ)∈values

P1 := R1 +R2

P2 := R1 +R6

P3 := P2 +R7

P4 := P2 +R5

P5 := P4 +R3

P6 := P3 −R4

P7 := P3 −R5

(pv,w)v,w∈J1,2·δK :=

[
P1 P5

P6 P7

]
if δ < d then

δ′ := 2 · δ
`′ := log2(δ′)
foreach (v, w) ∈ J1, 2 · δ′K2 do

emitD`′→D`′+1
(t0 . . . te−1, (te, i, j, pv,w, 2 · δ′))

else
foreach (v, w) ∈ J1, dK2 do

emitD`→P((v, w), pv,w)

Fig. 7. Reduce function for the combination phase of the SM3 protocol.

3.2 Strassen-Winograd MapReduce Protocol with the Dynamic
Padding Method

The Strassen-Winograd matrix multiplication protocol with dynamic padding
using the MapReduce paradigm is denoted SM3-Pad. It assumes that M and N
are two square matrices such that M,N ∈ Rd×d and d ∈ N∗. In other terms,
SM3-Pad consider two compatible square matrices of arbitrary dimension.

Deconstruction Phase. We present the deconstruction phase of SM3-Pad. The
difference compared to the SM3 protocol is the use of the dynamic padding in
the Reduce function. Hence, each time it is required, the Reduce function adds
an extra column and an extra row of zeros to both matrices in order they have
an even size dimension. The Map function (resp. the Reduce function) of the
deconstruction phase is presented in Fig. 8 (resp. Fig. 9).

– The Map Function. It is executed only during the first MapReduce round of
the deconstruction phase by the set of nodes D1. The only difference with
the Map function of SM3 is the adding of the padding flag denoted pad and
initialized to the empty string ε. For other rounds, the Map function is the
identity function.

– The Reduce Function. It is executed during each MapReduce round of the
deconstruction phase. The difference with the Reduce function of SM3 is that
before to split both matrices formed from received key-value pairs, it checks
if the matrices’ dimension is odd or not. If that is the case, the padding flag



Map function:

Input: (key , value)
// key : id of a chunk of M or N
// value: collection of (i, j,mi,j) or (k, l, nk,l)

pad := ε // ε denotes the empty string

foreach (i, j,mi,j) ∈ value do
emitM→D1(0, (M, i, j,mi,j , d, ε))

foreach (k, l, nk,l) ∈ value do
emitN→D1(0, (N, k, l, nk,l, d, ε))

Fig. 8. Map function for the deconstruction phase of the SM3-Pad protocol.

pad is updated, i.e., it concatenates the character P (for padding), otherwise
it concatenated the character E (for even). Moreover, when the matrices’
dimension is odd, the Reduce function adds an extra column and an extra row
of zeros to both matrices. Hence, matrices have an even dimension and can
be split as in the Reduce function of SM3. Since, the Reduce function adds an
extra dimensions to matrices when their dimension is odd, the deconstruction
phase runs on dlog2(d)e MapReduce rounds.

Combination Phase. We present the combination phase of SM3-Pad. This
phase deals with the extra column and the extra row added during the decon-
struction phase using the padding flag pad introduced in the deconstruction
phase. Indeed, when two padded matrices are multiplied, the result has also
an extra column and an extra row. In this phase, the Map function is just the
identity function. The Reduce function of the combination phase is presented in
Fig. 10.

– The Reduce Function. It works as the Reduce function of SM3, however
the Reduce function checks at each round the value of the last character of
the padding tag pad. If it is equal to P it means that the obtained matrix is
padded. Hence, the Reduce function removes the extra column and the extra
row. Moreover, it updates the padding tag by removing the last character.
Since matrices are padded when their dimension is odd, the Reduce function
is performed dlog2(d)e times.

3.3 Strassen-Winograd MapReduce Protocol with the Dynamic
Peeling Method

The Strassen-Winograd matrix multiplication protocol with dynamic peeling us-
ing the MapReduce paradigm is denoted SM3-Peel. As for SM3-Pad, it considers
two compatible square matrices of arbitrary dimension, i.e., M,N ∈ Rd×d and
d ∈ N∗.
Deconstruction Phase. We present the deconstruction phase of SM3-Peel.
When it is required, i.e., when matrices’ dimension is odd, it uses the dynamic



Reduce function:

Input: (key , values)
// key : t0 . . . te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (M, i, j,mi,j , δ, pad) or (N, k, l, nk,l, δ, pad)

// Build M and N from values

M := (mi,j)(M,i,j,mi,j ,δ,pad)∈values
N := (nk,l)(N,k,l,nk,l,δ,pad)∈values

// Apply dynamic padding if dimension is odd

if δ 6≡ 0 (mod 2) then
pad := pad‖P
δ := δ + 1

M ′ :=

M 0
...

0 · · · 0

 , N ′ :=

 N 0
...

0 · · · 0


else

pad := pad‖E
M ′ := M , N ′ := N

// Split M ′ and N ′ into four quadrants of equal dimension[
M11 M12

M21 M22

]
:= M ′ ,

[
N11 N12

N21 N22

]
:= N ′

// Build submatrices according to the Strassen-Winograd algorithm

S1 := M21 +M22

S2 := S1 −M11

S3 := M11 −M21

S4 := M12 − S2

T1 := N12 −N11

T2 := N22 − T1

T3 := N22 −N12

T4 := T2 −N21

// Create a list L containing couple of matrices

L :=
[
[M11, N11], [M12, N21], [S4, N22], [M22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

δ′ := δ/2
`′ := log2(d/δ′)
foreach u ∈ J1, 7K do

(m′v,w)v,w∈J1,δ′K := L[u][0]
(n′v,w)v,w∈J1,δ′K := L[u][1]
foreach (v, w) ∈ J1, δ′K2 do

emitD`′−1→D`′ (t‖u, (M, v, w,m
′
v,w, δ

′, pad))

emitD`′−1→D`′ (t‖u, (N, v, w, n
′
v,w, δ

′, pad))

else
foreach u ∈ J1, 7K do

emitD`→C1(t, (u, 1, 1, L[u][0] · L[u][1], 1, pad))

Fig. 9. Reduce function for the deconstruction phase of the SM3-Pad protocol.

peeling to split the two matrices. The Map function is exactly the same than the
Map function of the deconstruction phase of the SM3 protocol and is presented in
Fig. 5. The Reduce function of the deconstruction phase is presented in Fig. 17.



Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, i, j, ri,j , δ, p0 . . . ps) such that u ∈ J1, 7K, i, j ∈ J1, δK, s ∈
J0, `K
// and ps ∈ {P, E}

// Build matrices Ru from values with u ∈ J1, 7K
foreach u ∈ J1, 7K do

Ru := (ri,j)(u,i,j,ri,j ,δ,p0...ps)∈values

P1 := R1 +R2

P2 := R1 +R6

P3 := P2 +R7

P4 := P2 +R5

P5 := P4 +R3

P6 := P3 −R4

P7 := P3 −R5

(pk,l)k,l∈J1,2·δK :=

[
P1 P5

P6 P7

]
if ps = P then

δ′ := 2 · δ − 1
else

δ′ := 2 · δ
if δ′ < d then

`′ := log2(2 · δ)
foreach (k, l) ∈ J1, δ′K2 do

emitD`′→D`′+1
(t0 · · · te−1, (te, k, l, pk,l, δ

′, p0 . . . ps−1))

else
foreach (k, l) ∈ J1, dK2 do

emitD`→P((k, l), pk,l)

Fig. 10. Reduce function for the combination phase of the SW-Pad protocol.

– The Map Function. It is executed only during the first MapReduce round
of the deconstruction phase, i.e., by set of nodes D1. It works as the Map
function of SM3 protocol. The Map function for other rounds of the decon-
struction phase is the identity function.

– The Reduce Function. It is executed during each MapReduce round of the
deconstruction phase, i.e., by sets of nodes Ds with s ∈ J1, `K where ` :=
blog2(d)c. When Ds receives for a certain key the two matrices to multiply
denoted M0 and N0, it checks the parity of their dimension. If it is odd, the
Reduce function splits M0 and N0 using the dynamic peeling method and
obtains

M0 :=

[
M ′ M12

M21 M22

]
, N0 :=

[
N ′ N12

N21 N22

]
.

Then, it follows the Strassen-Winograd algorithm for the multiplication be-
tween M ′ and N ′ blocks, and compute standard matrix multiplication for
other blocks.

Otherwise, the Reduce function follows the Strassen-Winograd algorithm
with matrices M0 and N0.



Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 6K for z ∈ J0, eK
// values: collection of (M, i, j,mij , δ) or (N, j, k, njk, δ) or (P, j, k, pjk, δp)

foreach (P, i, j, pij , δp) ∈ values do
emit(t0 · · · te, (Q, i, j, pij , δp))

M := (mij)(M,i,j,mij ,δ)∈values
N := (njk)(N,j,k,njk,δ)∈values

if δ 6≡ 0 (mod 2) then[
M ′ M12

M21 M22

]
:= M ,

[
N ′ N12

N21 N22

]
:= N ,

such that


M ′ := (mij)i,j∈J1,δ−1K

M12 := (mij)i∈J1,δ−1K,j=δ

M21 := (mij)i=δ,j∈J1,δ−1K

M22 := (mij)i=δ,j=δ

, and


N ′ := (nij)i,j∈J1,δ−1K

N12 := (nij)i∈J1,δ−1K,j=δ

N21 := (nij)i=δ,j∈J1,δ−1K

N22 := (nij)i=δ,j=δ

(qi,j)i,j∈J1,δK :=

[
M12N21 M ′N12 +M12N22

M21N
′ +M22N21 M21N22 +M22N21

]
δ′ := (δ − 1)/2
foreach (i, j) ∈ J1, δK2 do

emit(t0 . . . te, (Q, i, j, qi,j , δ
′))

else
M ′ := M , N ′ := N
δ′ := δ/2

// Split M ′ and N ′ into four quadrants of equal dimension[
M ′11 M

′
12

M ′21 M
′
22

]
:= M ′ ,

[
N ′11 N

′
12

N ′21 N
′
22

]
:= N ′

S1 := M ′21 +M ′22
S2 := S1 −M ′11

S3 := M ′11 −M ′21
S4 := M ′12 − S2

T1 := N ′12 −N ′11
T2 := N ′22 − T1

T3 := N ′22 −N ′12
T4 := T2 −N ′21

L :=
[
[M ′11, N

′
11], [M ′12, N

′
21], [S4, N

′
22], [M ′22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

`′ := log2(d/δ′)
foreach u ∈ J0, 6K do

(m′v,w)i,j∈J1,δ′K := L[u][0]
(n′v,w)j,k∈J1,δ′K := L[u][1]
foreach (v, w) ∈ J1, δ′K2 do

emitD`′→D`′+1
(t‖u, (M, v, w,m′v,w, δ′))

emitD`′→D`′+1
(t‖u, (N, v, w, n′v,w, δ′))

else
foreach u ∈ J0, 6K do

emitD`→C1(t, (u, 1, 1, L[u][0] · L[u][1], 1))

Fig. 11. Reduce function for the deconstruction phase of the SW-Peel protocol.



Combination Phase. We present the combination phase of SM3-Peel. This
phase combines results of recursive matrix multiplications to compute matrix
P := MN . As for the combination phase of the SM3-Pad protocol, it has to deal
with the dynamic peeling method used during the deconstruction phase. In this
phase, the Map function is just the identity function. The Reduce function of
the combination phase is presented in Fig. 12.

– The Reduce Function. It is executed by nodes Cs with s ∈ J1, `K where ` :=
blog2(d)c. For the same key t ∈ {0, 7}`, three different cases are possible
depending on the associated values.

1. If values are only of the form (u, v, w, rv,w, δ) where u ∈ J1, 7K, rv,w ∈ R,
δ ∈ N∗, v, w ∈ J1, δK, then the Reduce function combines values to build
matrices R1, . . . , R7 sent by Cs−1 if s 6= 1, D` otherwise, and follows the
Strassen-Winograd algorithm. It emits key-value pairs consisting in the
elements of the result of the recursive matrix multiplication.

2. If values are only of the form (Q, i, j, qi,j , δq) where δq ∈ N∗, i, j ∈ J1, δqK,
and qi,j ∈ R, then the Reduce function consists in the identity function
and sends key-value pairs of the form (Q, i, j, qi,j , δq) to next set of nodes.
Note that it is impossible to have this case during the last round of the
combination phase, i.e., for the set of nodes C`.

3. If values are of the form (u, v, w, rv,w, δ) and of the form (Q, i, j, qi,j , δq),
it means that the dynamic peeling has been applied and must be consid-
ered to compute the result of the recursive matrix multiplication. First,
the Reduce function combines values of the form (u, v, w, rv,w, δ) to build
matrices R1, . . . , R7 and follows the Strassen-Winograd algorithm. More-
over, it uses values of the form (Q, i, j, qi,j , δq) corresponding to matrix
blocks multiplication to obtain the result of the recursive matrix mul-
tiplication. Finally, all elements of the obtained matrix are sent to the
next set of nodes under the form of key-value, as in SM3.

4 Secure Strassen-Winograd Matrix Multiplication with
MapReduce

Protocols SM3, SM3-Pad, and SM3-Peel presented in the previous Section reveal
both matrices, intermediate results, and the product of M by N to the public
cloud. For instance, nodes M and N learn respectively M and N , while the
last set of nodes of the combination phase learns P := MN . Below, we describe
these protocols with a secure approach.

We assume that the MapReduce’s user has a Paillier public key denoted pk
which is available to the data owners and the public cloud. Since we use Paillier’s
cryptosystem, the matrix multiplication is computed modulo n, where n is the
modulo of pk.



Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 6K for z ∈ J0, eK
// values: collection of (u, v, w, rv,w, δ) or (Q, i, j, qi,j , δq) such that u ∈ J0, 6K, i, j ∈
J1, δK
if ∃

(
(Q, i, j, qi,j , δq) ∧ (u, v, w, rv,w, δ)

)
∈ values then

Q := (qi,j)(Q,i,j,qi,j ,δq)∈values
foreach u ∈ J0, 6K do

Ru := (rv,w)(u,v,w,rv,w,δ)∈values
C1 := R0 +R1

C2 := R0 +R5

C3 := C2 +R6

C4 := C2 +R4

C5 := C4 +R2

C6 := C3 −R3

C7 := C3 −R4

(ci,j)i,j∈J1,2·δK :=

[
C1 C5

C6 C7

]
c′i,j :=

{
ci,j + qi,j if i, j ∈ J1, 2 · δK
qi,j if maxi,j∈J1,2·δ+1K(i, j) = 2 · δ + 1

δ′ := 2 · δ + 1
if δ′ < d then

foreach (i, j) ∈ J1, δ′K2 do
emitC→C(t0 · · · te−1, (te, i, j, c

′
i,j , δ

′))

else
foreach (i, j) ∈ J1, dK2 do

emitC→C((i, j), c
′
i,j)

else if
{
∃(Q, i, j, qi,j , δq) ∈ values

}
∧
{
@(u, v, w, rv,w, δ) ∈ values

}
then

foreach (Q, i, j, qi,j , δq) ∈ values do
emit(t0 · · · te, (Q, i, j, qi,j , δq))

else if
{
@(Q, i, j, qi,j , δq) ∈ values

}
∧
{
∃(u, v, w, rv,w, δ) ∈ values

}
then

foreach u ∈ J0, 6K do
Ru := (rv,w)(u,v,w,rv,w,δ)∈values

C1 := R0 +R1

C2 := R0 +R5

C3 := C2 +R6

C4 := C2 +R4

C5 := C4 +R2

C6 := C3 −R3

C7 := C3 −R4

(ci,j)i,j∈J1,2·δK :=

[
C1 C5

C6 C7

]
δ′ := 2 · δ
if δ′ < d then

foreach (i, j) ∈ J1, δ′K2 do
emitC→C(t0 · · · te−1, (te, i, j, c

′
i,j , δ

′))

else
foreach (i, j) ∈ J1, dK2 do

emitC→C((i, j), c
′
i,j)

Fig. 12. Reduce function for the combination phase of the SW-Peel protocol.



4.1 Preprocessing for Secure Strassen-Winograd Matrix
Multiplication

In order to avoid the public cloud from learning the content of the two matrices
and the result of their product, each data owner performs a preprocessing on its
own matrix. This preprocessing is done in a way allowing the public cloud to
perform the same computation, as in protocols presented in the previous Section,
in a partially homomorphic way while privacy constraints are satisfied. To run
the preprocessing, data owners use the Paillier public key pk of the MapReduce’s
user where pk := (n, g), and n being the product of two prime numbers generated
according to a security parameter λ, and g ∈ Z∗n2 .

The preprocessing is simple. It consists in the encryption of each element of
the matrix owned by the data owner using the Paillier’s cryptosystem with the
public key pk of the MapReduce’s user. At the end of the encryption, it outputs
the corresponding encrypted matrix. In the following, we denote by a star an
encrypted matrix, i.e., M∗ is the encrypted matrix associated to M . Moreover,
elements of M∗ are denoted m∗i,j for i, j ∈ J1, dK, where d is the dimension of the
square matrix M .

4.2 Secure Approach

The secure approach for SM3 protocol (resp. SM3-Pad, SM3-Peel) is denoted
S2M3 (resp. S2M3-Pad, S2M3-Peel). The three secure protocols use the Pail-
lier’s cryptosystem and its partial homomorphic properties to ensure privacy
of elements of matrices and to allow the public cloud to compute the matrix
multiplication.

In our secure approach, we assume that the MapReduce’s user and the public
cloud do not collude, i.e., the public cloud does not know the secret key sk of
the MapReduce’s user. Indeed, if that is the case then the public cloud is able
to decrypt all ciphertexts, and then to learn the content of both matrices and
the result of the matrix multiplication.

The three secure protocols are similar to protocols presented in the previous
Section. Each protocol is also decomposed into the deconstruction phase and
the combination phase. Moreover, secure approaches have the same number of
rounds for each phase than their plain version.

For the sake of clarity, we define the two following functions used in secure
approaches.

– Paillier.Add(pk,A,B). This function takes matrices A := (E(pk, ai,j))i,j∈J1,dK

and B := (E(pk, bi,j))i,j∈J1,dK as input such that A,B ∈ (Z∗n2)d×d. For each
(i, j) ∈ J1, dK2, the function computes ci,j := E(pk, ai,j) · E(pk, bi,j) and
outputs the encrypted matrix C := (ci,j)i,j∈J1,dK that correspond to the
encryption of the sum of A and B.

– Paillier.Sub(pk,A,B). This function takes matrices A := (E(pk, ai,j))i,j∈J1,dK

and B := (E(pk, bi,j))i,j∈J1,dK as input such that A,B ∈ (Z∗n2)d×d. For each
(i, j) ∈ J1, dK2, the function computes ci,j := E(pk, ai,j) · E(pk, bi,j)

−1 and



outputs the encrypted matrix C := (ci,j)i,j∈J1,dK that correspond to the
encryption of the subtraction of B to A.

Moreover, secure approaches use the Paillier interactive multiplicative homo-
morphic protocol denoted Paillier.Inter and presented in Fig. 3.

4.3 Secure Strassen-Winograd Matrix Multiplication Protocol

The secure Strassen-Winograd matrix multiplication protocol, denoted S2M3,
assumes that M and N are two matrices such that M,N ∈ Zd×dn and ` :=
log2(d) ∈ N∗.
Deconstruction Phase. We present the deconstruction phase of S2M3. The
Map function is the same than for SM3 protocol presented in Fig. 5. The only
difference is that it operates on encrypted matrices M∗ and N∗ sent by data
owners after the preprocessing.

The Reduce function is presented in Fig. 13. Since it operates on encrypted
matrices, we use functions Paillier.Add and Paillier.Sub to add or subtract two
matrices. Moreover, it uses the Paillier interactive multiplicative homomorphic
protocol Paillier.Inter during the last round of the decomposition phase to the
encryption of the multiplication of two elements.

Combination Phase. As for SM3 protocol, the Map function of the combi-
nation phase is the identity function. The Reduce function of the combination
phase is presented in Fig. 14. The only difference compared to S2M3 protocol is
the use of Paillier.Add and Paillier.Sub functions for addition and subtraction of
encrypted matrices.

4.4 Secure Strassen-Winograd Matrix Multiplication with the
Dynamic Padding Method

The secure Strassen-Winograd matrix multiplication protocol with dynamic padding
using the MapReduce paradigm is denoted S2M3-Pad. It consider two square
matrices of same dimension M and N such that M,N ∈ Zd×dn and d ∈ N∗.
Deconstruction Phase. The Map function is the same than for SM3-Pad
protocol presented in Fig. 8. The only difference is that it operates on encrypted
matrices M∗ and N∗ sent by data owners after the preprocessing.

The Reduce function is presented in Fig. 15. Note that it pads matrices
with encryption of zero instead of zero as for SM3-Pad protocol. Since it oper-
ates on encrypted matrices, we use Paillier.Add and Paillier.Sub functions to add
or subtract two encrypted matrices. Moreover, it uses the Paillier interactive
multiplicative homomorphic protocol Paillier.Inter during the last round of the
deconstruction phase to the encryption of the multiplication of two elements.

Combination Phase. As for SM3-Pad, the Map function of the combination
phase is the identity function. The Reduce function is presented in Fig. 16. It
works as the Reduce function of the combination phase of SM3-Pad protocol.



Reduce function:

Input: (key , values)
// key : t ∈ {0, 7}`
// values: collection of (M, i, j,m∗i,j , δ) or (N, k, l,n∗k,l, δ)

// Build M∗ and N∗ from values

M∗ := (m∗i,j)(M,i,j,m∗i,j ,δ)∈values
N∗ := (n∗k,l)(N,k,l,n∗k,l,δ)∈values

// Split M∗ and N∗ into four quadrants of equal dimension[
M∗11 M

∗
12

M∗21 M
∗
22

]
:= M∗ ,

[
N∗11 N

∗
12

N∗21 N
∗
22

]
:= N∗

// Build submatrices according to the Strassen-Winograd algorithm

S1 := Paillier.Add(pk,M∗21,M
∗
22)

S2 := Paillier.Sub(pk, S1,M
∗
11)

S3 := Paillier.Sub(pk,M∗11,M
∗
21)

S4 := Paillier.Sub(pk,M∗12, S2)

T1 := Paillier.Sub(pk,N∗12, N
∗
11)

T2 := Paillier.Sub(pk,N∗22, T1)
T3 := Paillier.Sub(pk,N∗22, N

∗
12)

T4 := Paillier.Sub(pk, T2, N
∗
21)

// Create a list L containing couple of matrices

L :=
[
[M∗11, N

∗
11], [M∗12, N

∗
21], [S4, N

∗
22], [M∗22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

δ′ := δ/2
`′ := log2(d/δ′)
foreach u ∈ J1, 7K do

(m′v,w)v,w∈J1,δ′K := L[u][0]
(n′v,w)v,w∈J1,δ′K := L[u][1]
foreach (v, w) ∈ J1, δ′K2 do

emitD`′−1→D`′ (t‖u, (M, v, w,m
′
v,w, δ

′))

emitD`′−1→D`′ (t‖u, (N, v, w, n
′
v,w, δ

′))

else
foreach u ∈ J1, 7K do

emitD`→C1(t, (u, 1, 1,Paillier.Inter(L[u][0], L[u][1]), 1))

Fig. 13. Reduce function for the deconstruction phase of the S2M3 protocol.



Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, i, j, r∗i,j , δ) such that u ∈ J1, 7K and i, j ∈ J1, δK

// Build matrices Ru from values with u ∈ J1, 7K
foreach u ∈ J1, 7K do

Ru := (ri,j)(u,i,j,r∗i,j ,δ)∈values

P1 := Paillier.Add(pk,R1, R2)
P2 := Paillier.Add(pk,R1, R6)
P3 := Paillier.Add(pk, P2, R7)
P4 := Paillier.Add(pk, P2, R5)

P5 := Paillier.Add(pk, P4, R3)
P6 := Paillier.Add(pk, P3, R4)
P7 := Paillier.Sub(pk, P3, R5)

(pv,w)v,w∈J1,2·δK :=

[
P1 P5

P6 P7

]
if δ < d then

δ′ := 2 · δ
`′ := log2(δ′)
foreach (v, w) ∈ J1, 2 · δ′K2 do

emitD`′→D`′+1
(t0 · · · te−1, (te, i, j, pv,w, 2 · δ′))

else
foreach (v, w) ∈ J1, dK2 do

emitD`→P((v, w), pv,w)

Fig. 14. Reduce function for the combination phase of the S2M3 protocol.

4.5 Secure Strassen-Winograd Matrix Multiplication with the
Dynamic Peeling Method

The secure Strassen-Winograd matrix multiplication protocol with dynamic peel-
ing using the MapReduce paradigm is denoted S2M3-Peel. It considers two
square matrices M and N such that M,N ∈ Zd×dn and d ∈ N∗.

Deconstruction Phase. The Map function is the same than for SM3-Peel
protocol presented in Fig. 5. The only difference is that it operates on encrypted
matrices M∗ and N∗ sent by data owners after the preprocessing.

The Reduce function is presented in Fig. 17. Since it operates on encrypted
matrices, it uses Paillier.Add and Paillier.Sub functions to add or subtract two
encrypted matrices. Moreover, it uses the Paillier interactive multiplicative ho-
momorphic protocol during the last round of the decomposition phase since the
multiplication is performed over encrypted values.

Combination Phase. The Map function of the combination phase for the
S2M3-Peel protocol is the identity function. The Reduce function of S2M3-Peel
protocol is presented in Fig. 18. It works as the Reduce function of the SM3-Peel
protocol.



Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 6K for z ∈ J0, eK
// values: collection of (M, i, j,m∗i,j , δ, pad) or (N, k, l,n∗k,l, δ, pad)

// Build M and N from values

M∗ := (m∗i,j)(M,i,j,m∗i,j ,δ,pad)∈values
N∗ := (n∗k,l)(N,k,l,n∗k,l,δ,pad)∈values

// Apply dynamic padding if dimension is odd

if δ 6≡ 0 (mod 2) then
pad := pad‖P
δ := δ + 1

M ′ :=

 M ∗ E(pk, 0)
...

E(pk, 0) · · · E(pk, 0)

 , N ′ :=

 N ∗ E(pk, 0)
...

E(pk, 0) · · · E(pk, 0)


else

pad := pad‖E
M ′ := M∗ , N ′ := N∗

// Split M ′ and N ′ into four quadrants of equal dimension[
M11 M12

M21 M22

]
:= M ′ ,

[
N11 N12

N21 N22

]
:= N ′

// Build submatrices according to the Strassen-Winograd algorithm

S1 := Paillier.Add(pk,M21,M22)
S2 := Paillier.Sub(pk, S1,M11)
S3 := Paillier.Sub(pk,M11,M21)
S4 := Paillier.Sub(pk,M12, S2)

T1 := Paillier.Sub(pk,N12, N11)
T2 := Paillier.Sub(pk,N22, T1)
T3 := Paillier.Sub(pk,N22, N12)
T4 := Paillier.Sub(pk, T2, N21)

// Create a list L containing couple of matrices

L :=
[
[M11, N11], [M12, N21], [S4, N22], [M22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

δ′ := δ/2
`′ := log2(d/δ′)
foreach u ∈ J1, 7K do

(m′v,w)v,w∈J1,δ′K := L[u][0]
(n′v,w)v,w∈J1,δ′K := L[u][1]
foreach (v, w) ∈ J1, δ′K2 do

emitD`′−1→D`′ (t‖u, (M, v, w,m
′
v,w, δ

′, pad))

emitD`′−1→D`′ (t‖u, (N, v, w, n
′
v,w, δ

′, pad))

else
foreach u ∈ J1, 7K do

emitD`→C1(t, (u, 1, 1,Paillier.Inter(L[u][0], L[u][1]), 1, pad))

Fig. 15. Reduce function for the deconstruction phase of the S2M3-Pad protocol.

5 Experimental Results

We present the experimental results for our SM3 and S2M3 protocols.



Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, i, j, ri,j , δ, p0 . . . ps) such that u ∈ J1, 7K, i, j ∈ J1, δK, s ∈
J0, `K
// and ps ∈ {P, E}

// Build matrices Ru from values with u ∈ J1, 7K
foreach u ∈ J1, 7K do

Ru := (ri,j)(u,i,j,ri,j ,δ,p0...ps)∈values

P1 := Paillier.Add(pk,R1, R2)
P2 := Paillier.Add(pk,R1, R6)
P3 := Paillier.Add(pk, P2, R7)
P4 := Paillier.Add(pk, P2, R5)

P5 := Paillier.Add(pk, P4, R3)
P6 := Paillier.Add(pk, P3, R4)
P7 := Paillier.Sub(pk, P3, R5)

(pk,l)k,l∈J1,2·δK :=

[
P1 P5

P6 P7

]
if ps = P then

δ′ := 2 · δ − 1
else

δ′ := 2 · δ
if δ′ < d then

`′ := log2(2 · δ)
foreach (k, l) ∈ J1, δ′K2 do

emitD`′→D`′+1
(t0 · · · te−1, (te, k, l, pk,l, δ

′, p0 . . . ps−1))

else
foreach (k, l) ∈ J1, dK2 do

emitD`→P((k, l), pk,l)

Fig. 16. Reduce function for the combination phase of the S2M3-Pad protocol.

5.1 Dataset and Settings

For each experiment, we generate two random square matrices and of order d
such that 240 ≤ d ≤ 450 for no-secure protocols, and 90 ≤ d ≤ 300 for secure
protocols. Elements of both matrices are in J0, 10K. For each order d, we perform
matrix multiplication with SM3 and S2M3 protocols using static padding, dy-
namic padding, and dynamic peeling methods. We also compare the results to
the standard matrix multiplication using one MapReduce round [22] and the se-
cure approach denoted CRSP-1R [4]. For each experiment, we stop the Strassen-
Winograd recursive matrix multiplication when the dimension of matrices is less
than 16. Then, we use the MM-1R protocol for the no-secure approach, and
the CRSP-1R protocol for the secure approach. Our secure protocols are based
on the Paillier’s cryptosystem. We use Gaillier4, a Go implementation of the

4 https://github.com/actuallyachraf/gomorph

https://github.com/actuallyachraf/gomorph


Paillier’s cryptosystem. Note that Gaillier is not an optimized implementation.
Hence, we use it with a 64-bit RSA modulus as proof of concept.

5.2 Results

In Fig. 19, we present CPU times for the no-secure SM3 protocols using the
static padding method denoted SM3-sPad, the dynamic padding method de-
noted SM3-Pad, or the dynamic peeling method denoted SM3-Peel. Moreover,
we compare them to the standard matrix multiplication using one MapReduce
round [22], denoted MM-1R.

First we observe that without any security, our SM3-Pad and SM3-Peel pro-
tocols perform the matrix multiplication faster than the standard matrix mul-
tiplication for the largest dimensions. This trend can be seen when matrices’
dimension is larger than 300. Moreover, we remark that our protocol SM3-sPad
is more efficient than the state-of-the-art protocol MM-1R when matrices’ di-
mension tend to a 2-power integer. Indeed, we note that SM3-sPad is faster than
MM-1R when matrices’ dimension is between 450 and 512 = 28.

We show in Fig. 20, CPU times for secure protocols computing the SW matrix
multiplication. We compare them to a state-of-the-art secure standard matrix
multiplication protocol CRSP-1R using one MapReduce round [4].

Same observations than no-secure protocols can be done for secure protocols.
Indeed, we also remark that our S2M3-Pad and S2M3-Peel protocols perform
the matrix multiplication faster than our protocol CRSP-1R.

Finally, for both no-secure and secure protocols, we remark that the protocol
using the dynamic peeling method is always faster than the protocol using the
dynamic padding method. As we have seen previously, the deconstruction phase
and the combination phase use dlog2(d)e MapReduce rounds for the dynamic
padding method, while they use blog2(d)c MapReduce rounds for the dynamic
peeling method, where d is matrices’ dimension.

6 Security Proofs

We provide formal security proof for S2M3, S2M3-Pad, and S2M3-Peel protocols.
We use the standard multiparty computations definition of security against semi-
honest adversaries [23].

6.1 Security Proof for S2M3 Protocol

S2M3 protocol assumes that the public cloud’s nodes may collude, hence in a
security point of view, all sets of nodes are considered as a unique set of nodes
when they collude.

We model S2M3 protocol with four parties PM , PN , PC , and PP using re-
spective inputs I := (IM , IN , IC , IP) ∈ I, and a function g := (gM , gN , gC , gP)
such that:



– PM is the data owner of M . It has the input IM := (M,pk), where M is its
private matrix and pk is the Paillier’s public key of the MapReduce’s user.
PM returns gM (I) := ⊥ because it does not learn anything.

– PN is the data owner of N . It has the input IN := (N, pk), where N is its
private matrix and pk is the Paillier’s public key of the MapReduce’s user.
PN returns gN (I) := ⊥ because it does not learn anything.

– PC is the public cloud’s nodes that represents the collusion between all sets
of nodes of the deconstruction phase and of the combination phase. It has
the input IC := (pk), where pk is the Paillier’s public key of the user. PC
returns gC(I) := d ∈ N∗ because it learns matrices dimensions.

– PP is the set of nodes P of the MapReduce’s user. It has the input IP :=
(pk, sk), where (pk, sk) is the Paillier’s key pair of the MapReduce’s user
PP returns gP(I) := P because the user obtains the result of the matrix
multiplication at the end of the protocol.

Note that for the sake of clarity, we consider that PC sends the product of
the encrypted matrices to PP instead of storing them in a database.

The security of S2M3 protocol is given in Theorem 1.

Theorem 1. Assume Paillier’s cryptosystem is IND-CPA, then S2M3 securely
computes the matrix multiplication in the presence of semi-honest adversaries
even if public cloud’s nodes collude.

The security proof for S2M3 protocol (Theorem 1) is decomposed in Lemma 1
for parties PM and PN , Lemma 2 for party PC , and Lemma 3 for party PP .

Lemma 1. There exists probabilistic polynomial-time simulators SS2M3
M and SS2M3

N

such that:{
SS2M3
M (1λ, IM , gM (I))

}
I∈I,λ∈N

c≡
{
viewS2M3

M (I, λ)
}
I∈I,λ∈N ,{

SS2M3
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{
viewS2M3

N (I, λ)
}
I∈I,λ∈N .

Proof. The view of PM contains M∗ (the encryption of M) obtained from the
preprocessing and that is sent to PC . Simulator SS2M3

M has input (M,pk). It
encrypts each element of M using pk to build M∗. Hence, SS2M3

M performs ex-
actly the same computation as S2M3 protocol and describes exactly the same
distribution as viewS2M3

M (I, λ). Building the simulator SS2M3
N in the same way, it

describes exactly the same distribution as viewS2M3
N (I, λ).

Lemma 2. Assume Paillier’s cryptosystem is IND-CPA, then there exists a
probabilistic polynomial-time simulator SS2M3

C such that:

{
SS2M3
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{
viewS2M3

C (I, λ)
}
I∈I,λ∈N .



Proof. We recall that PC is the collusion of sets of nodes of the public cloud, i.e.,
M, N , Di and Ci for i ∈ J1, `K. PC receives M∗ and N∗ from the data owners.

Simulator of PC is given in Fig. 23. Function SW-Deconstruction presented
in Fig. 21 simulates the public cloud’s view during the deconstruction phase.
The view contains all submatrices corresponding the recursive matrices multi-
plications. Moreover, the last set of nodes of the deconstruction phase D` sends
couples of ciphertexts (xi, yi), with i ∈ J1, 7`K, to PP and receives all correspond-

ing ciphertexts R
(`)
i returned by PP to compute multiplication on encrypted

coefficients.
Function SW-Combination presented in Fig. 22 simulates the public cloud’s

view during one round of the combination phase. For each round, it combines
submatrices according the SW algorithm.

Let λ ∈ N be a security parameter. Assume there exists a polynomial-time
distinguisher D such that for all inputs I ∈ I, we have:∣∣Pr[D(SS2M3

C (1λ, IC , gC(I))) = 1]− Pr[D(viewS2M3
C (I)) = 1]

∣∣ = µ(λ) ,

where µ is a non-negligible function in λ. We show how to build a probabilistic
polynomial-time adversary A such that A has a non-negligible advantage to win
the IND-CPA experiment on the Paillier’s cryptosystem. Then we conclude the
proof by contraposition. Adversary A is presented in Fig. 24. At the end of its
execution, A uses the distinguisher D to compute the bit b∗ before returning it.
First, we remark that:

Pr
[
Expindcpa-0Paillier,A(λ) = 1

]
= Pr

[
D(viewS2M3

C (I, λ)) = 1
]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in
real S2M3 protocol. Then the probability that the experiment returns 1 is equal
to the probability that the distinguisher returns 1 on inputs computed as in real
protocol. On the other hand, we have:

Pr
[
Expindcpa-1Paillier,A(λ) = 1

]
= Pr

[
D(SS2M3

C (1λ, IC , gC(I))) = 1
]
.

When b = 1, the view that A uses as input for D is computed as in the
simulator SS2M3

C . Then the probability that the experiment returns 1 is equal
to the probability that the distinguisher returns 1 on inputs computed as in the
simulator SS2M3

C . Finally, we evaluate the probability that A wins the IND-CPA
experiment:

AdvindcpaPaillier,A(λ) =
∣∣Pr

[
Expindcpa-1Paillier,A(λ) = 1

]
− Pr

[
Expindcpa-0Paillier,A(λ) = 1

]∣∣
=
∣∣Pr

[
D(SS2M3

C (1λ, IC , gC)) = 1
]
− Pr

[
D
(
viewS2M3

C (I, λ) = 1
]∣∣

= µ(λ) ,

which is non-negligible and concludes the proof by contradiction.

Lemma 3. There exists a probabilistic polynomial-time simulator SS2M3
P such

that: {
SS2M3
P (1λ, IP , gP(I))

}
I∈I,λ∈N

c≡
{
viewS2M3

P (I, λ)
}
I∈I,λ∈N .



Proof. Simulator SS2M3
P is presented in Fig. 25. The view of PP contains the cou-

ple of ciphertexts (xi, yi) sent by the set of nodes D` during the deconstruction
phase run by PC and the answer zi sent by PP to PC that contains the encryption
of the multiplication of xi and yi, for i ∈ J1, 7`K. Since xi and yi are random-
ized by PC , there are indistinguishable to random ciphertexts in the PP point
of view. The view of PP also contains P ∗ := (E(pk, pi,j))i,j∈J1,dK that is sent

by PC . Finally, SS2M3
P (1λ, (pk, sk), P ) describes exactly the same distribution as

viewS2M3
P (I, λ), which concludes the proof.

6.2 Security Proof for S2M3-Pad Protocol

S2M3-Pad protocol is modeled as the S2M3 protocol by parties PM , PN , PC ,
and PP . The security of S2M3-Pad protocol is given in Theorem 2.

Theorem 2. Assume Paillier’s cryptosystem is IND-CPA, then S2M3-Pad se-
curely computes the matrix multiplication in the presence of semi-honest adver-
saries even if public cloud’s nodes collude.

The security proof for S2M3-Pad protocol (Theorem 2) is decomposed in
Lemma 4 for parties PM and PN , Lemma 5 for party PC , and Lemma 6 for
party PP .

Lemma 4. There exists two probabilistic polynomial-time simulators SS2M3-Pad
M

and SS2M3-Pad
N such that:{
SS2M3-Pad
M (1λ, IM , gM (I))

}
I∈I,λ∈N

c≡
{
viewS2M3-Pad

M (I, λ)
}
I∈I,λ∈N ,{

SS2M3-Pad
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{
viewS2M3-Pad

N (I, λ)
}
I∈I,λ∈N .

Proof. Since the view of PM and PN are exactly the same than for the S2M3
protocol, the proof is the same than Lemma 1.

Lemma 5. Assume Paillier’s cryptosystem is IND-CPA, then there exists a
probabilistic polynomial-time simulator SS2M3-Pad

C such that:{
SS2M3-Pad
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{
viewS2M3-Pad

C (I, λ)
}
I∈I,λ∈N .

Proof. The only difference with the S2M3 protocol is the adding of the padding
(with encryption of zeros) during the deconstruction phase, and the removing
of the padding during the combination phase. In the security point of view, it
is equivalent to deal with padded encrypted matrices or not. Hence, the proof is
the same than Lemma 2.

Lemma 6. There exists a probabilistic polynomial-time simulator SS2M3-Pad
P

such that:{
SS2M3-Pad
P (1λ, IP , gP(I))

}
I∈I,λ∈N

c≡
{
viewS2M3-Pad

P (I, λ)
}
I∈I,λ∈N .

Proof. The proof is exactly the same than Lemma 3.



6.3 Security Proof for S2M3-Peel Protocol

S2M3-Peel protocol is modeled as the S2M3 and S2M3-Pad protocols by parties
PM , PN , PC , and PP . The security of S2M3-Peel protocol is given in Theorem 3.

Theorem 3. Assume Paillier’s cryptosystem is IND-CPA, then S2M3-Peel se-
curely computes the matrix multiplication in the presence of semi-honest adver-
saries even if public cloud’s nodes collude.

The security proof for S2M3-Peel protocol (Theorem 3) is decomposed in
Lemma 7 for parties PM and PN , Lemma 8 for party PC , and Lemma 9 for
party PP .

Lemma 7. There exists two probabilistic polynomial-time simulators SS2M3-Peel
M

and SS2M3-Peel
N such that:

{
SS2M3-Peel
M (1λ, IM , gM (I))

}
I∈I,λ∈N

c≡
{
viewS2M3-Peel

M (I, λ)
}
I∈I,λ∈N ,{

SS2M3-Peel
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{
viewS2M3-Peel

N (I, λ)
}
I∈I,λ∈N .

Proof. Since the view of PM and PN are exactly the same than for the S2M3
protocol, the proof is the same than Lemma 1.

Lemma 8. Assume Paillier’s cryptosystem is IND-CPA, then there exists a
probabilistic polynomial-time simulator SS2M3-Peel

C such that:

{
SS2M3-Peel
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{
viewS2M3-Peel

C (I, λ)
}
I∈I,λ∈N .

Proof. The only difference with the S2M3 protocol is that encrypted matri-
ces are split according to the dynamic peeling during the deconstruction phase
when it is required. Moreover, blocks multiplications are performed during the
deconstruction phase and used during the combination phase to build the cor-
responding matrix. In the security point of view, these blocks multiplications
do not give any information to the adversary. Hence we can consider only the
blocks multiplication corresponding to the standard Strassen-Winograd matrix
multiplication. Therefore, the security proof is the same than Lemma 2.

Lemma 9. There exists a probabilistic polynomial-time simulator SS2M3-Peel
P

such that:{
SS2M3-Peel
P (1λ, IP , gP(I))

}
I∈I,λ∈N

c≡
{
viewS2M3-Peel

P (I, λ)
}
I∈I,λ∈N .

Proof. The proof is exactly the same than Lemma 3.



7 Conclusions and Future Work

We have presented SM3, a protocol to compute the Strassen-Winograd matrix
multiplication using the MapReduce paradigm. Moreover, we extend this proto-
col to SM3-Pad and SM3-Peel protocols using respectively the dynamic padding
and the dynamic peeling methods allowing square matrix multiplication of ar-
bitrary dimension. We have also presented a secure approach for these three
protocols denoted S2M3, S2M3-Pad, and S2M3-Peel satisfying privacy guaran-
tees such that the public cloud does not learn any information on input matrices
and on the output matrix. To achieve our goal, we have relied on the well-known
Paillier’s cryptosystem and on its homomorphic properties. We have compared
our three no-secure protocols (resp. secure protocols) with the state-of-the-art
MapReduce protocol of Leskovec et al. [22] (with the CRSP protocol proposed
by Bultel et al. [4]) computing matrix multiplication, and shown that our pro-
tocols are more efficient.

Looking forward to future work, we aim to investigate the matrix multipli-
cation with privacy guarantees in different big data systems (e.g., Spark, Flink)
whose users also tend to outsource data and computations as MapReduce.
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Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (M, i, j,m∗i,j , δ) or (N, j, k,n∗j,k, δ) or (P, j, k,p∗a,z, δp)

foreach (P, i, j,p∗a,z, δp) ∈ values do
emit(t0 · · · te, (P, i, j,p∗a,z, δp))

M∗ := (m∗i,j)(M,i,j,mi,j ,δ)∈values
N∗ := (n∗k,l)(N,k,l,nk,l,δ)∈values

if δ 6≡ 0 (mod 2) then[
M ′ M12

M21 M22

]
:=M∗ ,

[
N ′ N12

N21 N22

]
:=N∗ ,

such that


M ′ := (mij)i,j∈J1,δ−1K

M12 := (mij)i∈J1,δ−1K,j=δ

M21 := (mij)i=δ,j∈J1,δ−1K

M22 := (mij)i=δ,j=δ

, and


N ′ := (nij)i,j∈J1,δ−1K

N12 := (nij)i∈J1,δ−1K,j=δ

N21 := (nij)i=δ,j∈J1,δ−1K

N22 := (nij)i=δ,j=δ

(qi,j)i,j∈J1,δK :=

[
M12N21 M ′N12 +M12N22

M21N
′ +M22N21 M21N22 +M22N21

]
δ′ := (δ − 1)/2
foreach (a, z) ∈ J1, δK2 do

emit(t0 · · · te, (P, i, j,q∗a,z, δ′))
else

M ′ := M∗ , N ′ := N∗

δ′ := δ/2

// Split M ′ and N ′ into four quadrants of equal dimension[
M ′11 M

′
12

M ′21 M
′
22

]
:= M ′ ,

[
N ′11 N

′
12

N ′21 N
′
22

]
:= N ′

S1 := Paillier.Add(pk,M ′21,M
′
22)

S2 := Paillier.Sub(pk, S1,M
′
11)

S3 := Paillier.Sub(pk,M ′11,M
′
21)

S4 := Paillier.Sub(pk,M ′12, S2)

T1 := Paillier.Sub(pk,N ′12, N
′
11)

T2 := Paillier.Sub(pk,N ′22, T1)
T3 := Paillier.Sub(pk,N ′22, N

′
12)

T4 := Paillier.Sub(pk, T2, N
′
21)

L :=
[
[M ′11, N

′
11], [M ′12, N

′
21], [S4, N

′
22], [M ′22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

`′ := log2(d/δ′)
foreach u ∈ J0, 6K do

(a′ij)i,j∈J1,δ′K := L[u][0]
(b′jk)j,k∈J1,δ′K := L[u][1]
foreach (v, w) ∈ J1, δ′K2 do

emitD`′→D`′+1
(t‖u, (M, v, w, a′ij , δ′))

emitD`′→D`′+1
(t‖u, (N, v, w, b′ij , δ′))

else
foreach u ∈ J0, 6K do

emitD`→C1(t, (u, 1, 1,Paillier.Sub(L[u][0], L[u][1]), 1))

Fig. 17. Reduce function for the deconstruction phase of the S2M3-Peel protocol.



Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, v, w,r∗v,w, δ) or (P, a, z,p∗a,z, δp) such that u ∈ J1, 7K
if ∃

(
(P, a, z,p∗a,z, δp) ∧ (u, v, w,r∗v,w, δ)

)
∈ values then

P := (p∗a,z)(P,a,z,p∗a,z ,δp)∈values

foreach u ∈ J1, 7K do
Ru := (r∗v,w)(u,v,w,r∗v,w,δ)∈values

P1 := Paillier.Add(pk,R0, R1)
P2 := Paillier.Add(pk,R0, R5)
P3 := Paillier.Add(pk, P2, R6)
P4 := Paillier.Add(pk, P2, R4)

P5 := Paillier.Add(pk, P4, R2)
P6 := Paillier.Sub(pk, P3, R3)
P7 := Paillier.Sub(pk, P3, R4)

(ρi,j)i,j∈J1,2·δK :=

[
P1 P5

P6 P7

]
ρ′i,j :=

{
ρi,j+p

∗
i,j if i, j ∈ J1, 2 · δK

p∗i,j if maxi,j∈J1,2·δ+1K(i, j) = 2 · δ + 1

δ′ := 2 · δ + 1
if δ′ < d then

foreach (i, j) ∈ J1, δ′K2 do
emitC→C(t0 · · · te−1, (te, i, j, ρ

′
i,j , δ

′))

else
foreach (i, j) ∈ J1, dK2 do

emitC→C((i, j), ρ
′
i,j)

else if
{
∃(P, a, z,p∗a,z, δp) ∈ values

}
∧
{
@(u, v, w,r∗v,w, δ) ∈ values

}
then

foreach (P, a, z,p∗a,z, δp) ∈ values do
emit(t0 · · · te, (P, a, z,p∗a,z, δp))

else if
{
@(P, a, z,p∗a,z, δp) ∈ values

}
∧
{
∃(u, v, w,r∗v,w, δ) ∈ values

}
then

foreach u ∈ J1, 7K do
Ru := (r∗v,w)(u,v,w,r∗v,w,δ)∈values

P1 := Paillier.Add(pk,R1, R2)
P2 := Paillier.Add(pk,R1, R6)
P3 := Paillier.Add(pk, P2, R7)
P4 := Paillier.Add(pk, P2, R5)

P5 := Paillier.Add(pk, P4, R3)
P6 := Paillier.Sub(pk, P3, R4)
P7 := Paillier.Sub(pk, P3, R5)

(ρi,j)i,j∈J1,2·δK :=

[
P1 P5

P6 P7

]
δ′ := 2 · δ
if δ′ < d then

foreach (i, j) ∈ J1, δ′K2 do
emitC→C(t0 · · · te−1, (te, i, j, ρi,j , δ

′))
else

foreach (i, j) ∈ J1, dK2 do
emitC→C((i, j), ρi,j)

Fig. 18. Reduce function for the combination phase of the S2M3-Peel protocol.
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Fig. 19. CPU time vs order of matrices for the state-of-the-art MM-1R protocol using
one MapReduce round [22] and for our SM3 protocols using static and dynamic padding
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Function: SW-Deconstruction
SW-Deconstruction(A,B,U, view, pk):[
A11 A12

A21 A22

]
:= A ,

[
B11 B12

B21 B22

]
:= B

S1 := Paillier.Add(pk,A21, A22)
S2 := Paillier.Sub(pk, S1, A11)
S3 := Paillier.Sub(pk,A11, A21)
S4 := Paillier.Sub(pk,A12, S2)

T1 := Paillier.Sub(pk,B12, B11)
T2 := Paillier.Sub(pk,B22, T1)
T3 := Paillier.Sub(pk,B22, B12)
T4 := Paillier.Sub(pk, T2, B21)

L :=
[
[A11, B11], [A12, B21], [S4, B22], [A22, T4], [S1, T1], [S2, T2], [S3, T3]

]
foreach [A0, B0] ∈ L do

if dim(A0) = dim(B0) = 1 then
U := U ∪ {[A0, B0]}

else
view := view ∪ {[A0, B0]}
SW-Deconstruction(A0, B0, U, view, pk)

Fig. 21. Function SW-Deconstruction for simulator SS2M3
C presented in Fig. 23.

Function: SW-Combination
SW-Combination(R1, . . . , R7, view, pk):
P1 := Paillier.Add(pk,R1, R2)
P2 := Paillier.Add(pk,R1, R6)
P3 := Paillier.Add(pk, P2, R7)
P4 := Paillier.Add(pk, P2, R5)

P5 := Paillier.Add(pk, P4, R3)
P6 := Paillier.Add(pk, P3, R4)
P7 := Paillier.Add(pk, P3, R5)

P :=

[
P1 P5

P6 P7

]
view := view ∪ {P}
return (P, view)

Fig. 22. Function SW-Combination for simulator SS2M3
C presented in Fig. 23.



Simulator: SS2M3
C (1λ, pk, d)

U := ∅
view := ∅
foreach (i, j) ∈ J1, dK2 do

(αi,j , βi,j)
$← (Zn)2

M∗ :=
(
E(pk, αi,j)

)
i,j∈J1,dK , N∗ :=

(
E(pk, βi,j)

)
i,j∈J1,dK

SW-Deconstruction(M∗, N∗, U, view, pk)

foreach i ∈ J1, 7`K do

(ri, si, ti)
$← (Zn)3

xi := E(pk, ri)
yi := E(pk, si)

R
(`)
i := E(pk, ti)

view := view ∪ {R(`)
i }

foreach k ∈ J`, 1K do

foreach j ∈ J1, 7k−1K do

(R
(k−1)
j , view′) := SW-Combination(R

(k)
7·j−6, . . . , R

(k)
7·j )

view := view ∪ view′
return view

Fig. 23. Simulator SS2M3
C for the proof of Lemma 2.



Adversary: AE(pk,LoRb(·,·))

U := ∅
view := ∅
foreach i ∈ J1, dK do

foreach j ∈ J1, dK do

(mi,j , ni,j)
$← (Zn)2

(αi,j , βi,j)
$← (Zn)2

M∗ :=
(
E(pk,LoRb(mi,j , αi,j))

)
i,j∈J1,dK

N∗ :=
(
E(pk,LoRb(ni,j , βi,j))

)
i,j∈J1,dK

SW-Deconstruction(M∗, N∗, U, view, pk)

foreach i ∈ J1, 7`K do

(ri, si, ti)
$← (Zn)3

xi := E(pk, ri)
yi := E(pk, si)

R
(`)
i := E(pk,LoRb(U [i− 1][0] · U [i− 1][1], ti))

view := view ∪ {R(`)
i }

foreach k ∈ J`, 1K do

foreach j ∈ J1, 7k−1K do

(R
(k−1)
j , view′) := SW-Combination(R

(k)
7·j−6, . . . , R

(k)
7·j )

view := view ∪ view′
return view

Fig. 24. Adversary AE(pk,LoRb(·,·)) for the proof of Lemma 2.

Simulator: SS2M3
P (1λ, (pk, sk), P )

foreach i ∈ J1, 7`K do

(ri, si)
$← (Zn)2

xi := E(pk, ri)
yi := E(pk, si)
zi := E(pk, ri · si)

P ∗ := (E(pk, pi,j))i,j∈J1,dK

view :=
(
{(xi, yi), zi}i∈J1,7`K, P

∗)
return view

Fig. 25. Simulator SS2M3
P for the proof of Lemma 3.
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