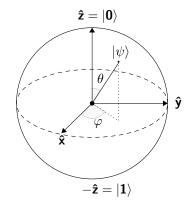

Introduction à la cryptographie Post-Quantique

Pascal Lafourcade



Clermtontech 17 Septembre 2025

Qubit dans les années 80 ... Benjamin Schumacher 1995

$$\begin{split} |\psi\rangle &= \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \text{ avec } (\alpha,\beta) \in \mathbb{C}, \text{ tel que } \alpha \, |0\rangle + \beta \, |1\rangle = 1 \\ ||\psi||^2 &= |\alpha|^2 + |\beta|^2 = \alpha.\overline{\alpha} + \beta.\overline{\beta} = 1 \end{split}$$

Ordinateurs quantiques

TRM Google rigetti

1998 : 2 qbits, IBM1999 : 3 qbits, IBM

o 2001 : 7 gbits, IBM

o 2017 : 50 qbits, IBM Q50

o 2019 : 53 qbits, Google Sycamore

o 2021: 90 qbits, Rigetti Aspen-9

o 2021 : 127 qbits, IBM Eagle

2022 : 433 qbits, IBM Osprey

Dec 2023 : 1 121 qubits, IBM Condor

D::Wave

2011 : 128 qbits, One

o 2013 : 512 qbits, Two

o 2015 : 1152 qbits, 2X

2017 : 2048 qbits, 2000Q

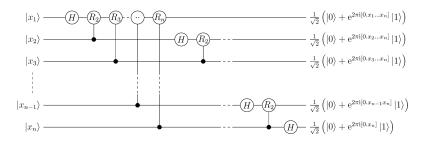
2020 : 5760 qbits, Advantage

2024 : 7440 qbits, Advantage 2

Ordinateurs quantiques

rigetti

Portes quantiques


$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Circuits quantiques

Transformée de Fourrier quantique

Algorithmes quantiques

- o Algorithme de Deutsch (1985) et Deutsch-Jozsa (1992)
- o Algorithme de Simon (1994)
- Algorithme de Shor (1994)
- o Algorithme de Grover (1996)

Shor et Grover

Algorithme de Shor (1994)

Calcule l'ordre d'un nombre en temps polynomial.

Définition de l'ordre

L'ordre de a est le plus petit entier r tel que $a^r \equiv 1 \mod N$

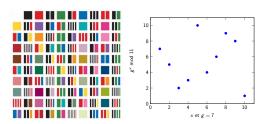
Algorithme de Grover (1996)

Trouver efficacement un élément qui satisfait une propriété dans une liste donnée.

Plan

- 1. Ordinateur quantique
- 2. Impact de l'ordinateur quantique sur la cryptographie

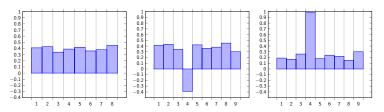
3. Cryptographie Post-Quantique


4. Conclusion

Cryptographie Pré-quantique

Deux problèmes :

- Factorisation : $n = p \times q$ difficile de trouver p et q.
- Logarithme disctet : $g, p, g^x \mod p$ difficile de trouver x.


C'est deux problèmes sont cassés par l'algorithmes de Shor!

"Store-now, decrypt-later"

Grover 1996

Trouver $x \in \{0,1\}^n$ avec F(x) en $\sqrt{2^n}$ évaluations de F

Oracle quantique qui détermine x

Diminue légèrement la sécurité pour :

- les fonctions de hachages de $O(2^{\frac{N}{2}})$ à $O(2^{\frac{N}{3}})$
- o les chiffrements symmétriques de $O(2^n)$ à $O(2^{\frac{n}{2}})$

Plan

- 1. Ordinateur quantique
- 2. Impact de l'ordinateur quantique sur la cryptographie

3. Cryptographie Post-Quantique

4. Conclusion

Cryptographie Post-Quantique

- Fonctionne sur les ordinateurs classiques
- Résite à un ordinateur quantique

Les problèmes difficiles sous-jacents sont différents !

5 familles de problèmes difficiles

- Fonctions de hachage
- o Réseaux Euclidiens (Lattices)
- Codes
- Systèmes Multivariés
- Isogénies

Compétition du NIST lancée en 2017

- 30 novembre 2017 : 69 sousmissions Round 1
- 30 janvier 2019 : 26 sousmissions choisies pour le Round 2
- 22 juillet 2020 : 7+8 sousmissions choisies pour le Round 3
- 5 juillet, 2022 :
 - o KEM : Kyber
 - o Signature : Dilithium, Falcon, SPHINCS+
- 13 août 2024, NIST publie les standards :
 - o FIPS 203 (Kyber),
 - o FIPS 204 (Dilithium)
 - ∘ FIPS 205 (SPHINCS+)
 - o FIPS 206 (FALCON à venir)
- 10 mars 2025, NIST annonce le vainqueur du Round 4 : KEM HQC

Autres compétitions

Corée du Sud (2016 - 2018), 2025 (Lattice based)

- KEM : SMAUG-T et NTRU+
- DSA : AlMer et HAETAE (Simlaire à Dilithium).

Chine, 3 janvier 2020 (Lattice based)

- o Aigis-sig et Aigis-enc
- LAC.PKE

Ukraine a standardisé (Lattice based)

- KEM: DSTU 8961:2019 Skelya, proche de CRYSTALS-KYBER.
- Signature : Falcon

Russie 2019 -

- KEM : FORZITSIYA (forsythia) et LIMMONITSA (citronelle) (Isogénies)
- Signature : SHIPOVNIK (églatine) et KRYZHOVNIK (groseille à maquereau) une variante optimisée de Dilithium.

Plan

1. Ordinateur quantique

2. Impact de l'ordinateur quantique sur la cryptographie

- 3. Cryptographie Post-Quantique
- 4. Conclusion

Changements en cours

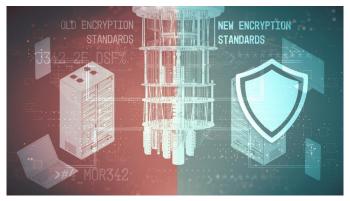
 2014 : La Fondation Linux a créé la Post-Quantum Cryptography Alliance (PQCA)

Septembre 2023 : PQXDH protocol (Signal)

o Février 2024 : PQ3 protocol (imessage)

• Avril 2024 : Chrome > 124 utilise Kyber768 pour TLS 1.3

o Mai 2024 : migre vers Kyber pour l'échange de clés TLS.


 Le 7 juin 2024, ont proclamé 2025 comme l'Année Internationale de la Science et de la Technologie Quantiques

Février 2025 : annonce 1 million de qbits topologiques.

Majorana

• Le 10 juin 2025, Le 1

Hybridation

Le meilleur des deux mondes

Standardisation 2023

ML-KEM : CRYSTALS-Kyber

KEM: HQC

ML-DSA: CRYSTALS-Dilithium

SLH-DSA : SPHINCS+

FN-DSA : Falcon

	Taille en bytes		Temps en cycles	
	Clé publique	Chiffré	Encapsulation	Décapsulation
ML-KEM-512	800	2 420	45 200	34 572
HQC-KEM 256	7 245	14 485	753 000	1 469 000
RSA	512	512	400 000	4 000 000

	Taille en bytes		Temps en cycles	
	Clé publique	Signature	Signature	Vérification
ML-DSA	1 312	2 420	333 013	118 412
FN-DSA	897	666	386 678	82 340
SLH-DSA	32	17 088	1 100 000 000	1 190 000
DSA	521	64	4 000 000	400 000

A retenir

Algorithmes	Transition		
FCDSA	Déprécié après 2030		
LCD3A	Interdit après 2035		
RSA	Déprécié après 2030		
NJA	Interdit après 2035		

Conclusion

Merci pour votre attention

pascal.lafourcade@uca.fr