Security for Data Scientists

Pascal Lafourcade

1 / 101

Big Data

IoT

Big Data and Security

Free ?

If it is free then you are the product $6 / 101$

Data Privacy ?

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0) [Un peu de cryptographie](#page-19-0) Propriétés [Different Adversaries](#page-43-0) [Intuition of Computational Security](#page-51-0) [Cloud Security](#page-70-0) [Partial and Full Homomorphic Encryption](#page-83-0) **[SSE](#page-93-0)** [Privacy in DB](#page-106-0) [Conclusion](#page-121-0)

Outline

[Contexte](#page-1-0)

[Cadre juridique](#page-8-0)

[Un peu de cryptographie](#page-19-0)

Propriétés

[Different Adversaries](#page-43-0)

[Intuition of Computational Security](#page-51-0)

[Cloud Security](#page-70-0)

[Partial and Full Homomorphic Encryption](#page-83-0)

[SSE](#page-93-0)

[Privacy in DB](#page-106-0)

[Conclusion](#page-121-0)

[Security for Data Scientists](#page-0-0) [Cadre juridique](#page-9-0)

CNIL créé en 1978

Commission nationale de l'informatique et des libertés

BUT

Protéger les données personnelles, accompagner l'innovation, préserver les libertés individuelles

ANSSI créée le 7 juillet 2009.

STAD

Système de Traitement Automatisé de Données

"Tout ensemble composé d'une ou plusieurs unités de traitement, de mémoire, de logiciel, de données, d'organes d'entrées-sorties et de liaisons, qui concourent à un résultat déterminé, cet ensemble étant protégé par des dispositifs de sécurité".

Aucune définition précise dans la loi

Dans les faits c'est presque tout :

[Security for Data Scientists](#page-0-0) [Cadre juridique](#page-11-0)

3 acteurs

Responsable Pirate

L'utilisateur

Droits

- ► D'accès : demander directement au responsable d'un fichier s'il détient l'intégralité de ces données
- \triangleright De rectification
- ▶ D'opposition dêtre dans un fichier
- ▶ Déréférencement sur le web par rapport au nom et prénom

Le responsable

Et le sous-traitant via le contrat.

Devoirs

- \triangleright Déclarer les traitements de données personnelles 5 ans & 300 000
- Prendre toutes précautions pour la sécurité des données selon
	- \blacktriangleright la nature des données
	- \blacktriangleright les risques présentés par le traitement
	- 5 ans & 300 000

Lois informatique et libertés : Article 22 et Article 34. Guide de la CNIL : La sécurité des données personnelles

Conservation des logs

LCEN 2004

- 1 an pour les logs (jurisprudence de la BNP Paribas)
- \bullet Décret 2011-219 du 25 février 2011 relatif à la conservation et à la communication des données permettant d'identifier toute personne ayant contribué à la création d'un contenu mis en ligne:
	- \triangleright ip, url, protocole, date heure, nature de l'opération
	- \triangleright éventuellement les données utilisateurs
	- \triangleright éventuellement données bancaires
	- \triangleright accédées dans le cadre d'une réquisition
	- \triangleright conservées un an
-
- "Testfile25.ces" from server booksey
- ► données utilisateurs pendant un an après la clôture

Article 226-20 : les logs ont une date de péremption

Security for Data Scientists Cadre juridique

Risques (STAD (Article 323-1))

- accès frauduleux ou maintien frauduleux de l'accès 2 ans & 60 000
- suppression ou modification des données 3 ans & 100 000
- si données à caractère personnel 5 ans & 150 000
- \triangleright altération du fonctionnement 5 ans et de 75 000
- si données à caractère personnel 7 ans & 100 000

Risques encourus

En pratique

- \triangleright Atteintes aux intérêts fondamentaux de la nation (Sécurité nationale) Article 410-1 à 411-6
- \triangleright Secret des communication pour l'autorité publique et FAI 3 ans et 45 000 Article 432-9
- \triangleright Usurpation d'identité 5 ans et de 75 000 Article 434-23
- \blacktriangleright Importer, détenir, offrir ou mettre à disposition un moyen de commettre une infraction est puni

Sauf si

Pas de condamnation si

- \blacktriangleright aucune protection
- \blacktriangleright aucune mention de confidentialité
- \triangleright accessible via les outils de navigation grand public
- ▶ même en cas de données nominatives

Sauf si

Pas de condamnation si

- \blacktriangleright aucune protection
- \blacktriangleright aucune mention de confidentialité
- \triangleright accessible via les outils de navigation grand public
- ▶ même en cas de données nominatives

Il est donc important de protéger ces données

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0)

[Un peu de cryptographie](#page-19-0)

Propriétés

[Different Adversaries](#page-43-0)

[Intuition of Computational Security](#page-51-0)

[Cloud Security](#page-70-0)

[Partial and Full Homomorphic Encryption](#page-83-0)

[SSE](#page-93-0)

[Privacy in DB](#page-106-0)

[Conclusion](#page-121-0)

Clef symétrique

Exemples

- \triangleright César, Vigenère
- One Time Pad (OTP) $c = m \oplus k$
- Data Encryption Standard (DES) 1976
- Advanced Encryption Strandard (AES) 2001

Communications téléphoniques

Chiffrement à clef publique

Exemples

- \triangleright RSA (Rivest Shamir Adelmman 1977): $c = m^e$ mod n
- ElGamal (1981) : $c \equiv (g^r, h^r \cdot m)$

Computational cost of encryption

2 hours of video (assumes 3Ghz CPU)

ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group generator g of $(\mathbb{Z}/p\mathbb{Z})^*$ and $a \in (\mathbb{Z}/(p-1)\mathbb{Z})^*$. Public key: (p, g, h) , where $h = g^a$ mod p. Private key: a Encryption: Bob chooses $r \in_R (\mathbb{Z}/(p-1)\mathbb{Z})^*$ and computes $(u, v) = (g^r, Mh^r)$ Decryption: Given (u, v) , Alice computes $M \equiv_p \frac{v}{u}$ $\overline{u^a}$ Justification: $\frac{v}{u^a} = \frac{M h^r}{g^{ra}}$ $\frac{\forall ln}{g^{ra}} \equiv_p M$ Remarque: re-usage of the same random r leads to a security flaw: $M_1 h'$ M¹

$$
\frac{m_1 n}{M_2 h^r} \equiv_p \frac{m_1}{M_2}
$$

Practical Inconvenience: Cipher is twice as long as plain text.

Fonction de Hachage (SHA-256, SHA-3)

Fonction de Hachage (SHA-256, SHA-3)

Propriétés de résitance

 \blacktriangleright Pré-image

Fonction de Hachage (SHA-256, SHA-3)

Propriétés de résitance

- \blacktriangleright Pré-image
- Seconde Pré-image

Fonction de Hachage (SHA-256, SHA-3)

Propriétés de résitance

- \triangleright Pré-image
- Seconde Pré-image
- \triangleright Collision

- Unkeyed Hash function: Integrity
- ▶ Keyed Hash function (Message Authentication Code): Authentification

MD5, MD4 and RIPEMD Broken

MD5(james.jpg)= e06723d4961a0a3f950e7786f3766338

MD5, MD4 and RIPEMD Broken

MD5(james.jpg)= e06723d4961a0a3f950e7786f3766338 $MD5(barry.jpg) = e06723d4961a0a3f950e7786f3766338$

How to Break MD5 and Other Hash Functions, by Xiaoyun Wang, et al.

MD5 : Average run time on P4 1.6ghz PC: 45 minutes MD4 and RIPEMD : Average runtime on P4 1.6ghz: 5 seconds

SHA-1 broken in 2017 <shattered.io>

M. Stevens, P. Karpman, E. Bursztein, A. Albertini, Y. Markov

A collision is when two different documents have the same hash fingerprint

SHA-1 broken in 2017 <shattered.io>

Attack complexity

9,223,372,036,854,775,808 SHA-1 compressions performed

Shattered compared to other collision attacks

SHA-1 Bruteforce 12,000,000 GPU vear

SHA-1 broken in 2017 <shattered.io>

SHA-1 broken in 2017 <shattered.io>

Signature

[Security for Data Scientists](#page-0-0) [Un peu de cryptographie](#page-36-0)

Signature

clef secrète clef publique

RSA: m^d mod n

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0) [Un peu de cryptographie](#page-19-0) Propriétés [Different Adversaries](#page-43-0) [Intuition of Computational Security](#page-51-0) [Cloud Security](#page-70-0) [Partial and Full Homomorphic Encryption](#page-83-0) **[SSE](#page-93-0)** [Privacy in DB](#page-106-0) [Conclusion](#page-121-0)

Traditional security properties

- \triangleright Common security properties are:
	- Confidentiality or Secrecy: No improper disclosure of information
	- Authentification: To be sure to talk with the right person. disclosure of information
	- Integrity: No improper modification of information
	- Availability: No improper impairment of functionality/service

[Security for Data Scientists](#page-0-0) Propriétés

Authentication

"On the Internet, nobody knows you're a dog."

Mechanisms for Authentication

Strong authentication combines multiple factors: E.g., Smart-Card $+$ PIN

Other security properties

- \triangleright Non-repudiation (also called accountability) is where one can establish responsibility for actions.
- \triangleright Fairness is the fact there is no advantage to play one role in a protocol comparing with the other ones.
- \blacktriangleright Privacy
	- Anonymity: secrecy of principal identities or communication relationships.
	- Pseudonymity: anonymity plus link-ability.
	- Data protection: personal data is only used in certain ways.

[Security for Data Scientists](#page-0-0) Propriétés

Example: e-voting

 \triangleright An e-voting system should ensure that

- \triangleright only registered voters vote,
- \blacktriangleright each voter can only vote once,
- \blacktriangleright integrity of votes,
- \triangleright privacy of voting information (only used for tallying), and
- \triangleright availability of system during voting period

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0) [Un peu de cryptographie](#page-19-0) Propriétés

[Different Adversaries](#page-43-0)

[Intuition of Computational Security](#page-51-0) [Cloud Security](#page-70-0) [Partial and Full Homomorphic Encryption](#page-83-0) **[SSE](#page-93-0)** [Privacy in DB](#page-106-0) [Conclusion](#page-121-0)

Which adversary?

Adversary Model

Qualities of the adversary:

- \triangleright Clever: Can perform all operations he wants
- \blacktriangleright Limited time:
	- Do not consider attack in 2^{60} .
	- \triangleright Otherwise a Brute force by enumeration is always possible.

Model used: Any Turing Machine.

- \blacktriangleright Represents all possible algorithms.
- \triangleright Probabilistic: adversary can generates keys, random number...

Adversary Models

The adversary is given access to oracles :

- \rightarrow encryption of all messages of his choice
- \rightarrow decryption of all messages of his choice

Three classical security levels:

- ▶ Chosen-Plain-text Attacks (CPA)
- \triangleright Non adaptive Chosen-Cipher-text Attacks (CCA1) only before the challenge
- ▶ Adaptive Chosen-Cipher-text Attacks (CCA2) unlimited access to the oracle (except for the challenge)

Chosen-Plain-text Attacks (CPA)

Adversary can obtain all cipher-texts from any plain-texts. It is always the case with a Public Encryption scheme.

Non adaptive Chosen-Cipher-text Attacks (CCA1)

Adversary knows the public key, has access to a **decryption oracle** multiple times before to get the challenge (cipher-text), also called "Lunchtime Attack" introduced by M. Naor and M. Yung ([NY90]).

Adaptive Chosen-Cipher-text Attacks (CCA2)

Adversary knows the public key, has access to a **decryption oracle** multiple times before and AFTER to get the challenge, but of course cannot decrypt the challenge (cipher-text) introduced by C. Rackoff and D. Simon ([RS92]).

Summary of Adversaries

CCA2: $\mathcal{O}_1 = \mathcal{O}_2 = \{ \mathcal{D} \}$ Adaptive Chosen Cipher text Attack

⇓ CCA1: $\mathcal{O}_1 = {\{\mathcal{D}\}}, \mathcal{O}_2 = \emptyset$ Non-adaptive Chosen Cipher-text

⇓ CPA: $\mathcal{O}_1 = \mathcal{O}_2 = \emptyset$ Chosen Plain text Attack

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0) [Un peu de cryptographie](#page-19-0) Propriétés

[Different Adversaries](#page-43-0)

[Intuition of Computational Security](#page-51-0)

[Cloud Security](#page-70-0) [Partial and Full Homomorphic Encryption](#page-83-0) **[SSE](#page-93-0)** [Privacy in DB](#page-106-0) [Conclusion](#page-121-0)

One-Wayness (OW)

Put your message in a translucent bag, but you cannot read the text.

One-Wayness (OW)

Put your message in a translucent bag, but you cannot read the text.

Without the private key, it is computationally **impossible to** recover the plain-text.

RSA Is it preserving your privacy?

RSA Is it preserving your privacy?

4096 RSA encryption

RSA Is it preserving your privacy?

4096 RSA encryption

Environs 60 températures possibles: 35 ... 41

RSA Is it preserving your privacy?

4096 RSA encryption

Environs 60 températures possibles: 35 ... 41

 $\{35\}_{pk}$, $\{35, 1\}_{pk}$, ..., $\{41\}_{pk}$

Is it secure ?

Is it secure ?

Is it secure ?

 \triangleright you cannot read the text but you can distinguish which one has been encrypted.

Is it secure ?

- \triangleright you cannot read the text but you can distinguish which one has been encrypted.
- \triangleright Does not exclude to recover half of the plain-text
- \triangleright Even worse if one has already partial information of the message:
	- ▶ Subject: XXXX
	- From: XXXX

Indistinguishability (IND)

Put your message in a black bag, you can not read anything.

Now a black bag is of course IND and it implies OW.

Indistinguishability (IND)

Put your message in a black bag, you can not read anything.

Now a black bag is of course IND and it implies OW. The adversary is not able to guess in polynomial-time even a bit of the plain-text knowing the cipher-text, notion introduced by S. Goldwasser and S.Micali ([GM84]).

Is it secure?

Is it secure?

Is it secure?

 \triangleright It is possible to scramble it in order to produce a new cipher. In more you know the relation between the two plain text because you know the moves you have done.

Non Malleability (NM)

Put your message in a black box.

But in a black box you cannot touch the cube (message), hence NM implies IND.

Non Malleability (NM)

Put your message in a black box.

But in a black box you cannot touch the cube (message), hence NM implies IND.

The adversary should not be able to produce a new cipher-text such that the plain-texts are meaningfully related, notion introduced by D. Dolev, C. Dwork and M. Naor in 1991 ([DDN91,BDPR98,BS99]).

Summary of Security Notions

[Security for Data Scientists](#page-0-0) [Cloud Security](#page-70-0)

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0) [Un peu de cryptographie](#page-19-0) Propriétés [Different Adversaries](#page-43-0) [Intuition of Computational Security](#page-51-0) [Cloud Security](#page-70-0) [Partial and Full Homomorphic Encryption](#page-83-0) **[SSE](#page-93-0)** [Privacy in DB](#page-106-0) [Conclusion](#page-121-0)

[Security for Data Scientists](#page-0-0) [Cloud Security](#page-71-0)

Should we trust our remote storage?

Should we trust our remote storage?

Many reasons not to

- \triangleright Outsourced backups and storage
- \triangleright Sysadmins have root access
- \blacktriangleright Hackers breaking in

Should we trust our remote storage?

Many reasons not to

- \triangleright Outsourced backups and storage
- \blacktriangleright Sysadmins have root access
- \blacktriangleright Hackers breaking in

Clouds

Clouds

Properties

Acces from everywhere Avaible for everything:

- \triangleright Store documents, photos, etc
- \triangleright Share them with colleagues, friends, family
- \blacktriangleright Process the data
- \triangleright Ask queries on the data

Current solutions

Cloud provider knows the content and claims to actually

- \blacktriangleright identify users and apply access rights
- \blacktriangleright safely store the data
- \blacktriangleright securely process the data
- \blacktriangleright protect privacy

Users need more Storage and Privacy guarantees

- \triangleright confidentiality of the data
- \blacktriangleright anonymity of the users
- \triangleright obliviousness of the queries

Broadcast encryption (Fiat-Noar 1994)

The sender can select the target group of receivers to control who access to the data like in PAYTV

Functional encryption [Boneh-Sahai-Waters 2011]

The user generates sub-keys K_v according to the input y to control the amount of shared data. From $C = \text{Encrypt}(x)$, then $\text{Decrypt}(K_y, C)$, outputs $f(x, y)$

Fully Homomorphic Encryption [Gentry 2009]

Fully Homomorphic Encryption [Gentry 2009]

FHE: encrypt data, allow manipulation over data. Symmetric Encryption (secret key) is enough

 $f({x_1}_{K}, {x_2}_{K}, \ldots, {x_n}_{K}) = {f(x_1, x_2, \ldots, x_n)}_K$

- \blacktriangleright Allows private storage
- \blacktriangleright Allows private computations
- \triangleright Private queries in an encrypted database
- \triangleright Private search: without leaking the content, queries and $\frac{63}{101}$

[Security for Data Scientists](#page-0-0) [Partial and Full Homomorphic Encryption](#page-83-0)

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0) [Un peu de cryptographie](#page-19-0) Propriétés [Different Adversaries](#page-43-0) [Intuition of Computational Security](#page-51-0) [Cloud Security](#page-70-0) [Partial and Full Homomorphic Encryption](#page-83-0) **[SSE](#page-93-0)** [Privacy in DB](#page-106-0) [Conclusion](#page-121-0)

[Security for Data Scientists](#page-0-0) [Partial and Full Homomorphic Encryption](#page-84-0)

Rivest Adleman Dertouzos 1978

"Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?"

Partial Homomorphic Encryption

Definition (additively homomorphic)

$$
E(m_1)\otimes E(m_2)\equiv E(m_1\oplus m_2).
$$

Applications

- \blacktriangleright Electronic voting
- **F** Secure Fonction Evaluation
- ▶ Private Multi-Party Trust Computation
- \blacktriangleright Private Information Retrieval
- \blacktriangleright Private Searching
- ▶ Outsourcing of Computations (e.g., Secure Cloud Computing)
- ▶ Private Smart Metering and Smart Billing
- **Privacy-Preserving Face Recognition**

Brief history of partially homomorphic cryptosystems

Expansion factor is the ration ciphertext over plaintext.

[Security for Data Scientists](#page-0-0) [Partial and Full Homomorphic Encryption](#page-87-0)

Scheme Unpadded RSA

If the RSA public key is modulus m and exponent e , then the encryption of a message x is given by

 $\mathcal{E}(x) = x^e \mod m$

$$
\mathcal{E}(x_1) \cdot \mathcal{E}(x_2) = x_1^e x_2^e \mod m
$$

= $(x_1 x_2)^e \mod m$
= $\mathcal{E}(x_1 \cdot x_2)$

Scheme ElGamal

In the ElGamal cryptosystem, in a cyclic group G of order q with generator g , if the public key is (G, q, g, h) , where $h = g^\times$ and x is the secret key, then the encryption of a message m is $\mathcal{E}(m) = (g^r, m \cdot h^r)$, for some random $r \in \{0, \ldots, q-1\}$.

$$
\mathcal{E}(m_1) \cdot \mathcal{E}(m_2) = (g^{r_1}, m_1 \cdot h^{r_1})(g^{r_2}, m_2 \cdot h^{r_2})
$$

= $(g^{r_1+r_2}, (m_1 \cdot m_2)h^{r_1+r_2})$
= $\mathcal{E}(m_1 \cdot m_2)$

Fully Homomorphic Encryption

$$
Enc(a, k) * Enc(b, k) = Enc(a * b, k)
$$

$$
Enc(a, k) + Enc(b, k) = Enc(a + b, k)
$$

$$
f(Enc(a, k), Enc(b, k)) = Enc(f(a, b), k)
$$

Fully Homomorphic encryption

- \triangleright Craig Gentry (STOC 2009) using lattices
- ► Marten van Dijk; Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan using integer
- ► Craig Gentry; Shai Halevi. "A Working Implementation of Fully Homomorphic Encryption"

^I · · ·

Simple SHE: SGHV Scheme [vDGHV10]

Public error-free element : $x_0 = q_0 \cdot p$ Secret key $sk = p$

Encryption of $m \in \{0, 1\}$

$$
c=q\cdot p+2\cdot r+m
$$

where q is a large random and r a small random.

Simple SHE: SGHV Scheme [vDGHV10]

Public error-free element : $x_0 = q_0 \cdot p$ Secret key $sk = p$

Encryption of $m \in \{0, 1\}$

$$
c=q\cdot p+2\cdot r+m
$$

where q is a large random and r a small random.

Decryption of c

 $m = (c \mod p) \mod 2$

Limitations

F Efficiency: HEtest: A Homomorphic Encryption Testing Framework (2015)

Fig. 9. Key generation time (left) and homomorphic evaluation time (right), in seconds

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0) [Un peu de cryptographie](#page-19-0) Propriétés [Different Adversaries](#page-43-0) [Intuition of Computational Security](#page-51-0) [Cloud Security](#page-70-0) [Partial and Full Homomorphic Encryption](#page-83-0) **[SSE](#page-93-0)** [Privacy in DB](#page-106-0) [Conclusion](#page-121-0)

Symmetric Searchable Encryption

Store data externally

- \blacktriangleright encrypted
- \triangleright want to search data easily
- \triangleright avoid downloading everything then decrypt
- \triangleright allow others to search data without having access to plaintext

Context

Symmetric Searchable Encryption (SSE)

- Outsource a set of encrypted data.
- \triangleright Basic functionnality: single keyword query.

Symmetric Searchable Encryption

When searching, what must be protected?

- \blacktriangleright retrieved data
- \blacktriangleright search query
- \triangleright search query outcome (was anything found?)

Scenario

- \triangleright single query vs multiple queries
- \triangleright non-adaptive: series of queries, each independent of the others
- \triangleright adaptive: form next query based on previous results

Number of participants

- \triangleright single user (owner of data) can query data
- \triangleright multiple users can query the data, possibly with access rights defined by the owner $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{76}{101}$

[Security for Data Scientists](#page-0-0) **[SSE](#page-97-0)**

SSE by Song, Wagner, Perrig 2000

Basic Scheme I

$$
C_i = W_i \oplus \langle S_i, F_{k_i}(S_i) \rangle
$$

where S_i are randomly generated and $F_k(x)$ is a MAC with key k.

Basic Scheme

$$
C_i = W_i \oplus \langle S_i, F_{k_i}(S_i) \rangle
$$

To search W :

- Alice reveals $\{k_i,$ where W may occur}
- ► Bob checks if $W \oplus C_i$ is of the form $\langle s, F_{k_i}(s) \rangle$.

For unknown k_i , Bob knows nothing

Basic Scheme

$$
C_i = W_i \oplus \langle S_i, F_{k_i}(S_i) \rangle
$$

To search W :

- Alice reveals $\{k_i,$ where W may occur}
- ► Bob checks if $W \oplus C_i$ is of the form $\langle s, F_{k_i}(s) \rangle$.

For unknown k_i , Bob knows nothing

Problems for Alice !

- \blacktriangleright she reveals all k_i ,
- \triangleright or she has to know where W may occur !

Scheme II: Controlled Searching

Modifications

$$
C_i=W_i\oplus
$$

where S_i randoms, $F_k(x)$ is a MAC with key k ; $k_i = f_{k'}(W_i)$

To search W :

- Alice only reveals $k = f_{k'}(W)$ and W.
- ► Bob checks if $W \oplus C_i$ is of the form $\langle s, F_k(s) \rangle$
- $+$ For unknown k_i , Bob knows nothing
- $+$ Nothing is revealed about location of W.

Problem

 \triangleright Still does not support hidden search (Alice reveals W)

Scheme III: Support for Hidden Searches

Figure 2. The Scheme for Hidden Search

Scheme III : Hidden Searches

$$
C_i = E_{k''}(W_i) \oplus \langle S_i, F_{k_i}(S_i) \rangle
$$

 S_i randoms and $F_k(x)$ is a MAC with k and $k_i = f_{k'}(E_{k''}(W_i))$ _{80/101}

Scheme III: Support for Hidden Searches

 $C_i = E_{k''}(W_i) \oplus \langle S_i, F_{k_i}(S_i) \rangle$, where $k_i = f_{k'}(E_{k''}(W_i))$

To search W :

- Alice gives $X = E_{k''}(W)$ and $k = f_{k'}(X)$.
- ▶ Bob checks if $X \oplus C_i$ is of the form $\langle s, F_k(s) \rangle$

Bob returns to Alice Cⁱ

Scheme III: Support for Hidden Searches

 $C_i = E_{k''}(W_i) \oplus \langle S_i, F_{k_i}(S_i) \rangle$, where $k_i = f_{k'}(E_{k''}(W_i))$

To search W :

- Alice gives $X = E_{k''}(W)$ and $k = f_{k'}(X)$.
- ▶ Bob checks if $X \oplus C_i$ is of the form $\langle s, F_k(s) \rangle$

Bob returns to Alice Cⁱ

But Alice cannot recover the plaintext

She can recover \mathcal{S}_i with X but not $\mathcal{F}_{k_i}(\mathcal{S}_i)$ because to compute $k_i = f_{k'}(E_{k''}(W_i))$ she needs to have $E_{k''}(W_i)$. In this case, why do you need search ?

[Security for Data Scientists](#page-0-0) **[SSE](#page-104-0)**

Final Scheme

Scheme IV : Final

$$
C_i=X_i\oplus
$$

where S_i randoms and $F_k(x)$ is a MAC with key k , $X_i=E_{k^{\prime\prime}}(W_i)=$ and $k_i=f_{k^\prime}(L_i)$

Final Scheme (Ultimate TRICK !)

$$
C_i=X_i\oplus
$$

To search W :

- Alice gives $X = E_{k''}(W) = < L, R >$ and $k = f_{k'}(L)$
- ▶ Bob checks if $X \oplus C_i$ is of the form $\langle s, F_k(s) \rangle$

Bob returns to Alice C_i

Alice recovers S_i and then $L_i = C_i \oplus S_i$. Then she computes $k_i = f_{k'}(L_i)$ and then $X = C_i \oplus {<} s, F_k(s) {>}$ and by decrypting with k'' to obtain W_i .

Alice only needs to remember k'' and k' .

[Security for Data Scientists](#page-0-0) [Privacy in DB](#page-106-0)

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0) [Un peu de cryptographie](#page-19-0) Propriétés [Different Adversaries](#page-43-0) [Intuition of Computational Security](#page-51-0) [Cloud Security](#page-70-0) [Partial and Full Homomorphic Encryption](#page-83-0) **[SSE](#page-93-0)** [Privacy in DB](#page-106-0)

[Conclusion](#page-121-0)

Privacy vs. Confidentiality

Confidentiality

Prevent disclosure of information to unauthorized users

Privacy

- Prevent disclosure of personal information to unauthorized users
- Control of how personal information is collected and used

Data Privacy and Security Measures

Access control

Restrict access to the (subset or view of) data to authorized users

Inference control

Restrict inference from accessible data to additional data

Flow control

Prevent information flow from authorized use to unauthorized use

Encryption

Use cryptography to protect information from unauthorized disclosure while in transmit and in storage

2 kinds of data

- \blacktriangleright Personal data
- \blacktriangleright Anonymous data

CNIL:

"Dès lors qu'elles concernent des personnes physiques identifiées directement ou indirectement."

French Law:

"Pour déterminer si une personne est identifiable, il convient de considérer l'ensemble des moyens en vue de permettre son identification dont dispose ou auxquels peut avoir accès le responsable du traitement ou toute autre personne."

How to evaluate the security?

Three criteria of robustness:

- \triangleright is it still possible to single out an individual? **Singling out (Individualisation):** the possibility to isolate some or all records which identify an individual in the dataset
- \triangleright is it still possible to link records relating to an individual? Linkability (Correlation): ability to link, at least, two records concerning the same data subject or a group of data subjects.
- \triangleright can information be inferred concerning an individual? Inference (Deduction): deduce, with significant probability, the value of an attribute from the values of a set of other attributes

[Security for Data Scientists](#page-0-0) [Privacy in DB](#page-111-0)

Example

Randomization

Alter veracity of the DB to remove the link

- \triangleright **Noise addition:** modifying attributes in the dataset such that they are less accurate whilst retaining the overall distribution
- \triangleright Permutation: shuffling the values of attributes in a table so that some of them are artificially linked to different data subjects,
- \triangleright Differential Privacy: requires the outcome to be formally indistinguishable when run with and without any particular record in the data set.

Example

 $Q =$ select count() where $Age = [20,30]$ and Diagnosis=B Answer to Q on D1 and D2 should be indistinguishable, if Bob in D₁ or Bob out D₂

Differential Privacy

C. Dwork : Differential Privacy, International Colloquium on Automata, Languages and Programming , 2006.

Definition

Let ϵ be a positive real number and A be a randomized algorithm that takes a dataset as input (representing the actions of the trusted party holding the data). The algorithm $\mathcal A$ is ϵ -differentially private if for all datasets D_1 and D_2 that differ on a single element (i.e., the data of one person), and all subsets S of $\text{im}\mathcal{A}$,

$Pr[\mathcal{A}(D_1) \in S] \leq e^{\epsilon} \times Pr[\mathcal{A}(D_2) \in S]$

where the probability is taken over the randomness used by the algorithm.

Pseudonymisation

Replace identifier field by a new one called pseudonym.

Using Hash function

It does not ensure anonymity. Using several fields you can recover name like it has benn done by Sweeney in 2001.

Example

Sex + birthday date $+$ Zip code are unique for 80 % of USA citizens. (record linkage attack)

k-Anonymity

- \triangleright Identify the possible fields that can be used to recover data (generalisation).
- \triangleright Modify them in order to have at least k different lines having the same identifiers.

It reduce the probabolity to guess something to $1/k$ Advantage: Analysis of data still give the same information that the orginal data base.

[Security for Data Scientists](#page-0-0) [Privacy in DB](#page-116-0)

Example: k-Anonymity

3-Anonymity

Activity for student can be Master licence or PhD instead of name and activty, age can be ranged.

Disadvantages: k-Anonymity

- \triangleright It leaks negative information. For instance you are not in all the other catergories.
- \blacktriangleright If all personn have the same value then the value is leaked.
- \triangleright Main problem is to determine the right generalisation (it is difficult and expensive).

Minimum Cost 3-Anonymity is NP-Hard for $|\Sigma| = 2$ (Dondi et al. 2007)

l-diversity

Aims at avoiding that all person have the same values once they have been generalized.

l values souhld be inside each field after generalisation. It allows to recover information by mixing information with some probability

3-diversity, each category has 3 different values

t-closeness

Knowledge of global distribution of sensitive data of a class of equivalence.

It tries to reduce the weaknesses introduced by the l-diversity.

- t is the factor that says how we are far from a global distribution.
	- \blacktriangleright How to split data into partion to obtain all the same distribution.
	- \triangleright If all class of equivalence have the same number of data, what is the utility of any analysis of the data basis ?

[Security for Data Scientists](#page-0-0) [Privacy in DB](#page-120-0)

Summary

Outline

[Contexte](#page-1-0) [Cadre juridique](#page-8-0) [Un peu de cryptographie](#page-19-0) Propriétés [Different Adversaries](#page-43-0) [Intuition of Computational Security](#page-51-0) [Cloud Security](#page-70-0) [Partial and Full Homomorphic Encryption](#page-83-0) **[SSE](#page-93-0)** [Privacy in DB](#page-106-0) [Conclusion](#page-121-0)

Things to bring home

- \triangleright Date Security is cruciual
- \triangleright Security should be done by experts!
- \triangleright Security should be taken from the design and not after!

$Protocol + Properties + Intruder = Security$

Thank you for your attention.

Questions ?