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Security for Data Scientists

Different Adversaries

Adversary Model

Qualities of the adversary:

I Clever: Can perform all operations he wants
I Limited time:

I Do not consider attack in 260.
I Otherwise a Brute force by enumeration is always possible.

Model used: Any Turing Machine.

I Represents all possible algorithms.

I Probabilistic: adversary can generates keys, random number...
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Different Adversaries

Adversary Models

The adversary is given access to oracles :

→ encryption of all messages of his choice
→ decryption of all messages of his choice

Three classical security levels:

I Chosen-Plain-text Attacks (CPA)

I Non adaptive Chosen-Cipher-text Attacks (CCA1)
only before the challenge

I Adaptive Chosen-Cipher-text Attacks (CCA2)
unlimited access to the oracle (except for the challenge)
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Different Adversaries

Chosen-Plain-text Attacks (CPA)

Adversary can obtain all cipher-texts from any plain-texts.
It is always the case with a Public Encryption scheme.
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Different Adversaries

Non adaptive Chosen-Cipher-text Attacks (CCA1)

Adversary knows the public key, has access to a decryption oracle
multiple times before to get the challenge (cipher-text), also
called “Lunchtime Attack” introduced by M. Naor and M. Yung
([NY90]).
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Different Adversaries

Adaptive Chosen-Cipher-text Attacks (CCA2)

Adversary knows the public key, has access to a decryption oracle
multiple times before and AFTER to get the challenge, but of
course cannot decrypt the challenge (cipher-text) introduced by
C. Rackoff and D. Simon ([RS92]).
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Different Adversaries

Summary of Adversaries

CCA2: O1 = O2 = {D} Adaptive Chosen Cipher text Attack

⇓
CCA1: O1 = {D}, O2 = ∅ Non-adaptive Chosen Cipher-text

Attack

⇓
CPA: O1 = O2 = ∅ Chosen Plain text Attack

9 / 81



Security for Data Scientists

Intuition of Computational Security

Outline

Different Adversaries

Intuition of Computational Security

Cloud Security

Partial and Full Homomorphic Encryption

Secure Matrix Multiplication

SSE

Privacy in DB

Conclusion

10 / 81



Security for Data Scientists

Intuition of Computational Security

One-Wayness (OW)

Put your message in a translucent bag, but you cannot read the
text.

Without the private key, it is computationally impossible to
recover the plain-text.
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Intuition of Computational Security

RSA Is it preserving your privacy?

4096 RSA encryption

Environs 60 températures possibles: 35 ... 41

{35}pk , {35, 1}pk , ..., {41}pk

12 / 81



Security for Data Scientists

Intuition of Computational Security

RSA Is it preserving your privacy?

4096 RSA encryption

Environs 60 températures possibles: 35 ... 41

{35}pk , {35, 1}pk , ..., {41}pk

12 / 81



Security for Data Scientists

Intuition of Computational Security

RSA Is it preserving your privacy?

4096 RSA encryption

Environs 60 températures possibles: 35 ... 41

{35}pk , {35, 1}pk , ..., {41}pk

12 / 81



Security for Data Scientists

Intuition of Computational Security

RSA Is it preserving your privacy?

4096 RSA encryption

Environs 60 températures possibles: 35 ... 41

{35}pk , {35, 1}pk , ..., {41}pk

12 / 81



Security for Data Scientists

Intuition of Computational Security

Is it secure ?

I you cannot read the text but you can distinguish which one
has been encrypted.

I Does not exclude to recover half of the plain-text
I Even worse if one has already partial information of the

message:
I Subject: XXXX
I From: XXXX
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Security for Data Scientists

Intuition of Computational Security

Indistinguishability (IND)

Put your message in a black bag, you can not read anything.

Now a black bag is of course IND and it implies OW.

The adversary is not able to guess in polynomial-time even a
bit of the plain-text knowing the cipher-text, notion
introduced by S. Goldwasser and S.Micali ([GM84]).
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Intuition of Computational Security

Is it secure?

I It is possible to scramble it in order to produce a new cipher.
In more you know the relation between the two plain text
because you know the moves you have done.
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Security for Data Scientists

Intuition of Computational Security

Non Malleability (NM)

Put your message in a black box.

But in a black box you cannot touch the cube (message), hence
NM implies IND.

The adversary should not be able to produce a new cipher-text
such that the plain-texts are meaningfully related, notion
introduced by D. Dolev, C. Dwork and M. Naor in 1991
([DDN91,BDPR98,BS99]).
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Intuition of Computational Security

Summary of Security Notions

Non Malleability
⇓

Indistinguishability
⇓

One-Wayness
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Cloud Security

Should we trust our remote storage?

Many reasons not to
I Outsourced backups and storage
I Sysadmins have root access
I Hackers breaking in

Solution:
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Cloud Security

Clouds
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Security for Data Scientists

Cloud Security

Properties

Acces from everywhere
Avaible for everything:
I Store documents, photos, etc
I Share them with colleagues, friends, family
I Process the data
I Ask queries on the data
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Cloud Security

Current solutions

Cloud provider knows the content and claims to actually
I identify users and apply access rights
I safely store the data
I securely process the data
I protect privacy
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Cloud Security

Users need more Storage and Privacy guarantees

I confidentiality of the data

I anonymity of the users

I obliviousness of the queries
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Cloud Security

Broadcast encryption (Fiat-Noar 1994)

The sender can select the target group of receivers to control who
access to the data like in PAYTV
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Cloud Security

Functional encryption [Boneh-Sahai-Waters 2011]

The user generates sub-keys Ky according to the input y to control
the amount of shared data.
From C = Encrypt(x), then Decrypt(Ky ,C ), outputs f (x , y)
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Cloud Security

Fully Homomorphic Encryption [Gentry 2009]
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Cloud Security

Fully Homomorphic Encryption [Gentry 2009]

FHE: encrypt data, allow manipulation over data.
Symmetric Encryption (secret key) is enough

f ({x1}K , {x2}K , . . . , {xn}K ) = {f (x1, x2, . . . , xn)}K
I Allows private storage
I Allows private computations
I Private queries in an encrypted database
I Private search: without leaking the content, queries and

answers.
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Partial and Full Homomorphic Encryption

Rivest Adleman Dertouzos 1978

“Going beyond the storage/retrieval of encrypted data by
permitting encrypted data to be operated on for interesting
operations, in a public fashion?”

29 / 81



Security for Data Scientists

Partial and Full Homomorphic Encryption

Partial Homomorphic Encryption

Definition (additively homomorphic)

E (m1)⊗ E (m2) ≡ E (m1 ⊕m2).

Applications

I Electronic voting
I Secure Fonction Evaluation
I Private Multi-Party Trust Computation
I Private Information Retrieval
I Private Searching
I Outsourcing of Computations (e.g., Secure Cloud Computing)
I Private Smart Metering and Smart Billing
I Privacy-Preserving Face Recognition
I . . . 30 / 81
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Partial and Full Homomorphic Encryption

Brief history of partially homomorphic cryptosystems

Enc(a, k) ∗ Enc(b, k) = Enc(a ∗ b, k)

Year Name Security hypothesis Expansion
1977 RSA factorization

1982 Goldwasser - Micali quadratic residuosity log2(n)

1994 Benaloh higher residuosity > 2

1998 Naccache - Stern higher residuosity > 2

1998 Okamoto - Uchiyama p-subgroup 3

1999 Paillier composite residuosity 2

2001 Damgaard - Jurik composite residuosity d+1
d

2005 Boneh - Goh - Nissim ECC Log

2010 Aguilar-Gaborit-Herranz SIVP integer lattices

Expansion factor is the ration ciphertext over plaintext.
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Partial and Full Homomorphic Encryption

Scheme Unpadded RSA

If the RSA public key is modulus m and exponent e, then the
encryption of a message x is given by

E(x) = xe mod m

E(x1) · E(x2) = xe1 x
e
2 mod m

= (x1x2)e mod m

= E(x1 · x2)
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Partial and Full Homomorphic Encryption

Scheme ElGamal

In the ElGamal cryptosystem, in a cyclic group G of order q with
generator g , if the public key is (G , q, g , h), where h = g x and x is
the secret key, then the encryption of a message m is
E(m) = (g r ,m · hr ), for some random r ∈ {0, . . . , q − 1}.

E(m1) · E(m2) = (g r1 ,m1 · hr1)(g r2 ,m2 · hr2)

= (g r1+r2 , (m1 ·m2)hr1+r2)

= E(m1 ·m2)
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Partial and Full Homomorphic Encryption

Fully Homomorphic Encryption

Enc(a, k) ∗ Enc(b, k) = Enc(a ∗ b, k)

Enc(a, k) + Enc(b, k) = Enc(a + b, k)

f (Enc(a, k),Enc(b, k)) = Enc(f (a, b), k)

Fully Homomorphic encryption

I Craig Gentry (STOC 2009) using lattices

I Marten van Dijk; Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan using integer

I Craig Gentry; Shai Halevi. ”A Working Implementation of
Fully Homomorphic Encryption”

I · · ·
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Partial and Full Homomorphic Encryption

Simple SHE: SGHV Scheme [vDGHV10]

Public error-free element : x0 = q0 · p
Secret key sk = p

Encryption of m ∈ {0, 1}

c = q · p + 2 · r + m

where q is a large random and r a small random.

Decryption of c

m = (c mod p) mod 2
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Partial and Full Homomorphic Encryption

Limitations

I Efficiency: HEtest: A Homomorphic Encryption Testing
Framework (2015)
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Secure Matrix Multiplication

Context: The Big Data
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Secure Matrix Multiplication

Problem: How to process this amount of data?

“Amount of data” >

Computation
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Secure Matrix Multiplication

Matrix Multiplication with MapReduce

MapReduce Paradigm

created MapReduce in 2004 to perform computation in
the PageRank algorithm.

How it works?
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Secure Matrix Multiplication

Matrix Multiplication with MapReduce

M

N

R1 R2 P

I M emits to R1: {(j , (M, i ,mij))}1≤i≤a,1≤j≤b
I N emits to R1: {(j , (N, k , njk))}1≤j≤b,1≤k≤c
I R1 emits to R2: {((i , k),mij · njk)}1≤i≤a,1≤j≤b,1≤k≤c

I R2 emits to P:

{
pik =

b∑
j=1

mij · njk

}
1≤i≤a,1≤k≤c
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Secure Matrix Multiplication

Privacy Properties

M

N

R1 R2 P

P1 M cannot learn any information about matrices N
and P

P2 N cannot learn any information about matrices M
and P

P3 R1 and R2 cannot learn any information about
matrices M, N, and P
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Secure Matrix Multiplication

Contributions

Two cryptographic approaches:

I Secure-Private (SP); assumes that nodes do not collude.

I Collision-Resistant-Secure-Private (CRSP).
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Paillier’s Cryptosystem

Paillier’s Cryptosystem

Key Generation

I Public Key pk = (n, g)
I n = p · q
I g ∈ Z∗

n2

I Secret Key sk = (λ, µ)
I λ = lcm(p− 1, q− 1)
I µ = (L(gλ mod n2))−1 mod n where L(x) = (x − 1)/n

Encryption Epk(·)

Epk(m) = gm · rn mod n2

Decryption Dsk(·)

Dsk(c) = L(cλ mod n2) · µ mod n
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Paillier’s Cryptosystem

Homomorphic Properties of the Paillier’s Cryptosystem

Homomorphic Addition of Plaintexts

Epk(m1) · Epk(m2) = Epk(m1 + m2)

Specific Homomorphic Multiplication of Plaintexts

Epk(m1)m2 = Epk(m1 ·m2 mod n)
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Secure-Private Approach

Secure-Private Approach

M

N
N and R2 do not collude

R1 R2 P

I M emits to R1: (j , (M, i , Epk(mij)))1≤i≤a,1≤j≤b

I N emits to R1:
(
j , (N, k , njk + τjk , EpkR2

(τjk))
)
1≤j≤b,1≤k≤c

I R1 emits to R2:(
(i , k), Epk(mij)

njk+τjk , Epk(mij), EpkR2
(τjk)

)
1≤i≤a,1≤j≤b,1≤k≤c
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Secure-Private Approach

Secure-Private Approach

How the user retrieves the matrix P?

1. R2 receives:(
(i , k), Epk(mij)

njk+τjk , Epk(mij), EpkR2
(τjk)

)
1≤i≤a,1≤j≤b,1≤k≤c

2. For each (i , k), R2 computes:

b∏
j=1

Epk(mij)
njk+τjk

Epk(mij)
DskR2

(EpkR2
(τjk ))

=
b∏

j=1

Epk(mij · njk)

= Epk(pik)

3. Then, R2 sends to P all Epk(pik).
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Collision-Resistant-Secure-Private Approach

Interactive Homomorphic Multiplication of
Ciphertexts [Cramer et al.]

How to compute Epk(m1 ·m2)?

(sk, pk) c1 = Epk(m1) and c2 = Epk(m2)

Picks two randoms δ1, δ2 ∈ Zn

Dsk(α1) = m1 + δ1
α1,α2←−−− α1 = c1 · Epk(δ1)

Dsk(α2) = m2 + δ2 α2 = c2 · Epk(δ2)
β = Epk((m1 + δ1) · (m2 + δ2))

β−→ Computes β

Epk (δ1·δ2)·c
δ2
1 ·c

δ1
2
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Collision-Resistant-Secure-Private Approach

Verification of the Computation

β

Epk(δ1 · δ2) · cδ11 · c
δ2
2

=
Epk((m1 + δ1) · (m2 + δ2))

Epk(δ1 · δ2) · Epk(m1)δ2 · Epk(m2)δ1

=
Epk(m1 ·m2 +m1 · δ2 +m2 · δ1 + δ1 · δ2)
Epk(δ1 · δ2) · Epk(m1)δ2 · Epk(m2)δ1

=
Epk(m1 ·m2) · Epk(m1 · δ2) · Epk(m2 · δ1) · Epk(δ1 · δ2)

Epk(δ1 · δ2) · Epk(m1 · δ2) · Epk(m2 · δ1)
= Epk(m1 ·m2)
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Collision-Resistant-Secure-Private Approach

Secure Matrix Multiplication with MapReduce

M

N

R1 R2 P

I M emits to R1: (j , (M, i , Epk(mij)))1≤i≤a,1≤j≤b
I N emits to R1: (j , (N, k, Epk(njk)))1≤j≤b,1≤k≤c
I R1 emits to R2: Epk(mij · njk)1≤i≤a,1≤j≤b,1≤k≤c (computed

via Interactive Homomorphic Multiplication)

I R2 emits to P:

{
Epk(pik) =

b∏
j=1
Epk(mij · njk)

}
1≤i≤a,1≤k≤c
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Conclusion

Computation/Communication Costs and Privacy

Algorithm Computation cost (big-O) Comm. cost (big-O)

Standard 2n2 + (C× + C+)n
3 n3 + 3n2

SP (C+ + 2CE)n
2 + (2C× + 2Cexp + CD)n

3 3n3 + 4n2

CRSP 2CEn
2 + (4CE + 7C× + 2CD + 2Cexp)n

3 4n3 + 3n2

I n = max(a, b, c)

I C+,C×,CE ,CD,Cexp are the costs of the associated operations
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Conclusion

Conclusion

Two secure approaches for matrix multiplication with MapReduce:

1. Secure-Private (SP): Assumes that nodes N and R2 do not
collude.

2. Collision-Resistant-Secure-Private (CRSP): Resists to
collisions but uses interaction between node R1 and R2.
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SSE

Outline

Different Adversaries

Intuition of Computational Security

Cloud Security

Partial and Full Homomorphic Encryption

Secure Matrix Multiplication

SSE

Privacy in DB

Conclusion
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SSE

Symmetric Searchable Encryption

Store data externally

I encrypted

I want to search data easily

I avoid downloading everything then decrypt

I allow others to search data without having access to plaintext
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SSE

Context

Symmetric Searchable Encryption (SSE )

I Outsource a set of encrypted data.

I Basic functionnality: single keyword query.

(Client) −→ (Server)
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SSE

Symmetric Searchable Encryption

When searching, what must be protected?

I retrieved data

I search query

I search query outcome (was anything found?)

Scenario
I single query vs multiple queries

I non-adaptive: series of queries, each independent of the others

I adaptive: form next query based on previous results

Number of participants

I single user (owner of data) can query data

I multiple users can query the data, possibly with access rights
defined by the owner
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SSE

SSE by Song, Wagner, Perrig 2000

Basic Scheme I

Ci = Wi⊕ < Si ,Fki (Si ) >

where Si are randomly generated and Fk(x) is a MAC with key k .
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SSE

Basic Scheme

Ci = Wi⊕ < Si ,Fki (Si ) >

To search W :

I Alice reveals {ki , where W may occur}
I Bob checks if W ⊕ Ci is of the form < s,Fki (s) >.

For unknown ki , Bob knows nothing

Problems for Alice !

I she reveals all ki ,

I or she has to know where W may occur !
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SSE

Scheme II: Controlled Searching

Modifications

Ci = Wi⊕ < Si ,Fki (Si ) >

where Si randoms, Fk(x) is a MAC with key k; ki = fk ′(Wi )

To search W :

I Alice only reveals k = fk ′(W ) and W .

I Bob checks if W ⊕ Ci is of the form < s,Fk(s) >

+ For unknown ki , Bob knows nothing
+ Nothing is revealed about location of W.

Problem

I Still does not support hidden search (Alice reveals W )
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SSE

Scheme III: Support for Hidden Searches

Scheme III : Hidden Searches

Ci = Ek ′′(Wi ) ⊕ < Si ,Fki (Si ) >

Si randoms and Fk(x) is a MAC with k and ki = fk ′(Ek ′′(Wi ))
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SSE

Scheme III: Support for Hidden Searches

Ci = Ek ′′(Wi ) ⊕ < Si ,Fki (Si ) >,where ki = fk ′(Ek ′′(Wi ))

To search W :

I Alice gives X = Ek ′′(W ) and k = fk ′(X ).

I Bob checks if X ⊕ Ci is of the form < s,Fk(s) >

Bob returns to Alice Ci

But Alice cannot recover the plaintext

She can recover Si with X but not Fki (Si ) because to compute
ki = fk ′(Ek ′′(Wi )) she needs to have Ek ′′(Wi).
In this case, why do you need search ?

61 / 81



Security for Data Scientists

SSE

Scheme III: Support for Hidden Searches

Ci = Ek ′′(Wi ) ⊕ < Si ,Fki (Si ) >,where ki = fk ′(Ek ′′(Wi ))

To search W :

I Alice gives X = Ek ′′(W ) and k = fk ′(X ).

I Bob checks if X ⊕ Ci is of the form < s,Fk(s) >

Bob returns to Alice Ci

But Alice cannot recover the plaintext

She can recover Si with X but not Fki (Si ) because to compute
ki = fk ′(Ek ′′(Wi )) she needs to have Ek ′′(Wi).
In this case, why do you need search ?

61 / 81



Security for Data Scientists

SSE

Final Scheme

Scheme IV : Final

Ci = Xi⊕ < Si ,Fki (Si ) >

where Si randoms and Fk(x) is a MAC with key k ,
Xi = Ek ′′(Wi ) =< Li ,Ri > and ki = fk ′(Li )
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SSE

Final Scheme (Ultimate TRICK !)

Ci = Xi⊕ < Si ,Fki (Si ) >

To search W :

I Alice gives X = Ek ′′(W ) =< L,R > and k = fk ′(L)

I Bob checks if X ⊕ Ci is of the form < s,Fk(s) >

Bob returns to Alice Ci

Alice recovers Si and then Li = Ci ⊕ Si . Then she computes
ki = fk ′(Li ) and then X = Ci⊕ < s,Fk(s) > and by decrypting
with k ′′ to obtain Wi .

Alice only needs to remember k ′′ and k ′.
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Privacy in DB
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Privacy in DB

Privacy vs. Confidentiality

Confidentiality

Prevent disclosure of information to unauthorized users

Privacy

• Prevent disclosure of personal information to unauthorized users
• Control of how personal information is collected and used
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Privacy in DB

Data Privacy and Security Measures

Access control

Restrict access to the (subset or view of) data to authorized users

Inference control

Restrict inference from accessible data to additional data

Flow control

Prevent information flow from authorized use to unauthorized use

Encryption

Use cryptography to protect information from unauthorized
disclosure while in transmit and in storage
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Privacy in DB

2 kinds of data

I Personal data

I Anonymous data

CNIL:

“Dès lors qu’elles concernent des personnes physiques identifiées
directement ou indirectement.”

French Law:

“Pour déterminer si une personne est identifiable, il convient de
considérer l’ensemble des moyens en vue de permettre son
identification dont dispose ou auxquels peut avoir accès le
responsable du traitement ou toute autre personne.”
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Privacy in DB

How to evaluate the security?

Three criteria of robustness:

I is it still possible to single out an individual ?
Singling out (Individualisation): the possibility to isolate
some or all records which identify an individual in the dataset

I is it still possible to link records relating to an individual ?
Linkability (Correlation): ability to link, at least, two records
concerning the same data subject or a group of data subjects.

I can information be inferred concerning an individual?
Inference (Deduction): deduce, with significant probability,
the value of an attribute from the values of a set of other
attributes
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Privacy in DB

Example

ID Age CP Sex Pathology

Paul Sésame 75 75000 F Cancer

Pierre Richard 55 78000 F Cancer

Henri Poincarré 40 71000 M Influe
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Privacy in DB

Randomization

Alter veracity of the DB to remove the link
I Noise addition: modifying attributes in the dataset such that

they are less accurate whilst retaining the overall distribution
I Permutation: shuffling the values of attributes in a table so

that some of them are artificially linked to different data
subjects,

I Differential Privacy: requires the outcome to be formally
indistinguishable when run with and without any particular
record in the data set.

Example

Q = select count() where Age = [20,30] and Diagnosis=B
Answer to Q on D1 and D2 should be indistinguishable, if Bob in
D1 or Bob out D2.
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Privacy in DB

Differential Privacy

C. Dwork : “Differential Privacy”, International Colloquium on
Automata, Languages and Programming , 2006.

Definition

Let ε be a positive real number and A be a randomized algorithm
that takes a dataset as input (representing the actions of the
trusted party holding the data). The algorithm A is ε-differentially
private if for all datasets D1 and D2 that differ on a single element
(i.e., the data of one person), and all subsets S of imA,

Pr[A(D1) ∈ S ] ≤ eε × Pr[A(D2) ∈ S ]

where the probability is taken over the randomness used by the
algorithm.
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Privacy in DB

Pseudonymisation

ID Age CP Sex Pathology

1 75 75000 F Cancer

2 55 78000 F Cancer

3 40 71000 M Influe

Replace identifier field by a new one called pseudonym.
Using Hash function
It does not ensure anonymity. Using several fields you can recover
name like it has benn done by Sweeney in 2001.

Example

Sex + birthday date + Zip code are unique for 80 % of USA
citizens. (record linkage attack)
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Privacy in DB

k-Anonymity

I Identify the possible fields that can be used to recover data
(generalisation).

I Modify them in order to have at least k different lines having
the same identifiers.

It reduce the probabolity to guess something to 1/k
Advantage: Analysis of data still give the same information that
the orginal data base.
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Privacy in DB

Example: k-Anonymity

Activity Age Pathology

M2 [22,23] Cancer

M2 [22,23] Blind

M2 [22,23] VIH

PhD [24,27] Cancer

PhD [24,27] Allergies

PhD [24,27] Allergies

L [20,21] Cancer

L [20,21] Cancer

L [20,21] Cancer

3-Anonymity
Activity for student can be Master licence or PhD instead of name
and activty, age can be ranged.
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Privacy in DB

Disadvantages: k-Anonymity

I It leaks negative information. For instance you are not in all
the other catergories.

I If all personn have the same value then the value is leaked.

I Main problem is to determine the right generalisation (it is
difficult and expensive).

Minimum Cost 3-Anonymity is NP-Hard for |Σ| = 2 (Dondi et al.
2007)

75 / 81



Security for Data Scientists

Privacy in DB

l-diversity

Aims at avoiding that all person have the same values once they
have been generalized.
l values souhld be inside each field after generalisation. It allows to
recover information by mixing information with some probability

Activity Age Pathology

M2 [22,23] Cancer

M2 [22,23] Allergies

M2 [22,23] VIH

PhD [24,27] Cancer

PhD [24,27] VIH

PhD [24,27] Allergies

L [20,21] VIH

L [20,21] Allergies

L [20,21] Cancer

3-diversity, each category has 3 different values 76 / 81
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Privacy in DB

t-closeness

Knowledge of global distribution of sensitive data of a class of
equivalence.
It tries to reduce the weaknesses introduced by the l-diversity.
t is the factor that says how we are far from a global distribution.

I How to split data into partion to obtain all the same
distribution.

I If all class of equivalence have the same number of data, what
is the utility of any analysis of the data basis ?
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Privacy in DB

Summary

Is Risky Singling out Linkability Inference

Pseudonymisation Yes Yes Yes

Noise addition Yes May not May not

Substitution Yes Yes May not

Aggregation or K-anonymity No Yes Yes

L-diversity No Yes May not

Differential privacy May not May not May not
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Conclusion

Things to bring home

I Date Security is cruciual

I Security should be done by experts!

I Security should be taken from the design and not after!

Protocol + Properties + Intruder = Security
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Conclusion

Thank you for your attention.

Questions ?
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