

Quick Tour @ Michelin

A factory is divided into several workshops,
one for each step of the manufacturing process.

A production system is composed of devices, production
machines, and one or more software to control them.

O In our case, we target a single workshop only.

Software exchange information with points and machines by
sending and receiving production messages.

17-Jun-2015 23:29:59.50|17011|MSG_IN [pid: 1] [nsec: 8] [point: 1] ...

17-Jun-2015 23:29:59.61|17021|MSG OUT [pid: 1] [nsec: 8] [point: 3] ...

17-Jun-2015 23:29:59.70|17011|MSG IN [pid: 2] [nsec: 8] [point: 2] ...

Production messages are exchanged in a binary format (custom
protocols), through centralized messaging systems.

Each production message is tied to a product (e.g. tire),
identified by a product identifier (pid).

Gathering all production messages related to a product
allows to retrieve what happened to it.

Background

Developement Teams POV

100+ applications running in production
Not (fully) covered by tests
Documentation most likely outdated
MUST be maintained for ~20 years!

Customers (Factories) POV

e Stability over anything else
* Maintenance periods are planned,
but rather long (> 1 week)

e 1h (unexpected) downtime = 50k $

Testing such production systems is complex,
and takes a lot of time as it implies the physical
devices, and there are numerous behaviours.

These behaviours could be formally described into a model.
But writing such models is an heavy task and error prone.

O Not suitable for Michelin applications.

Our Approach

By leveraging the information found in the production messages,
we build formal and exact models (STS) that describe functional
behaviours of a production system under analysis.

The Big Picture

Production messages

Expert System

Machine Learning

|

Collecting
traces

@Drools

Traces(Sua)

Segmenting
and filtering
the trace
set

S

Spa

Formal Model

I

ST={ST1, .., ST}

Expert System

v

| Formalm |

5TS

Generation

v S

| Formal Model |
| Data Mining |

5Ts

Reduction

1 R(S)

)

STS
Abstraction

@Drools

’

Testing

| —

Autofunk In Depth

Production messages

v

Collecting
traces

Parse input data

v

Filter input data to
remove noise

v

Sort input data to
create a trace set

Traces(Sua)

Segmenting
and filtering
the trace set

Detect entry
and exit points

v

Create trace subsets

v

Remove repetitive
valued action

v

STS Construct sequences
Generation of transitions

Identify similar
sequences of actions

STS
Reduction *

Aggregate branches
and create matrix

R(S)
Extract knowledge
with inference rules
STS ‘
Abstraction + Testing

Reconstruct model

sequences
L y
ST={ST1, .., STn}

St

|)

Autofunk

e Combines different fields: model inference,
expert systems, and (now) machine learning

e WritteninJava 8, reusing powerful libraries
(e.g. Spark, Drools)

e More a Proof of Concept than a production-
ready tool

e Tobe open sourced (no ETA yet)

http://www.drools.org/
https://spark.apache.org/

Experimentation

10 million production messages (20 days)

¥
161,035 different traces
¥
S R(S)
/7,058 branches 1,587 branches
43,536 branches 1,585 branches
© 2 entry points here

It took 5 minutes to build the two models.

Work In Progress

Offline Passive Testing

e Inferred models are used as specifications
e Another set of traces is collected on a system
under test SUT (new or upgraded)

4

Does SUT conforms to the specifications?

Conclusion

e Fast and efficient technique to infer formal models

e The more production messages, the better!
e Butafew technical issues to tackle (memory
consumption for instance)

Future Work

e Deploying Autofunk as a real solution (WIP)
o Offline passive testing (WIP)
e Online passive testing

Thank You.

Questions?

e ~aL
N-,;-ERE';" AgC.F\
RS C
l, mil
P LIMOS

