
A Model-Based Testing Approach Combining
Passive Conformance Testing and Runtime
Verification: Application to Web Service
Compositions Deployed in Clouds

Sébastien Salva and Tien-Dung Cao

Abstract. This paper proposes a model-based testing approach which combines two
monitoring methods, runtime verification and passive testing. Starting from ioSTS
(input output Symbolic Transition System) models, this approach generates moni-
tors to check whether an implementation is conforming to its specification and meets
safety properties. This paper also tackles the trace extraction problem by reusing
the notion of proxy to collect traces from environments whose access rights are re-
stricted. Instead of using a classical proxy to collect traces, we propose to generate
a formal model from the specification, called Proxy-monitor, which acts as a proxy
and which can directly detect implementation errors. We apply and specialise this
approach on Web service compositions deployed in PaaS environments.

Keywords: Passive Testing, Runtime Verification, Proxy, ioco, Web services,
Clouds.

1 Introduction

Software testing is a large process, more and more considered by IT (Information
technologies) companies, used to check the correctness or quality of software, that
are notions required by end customers. In particular, Model-based Testing, which
is the topic of this paper, is an approach where the system to test is formally de-
scribed with specification models which express its functional behaviours. Beyond
the use of formal techniques, these models offer the advantage to automate some
(and eventually all) steps of the testing process. Usually, the latter is performed with
active approaches: basically, test cases are constructed from the specification and are

Sébastien Salva
LIMOS CNRS UMR 6158, University of Auvergne, France
e-mail: sebastien.salva@udamail.fr

Tien-Dung Cao
School of Engineering, Tan Tao University, Vietnam
e-mail: dung.cao@ttu.edu.vn

R. Lee (Ed.): SERA, SCI 496, pp. 99–116.
DOI: 10.1007/978-3-319-00948-3_7 c© Springer International Publishing Switzerland 2014

100 S. Salva and T.-D. Cao

experimented on its implementation to check whether the implementation meets de-
sirable behaviours w.r.t. a test relation which defines the confidence level of the test
between the specification and implementations. Active testing may give rise to some
inconvenient though, e.g., the repeated or abnormal disturbing the implementation.

Two other complementary approaches are employed to cover implementations
over a longer period of time without disturbing them: passive testing and runtime
verification. The former relies upon a monitor which passively observes the im-
plementation reactions, without requiring pervasive testing environments. The se-
quences of observed events, called traces, are analysed to check whether they meet
the specification. Runtime verification, originating from the Verification area, ad-
dresses the monitoring and analysis of system executions to check that strictly spec-
ified properties hold in every system states.

Both approaches share some important research directions, such as methodolo-
gies for checking test relations and properties, or trace extraction techniques. This
paper explores these directions and describes a testing technique which combines
the two previous approaches. The main contributions can be summarised threefold:

1. Combination of runtime verification and ioco passive testing: we propose to mon-
itor an implementation against a set of safety properties which express that ”noth-
ing bad ever happens”. These ones are known to be monitorable and can be used
to express a very large set of properties, e.g., security vulnerabilities. We combine
this monitoring approach with a previous work dealing with ioco passive testing
[13]. Ioco [15] is a well-known conformance test relation which defines the con-
forming implementations by means of suspension traces (sequences of actions
and quiescence). So, starting from an ioSTS (input output Symbolic Transition
System) model, our method generates monitors to check whether an implemen-
tation is ioco-conforming to its specification and meets safety properties,

2. Trace extraction: to collect traces on a system in production, it is required to
have the sufficient access rights on the implementation environment to install
testing tools. More and more frequently over recent years, these environment ac-
cess rights are restricted. For instance, Web server access rights are often strictly
limited for security reasons. Another example concerns Clouds. Clouds, and typi-
cally PaaS (Platform as a service) layers are virtualised environments where Web
services and applications are deployed. This virtualisation of resources combined
with access restriction make difficult the trace extraction. We address this issue
by using the notion of transparent proxy and by assuming that the implementa-
tion can be configured to pass through a proxy (usually the case for Web appli-
cations). But, instead of using a classical proxy to collect traces, we propose to
generate a formal model from the specification, called Proxy-monitor, which acts
as a proxy and which can directly detect implementation errors,

3. Analysis overhead: The proposed algorithms also offer the advantage of perform-
ing synchronous (receipt of an event, error detection, forward of the event to its
recipient) or asynchronous analyses (receipt and forward of an event, error de-
tection) whereas the use of a basic proxy allows asynchronous analysis only. The
overhead, with both synchronous and asynchronous analyses, is measured and
discussed in the experiment part.

Combining Passive Conformance Testing and Runtime Verification 101

The paper is structured as follows: initial notations and definitions are given in Sec-
tion 2. Section 3 gives some definitions about runtime verification and ioco passive
testing. The combination of both approaches is defined in Section 4. We apply, in
Section 5, the concept of Proxy-monitor on Web service compositions deployed in
Windows Azure which is the Cloud platform of Microsoft1. Finally, we review some
related works in Section 6 and Section 7 concludes the paper.

2 Model Definition and Notations

In this paper, we focus on models called input/output Symbolic Transition Systems
(ioSTS). An ioSTS is a kind of automata model, extended with two sets of vari-
ables, and with guards and assignments on transitions, which give the possibilities
to model the system state and constraints on actions.

Below, we give the definition of an ioSTS extension, called ioSTS suspension
which also expresses quiescence i.e., the authorised deadlocks observed from a lo-
cation. Quiescence is modelled by a new symbol !δ and an augmented ioSTS de-
noted Δ(ioSTS). For an ioSTS S, Δ(S) is obtained by adding a self-loop labelled by
!δ for each location where no output action may be observed. The guard of this new
transition must return true for each value which does not allow firing a transition
labelled by an output. More details about ioSTSs can be found in [9].

Definition 1 (ioSTS suspension). An ioSTS suspension is a tuple< L, l0,V,V0, I,Λ,
→>, where:

• L is the finite set of locations, with l0 the initial one,
• V is the finite set of internal variables, while I is the finite set of parameters. We

denote Dv the domain in which a variable v takes values. The internal variables
are initialised with the assignment V0 on V , which is assumed to be unique,

• Λ is the finite set of symbols, partitioned by Λ = ΛI ∪ΛO ∪{!δ}: ΛI represents
the set of input symbols, (ΛO) the set of output symbols,

• → is the deterministic finite transition set. A transition (li, l j,a(p),G,A), from

the location li ∈ L to l j ∈ L, denoted li
a(p),G,A−−−−−→ l j is labelled by an action a(p) ∈

Λ ×P(I), with a ∈ Λ and p ⊆ I a finite set of interaction variables. G is a guard
over (p∪V ∪T (p∪V)) which restricts the firing of the transition. T (p∪V) are
boolean terms over p∪V . Internal variables are updated with the assignment
function A of the form (x := Ax)x∈V Ax is an expression over V ∪ p∪T (p∪V).

Web service compositions exhibit special properties relative to the service-oriented
architecture (operations, partners, etc.). This is why we adapt the ioSTS action mod-
elling. To represent the communication behaviours of Web service compositions
with ioSTSs, we firstly assume that an action a(p) expresses either the call of a Web
service operation op with a(p) = opReq(p), or the receipt of an operation response
with a(p) = opResp(p), or quiescence. The set of parameters p must gather also
some specific variables:

1 http://www.windowsazure.com

http://www.windowsazure.com

102 S. Salva and T.-D. Cao

• the variable f rom is equal to the calling partner and the variable to is equal to the
called partner,

• Web services may engage in several concurrent interactions by means of several
stateful instances called sessions, each one having its own state. For delivering
incoming messages to the correct running session when several sessions are run-
ning concurrently, the usual technical solution is to add, in messages, a correla-
tion value set which matches a part of the session state [1]. A correlation set is
modelled with a parameter denoted coor in p.

The use of correlation sets also requires the following hypotheses which result from
the correlation sets functioning. Particularly, the last one is required to correlate
some successive operation calls with the same composite service instance:

Session identification: the specification is well-defined. When a message is re-
ceived, it always correlates with at most one session.
Message correlation: except for the first operation call which starts a new com-
position instance, a message opReq(p), expressing an operation call, must contain
a correlation set coor ⊆ p such that a non-empty subset c ⊆ coor is composed of
parameter values given in previous messages.

(a) An ioSTS suspension (b) A safety property

Fig. 1 ioSTS specifications

These notation are expressed in the straightforward example of Figure 1(a). For
each symbol of Figure 1(a), Table 1 gives the corresponding action, guard and as-
signment. This specification describes the functioning of a BookSeller service. A
client places an order composed of a list of books with BookSeller by supplying
an ISBN list and the quantity of books ordered. BookSeller calls a service Whole-
saler with WholeSalerReq to buy each book one by one. For one composition in-
stance, we have two sessions of Web services connected together with correlations
sets. Each session is identified with its own correlation set e.g., BookSeller with
c1 = {account = ”custid”}, and Wholesaler with c2 = {account = ”custid”, isbn=
”2070541274”}. As these two correlation sets respect the Message correlation
assumption, we can correlate the call of Wholesaler with one previous call of
BookSeller even though several sessions are running in parallel.

An ioSTS is also associated to an ioLTS (Input/Output Labelled Transition Sys-
tem) to formulate its semantics. Intuitively, the ioLTS semantics is a valued automa-
ton often infinite: the ioLTS states are labelled by internal variable values while

Combining Passive Conformance Testing and Runtime Verification 103

Table 1 Symbol table

Symbol Action Guard Update

?BOrder ?BookOrderReq(List
Books, quantity, ac-
count,from,to,corr)

G1=[from=”Client”
∧to=”BR”∧ corr =
{account}]

q:=quantity,
b:=ListBooks,
c1:=corr

?BOrder2 ?BookOrderReq(List
Books, quantity, ac-
count,from,to,corr)

[¬G1]

!BOrderResp !BookOrderResp(resp,
from, to, corr)

G3=[from=”BR”∧ to=
”Client”∧ resp=”Order
done”∧corr=c1]

?R1 ?BookOrderResp ?Whole-
SalerReq

?R2 ?BookOrderResp
?WholeSalerReq
?δ

[�=G3]
[�=G2]

!WSReq !WholeSalerReq(isbn,
from, to, corr)

G2=[isbn=b[q]∧
q ≥ 1∧from= ”BR”∧to=
”WS”∧ corr = {a, isbn}]

q := q−1

?BOrderReq’ ?BookOrderReq(List
Books, quantity,account)

G1’=[quantity≥ 1]

!WSReq’ !WholeSalerReq(isbn)
!BOrderResp’ !BookOrderResp(resp) G3’=[end(resp)=”done”]
!BOrder [G1’] ?BookOrderReq(List

Books, quantity,)
[G1’] q:= quantity,

b:=ListBooks,
c1:= corr

?BOrderResp[G3∧
G3′]

!BookOrderResp(resp) [G3∧G3′]

?BOrderResp[¬G3
∧G3′]

!BookOrderResp(resp,
from, to, corr)

[¬G3∧G3′]

?R3 ?BookOrderResp
?WholeSalerReq
?δ

[¬G3∧¬G3′]
[�=G2]

transitions are labelled by actions and parameter values. The semantics of an ioSTS
S=< L, l0,V,V 0, I,Λ ,→> is an ioLTS ||S||=< Q,q0,∑,→> composed of valued
states in Q = L×DV . q0 = (l0,V 0) is the initial one, ∑ is the set of valued symbols
and → is the transition relation. The complete definition of ioLTS semantics can be
found in [9].

Runs and traces of ioSTS can be defined from their semantics:

Definition 2 (Runs and traces). For an ioSTS S, interpreted by its ioLTS semantics
||S|| =< Q,q0,∑,→>, a run q0α0...αn−1qn is an alternate sequence of states and
valued actions. RunF(S) = RunF(||S||) is the set of runs of S finished by a state in
F ×DV ⊆ Q with F a set of locations of S.

104 S. Salva and T.-D. Cao

It follows that a trace of a run r is defined as the projection pro j∑(r) on actions.
TracesF(S) = TracesF(||S||) is the set of traces of runs finished by states in F×DV .

The parallel product is a classical state-machine operation used to produce a model
representing the shared behaviours of two original automata. For ioSTSs, these ones
are to be compatible:

Definition 3 (Compatible ioSTSs). An ioSTS S1 = < L1, l01,V1,V 01, I1,Λ1,→1>
is compatible with S2 = < L2, l02,V2,V02, I2, Λ2,→2> iff V1 ∩V2 = ∅, Λ I

1 = Λ I
2,

Λ O
1 = Λ O

2 and I1 = I2.

Definition 4 (Parallel product ||). The parallel product of two compatible ioSTSs
S1 =< L1, l01, V1,
V01, I1,Λ1,→1> and S2 = < L2, l02,V2,V02, I2, Λ2,→2>, denoted S1||S2, is the
ioSTS P=< LP, l0P,VP,V0P, IP,ΛP,→P> such that VP =V1 ∪V2, V0P =V 01∧
V02, IP = I1 = I2, LP = L1 ×L2, l0P = (l01, l02), ΛP =Λ1 =Λ2. The transition set
→P is the smallest set satisfying the following inference rule:

l1
a(p),G1,A1−−−−−−→S1

l2,l
′
1

a(p),G2,A2−−−−−−→S2
l2′

(l1,l′1)
a(p),G1∧G2,A1∪A2−−−−−−−−−−−→P(l2,L′2)

We end this Section with the definition of the ioSTS operation re f l which ex-
changes input and output actions of an ioSTS.

Definition 5 (Mirrored ioSTS and traces). Let S be an ioSTS. re f l(S) =de f<
LS, l0S,VS,V 0S, IS,Λre f l(S),→S> where Λ I

re f l(S) = Λ O
S , Λ O

re f l(S) = Λ I
S.

We extend the re f l notation on trace sets. re f l : (∑∗)∗ → (∑∗)∗ is the function
which constructs a mirrored trace set from an initial one (for each trace, input sym-
bols are exchanged with output ones and vice-versa).

3 Passive Testing with Proxy-Testers and Runtime Verification

To reason about conformance and property satisfiability, one assume that an imple-
mentation can be modelled with an ioLTS I. I is also assumed to have the same
interface as the specification (actions with their parameters) and is input-enabled to
accept any action.

For readability, the proofs of the propositions given below can be found in [14].

3.1 Verification of Safety Properties

The primary goal of runtime verification is to check whether an implementation
I, from which traces can be observed, meets a set of properties expressed in trace
predicate formalisms such as regular expressions, temporal logics or state machines.
Given that we wish to merge the verification of safety properties with an ioSTS-
based conformance, it sounds natural to also model them with a specific state ma-
chine model. We propose to take back the notion of observers [6] which capture the

Combining Passive Conformance Testing and Runtime Verification 105

negation of a safety property by means of final ”bad” locations. Runs which lead to
these locations represent behaviours which violate the property.

Definition 6 (Observer). An Observer is a deterministic ioSTS O composed of a
non empty set of violation locations ViolateO ⊂ LO. O must be both input and
output-enabled, i.e. for each state (l,v) ∈ LO × DO, and for each valued action

(a(p),θ) ∈ ΛO ×Dp, there exists (l,v)
a(p),θ−−−→ (l′,v′) ∈→||O||. Given an ioSTS S,

Comp(S) stands for the set of compatible Observers of S.

For the specification S, an Observer O has to be input and output-enabled and com-
patible with S. These assumptions are required to model a safety property which is
violated by all the traces in TracesViolateO(O) and which is satisfied by all the traces
in (∑||S||)∗ \TracesViolateO(O). Consequently, given an implementation I, one can
say that I satisfies the Observer O if I does not yield any trace which also violates
O:

Definition 7 (Implementation satisfies Observer). Let S be an ioSTS and I an
implementation. I satisfies the Observer O ∈ Comp(Δ(S)), denoted I |= O, if
Traces(Δ(I))∩TracesViolateO(O) =∅.

Figures 1(b) and Table 1 illustrate an example of Observer for the specification of
Figure 1(a). It means that ”the receipt of an order confirmation ending with ”done”,
without requesting WholeSaler, must never occurs”.

Two Observers O1 and O2, describing two different safety properties, can be
interpreted by the Observer O1||O2. In the remainder of the paper, we shall consider
only one Observer, assuming that it may represent one or more safety properties.

3.2 Ioco Testing with Proxy-Testers

In the paper, conformance is expressed with the relation ioco [15], which intuitively
means that I is ioco-conforming to its specification S if, after each trace of the ioSTS
suspension Δ(S), I only produces outputs (and quiescence) allowed by Δ(S). For
ioSTSs, ioco is defined as:

Definition 8. Let I be an implementation modelled by an ioLTS, and S be an
ioSTS. I is ioco-conforming to S, denoted I ioco S iff Traces(Δ(S)).(∑O∪{!δ})∩
Traces(Δ(I))⊆ Traces(Δ(S)).

We have shown in our previous work [13] that ioco can be checked on implemen-
tations by means of a passive testing technique relying upon the concept of Proxy-
tester. A Proxy-tester formally expresses the functioning of a transparent proxy, able
to collect traces and to detect non-conformance without requiring to be set up in the
same environment as the implementation one. We recall here some notions about
Proxy-testers.

The Proxy-tester of a deterministic ioSTS S is derived from its Canonical tester
Can(S). This model is composed of the transitions of →Δ (re f l(S)), i.e. the specifica-
tion transitions labelled by mirrored actions (inputs become outputs and vice-versa).

106 S. Salva and T.-D. Cao

(a) An ioSTS Canonical tester (b) An ioSTS Monitor

Fig. 2 Canonical tester and monitor examples

It is also enriched with transitions leading to a new location Fail, exhibiting the re-
ceipt of unspecified actions (expressing incorrect behaviours).

Instead of giving the definition of the Canonical tester, which can be found in
[14], we illustrate in Figure 2(a) and Table 1 the Canonical tester of the ioSTS
depicted in Figure 1(a). The specification actions are mirrored and, for instance, if
we consider the location 2, new transitions to Fail are added to model the receipt of
unspecified events (messages or quiescence).

The Proxy-tester of an ioSTS S corresponds to an augmented Canonical tester
where all the transitions, except those leading to Fail, are doubled to express the
receipt of an event and the forwarding to its addressee.

Definition 9 (Proxy-tester). The Proxy-tester of the ioSTS S=< LS, l0S,VS,V 0S,
IS,ΛS,→S> is the ioSTS Pr(Can(S)) where Pr is an ioSTS operation such that
Pr(Can(S)) =de f< LP∪LFP, l0Can(S),VCan(S)∪{side, pt},V0Can(S)∪{side := ””,
pt := ””}, ICan(S),ΛP,→P>. LFP = LFCan(S) = {Fail} is the Fail location set. LP,
ΛP and →P are constructed with the following rules:

l1
!a(p),G,A−−−−−→Can(S)l2,l2 /∈LFCan(S)

l1
?a(p),G,A∪{pt :=p,side:=””}−−−−−−−−−−−−−−−−→P(l1,l2,a(p),G)

!a(p),[p=pt],{(x:=x)x∈VCan(S)
,side:=”Can”,pt:=pt}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Pl2

l1
?a(p),G,A−−−−−→Can(S)l2,l2 /∈LFCan(S)

l1
?a(p),G,A∪{pt :=p,side:=”Can”}−−−−−−−−−−−−−−−−−−→P(l1,l2,a(p),G)

!a(p),[p=pt],{(x:=x)x∈VCan(S)
,side:=””,pt:=pt}

−−−−−−−−−−−−−−−−−−−−−−−−−−−→Pl2

l1
a(p),G,A−−−−−→Can(S)l2,l2∈LFCan(S)

l1
a(p),G,A∪{side:=”Can”,pt:=pt}−−−−−−−−−−−−−−−−−−→Pl2

Intuitively, the two first rules double the transitions whose terminal locations are
not in the Fail location set LF to express the functioning of a transparent proxy.
The first rule means that, for an event (action or quiescence) initially sent to the
implementation, the Proxy-tester waits for this event and then forwards it. The two

Combining Passive Conformance Testing and Runtime Verification 107

transitions are separated by a unique location composed of the tuple (l1, l2a(p)G)
to ensure that these two transitions, and only them, are successively fired. The last
rule enriches the resulting ioSTS with transitions leading to Fail. A new internal
variable, denoted side, is also added to keep track of the transitions provided by the
Canonical tester (with the assignment side:=”Can”). This distinction will be useful
to define partial traces of Proxy-testers and to express conformance with them.

Previously, we have also intentionally enriched Proxy-tester transitions with an
assignment on the variable side. The assignments side = ”Can” mark the transitions
carrying actions provided by the Canonical-tester. These assignments help to extract
partial runs and traces in Proxy-testers:

Definition 10 (Partial runs and traces). Let P be a Proxy-tester and ||P||= P =<
QP,q0P,∑P,→P> be its ioLTS semantics. We define Side : QP → DVP

the mapping
which returns the valuation of the side variable of a state in QP. SideE(QP)⊆ QP is
the set of states q ∈ QP such that Side(q) = E .

Let Run(P) be the set of runs of P. We denote RunE(P) the set of partial runs
derived from the projection pro jQP ∑P SideE (QP)

(Run(P)). It follows that TracesE(P)

is the set of partial traces of (partial) runs in RunE(P).

With these notations, we have showed that ioco can be rephrased with Proxy-tester
traces by [14]:

Proposition 1
I ioco S⇔ Traces(Δ(I))∩ re f l(TracesCan

Fail(Pr(Can(S)))) =∅

4 Combining Runtime Verification and Proxy-Testing

4.1 Proxy-Tester and Observer Composition

Canonical testers are enough for detecting all the implementations that are not ioco-
conforming to a given specification since they reflect incorrect behaviours in Fail
states. Observers offer at least one similarity with Canonical testers since they de-
scribe undesired behaviours. This similarity tends to combine them to produce a
model which could be used to detect both property violations and non-conformance.
This product is called Monitor. It refines the original Canonical tester behaviours by
separating the traces which violate safety properties among all the traces which may
be observed from the implementation under test. A monitor is defined as:

Definition 11 (Monitor). Let Δ(S) be an ioSTS suspension and O ∈ Comp(Δ(S))
be an Observer. The Monitor of the Canonical tester Can(S) and of the Observer O
is the ioSTS M=Can(S)||(re f l(O).

As an example, the Monitor constructed from the previous Canonical tester (Fig-
ure 2(a)) and the Observer of Figure 1(b) is depicted in Figure 2(b) and Table 1.
It contains different verdict locations: Fail received from the Canonical tester, Vio-
late received from the Observer and a combination of both Fail/Violate which de-
notes non-conformance and the violation of the safety property. For example, the

108 S. Salva and T.-D. Cao

trace ”?BookOrder(,1,”custid”) !BookOrderResp(”done”)” violates the Observer
of Figure 1(b) because WholeSaler is not called. This trace reflects also an incor-
rect behaviour because the response received ”done” is incorrect. We should have
received ”Order done”.

The combination of Canonical tester locations with Observer ones leads to new
locations labelled by local verdicts. We define these locations exhibiting verdicts by
verdict location sets:

Definition 12 (Verdict location sets). Let Can(S) be a Canonical tester and O ∈
Comp(Δ(S)) be a compatible Observer with Δ(S). The parallel product M =
Can(S)||re f l(O) produces several sets of verdict locations defined as follows:

1. VIOLATE = (LCan(S) \ {Fail})×ViolateO,
2. FAIL = {Fail}× (LO \ViolateO),
3. FAIL/VIOLATE = {(Fail,ViolateO)}.

In particular, we denote LFM = FAIL∪FAIL/VIOLATE , the Fail location set of
M.

Monitors share many similarities with Canonical testers: they have a mirrored alpha-
bet and a verdict location set LF . Typically, they are specialised Canonical testers
recognising also property violations. To passively monitor an implementation, it
sounds natural to apply the concept of Proxy-tester on Monitors. This gives a final
model called Proxy-monitor:

Definition 13 (Proxy-monitor). Let M be a Monitor resulting from the parallel
product Can(S)||re f l(O) with S an ioSTS and O ∈Comp(Δ(S)) an Observer com-
patible with the suspension of S.

We call Pr(M), the Proxy-monitor of M.

Proxy-monitors are constructed as Proxy-testers except that the Fail location sets
are different. For a Proxy-tester, there is only one Fail location, whereas a Proxy-
monitor has a Fail location set LFM equals to FAIL∪FAIL/VIOLATE since it stems
from a composition between an Observer and a Canonical tester. Except this differ-
ence, transitions of the Monitor are still doubled in its Proxy-monitor.

Before focusing on test verdicts which can be obtained from Proxy-monitors,
it remains to define formally the notion of passive monitoring of an implemen-
tation I by means of a Proxy-monitor. This product cannot be defined without
modelling the external environment, e.g., the client side, which interacts with the
implementation. We assume that this external environment can be also modelled
with an ioLTS Env which can interact with I (hence re f l(Env) is compatible with I
and Traces(Δ(Env)) is composed of sequences in re f l((∑Δ (I))

∗)).

Combining Passive Conformance Testing and Runtime Verification 109

Definition 14 (Monitoring of an implementation). Let PM =< QPM,q0PM,∑PM,
→PM> be the ioLTS semantics of a Proxy-monitor Pr(M) derived from an ioSTS
S and an Observer O ∈Comp(Δ(S)). QFPM ⊆ QPM = LFPr(M)×DVPr(M)

is its Fail
state set. I =< QI ,q0I,∑I ⊆ ∑M,→I> is the implementation model, assumed com-
patible with S and Env =< QEnv,q0Env,∑Env ⊆ ∑P,→Env> is the ioSTS modelling
the external environment, compatible with re f l(I).

The monitoring of I by Pr(M) is expressed with the product ||p(Env,PM, I) =<
QEnv×QPM ×QI,q0Env×q0PM ×q0I,∑PM,→||p(Env,PM,I)> where the transition re-
lation →||p(Env,PM,I) is defined by the smallest set satisfying the following rules. For

readability reason, we denote an ioLTS transition q1
?a−−→

”E”
q2 if Side(q2) = E (the

variable side is valued to E in q2).

q1
!a−→Δ(Env)q2,q

′′
2

?a−→Δ(I)q
′′
3 ,q

′
1

?a−→
”” PM

q′2
!a−−−→

”Can” PM
q′3

q1q′1q′′2
?a−→
”” ||p(Env,PM,I)

q2q′2q′′2
!a−−−→

”Can” ||p(Env,PM,I)
q2q′3q′′3

q2
?a−→Δ(Env)q3,q

′′
1

!a−→Δ(I)q
′′
2 ,q

′
1

?a−−−→
”Can” PM

q′2
!a−→
”” PM

q′3

q2q′1q′′1
?a−−−→

”Can” ||p(Env,PM,I)
q2q′2q′′2

!a−→
”” ||p(Env,PM,I)

q3q′3q′′2

q2
?δ−→Δ(Env)q3,q

′′
1

!a−→Δ(I)q
′′
2 ,q

′
1

?a−−−→
”Can” PM

q′2,q′2∈QFPM

q2q′1q′′1
?a−−−→

”Can” ||p(Env,PM,I)
q′2

The verdict list can now be drawn up from Definition 12. Concretely, the ob-
served traces lead to a set of verdicts, extracted from the verdict location sets which
indicate specification and/or safety property fulfilments or violations:

Proposition 2 (Test verdicts). Consider an external environment Env, an imple-
mentation I monitored with a Proxy-monitor Pr(M), itself derived from an ioSTS
S and an Observer O ∈Comp(Δ(S)). Let OT ⊆ Traces(||p(Env,PM, I)) be the ob-
served trace set. If there exists σ ∈ OT such that:

1. σ belongs to TracesFAIL/VIOLAT E(||p(Env,PM, I)), then I does not satisfy the
safety property and I is not ioco-conforming to S,

2. σ belongs to TracesFAIL(||p(Env,PM, I)), then I is not ioco-conforming to S,
3. σ belongs to TracesVIOLAT E(||p(Env,PM, I)), then I does not satisfy the safety

property.

Intuitively, the sketch of proof of the above Proposition is based on some succes-
sive Trace set replacements. For example with 1), we have TracesFAIL/VIOLAT E(||p(
Env,PM, I)) �=∅. By considering successively Definition 11, Definition 13 and Def-
inition 14, TracesFAIL/VIOLAT E (||p (Env,PM, I)) can be replaced by re f l(Traces(
Δ(I)))∩ (TracesFail(Can(S))∩TracesViolateO(re f l(O))) �=∅. We deduce that Tra
cesCan

FAIL/VIOLAT E(||p(Env,PM, I)) �=∅ iff re f l(Traces(Δ(I)))∩TracesFail(Can(S))

�=∅(a) and iff re f l(Traces(Δ(I)))∩re f l(TracesViolateO (O)) �=∅(b). From (a), we
have ¬I ioco S, from (b), we have I � O. The complete proof is given in [14].

110 S. Salva and T.-D. Cao

5 Application to Web Service Composition Deployed in Clouds

We consider having a Web service composition deployed in a PaaS environment
and we assume that each partner participating to the composition (Web services and
clients) are configured to pass through a passive tester. The latter, whose architec-
ture is depicted in Figure 3, is mainly based upon Proxy-monitors and aims to col-
lect all the traces of Web service composition instances. To consider these instances
and to detect non-conformance or violations of safety properties, several analyser
instances, based upon a Proxy-monitor model, are executed in parallel. Any incom-
ing message received from the same composition instance must be delivered to the
same analyser instance: this step is performed by a module called entry-point which
routes messages to the correct analyser instance by means of correlation sets.

Fig. 3 The passive tester architecture

The entry-point functioning is given in Algorithm 1. The latter handles a set L
of pairs (pi,PV) with pi an analyser instance identifier and PV the set of parameter
values received in previous messages. For each received message, this set is used
to correlate it with an existing composition instance in reference to the Message
correlation hypothesis. Whenever a message (e(p),θ) is received, its correlation
set c is extracted to check if an exiting analyser instance is running to accept it.
This instance exists if L contains a pair (pi,PV) such that a non-empty subset c′ ⊆ c
is composed of values of PV (correlation hypothesis). In this case, the correlation
set has been constructed from parameter values of messages received previously. If
an instance is already running, the message is forwarded to it. Otherwise, (line 7),
a new one is started. If an analyser instance pi has returned a trace set (line 11),
then the latter is stored in Traces(Pr(M)) and the corresponding pair (pi,PV) is
removed from L.

Algorithm 2 describes the functioning of an analyser. Basically, it waits for an
event (message or quiescence), covers Proxy-monitor transitions, and constructs
traces to detect non conformance or property violations when a verdict location is
reached. Algorithm 2 is based upon a forward checking approach: it starts from the
initial state i.e., (l0Pr(M),V0Pr(M)) and constructs a run denoted Run. Whenever an
event (e(p),θ) is received (valued action or quiescence), with eventually θ a valua-
tion over p (line 2), it looks for the next transitions which can be fired (line 5). Each
transition must have the same start location as the one found in the final state (l,v)
of the run Run, the same action as the received event e(p) and its guard must be

Combining Passive Conformance Testing and Runtime Verification 111

Algorithm 1. Entry-point
input : Proxy-monitor Pr(M)
output: Traces(Pr(M))

1 L =∅;
2 while message (e(p),θ) do
3 extract the correlation set c in θ ;
4 if ∃(pi,PV) ∈ L such that c′ ⊆ c and c′ ⊆ PV then
5 forward (e(p),θ) to pi; PV = PV ∪θ ;

6 else
7 create a new Pr(M) instance pi;
8 L = L∪ (pi,{θ}); send (e(p),θ) to pi;

9 if ∃(pi,PV) ∈ L such that pi has returned the trace set T then
10 Traces(Pr(M)) = Traces(Pr(M))∪T ;
11 L = L \{(pi,PV)};

satisfied over the valuation v∪θ . If this transition reaches a verdict location (Defini-
tion 12) then the algorithm constructs a new Run (lines 8-11) and ends. Otherwise,
the event (e(p),θ) is forwarded to the called partner with the next transition t2 (lines
12 to 14). Run is completed with r′ followed by the sent event and the reached state
qnext2 = (lnext2,v′′). Then, the algorithm waits for the next event. It ends when Fail
and/or Violate is detected or when no new event is observed after a delay sufficient
to detect several times quiescent states (set to ten times in the algorithm with qt). It
returns the trace T derived from Run.

Algorithm 2 reflects exactly the definition of the monitoring of an implementation
(Definition 14). It collects valued events and constructs traces of ||p(Env,PM, I) by
supposing that both I and Env are ioLTS suspensions. Lines (5-15) implement the
rules of Definition 14. In particular, when a verdict location lv is reached (line 8
or 11), the analyser has constructed a run, from its initial state which belongs to
RunV (||p(Env,PM, I)) with V a verdict location set. From this run, we obtain a trace
of TracesV (||p(Env,PM, I)).

So, with Proposition 2, we can state the correctness of the algorithm with:

Proposition 3. The algorithm has reached a location verdict in:

• FAIL/VIOLATE⇒TracesFAIL/VIOLAT E(||p(Env,PM, I)) �=∅⇒ I � (O,ViolateO)
and ¬(I ioco S),

• FAIL ⇒ TracesFAIL(||p(Env,PM, I)) �=∅⇒¬(I ioco S),
• VIOLATE ⇒ TracesVIOLAT E(||p(Env,PM, I)) �=∅⇒ I � (O,ViolateO).

Both the previous algorithms perform a synchronous analysis. Algorithm 1 receives
a message, transfers it to Algorithm 2, which constructs a run from Proxy-monitor
transitions before eventually forwarding the message to its addressee. However, this
analysis can be done asynchronously to reduce the checking overhead with slight
modifications: as soon as Algorithm 1 receives a message, it can forward it directly.
Then, the message can be also given to Algorithm 2 which constructs its run only.

112 S. Salva and T.-D. Cao

Algorithm 2. Proxy-Monitor-based analyser algorithm
input : A Proxy-monitor Pr(M)
output: Trace

1 Run := {(q0 = (l0Pr(M),V 0Pr(M)))}; qt = 0;
2 while Event(e(p),θ) ∧ Fail is not detected ∧qt < 10 do
3 if e(p) =!δ then
4 qt := qt +1;

5 foreach t = l
e(p),G,A−−−−−→ lnext ∈→Pr(M) such that Run ends with (l,v) and θ ∪ v |= G

do
6 qnext = (lnext ,v′ = A(v∪θ));
7 r′ = Run.(e(p),θ).qnext ;
8 if lnext ∈V IOLAT E ∪FAIL/VIOLAT E then
9 Violation is detected; Run := r′;

10 if lnext ∈ FAIL∪FAIL/VIOLATE then
11 Fail is detected; Run := r′;
12 if lnext /∈V IOLAT E ∪FAIL/VIOLAT E ∪FAIL then

13 Execute(t2 = lnext
!e(p),G2,A2−−−−−−−→Pr(M) lnext2) ; // forward (!e(p),θ)

14 qnext2 := (lnext2,A2(θ ∪ v′)); Run := r′.(!e(p),θ).qnext2;

15 return the trace T = {pro j∑||Pr(M)||(Run)} ;

5.1 Experimentation

We have implemented this approach in a tool called CloudPaste (Cloud PASsive
TEsting 2) to assess the feasibility of the approach. We experimented it with the
Web service composition of Figure 1(a), developed with SOAP Web services in C#
and deployed in Windows Azure. The Azure PaaS layer supports proxy configura-
tion, i.e. services can be configured to pass through proxies that can be hosted inside
or outside of the Cloud. The guard solving in Algorithm 2 is performed by the SMT
(Satisfiability Modulo Theories) solver Z3 3 that we have chosen since it offers
good performance, takes several variable types and allows a direct use of arithmetic
formulae. However, it does not support String variables. So, we extended the Z3
expression language with terms, which refer to the ioSTS definition, and in partic-
ular with String-based terms. A term stands for a function over internal variables
and parameters which returns a Boolean. Basically, our tool takes Z3 expressions
enriched with terms, terms are evaluated and replaced with Boolean values. Then,
a Z3 script, composed of the internal variables, the parameters and the guard, is
dynamically written before calling Z3. If the guard is satisfiable (not satisfiable),
Z3 returns sat (unsat respectively). Z3 returns unknown when it cannot determine
whether a formula is satisfiable or not.

2 http://sebastien.salva.free.fr/cloudpaste/cloudpaste.html
3 http://z3.codeplex.com/

Combining Passive Conformance Testing and Runtime Verification 113

Fig. 4 Time processing measurements in Window Azure

We generated the Proxy-monitor from the ioSTS of Figure 1(a) combined with
five safety properties with a tool generating Canonical testers and Proxy-monitors.
The first property is the one described in Section 3.1. The other properties are based
on security vulnerabilities. Client applications were simulated with at most 20 in-
stances of Java applications performing one request to the BookSeller Web service
with correct lists of two ISBNs. The passive tester was installed in a Windows server
hosted in Azure. The detection of quiescence was implemented with a timeout set
to 10s with respect to the HTTP timeout (usually set between 3 and 100 seconds).

Figure 4 depicts the average time processing of one client (milliseconds) when
one up to twenty clients are running. The curves represent respectively the aver-
age time, without passive-tester, with the use of the transparent proxy Charles 4,
with CloudPaste in asynchronous mode and in synchronous mode. In asynchronous
mode, CloudPaste processes messages with a slightly higher time delay than Charles
(with 20 clients, 102ms per message with Charles, 118ms per message with Cloud-
Paste). This time delay is far lower than the quiescence timeout (and than the HTTP
timeout as well). In synchronous mode, the checking overhead is higher with an
average time of 135ms per message for 1 client and 395ms per message for 20
clients. This big difference results from the constraint solver calls and from the lack
of optimisation of our code (Z3 is not yet called in parallel in CloudPaste). Never-
theless, in synchronous mode, the time processing is still lower than the timeout set
to observe quiescence (the testing process can be done) and than the HTTP timeout
(messages can be forwarded correctly). This mode is also particularly interesting
since it offers the advantage to eventually implement recovery action calls, e.g., er-
ror compensation or implementation reset, when an error is detected. Error recovery
is not possible with classical proxies or in asynchronous mode. These results tend

4 http://www.charlesproxy.com

114 S. Salva and T.-D. Cao

to show that our approach represents a good solution for testing and that it can be
done in real-time.

6 Related Works

The works proposed in the literature either dealing with runtime verification, e.g.,
[3, 4, 8] or with passive testing, e.g., [11, 5, 2, 12] rely on three main methods for
trace observation. Monitors or passive testers can be encapsulated within the imple-
mentation environment [4, 5], i.e. it is modified or completed with new test modules
e.g., workflow engines. Traces can be also observed with probes, e.g., sniffer-based
tools, deployed in the implementation environment [3, 11, 8, 12]. With these two
methods, it is required to assume that the implementation environment access rights
are granted and that it may be modified. This prerequisite condition cannot be al-
ways satisfied with any implementation environment. Installing a sniffer-based tool
in a PaaS platform is not possible since services are geographically deployed in a dy-
namic manner and since the access and the modification of PaaS and IaaS layers are
not authorised. The same issue is usually raised with Web servers: Web applications
are tested by means of active methods with a testing server and are then deployed
into another production server whose access rights are restricted for security rea-
sons. Another possibility consists in adding directly probes into the system code [7]
but this is occasionally considered only since it has the disadvantage of modifying
the implementation behaviours for testing. Our work focuses on these issues, by
proposing the use of the proxy concept for testing. A first naive solution would be
to collect traces with a proxy e.g. SOAPUI5, to eventually prune/modify them to
obtain usual traces (those that would be collected directly from the implementation)
and to analyse them with a specification to detect errors. Our proposal consists in
generating automatically another model called Proxy-tester from a specification and
to use a passive tester performing an analysis directly with Proxy-testers.

Few works have also focused on the combination of runtime verification with
conformance testing [3, 6]. The latter consider active testing and therefore a com-
bination of properties with classical test cases which are later actively executed on
the system: in [3], test cases are derived from a model describing system inputs and
properties on these inputs. Once test cases are executed, the resulting traces are anal-
ysed to ensure that the properties hold. Runtime verification and active testing have
been also combined to check whether a system meets a desirable behaviour and con-
formance w.r.t. ioco [6]. In these previous works, the combination of active testing
with runtime verification helps to choose, in the set of all possible test cases, only
those expressing behaviours satisfying the given specification and safety properties.
The other behaviours (those satisfying the specification but not the safety property
and vice-versa) are not considered. Our proposal solves this issue by defining differ-
ently specifications and safety properties so that the resulting monitors could cover
any behaviours passively over a long period of time.

5 www.soapui.org/

Combining Passive Conformance Testing and Runtime Verification 115

7 Conclusion

We have proposed a testing approach combining ioco passive testing with runtime
verification of safety properties. A monitor, called Proxy-monitor, is automatically
generated from safety properties and specifications modelled with ioSTSs. Proxy-
monitors are then used to detect whether the implementation is not ioco-conforming
to its specification or if the former violates properties. Proxy-monitors are also based
upon the notion of transparent proxy to ease the extraction of traces from environ-
ments in which testing tools cannot be deployed. Our approach can be applied on
different types of communication software, e.g., Web service compositions, in con-
dition that they could be configured to send messages through a proxy. In the exper-
imentation part, we have also showed that the overhead obtained by the use of our
approach remains reasonable and is much lower than the HTTP timeout.

In this paper, we have dealt with deterministic ioSTS specifications to rephrase
ioco, like many testing approaches proposed in the literature. However, nondeter-
ministic ioSTSs can be considered as well by apply determinization techniques [10].
In a future work, we could also consider nondeterministic ioSTSs with a weaker test
relation than ioco to generate nondeterministic Proxy-testers. Another immediate
line of future work concerns the enrichment of the experimentation with larger Web
service compositions deployed in different Clouds, each having its own possibilities
and restrictions.

References

1. Ws-bpel, Oasis Consortium (2007), http://docs.oasis-open.org/wsbpel/
2.0/OS/wsbpel-v2.0-OS.html

2. Andrés, C., Cambronero, M.E., Núñez, M.: Passive testing of web services. In: Bravetti,
M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 56–70. Springer, Heidelberg (2011)

3. Arthoa, C., Barringerb, H., Goldbergc, A., Havelundc, K., Khurshidd, S., Lowrye, M.,
Pasareanuf, C., Rosug, G., Seng, K., Visserh, W., Washingtonh, R.: Combining test case
generation and runtime verification. Theoretical Computer Science 336(2-3), 209–234
(2005)

4. Barringer, H., Gabbay, D., Rydeheard, D.: From runtime verification to evolvable sys-
tems. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 97–110.
Springer, Heidelberg (2007)

5. Cavalli, A., Benameur, A., Mallouli, W., Li, K.: A Passive Testing Approach for Secu-
rity Checking and its Practical Usage for Web Services Monitoring. In: NOTERE 2009
(2009)

6. Constant, C., Jéron, T., Marchand, H., Rusu, V.: Integrating formal verification and con-
formance testing for reactive systems. IEEE Trans. Softw. Eng. 33(8), 558–574 (2007),
doi:10.1109/TSE.2007.70707

7. d’Amorim, M., Havelund, K.: Event-based runtime verification of java programs. In:
Proceedings of the Third International Workshop on Dynamic Analysis, WODA 2005,
pp. 1–7. ACM, New York (2005), doi:10.1145/1082983.1083249

8. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime verification of
component-based systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011.
LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

116 S. Salva and T.-D. Cao

9. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test Generation Based on Symbolic Spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 1–15.
Springer, Heidelberg (2005)

10. Jéron, T., Marchand, H., Rusu, V.: Symbolic determinisation of extended automata. In:
Navarro, G., Bertossi, L., Kohayakawa, Y. (eds.) TCS 2006. IFIP, vol. 209, pp. 197–212.
Springer, Boston (2006)

11. Lee, D., Chen, D., Hao, R., Miller, R.E., Wu, J., Yin, X.: Network protocol system mon-
itoring: a formal approach with passive testing. IEEE/ACM Trans. Netw. 14, 424–437
(2006)

12. Nguyen, H.N., Poizat, P., Zaidi, F.: Online verification of value-passing choreographies
through property-oriented passive testing. In: Ninth IEEE International Symposium on
High-Assurance Systems Engineering, pp. 106–113 (2012)

13. Salva, S.: Passive testing with proxy-testers. International Journal of Software Engineer-
ing and Its Applications (IJSEIA). Science & Engineering Research Support Society
(SERSC) 5 (2011)

14. Salva, S.: A model-based testing approach combining passive testing and runtime
verification. Tech. rep., LIMOS, LIMOS Research report RR13-04 (2013),
http://sebastien.salva.free.fr/useruploads/files/RR-13-04.
pdf

15. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software -
Concepts and Tools 17(3), 103–120 (1996)

http://sebastien.salva.free.fr/useruploads/files/RR-13-04.pdf
http://sebastien.salva.free.fr/useruploads/files/RR-13-04.pdf

	Introduction
	Model Definition and Notations
	Passive Testing with Proxy-Testers and Runtime Verification
	Verification of Safety Properties
	Ioco Testing with Proxy-Testers

	Combining Runtime Verification and Proxy-Testing
	Proxy-Tester and Observer Composition

	Application to Web Service Composition Deployed in Clouds
	Experimentation

	Related Works
	Conclusion
	References

