Vote-Independence: A Powerful Privacy Notion for Voting Protocols

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Université Grenoble 1, CNRS, Verimag

FPS 2011: May 13, 2011

< 47 ▶ <

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

Plan

Introduction

- What is electronic voting?
- An Attack on Privacy in Helios

(2) Intuitive Definitions

- Privacy
- Vote-Independence

3 Formal Definitions

4 Analysis and Case Studies

5 Conclusion

Introduction

Intuitive Definitions Formal Definitions Analysis and Case Studies Conclusion

What is electronic voting? An Attack on Privacy in Helios

< 🗇 🕨 🖌 🚍 🕨

Plan

Introduction

- What is electronic voting?
- An Attack on Privacy in Helios

- Privacy
- Vote-Independence
- Analysis and Case Studies

Introduction

Intuitive Definitions Formal Definitions Analysis and Case Studies Conclusion

What is electronic voting? An Attack on Privacy in Helios

< 🗇 🕨 🖌 🚍 🕨

Plan

What is electronic voting? An Attack on Privacy in Helios

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

= nan

Voting machines are not a recent technology

They have been in use in the US for over 100 years!

What is electronic voting? An Attack on Privacy in Helios

Electronic voting machines...

... are used all over the world

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Vote-Independence

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○

Introduction

Intuitive Definitions Formal Definitions Analysis and Case Studies Conclusion

What is electronic voting? An Attack on Privacy in Helios

Internet voting

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Vote-Independence

What is electronic voting? An Attack on Privacy in Helios

Security Requirements

Fairness

Individual Verifiability

Eligibility

Universal Verifiability

Security Requirements

Privacy

Robustness

Receipt-Freeness

▲冊♪ ▲屋♪ ▲屋♪

三日 のへの

Coercion-Resistance

What is electronic voting? An Attack on Privacy in Helios

Security Requirements

Individual Verifiability

Eligibility

Universal Verifiability

- 同下 - 三下 - 三日

Security Requirements

Introduction

Intuitive Definitions Formal Definitions Analysis and Case Studies Conclusion

What is electronic voting? An Attack on Privacy in Helios

< 🗇 🕨 🖌 🚍 🕨

-

Plan

Introduction

- What is electronic voting?
- An Attack on Privacy in Helios

- Privacy
- Vote-Independence
- Analysis and Case Studies

What is electronic voting? An Attack on Privacy in Helios

Attack on Privacy in Helios [?]

Helios [?] is a web based open-source voting system based on homomorphic encryption.

Server

・ 同 ト ・ ヨ ト ・ ヨ ト

What is electronic voting? An Attack on Privacy in Helios

Attack on Privacy in Helios [?]

Helios [?] is a web based open-source voting system based on homomorphic encryption.

・ 同 ト ・ ヨ ト ・ ヨ ト

What is electronic voting? An Attack on Privacy in Helios

Attack on Privacy in Helios [?]

Helios [?] is a web based open-source voting system based on homomorphic encryption.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

What is electronic voting? An Attack on Privacy in Helios

Attack on Privacy in Helios [?]

Helios [?] is a web based open-source voting system based on homomorphic encryption.

Server

・ 同 ト ・ ヨ ト ・ ヨ ト

三日 のへの

What is electronic voting? An Attack on Privacy in Helios

Eve

◆母 ▶ ◆ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● ● ●

Attack on Privacy in Helios [?]

Eve can attack Alice's privacy by copying her vote:

What is electronic voting? An Attack on Privacy in Helios

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ● ●

Attack on Privacy in Helios [?]

Eve can attack Alice's privacy by copying her vote:

What is electronic voting? An Attack on Privacy in Helios

Eve

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ● ●

Attack on Privacy in Helios [?]

Eve can attack Alice's privacy by copying her vote:

What is electronic voting? An Attack on Privacy in Helios

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ● ●

Attack on Privacy in Helios [?]

Eve can attack Alice's privacy by copying her vote:

What is electronic voting? An Attack on Privacy in Helios

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ● ●

Attack on Privacy in Helios [?]

Eve can attack Alice's privacy by copying her vote:

What is electronic voting? An Attack on Privacy in Helios

Attack on Privacy in Helios [?]

Eve can attack Alice's privacy by copying her vote:

Privacy Vote-Independence

A (1) > A (2) > A

-

Plan

- What is electronic voting?
- An Attack on Privacy in Helios

2 Intuitive Definitions

- Privacy
- Vote-Independence
- 3 Formal Definitions
- 4 Analysis and Case Studies

5 Conclusion

Privacy Vote-Independence

A (1) > A (2) > A

-

Plan

Privacy Vote-Independence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Defining Vote-Privacy [?]

Main idea: Observational equivalence between two situations.

Privacy Vote-Independence

Defining Receipt-Freeness [?]

Again: Observational equivalence between two situations, but Alice tries to create a receipt or a fake.

Mallory Alice Bob

▲母> ▲目> ▲目> 目目 のQQ

Privacy Vote-Independence

▲帰▶ ▲臣▶ ★臣▶

三日 のへの

Defining Receipt-Freeness [?]

Again: Observational equivalence between two situations, but Alice tries to create a receipt or a fake.

Privacy Vote-Independence

(日本) (日本) (日本)

三日 のへへ

Defining Coercion-Resistance [?]

Observational equivalence between two situations, but Alice is under control by Mallory or only pretends to be so.

Privacy Vote-Independence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Defining Coercion-Resistance [?]

Observational equivalence between two situations, but Alice is under control by Mallory or only pretends to be so.

Privacy Vote-Independence

A (1) > A (2) > A

-

Plan

Privacy Vote-Independence

・ 同 ト ・ ヨ ト ・ ヨ ト

三日 のへの

Defining Vote-Independence

Main idea: Privacy, but with a voter under control of the attacker. If he can relate his vote to e.g. Alice's vote, Mallory can distinguish both sides.

Privacy Vote-Independence

A (1) > (1) > (1)

Defining Vote-Independence

Main idea: Privacy, but with a voter under control of the attacker. If he can relate his vote to e.g. Alice's vote, Mallory can distinguish both sides.

Privacy Vote-Independence

・ 同 ト ・ ヨ ト ・ ヨ ト ・

三日 のへの

Vote-Independence with Passive Collaboration

"Receipt-Freeness with Chuck":

Privacy Vote-Independence

A (2) > (

= 200

Vote-Independence with Passive Collaboration

"Receipt-Freeness with Chuck":

Privacy Vote-Independence

<ロ> <日> <日> <日> <日> <日> <日> <日> <日</p>

Vote-Independence with active Collaboration

"Coercion-Resistance with Chuck":

Privacy Vote-Independence

(4 同) (4 回) (4 回)

EL NOR

Vote-Independence with active Collaboration

"Coercion-Resistance with Chuck":

Plan

- What is electronic voting?
- An Attack on Privacy in Helios

2 Intuitive Definitions

- Privacy
- Vote-Independence

3 Formal Definitions

4 Analysis and Case Studies

5 Conclusion

< 🗇 🕨 🖌 🚍 🕨

The Applied Pi Calculus [?]

Syntax	
P, Q, R :=	processes
0	null process
P Q	parallel composition
! <i>P</i>	replication
ν n .P	name restriction ("new")
if $M=N$ then P else Q	conditional
in(u, x)	message input
out(u, x)	message output
$\{M/x\}$	substitution

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 の < @

Modeling a voting protocol

Definition (Voting Process [?])

A voting process is a closed plain process

$$VP \equiv \nu \tilde{n}.(V\sigma_1|\ldots|V\sigma_n|A_1|\ldots|A_m).$$

We define an evaluation context S which is like VP, but has a hole instead of three $V\sigma_i$, and an evaluation context S' which is like VP, but has a hole instead of two $V\sigma_i$.

イロト イポト イヨト イヨト

Vote-Privacy: The formal definition

Definition (Vote-Privacy [?])

A voting process respects *Vote-Privacy* (P) if for all votes a and b we have

$S'\left[V_{A}\left\{\frac{a}{v}\right\} | V_{B}\left\{\frac{b}{v}\right\}\right] \approx_{I} S'\left[V_{A}\left\{\frac{b}{v}\right\} | V_{B}\left\{\frac{a}{v}\right\}\right]$

<ロ> <日> <日> <日> <日> <日> <日> <日> <日</p>

Vote-Independence (without Collaboration): The formal definition

Definition (Vote-Independence)

A voting process respects *Vote-Independence (VI)* if for all votes a and b we have

 $S\left[V_{A}\left\{\frac{a}{v}\right\}|V_{B}\left\{\frac{b}{v}\right\}|\frac{V_{C}^{c_{1},c_{2}}}{C}\right] \approx_{I} S\left[V_{A}\left\{\frac{b}{v}\right\}|V_{B}\left\{\frac{a}{v}\right\}|\frac{V_{C}^{c_{1},c_{2}}}{C}\right]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Receipt-Freeness: The formal definition

Definition (Receipt-Freeness [?])

A voting process respects *Receipt-Freeness* (*RF*) if there exists a closed plain process V' such that for all votes a and c we have

$$V'^{\operatorname{out}(\mathit{chc},\cdot)}pprox_{I} V_{A}\left\{ {}^{a}\!/\!v
ight\}$$

and

$$S'\left[V_{A}\left\{\frac{b}{v}\right\}^{chc}|V_{B}\left\{\frac{a}{v}\right\}\right]\approx_{I}S'\left[\frac{V'}{V_{B}\left\{\frac{b}{v}\right\}}\right]$$

▲祠→ ▲屋→ ▲屋→

三日 のへの

Vote-Independence with Passive Collaboration: The formal definition

Definition (Vote-Independence with Passive Collaboration)

A voting process respects Vote-Independence with Passive Collaboration (VI-PC) if there exists a closed plain process V' such that for all votes a and c we have

$$V'^{ ext{out(chc, \cdot)}} pprox_I V_A \{a/v\}$$

and

$$S\left[V_{A}\left\{\frac{b}{v}\right\}^{chc}|V_{B}\left\{\frac{a}{v}\right\}|\frac{V_{C}^{c_{1},c_{2}}}{C}\right]\approx_{I} S\left[V'|V_{B}\left\{\frac{b}{v}\right\}|\frac{V_{C}^{c_{1},c_{2}}}{C}\right]$$

▲帰▶ ▲臣▶ ★臣▶

三日 のQの

Plan

< 🗇 🕨 🖌 🚍 🕨

Relations among the notions

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Plan

A (1) > (1) > (1)

- Attack on Helios
- Extended threat model
- Formal definition of "Vote-Independence"
- Strictly stronger than standard Vote-Privacy
- Generalized to passive and active collaboration
- Case studies: even Coercion-Resistant protocols may not ensure Vote-Independence

= nav

- Generalized definition of voting protocols
- Tools to automate and/or verify the proofs (at least partly)

- 4 同 ト 4 ヨ ト 4 ヨ ト

三日 のへの

• Computational definition

Thank you for your attention!

Questions?

・ロト ・部ト ・ヨト ・ヨト

三日 のへの

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

Ben Adida, Olivier De Marneffe, Olivier Pereira, and Jean-Jacques Quisquater.

Electing a university president using open-audit voting: analysis of real-world use of helios.

In Proceedings of the 2009 conference on Electronic voting technology/workshop on trustworthy elections, EVT/WOTE'09, pages 10–10, Berkeley, CA, USA, 2009. USENIX Association.

Martín Abadi and Cédric Fournet.

Mobile values, new names, and secure communication. In *Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, POPL '01, pages 104–115, New York, 2001. ACM.

🔋 Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich.

・同下 ・ヨト ・ヨト 三日

Bingo voting: Secure and coercion-free voting using a trusted random number generator.

In Ammar Alkassar and Melanie Volkamer, editors, *E-Voting and Identity*, volume 4896 of *Lecture Notes in Computer Science*, pages 111–124. Springer Berlin / Heidelberg, 2007.

- Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties of electronic voting protocols. *Journal of Computer Security*, 17:435–487, December 2009.
- Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta.
 A practical secret voting scheme for large scale elections.
 In Jennifer Seberry and Yuliang Zheng, editors, Advances in Cryptology – AUSCRYPT '92, volume 718 of Lecture Notes in Computer Science, pages 244–251. Springer Berlin / Heidelberg, 1992.

<ロ> <日> <日> <日> <日> <日> <日> <日> <日</p>

 Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Seungjae Yoo.
 Providing receipt-freeness in mixnet-based voting protocols.
 In Jong In Lim and Dong Hoon Lee, editors, *Information* Security and Cryptology - ICISC 2003, volume 2971 of Lecture Notes in Computer Science, pages 245–258. Springer Berlin / Heidelberg, 2004.

Tatsuaki Okamoto.

An electronic voting scheme.

In *Proceedings of the IFIP World Conference on IT Tools*, pages 21–30, 1996.

Ben Smyth and Veronique Cortier. Attacking and fixing helios: An analysis of ballot secrecy. Cryptology ePrint Archive, Report 2010/625, 2010. http://eprint.iacr.org/.

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Coercion-Resistance: The formal definition

Definition (Coercion-Resistance [?])

A voting process respects *Coercion-Resistance (CR)* if there exists a closed plain process V' such that for any $C = \nu c_1 . \nu c_2 . (_|P)$ satisfying $\tilde{n} \cap fn(C) = \emptyset$ and $S' [C [V_A \{?/v\}^{c_1, c_2}] |V_B \{a/v\}] \approx_l S' [V_A \{b/v\}^{chc} |V_B \{a/v\}]$ and for all votes *a* and *c* we have

$$C\left[V'\right]^{\operatorname{out}(chc,\cdot)} \approx_{I} V_{A}\left\{\frac{a}{v}\right\}$$

and

$$S'\left[\boldsymbol{C}\left[\boldsymbol{V}_{A}\left\{?/\boldsymbol{v}\right\}^{\boldsymbol{c_{1}},\boldsymbol{c_{2}}}\right]|\boldsymbol{V}_{B}\left\{\mathsf{a}/\boldsymbol{v}\right\}\right]\approx_{I}S'\left[\boldsymbol{C}\left[\boldsymbol{V'}\right]|\boldsymbol{V}_{B}\left\{\mathsf{b}/\boldsymbol{v}\right\}\right]$$

Vote-Independence with Active Collaboration: The formal definition

Definition (Vote-Independence with Active Collaboration)

A voting process respects Vote-Independence with Active Collaboration (VI-AC) if there exists a closed plain process V' such that for any $C = \nu c_1 . \nu c_2 . (_|P)$ satisfying $\tilde{n} \cap fn(C) = \emptyset$ and $S \left[C \left[V_A \left\{ ?/v \right\}^{c_1, c_2} \right] |V_B \left\{ a/v \right\} |V_C^{c_3, c_4} \right] \approx_I S \left[V_A \left\{ b/v \right\}^{chc} |V_B \left\{ a/v \right\} |V_C^{c_3, c_4} \right]$

and for all votes a and c we have

•
$$C[V']^{\operatorname{out}(chc,\cdot)} \approx_{I} V_{A} \{a/v\}$$

•
$$S\left[C\left[V_{A}\left\{?/v\right\}^{c_{1},c_{2}}\right]|V_{B}\left\{a/v\right\}|V_{C}^{c_{3},c_{4}}\right]$$

 $\approx_{l} S\left[C\left[V'\right]|V_{B}\left\{b/v\right\}|V_{C}^{c_{3},c_{4}}\right]$

★@→ ★ 문→ ★ 문→ 문/님

Definition (Process P^{ch} [?])

Let P be a process and ch be a channel. We define P^{ch} as follows:

- 0^{ch} ≙ 0,
- $(P|Q)^{ch} \stackrel{\circ}{=} P^{ch}|Q^{ch}$,
- $(\nu n.P)^{ch} \doteq \nu n.out(ch, n).P^{ch}$ when n is a name of base type,

•
$$(\nu n.P)^{ch} = \nu n.P^{ch}$$
 otherwise,

- $(in(u, x).P)^{ch} = in(u, x).out(ch, x).P^{ch}$ when x is a variable of base type,
- $(in(u, x).P)^{ch} = in(u, x).P^{ch}$ otherwise,
- $(\operatorname{out}(u, M).P)^{ch} \doteq \operatorname{out}(u, M).P^{ch}$,
- $(!P)^{ch} \triangleq !P^{ch},$
- (if M = N then P else Q)^{ch} \doteq if M = N then P^{ch} else Q^{ch} .

Definition (Process P^{c_1,c_2} [?])

Let P be a process, c_1 , c_2 channels. We define P^{c_1,c_2} as follows:

• $0^{c_1,c_2} \doteq 0$,

•
$$(P|Q)^{c_1,c_2} \triangleq P^{c_1,c_2}|Q^{c_1,c_2},$$

• $(\nu n.P)^{c_1,c_2} \triangleq \nu n.\operatorname{out}(c_1,n).P^{c_1,c_2}$ if n is a name of base type,

•
$$(\nu n.P)^{c_1,c_2} \triangleq \nu n.P^{c_1,c_2}$$
 otherwise,

- (in(u, x).P)^{c₁,c₂} = in(u, x).out(c₁, x).P^{c₁,c₂} if x is a variable of base type & x is a fresh variable,
- $(in(u, x).P)^{c_1, c_2} \triangleq in(u, x).P^{c_1, c_2}$ otherwise,
- $(out(u, M).P)^{c_1, c_2} = in(c_2, x).out(u, x).P^{c_1, c_2}$,

•
$$(!P)^{c_1,c_2} \triangleq !P^{c_1,c_2}$$

• (if M = N then P else Q)^{$c_1, c_2 = in(c_2, x)$.if x = true then P^{c_1, c_2} else Q^{c_1, c_2} where x is a fresh variable and true is}

Definition (Process $A^{\operatorname{out}(ch,\cdot)}$ [?])

Let A be an extended process. We define the process $A^{\operatorname{out}(ch,\cdot)}$ as $\nu ch.(A|\operatorname{in}(ch,x))$.

▲母> ▲目> ▲目> 目目 のQQ

Definition (Equivalence in a Frame)

Two terms *M* and *N* are equal in the frame ϕ , written $(M = N)\phi$, if and only if $\phi \equiv \nu \tilde{n}.\sigma$, $M\sigma = N\sigma$, and $\{\tilde{n}\} \cap (fn(M) \cup fn(N)) = \emptyset$ for some names \tilde{n} and some substitution σ .

Definition (Static Equivalence (\approx_s))

Two closed frames ϕ and ψ are statically equivalent, written $\phi \approx_s \psi$, when dom $(\phi) =$ dom (ψ) and when for all terms M and N $(M = N)\phi$ if and only if $(M = N)\psi$. Two extended processes Aand B are statically equivalent $(A \approx_s B)$ if their frames are statically equivalent.

- 4 回 2 - 4 □ 2 - 4 □

Definition (Labelled Bisimilarity (\approx_l))

Labelled bisimilarity is the largest symmetric relation \mathcal{R} on closed extended processes, such that $A \mathcal{R} B$ implies

- $\bullet A \approx_s B,$
- 2 if $A \to A'$, then $B \to B'$ and $A' \mathcal{R} B'$ for some B',
- **③** if $A \xrightarrow{\alpha} A'$ and $fv(\alpha) \subseteq dom(A)$ and $bn(\alpha) \cap fn(B) = \emptyset$, then $B \to^* \xrightarrow{\alpha} \to^* B'$ and $A' \mathcal{R} B'$ for some B'.