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Abstract

Most existing formal privacy definitions for voting protocols are based on observational equiv-
alence between two situations where two voters swap their votes. These definitions are unsuit-
able for cases where votes are weighted. In such a case swapping two votes can result in a
different outcome and both situations become trivially distinguishable. We present a definition
for privacy in voting protocols in the Applied π-Calculus that addresses this problem. Using
our model, we are also able to define multi-voter coercion, i.e. situations where several voters
are attacked at the same time. Then we prove that under certain realistic assumptions a proto-
col secure against coercion of a single voter is also secure against coercion of multiple voters.
This applies for Receipt-Freeness as well as Coercion-Resistance.
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1 Introduction
Privacy is a key requirement in elections as voters can otherwise be blackmailed, coerced or may be sus-
ceptible to vote-buying. Typically privacy is split into three different properties:

• Vote-Privacy: The votes are kept private.

• Receipt-Freeness: A voter cannot construct a receipt which allows him to prove to a third party that
he voted for a certain candidate. This is to prevent vote-buying.

• Coercion-Resistance: Even when a voter interacts with a coercer during the entire voting process,
the coercer cannot be sure whether the voter followed his instructions or actually voted for another
candidate.

The design of complex protocols such as voting protocols is known to be error-prone. This is why formal
verification is an ideal tool to ensure the correctness and security of voting protocols. It has already been
used to analyze properties such as Verifiability, Privacy, Receipt-Freeness and Coercion-Resistance [2, 5,
6, 8, 9, 19, 23, 27, 18, 28, 14, 15, 17].

However, most existing symbolic definitions of Privacy are based on the idea of swapping votes. If
the votes are private, a case where Alice votes “yes” and Bob votes “no” should be indistinguishable from
a case where Alice votes “no” and Bob votes “yes”. Yet this definition is unsuitable for some situations,
for example in companies where votes are weighted according to the proportion of shares held by each
shareholder. Consider the following example: Alice owns 50% of the stocks, and Bob and Carol each hold
25%. The cases where Alice and Bob swap votes are now easily distinguishable if Carol votes “yes” all the
time, as the result of the vote is different: 75% vs. 50% vote for “yes”. Note that there are still situations
where privacy is ensured in the sense that different situations give the same result. The last outcome (50%
yes, 50% no) could - for example - also be announced if Alice votes “yes” and Bob and Carol vote “no”.
Protocols supporting vote weights have been proposed, for example Eliasson and Zúquete [11] developed
a voting system supporting vote weights based on REVS [13], which itself is based on the protocol by
Fujioka et al. [12].

Our Contributions: To address this issue, we define a symbolic privacy notion in the Applied π-Calculus [1]
that takes weighted votes into account. Instead of requiring two executions where voters swap votes to be
bisimilar, we require two executions to be bisimilar if they publish the same result, independent of the map-
ping between voters and votes. We analyze the relationship of our notion to the existing swap-based ones
and give precise conditions for formally proving the equivalence between them. Then, we generalize our
notion to Receipt-Freeness and Coercion-Resistance for weighted votes. We use a variant of the protocol
by Eliasson and Zúquete [11] as a case study for our definition, and provide a partially automated proof
using ProVerif [3].

In the cases of coercion most existing definitions only consider one attacked voter. Our model also
allows to define a case with multiple coerced voters, and we analyze the relationship between this and the
single-voter case. In particular, we give a formal proof that single- and multi-voter coercion are equivalent
for a given protocol if it satisfies some modularity and de-composability properties. Using two existing
protocols, we show that theses properties are realistic.

Related Work: Previous research on formal verification of voting protocols concerned privacy properties
(privacy, receipt-freeness and coercion-resistance) [2, 5, 6, 8, 9, 19, 23, 27], election verifiability [18, 28],
or both [14, 15, 17].

In the symbolic model, privacy is usually defined as observational equivalence of two cases where a
pair of voters swap their votes [2, 5, 6, 8, 9, 27, 17]. The definitions mainly differ in the way they model
voting processes and deal with specifics of protocols. Some of them can be verified automatically using
standard tools (e.g. ProVerif [3] and ProSwapper [16]). This swap-based approach was not designed for
weighted votes and, as explained above, may lead to unexpected results in this case.

The other main approach roots in the computational model. In this case the real-world protocol is
compared to an ideal situation and the attacker’s advantage is analyzed [23, 14, 15]. Our symbolic definition

Verimag Research Report no TR-2012-2 1/27



Jannik Dreier, Pascal Lafourcade, Yassine LakhnechPrivacy for Weighted Votes and Multi-Voter Coercion

P , Q, R := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
ifM = N then P conditional

else Q
in(u, x).P message input
out(u, x).P message output

(a) Plain process

A, B, C := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

(b) Extended process

Figure 1: Grammars for plain and extended or active processes
is somewhat related to this computational approach, as we also consider some information – the result – to
be leaked even in an ideal situation, and only forbid further leakage. Another possibility is to consider the
overall advantage of the attacker without comparing it to an ideal situation [20]. This advantage is always
non-negligible as in certain situations the votes are always revealed, e.g. in the case of an unanimous vote.

A third approach was proposed by Langer et al. [21]. The authors developed verifiability and privacy
notions based on (un-)linkability between a voter and his vote. Their definitions have to be instantiated with
a concrete formal process and attacker model. To define unlinkability, they rely on indistinguishability of
runs where votes are swaped, with the same issues as described above.

Küsters and Truderung [19] were the first to explicitly consider multi-voter coercion. In their abstract
model, Single-Voter Coercion and Multi-Voter Coercion turned out to be different in general. Subse-
quently they proposed a modified definition of Coercion-Resistance that implies both Single- and Multi-
Voter Coercion-Resistance. In our model Single- and Multi-Voter Coercion are equivalent under certain
assumptions on the protocol, hence we do not need to change the initial definition. Additionally, the con-
ditions allow us to precisely characterize the difference between both notions.

Outline: In the next section, we present the Applied π-Calculus and recall the privacy definitions given
by Delaune et al. [5]. In Section 3, we introduce our privacy definition and show under which condition it
is equivalent to the existing ones. Then, in Section 4, we define Single- and Multi-Voter Receipt-Freeness,
analyze their relationship and prove their equivalence under certain assumptions. In Section 5 we define
Single- and Multi-Voter Coercion-Resistance and again prove their equivalence under the same hypotheses,
before concluding in Section 6.

2 Preliminaries

In this section we recall the Applied π-Calculus, introduce our model of voting protocols and present
existing privacy definitions.

2.1 Applied π-Calculus

The Applied π-Calculus [1] is a formal language to describe concurrent processes. The calculus consists of
names (which typically correspond to data or channels), variables, and a signature Σ of function symbols
which can be used to build terms. Functions typically include encryption and decryption – for example
enc(message, key), dec(message, key) – hashing, signing etc. Terms are correct (i.e. respecting arity
and sorts) combinations of names and functions. We distinguish the type “channel” from other base types.
To model equalities we use an equational theory E which defines a relation =E . A classical example
which describes the correctness of symmetric encryption is dec(enc(message, key), key) =E message.
Processes are constructed using the grammars detailed in Figure 1.

The substitution {M/x} replaces the variable x with term M . We denote by fv(A), bv(A), fn(A),
bn(A) the free variables, bound variables, free names or bound names respectively. A process is closed if
all variables are bound or defined by an active substitution.
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The frame Φ(A) of an active process A is obtained when replacing all plain processes in A by 0.
This frame can be seen as a representation of what is statically known to the exterior about a process. The
domain dom(Φ) of a frame Φ is the set of variables for which Φ defines a substitution. An evaluation context
C[_] denotes an active process with a hole for an active process that is not under replication, a conditional,
an input or an output. In the rest of the paper we use the following usual notions of equivalence and
bisimilarity based on the semantics given in the original paper [1].

Definition 1 (Equivalence in a Frame [1]). Two terms M and N are equal in the frame φ, written (M =
N)φ, if and only if φ ≡ νñ.σ, Mσ = Nσ, and {ñ} ∩ (fn(M)∪ fn(N)) = ∅ for some names ñ and some
substitution σ.

Definition 2 (Static Equivalence (≈s) [1]). Two closed frames φ and ψ are statically equivalent, written
φ ≈s ψ, when dom(φ) = dom(ψ) and when for all terms M and N we have (M = N)φ if and only if
(M = N)ψ. Two extended processes A and B are statically equivalent (A ≈s B) if their frames are
statically equivalent.

The intuition behind this definition is that two processes are statically equivalent if the messages ex-
changed with the environment cannot be distinguished by an attacker (i.e. all operations on both sides give
the same results). This idea can be extended to labeled bisimilarity.

Definition 3 (Labeled Bisimilarity (≈l) [1]). Labeled bisimilarity is the largest symmetric relation R on
closed active processes, such that AR B implies:

1. A ≈s B,

2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′,

3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α−→→∗ B′ and A′ R B′ for
some B′.

In this case each interaction on one side can be simulated by the other side, and the processes are
statically equivalent at each step during the execution, thus an attacker cannot distinguish both sides.

2.2 Modeling Voting Protocols

We model voting protocols in the Applied π-Calculus as follows.

Definition 4 (Voting Protocol). A voting protocol is a tuple (V,A1, . . . , Am, ñ) where V is the process
that is executed by the voter, the Aj’s are the processes executed by the election authorities, and ñ is a set
of private channels. We also assume the existence of a particular public channel res that is only used to
publish the result of the election.

Note that we have only one process for the voters. This means that different voters will execute the
same process, but with different variable values (e.g. the keys, the vote etc.). To reason about privacy, we
talk about instances of a voting protocol, which we call voting processes.

Definition 5 (Voting Process). A voting process of a voting protocol (V ,A1, . . .,Am, ñ) is a closed process

νñ′.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Al),

where l ≤ m, ñ′ includes the secret channel names ñ, V σidiσvi are the processes executed by the voters,
σidi is a substitution assigning the identity to a process (this determines for example the secret keys), σvi
specifies the vote and Aj’s are the election authorities which are required to be honest.

The restricted channel names model private channels. Note that we only model the honest authorities
as unspecified parties are subsumed by the attacker.
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2.3 Existing Privacy Definitions
Before we can formally define privacy, we need the following two transformations. The first one turns a
process P into another process P ch that reveals all its inputs and secret data on the channel ch.

Definition 6 (Process P ch [5]). Let P be a plain process and ch be a channel name. P ch is defined as
follows:

• 0ch =̂ 0,

• (P |Q)ch =̂ P ch|Qch,

• (νn.P )ch =̂ νn.out(ch, n).P ch if n is a name of base type, (νn.P )ch =̂ νn.P ch otherwise,

• (in(u, x).P )ch =̂ in(u, x).out(ch, x).P ch if x is a variable of base type, (in(u, x).P )ch =̂ in(u, x).P ch

otherwise,

• (out(u,M).P )ch =̂ out(u,M).P ch,

• (!P )ch =̂ !P ch,

• (ifM = N then P else Q)ch =̂ ifM = N then P ch else Qch.

In the remainder we assume that ch /∈ fn(P )∪ bn(P ) before applying the transformation. The second
transformation does not only reveal the secret data, but also takes orders from an outsider before sending a
message or branching.

Definition 7 (Process P c1,c2 [5]). Let P be a plain process and c1, c2 be channel names. P c1,c2 is defined
as follows:

• 0c1,c2 =̂ 0,

• (P |Q)c1,c2 =̂ P c1,c2 |Qc1,c2 ,

• (νn.P )c1,c2 =̂ νn.out(c1, n).P c1,c2 if n is a name of base type, (νn.P )c1,c2 =̂ νn.P c1,c2 otherwise,

• (in(u, x).P )c1,c2 =̂ in(u, x).out(c1, x).P c1,c2 if x is a variable of base type, (in(u, x).P )c1,c2 =̂
in(u, x).P c1,c2 otherwise,

• (out(u,M).P )c1,c2 =̂ in(c2, x).out(u, x).P c1,c2 where x is a fresh variable,

• (!P )c1,c2 =̂ !P c1,c2 ,

• (ifM = N then P else Q)c1,c2 =̂ in(c2, x).if x = true then P c1,c2 else Qc1,c2 where x is a
fresh variable and true is a constant.

To hide the output of a process, we use the following definition.

Definition 8 (Process A\out(ch,·) [5]). Let A be an extended process. We define the process A\out(ch,·) as
νch.(A|!in(ch, x)).

We now recall the privacy definitions given by Delaune et al. [5], which are the bases for many other
definitions [2, 6, 8, 9, 27, 17, 26]. Their main idea for defining privacy is simple: A protocol respects
privacy if any two instances where two voters swap votes are bisimilar.

Definition 9 (Swap-Privacy (SwP) [5]). A protocol satisfies Swap-Privacy (SwP) if for any context S
corresponding to a voting process with a hole for two voters and for all votes σvA and σvB we have

S [V σidAσvA |V σidBσvB ] ≈l S [V σidAσvB |V σidBσvA ] .
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In the literature S may sometimes contain corrupted or coerced voters (e.g. in [27]), here we will
suppose that it contains only honest voters and authorities to be able to clearly distinguish single- and
multi-voter coercion.

Defining Receipt-Freeness is a bit more complicated as the voter will execute some counter strategy, i.e.
a different process, to fake the receipt, but it can still be expressed as a bisimilarity between two situations.
In the first situation, the targeted voter votes a and reveals his secret data. In the second situation, he
executes another process – the counter-strategy – which allows him to vote b and fake the secret data in
a way that both instances are bisimilar. A protocol is receipt-free if such a process – a counter-strategy –
exists.

Definition 10 (Swap-Receipt-Freeness (SwRF) [5]). A protocol satisfies Swap-Receipt-Freeness (SwRF)
if for any context S corresponding to a voting process with a hole for two voters and for all votes σvA and
σvB there exists a process V ′ such that V ′\out(chc,·) ≈l V σidAσvB and

S
[
(V σidAσvA)chc|V σidBσvB

]
≈l S [V ′|V σidBσvA ] .

One could define Coercion-Resistance in the same way, but in that case the attacker could force the
targeted voter to vote d and not a in the situation where he complies with the instructions. This would
make both situations trivially distinguishable by just looking at the result. To prevent this, Delaune et al.
[5] use a context C that is required to force the voter to vote a, but can otherwise interact in any way with
the voter.

Definition 11 (Swap-Coercion-Resistance (SwCR) [5]). A protocol satisfies Swap-Coercion-Resistance
(SwCR) if for any context S corresponding to a voting process with a hole for two voters and for all
votes σvA and σvB there exists a process V ′ such that for any context C with C = νc1.νc2.(_|P ) and
ñ ∩ fn(C) = ∅, S [C [(V σidAσvA)c1,c2 ] |V σidBσvB ] ≈l V P ′A

[
(V σidAσvA)chc|V σidBσvB

]
we have

C [V ′]
\out(chc,·) ≈l V σidAσvB and

S [C [(V σidAσvA)c1,c2 ] |V σidBσvB ] ≈l S [C [V ′] |V σidBσvA ] .

Delaune et al. [5] showed that any protocol ensuring (SwCR) ensures (SwRF), and any protocol ensur-
ing (SwRF) ensures (SwP).

3 Defining Privacy
Our privacy definition is based on the observation that - as the result of the vote is always published - some
knowledge about the voter’s choices can always be inferred from the outcome. The classical example is
the case of a unanimous vote where the contents of all votes are revealed just by the result. Yet - as already
discussed in the introduction - there can also be other cases where some of the votes can be inferred from
the result, in particular in the case of weighted votes. If for example Alice holds 66% of the shares and
Bob 34%, both votes are always revealed when announcing the result: If one option gets 66% and the other
34%, it is clear which one was chosen by Alice or Bob. However, if we have a different distribution of the
shares (e.g. 50%, 25% and 25%), some privacy is still possible as there several situations with the same
result. Thus our main idea: If two instances of a protocol give the same result, an attacker should not be
able to distinguish them. Note that this includes the classic definition where votes are swapped, if this give
the same result.

3.1 Formal Definition
To express this formally, we need to define the result of an election. As defined above, we suppose that the
result is always published on a special channel res. The following definition allows us to hide all channels
except for a specified channel c, which we can use for example to reason about the result on channel res.

Definition 12 (P |c). Let P |c = νc̃h.P where c̃h are all channels except for c, i.e. we hide all channels
except for c.
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Now we can formally define our privacy notion: If two instances of a protocol give the same result,
they should be bisimilar.

Definition 13 (Vote-Privacy (VP)). A voting protocol ensures Vote-Privacy (VP) if for any two instances
V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . . | Al) and V PB = νñ.(V σid1σvB1 | . . . | V σidnσvBn | A1

| . . . | Al) we have
V PA|res ≈l V PB |res ⇒ V PA ≈l V PB .

A simple interpretation of this definition is that everything apart from the result on channel res has to
remain private. This obviously relies heavily on the notion of “result” and the modeling of the protocol.
Typically the result will only contain only the sum of all votes, which corresponds to a simple and intuitive
understanding of privacy.

Some protocols may leak some additional information, for example the number of ballots on the bulletin
board. For instance in the protocol by Juels et al. [15] voters can post fake ballots. In this case, the above
definition of the result may lead to a too restrictive privacy notion, since two situations with the same votes
but a different number of fakes are required to be bisimilar. To address this issue, we can include the
number of ballots in the result if we want to accept the additional leakage. This gives very fine-grained
control about the level of privacy we want to model.

Note that if the link between a voter and his vote is also published as part of the result on channel
res, our definition of privacy may be true although this probably does not correspond to the intuitive
understanding of privacy. This is however coherent within the model since everything apart from the result
is private; simply the result itself leaks too much information.

3.2 Link to Existing Definitions
To establish the relationship of our definition and the existing ones, we need to formally characterize their
difference. Intuitively the swap-based definition assumes that swapping two votes will not change the
result. This can be formalized as follows: If two instances of the protocol with the same voters give the
same result, then the votes are a permutation of each other, and vice versa. This precludes weighted votes,
thus the name “Equality of Votes”.

Definition 14 (Equality of Votes (EQ)). A voting protocol respects Equality of Votes (EQ) if for any V PA =
νñ.(V σid1σvA1 | . . . |V σidnσvAn |A1| . . . |Al) and V PB = νñ.(V σid1σvB1 | . . . |V σidnσvBn |A1| . . . |Al) we
have

V PA|res ≈l V PB |res ⇔ ∃π : ∀i : σvBi = σvA
π(i)

,

where π is a permutation.

This allows us to formally prove that our definition is equivalent to the existing ones if (EQ) holds.

Theorem 1 (Equivalence of Privacy Definitions). If a protocol respects (EQ), then (VP) and (SwP) are
equivalent.

The full formal proof can be found in Appendix B. Intuitively, because of (EQ), two instances of a
protocol can only have the same result if the votes are a permutation of each other. As any permutation
can be written as a sequence of simple permutations (swaps), (SwP) is enough to generate any possible
permutation, which gives (VP). Conversely, the definition of (SwP) becomes just a particular case of (VP).

It is easy to see that this condition (EQ) is necessary: If a protocol uses weighted votes (e.g. Alice 66%,
Bob 34%), it may satisfy (VP), but not (SwP).

Similarly, consider the following example: In the official result announced on channel res, a pre-
selected candidate always wins - this could be the case if the authorities are dishonest and want to manip-
ulate the election outcome. If however at the same time the ballots on the bulletin board allow to calculate
the result, such a protocol may ensure (SwP) – if the ballots cannot be linked to the voters –, but not
(VP) because two instances with a different outcome based on the ballots will have the same “result” on
res. Note that such a protocol would contradict (EQ) because we have instances where the votes are not a
permutation of each other, but still give the same result.
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3.3 Example: A Variant of FOO
Eliasson and Zúquete [11] propose an implementation of a voting system supporting vote weights based
on REVS [13], which itself is based on the protocol by Fujioka et al. [12], often referred to as “FOO”.

3.3.1 Informal description:

The protocol by Fujioka et al. [12]. is split into three phases. In the first phase, the voter obtains the
administrator’s signature on a commitment to his vote:

• Voter Vi chooses his vote vi and computes a commitment xi = ξ(vi, ki) for a random key ki.

• He blinds the commitment using a blinding function χ, a random value ri and obtains ei = χ(xi, ri).

• He signs ei and sends the signature si = σVi(ei) together with ei and his identity to the administrator
A.

• The administrator checks if Vi has the right to vote, has not yet voted, and if the signature si is
correct. If all tests succeed, he signs di = σA(ei) and sends it back to Vi.

• Vi unblinds the signature and obtains yi = δ(di, ri). He checks the signature.

In the second phase, the actual voting takes place:

• Voter Vi sends (xi, yi) to the collector C through an anonymous channel.

• C checks the administrator’s signature and enters (xi, yi) into a list.

When all ballots are cast or when the deadline is over, the counting phase begins:

• The collector publishes the list of correct ballots.

• Vi verifies that his commitment appears on the list and sends ri together with the commitment’s
index l on the list to C using an anonymous channel.

• The collector C opens the l-th ballot using ri and publishes the vote.

3.3.2 Adding Vote Weights:

In [11] Eliasson and Zúquete discuss several possibilities on how to implement weights in this protocol:

• including the weight in the vote (which requires trusting the voter for correctness or zero-knowledge
proofs to verify the weight)

• using different keys when the vote is signed by the administrator, where each key corresponds to a
different weight

• using multiple ballots per voter, i.e. if for example voter A holds 70% and voter B 30% of the shares,
voter A sends 7 and voter B 3 ballots.

We implemented the latter variant in the Applied π-Calculus. Using a manual proof (see Appendix H for
details) we can show that

V PA|res ≈l V PB |res ⇒
n∑
i=1

vAi ∗ wi =

n∑
i=1

vBi ∗ wi. (1)

Using a python script available on our website [7] that generates all cases to check based on the number of
voters and the discrete weight distribution, we can use Proverif to then establish (2) which gives that this
variant ensures (VP).

n∑
i=1

vAi ∗ wi =

n∑
i=1

vBi ∗ wi ⇒ V PA ≈l V PB (2)
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4 Receipt-Freeness
In this section we define receipt-freeness for weighted votes. We first consider the case where only one
voter is attacked, then we define multi-voter attacks.

4.1 Single-Voter Receipt-Freeness (SRF)
We combine the idea by Delaune et al. (Def. 10) with our definition of Privacy: If two instances of a voting
protocol give the same result, they should be bisimilar even if one voter reveals his secret data in one case
or fakes it in the other.

Definition 15 (Single-Voter Receipt Freeness (SRF)). A voting protocol ensures Single-Voter Receipt Free-
ness (SRF) if for any voting processes V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . . | Al), V PB =

νñ.(V σid1σvB1 | . . . | V σidnσvBn | A1 | . . . | Al) and any number i ∈ {1, . . . , n} there exists a process V ′i
such that we have V ′\out(chci,·)i ≈l V σidiσvBi and

V PA|res ≈l V PB |res ⇒ V P ′A

[
(V σidiσvAi )chci

]
≈l V P ′B [V ′i ] ,

where V P ′A and V P ′B are like V PA and V PB , but with holes for the voter V σidi .

As for (VP), our definition is equivalent to the existing one based on swapping if the protocol ensures
(EQ), which is the case if it does not use weighted votes. Similarly to swap-based definitions, (SRF) is
stronger than (VP). The proof is analogous to the proof in the swap-based model (see Appendices C and D
for details).

4.2 Multi-Voter Receipt-Freeness (MRF)
We now generalize the idea of Receipt-Freeness to the case where multiple voters are attacked. Instead of
only considering one attacked voter i, we consider a set I of attacked voters. To be receipt-free, it should
be possible for all attacked voters to fake the receipt. Note that we assume that there is always at least one
honest voter, except for the case with only one voter.

Definition 16 (Multi-Voter Receipt Freeness (MRF)). A voting protocol ensures Multi-Voter Receipt Free-
ness (MRF) if for any voting processes V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . . | Al), V PB =

νñ.(V σid1σvB1 | . . . | V σidnσvBn | A1 | . . . | Al) and any subset I ⊂ {1, . . . , n}, I 6= {1, . . . , n} if n > 1,

then there exists processes V ′i such that we have ∀i ∈ I : V
′\out(chc,·)
i ≈l V σidiσvBi and

V PA|res ≈l V PB |res ⇒ V P ′A

[
|
i∈I

(V σidiσvAi )chci
]
≈l V P ′B

[
|
i∈I
V ′i

]
,

where V P ′A and V P ′B are like V PA and V PB , but with holes for all voters V σidi , i ∈ I .

By choosing I = {i}we directly obtain that (MRF) implies (SRF). Under certain conditions the inverse
is also true. To prove this, we define a “generalized voting process” which is like a voting process, but some
of the voters might be under attack.

Definition 17 (Generalized Voting Process). A Generalized Voting Process is a voting process V P with
variables for the voter’s processes that can either be a “normal” voter or a voter communicating with the
intruder, i.e. V P = νñ.(V1| . . . |Vn|A1| . . . |Al) where Vi ≈l V σidiσvi or V \out(chci,·)i ≈l V σidiσvi .

The next definition captures the key properties required for our proof. It expresses two modularity
conditions of a voting protocol.

Definition 18 (Modularity (Mod)). A voting protocol is modular (Mod) if it is composable and decom-
posable. A voting protocol is composable if for any generalized voting processes V PA and V PB there
exists a generalized voting process V P such that V P ≈l V PA|V PB . A voting protocol is decomposable
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if any generalized voting process V P = νñ.(V1| . . . |Vn|A1| . . . |Al) can be decomposed into processes
V Pi = νñi.(Vi|Ai1| . . . |Ail) where

V P ≈l V P1| . . . |V Pn. (3)

Imagine a protocol where in order to escape coercion the voters can claim that a certain ballot on the
bulletin board is their ballot, but it was actually prepared by some honest authority to allow the voters to
create a fake receipt. If we suppose that this ballot exists only once no matter how many voters are attacked,
it would be enough for a single voter to fake his receipt. However we cannot compose two instances with
one attacked voter each, as they would use the same fake ballot which would be noticeable for the attacker.
Hence the above definition also captures the fact that faking the receipt to escape coercion can be done by
each voter independently.

Another property we need for our proof is Correctness, i.e. the fact that if in two instances the voters’
choices are the same, they give the same result1.

Definition 19 (Correctness (Cor)). A voting protocol is correct if for any generalized voting processes
V PA = νñA.(V1,A| . . . |Vn,A|A1| . . . |Al) and V PB = νñB .(V1,B | . . . |Vn,B |A1| . . . |Al) with for any i
and X ∈ {A,B}: V \out(chci,·)i,X ≈l V σidiσvi , we have

V PA|res ≈l V PB |res (4)

It is easy to see that Correctness is implied by Equality of Votes as the identity is a permutation, hence
any protocol ensuring (EQ) ensures (Cor) (see Appendix E for the proof). Putting everything together, we
are able to prove the equivalence of (SRF) and (MRF).

Theorem 2. If a protocol is modular, correct and ensures Single-Voter Receipt Freeness, it also ensures
Multi-Voter Receipt Freeness.

The full proof is given in Appendix F. The main idea is that we can decompose an instance with
multiple attacked voters into instances with at most one attacked voter, where we can apply the single-
voter assumption, and recompose the result. Note that the assumptions (Mod), (EQ) are satisfied by many
well-known protocols (e.g. [4, 12, 25]), we illustrate this on an example.

Remark. We have to be careful when modeling protocols using a full PKI. If we model the PKI inside
the voting process, decomposing a protocol would result in two instances using different keys, which will
most probably be visible to an attacker and the bisimilarity (3) will not hold. A possible solution could be
to externalize the PKI into a context K such that K[V P ] ≈l K[V P1|V P2], which ensures that V P1 and
V P2 use the same keys. This would allow us to obtain the same result for protocols such as [22, 29].

4.3 Example: Protocol by Okamoto
The protocol by Okamoto [25] uses trapdoor commitments to achieve (SwRF), but it is not (SwCR) [5].

4.3.1 Informal Description:

The protocol is split in 3 phases. In the first phase the voter obtains a signature on a commitment to his
vote from the administrator:

• Each voter Vi chooses his vote vi and computes a trapdoor commitment xi = ξ(vi, ki, tdi) for a
random key ki and a trapdoor tdi.

• Vi blinds the commitment using a blinding function χ, a random value ri and obtains ei = χ(xi, ri).

• Vi signs ei and sends the signature si = σVi(ei) together with ei and his identity to the administrator
A.

1This does not entirely cover intuitive correctness as it will be fulfilled by protocols always giving the same result independently
from the votes, but it will fail for a protocol announcing a random result.
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• The administrator checks if Vi has the right to vote, has not yet voted, and if the signature si is
correct. If all tests succeed, he signs di = σA(ei) and sends it back to Vi.

• Vi checks the signature, unblinds di using δ and obtains yi = δ(di, ri).

In the second phase the actual voting takes place:

• Vi sends the signed trapdoor commitment yi to the collector C through an anonymous channel.

• C checks the administrator’s signature.

• Vi sends (vi, ri, xi) to the timeliness member T through an untappable anonymous channel.

When all ballots are cast or when the deadline is over, the counting phase begins:

• C publishes the list of correct ballots (xi, yi).

• T publishes a randomly shuffled list of votes vi and a zero-knowledge proof that he knows a permu-
tation π for which xπ(i) = ξ(vi, ri).

4.3.2 Analysis:

The protocol is receipt-free because the trapdoor allows a voter to open the commitment in any way to
fake a receipt for any candidate as formally shown by Delaune et al. [5]. Here we use a slightly modified
version of their model to show that it also respects (MRF)2, see Appendix I for details.

It is also easy to see that the protocol ensures (EQ) as votes are not weighted and the honest timeliness
members will publish the correct result. We can also find that it is modular by analyzing the structure of
the voting processes. In the case of n voters, we have the form

νchT.(V1| . . . |Vn |
i=1,...,n

processT),

where processT is the process executed by the timeliness member and chT is the private channel between
voters and the timeliness member. For k ∈ {1, . . . , n− 1}, a possible decomposition would be

νchT.(V1| . . . |Vk |
i=1,...,k

processT)|νchT.(Vk+1| . . . |Vn |
i=k+1,...,n

processT),

which is obviously bisimilar. It is easy to see that this also works for composing processes. This is because
each instance contains the same private channel and as many processT as voters. Thus the protocol is
modular, and using Theorem 2 we have that the protocol by Okamoto ensures (MRF).

Note that this would also hold for a variant of the protocol with weighted votes. Similarly to the first
example we could implement this using multiple ballots, and the resulting protocol ensures (SRF), (MRF),
(Cor) and (Mod), but neither (EQ) nor (SwRF).

5 Coercion-Resistance

After discussing Receipt-Freeness, we now define Coercion-Resistance. As before, we start with Single-
Voter Coercion-Resistance.

2Essentially we do not use the key distribution process as no keys are required to be secret. We model them as free variables
instead.
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5.1 Single-Voter Coercion (SCR)
In this case, we combine (VP) with (SwCR): If two instances of a voting protocol give the same result, they
should be bisimilar even if one voter interacts with the attacker in one case or only pretends to do so in the
other case. The coercion is modeled by the context C that interacts with the voter and tries to force him to
vote for a certain candidate.

Definition 20 (Single-Voter Coercion-Resistance (SCR)). A voting protocol ensures Single-Voter Coercion-
Resistance (SCR) if for any voting processes V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn |A1 | . . . |Al), V PB
= νñ.(V σid1σvB1 | . . . | V σidnσvBn |A1 | . . . |Al) and any number i ∈ {1, . . . , n} there exists a process V ′i
such that for any contextCi withCi = νc1.νc2.(_|Pi) and ñ∩fn(C) = ∅, V P ′A

[
Ci

[
(V σidiσvAi )c1,c2

]]
≈l

V P ′A

[
(V σidiσvAi )chci

]
we have Ci [V ′i ]

\out(chc,·) ≈l V σidiσvBi and

V PA|res ≈l V PB |res ⇒ V P ′A

[
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′B [Ci [V ′i ]] ,

where V P ′A and V P ′B are like V PA and V PB , but with a holes for the voter V σidi .

As above, we can easily link this definition to the existing swap-based definition using (EQ): If a
protocol respects (EQ), (SCR) and (SwCR) are equivalent. The proof is similar to the (SRF) case.

5.2 Multi-Voter Coercion (MCR)
We now discuss Multi-Voter Coercion-Resistance. To model the case where multiple voters are attacked,
we consider the set I of attacked voters.

Definition 21 (Multi-Voter Coercion-Resistance (MCR)). A voting protocol ensures Multi-Voter Coercion-
Resistance (MCR) if for any voting processes V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn |A1 | . . . |Al), V PB
= νñ.(V σid1σvB1 | . . . | V σidnσvBn |A1 | . . . |Al) and any subset I ⊂ {1, . . . , n}, I 6= {1, . . . , n} if n > 1,
there exists processes V ′i such that for any contextsCi, i ∈ I withCi = νc1.νc2.(_|Pi) and ñ∩fn(C) = ∅,

V P ′A

[
|
i∈I
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′A

[
|
i∈I

(V σidiσvAi )chci
]

we have ∀i ∈ I : Ci [V ′i ]
\out(chc,·) ≈l

V σidiσvBi and

V PA|res ≈l V PB |res ⇒ V P ′A

[
|
i∈I
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′B

[
|
i∈I
Ci [V ′i ]

]
,

where V P ′A and V P ′B are like V PA and V PB , but with holes for all voters V σidi , i ∈ I .

As for (MRF), (MCR) implies (SCR), and (MCR) resp. (SCR) is stronger than (MRF) resp. (SRF)
(for the proofs, see Appendix G). We also have equivalence between (SCR) and (MCR) under the same
assumptions as in the case of Receipt-Freeness using a similar proof.

5.3 Example: Bingo Voting
Bingo Voting was developed by Bohli et al. [4] to achieve coercion-resistance as well as individual and
universal verifiability by using a trusted random number generator (RNG) and a voting booth.

5.3.1 Informal Description:

We consider an election with k voters and l candidates. The protocol is split into three phases: The pre-
voting phase, the voting phase and the post-voting phase. In the pre-voting phase, the voting machine
generates k random values ni,j for every candidate pj . It commits to the k · l pairs (ni,j , pj) and publishes
the shuffled commitments.

In the voting phase, the voter enters the voting booth and selects the candidate he wants to vote for on
the voting machine. The RNG generates a random number r which is transmitted to the voting machine
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and displayed to the voter. The voting machine chooses for each candidate a dummy vote except for the
voter’s choice. For this candidate the random value from the RNG is used and the receipt (a list of all
candidates and the corresponding dummy or real votes) is created. Finally the voter checks that the number
displayed on the RNG corresponds to the entry of his candidate on the receipt.

In the post-voting phase the voting machine announces the result, publishes all receipts and opens the
commitments of all unused dummy votes. The machine also generates non-interactive zero-knowledge
proofs that each unopened commitment was actually used as a dummy vote in one of the receipts.

5.3.2 Analysis:

The protocol satisfies (SwRF) as the receipt contains only random numbers, and it is impossible for the
attacker to know which entry corresponds to the random value generated by the RNG [8]. It also ensures
(SwCR) as voting takes places inside a secured voting booth. This was formally proven in the DKR-model
[8], and we use the same model to show that it satisfies (MCR).

As before, it is easy to see that the protocol ensures Equality of Votes and hence Correctness as votes
are not weighted. By analyzing the structure of the voting process, we can see that the protocol also is
modular. In the case of n voters, we have the following voting process

νprivChM1 . . . νprivChMn.νprivChRM1 . . . νprivChRMn.
νprivChR1 . . . νprivChRn.(V1| . . . |Vn|M1,...,n;l|R1| . . . |Rn)

where Ri are the trusted random number generators, M1,...,n;l is the voting machine process for n voters
from 1 to n and l candidates, and privChMi, privChRMi and privChRi are the private channels between the
voter and the voting machine, the RNG and the voting machine, and the RNG and the voter respectively.
For k ∈ {1, . . . , n− 1}, this can be rewritten as

νprivChM1 . . . νprivChMk.νprivChRM1 . . . νprivChRMk.
νprivChR1 . . . νprivChRk.(V1| . . . |Vk|M1,...,k;l|R1| . . . |Rk)|
νprivChMk+1 . . . νprivChMn.νprivChRMk+1 . . . νprivChRMn.

νprivChRk+1 . . . νprivChRn.(Vk+1| . . . |Vn|Mk+1,...,n;l|Rk+1| . . . |Rn)

as M1,...,n;l ≈l M1,...,k;l|Mk+1,...,n;l. This can be easily seen from the applied π-code in Appendix J. It
is easy to see that this also works for composing processes. Hence we have all necessary conditions and
obtain that Bingo Voting ensures (MCR).

6 Conclusion

SwCR

SwRF

SwP

SCR

SRF

VP

EQ

EQ

EQ

MCR

MRF

Cor, Mod

Cor, Mod

Figure 2: Relations among the notions. A
C−→ B means that under the assumption C a

protocol ensuring A also ensures B.

We presented an intuitive definition of privacy for voting
protocols that generalizes to situations with weighted votes.
We extended the definition to include Receipt-Freeness and
Coercion-Resistance as well. We considered situations
where only one voter is under attack, and others where mul-
tiple voters are attacked. We were able to show that - un-
der the assumptions that votes are not weighted and cor-
rectly counted - the single voter case is equivalent to (SwP),
(SwRF), (SwCR) as defined by Delaune et al. [5]. More-
over, we proved that the multi-voter case is equivalent to
the single-voter case if the protocol is correct (Cor) and re-
spects a modularity condition (Mod). This condition allows
us to compose and decompose protocols, which expresses
the fact the different parts of the protocol are independent.
Figure 2 summarizes our results. Finally, we illustrated our work by analyzing two existing protocols. As
future work, we would like to translate these symbolic definitions to the computational setting.
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PAR-0 A|0 ≡ A
PAR-A A|(B|C) ≡ (A|B)|C
PAR-C A|B ≡ B|A
NEW-0 νn.0 ≡ 0
NEW-C νu.νv.A ≡ νv.νu.A
NEW-PAR A|νu.B ≡ νu.(A|B) if u /∈ fn(A) ∪ fn(b)
REPL !P ≡ P |!P
REWRITE {M/x} ≡ {N/x} if M =E N
ALIAS νx. {M/x} ≡ 0
SUBST {M/x} |A ≡ {M/x} |A {M/x}

and extended by Internal Reduction (→), the smallest relation on extended processes closed by structural
equivalence and application of evaluation contexts such that:

COMM out(a, x).P | in(a, x).Q → P | Q
THEN ifM = M then P else Q → P
ELSE ifM = N then P else Q → Q

for any ground terms such that M 6=E N

To describe the interaction of processes with the exterior, we use labeled operational semantics ( α−→) where
α can be an input or an output of a channel name or a variable of base type (i.e. “normal” values).

IN in(a, x).P
in(a,M)−−−−−→ P {M/x}

OUT-ATOM out(a, u).P
out(a,u)−−−−−→ P

OPEN-ATOM
A

out(a,u)−−−−−→ A′ u 6= a

νu.A
νu.out(a,u)−−−−−−−→ A′

SCOPE
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

Labeled transitions are not closed under the evaluation contexts. Note that a term M cannot be output
directly. Instead, we have to assign M to a variable, which can then be output. This is to model that e.g.
the output of enc(m, k) does not give the context access to m.

In our proofs we will use the following two Lemmas:

Lemma 1 ([5]). Let P be a closed plain process and ch a channel name such that ch /∈ fn(P ) ∪ bn(P ).
We have (P ch)\out(ch,·) ≈l P .

Lemma 2 ([5]). Let C1 = νũ1.(_|B1) and C2 = νũ2.(_|B2) be two evaluation contexts such that ũ1 ∩
(fv(B2) ∪ fn(B2)) = ∅ and ũ2 ∩ (fv(B1) ∪ fn(B1)) = ∅. Then we have C1[C2[A]] ≡ C2[C1[A]] for
any extended process A.

B Proof of Theorem 1
Proof. “⇒”: Suppose the protocol respects (VP). We have to show that it respects (SwP), i.e. that for any
voting process S and for all votes σvA and σvB we have

V PA := S′ [V σidAσvA |V σidBσvB ] ≈l S′ [V σidAσvB |V σidBσvA ] =: V PB
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where S′ is like S but with a hole for two voters. Obviously the votes on the right hand side are a permu-
tation of the votes of the left hand side and as the protocol ensures Equality of Votes we have

V PA|res ≈l V PB |res

As the protocol respects Vote-Privacy, we conclude

V PA ≈l V PB

“⇐”: Suppose the protocol respects (SwP) and we want to show that it respects (VP), i.e. for any
voting process V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . . | Al) and V PB = νñ.(V σid1σvB1 | . . . |
V σidnσvBn | A1 | . . . | Al) we have

V PA|res ≈l V PB |res ⇒ V PA ≈l V PB

Suppose V PA|res ≈l V PB |res. As the protocol respects (EQ), we know that there exists a permutation π
such that ∀i : σvAi = σvB

π(i)
. Using the fact that Swap-Privacy allows us to permute any two votes and that

any permutation can be expressed as a sequence of simple permutations, we obtain V PA ≈l V PB .

C Proof of “(SRF) is equivalent to (SwRF) if (EQ) holds”
Proof. “⇒”: Suppose a protocol ensuring (SRF). We will now show that the protocol ensures (SwRF), i.e.
for any voting process S and for all votes σvA and σvB there exists a process V ′i such that

V ′\out(chci,·) ≈l V σidAσvB

and
S′
[
(V σidAσvA)chc|V σidBσvB

]
≈l S′ [V ′|V σidBσvA ]

where S′ is like S but with a hole for two voters. Consider

V PA := S′ [V σidAσvA |V σidBσvB ]
V PB := S′ [V σidAσvB |V σidBσvA ]

Obviously the votes on both sides are a permutation of each other, thus we we have V PA|res ≈l V PB |res
(by (EQ)). We can apply (SRF) to obtain for any i the existence of a process V ′i such that

V
′\out(chci,·)
i ≈l V σidiσvBi

and
V PA|res ≈l V PB |res ⇒ V P ′A

[
(V σidiσvAi )chci

]
≈l V P ′B [V ′i ]

We choose i = A and obtain the desired property.
“⇐”: Suppose a protocol ensuring (SwRF) and we want to show (SRF), i.e. for any voting processes

V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . . | Al), V PB = νñ.(V σid1σvB1 | . . . | V σidnσvBn | A1 |
. . . | Al) and any number i ∈ {1, . . . , n} there exists a process V ′i such that we have

V
′\out(chci,·)
i ≈l V σidiσvBi

and
V PA|res ≈l V PB |res ⇒ V P ′A

[
(V σidiσvAi )chci

]
≈l V P ′B [V ′i ]

where V P ′A and V P ′B are like V PA and V PB , but with holes for the voter V σidi . As we suppose (EQ),
the votes on the left are a permutation of the votes on the right. (SwRF) allows us the swap the vote of the
targeted voter i with any other voter’s vote. As (SwRF) implies (SwP) (cf. [5]), we can also swap the votes
of all other voters if necessary, which gives the desired result.
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D Proof of “(SRF) implies (VP)”

Proof. The proof is similar to the proof of (SwRF) implies (SwP) in the DKR-model [5]:
By hypothesis there is a closed plain process so that

V
′\out(chci,·)
i ≈l V σidiσvBi

and
V PA|res ≈l V PB |res ⇒ V P ′A

[
(V σidiσvAi )chci

]
≈l V P ′B [V ′i ]

where V P ′A and V P ′B are like V PA and V PB , but with holes for the voter V σidi . We suppose V PA|res ≈l
V PB |res. Then we can apply the context νchci.( _ | !in(chci, x)) on both sides, which gives

V P ′A

[
(V σidiσvAi )chci

]\out(chci,·)
≈l V P ′B [V ′i ]

\out(chci,·)

By using Lemma 2 we obtain

V P ′A

[
(V σidiσvAi )chci

]\out(chci,·)
≡ V P ′A

[(
V σidiσ

chci
vAi

)\out(chci,·)]
and

V P ′B [V ′i ]
\out(chci,·) ≡ V P ′B

[
V
′\out(chci,·)
i

]
We can now apply Lemma 1, (D) and use the fact that labeled bisimilarity is closed under structural equiv-
alence and conclude

V PA = V P ′A

[
V σidiσvAi

]
≈l V P ′B

[
V σidiσvBi

]
= V PB

E Proof of “(EQ) implies (Cor)”

Lemma 3. If a protocol respects Equality of Votes, it also respects Correctness.

Proof. We have to show that for any generalized voting processes V PA = νñA.(V1,A| . . . |Vn,A|A1| . . . |Al)
and V PB = νñB .(V1,B | . . . |Vn,B |A1| . . . |Al) with for any i andX ∈ {A,B}: V \out(chci,·)i,X ≈l V σidiσvi ,
we have

V PA|res ≈l V PB |res (5)

To show this, we will rewrite V PA using Lemma 2:

V P
\out(chc1,·)...\out(chcn,·)
A

= (νñA.(V1,A| . . . |Vn,A|A1| . . . |Al))\out(chc1,·)...\out(chcn,·)

≡ (νñA.(V
\out(chc1,·)
1,A | . . . |V \out(chcn,·)n,A |A1| . . . |Al))

≈l (νñA.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Al))

(6)

We apply the same operations on V PB and obtain

V P
\out(chc1,·)...\out(chcn,·)
B ≈l νñB .(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Al) (7)

Hence we have two voting processes where the votes are a permutation of each other and obtain the result
V PA|res ≈l V PB |res directly using (EQ).
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F Proof of Theorem 2
For this proof we need the following lemma.

Lemma 4 ([10]). For any finite processes (i.e. no “!”) A, B, C and D with C ≈l D we have

A|C ≈l B|D ⇒ A ≈l B (8)

Note that there are no private channels between A and C or B and D respectively.

Proof. We want to prove that the protocol ensures Multi-Voter Receipt Freeness, i.e. that for any V PA =
νñ.(V σid1σvA1 | . . . |V σidnσvAn |A1| . . . |Al), V PB = νñ.(V σid1σvB1 | . . . |V σidnσvBn |A1| . . . |Al) and any
subset I ⊂ {1, . . . , n} there exists processes V ′i such that we have

∀i ∈ I : V
′\out(chci,·)
i ≈l V σidiσvBi (9)

and

V PA|res ≈l V PB |res ⇒ V P ′A

[
|
i∈I
V σidiσ

chci
vAi

]
≈l V P ′B

[
|
i∈I
V ′i

]
(10)

where V P ′A and V P ′B are like V PA and V PB , but with holes for all voters V σidi , i ∈ I .
We suppose V PA|res ≈l V PB |res and we will show that there exists processes V ′i such that we have

(9) and

V P ′A

[
|
i∈I
V σidiσ

chci
vAi

]
|

i≤n−1
V PA ≈l V P ′B

[
|
i∈I
V ′i

]
|

i≤n−1
V PB (11)

which gives the desired result using Lemma 4 and Vote-Privacy. The idea is that adding other voting
processes allows us to decompose, mix and compose the processes so that we can apply Single-Voter
Receipt Freeness and Vote-Privacy on the individual instances.

We start by decomposing the left side of the bisimilarity and recompose the processes to have |I|
instances with single-voter coercion and n− |I| simple instances:

V P ′A

[
|
i∈I
V σidiσ

chci
vAi

]
|

i≤n−1
V PA

≈l |
i∈I
V P ′A,i

[
V σidiσ

chci
vAi

]
|
i 6∈I
V P ′A,i

[
V σidiσvAi

]
|

i≤n−1

(
|

j≤n
V P ′A,i,j

[
V σidiσvAi

])
≈l |

i∈I
V P ′′A,i

[
V σidiσ

chci
vAi

]
|
i 6∈I
V P ′′′A,i

(12)

In the first step we break the instances down to a single voter each, i.e. V P ′A,i and V P ′A,i,j are voting
processes with a hole for the one and only voter. In the next step, we assemble the voters and instances in
such a way that we obtain complete instances (i.e. containing voters 1 to n) with at most one attacked voter
per instance.

We apply the same transformations on the right side and obtain:

V P ′B

[
|
i∈I
V ′i

]
|

i≤n−1
V PB

≈l |
i∈I
V P ′B,i [V ′i ] |

i6∈I
V P ′B,i

[
V σidiσvBi

]
|

i≤n−1

(
|

j≤n
V P ′B,i,j

[
V σidiσvBi

])
≈l |

i∈I
V P ′′B,i [V ′i ] |

i6∈I
V P ′′′B,i

(13)

Using Correctness (Definition 19), we have for all i

V P ′′A,i

[
V σidiσ

chci
vAi

]
|res = V P ′′B,i [V ′i ] |res (14)
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and
V P ′′′A,i|res = V P ′′′B,i|res (15)

Now we can apply Single-Voter Receipt Freeness on the left side, i.e. we have for any i ∈ {1, . . . , n} there
exists a process V ′i such that

V
′\out(chc,·)
i ≈l V σidiσvBi (16)

and
V PA|res ≈l V PB |res ⇒ V P ′A

[
V σidiσ

chci
vAi

]
≈l V P ′B [V ′i ] (17)

Using this and Vote-Privacy we can rewrite (12) as follows

|
i∈I
V P ′′A,i

[
V σidiσ

chci
vAi

]
|
i 6∈I
V P ′′′A,i

≈l |
i∈I
V P ′′B,i [V ′i ] |

i 6∈I
V P ′′′A,i

≈l |
i∈I
V P ′′B,i [V ′i ] |

i 6∈I
V P ′′′B,i

(18)

which gives (11) using (13).

G Proof of “(MCR) implies (MRF)” and “(SCR) implies (SRF)”
Proof. We will only consider the Multi-Voter case, the Single-Voter case follows directly.

Let Ci be evaluation contexts such that Ci = νc1.νc2.(_|Pi) for some plain processes Pi which fulfill

V P ′A

[
|
i∈I
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′A

[
|
i∈I

(V σidiσvAi )chci
]

Note that these Ci can be constructed directly from the vote process V . By hypothesis we know that there
are closed plain process V ′i such that

∀i ∈ I : Ci [V ′i ]
\out(chc,·) ≈l V σidiσvBi

and

V PA|res ≈l V PB |res ⇒ V P ′A

[
|
i∈I
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′B

[
|
i∈I
Ci [V ′i ]

]
where V P ′A and V P ′B are like V PA and V PB , but with holes for all voters V σidi , i ∈ I . We have to find
other processes V ′′i such that

∀i ∈ I : V
′\out(chc,·)
i ≈l V σidiσvBi

and

V PA|res ≈l V PB |res ⇒ V P ′A

[
|
i∈I

(V σidiσvAi )chci
]
≈l V P ′B

[
|
i∈I
V ′i

]
Let V ′′i = Ci[V

′
i ]. This directly fulfills the first requirement. For the second equation, we suppose

V PA|res ≈l V PB |res. We can then use the condition on Ci and obtain

V P ′A

[
|
i∈I
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′A

[
|
i∈I

(V σidiσvAi )chci
]

The second hypothesis gives

V P ′A

[
|
i∈I
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′B

[
|
i∈I
Ci [V ′i ]

]
As labeled bisimilarity is transitive, we can conclude

V P ′A

[
|
i∈I

(V σidiσvAi )chci
]
≈l V P ′B

[
|
i∈I
Ci [V ′i ]

]
which gives us the desired result for V ′′i = Ci[V

′
i ].
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processA =
i n ( ch1 , m1 ) .
l e t ( pubkeyv , s i g ) = m1 i n
i f pubkeyv = pubkv t h e n
o u t ( ch2 , s i g n ( c h e c k s i g n ( s i g , pubkv ) , ska ) )

Listing 1: The administrator process

p r o c e s s C =
synch 1 .
i n ( ch3 , (m3 , m4 ) ) .
i f c h e c k s i g n (m4 , pka ) = m3 t h e n
ν l . o u t ( ch4 , ( l , m3 , m4 ) ) .
i n ( ch5 , (= l , r and ) ) .
l e t voteV = open (m3 , r and ) i n
o u t ( r e s , voteV )

Listing 2: The collector process

H FOO with weighted votes
We use the following model, based on the following equational theory:

open(commit(m, r), r) = m
checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m, r), r) = m
unblind(sign(blind(m, r), sk), r) = sign(m, sk)

The voting process The voter’s process (Process 3) receives his private and the administrator’s public
key; then he votes following the protocol described informally in Section 3.3.1.

The administrator The administrator (Process 1) receives his private key and the public key of a legit-
imate voter. When receives the blinded commitment, he checks the signature, signs, and sends the result
back.

The collector The collector (Process 2) receives the administrator’s public key, which he then uses to
verify the signature on incoming commitments. If the signature is correct, he creates a new bounded name
l (the number in the list) and sends it together with the signed commitment back to the voter. The voter
then reveals his randomness, which the collector uses to open the commitment.

Proof of (1). To show that (1) holds, we use a proof by contradiction. Suppose

n∑
i=1

vAi ∗ wi 6=
n∑
i=1

vBi ∗ wi (19)

We will show that this implies V PA 6≈l V PB by showing that there exists an execution which allows the
attacker to see for all i wi times a message vXi on channel res. Hence he can compare messages and
distinguish V PA and V PB .

Consider two processes

V PA = |
1≤i≤n

(processV
{
vAi /v

}
{wi/w}) |

1≤i≤n
( |
1≤k≤wi

processC)

V PB = |
1≤i≤n

(processV
{
vBi /v

}
{wi/w}) |

1≤i≤n
( |
1≤k≤wi

processC)
(20)
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processV =
f o r i = 1 t o w do
ν b l i n d e r i . ν r i .
l e t commitedvote i = commit ( v , r i ) i n
l e t b l i n d e d v o t e i = b l i n d ( commitedvote i , b l i n d e r i ) i n
o u t ( ch1 , ( pk ( skv ) , s i g n ( b l i n d e d v o t e i , skv ) ) ) .

e n d f o r .
f o r i = 1 t o w do

i n ( ch2 , mi ) .
l e t r e s u l t i = c h e c k s i g n (mi , pubka ) i n
i f r e s u l t i = b l i n d e d v o t e i t h e n
l e t s i g n e d v o t e i = u n b l i n d (mi , b l i n d e r i ) i n

e n d f o r .
sync 1 .
f o r i = 1 t o w do

o u t ( ch3 , ( commitedvote i , s i g n e d v o t e i ) ) .
i n ( ch4 , ( l , = commitedvote i , = s i g n e d v o t e i ) ) .

e n d f o r .
sync 2 .
f o r i = 1 t o w do

o u t ( ch5 , ( l i , r i ) ) .
e n d f o r

Listing 3: The voting process

In both cases, processC cannot synchronize and is blocked. The voter processes will output wi times
(pk(skv), sign(blindedvotei, skv))) (their blinded and signed vote) on channel ch1. The intruder can
then reply with the correctly signed votes, which allows the voters to successfully verify and unblind the
signed ballots. Then they will synchronize and output the (commitedvotei, signedvotei) on channel
ch3. The processC processes can then receive the messages, verify the signatures and output (l, m3, m4),
i.e. (l, commitedvotei, signedvotei) on channel ch4. The voters will then verify if the messages
correspond to their votes, synchronize and reveal the random values of the commitments. The collectors
can then open the commitments and will publish all votes on channel res. Hence there is an execution that
reveals all votes and their weights in clear to the intruder, hence using the hypothesis on the distinctiveness
of the result, V PA 6≈l V PB .

I Protocol by Okamoto
We use the following equational theory:

checksign(sign(m, sk), pk(sk)) = m
unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), sk), r) = sign(m, sk)
open(tdcommit(m, r, td), r) = m

tdcommit(m1, r, td) = tdcommit(m2, f(m1, r, td,m2), td)

The voter The voter process (Process 4) receives the necessary keys and follows the nearly the same
protocol as in the case of FOO, but he has to reveal the data necessary to open the commitment over a
private channel to the timeliness member T .

The administrator The administrator is exactly the same as given in Section 3.3.1 (Process 1).
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processV =
ν b l i n d e r . ν r . ν t d .
l e t commitedvote = tdcommit ( v , r , t d ) i n
l e t b l i n d e d v o t e = b l i n d ( commitedvote , b l i n d e r ) i n
o u t ( ch1 , ( pk ( skv ) , s i g n ( b l i n d e d v o t e , skv ) ) ) .
i n ( ch2 , m2 ) .
l e t r e s u l t = c h e c k s i g n (m2 , pka ) i n
i f r e s u l t = b l i n d e d v o t e t h e n
l e t s i g n e d v o t e = u n b l i n d (m2 , b l i n d e r ) i n
sync 1 .
o u t ( ch3 , ( commitedvote , s i g n e d v o t e ) ) .
o u t ( chT , ( v , r , commitedvote ) )

Listing 4: The voting process

p rocessA =
i n ( ch1 , m1 ) .
l e t ( pubkeyv , s i g ) = m1 i n
i f pubkeyv = pubkv t h e n
o u t ( ch2 , s i g n ( c h e c k s i g n ( s i g , pubkv ) , ska ) )

Listing 5: The administrator process

p r o c e s s T =
sync 1 .
(∗ r e c e i v i n g t h e commitment ∗ )
i n ( chT , ( vt , r t , x t ) ) .
sync 2 .
i f open ( xt , r t ) = v t t h e n o u t ( r e s , v t )

Listing 6: The timeliness process
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The timeliness member The timeliness process (Process 6) receives the vote, the corresponding commit-
ment and the randomness over a private channel. He verifies the correctness of the data and then publishes
the vote.

Lemma 5. The protocol by Okamoto ensures Equality of Votes.

Proof. Suppose we have two voting processes V PA and V PB and there exists a permutation π : ∀i :
σvBi = σvA

π(i)
. We have to show that V PA|res ≈l V PB |res. As the protocol ensures Swap-Privacy and

we can write any permutation as a sequence of simple permutations, we have V PA ≈l V PB , which gives
V PA|res ≈l V PB |res.

Suppose we have two voting processes V PA and V PB with V PA|res ≈l V PB |res. Assume that there
exists no permutation π such that ∀i : σvBi = σvA

π(i)
, hence there exists a vote v such that the number vAi

with vAi = v is different of the number of vBi with vBi = v, i.e.∑
1≤i≤n,vAi =v

1 6=
∑

1≤i≤n,vBi =v

1 (21)

We show that this allows an attacker to distinguish V PA|res and V PB |res which contradicts V PA|res ≈l
V PB |res. Consider the following voting processes:

V PA = νchT.

(
|

1≤i≤n

(
(processV

{
vAi /v

}
σidi) |processT

))

V PB = νchT.

(
|

1≤i≤n

(
(processV

{
vBi /v

}
σidi) |processT

)) (22)

In both cases, processT cannot synchronize and is blocked. The voter processes will output (pk(skv),
sign(blindedvote, skv))) (their blinded and signed vote) on channel ch1. The intruder can then reply
with the correctly signed votes, which allows the voters to successfully verify and unblind the signed
ballots. Then they will synchronize and output the (commitedvote, signedvote) on channel ch3, and
output (v, r, commitedvote) on the private channel chT with the timeliness member. The processT

processes can then receive the messages, synchronize, verify the signatures and output the votes vt on
channel res. Hence there is an execution that reveals all votes in clear to the intruder, thus he can count
the number of occurrences of each choice which gives V PA 6≈l V PB .

Lemma 6. The protocol by Okamoto ensures Correctness.

Proof. By Lemmas 3 and 5.

Lemma 7. The protocol by Okamoto ensures Modularity.

Proof. We analyze the structure of the voting processes. In the case of n voters, we have the form

νchT.(V1| . . . |Vn |
i=1,...,n

processT), (23)

where processT is the process executed by the timeliness member and chT is the private channel between
voters and the timeliness member. For k ∈ {1, . . . , n− 1}, a possible decomposition would be

νchT.(V1| . . . |Vk |
i=1,...,k

processT)|νchT.(Vk+1| . . . |Vn |
i=k+1,...,n

processT), (24)

which would be syntactically equivalent except for the private channel chT, which is now decomposed
into two channels. This affects only one transition, namely the communication between the voter3 and the
timeliness member when the voter reveals his random value. Consider a communication between a Vi and

3Here we consider generalized voting processes, however due to the condition on the Vi’s we know that there is exactly one
message on this channel.
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processRNG =
(∗ g e n e r a t e random number ∗ )
ν r .
(∗ o u t p u t t o v o t i n g machine ∗ )
o u t ( privChM , r ) .
(∗ o u t p u t t o v o t e r ∗ )
o u t ( privChV , r )

Listing 7: The random number generator (RNG)

processV =
(∗ v o t i n g ∗ )
o u t ( privChM , v ) .
(∗ r e c e i p t ∗ )
f o r ( i = 1 t o l )
i n ( privChM , r e c e i p t i )
(∗ random va lue , t o v e r i f y r e c e i p t ∗ )
i n ( privChRNG , r )

Listing 8: The voting process

one processT on the left side: This can obviously be matched by the same transition on the right, and vice
versa (as the processT are all the same, it is not important which one of them is chosen).

Hence we can decompose any process into two processes, and by applying this recursively, into n
processes as in the definition. Similarly we can apply the equation the other way round and obtain com-
posability.

J Bingo Voting

We use the following equational theory:

open(commit(m, r), r) = m

To model the voting booth, we use private channels between the voting machine and the voter, the voter
and the RNG, and between the RNG and the voting machine. To achieve better readability we use
the macros for and parfor (similar to [24]) where e.g. for (i = 1 to 2) out(ch, i) corresponds to
out(ch, 1).out(ch, 2) and parfor (i = 1 to 2) out(ch, i) corresponds to (out(ch, 1) | out(ch, 2)).
Additionally we use a function choose where

choose(pi, pj , x, y) =

{
x if i = j

y else

Our model depends on two parameters: k (the number of voters) and l (the number of candidates).

The RNG process The RNG (Process 7) generates a random number and sends it to the voting machine
and the voter over private channels.

The voter process The voter (Process 8) sends his vote to the voting machine, receives the random
number from the RNG and the receipt.
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processM ’ = i n ( privChV , v ) .
i n ( privChR , r ) .
f o r ( j = 1 t o l )

l e t r e c e i p t j = c h o o s e _ l ( v , r , ni,j ) i n
o u t ( privChV , r e c e i p t j ) ;

synch1 .
(∗ o u t p u t r e s u l t ∗ )
o u t ( r e s , v )
(∗ o u t p u t r e c e i p t s ∗ )
f o r ( j = 1 t o l )

o u t ( rec , r e c e i p t j )
(∗ o u t p u t unused dummy v o t e s ∗ )
p a r f o r ( j = 1 t o l )

i f vi 6= pj t h e n o u t ( dum , ( ( ni,j , pj ) ,
commit ( ( ni,j , pj ) , r i,j ) , r i,j ) )

processM =
(∗ p r e p a r e dummy v o t e s ∗ )
f o r ( i = 1 t o k )

f o r ( j = 1 t o l )
νni,j . ν r i,j .

p a r f o r ( i = 1 t o k )
p a r f o r ( j = 1 t o l )

o u t ( ch , commit ( ( ni,j , pj ) , r i,j ) )
(∗ v o t i n g ∗ )
l e t privChV = privChMi i n
l e t privChR = privChRMi i n processM ’

Listing 9: The voting machine
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The voting machine process The voting machine (Process 9) generates the dummy votes and publishes
the corresponding commitments. Then k subprocesses interact with the voters, i.e. create the receipts.
After all voting has been done, they publish the result, the receipts and the unused dummies in random
order.

Lemma 8. Bingo Voting ensures Equality of Votes.

Proof. Suppose we have two voting processes V PA and V PB and there exists a permutation π : ∀i :
σvBi = σvA

π(i)
. We have to show that V PA|res ≈l V PB |res. As the protocol ensures Swap-Privacy and

we can write any permutation as a sequence of simple permutations, we have V PA ≈l V PB , which gives
V PA|res ≈l V PB |res.

Suppose we have two voting processes V PA and V PB with V PA|res ≈l V PB |res. Assume that there
exists no permutation π such that ∀i : σvBi = σvA

π(i)
, hence there exists a vote v such that the number vAi

with vAi = v is different of the number of vBi with vBi = v, i.e.∑
1≤i≤n,vAi =v

1 6=
∑

1≤i≤n,vBi =v

1 (25)

We show that this allows an attacker to distinguish V PA|res and V PB |res which contradicts V PA|res ≈l
V PB |res. Consider the following voting processes:

V PA = νprivChM1 . . . νprivChMn.νprivChRM1 . . . νprivChRMn.

νprivChR1 . . . νprivChRn.

(
processM {n/k}

|
1≤i≤n

(
processV

{
vAi /v

}
σidi {privChMi/privChM} {privChRi/privChRNG}

)
|

1≤i≤n
(processRNG {privChRMi/privChM} {privChRi/privChV})

)

and

V PB = νprivChM1 . . . νprivChMn.νprivChRM1 . . . νprivChRMn.

νprivChR1 . . . νprivChRn.

(
processM {n/k}

|
1≤i≤n

(
processV

{
vBi /v

}
σidi {privChMi/privChM} {privChRi/privChRNG}

)
|

1≤i≤n
(processRNG {privChRMi/privChM} {privChRi/privChV})

)

In both cases the voting machine processM will generate the commitments commit((ni,j, pj), ri,j)
and publish them on channel ch. The random generators processRNG will generate a fresh nonce and
output it on the private channels to the voter and the voting machine. The voter processes will output his
vote v on channel privChMi. The voting machine will receive both and output the receipts receiptj to
the voters on channel PrivChMi. After all votes have been received and the receipts have been send, the
voting machine can synchronize and output the result, i.e. the votes v in clear on channel res. Hence there
is an execution that reveals all votes in clear to the intruder, thus he can count the number of occurrences
of each choice which gives V PA 6≈l V PB .

Lemma 9. Bingo Voting ensures Correctness.
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Proof. By Lemmas 3 and 8.

Lemma 10. Bingo Voting ensures Modularity.

Proof. By analyzing the structure of the voting process, we can see that the protocol also is modular. In
the case of n voters, we have the following voting process

νprivChM1 . . . νprivChMn.νprivChRM1 . . . νprivChRMn.
νprivChR1 . . . νprivChRn.(V1| . . . |Vn|M1,...,n;l|R1| . . . |Rn)

where Ri are the trusted random number generators, M1,...,n;l is the voting machine process for n voters
from 1 to n and l candidates, and privChMi, privChRMi and privChRi are the private channels between the
voter and the voting machine, the RNG and the voting machine, and the RNG and the voter respectively.
For k ∈ {1, . . . , n− 1}, this can be rewritten using Lemma 2 as

νprivChM1 . . . νprivChMk.νprivChRM1 . . . νprivChRMk.
νprivChR1 . . . νprivChRk.(V1| . . . |Vk|M1,...,k;l|R1| . . . |Rk)|
νprivChMk+1 . . . νprivChMn.νprivChRMk+1 . . . νprivChRMn.

νprivChRk+1 . . . νprivChRn.(Vk+1| . . . |Vn|Mk+1,...,n;l|Rk+1| . . . |Rn)

as M1,...,n;l ≈l M1,...,k;l|Mk+1,...,n;l. This can be easily seen from the applied pi code (Process 9).
Hence we can decompose any process into two processes, and by applying this recursively, into n

processes as in the definition. Similarly we can apply the equation the other way round and obtain com-
posability.
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