R. Ciucanu¹ M. Giraud² P. Lafourcade² L. Ye³

¹LIFO, INSA Centre Val de Loire Université d'Orléans

³School of Computer Science and Technology Harbin Institute of Technology, China

26 July 2019 @ SECRYPT, Prague

Cloud Service Provider (CSP)

Model 1

Application

Avoid double submissions in conferences

Mutual Private Set Intersection (PSI)

	ARES Conference International Conference on Availability, Reliability and Security	SECRYPT 2019
Participants List	A	В
Result	$A \cap B$	$A \cap B$

Model 2

Application

FBI wants to detect suspicious passengers of an airline company

One-way PSI			
		AEAM S	
Passengers List	A	В	
Result	$A \cap B$	Ø	

Model 3

Application

Interpol wants the most dangerous persons from FBI and MI6

Our PSI ModelImage: Suspects ListsABResult \emptyset \emptyset $A \cap B$

Example

Suspects Lists

Intersection List

DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Motivations

MapReduce

Intersection with MapReduce

Security Model and Cryptographic Tools

Secure Intersection with MapReduce

Performance Evaluation

Conclusion

Motivations

MapReduce

Intersection with MapReduce

Security Model and Cryptographic Tools

Secure Intersection with MapReduce

Performance Evaluation

$MapReduce^1$

MapReduce Environment

Take care of

- Partitioning input data
- Scheduling program execution on a set of machines
- Handling machine failures

Programmer

Specify

Map and Reduce functions

Input files

Limos¹ J. Dean and S. Ghemawat. *MapReduce: Simplified Data Processing on Large Clusters*. In the proceedings of OSDI 2004.

MapReduce Example

MapReduce in 3 Steps

1. Map tasks

Input: ID of chunk Output: *key-value* pairs

2. Master Controller

- Key-value pairs aggregated and sorted by key
- Pairs with same key sent to the same Reduce task

3. Reduce tasks

Input: One key Output: Combine values associated to the key

Motivations

MapReduce

Intersection with MapReduce

Security Model and Cryptographic Tools

Secure Intersection with MapReduce

Performance Evaluation

Intersection with MapReduce²

Cambridge University Press.

Intersection with MapReduce

Reduce function

It returns value only if: #values = #participants

Motivations

MapReduce

Intersection with MapReduce

Security Model and Cryptographic Tools

Secure Intersection with MapReduce

Performance Evaluation

Security Model

Without security, Cloud learns:

- Content of relations
- Intersection result

Cryptographic Tools

Pseudorandom function

$$f: \mathcal{K} \times \mathcal{D} \to \mathcal{R}$$

Deterministic

Indistinguishable from a random function

Notation

$$[m]_k = f(k,m)$$

Cryptographic Tools

Asymmetric encryption scheme

$$(pk, sk) \leftarrow \mathcal{G}(\lambda)$$
$$c \leftarrow \mathcal{E}(pk, m)$$
$$m \leftarrow \mathcal{D}(sk, c)$$

$$\blacktriangleright m \leftarrow \mathcal{D}(sk,c)$$

$$\mathcal{D}(sk, \mathcal{E}(pk, m)) = m$$

Notation

$$\{m\} = \mathcal{E}(pk, m)$$

Motivations

MapReduce

Intersection with MapReduce

Security Model and Cryptographic Tools

Secure Intersection with MapReduce

Performance Evaluation

Preprocessing

One main relation using the public key of the final user For each element x, compute the key-value pair:

$$\left([x]_{k_1},\left(\{x\}\oplus\left(\oplus_{i=2}^{i=n}[x]_{k_i}\right)\right)\right)$$

Other relation compute the key-value pair:

$$([x]_{k_1}, [x]_{k_i})$$

Motivations

MapReduce

Intersection with MapReduce

Security Model and Cryptographic Tools

Secure Intersection with MapReduce

Performance Evaluation

Experimental Results

Experiments

- 1. Varying the number of tuples
- 2. Varying the number of intersected relations

Results: Varying the Number of Tuples

LIMOS³ J. Leskovec, A. Rajaraman and J. D. Ullman. *Mining of Massive Datasets*. Cambridge University Press. Results: Varying the Number of Intersected Relations

LIMOS J. Leskovec, A. Rajaraman and J. D. Ullman. *Mining of Massive Datasets.* Cambridge University Press.

Motivations

MapReduce

Intersection with MapReduce

Security Model and Cryptographic Tools

Secure Intersection with MapReduce

Performance Evaluation

Conclusion

Conclusion and Future Works

Conclusion

- Design of secure intersection with MapReduce
- Collision resistance
- Practical scalability

Future Works

- Apache Spark environment
- Malicious model

Thank you for your attention.

Any questions?

pascal.lafourcade@uca.fr

