





Quick Tour @ Michelin



A factory is divided into several workshops,
one for each step of the manufacturing process.



A production system is composed of devices, production
machines, and one or more software to control them.

O In our case, we target a single workshop only.



Software exchange information with points and machines by
sending and receiving production messages.

17-Jun-2015 23:29:59.50|17011|MSG_IN [pid: 1] [nsec: 8] [point: 1] ...

17-Jun-2015 23:29:59.61|17021|MSG OUT [pid: 1] [nsec: 8] [point: 3] ...

17-Jun-2015 23:29:59.70|17011|MSG IN [pid: 2] [nsec: 8] [point: 2] ...




Production messages are exchanged in a binary format (custom
protocols), through centralized messaging systems.



Each production message is tied to a product (e.g. tire),
identified by a product identifier (pid).

Gathering all production messages related to a product
allows to retrieve what happened to it.



Background



Developement Teams POV

100+ applications running in production
Not (fully) covered by tests
Documentation most likely outdated
MUST be maintained for ~20 years!



Customers (Factories) POV

e Stability over anything else
* Maintenance periods are planned,
but rather long (> 1 week)

e 1h (unexpected) downtime = 50k $



Testing such production systems is complex,
and takes a lot of time as it implies the physical
devices, and there are numerous behaviours.



These behaviours could be formally described into a model.
But writing such models is an heavy task and error prone.

O Not suitable for Michelin applications.



Our Approach

By leveraging the information found in the production messages,
we build formal and exact models (STS) that describe functional
behaviours of a production system under analysis.
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Autofunk In Depth
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Autofunk

e Combines different fields: model inference,
expert systems, and (now) machine learning

e WritteninJava 8, reusing powerful libraries
(e.g. Spark, Drools)

e More a Proof of Concept than a production-
ready tool

e Tobe open sourced (no ETA yet)


http://www.drools.org/
https://spark.apache.org/

Experimentation

10 million production messages (20 days)

¥
161,035 different traces
¥
S R(S)
/7,058 branches 1,587 branches
43,536 branches 1,585 branches
© 2 entry points here

It took 5 minutes to build the two models.




Work In Progress



Offline Passive Testing

e Inferred models are used as specifications
e Another set of traces is collected on a system
under test SUT (new or upgraded)

4

Does SUT conforms to the specifications?



Conclusion

e Fast and efficient technique to infer formal models

e The more production messages, the better!
e Butafew technical issues to tackle (memory
consumption for instance)



Future Work

e Deploying Autofunk as a real solution (WIP)
o Offline passive testing (WIP)
e Online passive testing



Thank You.

Questions?
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