
Reverse Engineering Models of Concurrent
Communicating Systems From Event Logs

Sébastien Salva
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: sebastien.salva@uca.fr

Abstract—This paper tackles the problem of extracting design
and implementation informations from communicating systems
made up of components concurrently interacting with each
other, e.g., Web service compositions or IoT (Internet of Things)
systems. We present a passive model learning approach, which
recovers formal models from event logs, specifically one Input
Output Labelled Transition System (IOLTS) for every component
of the system under learning. From an event log, our approach
is able to automatically recover conversations (a.k.a. sessions),
without having any knowledge about the used event correlation
mechanisms. It uses correlation pattern definitions and a heuristic
based on the quality of the generated conversations to get the
most relevant conversation sets. Then, our approach extracts the
trace sets of every component and generates IOLTSs. The latter
can be used as documentation, for test case generation, or for
formal verification.

Index Terms—Reverse engineering; Model learning; Event Log;
Communicating systems.

I. INTRODUCTION

Software Reverse Engineering gathers numerous techniques
specialised in the analysis of software system to extract design
and implementation information. Among them, model learning
has emerged as a highly effective technique for recovering
the models of black-box software systems. Such models, e.g.,
temporal rules, or finite state machines that encode functional
behaviours, offer substantial benefits as they can be employed
for security audits [1], [2], real-time anomaly detection [3], or
bug detection [4].

This paper addresses passive model learning, for which it is
assumed that event logs have been previously collected from
a System Under Learning (SUL) and can be mined to learn
models. Although numerous passive model learning algorithms
and tools are available in the literature, few of them [4], [5],
[6], [7] are directly applicable to distributed systems made
up of communicating components. These systems indeed raise
specific difficulties. Most of them come from the fact that SUL
is made up of components that run in parallel and concurrently
interact with each other. To recover the behaviours of the
components, it is required to extract accurate conversations
(a.k.a. sessions), i.e., event sequences of correlated events in-
terchanged among different components that achieve a certain
goal. Additionally, traditional model learning algorithms return
”flat” models, i.e., one model for a given composition encoding
all the event details (parameters) listed in the event logs. With
large event logs, it often results in complex and unreadable
models.

Contribution: the paper presents another passive model
learning approach, which recovers Input Output Labelled
Transition Systems (IOLTSs) from event logs. As SUL is a
distributed and concurrent communicating system, we assume
that correlation mechanisms, e.g., execution trace identifiers,
are employed to propagate context IDs and keep track of
the process contexts. But, we do not assume knowing how
events are correlated in advance. The major contribution of
this approach is its capability to automatically retrieve conver-
sations from event logs, without having any knowledge about
the used correlation mechanisms. Instead of using a brute-
force search over the space of parameter assignments found
in events, our algorithm is based upon a formalisation of the
notion of correlation patterns and is guided towards the most
relevant conversation sets by evaluating conversation quality.
As there is no consensus about what a relevant conversation
should be, the conversation quality can be adapted to meet user
needs and viewpoints. Next, from the retrieved conversations,
our approach extracts the trace sets of every component
participating in the generation of the event log. And, finally,
it generates one IOLTS for every of these components, which
captures the behaviours encoded in event logs with inputs and
outputs showing the messages received and sent among the
components.

The paper is organized as follows: Section II provides some
definitions and notations on events, correlations and sessions.
Our approach is presented in Section III. Section IV discusses
related work. Section V summarises our contributions and
draws some perspectives for future work.

II. EVENTS, CORRELATIONS AND CONVERSATIONS

A. Preliminary Definitions

We denote by E the set of events of the form e(α) with e
a label and α an assignment of parameters in P sent/received
with events, with P the parameter set. The concatenation of
two event sequences σ1, σ2 ∈ E∗ is denoted σ1.σ2. By ε we
denote the empty sequence. For sake of readability, we also
write σ1 ∈ σ2 when σ1 is a (ordered) subsequence of the
sequence σ2. Events are partially ordered in event logs. This
is expressed with these partial order relations:

• <t⊆ E× E, which orders two actions according to their
timestamps,

• <c⊆ E × E, which orders two actions if the occurrence
of the first action implies the occurrence of the second
one,

• <:=<t ∪ <c is the transitive closure of <c and <t.
We also use the following notations on events to make our

algorithms more readable:
• from(e(α)) = c denotes the source of the event when

available; to(e(α)) = c denotes the destination;
• isReq(e(α)), isResp(e(α)) are boolean expressions ex-

pressing the nature of the event;
• A(σ) =

⋃
e(α)∈σ

α is the set of parameter assignments of

σ.
In the paper, we use the IOLTS model to express the

behaviours of components. This model is defined in terms of
states and transitions labelled by input or output events in E.

Definition 1 (IOLTS) An Input Output Labelled Transition
System (IOLTS) is a 4-tuple 〈Q, q0,Σ,→〉 where:
• Q is a finite set of states; q0 is the initial state;
• Σ ⊆ E is the finite set of events. ΣI ⊆ Σ is the countable

set of input events, ΣO ⊆ Σ is the countable set of output
events, with ΣO ∩ ΣI = ∅;

• →⊆ Q×Σ×Q is a finite set of transitions. A transition
(q, a, q′) is also denoted q a−→ q′.

B. Event Correlation and Conversations

The correlation mechanisms used from one system to an-
other are seldom the same, but they are often compliant with
some patterns. Most of these are introduced in [8]. Given an
event sequence σ = e1(α1) . . . ek(αk) ∈ E∗, we formulate that
an event e(α) correlates with σ w.r.t. one of these patterns as
follows:
• Key based correlation: e(α) correlates with σ if all the

events share the same parameter assignment set: α∩α1∩
· · · ∩ αk 6= ∅;

• Chained correlation: e(α) is correlated with σ if e(α)
shares some references with ek(αk): α ∩ αk 6= ∅;

• Function based correlation: a function f : E→ L firstly
assigns to each event a label of the form ”l:=label” in L
according to the event parameter assignments. Then, the
event correlation is performed w.r.t. one of the previous
patterns;

• Time-based correlation: this pattern is somehow a spe-
cial case of the previous one, in the sense that a label
can be injected into an event w.r.t. a condition on time.
A function f : E → L assigns labels to events returns a
label of the form ”t:=l” according to timestamps.

The above patterns can also be combined with conjunctions
or disjunctions to formulate correlation expressions. To make
our algorithm readable, we write e(α) correlates σ if the
event e(α) correlates with a sequence σ by such a correlation
pattern-based expression.

In reference to [9], a set of parameter assignments used for
an event correlation is called correlation set. A conversation

corresponds to an event sequence interchanged among com-
ponents, whose events correlate by means of correlation sets:

Definition 2 Let σ = e1(α1) . . . ek(αk) ∈ Ek.
• σ is a conversation iff ∀1 < i ≤ k : ei(αi)

correlates e1(α1) . . . ei−1(αi−1)
• corr(σ) = {cs1, . . . , csk−1} denotes the set of correla-

tion sets of σ, with csi ⊆ (αi ∪ αi+1)

III. MODEL LEARNING

Given an event log produced by a concurrent and distributed
system SUL, our approach aims at analysing an event log
collected from SUL and at recovering one IOLTS for every
component of SUL, which captures its behaviours.

We assume that the events in the event log are ordered with
respect to the < relation. When several log files are given,
we assume that they can be assembled with <t or <c. In
particular, the causal order relation <c may help assemble two
log files given by two systems whose internal clock values
slightly differ. <c indeed helps order the actions a1(α1) in a
first log that imply the occurrence of other actions a2(α2) in a
second one. The analysis of the pairs (a1(α1), a2(α2)) helps
compute the difference of time between these two systems.

Our approach is mainly divided into three main steps:
Conversation extraction, Component trace extraction from
conversations, and IOLTS Generation and Generalisation.
Beforehand, we assume that the event log is formatted into
a sequence S of events of the form e(α) by means of
regular expressions. The techniques proposed in [4], [10], [11],
[12], [13], [14] can assist users in the mining of patterns or
expressions from log files, which can be used to quickly derive
the appropriate regular expressions.

A. Step 1: Conversation Extraction

The first step of our approach extracts conversations from a
sequence S. Our conversation extraction algorithm is devised
to explore the possible correlations among the successive
events of S, thus in a depth-wise way, while being efficiently
guided by the conversation consistencies. This notion of
consistency is expressed by means of conversation invariants
and conversation quality. Invariants and quality metrics also
formulate a heuristic that guides our algorithm towards the
most relevant conversation sets.

1) Conversation Invariant and Quality: The correlation
patterns implicitly restrict the structure of a conversation ac-
cording to some properties that are always true, i.e., invariants,
over correlation sets. Indeed, an event must correlate with only
one conversation σ of a conversation set C with a unique
correlation set; a correlation set cs of corr(σ) cannot be empty,
cs cannot be found in another conversation σ2 of C. Besides,
σ must have parameter assignments for building potential
correlation sets, it must include parameter assignments that
cannot be found in any other conversation σ2. These three
invariants are formulated in the following proposition. Other
invariants can also be added to meet user preferences. For

/login(from:="cl", to:="ShopS", id:="tocken",
account:="l")

ok(from:="ShopS", to:="cl", id:="tocken"
trans:="t1")

/order(from:="cl", to:="ShopS",
trans:="t1",item:="a")

/stock(from:="ShopS", to:="StockS",
trans:="t1", item:="a")

ok(from:="StockS", to:="ShopS", trans:="t1",
item:="a")

ok(from:="ShopS", to:="cl",
trans:="t1",content:="stock")

/supply(from:="ShopS", to:="WS", trans:="t1",
key:="k1",item:="a")

ok(from:="WS", to:="ShopS", trans:="t1",
key:="k1")

/supplyWS(from:="WS", to:="WS1", key:="k1",
key2:="k2",item:="a")

/supplyWS(from:="WS", to:="WS2", key:="k1",
key2:="k3",item:="a")

/supplyWS(from:="WS", to:="WS3", key:="k1",
key2:="k4",item:="a")

ok(from:=WS1,to:="WS", key:="k1", key2:="k2")
ok(from:=WS2,to:="WS", key:="k1", key2:="k3")
Unavailable(from:="WS3",to:="WS", key:="k1",

key2:="k4")
/login(from:="cl", to:="ShopS", id:="tocken2",

account:="l2")
ok(from:="ShopS", to:=cl, id:="tocken2",

trans:="t2")
/order(from:="cl", to:="ShopS",

trans:="t2",item:="b")
ok(from:="ShopS", to:="cl", trans:="t2"

content:="no stock")

Fig. 1. Formatted part of an event log

instance, the last invariant imposes conversations to start with
a request.

Proposition 3 (Conversation Set Invariants) Let C be a
conversation set and σ ∈ C. Inv stands for the set of
conversation set invariants:

• ∀cs ∈ corr(σ) : cs 6= ∅
• ∀cs ∈ corr(σ),∀σ2 ∈ C \ {σ} : cs ∩A(σ2) = ∅
• A(σ) \

⋃
σ2∈C\{σ}A(σ2) 6= ∅

• ∀e1(α1) . . . ek(αk) ∈ C : isReq(e1(α1))

For readability, we denote that the conversations of a conver-
sation set C meet conversation invariants with C satisfies Inv.

Our algorithm uses quality metrics as another way to limit
the conversation set exploration, but also to prioritize this
exploration among several conversation set candidates. We
formulate a comprehensive quality metric of a conversation
set C by means of a utility function for representing user
preferences. The following definition refers to quality metrics
Mi(C) over conversation sets, themselves calculated by means
of metrics mi(σ) over conversations:

Definition 4 (Conversation Set Quality) 0 ≤ Q(C) =∑n
i=1Mi(C).wi ≤ 1 with 0 ≤ Mi(C) =

∑
σ∈C mi(σ)

|C| ≤ 1,

wi ∈ R+
0 and

∑k
i=1 wi = 1.

The conversation quality metrics can be general or estab-
lished with regard to a specific system context. Our approach
actually does not limit the metric set. We provide four metric
examples below. m1 and m2 evaluate whether a conversation σ
follows the classical request-response exchange pattern (sender
sends a request to receiver, ultimately returning a response).
m1 evaluates the ratio of requests in σ associated with some
responses with ReqwResp(σ). m2 evaluates the ratio of
responses following a prior request with RespwReq(σ).

0 < m1(σ) =
|ReqwResp(σ)|+ 1

|Req(σ)|+ 1
≤ 1 (1)

0 < m2(σ) =
|RespwReq(σ)|+ 1

|Resp(σ)|+ 1
≤ 1 (2)

The metric m3 examines whether σ is composed of cor-
related events, in other terms, whether σ has more than one
event:

m3(σ) =

{
1 if corr(σ) 6= ∅
0 otherwise (3)

The metric m4 evaluates the ratio of assignments used
to correlate the events of a conversation. The simpler the
correlation mechanism is, the closer to 1 the metric is.

0 ≤ m4(σ) = 1−
|
⋃
cs∈corr(σ) cs|
|A(σ)|

< 1 (4)

Algorithm 1: Conversation and Correlation Set Extrac-
tion

input : Event sequence S = e1(α1) . . . ek(αk), boolean first
output: Conversation sets C1, . . . , Cn,

1 C := {e1(α1)};
2 call Find C&CS(C, 2);
3 Procedure Find C&CS(C, i) is
4 if i ≤ k then
5 foreach σ ∈ C : ei(αi) correlates σ do
6 CS := P(αi ∩ last(σ)) \ {∅} ;
7 foreach cs ∈ CS do
8 σ′ := σ.ei(αi);
9 corr(σ′) := corr(σ) ∪ {cs};

10 C2 := C ∪ {σ′} \ {σ};
11 if C2 satisfies Inv and Q(C2) ≥ T then
12 Find C&CS(C2, i+ 1);

13 C3 := C ∪ {ei(αi)};
14 corr(ei(αi)) := ;
15 if C3 satifies Inv and Q(C3) ≥ T then
16 Find C&CS(C3, i+ 1);

17 else
18 return C;
19 if Q(C) ≥ T2 then
20 STOP all Find C&CS instances;

2) Conversation Set Extraction Algorithm: The conversa-
tion set extraction is implemented in Algorithm 1. It takes
as input an event sequence S and returns conversation sets,
which are ordered with regard to their respective conversation
set quality. It builds a first set C composed of one conversation
equal to the first event of S. The events of S are then
successively covered by recursively calling a new instance of
Find C&CS(C, i). This procedure takes an event ei(αi) and

Fig. 2. Conversation set and IOLTSs modelling a composition of 6 Web services

tries to find, in the conversation set C, a conversation σ such
that ei(αi) correlates σ. If there exists such a conversation,
the procedure builds for every possible correlation set (line 7)
a new conversation set with the new conversation σ.ei(αi).
Besides (line 13), an additional conversation set C3 is built
to consider that the event ei(αi) might also be the beginning
of a new conversation. For every new conversation set that
meets conversation invariants and quality, Find C&CS is
recursively called (lines 12, 16).

Let us consider the event sequence of Figure 1 whose events
include varied parameters e.g., from, to, key. Algorithm
1 extracts the conversation set C of Figure 2 (the events
are given without parameter assignment for readability). We
obtain 2 conversations whose events are correlated with the
parameters in {id, trans, key, key2}.

Algorithm 1 may return several conversation sets ordered
by quality if different correlations have been detected among
successive events of S. In this case, the user has to choose the
most appropriate conversation set with regard to its needs and
knowledge.

B. Step2: Component Trace Extraction

The second step of our approach now generates as many
trace sets as components found in the system SUL. This step,
implemented by Algorithm 2, firstly covers the events of every
conversation to identify the components of SUL (line 5). A the
same time, it converts events by integrating the notions of input
and output. In lines 6-8, every request or response is indeed
doubled by separating the component source and destination.
The component that executes the event is identified by a
new assignment on the parameter idc injected to each event.
Non-communicating events (neither requests or responses) are
marked as outputs. Then, Algorithm 2 segments the resulting
sequence σ′ into sub-sequences, each capturing the behaviours
of one component only of the set Comp (lines 9, 10). The
algorithm returns form every component c ∈ Comp a set Tc
that gathers the traces of the component c only.

Algorithm 2: Component Trace Extraction
input : Conversation set C
output: Trace sets Tc1 . . . Tcn

1 T := {};
2 foreach σ = e1(α1) . . . ek(αk) ∈ C) do
3 σ′ := ε;
4 foreach ei(αi) ∈ σ do
5 Comp := Comp ∪ {from(ei(αi)), to(ei(αi))};
6 σ′ := σ′.!ai({idc := from(ei(αi))} ∪ αi);
7 if isReq(ei(αi)) ∨ isResp(ei(αi))) then
8 σ′ := σ′.?ei({idc := to(ei(αi))} ∪ αi);

9 foreach c ∈ Comp do
10 Tc := Tc ∪ {σ′ \ {e(α) ∈ σ′ | (idc := c) /∈ α}}

C. Step 3: IOLTS Generation

Every trace set Tc = {σ1, . . . , σn} is now lifted to the level
of IOLTS.

A first IOLTS denoted Lc is obtained by transforming
the traces of Tc to IOLTS paths. Lc is the IOLTS Lc =
〈Q, q0,Σ,→〉 derived from Tc such that:
• q0 is the initial state.
• Q,Σ,→ are defined by the following inference rule:

σi=a1(α1)...ak(αk)

q0
e1(α1)−−−−→(q1i,cl(σi))...(qk−1i,Cl(σi))

ak(αk)−−−−→q0

By applying this trace set to IOLTS conversion on ev-
ery component, we obtain the IOLTSs Lc1 , . . . , Lcn . Those
IOLTSs are finally generalised by merging their equivalent
states. The state merging is performed by means of the k-Tail
algorithm [15], which is known to be a flexible state merging
algorithm in the sense that it assembles the states sharing
the same k-future, i.e., the same event sequences having the
maximum length k.

Figure 2 depicts the IOLTSs generated from the conversa-
tion set given on top of the figure. Our approach has detected
6 components among the events of the two conversations.
These have been converted to 6 trace sets, which capture the
behaviours of each component. The traces sets have finally

been converted to the IOLTSs depicted in the figure. In this
example, we call k-Tail with k := 2.

With these IOLTSs, it becomes much easier to understand
the general functioning of the whole system. In particular,
it is now easier to understand that three services allow to
interact with wholesalers. Two of them seem to be behavioural
equivalent, but the last one is faulty.

IV. RELATED WORK ON PASSIVE MODEL LEARNING

Event correlation has been widely studied in different kinds
of domains, e.g., process mining, or event association mining.
In short, many approaches try to recover conversations by
mining frequent association rules in event logs, without using
correlation mechanisms [16], [17], [18], [19]. Other works
propose to recover conversations by using some correlation
patterns [20], [21], [22]. In particular, Process spaceship [22]
gathers a set of algorithms allowing to scan event logs and
retrieve conversation sets. The event correlations are mined
by using a sort of breadth search strategy over the parameter
assignments found in events. It explores all the possible
correlations over the domain of parameter assignments and
prunes them with interestingness properties. All the interesting
conversation sets are found, at the expense of time complexity.
Compared to Process spaceship, algorithm 1 uses another
strategy, which aims at finding correlation sets while building
conversations. This can be considered as a depth search guided
by heuristics based upon invariants and quality metrics. This
strategy allows to quicker find a first solution. Our algorithm
also has the capability of ordering conversation sets that meet
quality requirements.

Passive model learning includes techniques that passively
recover models from a given set of samples, e.g., a set of
execution traces. These are said passive as there is no direct
interaction with the system under learning. Models are often
generated by encoding sample sets with state diagrams whose
equivalent states are merged. For instance, k-Tail has been
later enhanced with Gk-tail to generate Extended Finite State
Machines encoding data constraints [23]. Other approaches
also enhance k-Tail to build more precise models [24], [25],
[26]. kBehavior [27] is another kind of approach that generates
models from a set of traces by taking every trace one after
the other and by completing a finite-state automaton in such
a way that it now accepts the trace. These previous passive
algorithms usually yield big models, which may quickly
become unreadable.

Some passive approaches dedicated to communicating sys-
tems have also been proposed. Mariani et al. proposed in
[27] an automatic detection of failures in log files by means
of model learning. This work extends kBehavior to support
events combined with data. It segments an event log with two
strategies: per component or per user. The former, which can
be used with communicating systems, generates one model
for each component. CSight [6] is another tool specialised in
the model learning of communicating systems, where com-
ponents exchange messages through synchronous channels.
It is assumed that both the channels and components are

known. Besides, CSight requires specific trace sets, which are
segmented with one subset by component. CSight follows five
stages: 1) log parsing and mining of invariants 2) generation
of a concrete Finite State Machine (FSM) that captures the
functioning of the whole system by recomposing the traces
of the components; 3) generation of a more concise abstract
FSM; 4) model refinement with invariants that must hold in
FSMs, and 5) generation of Communicating FSM.

We have proposed in [28] a passive model learning al-
gorithm for recovering models of component-based systems.
The requirements considered in this approach are different
from those of the above approaches. The main difference lies
in the fact that the communications among components are
assumed hidden (not available in event logs). The algorithm is
hence specific to this assumption. Then, we have proposed the
approach Ck-Tail in [7] to generate models of communicating
systems from event logs. Compared to CSight, we do not
assume that the trace sets are already prepared. The novelty
proposed by Ck-Tail lies in its capability of detecting sessions
in event logs. Compared to this work, we assume with Ck-Tail
that the components follow a strict behaviour: they cannot run
multiple instances; requests are processed by a component on
a first-come, first served basis. Besides, components follow the
request–response exchange pattern

We showed that Ck-Tail builds more precise models than
the other approaches by better recognising sessions, but we
also concluded that its requirements are too restrictive to be
widely used. The approach proposed in the paper relaxes these
assumptions and now supports any kind of communicating
system.

V. CONCLUSION AND FUTURE WORK

This paper has proposed the design of an approach spe-
cialised into the recovery of formal models from event logs
generated by communicating systems made up of concurrent
components. The approach firstly explores the conversation
set space that can be derived from an event log and is
guided toward the most relevant conversation sets by means of
invariants and conversation quality metrics. The latter can be
adapted to define user preferences or system contexts. Then,
the approach generates one trace set for every component
along with one IOLTS expressing its behaviours. These IOLTS
can be later used as documentation or for automatics analyses.

There are several issues which require further investigation
before evaluating our approach. One of them is to be able to
propose a good balance between model size, readability and
precision. For instance, the generated IOLTSs may be very
large on account of similar event sequences having different
parameter values. We hence intend to add further steps to raise
the IOLTS abstraction level, while preserving the possibility
to analyse of use concrete parameter values.

ACKNOWLEDGEMENT

Research supported by the French Project VASOC
(Auvergne-Rhône-Alpes Region) https://vasoc.limos.fr/

REFERENCES

[1] S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar,
M. Pourzandi, L. Wang, and M. Debbabi, “Leaps: Learning-based
proactive security auditing for clouds,” in Computer Security –
ESORICS 2017, S. N. Foley, D. Gollmann, and E. Snekkenes, Eds.
Cham: Springer International Publishing, 2017, pp. 265–285.

[2] S. Salva and E. Blot, “Verifying the application of security measures
in iot software systems with model learning,” in Proceedings of the
15th International Conference on Software Technologies, ICSOFT 2020,
Lieusaint, Paris, France, July 7-9, 2020, M. van Sinderen, H. Fill, and
L. A. Maciaszek, Eds. ScitePress, 2020, pp. 350–360.

[3] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang, “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019. New York,
NY, USA: Association for Computing Machinery, 2019, p. 807–817.

[4] L. Mariani and F. Pastore, “Automated identification of failure causes
in system logs,” in Software Reliability Engineering, 2008. ISSRE 2008.
19th International Symposium on, Nov 2008, pp. 117–126.

[5] A. Petrenko and F. Avellaneda, “Learning communicating state ma-
chines,” in Tests and Proofs - 13th International Conference, TAP 2019,
Held as Part of the Third World Congress on Formal Methods 2019,
Porto, Portugal, October 9-11, 2019, Proceedings, 2019, pp. 112–128.

[6] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with csight,”
in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014,
pp. 468–479. [Online]. Available: http://doi.acm.org/10.1145/2568225.
2568246

[7] S. Salva and E. Blot, “Cktail: Model learning of communicating
systems,” in Proceedings of the 15th International Conference on
Evaluation of Novel Approaches to Software Engineering, ENASE 2020,
Prague, Czech Republic, May 5-6, 2020, R. Ali, H. Kaindl, and L. A.
Maciaszek, Eds. SCITEPRESS, 2020, pp. 27–38.

[8] A. Barros, G. Decker, M. Dumas, and F. Weber, “Correlation patterns in
service-oriented architectures,” in Fundamental Approaches to Software
Engineering, M. B. Dwyer and A. Lopes, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 245–259.

[9] OASIS Consortium, “Ws-bpel version 2.0,” April 2007,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, Accessed
on 09.2021.

[10] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” 2009 Ninth IEEE
International Conference on Data Mining, pp. 149–158, 2009.

[11] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight
algorithm for message type extraction in system application logs,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24, no. 11, pp.
1921–1936, Nov 2012.

[12] R. Vaarandi and M. Pihelgas, “Logcluster - a data clustering and pattern
mining algorithm for event logs,” in 2015 11th International Conference
on Network and Service Management (CNSM), Nov 2015, pp. 1–7.

[13] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas,
“A search-based approach for accurate identification of log message
formats,” in Proceedings of the 26th Conference on Program
Comprehension, ser. ICPC ’18. New York, NY, USA: ACM, 2018,
pp. 167–177. [Online]. Available: http://doi.acm.org/10.1145/3196321.
3196340

[14] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R.
Lyu, “Tools and benchmarks for automated log parsing,” CoRR,
vol. abs/1811.03509, 2018, accessed on 09.2021. [Online]. Available:
http://arxiv.org/abs/1811.03509

[15] A. Biermann and J. Feldman, “On the synthesis of finite-state machines
from samples of their behavior,” Computers, IEEE Transactions on, vol.
C-21, no. 6, pp. 592–597, June 1972.

[16] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu, “Logmaster: Mining
event correlations in logs of large-scale cluster systems,” in 2012 IEEE
31st Symposium on Reliable Distributed Systems, 2012, pp. 71–80.

[17] L. Liu and J. Liu, “Mining web log sequential patterns with layer
coded breadth-first linked wap-tree,” in 2010 International Conference
of Information Science and Management Engineering, vol. 1, 2010, pp.
28–31.

[18] B. Serrour, D. P. Gasparotto, H. Kheddouci, and B. Benatallah, “Mes-
sage correlation and business protocol discovery in service interaction
logs,” in Advanced Information Systems Engineering, Z. Bellahsène and
M. Léonard, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 405–419.

[19] K. Musaraj, T. Yoshida, F. Daniel, M.-S. Hacid, F. Casati, and
B. Benatallah, “Message Correlation and Web Service Protocol Mining
from Inaccurate Logs,” in IEEE International Conference on Web
Services. Miami, Florida, United States: IEEE Computer Society, Jul.
2010, pp. 259–266. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-01381551

[20] S. Dustdar and R. Gombotz, “Discovering web service workflows using
web services interaction mining,” Int. J. Bus. Process. Integr. Manag.,
vol. 1, pp. 256–266, 2006.

[21] R. Conforti, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa,
“Bpmn miner: Automated discovery of bpmn process models with
hierarchical structure,” Information Systems, vol. 56, pp. 284–
303, 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0306437915001325

[22] H. R. Motahari Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah,
“Event correlation for process discovery from web service interaction
logs,” VLDB J., vol. 20, pp. 417–444, 06 2011.

[23] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of
software behavioral models,” in Proceedings of the 30th International
Conference on Software Engineering, ser. ICSE’08. New York, NY,
USA: ACM, 2008, pp. 501–510.

[24] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer invariant-
constrained models,” in Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software
Engineering, ser. ESEC/FSE ’11. New York, NY, USA: ACM, 2011,
pp. 267–277.

[25] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart, I. Beschast-
nikh, and Y. Brun, “Behavioral resource-aware model inference,” in Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ser. ASE ’14. New York, NY, USA: ACM, 2014,
pp. 19–30.

[26] F. Pastore, D. Micucci, and L. Mariani, “Timed k-tail: Automatic
inference of timed automata,” in 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST), March 2017,
pp. 401–411.

[27] L. Mariani and M. Pezze, “Dynamic detection of cots component
incompatibility,” IEEE Software, vol. 24, no. 5, pp. 76–85, 2007.

[28] S. Salva and E. Blot, “Confect: An approach to learn models of
component-based systems,” in Proceedings of the 13th International
Conference on Software Technologies, ICSOFT 2018, Porto, Portugal,
July 26-28, 2018., 2018, pp. 298–305.

