

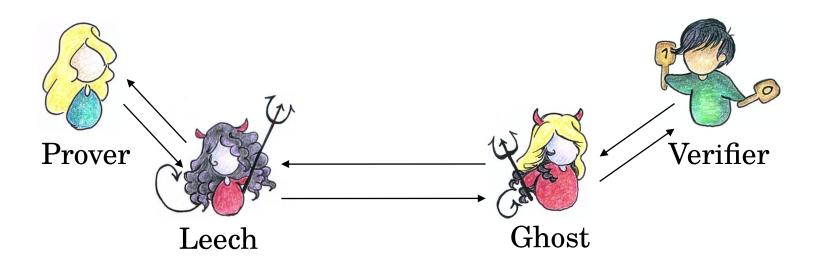
TERRORIST-FRAUD RESISTANT, EXTRACTOR FREE, ANONYMOUS, DISTANCE BOUNDING PROTOCOL

G. AVOINE (INSA/IRISA RENNES)

WITH X. BULTEL, D.GÉRAULT, P. LAFOURCADE (LIMOS/UCA, FRANCE),

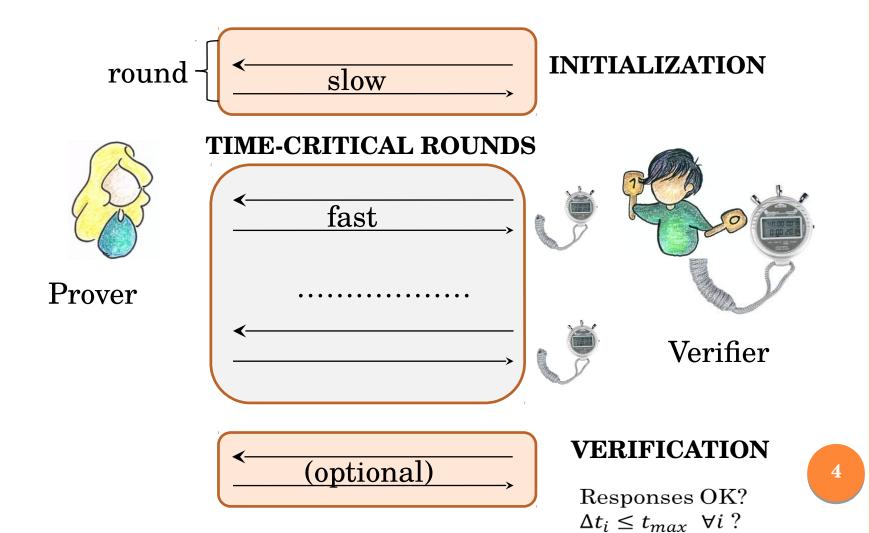
S. GAMBS (UQAM, CANADA)

C. ONETE (UR1, FRANCE)

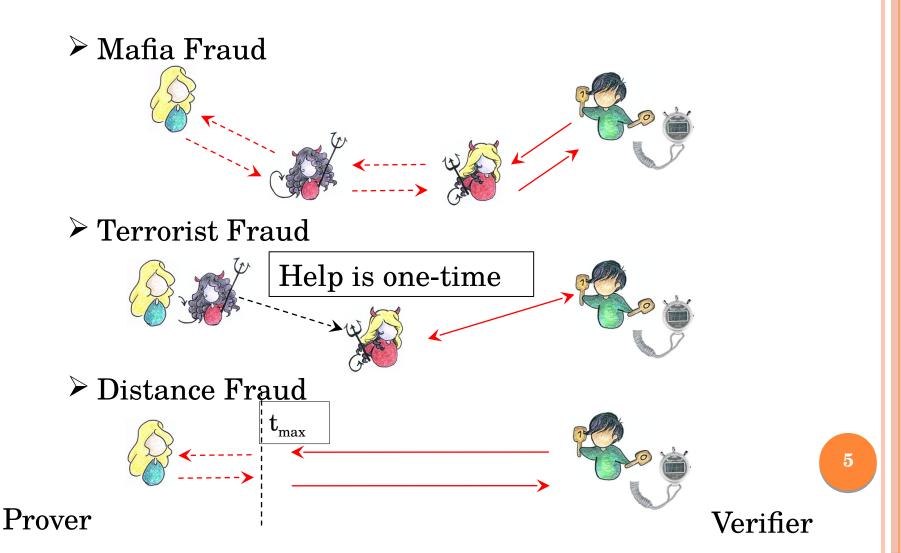

J.-M. ROBERT (ETS MONTRÉAL, CANADA)

CONTENTS

- Background
- Terrorist-Fraud Resistant Protocol (Generic)
- Instantiations (3 cases)
- Conclusions


DISTANCE-BOUNDING AUTHENTICATION

An authentication protocol that thwarts relay attacks

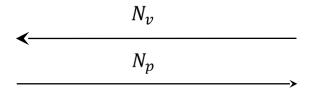


- Relay attacks exploit two main weaknesses:
 - Prover device automatically accepts to run protocol
 - The verifier cannot tell how far the response comes from

DB PROTOCOL STRUCTURE

ATTACKS DB SETS OUT TO PREVENT

THE TERRORIST-FRAUD CONTROVERSY


- Terrorist fraud (TF) is a powerful insider attack
 - The prover helps the adversary authenticate
 - Trivial attack: physically give A the prover device!
 - We cannot prevent this trivial attack
 - However, a good question is what we can prevent
- Several flavours of TF-resistance exist:
 - Most guarantee that the P's aid gives A secret key
 - P's aid gives A no ulterior advantage
 - Yet others: P's aid can be traced back to P

THE KEY-LEAKING METHOD

Prover

К

Compute:

$$P^{0} = PRF_{K}(N_{p}|N_{v})$$

$$P^{1} = P^{0} \oplus K$$

For
$$i = 1$$
 to n

 c_i

$$P_i^{c_i}$$

Verifier

$$c_i \leftarrow_{\$} \{0,1\}$$

Accept iff all $P_i^{c_i}$ verify $\& \Delta t_i \le t_{max}$

- \triangleright A needs both P^0 , P^1 to respond
- \triangleright If both P^0 , P^1 are given, A learns K

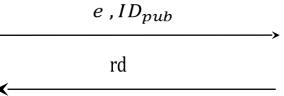
NEW PROTOCOL: TREAD

New paradigm to construct Terorist Fraud Resistant distance bounding

Principle:

- Achieve Terrorist Fraud Resistance by replay:
 - Successful A will replay a successful session to win
- This means verifier randomness not input to PRF
- Prover authenticates by a signature/MAC
 - And in time-critical rounds by knowledge of *ephemeral* key
- Optional anonymity when using group signatures

GENERIC TREAD


Prover

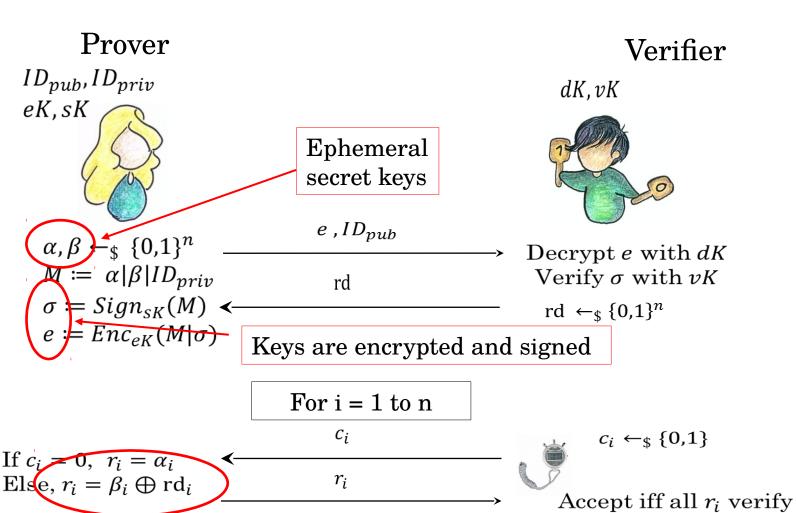
 ID_{pub}, ID_{priv}

$$\alpha, \beta \leftarrow_{\$} \{0,1\}^{n} \longrightarrow M := \alpha |\beta| ID_{priv}$$

$$\sigma := Sign_{SK}(M) \leftarrow e := Enc_{eK}(M|\sigma)$$

Verifier

dK, vK


Decrypt e with dKVerify σ with vKrd $\leftarrow_{\$} \{0,1\}^n$

If
$$c_i = 0$$
, $r_i = \alpha_i$
Else, $r_i = \beta_i \oplus rd_i$

$$c_i \leftarrow_{\$} \{0,1\}$$

Accept iff all r_i verify $\& \Delta t_i \le t_{max}$

GENERIC TREAD

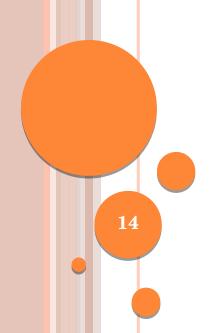
Responses reveal keys

10

& $\Delta t_i \leq t_{max}$

THE SECURITY OF TREAD

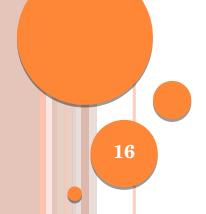
- Mafia-fraud resistance
 - Prover & verifier are honest
 - Attacker must produce responses for fresh challenges
 - Responses require knowledge of α_i , β_i
 - Best strategy: reuse a previously seen e (and signature σ)
 - However, A only sees at most 1 honest session for e
 - \circ ... and thus r_i values only for one set of challenges
- Distance-fraud resistance
 - Prover is malicious but far
 - V chooses rd after P has sent α , β
 - Hence, P cannot predict what will be "convenient" α , β


TERRORIST-FRAUD RESISTANCE

- SimTF definition: game in 2 phases
- > First, terrorist A helped by malicious P
 - The attacker authenticates w.p. p_A
- > Then, Simulator inherits state of A
 - Denote Sim's winning probability by p_{Sim}
- ▶ Protocol is TFR iff. $p_{Sim} \ge p_A$
- > TREAD's TFR:
 - Once A authenticates with P's help...
 - ... Sim inherits A's full state
 - ... and just replays what it got

INSTANTIATIONS OF TREAD

- Fast symmetric-key instantiation
 - Use IND-CPA symmetric encryption (so eK = dK)
 - Use EUF-CMA mac scheme (so sK = vK)
 - $ID_{priv} = null$
- Privacy with PKE
 - IND-CCA2 public-key encryption, EUF-CMA signatures
 - $ID_{pub} = null$
 - This provides privacy w.r.t. MiM attackers (but not V)
- Anonymity with PKE
 - Use secure group-signatures, $ID_{pub} = GID$, $ID_{priv} = null$
 - This provides privacy w.r.t. curious verifiers


CONCLUSIONS

NEW APPROACH IN DISTANCE BOUNDING

- TREAD is provably-secure
 - Generic approach to designing TFR distance bounding
 - Rely on tuple of temporary keys
 - Authentication by signature/MAC
 - Terrorist Fraud Resistance proof relies on replaying of information
- Three instantiations
 - Symmetric-key: fast, but no privacy
 - PKE with signatures: needs public keys, privacy w.r.t. MiM
 - PKE with group signatures: anonymity (even w.r.t. V)

THANKS! QUESTIONS?

