
Security and Privacy of Hash-Based
Software Applications
This work has been partially supported by the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir.

Amrit Kumar

January 6, 2017

Privatics team, Inria
Université Grenoble Alpes



Hashing

• A function h : {0, 1}∗ → {0, 1}`, where ` is the digest size.

• Cryptographic: (second) pre-image and collision resistant.

h

?

h(x)

pre-image
resistance

h

x

h(x)

2nd pre-image
resistance

h

?

h(x ′)

6=

=

h

?

h(x)

collision
resistance

h

?

h(x ′)

6=

=

2` 2` 2`/2
Best generic
attack

2



Hashing

• A function h : {0, 1}∗ → {0, 1}`, where ` is the digest size.

• Cryptographic: (second) pre-image and collision resistant.

h

?

h(x)

pre-image
resistance

h

x

h(x)

2nd pre-image
resistance

h

?

h(x ′)

6=

=

h

?

h(x)

collision
resistance

h

?

h(x ′)

6=

=

2` 2` 2`/2
Best generic
attack

2



Are collisions always bad? (I)

A simple use case:

• Instead of storing n (large) data items, store their digests.
• If ` is large, collisions are hard to find ⇒ space required = n× ` bits.

Collisions for further space savings:

x1

x2

x3

xn

d1

di

dm

Data Digests

• di now substitutes both x1 and x2 ⇒ space required < n × ` bits.
• Caveat: May introduce some unexpected behavior.
• Core of several efficient (probabilistic) data structures:

• Bloom filters for membership testing
• Sketches for data stream analysis

3



Are collisions always bad? (I)

A simple use case:

• Instead of storing n (large) data items, store their digests.
• If ` is large, collisions are hard to find ⇒ space required = n× ` bits.

Collisions for further space savings:

x1

x2

x3

xn

d1

di

dm

Data Digests

• di now substitutes both x1 and x2 ⇒ space required < n × ` bits.
• Caveat: May introduce some unexpected behavior.

• Core of several efficient (probabilistic) data structures:
• Bloom filters for membership testing
• Sketches for data stream analysis

3



Are collisions always bad? (I)

A simple use case:

• Instead of storing n (large) data items, store their digests.
• If ` is large, collisions are hard to find ⇒ space required = n× ` bits.

Collisions for further space savings:

x1

x2

x3

xn

d1

di

dm

Data Digests

• di now substitutes both x1 and x2 ⇒ space required < n × ` bits.
• Caveat: May introduce some unexpected behavior.
• Core of several efficient (probabilistic) data structures:

• Bloom filters for membership testing
• Sketches for data stream analysis 3



Are collisions always bad? (II)

Use case in privacy:

• Hashing as a pseudonymization technique.

• If ` is large, but #identifiers n is enumerable (in reasonable time)
• Exhaustive search breaks pseudonymization.

d

d1

d2

` is large

` is small

h

h

h

h

• If ` is sufficiently small:
• On average n/2` identifiers share the same pseudonym.
• Notion of anonymity-set.
• Caveat: Provides weak anonymity guarantees.
• Employed in Google Safe Browsing: a malicious URL detection tool.

4



Are collisions always bad? (II)

Use case in privacy:

• Hashing as a pseudonymization technique.

• If ` is large, but #identifiers n is enumerable (in reasonable time)
• Exhaustive search breaks pseudonymization.

d

d1

d2

` is large ` is small

h

h

h

h

• If ` is sufficiently small:
• On average n/2` identifiers share the same pseudonym.
• Notion of anonymity-set.
• Caveat: Provides weak anonymity guarantees.
• Employed in Google Safe Browsing: a malicious URL detection tool. 4



Contrasting perspectives and outline

Contrasting perspectives

• Collisions have to be absolutely avoided in cryptography.

• Somewhat welcome in algorithms and data structures.

• Useful to some extent in the context of privacy.

Goal: Investigate the security and privacy implications of hash collisions.

Focus for today:

• Security: Bloom Filters
1. The Power of Evil Choices in Bloom Filters. DSN’15

Joint work with T. Gerbet and C. Lauradoux
2. Bloom Filters in Adversarial Settings. Under submission

Joint work with C. Lauradoux and P. Lafourcade

• Privacy: Safe Browsing
1. A Privacy Analysis of Google and Yandex Safe Browsing. DSN’16

Joint work with T. Gerbet and C. Lauradoux

5



Contrasting perspectives and outline

Contrasting perspectives

• Collisions have to be absolutely avoided in cryptography.

• Somewhat welcome in algorithms and data structures.

• Useful to some extent in the context of privacy.

Goal: Investigate the security and privacy implications of hash collisions.

Focus for today:

• Security: Bloom Filters
1. The Power of Evil Choices in Bloom Filters. DSN’15

Joint work with T. Gerbet and C. Lauradoux
2. Bloom Filters in Adversarial Settings. Under submission

Joint work with C. Lauradoux and P. Lafourcade

• Privacy: Safe Browsing
1. A Privacy Analysis of Google and Yandex Safe Browsing. DSN’16

Joint work with T. Gerbet and C. Lauradoux

5



Security: Bloom Filters



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 0 0 0 0 0 0 0

S = {x1, x2, x3} k = 2

y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.
• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 0 0 0 0 0 0

S = {x1, x2, x3} k = 2

y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.
• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 0 0 1 0 0 0

S = {x1, x2, x3} k = 2

y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.
• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.
• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y1

/∈ S y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.

• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y1

/∈ S y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.

• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y1 /∈ S

y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.

• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y1 /∈ S y2 = x2

y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.

• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y1 /∈ S y2 = x2

y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.

• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y1 /∈ S y2 = x2 y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.

• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y1 /∈ S y2 = x2 y3 /∈ S

(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.

• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y1 /∈ S y2 = x2 y3 /∈ S(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.

• False positive rate and its optimum value have been well studied.

7



Bloom filters [Bloom 1970]

Setup(m, n, k):

• A binary vector ~z of size m compressing a set of n items.
• k uniform and independent hash functions: hi : {0, 1}∗ → [0,m − 1]
• ~z initialized to ~0.

Operations:

• Insert(x): Set bits of ~z at h1(x), . . . , hk(x) to 1.

0 0 0 1 1 0 1 1 0 1

S = {x1, x2, x3} k = 2

y1 /∈ S y2 = x2 y3 /∈ S(false positive)

• Query(y): Return True if bits of ~z at h1(y), . . . , hk(y) are all 1.
• False positive rate and its optimum value have been well studied. 7



Our contributions

• Define adversary models for Bloom filters.
• Query-only adversary
• Chosen-insertion adversary
• Deletion adversary

• Specific to counting Bloom filters (not covered today)

• DoS attacks on Bloom enabled software applications:
• Increase false positive probability,
• Increase query time.

• Worst-case analysis of Bloom filters:
• false-positive probability,
• new filter parameters.

• Bloom hash tables as a potential replacement for Bloom filters.

8



Query-only adversary

Capabilities: Only queries to the filter.
Assumption: State of the filter is known.

Goals:

• Craft items that generate false positives
• Probability to forge a false positive is:

(
wH (~z)

m

)k

wH(·) is the Hamming weight.

• Or, items whose processing leads to latency.
• First k − 1 bits are set to 1 and the k-th bit set to 0.

1 0 1 0 1 1 0 1 1 0 1 0

y k = 3

• The probability of finding such an item is:

(m − wH(~z)) ·
(
wH (~z)
k−1

)
mk

.

9



Query-only adversary

Capabilities: Only queries to the filter.
Assumption: State of the filter is known.

Goals:

• Craft items that generate false positives

• Probability to forge a false positive is:
(

wH (~z)
m

)k

wH(·) is the Hamming weight.

• Or, items whose processing leads to latency.
• First k − 1 bits are set to 1 and the k-th bit set to 0.

1 0 1 0 1 1 0 1 1 0 1 0

y k = 3

• The probability of finding such an item is:

(m − wH(~z)) ·
(
wH (~z)
k−1

)
mk

.

9



Query-only adversary

Capabilities: Only queries to the filter.
Assumption: State of the filter is known.

Goals:

• Craft items that generate false positives
• Probability to forge a false positive is:

(
wH (~z)

m

)k

wH(·) is the Hamming weight.

• Or, items whose processing leads to latency.
• First k − 1 bits are set to 1 and the k-th bit set to 0.

1 0 1 0 1 1 0 1 1 0 1 0

y k = 3

• The probability of finding such an item is:

(m − wH(~z)) ·
(
wH (~z)
k−1

)
mk

.

9



Query-only adversary

Capabilities: Only queries to the filter.
Assumption: State of the filter is known.

Goals:

• Craft items that generate false positives
• Probability to forge a false positive is:

(
wH (~z)

m

)k

wH(·) is the Hamming weight.

• Or, items whose processing leads to latency.
• First k − 1 bits are set to 1 and the k-th bit set to 0.

1 0 1 0 1 1 0 1 1 0 1 0

y k = 3

• The probability of finding such an item is:

(m − wH(~z)) ·
(
wH (~z)
k−1

)
mk

.

9



Query-only adversary

Capabilities: Only queries to the filter.
Assumption: State of the filter is known.

Goals:

• Craft items that generate false positives
• Probability to forge a false positive is:

(
wH (~z)

m

)k

wH(·) is the Hamming weight.

• Or, items whose processing leads to latency.
• First k − 1 bits are set to 1 and the k-th bit set to 0.

1 0 1 0 1 1 0 1 1 0 1 0

y k = 3

• The probability of finding such an item is:

(m − wH(~z)) ·
(
wH (~z)
k−1

)
mk

. 9



Chosen-insertion adversary

Capabilities: Can choose items to insert in the filter.
Assumption: State of the filter is known.

Goal: Increase the false positive probability.

Strategy: Greedily insert x that maximizes #bits set to 1.

• Each x sets k bits to 1.

0 0 0 1 0 1 1 1 1 1 1 1

x1 x2 x3 x4

Impact:

No attack Under attack
#bits set to 1 0.72nkopt nkopt

false positive rate (f ) 1
2
kopt

(
nkopt
m

)kopt

10



Chosen-insertion adversary

Capabilities: Can choose items to insert in the filter.
Assumption: State of the filter is known.
Goal: Increase the false positive probability.

Strategy: Greedily insert x that maximizes #bits set to 1.

• Each x sets k bits to 1.

0 0 0 1 0 1 1 1 1 1 1 1

x1 x2 x3 x4

Impact:

No attack Under attack
#bits set to 1 0.72nkopt nkopt

false positive rate (f ) 1
2
kopt

(
nkopt
m

)kopt

10



Chosen-insertion adversary

Capabilities: Can choose items to insert in the filter.
Assumption: State of the filter is known.
Goal: Increase the false positive probability.

Strategy: Greedily insert x that maximizes #bits set to 1.

• Each x sets k bits to 1.

0 0 0 1 0 1 1 1 1 1 1 1

x1 x2 x3 x4

Impact:

No attack Under attack
#bits set to 1 0.72nkopt nkopt

false positive rate (f ) 1
2
kopt

(
nkopt
m

)kopt

10



Chosen-insertion adversary

Capabilities: Can choose items to insert in the filter.
Assumption: State of the filter is known.
Goal: Increase the false positive probability.

Strategy: Greedily insert x that maximizes #bits set to 1.

• Each x sets k bits to 1.

0 0 0 1 0 1 1 1 1 1 1 1

x1 x2 x3 x4

Impact:

No attack Under attack
#bits set to 1 0.72nkopt nkopt

false positive rate (f ) 1
2
kopt

(
nkopt
m

)kopt

10



Impact on a sample filter

Parameters: m = 3200, n = 600, kopt = 4, fopt = 0.077

0 100 200 300 400 500 600
Number of inserted items

False positive probability

0

0.07

0.14

0.21

0.28

0.35

f adv
Partial
f

fopt

insert last
200 items

11



Applying adversary models

Factors enabling our attacks:

• Insecure hash functions.

• Digest truncation.

• High Bloom filter false positive rate.

Vulnerable software applications:

Software app. Hashing Parameter info.

Scrapy: Web crawler NA NA
Dablooms: Spam filter MurmurHash n = 100000, f = 0.057
Squid: Web proxy MD5 f = 0.09, k = 4
AIEngine: NIDS C++ hash ` = 13, n = 5000, f = 0.45
NSRL: Forensic tool SHA-1 ` = 32, n ≈ 14× 106, f = 8.08× 10−10

sdhash: Forensic tool SHA-1 ` = 11, n = 128, f = 0.0014

12



Bypassing a forensic tool

NSRL forensic tool:

• A whitelist of “known safe files”.

• Stored and distributed as a Bloom filter.

• Maintained by NIST.

A query-only attack: Goal is to hide a contraband file.

• Adversary modifies the file to create a false positive.

• Modification should be easily reversible.

• The filter detects the file as safe.

13



Countermeasure against chosen-insertion attacks

Use worst-case parameters for Bloom filters:

• Fix m, n and choose k that minimizes false positive probability:

f adv =

(
nk

m

)k

Optimal values are:

kadv
opt =

m

en
and f adv

opt = e−m/en

• Impact: On a sample Bloom filter with m = 3200, n = 600.
• Average case: kopt = 4, fopt = 0.077
• Worst case: kadv

opt = 2, f adv
opt = 0.1

14



Countermeasure against chosen-insertion attacks

Use worst-case parameters for Bloom filters:

• Fix m, n and choose k that minimizes false positive probability:

f adv =

(
nk

m

)k

Optimal values are:

kadv
opt =

m

en
and f adv

opt = e−m/en

• Impact: On a sample Bloom filter with m = 3200, n = 600.
• Average case: kopt = 4, fopt = 0.077
• Worst case: kadv

opt = 2, f adv
opt = 0.1

14



Countermeasure against chosen-insertion attacks

Use worst-case parameters for Bloom filters:

• Fix m, n and choose k that minimizes false positive probability:

f adv =

(
nk

m

)k

Optimal values are:

kadv
opt =

m

en
and f adv

opt = e−m/en

• Impact: On a sample Bloom filter with m = 3200, n = 600.
• Average case: kopt = 4, fopt = 0.077
• Worst case: kadv

opt = 2, f adv
opt = 0.1

14



Summary of other attacks & defenses

Attacks:

Software app. Attacks

Scrapy: Web crawler chosen-insertion, query-only
Dablooms: Spam filter chosen-insertion, deletion
Squid: Web proxy chosen-insertion, query-only
AIEngine: NIDS query-only
sdhash: Forensic tool query-only

Defenses:

• Use HMAC.

• Use an alternate data structure: Bloom hash tables [Bloom 1970]
• Resists better to chosen-insertion attacks.
• Is often more memory efficient than Bloom filters.
• On average O(k) hash computations for items not in the table.
• On average O(ln k) for items in the table.

15



Summary of other attacks & defenses

Attacks:

Software app. Attacks

Scrapy: Web crawler chosen-insertion, query-only
Dablooms: Spam filter chosen-insertion, deletion
Squid: Web proxy chosen-insertion, query-only
AIEngine: NIDS query-only
sdhash: Forensic tool query-only

Defenses:

• Use HMAC.

• Use an alternate data structure: Bloom hash tables [Bloom 1970]
• Resists better to chosen-insertion attacks.
• Is often more memory efficient than Bloom filters.
• On average O(k) hash computations for items not in the table.
• On average O(ln k) for items in the table.

15



Related work

• Algorithmic complexity attacks [Crosby et al. 2003]:
• DoS attacks against hash tables.
• Force hash tables to operate in O(n) instead of O(1).
• Similar attacks against skip-lists, regular expressions, etc.

• Independent work on Bloom filters [Naor et al. 2015]
• Provide a theoretical framework.
• Study a query-only adversary: Can only adaptively query the filter.

16



Privacy: Safe Browsing



Google Safe Browsing in Mozilla Firefox

18



And many others

19



Adverted privacy policy

“We collect: visited web pages, clickstream data or web address
accessed, browser identifier and user ID.” — WOT

“collects information including: IP address, the origin of the
search ... and may share this info with a third party” — Norton

Many Safe Browsing services are privacy unfriendly by design.

“...cannot determine the real URL from the information
received.” — Google

• Google seems to provide the most private service.

• Hence, focus of this work.

20



Adverted privacy policy

“We collect: visited web pages, clickstream data or web address
accessed, browser identifier and user ID.” — WOT

“collects information including: IP address, the origin of the
search ... and may share this info with a third party” — Norton

Many Safe Browsing services are privacy unfriendly by design.

“...cannot determine the real URL from the information
received.” — Google

• Google seems to provide the most private service.

• Hence, focus of this work.

20



Adverted privacy policy

“We collect: visited web pages, clickstream data or web address
accessed, browser identifier and user ID.” — WOT

“collects information including: IP address, the origin of the
search ... and may share this info with a third party” — Norton

Many Safe Browsing services are privacy unfriendly by design.

“...cannot determine the real URL from the information
received.” — Google

• Google seems to provide the most private service.

• Hence, focus of this work.

20



Google Safe Browsing: When, Why and How?

• When: In 2008 by Google.

• Goals: Protect from:
• Phishing sites
• Malware sites

• How: Easy-to-use APIs in C#, Python and PHP.

• Methodology: Blacklists.

• Available in:

• Impact:
• Billions of users.
• Detects thousands of new malicious websites per day.

• Cloned by Yandex as Yandex Safe Browsing. 21



Lookup API

• Google harvests phishing and malware URLs to feed a blacklist.

• Client checks the status using a simple HTTP GET/POST request:
sb-ssl.google.com/safebrowsing/api/lookup?example.com

Issues

• Does not scale: Heavy network traffic.

• Privacy: URLs are sent in clear.

22

sb-ssl.google.com/safebrowsing/api/lookup?


Lookup API

• Google harvests phishing and malware URLs to feed a blacklist.

• Client checks the status using a simple HTTP GET/POST request:
sb-ssl.google.com/safebrowsing/api/lookup?example.com

Issues

• Does not scale: Heavy network traffic.

• Privacy: URLs are sent in clear.

22

sb-ssl.google.com/safebrowsing/api/lookup?


Improving privacy using a local cache

Database

Server Client
Local cache

(3) Conditional
query

(4) Answer

(1) Query

(2) Answer

Extended client

• Communication with the server is reduced.

• Better privacy.

23



Google Safe Browsing API (v3): Local cache

• Blacklists:
List name Description #Entries

goog-malware-shavar malware 317,807
googpub-phish-shavar phishing 312,621
goog-regtest-shavar test file 29,667
goog-unwanted-shavar unwanted software *
goog-whitedomain-shavar unused 1

• Does not handle URLs directly, instead their SHA-256 digests.

www.evil.com/ SHA-256 cc7af8a3...1918

cc7af8a3...1918

32-bit prefix

• Local cache contains prefixes.

24



Google Safe Browsing API (v3): Local cache

• Blacklists:
List name Description #Entries

goog-malware-shavar malware 317,807
googpub-phish-shavar phishing 312,621
goog-regtest-shavar test file 29,667
goog-unwanted-shavar unwanted software *
goog-whitedomain-shavar unused 1

• Does not handle URLs directly, instead their SHA-256 digests.

www.evil.com/ SHA-256 cc7af8a3...1918

cc7af8a3...1918

32-bit prefix

• Local cache contains prefixes. 24



Client’s behavior chart

User’s input

URL
Canonicalize and
compute digest

Found
prefix?

Get full
digests

Found
digest?

Malicious
URL

Non-malicious
URL

yes

no

yes

no

25



Canonicalization and decompositions

• Input URL:
http://usr:pwd@a.b.c:port/1/2.ext?param=1#frags

• Canonicalize(Input URL) → http://a.b.c/1/2.ext?param=1
• Canonicalization for privacy too: Removes username and password.

• Multiple decompositions are checked for a single URL.

Decompositions of canonicalized URL

1. a.b.c/1/2.ext?param=1
2. a.b.c/1/2.ext
3. a.b.c/1/
4. a.b.c/

5. b.c/1/2.ext?param=1
6. b.c/1/2.ext
7. b.c/1/
8. b.c/

• Each matching prefix is sent to the server.
• Any matching full digest ⇒ Initial URL is malicious.

26

http://usr:pwd@a.b.c:port/1/2.ext?param=1#frags
http://a.b.c/1/2.ext?param=1


Canonicalization and decompositions

• Input URL:
http://usr:pwd@a.b.c:port/1/2.ext?param=1#frags

• Canonicalize(Input URL) → http://a.b.c/1/2.ext?param=1
• Canonicalization for privacy too: Removes username and password.

• Multiple decompositions are checked for a single URL.

Decompositions of canonicalized URL

1. a.b.c/1/2.ext?param=1
2. a.b.c/1/2.ext
3. a.b.c/1/
4. a.b.c/

5. b.c/1/2.ext?param=1
6. b.c/1/2.ext
7. b.c/1/
8. b.c/

• Each matching prefix is sent to the server.
• Any matching full digest ⇒ Initial URL is malicious.

26

http://usr:pwd@a.b.c:port/1/2.ext?param=1#frags
http://a.b.c/1/2.ext?param=1


Purpose of computing decompositions

Memory saving:

• A domain which hosts only malicious URLs.
• Naive blacklisting: Include all malicious prefixes in the local cache.
• Memory-efficient blacklisting: Include only the domain prefix.

A more intricate example:

Unsafe link Safe link

d.b.c
e.b.c

b.c
a.b.c/2

a.b.c/1
a.b.c

• Naive blacklisting: Include a.b.c/1, a.b.c/2 and d.b.c.
• Memory-efficient blacklisting: Include only a.b.c and d.b.c.

27

a.b.c/1
a.b.c/2
d.b.c


Purpose of computing decompositions

Memory saving:

• A domain which hosts only malicious URLs.
• Naive blacklisting: Include all malicious prefixes in the local cache.
• Memory-efficient blacklisting: Include only the domain prefix.

A more intricate example:

Unsafe link Safe link

d.b.c
e.b.c

b.c
a.b.c/2

a.b.c/1
a.b.c

• Naive blacklisting: Include a.b.c/1, a.b.c/2 and d.b.c.
• Memory-efficient blacklisting: Include only a.b.c and d.b.c.

27

a.b.c/1
a.b.c/2
d.b.c


Purpose of computing decompositions

Memory saving:

• A domain which hosts only malicious URLs.
• Naive blacklisting: Include all malicious prefixes in the local cache.
• Memory-efficient blacklisting: Include only the domain prefix.

A more intricate example:

Unsafe link Safe link

d.b.c
e.b.c

b.c
a.b.c/2

a.b.c/1
a.b.c

• Naive blacklisting: Include a.b.c/1, a.b.c/2 and d.b.c.
• Memory-efficient blacklisting: Include only a.b.c and d.b.c.

27

a.b.c/1
a.b.c/2
d.b.c


Privacy of Google Safe Browsing

“Google cannot determine the real URL from the information
received.” — Google Safe Browsing v3 privacy policy

Our goal: A privacy analysis of Google and Yandex Safe Browsing

URL Prefix

www.evil.com/ cc7af8a3
www.example-1.com/11893474 cc7af8a3
www.example-2.com/5234456210 cc7af8a3
www.example-3.com/616445242 cc7af8a3

• Privacy due to anonymity-set.
• Estimate the anonymity-set size.
• Does it suffice to have a large anonymity-set?

28



Tracking Safe Browsing users

Our assumptions:

• Google and Yandex have incentives to behave maliciously.

• Wish to learn whether a user visits some selected URLs.

How Google can track Safe Browsing users?

• Builds a list of prefixes to track.

• Includes these prefixes in the client’s local cache.

• Learns from the requests whether a user visited a specific URL.

• Key parameter: Anonymity-set size.

29



Tracking Safe Browsing users

Our assumptions:

• Google and Yandex have incentives to behave maliciously.

• Wish to learn whether a user visits some selected URLs.

How Google can track Safe Browsing users?

• Builds a list of prefixes to track.

• Includes these prefixes in the client’s local cache.

• Learns from the requests whether a user visited a specific URL.

• Key parameter: Anonymity-set size.

29



Estimating anonymity-set size

• Anonymity-set size of a prefix: #URLs that yield the prefix.

Year #URLs #Domains

2008 1 Billion 177 Million
2012 30 Billion 252 Million
2013 60 Billion 271 Million

• Estimate anonymity-set size: Apply balls-into-bins model.

Avg. for URLs Avg. for Domains

Prefix length (bits) 2008 2012 2013 2008 2012 2013
16 223 228 229 2700 3845 4135
32 232 6984 13969 0.04 0.05 0.06
64 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ is very close to 0.
• Domains and URLs cannot be distinguished.
• Anonymity-set size seems to be large.

30



Estimating anonymity-set size

• Anonymity-set size of a prefix: #URLs that yield the prefix.

Year #URLs #Domains

2008 1 Billion 177 Million
2012 30 Billion 252 Million
2013 60 Billion 271 Million

• Estimate anonymity-set size: Apply balls-into-bins model.

Avg. for URLs Avg. for Domains

Prefix length (bits) 2008 2012 2013 2008 2012 2013
16 223 228 229 2700 3845 4135
32 232 6984 13969 0.04 0.05 0.06
64 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ is very close to 0.
• Domains and URLs cannot be distinguished.
• Anonymity-set size seems to be large.

30



Sending multiple prefixes

Example with two prefixes

Decomposition Prefix

petsymposium.org/2016/cfp.php 0xe70ee6d1
petsymposium.org/2016/ 0x1d13ba6a
petsymposium.org/ 0x33a02ef5

Intuitively:

• Prefix for petsymposium.org/ is not enough for re-identification.

• Sending two 32-bit prefixes, for petsymposium.org/ and
petsymposium.org/2016/ ≈ sending one 64-bit prefix.

• The maximum anonymity-set size for 64-bit prefixes is 1.
⇒ Should lead to re-identification.

31

petsymposium.org/2016/cfp.php
petsymposium.org/2016/
petsymposium.org/
petsymposium.org/
petsymposium.org/
petsymposium.org/2016/


Sending multiple prefixes

Example with two prefixes

Decomposition Prefix

petsymposium.org/2016/cfp.php 0xe70ee6d1
petsymposium.org/2016/ 0x1d13ba6a
petsymposium.org/ 0x33a02ef5

Intuitively:

• Prefix for petsymposium.org/ is not enough for re-identification.

• Sending two 32-bit prefixes, for petsymposium.org/ and
petsymposium.org/2016/ ≈ sending one 64-bit prefix.

• The maximum anonymity-set size for 64-bit prefixes is 1.
⇒ Should lead to re-identification.

31

petsymposium.org/2016/cfp.php
petsymposium.org/2016/
petsymposium.org/
petsymposium.org/
petsymposium.org/
petsymposium.org/2016/


Ambiguity on two prefixes

• More than two distinct URLs may yield the same two prefixes.
• Consider a user visiting a.b.c with prefixes A and B in local cache.

URL Decomposition Prefix

Target URL a.b.c
a.b.c/ A

b.c/ B

Ambiguity

Type I g.a.b.c
g.a.b.c/ C

a.b.c/ A

b.c/ B

Type II g.b.c
g.b.c/ A ← collision on 32 bits

b.c/ B

Type III d.e.f
d.e.f/ A ← collision on 32 bits

e.f/ B ← collision on 32 bits

• P[Type III] = 1/264.

• Type II URLs exist only when #decomp. on the domain > 232.

• P[Type I] > P[Type II] > P[Type III].

• Mainly, only Type I URLs create ambiguity in re-identification.

32



Ambiguity on two prefixes

• More than two distinct URLs may yield the same two prefixes.
• Consider a user visiting a.b.c with prefixes A and B in local cache.

URL Decomposition Prefix

Target URL a.b.c
a.b.c/ A

b.c/ B

Ambiguity

Type I g.a.b.c
g.a.b.c/ C

a.b.c/ A

b.c/ B

Type II g.b.c
g.b.c/ A ← collision on 32 bits

b.c/ B

Type III d.e.f
d.e.f/ A ← collision on 32 bits

e.f/ B ← collision on 32 bits

• P[Type III] = 1/264.

• Type II URLs exist only when #decomp. on the domain > 232.

• P[Type I] > P[Type II] > P[Type III].

• Mainly, only Type I URLs create ambiguity in re-identification. 32



How to track a given URL: A real-world example (I)

petsymposium.org/2015

petsymposium.org

petsymposium.org/2016/links.php

petsymposium.org/2016/cfp.php

petsymposium.org/2016/faqs.php

Type I URLs for target URL

petsymposium.org/2016

Goal: Identify users interested in PETs.

• Target URL is petsymposium/org/2016.

33

petsymposium/org/2016


How to track a given URL: A real-world example (II)

• Target URL has Type I ambiguity with: cfp.php,

Decomposition Prefix

petsymposium.org/2016/cfp.php 0xe705b6d1
petsymposium.org/2016/ 0x1d13ba6a
petsymposium.org/ 0x33a02ef5

• Including 2 prefixes in the local cache ⇒ Anonymity set size of 4.

• To remove any ambiguity:
• Need to include 3 additional prefixes for cfp.php, link.php, faqs.php.
• A total of 5 prefixes.

• Server receives 2 prefixes ⇒ visited page is the target URL.

• Server receives 3 prefixes ⇒ visited page is either of the leaf URLs.

• The third prefix decides which leaf URL was visited.

• Generalizable to any number of prefixes.

34

petsymposium.org/2016/cfp.php
petsymposium.org/2016/
petsymposium.org/


How to track a given URL: A real-world example (II)

• Target URL has Type I ambiguity with: cfp.php,link.php,

Decomposition Prefix

petsymposium.org/2016/link.php 0xdab45c01
petsymposium.org/2016/ 0x1d13ba6a
petsymposium.org/ 0x33a02ef5

• Including 2 prefixes in the local cache ⇒ Anonymity set size of 4.

• To remove any ambiguity:
• Need to include 3 additional prefixes for cfp.php, link.php, faqs.php.
• A total of 5 prefixes.

• Server receives 2 prefixes ⇒ visited page is the target URL.

• Server receives 3 prefixes ⇒ visited page is either of the leaf URLs.

• The third prefix decides which leaf URL was visited.

• Generalizable to any number of prefixes.

34

petsymposium.org/2016/link.php
petsymposium.org/2016/
petsymposium.org/


How to track a given URL: A real-world example (II)

• Target URL has Type I ambiguity with: cfp.php,link.php,faqs.php

Decomposition Prefix

petsymposium.org/2016/faqs.php 0xaec10b3a
petsymposium.org/2016/ 0x1d13ba6a
petsymposium.org/ 0x33a02ef5

• Including 2 prefixes in the local cache ⇒ Anonymity set size of 4.

• To remove any ambiguity:
• Need to include 3 additional prefixes for cfp.php, link.php, faqs.php.
• A total of 5 prefixes.

• Server receives 2 prefixes ⇒ visited page is the target URL.

• Server receives 3 prefixes ⇒ visited page is either of the leaf URLs.

• The third prefix decides which leaf URL was visited.

• Generalizable to any number of prefixes.

34

petsymposium.org/2016/faqs.php
petsymposium.org/2016/
petsymposium.org/


How to track a given URL: A real-world example (II)

• Target URL has Type I ambiguity with: cfp.php,link.php,faqs.php

Decomposition Prefix

petsymposium.org/2016/faqs.php 0xaec10b3a
petsymposium.org/2016/ 0x1d13ba6a
petsymposium.org/ 0x33a02ef5

• Including 2 prefixes in the local cache ⇒ Anonymity set size of 4.

• To remove any ambiguity:
• Need to include 3 additional prefixes for cfp.php, link.php, faqs.php.
• A total of 5 prefixes.

• Server receives 2 prefixes ⇒ visited page is the target URL.

• Server receives 3 prefixes ⇒ visited page is either of the leaf URLs.

• The third prefix decides which leaf URL was visited.

• Generalizable to any number of prefixes.

34

petsymposium.org/2016/faqs.php
petsymposium.org/2016/
petsymposium.org/


How to track a given URL: A real-world example (II)

• Target URL has Type I ambiguity with: cfp.php,link.php,faqs.php

Decomposition Prefix

petsymposium.org/2016/faqs.php 0xaec10b3a
petsymposium.org/2016/ 0x1d13ba6a
petsymposium.org/ 0x33a02ef5

• Including 2 prefixes in the local cache ⇒ Anonymity set size of 4.

• To remove any ambiguity:
• Need to include 3 additional prefixes for cfp.php, link.php, faqs.php.
• A total of 5 prefixes.

• Server receives 2 prefixes ⇒ visited page is the target URL.

• Server receives 3 prefixes ⇒ visited page is either of the leaf URLs.

• The third prefix decides which leaf URL was visited.

• Generalizable to any number of prefixes.

34

petsymposium.org/2016/faqs.php
petsymposium.org/2016/
petsymposium.org/


How to track a given URL: A real-world example (II)

• Target URL has Type I ambiguity with: cfp.php,link.php,faqs.php

Decomposition Prefix

petsymposium.org/2016/faqs.php 0xaec10b3a
petsymposium.org/2016/ 0x1d13ba6a
petsymposium.org/ 0x33a02ef5

• Including 2 prefixes in the local cache ⇒ Anonymity set size of 4.

• To remove any ambiguity:
• Need to include 3 additional prefixes for cfp.php, link.php, faqs.php.
• A total of 5 prefixes.

• Server receives 2 prefixes ⇒ visited page is the target URL.

• Server receives 3 prefixes ⇒ visited page is either of the leaf URLs.

• The third prefix decides which leaf URL was visited.

• Generalizable to any number of prefixes.

34

petsymposium.org/2016/faqs.php
petsymposium.org/2016/
petsymposium.org/


How to track a given URL: A real-world example (II)

• Target URL has Type I ambiguity with: cfp.php,link.php,faqs.php

Decomposition Prefix

petsymposium.org/2016/faqs.php 0xaec10b3a
petsymposium.org/2016/ 0x1d13ba6a
petsymposium.org/ 0x33a02ef5

• Including 2 prefixes in the local cache ⇒ Anonymity set size of 4.

• To remove any ambiguity:
• Need to include 3 additional prefixes for cfp.php, link.php, faqs.php.
• A total of 5 prefixes.

• Server receives 2 prefixes ⇒ visited page is the target URL.

• Server receives 3 prefixes ⇒ visited page is either of the leaf URLs.

• The third prefix decides which leaf URL was visited.

• Generalizable to any number of prefixes. 34

petsymposium.org/2016/faqs.php
petsymposium.org/2016/
petsymposium.org/


Examples of URLs creating multiple hits

• Over 1300 such URLs distributed over 30 domains.
• More frequent in Yandex than in Google Safe Browsing.

URL matching decomposition

Google
http://wps3b.17buddies.net/wp/cs_sub_7-2.pwf

17buddies.net/wp/cs_sub_7-2.pwf
17buddies.net/wp/

http://www.1001cartes.org/tag/emergency-issues
1001cartes.org/tag/emergency-issues

1001cartes.org/tag/

Yandex

http://fr.xhamster.com/user/video
fr.xhamster.com/
xhamster.com/

http://nl.xhamster.com/user/video
nl.xhamster.com/
xhamster.com/

http://m.wickedpictures.com/user/login
m.wickedpictures.com/
wickedpictures.com/

http://m.mofos.com/user/login
m.mofos.com/
mofos.com/

http://mobile.teenslovehugecocks.com/user/join
mobile.teenslovehugecocks.com/

teenslovehugecocks.com/

• Including a single prefix for xhmaster.com/ blacklists both
fr.xhmaster.com/ and nl.xhamster.com/.

• No need to add additional prefix for French or Dutch version.
35



Responsible disclosure and impact

• Disclosure to Mozilla Firefox:

“We have long assumed (without the math to back it up) that
if Google were evil it could seed the list with prefixes that
allowed it to detect whether a few users visited a few select
targets.” — Mozilla Firefox

• Disclosure to Yandex:

“We can’t promise but we plan to study them and provide you
with our feedback.” — Yandex Safe Browsing team

• Non-disclosure agreement with Google.
• Launch of Google Safe Browsing API v4 (In June 2016).

“Google does learn the hash prefixes of URLs, but the hash
prefixes don’t provide much information about the actual
URLs.” — Google Safe Browsing v4 privacy policy

36



Conclusions & Future Work



Conclusions

Lesson learnt: Collisions are hard to tame in security and privacy.

Bloom filters:

• Developers tend to ignore the worst-case of algorithms.

• Data structures with ad-hoc crypto primitives are at the best risky.

• Need of secure instantiations, e.g., as in Count-Min sketches.

Safe Browsing:

• Re-establish the weakness of anonymity-set privacy model.

• Google and Yandex both employ the same privacy model:
• Google is privacy aware.
• Yandex less so.

38



Future work

Bloom filters:

• On Bloom filters: Bloom paradox [Rottenstreich 2015].

• Beyond Bloom filters: Security of Bloom filter variants.

Safe Browsing:

• Accountability: Need of a decentralized blacklist management
system [Freudiger et al. 2015].

• Privacy: Can local cache improve Private Information Retrieval?

39



Thank you!

40



Other works not covered today

• Performance of cryptographic accumulators.

• Private password auditing.

• (In)Security of Google and Yandex Safe Browsing.

• Alerting websites: Risks and solutions.

• Decompression quines and anti-viruses.

• Pitfalls of hashing for privacy.

• Linkable (zero-knowledge) proofs for private and accountable gossip.

41


	Security: Bloom Filters
	Privacy: Safe Browsing
	Conclusions & Future Work

